1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/nmi.h> 53 54 #include "workqueue_internal.h" 55 56 enum { 57 /* 58 * worker_pool flags 59 * 60 * A bound pool is either associated or disassociated with its CPU. 61 * While associated (!DISASSOCIATED), all workers are bound to the 62 * CPU and none has %WORKER_UNBOUND set and concurrency management 63 * is in effect. 64 * 65 * While DISASSOCIATED, the cpu may be offline and all workers have 66 * %WORKER_UNBOUND set and concurrency management disabled, and may 67 * be executing on any CPU. The pool behaves as an unbound one. 68 * 69 * Note that DISASSOCIATED should be flipped only while holding 70 * wq_pool_attach_mutex to avoid changing binding state while 71 * worker_attach_to_pool() is in progress. 72 */ 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 75 76 /* worker flags */ 77 WORKER_DIE = 1 << 1, /* die die die */ 78 WORKER_IDLE = 1 << 2, /* is idle */ 79 WORKER_PREP = 1 << 3, /* preparing to run works */ 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 83 84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 85 WORKER_UNBOUND | WORKER_REBOUND, 86 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 88 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 91 92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 94 95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 96 /* call for help after 10ms 97 (min two ticks) */ 98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 99 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 100 101 /* 102 * Rescue workers are used only on emergencies and shared by 103 * all cpus. Give MIN_NICE. 104 */ 105 RESCUER_NICE_LEVEL = MIN_NICE, 106 HIGHPRI_NICE_LEVEL = MIN_NICE, 107 108 WQ_NAME_LEN = 24, 109 }; 110 111 /* 112 * Structure fields follow one of the following exclusion rules. 113 * 114 * I: Modifiable by initialization/destruction paths and read-only for 115 * everyone else. 116 * 117 * P: Preemption protected. Disabling preemption is enough and should 118 * only be modified and accessed from the local cpu. 119 * 120 * L: pool->lock protected. Access with pool->lock held. 121 * 122 * X: During normal operation, modification requires pool->lock and should 123 * be done only from local cpu. Either disabling preemption on local 124 * cpu or grabbing pool->lock is enough for read access. If 125 * POOL_DISASSOCIATED is set, it's identical to L. 126 * 127 * A: wq_pool_attach_mutex protected. 128 * 129 * PL: wq_pool_mutex protected. 130 * 131 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 132 * 133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 134 * 135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 136 * RCU for reads. 137 * 138 * WQ: wq->mutex protected. 139 * 140 * WR: wq->mutex protected for writes. RCU protected for reads. 141 * 142 * MD: wq_mayday_lock protected. 143 */ 144 145 /* struct worker is defined in workqueue_internal.h */ 146 147 struct worker_pool { 148 raw_spinlock_t lock; /* the pool lock */ 149 int cpu; /* I: the associated cpu */ 150 int node; /* I: the associated node ID */ 151 int id; /* I: pool ID */ 152 unsigned int flags; /* X: flags */ 153 154 unsigned long watchdog_ts; /* L: watchdog timestamp */ 155 156 struct list_head worklist; /* L: list of pending works */ 157 158 int nr_workers; /* L: total number of workers */ 159 int nr_idle; /* L: currently idle workers */ 160 161 struct list_head idle_list; /* X: list of idle workers */ 162 struct timer_list idle_timer; /* L: worker idle timeout */ 163 struct timer_list mayday_timer; /* L: SOS timer for workers */ 164 165 /* a workers is either on busy_hash or idle_list, or the manager */ 166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 167 /* L: hash of busy workers */ 168 169 struct worker *manager; /* L: purely informational */ 170 struct list_head workers; /* A: attached workers */ 171 struct completion *detach_completion; /* all workers detached */ 172 173 struct ida worker_ida; /* worker IDs for task name */ 174 175 struct workqueue_attrs *attrs; /* I: worker attributes */ 176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 177 int refcnt; /* PL: refcnt for unbound pools */ 178 179 /* 180 * The current concurrency level. As it's likely to be accessed 181 * from other CPUs during try_to_wake_up(), put it in a separate 182 * cacheline. 183 */ 184 atomic_t nr_running ____cacheline_aligned_in_smp; 185 186 /* 187 * Destruction of pool is RCU protected to allow dereferences 188 * from get_work_pool(). 189 */ 190 struct rcu_head rcu; 191 } ____cacheline_aligned_in_smp; 192 193 /* 194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 195 * of work_struct->data are used for flags and the remaining high bits 196 * point to the pwq; thus, pwqs need to be aligned at two's power of the 197 * number of flag bits. 198 */ 199 struct pool_workqueue { 200 struct worker_pool *pool; /* I: the associated pool */ 201 struct workqueue_struct *wq; /* I: the owning workqueue */ 202 int work_color; /* L: current color */ 203 int flush_color; /* L: flushing color */ 204 int refcnt; /* L: reference count */ 205 int nr_in_flight[WORK_NR_COLORS]; 206 /* L: nr of in_flight works */ 207 int nr_active; /* L: nr of active works */ 208 int max_active; /* L: max active works */ 209 struct list_head delayed_works; /* L: delayed works */ 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 211 struct list_head mayday_node; /* MD: node on wq->maydays */ 212 213 /* 214 * Release of unbound pwq is punted to system_wq. See put_pwq() 215 * and pwq_unbound_release_workfn() for details. pool_workqueue 216 * itself is also RCU protected so that the first pwq can be 217 * determined without grabbing wq->mutex. 218 */ 219 struct work_struct unbound_release_work; 220 struct rcu_head rcu; 221 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 222 223 /* 224 * Structure used to wait for workqueue flush. 225 */ 226 struct wq_flusher { 227 struct list_head list; /* WQ: list of flushers */ 228 int flush_color; /* WQ: flush color waiting for */ 229 struct completion done; /* flush completion */ 230 }; 231 232 struct wq_device; 233 234 /* 235 * The externally visible workqueue. It relays the issued work items to 236 * the appropriate worker_pool through its pool_workqueues. 237 */ 238 struct workqueue_struct { 239 struct list_head pwqs; /* WR: all pwqs of this wq */ 240 struct list_head list; /* PR: list of all workqueues */ 241 242 struct mutex mutex; /* protects this wq */ 243 int work_color; /* WQ: current work color */ 244 int flush_color; /* WQ: current flush color */ 245 atomic_t nr_pwqs_to_flush; /* flush in progress */ 246 struct wq_flusher *first_flusher; /* WQ: first flusher */ 247 struct list_head flusher_queue; /* WQ: flush waiters */ 248 struct list_head flusher_overflow; /* WQ: flush overflow list */ 249 250 struct list_head maydays; /* MD: pwqs requesting rescue */ 251 struct worker *rescuer; /* MD: rescue worker */ 252 253 int nr_drainers; /* WQ: drain in progress */ 254 int saved_max_active; /* WQ: saved pwq max_active */ 255 256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 258 259 #ifdef CONFIG_SYSFS 260 struct wq_device *wq_dev; /* I: for sysfs interface */ 261 #endif 262 #ifdef CONFIG_LOCKDEP 263 char *lock_name; 264 struct lock_class_key key; 265 struct lockdep_map lockdep_map; 266 #endif 267 char name[WQ_NAME_LEN]; /* I: workqueue name */ 268 269 /* 270 * Destruction of workqueue_struct is RCU protected to allow walking 271 * the workqueues list without grabbing wq_pool_mutex. 272 * This is used to dump all workqueues from sysrq. 273 */ 274 struct rcu_head rcu; 275 276 /* hot fields used during command issue, aligned to cacheline */ 277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 280 }; 281 282 static struct kmem_cache *pwq_cache; 283 284 static cpumask_var_t *wq_numa_possible_cpumask; 285 /* possible CPUs of each node */ 286 287 static bool wq_disable_numa; 288 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 289 290 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 292 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 293 294 static bool wq_online; /* can kworkers be created yet? */ 295 296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 297 298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 300 301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 303 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 304 /* wait for manager to go away */ 305 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 306 307 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 308 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 309 310 /* PL: allowable cpus for unbound wqs and work items */ 311 static cpumask_var_t wq_unbound_cpumask; 312 313 /* CPU where unbound work was last round robin scheduled from this CPU */ 314 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 315 316 /* 317 * Local execution of unbound work items is no longer guaranteed. The 318 * following always forces round-robin CPU selection on unbound work items 319 * to uncover usages which depend on it. 320 */ 321 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 322 static bool wq_debug_force_rr_cpu = true; 323 #else 324 static bool wq_debug_force_rr_cpu = false; 325 #endif 326 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 327 328 /* the per-cpu worker pools */ 329 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 330 331 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 332 333 /* PL: hash of all unbound pools keyed by pool->attrs */ 334 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 335 336 /* I: attributes used when instantiating standard unbound pools on demand */ 337 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 338 339 /* I: attributes used when instantiating ordered pools on demand */ 340 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 341 342 struct workqueue_struct *system_wq __read_mostly; 343 EXPORT_SYMBOL(system_wq); 344 struct workqueue_struct *system_highpri_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_highpri_wq); 346 struct workqueue_struct *system_long_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_long_wq); 348 struct workqueue_struct *system_unbound_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_unbound_wq); 350 struct workqueue_struct *system_freezable_wq __read_mostly; 351 EXPORT_SYMBOL_GPL(system_freezable_wq); 352 struct workqueue_struct *system_power_efficient_wq __read_mostly; 353 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 354 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 355 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 356 357 static int worker_thread(void *__worker); 358 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 359 static void show_pwq(struct pool_workqueue *pwq); 360 361 #define CREATE_TRACE_POINTS 362 #include <trace/events/workqueue.h> 363 364 #define assert_rcu_or_pool_mutex() \ 365 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 366 !lockdep_is_held(&wq_pool_mutex), \ 367 "RCU or wq_pool_mutex should be held") 368 369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 370 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 371 !lockdep_is_held(&wq->mutex) && \ 372 !lockdep_is_held(&wq_pool_mutex), \ 373 "RCU, wq->mutex or wq_pool_mutex should be held") 374 375 #define for_each_cpu_worker_pool(pool, cpu) \ 376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 378 (pool)++) 379 380 /** 381 * for_each_pool - iterate through all worker_pools in the system 382 * @pool: iteration cursor 383 * @pi: integer used for iteration 384 * 385 * This must be called either with wq_pool_mutex held or RCU read 386 * locked. If the pool needs to be used beyond the locking in effect, the 387 * caller is responsible for guaranteeing that the pool stays online. 388 * 389 * The if/else clause exists only for the lockdep assertion and can be 390 * ignored. 391 */ 392 #define for_each_pool(pool, pi) \ 393 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 395 else 396 397 /** 398 * for_each_pool_worker - iterate through all workers of a worker_pool 399 * @worker: iteration cursor 400 * @pool: worker_pool to iterate workers of 401 * 402 * This must be called with wq_pool_attach_mutex. 403 * 404 * The if/else clause exists only for the lockdep assertion and can be 405 * ignored. 406 */ 407 #define for_each_pool_worker(worker, pool) \ 408 list_for_each_entry((worker), &(pool)->workers, node) \ 409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 410 else 411 412 /** 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 414 * @pwq: iteration cursor 415 * @wq: the target workqueue 416 * 417 * This must be called either with wq->mutex held or RCU read locked. 418 * If the pwq needs to be used beyond the locking in effect, the caller is 419 * responsible for guaranteeing that the pwq stays online. 420 * 421 * The if/else clause exists only for the lockdep assertion and can be 422 * ignored. 423 */ 424 #define for_each_pwq(pwq, wq) \ 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 426 lockdep_is_held(&(wq->mutex))) 427 428 #ifdef CONFIG_DEBUG_OBJECTS_WORK 429 430 static const struct debug_obj_descr work_debug_descr; 431 432 static void *work_debug_hint(void *addr) 433 { 434 return ((struct work_struct *) addr)->func; 435 } 436 437 static bool work_is_static_object(void *addr) 438 { 439 struct work_struct *work = addr; 440 441 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 442 } 443 444 /* 445 * fixup_init is called when: 446 * - an active object is initialized 447 */ 448 static bool work_fixup_init(void *addr, enum debug_obj_state state) 449 { 450 struct work_struct *work = addr; 451 452 switch (state) { 453 case ODEBUG_STATE_ACTIVE: 454 cancel_work_sync(work); 455 debug_object_init(work, &work_debug_descr); 456 return true; 457 default: 458 return false; 459 } 460 } 461 462 /* 463 * fixup_free is called when: 464 * - an active object is freed 465 */ 466 static bool work_fixup_free(void *addr, enum debug_obj_state state) 467 { 468 struct work_struct *work = addr; 469 470 switch (state) { 471 case ODEBUG_STATE_ACTIVE: 472 cancel_work_sync(work); 473 debug_object_free(work, &work_debug_descr); 474 return true; 475 default: 476 return false; 477 } 478 } 479 480 static const struct debug_obj_descr work_debug_descr = { 481 .name = "work_struct", 482 .debug_hint = work_debug_hint, 483 .is_static_object = work_is_static_object, 484 .fixup_init = work_fixup_init, 485 .fixup_free = work_fixup_free, 486 }; 487 488 static inline void debug_work_activate(struct work_struct *work) 489 { 490 debug_object_activate(work, &work_debug_descr); 491 } 492 493 static inline void debug_work_deactivate(struct work_struct *work) 494 { 495 debug_object_deactivate(work, &work_debug_descr); 496 } 497 498 void __init_work(struct work_struct *work, int onstack) 499 { 500 if (onstack) 501 debug_object_init_on_stack(work, &work_debug_descr); 502 else 503 debug_object_init(work, &work_debug_descr); 504 } 505 EXPORT_SYMBOL_GPL(__init_work); 506 507 void destroy_work_on_stack(struct work_struct *work) 508 { 509 debug_object_free(work, &work_debug_descr); 510 } 511 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 512 513 void destroy_delayed_work_on_stack(struct delayed_work *work) 514 { 515 destroy_timer_on_stack(&work->timer); 516 debug_object_free(&work->work, &work_debug_descr); 517 } 518 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 519 520 #else 521 static inline void debug_work_activate(struct work_struct *work) { } 522 static inline void debug_work_deactivate(struct work_struct *work) { } 523 #endif 524 525 /** 526 * worker_pool_assign_id - allocate ID and assing it to @pool 527 * @pool: the pool pointer of interest 528 * 529 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 530 * successfully, -errno on failure. 531 */ 532 static int worker_pool_assign_id(struct worker_pool *pool) 533 { 534 int ret; 535 536 lockdep_assert_held(&wq_pool_mutex); 537 538 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 539 GFP_KERNEL); 540 if (ret >= 0) { 541 pool->id = ret; 542 return 0; 543 } 544 return ret; 545 } 546 547 /** 548 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 549 * @wq: the target workqueue 550 * @node: the node ID 551 * 552 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 553 * read locked. 554 * If the pwq needs to be used beyond the locking in effect, the caller is 555 * responsible for guaranteeing that the pwq stays online. 556 * 557 * Return: The unbound pool_workqueue for @node. 558 */ 559 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 560 int node) 561 { 562 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 563 564 /* 565 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 566 * delayed item is pending. The plan is to keep CPU -> NODE 567 * mapping valid and stable across CPU on/offlines. Once that 568 * happens, this workaround can be removed. 569 */ 570 if (unlikely(node == NUMA_NO_NODE)) 571 return wq->dfl_pwq; 572 573 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 574 } 575 576 static unsigned int work_color_to_flags(int color) 577 { 578 return color << WORK_STRUCT_COLOR_SHIFT; 579 } 580 581 static int get_work_color(struct work_struct *work) 582 { 583 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 584 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 585 } 586 587 static int work_next_color(int color) 588 { 589 return (color + 1) % WORK_NR_COLORS; 590 } 591 592 /* 593 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 594 * contain the pointer to the queued pwq. Once execution starts, the flag 595 * is cleared and the high bits contain OFFQ flags and pool ID. 596 * 597 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 598 * and clear_work_data() can be used to set the pwq, pool or clear 599 * work->data. These functions should only be called while the work is 600 * owned - ie. while the PENDING bit is set. 601 * 602 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 603 * corresponding to a work. Pool is available once the work has been 604 * queued anywhere after initialization until it is sync canceled. pwq is 605 * available only while the work item is queued. 606 * 607 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 608 * canceled. While being canceled, a work item may have its PENDING set 609 * but stay off timer and worklist for arbitrarily long and nobody should 610 * try to steal the PENDING bit. 611 */ 612 static inline void set_work_data(struct work_struct *work, unsigned long data, 613 unsigned long flags) 614 { 615 WARN_ON_ONCE(!work_pending(work)); 616 atomic_long_set(&work->data, data | flags | work_static(work)); 617 } 618 619 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 620 unsigned long extra_flags) 621 { 622 set_work_data(work, (unsigned long)pwq, 623 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 624 } 625 626 static void set_work_pool_and_keep_pending(struct work_struct *work, 627 int pool_id) 628 { 629 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 630 WORK_STRUCT_PENDING); 631 } 632 633 static void set_work_pool_and_clear_pending(struct work_struct *work, 634 int pool_id) 635 { 636 /* 637 * The following wmb is paired with the implied mb in 638 * test_and_set_bit(PENDING) and ensures all updates to @work made 639 * here are visible to and precede any updates by the next PENDING 640 * owner. 641 */ 642 smp_wmb(); 643 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 644 /* 645 * The following mb guarantees that previous clear of a PENDING bit 646 * will not be reordered with any speculative LOADS or STORES from 647 * work->current_func, which is executed afterwards. This possible 648 * reordering can lead to a missed execution on attempt to queue 649 * the same @work. E.g. consider this case: 650 * 651 * CPU#0 CPU#1 652 * ---------------------------- -------------------------------- 653 * 654 * 1 STORE event_indicated 655 * 2 queue_work_on() { 656 * 3 test_and_set_bit(PENDING) 657 * 4 } set_..._and_clear_pending() { 658 * 5 set_work_data() # clear bit 659 * 6 smp_mb() 660 * 7 work->current_func() { 661 * 8 LOAD event_indicated 662 * } 663 * 664 * Without an explicit full barrier speculative LOAD on line 8 can 665 * be executed before CPU#0 does STORE on line 1. If that happens, 666 * CPU#0 observes the PENDING bit is still set and new execution of 667 * a @work is not queued in a hope, that CPU#1 will eventually 668 * finish the queued @work. Meanwhile CPU#1 does not see 669 * event_indicated is set, because speculative LOAD was executed 670 * before actual STORE. 671 */ 672 smp_mb(); 673 } 674 675 static void clear_work_data(struct work_struct *work) 676 { 677 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 678 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 679 } 680 681 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 682 { 683 unsigned long data = atomic_long_read(&work->data); 684 685 if (data & WORK_STRUCT_PWQ) 686 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 687 else 688 return NULL; 689 } 690 691 /** 692 * get_work_pool - return the worker_pool a given work was associated with 693 * @work: the work item of interest 694 * 695 * Pools are created and destroyed under wq_pool_mutex, and allows read 696 * access under RCU read lock. As such, this function should be 697 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 698 * 699 * All fields of the returned pool are accessible as long as the above 700 * mentioned locking is in effect. If the returned pool needs to be used 701 * beyond the critical section, the caller is responsible for ensuring the 702 * returned pool is and stays online. 703 * 704 * Return: The worker_pool @work was last associated with. %NULL if none. 705 */ 706 static struct worker_pool *get_work_pool(struct work_struct *work) 707 { 708 unsigned long data = atomic_long_read(&work->data); 709 int pool_id; 710 711 assert_rcu_or_pool_mutex(); 712 713 if (data & WORK_STRUCT_PWQ) 714 return ((struct pool_workqueue *) 715 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 716 717 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 718 if (pool_id == WORK_OFFQ_POOL_NONE) 719 return NULL; 720 721 return idr_find(&worker_pool_idr, pool_id); 722 } 723 724 /** 725 * get_work_pool_id - return the worker pool ID a given work is associated with 726 * @work: the work item of interest 727 * 728 * Return: The worker_pool ID @work was last associated with. 729 * %WORK_OFFQ_POOL_NONE if none. 730 */ 731 static int get_work_pool_id(struct work_struct *work) 732 { 733 unsigned long data = atomic_long_read(&work->data); 734 735 if (data & WORK_STRUCT_PWQ) 736 return ((struct pool_workqueue *) 737 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 738 739 return data >> WORK_OFFQ_POOL_SHIFT; 740 } 741 742 static void mark_work_canceling(struct work_struct *work) 743 { 744 unsigned long pool_id = get_work_pool_id(work); 745 746 pool_id <<= WORK_OFFQ_POOL_SHIFT; 747 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 748 } 749 750 static bool work_is_canceling(struct work_struct *work) 751 { 752 unsigned long data = atomic_long_read(&work->data); 753 754 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 755 } 756 757 /* 758 * Policy functions. These define the policies on how the global worker 759 * pools are managed. Unless noted otherwise, these functions assume that 760 * they're being called with pool->lock held. 761 */ 762 763 static bool __need_more_worker(struct worker_pool *pool) 764 { 765 return !atomic_read(&pool->nr_running); 766 } 767 768 /* 769 * Need to wake up a worker? Called from anything but currently 770 * running workers. 771 * 772 * Note that, because unbound workers never contribute to nr_running, this 773 * function will always return %true for unbound pools as long as the 774 * worklist isn't empty. 775 */ 776 static bool need_more_worker(struct worker_pool *pool) 777 { 778 return !list_empty(&pool->worklist) && __need_more_worker(pool); 779 } 780 781 /* Can I start working? Called from busy but !running workers. */ 782 static bool may_start_working(struct worker_pool *pool) 783 { 784 return pool->nr_idle; 785 } 786 787 /* Do I need to keep working? Called from currently running workers. */ 788 static bool keep_working(struct worker_pool *pool) 789 { 790 return !list_empty(&pool->worklist) && 791 atomic_read(&pool->nr_running) <= 1; 792 } 793 794 /* Do we need a new worker? Called from manager. */ 795 static bool need_to_create_worker(struct worker_pool *pool) 796 { 797 return need_more_worker(pool) && !may_start_working(pool); 798 } 799 800 /* Do we have too many workers and should some go away? */ 801 static bool too_many_workers(struct worker_pool *pool) 802 { 803 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 804 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 805 int nr_busy = pool->nr_workers - nr_idle; 806 807 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 808 } 809 810 /* 811 * Wake up functions. 812 */ 813 814 /* Return the first idle worker. Safe with preemption disabled */ 815 static struct worker *first_idle_worker(struct worker_pool *pool) 816 { 817 if (unlikely(list_empty(&pool->idle_list))) 818 return NULL; 819 820 return list_first_entry(&pool->idle_list, struct worker, entry); 821 } 822 823 /** 824 * wake_up_worker - wake up an idle worker 825 * @pool: worker pool to wake worker from 826 * 827 * Wake up the first idle worker of @pool. 828 * 829 * CONTEXT: 830 * raw_spin_lock_irq(pool->lock). 831 */ 832 static void wake_up_worker(struct worker_pool *pool) 833 { 834 struct worker *worker = first_idle_worker(pool); 835 836 if (likely(worker)) 837 wake_up_process(worker->task); 838 } 839 840 /** 841 * wq_worker_running - a worker is running again 842 * @task: task waking up 843 * 844 * This function is called when a worker returns from schedule() 845 */ 846 void wq_worker_running(struct task_struct *task) 847 { 848 struct worker *worker = kthread_data(task); 849 850 if (!worker->sleeping) 851 return; 852 if (!(worker->flags & WORKER_NOT_RUNNING)) 853 atomic_inc(&worker->pool->nr_running); 854 worker->sleeping = 0; 855 } 856 857 /** 858 * wq_worker_sleeping - a worker is going to sleep 859 * @task: task going to sleep 860 * 861 * This function is called from schedule() when a busy worker is 862 * going to sleep. Preemption needs to be disabled to protect ->sleeping 863 * assignment. 864 */ 865 void wq_worker_sleeping(struct task_struct *task) 866 { 867 struct worker *next, *worker = kthread_data(task); 868 struct worker_pool *pool; 869 870 /* 871 * Rescuers, which may not have all the fields set up like normal 872 * workers, also reach here, let's not access anything before 873 * checking NOT_RUNNING. 874 */ 875 if (worker->flags & WORKER_NOT_RUNNING) 876 return; 877 878 pool = worker->pool; 879 880 /* Return if preempted before wq_worker_running() was reached */ 881 if (worker->sleeping) 882 return; 883 884 worker->sleeping = 1; 885 raw_spin_lock_irq(&pool->lock); 886 887 /* 888 * The counterpart of the following dec_and_test, implied mb, 889 * worklist not empty test sequence is in insert_work(). 890 * Please read comment there. 891 * 892 * NOT_RUNNING is clear. This means that we're bound to and 893 * running on the local cpu w/ rq lock held and preemption 894 * disabled, which in turn means that none else could be 895 * manipulating idle_list, so dereferencing idle_list without pool 896 * lock is safe. 897 */ 898 if (atomic_dec_and_test(&pool->nr_running) && 899 !list_empty(&pool->worklist)) { 900 next = first_idle_worker(pool); 901 if (next) 902 wake_up_process(next->task); 903 } 904 raw_spin_unlock_irq(&pool->lock); 905 } 906 907 /** 908 * wq_worker_last_func - retrieve worker's last work function 909 * @task: Task to retrieve last work function of. 910 * 911 * Determine the last function a worker executed. This is called from 912 * the scheduler to get a worker's last known identity. 913 * 914 * CONTEXT: 915 * raw_spin_lock_irq(rq->lock) 916 * 917 * This function is called during schedule() when a kworker is going 918 * to sleep. It's used by psi to identify aggregation workers during 919 * dequeuing, to allow periodic aggregation to shut-off when that 920 * worker is the last task in the system or cgroup to go to sleep. 921 * 922 * As this function doesn't involve any workqueue-related locking, it 923 * only returns stable values when called from inside the scheduler's 924 * queuing and dequeuing paths, when @task, which must be a kworker, 925 * is guaranteed to not be processing any works. 926 * 927 * Return: 928 * The last work function %current executed as a worker, NULL if it 929 * hasn't executed any work yet. 930 */ 931 work_func_t wq_worker_last_func(struct task_struct *task) 932 { 933 struct worker *worker = kthread_data(task); 934 935 return worker->last_func; 936 } 937 938 /** 939 * worker_set_flags - set worker flags and adjust nr_running accordingly 940 * @worker: self 941 * @flags: flags to set 942 * 943 * Set @flags in @worker->flags and adjust nr_running accordingly. 944 * 945 * CONTEXT: 946 * raw_spin_lock_irq(pool->lock) 947 */ 948 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 949 { 950 struct worker_pool *pool = worker->pool; 951 952 WARN_ON_ONCE(worker->task != current); 953 954 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 955 if ((flags & WORKER_NOT_RUNNING) && 956 !(worker->flags & WORKER_NOT_RUNNING)) { 957 atomic_dec(&pool->nr_running); 958 } 959 960 worker->flags |= flags; 961 } 962 963 /** 964 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 965 * @worker: self 966 * @flags: flags to clear 967 * 968 * Clear @flags in @worker->flags and adjust nr_running accordingly. 969 * 970 * CONTEXT: 971 * raw_spin_lock_irq(pool->lock) 972 */ 973 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 974 { 975 struct worker_pool *pool = worker->pool; 976 unsigned int oflags = worker->flags; 977 978 WARN_ON_ONCE(worker->task != current); 979 980 worker->flags &= ~flags; 981 982 /* 983 * If transitioning out of NOT_RUNNING, increment nr_running. Note 984 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 985 * of multiple flags, not a single flag. 986 */ 987 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 988 if (!(worker->flags & WORKER_NOT_RUNNING)) 989 atomic_inc(&pool->nr_running); 990 } 991 992 /** 993 * find_worker_executing_work - find worker which is executing a work 994 * @pool: pool of interest 995 * @work: work to find worker for 996 * 997 * Find a worker which is executing @work on @pool by searching 998 * @pool->busy_hash which is keyed by the address of @work. For a worker 999 * to match, its current execution should match the address of @work and 1000 * its work function. This is to avoid unwanted dependency between 1001 * unrelated work executions through a work item being recycled while still 1002 * being executed. 1003 * 1004 * This is a bit tricky. A work item may be freed once its execution 1005 * starts and nothing prevents the freed area from being recycled for 1006 * another work item. If the same work item address ends up being reused 1007 * before the original execution finishes, workqueue will identify the 1008 * recycled work item as currently executing and make it wait until the 1009 * current execution finishes, introducing an unwanted dependency. 1010 * 1011 * This function checks the work item address and work function to avoid 1012 * false positives. Note that this isn't complete as one may construct a 1013 * work function which can introduce dependency onto itself through a 1014 * recycled work item. Well, if somebody wants to shoot oneself in the 1015 * foot that badly, there's only so much we can do, and if such deadlock 1016 * actually occurs, it should be easy to locate the culprit work function. 1017 * 1018 * CONTEXT: 1019 * raw_spin_lock_irq(pool->lock). 1020 * 1021 * Return: 1022 * Pointer to worker which is executing @work if found, %NULL 1023 * otherwise. 1024 */ 1025 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1026 struct work_struct *work) 1027 { 1028 struct worker *worker; 1029 1030 hash_for_each_possible(pool->busy_hash, worker, hentry, 1031 (unsigned long)work) 1032 if (worker->current_work == work && 1033 worker->current_func == work->func) 1034 return worker; 1035 1036 return NULL; 1037 } 1038 1039 /** 1040 * move_linked_works - move linked works to a list 1041 * @work: start of series of works to be scheduled 1042 * @head: target list to append @work to 1043 * @nextp: out parameter for nested worklist walking 1044 * 1045 * Schedule linked works starting from @work to @head. Work series to 1046 * be scheduled starts at @work and includes any consecutive work with 1047 * WORK_STRUCT_LINKED set in its predecessor. 1048 * 1049 * If @nextp is not NULL, it's updated to point to the next work of 1050 * the last scheduled work. This allows move_linked_works() to be 1051 * nested inside outer list_for_each_entry_safe(). 1052 * 1053 * CONTEXT: 1054 * raw_spin_lock_irq(pool->lock). 1055 */ 1056 static void move_linked_works(struct work_struct *work, struct list_head *head, 1057 struct work_struct **nextp) 1058 { 1059 struct work_struct *n; 1060 1061 /* 1062 * Linked worklist will always end before the end of the list, 1063 * use NULL for list head. 1064 */ 1065 list_for_each_entry_safe_from(work, n, NULL, entry) { 1066 list_move_tail(&work->entry, head); 1067 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1068 break; 1069 } 1070 1071 /* 1072 * If we're already inside safe list traversal and have moved 1073 * multiple works to the scheduled queue, the next position 1074 * needs to be updated. 1075 */ 1076 if (nextp) 1077 *nextp = n; 1078 } 1079 1080 /** 1081 * get_pwq - get an extra reference on the specified pool_workqueue 1082 * @pwq: pool_workqueue to get 1083 * 1084 * Obtain an extra reference on @pwq. The caller should guarantee that 1085 * @pwq has positive refcnt and be holding the matching pool->lock. 1086 */ 1087 static void get_pwq(struct pool_workqueue *pwq) 1088 { 1089 lockdep_assert_held(&pwq->pool->lock); 1090 WARN_ON_ONCE(pwq->refcnt <= 0); 1091 pwq->refcnt++; 1092 } 1093 1094 /** 1095 * put_pwq - put a pool_workqueue reference 1096 * @pwq: pool_workqueue to put 1097 * 1098 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1099 * destruction. The caller should be holding the matching pool->lock. 1100 */ 1101 static void put_pwq(struct pool_workqueue *pwq) 1102 { 1103 lockdep_assert_held(&pwq->pool->lock); 1104 if (likely(--pwq->refcnt)) 1105 return; 1106 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1107 return; 1108 /* 1109 * @pwq can't be released under pool->lock, bounce to 1110 * pwq_unbound_release_workfn(). This never recurses on the same 1111 * pool->lock as this path is taken only for unbound workqueues and 1112 * the release work item is scheduled on a per-cpu workqueue. To 1113 * avoid lockdep warning, unbound pool->locks are given lockdep 1114 * subclass of 1 in get_unbound_pool(). 1115 */ 1116 schedule_work(&pwq->unbound_release_work); 1117 } 1118 1119 /** 1120 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1121 * @pwq: pool_workqueue to put (can be %NULL) 1122 * 1123 * put_pwq() with locking. This function also allows %NULL @pwq. 1124 */ 1125 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1126 { 1127 if (pwq) { 1128 /* 1129 * As both pwqs and pools are RCU protected, the 1130 * following lock operations are safe. 1131 */ 1132 raw_spin_lock_irq(&pwq->pool->lock); 1133 put_pwq(pwq); 1134 raw_spin_unlock_irq(&pwq->pool->lock); 1135 } 1136 } 1137 1138 static void pwq_activate_delayed_work(struct work_struct *work) 1139 { 1140 struct pool_workqueue *pwq = get_work_pwq(work); 1141 1142 trace_workqueue_activate_work(work); 1143 if (list_empty(&pwq->pool->worklist)) 1144 pwq->pool->watchdog_ts = jiffies; 1145 move_linked_works(work, &pwq->pool->worklist, NULL); 1146 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1147 pwq->nr_active++; 1148 } 1149 1150 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1151 { 1152 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1153 struct work_struct, entry); 1154 1155 pwq_activate_delayed_work(work); 1156 } 1157 1158 /** 1159 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1160 * @pwq: pwq of interest 1161 * @color: color of work which left the queue 1162 * 1163 * A work either has completed or is removed from pending queue, 1164 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1165 * 1166 * CONTEXT: 1167 * raw_spin_lock_irq(pool->lock). 1168 */ 1169 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1170 { 1171 /* uncolored work items don't participate in flushing or nr_active */ 1172 if (color == WORK_NO_COLOR) 1173 goto out_put; 1174 1175 pwq->nr_in_flight[color]--; 1176 1177 pwq->nr_active--; 1178 if (!list_empty(&pwq->delayed_works)) { 1179 /* one down, submit a delayed one */ 1180 if (pwq->nr_active < pwq->max_active) 1181 pwq_activate_first_delayed(pwq); 1182 } 1183 1184 /* is flush in progress and are we at the flushing tip? */ 1185 if (likely(pwq->flush_color != color)) 1186 goto out_put; 1187 1188 /* are there still in-flight works? */ 1189 if (pwq->nr_in_flight[color]) 1190 goto out_put; 1191 1192 /* this pwq is done, clear flush_color */ 1193 pwq->flush_color = -1; 1194 1195 /* 1196 * If this was the last pwq, wake up the first flusher. It 1197 * will handle the rest. 1198 */ 1199 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1200 complete(&pwq->wq->first_flusher->done); 1201 out_put: 1202 put_pwq(pwq); 1203 } 1204 1205 /** 1206 * try_to_grab_pending - steal work item from worklist and disable irq 1207 * @work: work item to steal 1208 * @is_dwork: @work is a delayed_work 1209 * @flags: place to store irq state 1210 * 1211 * Try to grab PENDING bit of @work. This function can handle @work in any 1212 * stable state - idle, on timer or on worklist. 1213 * 1214 * Return: 1215 * 1216 * ======== ================================================================ 1217 * 1 if @work was pending and we successfully stole PENDING 1218 * 0 if @work was idle and we claimed PENDING 1219 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1220 * -ENOENT if someone else is canceling @work, this state may persist 1221 * for arbitrarily long 1222 * ======== ================================================================ 1223 * 1224 * Note: 1225 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1226 * interrupted while holding PENDING and @work off queue, irq must be 1227 * disabled on entry. This, combined with delayed_work->timer being 1228 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1229 * 1230 * On successful return, >= 0, irq is disabled and the caller is 1231 * responsible for releasing it using local_irq_restore(*@flags). 1232 * 1233 * This function is safe to call from any context including IRQ handler. 1234 */ 1235 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1236 unsigned long *flags) 1237 { 1238 struct worker_pool *pool; 1239 struct pool_workqueue *pwq; 1240 1241 local_irq_save(*flags); 1242 1243 /* try to steal the timer if it exists */ 1244 if (is_dwork) { 1245 struct delayed_work *dwork = to_delayed_work(work); 1246 1247 /* 1248 * dwork->timer is irqsafe. If del_timer() fails, it's 1249 * guaranteed that the timer is not queued anywhere and not 1250 * running on the local CPU. 1251 */ 1252 if (likely(del_timer(&dwork->timer))) 1253 return 1; 1254 } 1255 1256 /* try to claim PENDING the normal way */ 1257 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1258 return 0; 1259 1260 rcu_read_lock(); 1261 /* 1262 * The queueing is in progress, or it is already queued. Try to 1263 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1264 */ 1265 pool = get_work_pool(work); 1266 if (!pool) 1267 goto fail; 1268 1269 raw_spin_lock(&pool->lock); 1270 /* 1271 * work->data is guaranteed to point to pwq only while the work 1272 * item is queued on pwq->wq, and both updating work->data to point 1273 * to pwq on queueing and to pool on dequeueing are done under 1274 * pwq->pool->lock. This in turn guarantees that, if work->data 1275 * points to pwq which is associated with a locked pool, the work 1276 * item is currently queued on that pool. 1277 */ 1278 pwq = get_work_pwq(work); 1279 if (pwq && pwq->pool == pool) { 1280 debug_work_deactivate(work); 1281 1282 /* 1283 * A delayed work item cannot be grabbed directly because 1284 * it might have linked NO_COLOR work items which, if left 1285 * on the delayed_list, will confuse pwq->nr_active 1286 * management later on and cause stall. Make sure the work 1287 * item is activated before grabbing. 1288 */ 1289 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1290 pwq_activate_delayed_work(work); 1291 1292 list_del_init(&work->entry); 1293 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1294 1295 /* work->data points to pwq iff queued, point to pool */ 1296 set_work_pool_and_keep_pending(work, pool->id); 1297 1298 raw_spin_unlock(&pool->lock); 1299 rcu_read_unlock(); 1300 return 1; 1301 } 1302 raw_spin_unlock(&pool->lock); 1303 fail: 1304 rcu_read_unlock(); 1305 local_irq_restore(*flags); 1306 if (work_is_canceling(work)) 1307 return -ENOENT; 1308 cpu_relax(); 1309 return -EAGAIN; 1310 } 1311 1312 /** 1313 * insert_work - insert a work into a pool 1314 * @pwq: pwq @work belongs to 1315 * @work: work to insert 1316 * @head: insertion point 1317 * @extra_flags: extra WORK_STRUCT_* flags to set 1318 * 1319 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1320 * work_struct flags. 1321 * 1322 * CONTEXT: 1323 * raw_spin_lock_irq(pool->lock). 1324 */ 1325 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1326 struct list_head *head, unsigned int extra_flags) 1327 { 1328 struct worker_pool *pool = pwq->pool; 1329 1330 /* we own @work, set data and link */ 1331 set_work_pwq(work, pwq, extra_flags); 1332 list_add_tail(&work->entry, head); 1333 get_pwq(pwq); 1334 1335 /* 1336 * Ensure either wq_worker_sleeping() sees the above 1337 * list_add_tail() or we see zero nr_running to avoid workers lying 1338 * around lazily while there are works to be processed. 1339 */ 1340 smp_mb(); 1341 1342 if (__need_more_worker(pool)) 1343 wake_up_worker(pool); 1344 } 1345 1346 /* 1347 * Test whether @work is being queued from another work executing on the 1348 * same workqueue. 1349 */ 1350 static bool is_chained_work(struct workqueue_struct *wq) 1351 { 1352 struct worker *worker; 1353 1354 worker = current_wq_worker(); 1355 /* 1356 * Return %true iff I'm a worker executing a work item on @wq. If 1357 * I'm @worker, it's safe to dereference it without locking. 1358 */ 1359 return worker && worker->current_pwq->wq == wq; 1360 } 1361 1362 /* 1363 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1364 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1365 * avoid perturbing sensitive tasks. 1366 */ 1367 static int wq_select_unbound_cpu(int cpu) 1368 { 1369 static bool printed_dbg_warning; 1370 int new_cpu; 1371 1372 if (likely(!wq_debug_force_rr_cpu)) { 1373 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1374 return cpu; 1375 } else if (!printed_dbg_warning) { 1376 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1377 printed_dbg_warning = true; 1378 } 1379 1380 if (cpumask_empty(wq_unbound_cpumask)) 1381 return cpu; 1382 1383 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1384 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1385 if (unlikely(new_cpu >= nr_cpu_ids)) { 1386 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1387 if (unlikely(new_cpu >= nr_cpu_ids)) 1388 return cpu; 1389 } 1390 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1391 1392 return new_cpu; 1393 } 1394 1395 static void __queue_work(int cpu, struct workqueue_struct *wq, 1396 struct work_struct *work) 1397 { 1398 struct pool_workqueue *pwq; 1399 struct worker_pool *last_pool; 1400 struct list_head *worklist; 1401 unsigned int work_flags; 1402 unsigned int req_cpu = cpu; 1403 1404 /* 1405 * While a work item is PENDING && off queue, a task trying to 1406 * steal the PENDING will busy-loop waiting for it to either get 1407 * queued or lose PENDING. Grabbing PENDING and queueing should 1408 * happen with IRQ disabled. 1409 */ 1410 lockdep_assert_irqs_disabled(); 1411 1412 debug_work_activate(work); 1413 1414 /* if draining, only works from the same workqueue are allowed */ 1415 if (unlikely(wq->flags & __WQ_DRAINING) && 1416 WARN_ON_ONCE(!is_chained_work(wq))) 1417 return; 1418 rcu_read_lock(); 1419 retry: 1420 /* pwq which will be used unless @work is executing elsewhere */ 1421 if (wq->flags & WQ_UNBOUND) { 1422 if (req_cpu == WORK_CPU_UNBOUND) 1423 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1424 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1425 } else { 1426 if (req_cpu == WORK_CPU_UNBOUND) 1427 cpu = raw_smp_processor_id(); 1428 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1429 } 1430 1431 /* 1432 * If @work was previously on a different pool, it might still be 1433 * running there, in which case the work needs to be queued on that 1434 * pool to guarantee non-reentrancy. 1435 */ 1436 last_pool = get_work_pool(work); 1437 if (last_pool && last_pool != pwq->pool) { 1438 struct worker *worker; 1439 1440 raw_spin_lock(&last_pool->lock); 1441 1442 worker = find_worker_executing_work(last_pool, work); 1443 1444 if (worker && worker->current_pwq->wq == wq) { 1445 pwq = worker->current_pwq; 1446 } else { 1447 /* meh... not running there, queue here */ 1448 raw_spin_unlock(&last_pool->lock); 1449 raw_spin_lock(&pwq->pool->lock); 1450 } 1451 } else { 1452 raw_spin_lock(&pwq->pool->lock); 1453 } 1454 1455 /* 1456 * pwq is determined and locked. For unbound pools, we could have 1457 * raced with pwq release and it could already be dead. If its 1458 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1459 * without another pwq replacing it in the numa_pwq_tbl or while 1460 * work items are executing on it, so the retrying is guaranteed to 1461 * make forward-progress. 1462 */ 1463 if (unlikely(!pwq->refcnt)) { 1464 if (wq->flags & WQ_UNBOUND) { 1465 raw_spin_unlock(&pwq->pool->lock); 1466 cpu_relax(); 1467 goto retry; 1468 } 1469 /* oops */ 1470 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1471 wq->name, cpu); 1472 } 1473 1474 /* pwq determined, queue */ 1475 trace_workqueue_queue_work(req_cpu, pwq, work); 1476 1477 if (WARN_ON(!list_empty(&work->entry))) 1478 goto out; 1479 1480 pwq->nr_in_flight[pwq->work_color]++; 1481 work_flags = work_color_to_flags(pwq->work_color); 1482 1483 if (likely(pwq->nr_active < pwq->max_active)) { 1484 trace_workqueue_activate_work(work); 1485 pwq->nr_active++; 1486 worklist = &pwq->pool->worklist; 1487 if (list_empty(worklist)) 1488 pwq->pool->watchdog_ts = jiffies; 1489 } else { 1490 work_flags |= WORK_STRUCT_DELAYED; 1491 worklist = &pwq->delayed_works; 1492 } 1493 1494 insert_work(pwq, work, worklist, work_flags); 1495 1496 out: 1497 raw_spin_unlock(&pwq->pool->lock); 1498 rcu_read_unlock(); 1499 } 1500 1501 /** 1502 * queue_work_on - queue work on specific cpu 1503 * @cpu: CPU number to execute work on 1504 * @wq: workqueue to use 1505 * @work: work to queue 1506 * 1507 * We queue the work to a specific CPU, the caller must ensure it 1508 * can't go away. 1509 * 1510 * Return: %false if @work was already on a queue, %true otherwise. 1511 */ 1512 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1513 struct work_struct *work) 1514 { 1515 bool ret = false; 1516 unsigned long flags; 1517 1518 local_irq_save(flags); 1519 1520 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1521 __queue_work(cpu, wq, work); 1522 ret = true; 1523 } 1524 1525 local_irq_restore(flags); 1526 return ret; 1527 } 1528 EXPORT_SYMBOL(queue_work_on); 1529 1530 /** 1531 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1532 * @node: NUMA node ID that we want to select a CPU from 1533 * 1534 * This function will attempt to find a "random" cpu available on a given 1535 * node. If there are no CPUs available on the given node it will return 1536 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1537 * available CPU if we need to schedule this work. 1538 */ 1539 static int workqueue_select_cpu_near(int node) 1540 { 1541 int cpu; 1542 1543 /* No point in doing this if NUMA isn't enabled for workqueues */ 1544 if (!wq_numa_enabled) 1545 return WORK_CPU_UNBOUND; 1546 1547 /* Delay binding to CPU if node is not valid or online */ 1548 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1549 return WORK_CPU_UNBOUND; 1550 1551 /* Use local node/cpu if we are already there */ 1552 cpu = raw_smp_processor_id(); 1553 if (node == cpu_to_node(cpu)) 1554 return cpu; 1555 1556 /* Use "random" otherwise know as "first" online CPU of node */ 1557 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1558 1559 /* If CPU is valid return that, otherwise just defer */ 1560 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1561 } 1562 1563 /** 1564 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1565 * @node: NUMA node that we are targeting the work for 1566 * @wq: workqueue to use 1567 * @work: work to queue 1568 * 1569 * We queue the work to a "random" CPU within a given NUMA node. The basic 1570 * idea here is to provide a way to somehow associate work with a given 1571 * NUMA node. 1572 * 1573 * This function will only make a best effort attempt at getting this onto 1574 * the right NUMA node. If no node is requested or the requested node is 1575 * offline then we just fall back to standard queue_work behavior. 1576 * 1577 * Currently the "random" CPU ends up being the first available CPU in the 1578 * intersection of cpu_online_mask and the cpumask of the node, unless we 1579 * are running on the node. In that case we just use the current CPU. 1580 * 1581 * Return: %false if @work was already on a queue, %true otherwise. 1582 */ 1583 bool queue_work_node(int node, struct workqueue_struct *wq, 1584 struct work_struct *work) 1585 { 1586 unsigned long flags; 1587 bool ret = false; 1588 1589 /* 1590 * This current implementation is specific to unbound workqueues. 1591 * Specifically we only return the first available CPU for a given 1592 * node instead of cycling through individual CPUs within the node. 1593 * 1594 * If this is used with a per-cpu workqueue then the logic in 1595 * workqueue_select_cpu_near would need to be updated to allow for 1596 * some round robin type logic. 1597 */ 1598 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1599 1600 local_irq_save(flags); 1601 1602 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1603 int cpu = workqueue_select_cpu_near(node); 1604 1605 __queue_work(cpu, wq, work); 1606 ret = true; 1607 } 1608 1609 local_irq_restore(flags); 1610 return ret; 1611 } 1612 EXPORT_SYMBOL_GPL(queue_work_node); 1613 1614 void delayed_work_timer_fn(struct timer_list *t) 1615 { 1616 struct delayed_work *dwork = from_timer(dwork, t, timer); 1617 1618 /* should have been called from irqsafe timer with irq already off */ 1619 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1620 } 1621 EXPORT_SYMBOL(delayed_work_timer_fn); 1622 1623 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1624 struct delayed_work *dwork, unsigned long delay) 1625 { 1626 struct timer_list *timer = &dwork->timer; 1627 struct work_struct *work = &dwork->work; 1628 1629 WARN_ON_ONCE(!wq); 1630 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1631 WARN_ON_ONCE(timer_pending(timer)); 1632 WARN_ON_ONCE(!list_empty(&work->entry)); 1633 1634 /* 1635 * If @delay is 0, queue @dwork->work immediately. This is for 1636 * both optimization and correctness. The earliest @timer can 1637 * expire is on the closest next tick and delayed_work users depend 1638 * on that there's no such delay when @delay is 0. 1639 */ 1640 if (!delay) { 1641 __queue_work(cpu, wq, &dwork->work); 1642 return; 1643 } 1644 1645 dwork->wq = wq; 1646 dwork->cpu = cpu; 1647 timer->expires = jiffies + delay; 1648 1649 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1650 add_timer_on(timer, cpu); 1651 else 1652 add_timer(timer); 1653 } 1654 1655 /** 1656 * queue_delayed_work_on - queue work on specific CPU after delay 1657 * @cpu: CPU number to execute work on 1658 * @wq: workqueue to use 1659 * @dwork: work to queue 1660 * @delay: number of jiffies to wait before queueing 1661 * 1662 * Return: %false if @work was already on a queue, %true otherwise. If 1663 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1664 * execution. 1665 */ 1666 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1667 struct delayed_work *dwork, unsigned long delay) 1668 { 1669 struct work_struct *work = &dwork->work; 1670 bool ret = false; 1671 unsigned long flags; 1672 1673 /* read the comment in __queue_work() */ 1674 local_irq_save(flags); 1675 1676 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1677 __queue_delayed_work(cpu, wq, dwork, delay); 1678 ret = true; 1679 } 1680 1681 local_irq_restore(flags); 1682 return ret; 1683 } 1684 EXPORT_SYMBOL(queue_delayed_work_on); 1685 1686 /** 1687 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1688 * @cpu: CPU number to execute work on 1689 * @wq: workqueue to use 1690 * @dwork: work to queue 1691 * @delay: number of jiffies to wait before queueing 1692 * 1693 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1694 * modify @dwork's timer so that it expires after @delay. If @delay is 1695 * zero, @work is guaranteed to be scheduled immediately regardless of its 1696 * current state. 1697 * 1698 * Return: %false if @dwork was idle and queued, %true if @dwork was 1699 * pending and its timer was modified. 1700 * 1701 * This function is safe to call from any context including IRQ handler. 1702 * See try_to_grab_pending() for details. 1703 */ 1704 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1705 struct delayed_work *dwork, unsigned long delay) 1706 { 1707 unsigned long flags; 1708 int ret; 1709 1710 do { 1711 ret = try_to_grab_pending(&dwork->work, true, &flags); 1712 } while (unlikely(ret == -EAGAIN)); 1713 1714 if (likely(ret >= 0)) { 1715 __queue_delayed_work(cpu, wq, dwork, delay); 1716 local_irq_restore(flags); 1717 } 1718 1719 /* -ENOENT from try_to_grab_pending() becomes %true */ 1720 return ret; 1721 } 1722 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1723 1724 static void rcu_work_rcufn(struct rcu_head *rcu) 1725 { 1726 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1727 1728 /* read the comment in __queue_work() */ 1729 local_irq_disable(); 1730 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1731 local_irq_enable(); 1732 } 1733 1734 /** 1735 * queue_rcu_work - queue work after a RCU grace period 1736 * @wq: workqueue to use 1737 * @rwork: work to queue 1738 * 1739 * Return: %false if @rwork was already pending, %true otherwise. Note 1740 * that a full RCU grace period is guaranteed only after a %true return. 1741 * While @rwork is guaranteed to be executed after a %false return, the 1742 * execution may happen before a full RCU grace period has passed. 1743 */ 1744 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1745 { 1746 struct work_struct *work = &rwork->work; 1747 1748 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1749 rwork->wq = wq; 1750 call_rcu(&rwork->rcu, rcu_work_rcufn); 1751 return true; 1752 } 1753 1754 return false; 1755 } 1756 EXPORT_SYMBOL(queue_rcu_work); 1757 1758 /** 1759 * worker_enter_idle - enter idle state 1760 * @worker: worker which is entering idle state 1761 * 1762 * @worker is entering idle state. Update stats and idle timer if 1763 * necessary. 1764 * 1765 * LOCKING: 1766 * raw_spin_lock_irq(pool->lock). 1767 */ 1768 static void worker_enter_idle(struct worker *worker) 1769 { 1770 struct worker_pool *pool = worker->pool; 1771 1772 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1773 WARN_ON_ONCE(!list_empty(&worker->entry) && 1774 (worker->hentry.next || worker->hentry.pprev))) 1775 return; 1776 1777 /* can't use worker_set_flags(), also called from create_worker() */ 1778 worker->flags |= WORKER_IDLE; 1779 pool->nr_idle++; 1780 worker->last_active = jiffies; 1781 1782 /* idle_list is LIFO */ 1783 list_add(&worker->entry, &pool->idle_list); 1784 1785 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1786 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1787 1788 /* 1789 * Sanity check nr_running. Because unbind_workers() releases 1790 * pool->lock between setting %WORKER_UNBOUND and zapping 1791 * nr_running, the warning may trigger spuriously. Check iff 1792 * unbind is not in progress. 1793 */ 1794 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1795 pool->nr_workers == pool->nr_idle && 1796 atomic_read(&pool->nr_running)); 1797 } 1798 1799 /** 1800 * worker_leave_idle - leave idle state 1801 * @worker: worker which is leaving idle state 1802 * 1803 * @worker is leaving idle state. Update stats. 1804 * 1805 * LOCKING: 1806 * raw_spin_lock_irq(pool->lock). 1807 */ 1808 static void worker_leave_idle(struct worker *worker) 1809 { 1810 struct worker_pool *pool = worker->pool; 1811 1812 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1813 return; 1814 worker_clr_flags(worker, WORKER_IDLE); 1815 pool->nr_idle--; 1816 list_del_init(&worker->entry); 1817 } 1818 1819 static struct worker *alloc_worker(int node) 1820 { 1821 struct worker *worker; 1822 1823 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1824 if (worker) { 1825 INIT_LIST_HEAD(&worker->entry); 1826 INIT_LIST_HEAD(&worker->scheduled); 1827 INIT_LIST_HEAD(&worker->node); 1828 /* on creation a worker is in !idle && prep state */ 1829 worker->flags = WORKER_PREP; 1830 } 1831 return worker; 1832 } 1833 1834 /** 1835 * worker_attach_to_pool() - attach a worker to a pool 1836 * @worker: worker to be attached 1837 * @pool: the target pool 1838 * 1839 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1840 * cpu-binding of @worker are kept coordinated with the pool across 1841 * cpu-[un]hotplugs. 1842 */ 1843 static void worker_attach_to_pool(struct worker *worker, 1844 struct worker_pool *pool) 1845 { 1846 mutex_lock(&wq_pool_attach_mutex); 1847 1848 /* 1849 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1850 * online CPUs. It'll be re-applied when any of the CPUs come up. 1851 */ 1852 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1853 1854 /* 1855 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1856 * stable across this function. See the comments above the flag 1857 * definition for details. 1858 */ 1859 if (pool->flags & POOL_DISASSOCIATED) 1860 worker->flags |= WORKER_UNBOUND; 1861 1862 list_add_tail(&worker->node, &pool->workers); 1863 worker->pool = pool; 1864 1865 mutex_unlock(&wq_pool_attach_mutex); 1866 } 1867 1868 /** 1869 * worker_detach_from_pool() - detach a worker from its pool 1870 * @worker: worker which is attached to its pool 1871 * 1872 * Undo the attaching which had been done in worker_attach_to_pool(). The 1873 * caller worker shouldn't access to the pool after detached except it has 1874 * other reference to the pool. 1875 */ 1876 static void worker_detach_from_pool(struct worker *worker) 1877 { 1878 struct worker_pool *pool = worker->pool; 1879 struct completion *detach_completion = NULL; 1880 1881 mutex_lock(&wq_pool_attach_mutex); 1882 1883 list_del(&worker->node); 1884 worker->pool = NULL; 1885 1886 if (list_empty(&pool->workers)) 1887 detach_completion = pool->detach_completion; 1888 mutex_unlock(&wq_pool_attach_mutex); 1889 1890 /* clear leftover flags without pool->lock after it is detached */ 1891 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1892 1893 if (detach_completion) 1894 complete(detach_completion); 1895 } 1896 1897 /** 1898 * create_worker - create a new workqueue worker 1899 * @pool: pool the new worker will belong to 1900 * 1901 * Create and start a new worker which is attached to @pool. 1902 * 1903 * CONTEXT: 1904 * Might sleep. Does GFP_KERNEL allocations. 1905 * 1906 * Return: 1907 * Pointer to the newly created worker. 1908 */ 1909 static struct worker *create_worker(struct worker_pool *pool) 1910 { 1911 struct worker *worker = NULL; 1912 int id = -1; 1913 char id_buf[16]; 1914 1915 /* ID is needed to determine kthread name */ 1916 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1917 if (id < 0) 1918 goto fail; 1919 1920 worker = alloc_worker(pool->node); 1921 if (!worker) 1922 goto fail; 1923 1924 worker->id = id; 1925 1926 if (pool->cpu >= 0) 1927 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1928 pool->attrs->nice < 0 ? "H" : ""); 1929 else 1930 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1931 1932 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1933 "kworker/%s", id_buf); 1934 if (IS_ERR(worker->task)) 1935 goto fail; 1936 1937 set_user_nice(worker->task, pool->attrs->nice); 1938 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1939 1940 /* successful, attach the worker to the pool */ 1941 worker_attach_to_pool(worker, pool); 1942 1943 /* start the newly created worker */ 1944 raw_spin_lock_irq(&pool->lock); 1945 worker->pool->nr_workers++; 1946 worker_enter_idle(worker); 1947 wake_up_process(worker->task); 1948 raw_spin_unlock_irq(&pool->lock); 1949 1950 return worker; 1951 1952 fail: 1953 if (id >= 0) 1954 ida_simple_remove(&pool->worker_ida, id); 1955 kfree(worker); 1956 return NULL; 1957 } 1958 1959 /** 1960 * destroy_worker - destroy a workqueue worker 1961 * @worker: worker to be destroyed 1962 * 1963 * Destroy @worker and adjust @pool stats accordingly. The worker should 1964 * be idle. 1965 * 1966 * CONTEXT: 1967 * raw_spin_lock_irq(pool->lock). 1968 */ 1969 static void destroy_worker(struct worker *worker) 1970 { 1971 struct worker_pool *pool = worker->pool; 1972 1973 lockdep_assert_held(&pool->lock); 1974 1975 /* sanity check frenzy */ 1976 if (WARN_ON(worker->current_work) || 1977 WARN_ON(!list_empty(&worker->scheduled)) || 1978 WARN_ON(!(worker->flags & WORKER_IDLE))) 1979 return; 1980 1981 pool->nr_workers--; 1982 pool->nr_idle--; 1983 1984 list_del_init(&worker->entry); 1985 worker->flags |= WORKER_DIE; 1986 wake_up_process(worker->task); 1987 } 1988 1989 static void idle_worker_timeout(struct timer_list *t) 1990 { 1991 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1992 1993 raw_spin_lock_irq(&pool->lock); 1994 1995 while (too_many_workers(pool)) { 1996 struct worker *worker; 1997 unsigned long expires; 1998 1999 /* idle_list is kept in LIFO order, check the last one */ 2000 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2001 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2002 2003 if (time_before(jiffies, expires)) { 2004 mod_timer(&pool->idle_timer, expires); 2005 break; 2006 } 2007 2008 destroy_worker(worker); 2009 } 2010 2011 raw_spin_unlock_irq(&pool->lock); 2012 } 2013 2014 static void send_mayday(struct work_struct *work) 2015 { 2016 struct pool_workqueue *pwq = get_work_pwq(work); 2017 struct workqueue_struct *wq = pwq->wq; 2018 2019 lockdep_assert_held(&wq_mayday_lock); 2020 2021 if (!wq->rescuer) 2022 return; 2023 2024 /* mayday mayday mayday */ 2025 if (list_empty(&pwq->mayday_node)) { 2026 /* 2027 * If @pwq is for an unbound wq, its base ref may be put at 2028 * any time due to an attribute change. Pin @pwq until the 2029 * rescuer is done with it. 2030 */ 2031 get_pwq(pwq); 2032 list_add_tail(&pwq->mayday_node, &wq->maydays); 2033 wake_up_process(wq->rescuer->task); 2034 } 2035 } 2036 2037 static void pool_mayday_timeout(struct timer_list *t) 2038 { 2039 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2040 struct work_struct *work; 2041 2042 raw_spin_lock_irq(&pool->lock); 2043 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2044 2045 if (need_to_create_worker(pool)) { 2046 /* 2047 * We've been trying to create a new worker but 2048 * haven't been successful. We might be hitting an 2049 * allocation deadlock. Send distress signals to 2050 * rescuers. 2051 */ 2052 list_for_each_entry(work, &pool->worklist, entry) 2053 send_mayday(work); 2054 } 2055 2056 raw_spin_unlock(&wq_mayday_lock); 2057 raw_spin_unlock_irq(&pool->lock); 2058 2059 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2060 } 2061 2062 /** 2063 * maybe_create_worker - create a new worker if necessary 2064 * @pool: pool to create a new worker for 2065 * 2066 * Create a new worker for @pool if necessary. @pool is guaranteed to 2067 * have at least one idle worker on return from this function. If 2068 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2069 * sent to all rescuers with works scheduled on @pool to resolve 2070 * possible allocation deadlock. 2071 * 2072 * On return, need_to_create_worker() is guaranteed to be %false and 2073 * may_start_working() %true. 2074 * 2075 * LOCKING: 2076 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2077 * multiple times. Does GFP_KERNEL allocations. Called only from 2078 * manager. 2079 */ 2080 static void maybe_create_worker(struct worker_pool *pool) 2081 __releases(&pool->lock) 2082 __acquires(&pool->lock) 2083 { 2084 restart: 2085 raw_spin_unlock_irq(&pool->lock); 2086 2087 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2088 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2089 2090 while (true) { 2091 if (create_worker(pool) || !need_to_create_worker(pool)) 2092 break; 2093 2094 schedule_timeout_interruptible(CREATE_COOLDOWN); 2095 2096 if (!need_to_create_worker(pool)) 2097 break; 2098 } 2099 2100 del_timer_sync(&pool->mayday_timer); 2101 raw_spin_lock_irq(&pool->lock); 2102 /* 2103 * This is necessary even after a new worker was just successfully 2104 * created as @pool->lock was dropped and the new worker might have 2105 * already become busy. 2106 */ 2107 if (need_to_create_worker(pool)) 2108 goto restart; 2109 } 2110 2111 /** 2112 * manage_workers - manage worker pool 2113 * @worker: self 2114 * 2115 * Assume the manager role and manage the worker pool @worker belongs 2116 * to. At any given time, there can be only zero or one manager per 2117 * pool. The exclusion is handled automatically by this function. 2118 * 2119 * The caller can safely start processing works on false return. On 2120 * true return, it's guaranteed that need_to_create_worker() is false 2121 * and may_start_working() is true. 2122 * 2123 * CONTEXT: 2124 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2125 * multiple times. Does GFP_KERNEL allocations. 2126 * 2127 * Return: 2128 * %false if the pool doesn't need management and the caller can safely 2129 * start processing works, %true if management function was performed and 2130 * the conditions that the caller verified before calling the function may 2131 * no longer be true. 2132 */ 2133 static bool manage_workers(struct worker *worker) 2134 { 2135 struct worker_pool *pool = worker->pool; 2136 2137 if (pool->flags & POOL_MANAGER_ACTIVE) 2138 return false; 2139 2140 pool->flags |= POOL_MANAGER_ACTIVE; 2141 pool->manager = worker; 2142 2143 maybe_create_worker(pool); 2144 2145 pool->manager = NULL; 2146 pool->flags &= ~POOL_MANAGER_ACTIVE; 2147 rcuwait_wake_up(&manager_wait); 2148 return true; 2149 } 2150 2151 /** 2152 * process_one_work - process single work 2153 * @worker: self 2154 * @work: work to process 2155 * 2156 * Process @work. This function contains all the logics necessary to 2157 * process a single work including synchronization against and 2158 * interaction with other workers on the same cpu, queueing and 2159 * flushing. As long as context requirement is met, any worker can 2160 * call this function to process a work. 2161 * 2162 * CONTEXT: 2163 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2164 */ 2165 static void process_one_work(struct worker *worker, struct work_struct *work) 2166 __releases(&pool->lock) 2167 __acquires(&pool->lock) 2168 { 2169 struct pool_workqueue *pwq = get_work_pwq(work); 2170 struct worker_pool *pool = worker->pool; 2171 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2172 int work_color; 2173 struct worker *collision; 2174 #ifdef CONFIG_LOCKDEP 2175 /* 2176 * It is permissible to free the struct work_struct from 2177 * inside the function that is called from it, this we need to 2178 * take into account for lockdep too. To avoid bogus "held 2179 * lock freed" warnings as well as problems when looking into 2180 * work->lockdep_map, make a copy and use that here. 2181 */ 2182 struct lockdep_map lockdep_map; 2183 2184 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2185 #endif 2186 /* ensure we're on the correct CPU */ 2187 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2188 raw_smp_processor_id() != pool->cpu); 2189 2190 /* 2191 * A single work shouldn't be executed concurrently by 2192 * multiple workers on a single cpu. Check whether anyone is 2193 * already processing the work. If so, defer the work to the 2194 * currently executing one. 2195 */ 2196 collision = find_worker_executing_work(pool, work); 2197 if (unlikely(collision)) { 2198 move_linked_works(work, &collision->scheduled, NULL); 2199 return; 2200 } 2201 2202 /* claim and dequeue */ 2203 debug_work_deactivate(work); 2204 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2205 worker->current_work = work; 2206 worker->current_func = work->func; 2207 worker->current_pwq = pwq; 2208 work_color = get_work_color(work); 2209 2210 /* 2211 * Record wq name for cmdline and debug reporting, may get 2212 * overridden through set_worker_desc(). 2213 */ 2214 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2215 2216 list_del_init(&work->entry); 2217 2218 /* 2219 * CPU intensive works don't participate in concurrency management. 2220 * They're the scheduler's responsibility. This takes @worker out 2221 * of concurrency management and the next code block will chain 2222 * execution of the pending work items. 2223 */ 2224 if (unlikely(cpu_intensive)) 2225 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2226 2227 /* 2228 * Wake up another worker if necessary. The condition is always 2229 * false for normal per-cpu workers since nr_running would always 2230 * be >= 1 at this point. This is used to chain execution of the 2231 * pending work items for WORKER_NOT_RUNNING workers such as the 2232 * UNBOUND and CPU_INTENSIVE ones. 2233 */ 2234 if (need_more_worker(pool)) 2235 wake_up_worker(pool); 2236 2237 /* 2238 * Record the last pool and clear PENDING which should be the last 2239 * update to @work. Also, do this inside @pool->lock so that 2240 * PENDING and queued state changes happen together while IRQ is 2241 * disabled. 2242 */ 2243 set_work_pool_and_clear_pending(work, pool->id); 2244 2245 raw_spin_unlock_irq(&pool->lock); 2246 2247 lock_map_acquire(&pwq->wq->lockdep_map); 2248 lock_map_acquire(&lockdep_map); 2249 /* 2250 * Strictly speaking we should mark the invariant state without holding 2251 * any locks, that is, before these two lock_map_acquire()'s. 2252 * 2253 * However, that would result in: 2254 * 2255 * A(W1) 2256 * WFC(C) 2257 * A(W1) 2258 * C(C) 2259 * 2260 * Which would create W1->C->W1 dependencies, even though there is no 2261 * actual deadlock possible. There are two solutions, using a 2262 * read-recursive acquire on the work(queue) 'locks', but this will then 2263 * hit the lockdep limitation on recursive locks, or simply discard 2264 * these locks. 2265 * 2266 * AFAICT there is no possible deadlock scenario between the 2267 * flush_work() and complete() primitives (except for single-threaded 2268 * workqueues), so hiding them isn't a problem. 2269 */ 2270 lockdep_invariant_state(true); 2271 trace_workqueue_execute_start(work); 2272 worker->current_func(work); 2273 /* 2274 * While we must be careful to not use "work" after this, the trace 2275 * point will only record its address. 2276 */ 2277 trace_workqueue_execute_end(work, worker->current_func); 2278 lock_map_release(&lockdep_map); 2279 lock_map_release(&pwq->wq->lockdep_map); 2280 2281 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2282 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2283 " last function: %ps\n", 2284 current->comm, preempt_count(), task_pid_nr(current), 2285 worker->current_func); 2286 debug_show_held_locks(current); 2287 dump_stack(); 2288 } 2289 2290 /* 2291 * The following prevents a kworker from hogging CPU on !PREEMPTION 2292 * kernels, where a requeueing work item waiting for something to 2293 * happen could deadlock with stop_machine as such work item could 2294 * indefinitely requeue itself while all other CPUs are trapped in 2295 * stop_machine. At the same time, report a quiescent RCU state so 2296 * the same condition doesn't freeze RCU. 2297 */ 2298 cond_resched(); 2299 2300 raw_spin_lock_irq(&pool->lock); 2301 2302 /* clear cpu intensive status */ 2303 if (unlikely(cpu_intensive)) 2304 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2305 2306 /* tag the worker for identification in schedule() */ 2307 worker->last_func = worker->current_func; 2308 2309 /* we're done with it, release */ 2310 hash_del(&worker->hentry); 2311 worker->current_work = NULL; 2312 worker->current_func = NULL; 2313 worker->current_pwq = NULL; 2314 pwq_dec_nr_in_flight(pwq, work_color); 2315 } 2316 2317 /** 2318 * process_scheduled_works - process scheduled works 2319 * @worker: self 2320 * 2321 * Process all scheduled works. Please note that the scheduled list 2322 * may change while processing a work, so this function repeatedly 2323 * fetches a work from the top and executes it. 2324 * 2325 * CONTEXT: 2326 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2327 * multiple times. 2328 */ 2329 static void process_scheduled_works(struct worker *worker) 2330 { 2331 while (!list_empty(&worker->scheduled)) { 2332 struct work_struct *work = list_first_entry(&worker->scheduled, 2333 struct work_struct, entry); 2334 process_one_work(worker, work); 2335 } 2336 } 2337 2338 static void set_pf_worker(bool val) 2339 { 2340 mutex_lock(&wq_pool_attach_mutex); 2341 if (val) 2342 current->flags |= PF_WQ_WORKER; 2343 else 2344 current->flags &= ~PF_WQ_WORKER; 2345 mutex_unlock(&wq_pool_attach_mutex); 2346 } 2347 2348 /** 2349 * worker_thread - the worker thread function 2350 * @__worker: self 2351 * 2352 * The worker thread function. All workers belong to a worker_pool - 2353 * either a per-cpu one or dynamic unbound one. These workers process all 2354 * work items regardless of their specific target workqueue. The only 2355 * exception is work items which belong to workqueues with a rescuer which 2356 * will be explained in rescuer_thread(). 2357 * 2358 * Return: 0 2359 */ 2360 static int worker_thread(void *__worker) 2361 { 2362 struct worker *worker = __worker; 2363 struct worker_pool *pool = worker->pool; 2364 2365 /* tell the scheduler that this is a workqueue worker */ 2366 set_pf_worker(true); 2367 woke_up: 2368 raw_spin_lock_irq(&pool->lock); 2369 2370 /* am I supposed to die? */ 2371 if (unlikely(worker->flags & WORKER_DIE)) { 2372 raw_spin_unlock_irq(&pool->lock); 2373 WARN_ON_ONCE(!list_empty(&worker->entry)); 2374 set_pf_worker(false); 2375 2376 set_task_comm(worker->task, "kworker/dying"); 2377 ida_simple_remove(&pool->worker_ida, worker->id); 2378 worker_detach_from_pool(worker); 2379 kfree(worker); 2380 return 0; 2381 } 2382 2383 worker_leave_idle(worker); 2384 recheck: 2385 /* no more worker necessary? */ 2386 if (!need_more_worker(pool)) 2387 goto sleep; 2388 2389 /* do we need to manage? */ 2390 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2391 goto recheck; 2392 2393 /* 2394 * ->scheduled list can only be filled while a worker is 2395 * preparing to process a work or actually processing it. 2396 * Make sure nobody diddled with it while I was sleeping. 2397 */ 2398 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2399 2400 /* 2401 * Finish PREP stage. We're guaranteed to have at least one idle 2402 * worker or that someone else has already assumed the manager 2403 * role. This is where @worker starts participating in concurrency 2404 * management if applicable and concurrency management is restored 2405 * after being rebound. See rebind_workers() for details. 2406 */ 2407 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2408 2409 do { 2410 struct work_struct *work = 2411 list_first_entry(&pool->worklist, 2412 struct work_struct, entry); 2413 2414 pool->watchdog_ts = jiffies; 2415 2416 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2417 /* optimization path, not strictly necessary */ 2418 process_one_work(worker, work); 2419 if (unlikely(!list_empty(&worker->scheduled))) 2420 process_scheduled_works(worker); 2421 } else { 2422 move_linked_works(work, &worker->scheduled, NULL); 2423 process_scheduled_works(worker); 2424 } 2425 } while (keep_working(pool)); 2426 2427 worker_set_flags(worker, WORKER_PREP); 2428 sleep: 2429 /* 2430 * pool->lock is held and there's no work to process and no need to 2431 * manage, sleep. Workers are woken up only while holding 2432 * pool->lock or from local cpu, so setting the current state 2433 * before releasing pool->lock is enough to prevent losing any 2434 * event. 2435 */ 2436 worker_enter_idle(worker); 2437 __set_current_state(TASK_IDLE); 2438 raw_spin_unlock_irq(&pool->lock); 2439 schedule(); 2440 goto woke_up; 2441 } 2442 2443 /** 2444 * rescuer_thread - the rescuer thread function 2445 * @__rescuer: self 2446 * 2447 * Workqueue rescuer thread function. There's one rescuer for each 2448 * workqueue which has WQ_MEM_RECLAIM set. 2449 * 2450 * Regular work processing on a pool may block trying to create a new 2451 * worker which uses GFP_KERNEL allocation which has slight chance of 2452 * developing into deadlock if some works currently on the same queue 2453 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2454 * the problem rescuer solves. 2455 * 2456 * When such condition is possible, the pool summons rescuers of all 2457 * workqueues which have works queued on the pool and let them process 2458 * those works so that forward progress can be guaranteed. 2459 * 2460 * This should happen rarely. 2461 * 2462 * Return: 0 2463 */ 2464 static int rescuer_thread(void *__rescuer) 2465 { 2466 struct worker *rescuer = __rescuer; 2467 struct workqueue_struct *wq = rescuer->rescue_wq; 2468 struct list_head *scheduled = &rescuer->scheduled; 2469 bool should_stop; 2470 2471 set_user_nice(current, RESCUER_NICE_LEVEL); 2472 2473 /* 2474 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2475 * doesn't participate in concurrency management. 2476 */ 2477 set_pf_worker(true); 2478 repeat: 2479 set_current_state(TASK_IDLE); 2480 2481 /* 2482 * By the time the rescuer is requested to stop, the workqueue 2483 * shouldn't have any work pending, but @wq->maydays may still have 2484 * pwq(s) queued. This can happen by non-rescuer workers consuming 2485 * all the work items before the rescuer got to them. Go through 2486 * @wq->maydays processing before acting on should_stop so that the 2487 * list is always empty on exit. 2488 */ 2489 should_stop = kthread_should_stop(); 2490 2491 /* see whether any pwq is asking for help */ 2492 raw_spin_lock_irq(&wq_mayday_lock); 2493 2494 while (!list_empty(&wq->maydays)) { 2495 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2496 struct pool_workqueue, mayday_node); 2497 struct worker_pool *pool = pwq->pool; 2498 struct work_struct *work, *n; 2499 bool first = true; 2500 2501 __set_current_state(TASK_RUNNING); 2502 list_del_init(&pwq->mayday_node); 2503 2504 raw_spin_unlock_irq(&wq_mayday_lock); 2505 2506 worker_attach_to_pool(rescuer, pool); 2507 2508 raw_spin_lock_irq(&pool->lock); 2509 2510 /* 2511 * Slurp in all works issued via this workqueue and 2512 * process'em. 2513 */ 2514 WARN_ON_ONCE(!list_empty(scheduled)); 2515 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2516 if (get_work_pwq(work) == pwq) { 2517 if (first) 2518 pool->watchdog_ts = jiffies; 2519 move_linked_works(work, scheduled, &n); 2520 } 2521 first = false; 2522 } 2523 2524 if (!list_empty(scheduled)) { 2525 process_scheduled_works(rescuer); 2526 2527 /* 2528 * The above execution of rescued work items could 2529 * have created more to rescue through 2530 * pwq_activate_first_delayed() or chained 2531 * queueing. Let's put @pwq back on mayday list so 2532 * that such back-to-back work items, which may be 2533 * being used to relieve memory pressure, don't 2534 * incur MAYDAY_INTERVAL delay inbetween. 2535 */ 2536 if (pwq->nr_active && need_to_create_worker(pool)) { 2537 raw_spin_lock(&wq_mayday_lock); 2538 /* 2539 * Queue iff we aren't racing destruction 2540 * and somebody else hasn't queued it already. 2541 */ 2542 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2543 get_pwq(pwq); 2544 list_add_tail(&pwq->mayday_node, &wq->maydays); 2545 } 2546 raw_spin_unlock(&wq_mayday_lock); 2547 } 2548 } 2549 2550 /* 2551 * Put the reference grabbed by send_mayday(). @pool won't 2552 * go away while we're still attached to it. 2553 */ 2554 put_pwq(pwq); 2555 2556 /* 2557 * Leave this pool. If need_more_worker() is %true, notify a 2558 * regular worker; otherwise, we end up with 0 concurrency 2559 * and stalling the execution. 2560 */ 2561 if (need_more_worker(pool)) 2562 wake_up_worker(pool); 2563 2564 raw_spin_unlock_irq(&pool->lock); 2565 2566 worker_detach_from_pool(rescuer); 2567 2568 raw_spin_lock_irq(&wq_mayday_lock); 2569 } 2570 2571 raw_spin_unlock_irq(&wq_mayday_lock); 2572 2573 if (should_stop) { 2574 __set_current_state(TASK_RUNNING); 2575 set_pf_worker(false); 2576 return 0; 2577 } 2578 2579 /* rescuers should never participate in concurrency management */ 2580 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2581 schedule(); 2582 goto repeat; 2583 } 2584 2585 /** 2586 * check_flush_dependency - check for flush dependency sanity 2587 * @target_wq: workqueue being flushed 2588 * @target_work: work item being flushed (NULL for workqueue flushes) 2589 * 2590 * %current is trying to flush the whole @target_wq or @target_work on it. 2591 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2592 * reclaiming memory or running on a workqueue which doesn't have 2593 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2594 * a deadlock. 2595 */ 2596 static void check_flush_dependency(struct workqueue_struct *target_wq, 2597 struct work_struct *target_work) 2598 { 2599 work_func_t target_func = target_work ? target_work->func : NULL; 2600 struct worker *worker; 2601 2602 if (target_wq->flags & WQ_MEM_RECLAIM) 2603 return; 2604 2605 worker = current_wq_worker(); 2606 2607 WARN_ONCE(current->flags & PF_MEMALLOC, 2608 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2609 current->pid, current->comm, target_wq->name, target_func); 2610 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2611 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2612 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2613 worker->current_pwq->wq->name, worker->current_func, 2614 target_wq->name, target_func); 2615 } 2616 2617 struct wq_barrier { 2618 struct work_struct work; 2619 struct completion done; 2620 struct task_struct *task; /* purely informational */ 2621 }; 2622 2623 static void wq_barrier_func(struct work_struct *work) 2624 { 2625 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2626 complete(&barr->done); 2627 } 2628 2629 /** 2630 * insert_wq_barrier - insert a barrier work 2631 * @pwq: pwq to insert barrier into 2632 * @barr: wq_barrier to insert 2633 * @target: target work to attach @barr to 2634 * @worker: worker currently executing @target, NULL if @target is not executing 2635 * 2636 * @barr is linked to @target such that @barr is completed only after 2637 * @target finishes execution. Please note that the ordering 2638 * guarantee is observed only with respect to @target and on the local 2639 * cpu. 2640 * 2641 * Currently, a queued barrier can't be canceled. This is because 2642 * try_to_grab_pending() can't determine whether the work to be 2643 * grabbed is at the head of the queue and thus can't clear LINKED 2644 * flag of the previous work while there must be a valid next work 2645 * after a work with LINKED flag set. 2646 * 2647 * Note that when @worker is non-NULL, @target may be modified 2648 * underneath us, so we can't reliably determine pwq from @target. 2649 * 2650 * CONTEXT: 2651 * raw_spin_lock_irq(pool->lock). 2652 */ 2653 static void insert_wq_barrier(struct pool_workqueue *pwq, 2654 struct wq_barrier *barr, 2655 struct work_struct *target, struct worker *worker) 2656 { 2657 struct list_head *head; 2658 unsigned int linked = 0; 2659 2660 /* 2661 * debugobject calls are safe here even with pool->lock locked 2662 * as we know for sure that this will not trigger any of the 2663 * checks and call back into the fixup functions where we 2664 * might deadlock. 2665 */ 2666 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2667 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2668 2669 init_completion_map(&barr->done, &target->lockdep_map); 2670 2671 barr->task = current; 2672 2673 /* 2674 * If @target is currently being executed, schedule the 2675 * barrier to the worker; otherwise, put it after @target. 2676 */ 2677 if (worker) 2678 head = worker->scheduled.next; 2679 else { 2680 unsigned long *bits = work_data_bits(target); 2681 2682 head = target->entry.next; 2683 /* there can already be other linked works, inherit and set */ 2684 linked = *bits & WORK_STRUCT_LINKED; 2685 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2686 } 2687 2688 debug_work_activate(&barr->work); 2689 insert_work(pwq, &barr->work, head, 2690 work_color_to_flags(WORK_NO_COLOR) | linked); 2691 } 2692 2693 /** 2694 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2695 * @wq: workqueue being flushed 2696 * @flush_color: new flush color, < 0 for no-op 2697 * @work_color: new work color, < 0 for no-op 2698 * 2699 * Prepare pwqs for workqueue flushing. 2700 * 2701 * If @flush_color is non-negative, flush_color on all pwqs should be 2702 * -1. If no pwq has in-flight commands at the specified color, all 2703 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2704 * has in flight commands, its pwq->flush_color is set to 2705 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2706 * wakeup logic is armed and %true is returned. 2707 * 2708 * The caller should have initialized @wq->first_flusher prior to 2709 * calling this function with non-negative @flush_color. If 2710 * @flush_color is negative, no flush color update is done and %false 2711 * is returned. 2712 * 2713 * If @work_color is non-negative, all pwqs should have the same 2714 * work_color which is previous to @work_color and all will be 2715 * advanced to @work_color. 2716 * 2717 * CONTEXT: 2718 * mutex_lock(wq->mutex). 2719 * 2720 * Return: 2721 * %true if @flush_color >= 0 and there's something to flush. %false 2722 * otherwise. 2723 */ 2724 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2725 int flush_color, int work_color) 2726 { 2727 bool wait = false; 2728 struct pool_workqueue *pwq; 2729 2730 if (flush_color >= 0) { 2731 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2732 atomic_set(&wq->nr_pwqs_to_flush, 1); 2733 } 2734 2735 for_each_pwq(pwq, wq) { 2736 struct worker_pool *pool = pwq->pool; 2737 2738 raw_spin_lock_irq(&pool->lock); 2739 2740 if (flush_color >= 0) { 2741 WARN_ON_ONCE(pwq->flush_color != -1); 2742 2743 if (pwq->nr_in_flight[flush_color]) { 2744 pwq->flush_color = flush_color; 2745 atomic_inc(&wq->nr_pwqs_to_flush); 2746 wait = true; 2747 } 2748 } 2749 2750 if (work_color >= 0) { 2751 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2752 pwq->work_color = work_color; 2753 } 2754 2755 raw_spin_unlock_irq(&pool->lock); 2756 } 2757 2758 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2759 complete(&wq->first_flusher->done); 2760 2761 return wait; 2762 } 2763 2764 /** 2765 * flush_workqueue - ensure that any scheduled work has run to completion. 2766 * @wq: workqueue to flush 2767 * 2768 * This function sleeps until all work items which were queued on entry 2769 * have finished execution, but it is not livelocked by new incoming ones. 2770 */ 2771 void flush_workqueue(struct workqueue_struct *wq) 2772 { 2773 struct wq_flusher this_flusher = { 2774 .list = LIST_HEAD_INIT(this_flusher.list), 2775 .flush_color = -1, 2776 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2777 }; 2778 int next_color; 2779 2780 if (WARN_ON(!wq_online)) 2781 return; 2782 2783 lock_map_acquire(&wq->lockdep_map); 2784 lock_map_release(&wq->lockdep_map); 2785 2786 mutex_lock(&wq->mutex); 2787 2788 /* 2789 * Start-to-wait phase 2790 */ 2791 next_color = work_next_color(wq->work_color); 2792 2793 if (next_color != wq->flush_color) { 2794 /* 2795 * Color space is not full. The current work_color 2796 * becomes our flush_color and work_color is advanced 2797 * by one. 2798 */ 2799 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2800 this_flusher.flush_color = wq->work_color; 2801 wq->work_color = next_color; 2802 2803 if (!wq->first_flusher) { 2804 /* no flush in progress, become the first flusher */ 2805 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2806 2807 wq->first_flusher = &this_flusher; 2808 2809 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2810 wq->work_color)) { 2811 /* nothing to flush, done */ 2812 wq->flush_color = next_color; 2813 wq->first_flusher = NULL; 2814 goto out_unlock; 2815 } 2816 } else { 2817 /* wait in queue */ 2818 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2819 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2820 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2821 } 2822 } else { 2823 /* 2824 * Oops, color space is full, wait on overflow queue. 2825 * The next flush completion will assign us 2826 * flush_color and transfer to flusher_queue. 2827 */ 2828 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2829 } 2830 2831 check_flush_dependency(wq, NULL); 2832 2833 mutex_unlock(&wq->mutex); 2834 2835 wait_for_completion(&this_flusher.done); 2836 2837 /* 2838 * Wake-up-and-cascade phase 2839 * 2840 * First flushers are responsible for cascading flushes and 2841 * handling overflow. Non-first flushers can simply return. 2842 */ 2843 if (READ_ONCE(wq->first_flusher) != &this_flusher) 2844 return; 2845 2846 mutex_lock(&wq->mutex); 2847 2848 /* we might have raced, check again with mutex held */ 2849 if (wq->first_flusher != &this_flusher) 2850 goto out_unlock; 2851 2852 WRITE_ONCE(wq->first_flusher, NULL); 2853 2854 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2855 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2856 2857 while (true) { 2858 struct wq_flusher *next, *tmp; 2859 2860 /* complete all the flushers sharing the current flush color */ 2861 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2862 if (next->flush_color != wq->flush_color) 2863 break; 2864 list_del_init(&next->list); 2865 complete(&next->done); 2866 } 2867 2868 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2869 wq->flush_color != work_next_color(wq->work_color)); 2870 2871 /* this flush_color is finished, advance by one */ 2872 wq->flush_color = work_next_color(wq->flush_color); 2873 2874 /* one color has been freed, handle overflow queue */ 2875 if (!list_empty(&wq->flusher_overflow)) { 2876 /* 2877 * Assign the same color to all overflowed 2878 * flushers, advance work_color and append to 2879 * flusher_queue. This is the start-to-wait 2880 * phase for these overflowed flushers. 2881 */ 2882 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2883 tmp->flush_color = wq->work_color; 2884 2885 wq->work_color = work_next_color(wq->work_color); 2886 2887 list_splice_tail_init(&wq->flusher_overflow, 2888 &wq->flusher_queue); 2889 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2890 } 2891 2892 if (list_empty(&wq->flusher_queue)) { 2893 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2894 break; 2895 } 2896 2897 /* 2898 * Need to flush more colors. Make the next flusher 2899 * the new first flusher and arm pwqs. 2900 */ 2901 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2902 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2903 2904 list_del_init(&next->list); 2905 wq->first_flusher = next; 2906 2907 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2908 break; 2909 2910 /* 2911 * Meh... this color is already done, clear first 2912 * flusher and repeat cascading. 2913 */ 2914 wq->first_flusher = NULL; 2915 } 2916 2917 out_unlock: 2918 mutex_unlock(&wq->mutex); 2919 } 2920 EXPORT_SYMBOL(flush_workqueue); 2921 2922 /** 2923 * drain_workqueue - drain a workqueue 2924 * @wq: workqueue to drain 2925 * 2926 * Wait until the workqueue becomes empty. While draining is in progress, 2927 * only chain queueing is allowed. IOW, only currently pending or running 2928 * work items on @wq can queue further work items on it. @wq is flushed 2929 * repeatedly until it becomes empty. The number of flushing is determined 2930 * by the depth of chaining and should be relatively short. Whine if it 2931 * takes too long. 2932 */ 2933 void drain_workqueue(struct workqueue_struct *wq) 2934 { 2935 unsigned int flush_cnt = 0; 2936 struct pool_workqueue *pwq; 2937 2938 /* 2939 * __queue_work() needs to test whether there are drainers, is much 2940 * hotter than drain_workqueue() and already looks at @wq->flags. 2941 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2942 */ 2943 mutex_lock(&wq->mutex); 2944 if (!wq->nr_drainers++) 2945 wq->flags |= __WQ_DRAINING; 2946 mutex_unlock(&wq->mutex); 2947 reflush: 2948 flush_workqueue(wq); 2949 2950 mutex_lock(&wq->mutex); 2951 2952 for_each_pwq(pwq, wq) { 2953 bool drained; 2954 2955 raw_spin_lock_irq(&pwq->pool->lock); 2956 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2957 raw_spin_unlock_irq(&pwq->pool->lock); 2958 2959 if (drained) 2960 continue; 2961 2962 if (++flush_cnt == 10 || 2963 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2964 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2965 wq->name, flush_cnt); 2966 2967 mutex_unlock(&wq->mutex); 2968 goto reflush; 2969 } 2970 2971 if (!--wq->nr_drainers) 2972 wq->flags &= ~__WQ_DRAINING; 2973 mutex_unlock(&wq->mutex); 2974 } 2975 EXPORT_SYMBOL_GPL(drain_workqueue); 2976 2977 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2978 bool from_cancel) 2979 { 2980 struct worker *worker = NULL; 2981 struct worker_pool *pool; 2982 struct pool_workqueue *pwq; 2983 2984 might_sleep(); 2985 2986 rcu_read_lock(); 2987 pool = get_work_pool(work); 2988 if (!pool) { 2989 rcu_read_unlock(); 2990 return false; 2991 } 2992 2993 raw_spin_lock_irq(&pool->lock); 2994 /* see the comment in try_to_grab_pending() with the same code */ 2995 pwq = get_work_pwq(work); 2996 if (pwq) { 2997 if (unlikely(pwq->pool != pool)) 2998 goto already_gone; 2999 } else { 3000 worker = find_worker_executing_work(pool, work); 3001 if (!worker) 3002 goto already_gone; 3003 pwq = worker->current_pwq; 3004 } 3005 3006 check_flush_dependency(pwq->wq, work); 3007 3008 insert_wq_barrier(pwq, barr, work, worker); 3009 raw_spin_unlock_irq(&pool->lock); 3010 3011 /* 3012 * Force a lock recursion deadlock when using flush_work() inside a 3013 * single-threaded or rescuer equipped workqueue. 3014 * 3015 * For single threaded workqueues the deadlock happens when the work 3016 * is after the work issuing the flush_work(). For rescuer equipped 3017 * workqueues the deadlock happens when the rescuer stalls, blocking 3018 * forward progress. 3019 */ 3020 if (!from_cancel && 3021 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3022 lock_map_acquire(&pwq->wq->lockdep_map); 3023 lock_map_release(&pwq->wq->lockdep_map); 3024 } 3025 rcu_read_unlock(); 3026 return true; 3027 already_gone: 3028 raw_spin_unlock_irq(&pool->lock); 3029 rcu_read_unlock(); 3030 return false; 3031 } 3032 3033 static bool __flush_work(struct work_struct *work, bool from_cancel) 3034 { 3035 struct wq_barrier barr; 3036 3037 if (WARN_ON(!wq_online)) 3038 return false; 3039 3040 if (WARN_ON(!work->func)) 3041 return false; 3042 3043 if (!from_cancel) { 3044 lock_map_acquire(&work->lockdep_map); 3045 lock_map_release(&work->lockdep_map); 3046 } 3047 3048 if (start_flush_work(work, &barr, from_cancel)) { 3049 wait_for_completion(&barr.done); 3050 destroy_work_on_stack(&barr.work); 3051 return true; 3052 } else { 3053 return false; 3054 } 3055 } 3056 3057 /** 3058 * flush_work - wait for a work to finish executing the last queueing instance 3059 * @work: the work to flush 3060 * 3061 * Wait until @work has finished execution. @work is guaranteed to be idle 3062 * on return if it hasn't been requeued since flush started. 3063 * 3064 * Return: 3065 * %true if flush_work() waited for the work to finish execution, 3066 * %false if it was already idle. 3067 */ 3068 bool flush_work(struct work_struct *work) 3069 { 3070 return __flush_work(work, false); 3071 } 3072 EXPORT_SYMBOL_GPL(flush_work); 3073 3074 struct cwt_wait { 3075 wait_queue_entry_t wait; 3076 struct work_struct *work; 3077 }; 3078 3079 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3080 { 3081 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3082 3083 if (cwait->work != key) 3084 return 0; 3085 return autoremove_wake_function(wait, mode, sync, key); 3086 } 3087 3088 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3089 { 3090 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3091 unsigned long flags; 3092 int ret; 3093 3094 do { 3095 ret = try_to_grab_pending(work, is_dwork, &flags); 3096 /* 3097 * If someone else is already canceling, wait for it to 3098 * finish. flush_work() doesn't work for PREEMPT_NONE 3099 * because we may get scheduled between @work's completion 3100 * and the other canceling task resuming and clearing 3101 * CANCELING - flush_work() will return false immediately 3102 * as @work is no longer busy, try_to_grab_pending() will 3103 * return -ENOENT as @work is still being canceled and the 3104 * other canceling task won't be able to clear CANCELING as 3105 * we're hogging the CPU. 3106 * 3107 * Let's wait for completion using a waitqueue. As this 3108 * may lead to the thundering herd problem, use a custom 3109 * wake function which matches @work along with exclusive 3110 * wait and wakeup. 3111 */ 3112 if (unlikely(ret == -ENOENT)) { 3113 struct cwt_wait cwait; 3114 3115 init_wait(&cwait.wait); 3116 cwait.wait.func = cwt_wakefn; 3117 cwait.work = work; 3118 3119 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3120 TASK_UNINTERRUPTIBLE); 3121 if (work_is_canceling(work)) 3122 schedule(); 3123 finish_wait(&cancel_waitq, &cwait.wait); 3124 } 3125 } while (unlikely(ret < 0)); 3126 3127 /* tell other tasks trying to grab @work to back off */ 3128 mark_work_canceling(work); 3129 local_irq_restore(flags); 3130 3131 /* 3132 * This allows canceling during early boot. We know that @work 3133 * isn't executing. 3134 */ 3135 if (wq_online) 3136 __flush_work(work, true); 3137 3138 clear_work_data(work); 3139 3140 /* 3141 * Paired with prepare_to_wait() above so that either 3142 * waitqueue_active() is visible here or !work_is_canceling() is 3143 * visible there. 3144 */ 3145 smp_mb(); 3146 if (waitqueue_active(&cancel_waitq)) 3147 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3148 3149 return ret; 3150 } 3151 3152 /** 3153 * cancel_work_sync - cancel a work and wait for it to finish 3154 * @work: the work to cancel 3155 * 3156 * Cancel @work and wait for its execution to finish. This function 3157 * can be used even if the work re-queues itself or migrates to 3158 * another workqueue. On return from this function, @work is 3159 * guaranteed to be not pending or executing on any CPU. 3160 * 3161 * cancel_work_sync(&delayed_work->work) must not be used for 3162 * delayed_work's. Use cancel_delayed_work_sync() instead. 3163 * 3164 * The caller must ensure that the workqueue on which @work was last 3165 * queued can't be destroyed before this function returns. 3166 * 3167 * Return: 3168 * %true if @work was pending, %false otherwise. 3169 */ 3170 bool cancel_work_sync(struct work_struct *work) 3171 { 3172 return __cancel_work_timer(work, false); 3173 } 3174 EXPORT_SYMBOL_GPL(cancel_work_sync); 3175 3176 /** 3177 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3178 * @dwork: the delayed work to flush 3179 * 3180 * Delayed timer is cancelled and the pending work is queued for 3181 * immediate execution. Like flush_work(), this function only 3182 * considers the last queueing instance of @dwork. 3183 * 3184 * Return: 3185 * %true if flush_work() waited for the work to finish execution, 3186 * %false if it was already idle. 3187 */ 3188 bool flush_delayed_work(struct delayed_work *dwork) 3189 { 3190 local_irq_disable(); 3191 if (del_timer_sync(&dwork->timer)) 3192 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3193 local_irq_enable(); 3194 return flush_work(&dwork->work); 3195 } 3196 EXPORT_SYMBOL(flush_delayed_work); 3197 3198 /** 3199 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3200 * @rwork: the rcu work to flush 3201 * 3202 * Return: 3203 * %true if flush_rcu_work() waited for the work to finish execution, 3204 * %false if it was already idle. 3205 */ 3206 bool flush_rcu_work(struct rcu_work *rwork) 3207 { 3208 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3209 rcu_barrier(); 3210 flush_work(&rwork->work); 3211 return true; 3212 } else { 3213 return flush_work(&rwork->work); 3214 } 3215 } 3216 EXPORT_SYMBOL(flush_rcu_work); 3217 3218 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3219 { 3220 unsigned long flags; 3221 int ret; 3222 3223 do { 3224 ret = try_to_grab_pending(work, is_dwork, &flags); 3225 } while (unlikely(ret == -EAGAIN)); 3226 3227 if (unlikely(ret < 0)) 3228 return false; 3229 3230 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3231 local_irq_restore(flags); 3232 return ret; 3233 } 3234 3235 /** 3236 * cancel_delayed_work - cancel a delayed work 3237 * @dwork: delayed_work to cancel 3238 * 3239 * Kill off a pending delayed_work. 3240 * 3241 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3242 * pending. 3243 * 3244 * Note: 3245 * The work callback function may still be running on return, unless 3246 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3247 * use cancel_delayed_work_sync() to wait on it. 3248 * 3249 * This function is safe to call from any context including IRQ handler. 3250 */ 3251 bool cancel_delayed_work(struct delayed_work *dwork) 3252 { 3253 return __cancel_work(&dwork->work, true); 3254 } 3255 EXPORT_SYMBOL(cancel_delayed_work); 3256 3257 /** 3258 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3259 * @dwork: the delayed work cancel 3260 * 3261 * This is cancel_work_sync() for delayed works. 3262 * 3263 * Return: 3264 * %true if @dwork was pending, %false otherwise. 3265 */ 3266 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3267 { 3268 return __cancel_work_timer(&dwork->work, true); 3269 } 3270 EXPORT_SYMBOL(cancel_delayed_work_sync); 3271 3272 /** 3273 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3274 * @func: the function to call 3275 * 3276 * schedule_on_each_cpu() executes @func on each online CPU using the 3277 * system workqueue and blocks until all CPUs have completed. 3278 * schedule_on_each_cpu() is very slow. 3279 * 3280 * Return: 3281 * 0 on success, -errno on failure. 3282 */ 3283 int schedule_on_each_cpu(work_func_t func) 3284 { 3285 int cpu; 3286 struct work_struct __percpu *works; 3287 3288 works = alloc_percpu(struct work_struct); 3289 if (!works) 3290 return -ENOMEM; 3291 3292 get_online_cpus(); 3293 3294 for_each_online_cpu(cpu) { 3295 struct work_struct *work = per_cpu_ptr(works, cpu); 3296 3297 INIT_WORK(work, func); 3298 schedule_work_on(cpu, work); 3299 } 3300 3301 for_each_online_cpu(cpu) 3302 flush_work(per_cpu_ptr(works, cpu)); 3303 3304 put_online_cpus(); 3305 free_percpu(works); 3306 return 0; 3307 } 3308 3309 /** 3310 * execute_in_process_context - reliably execute the routine with user context 3311 * @fn: the function to execute 3312 * @ew: guaranteed storage for the execute work structure (must 3313 * be available when the work executes) 3314 * 3315 * Executes the function immediately if process context is available, 3316 * otherwise schedules the function for delayed execution. 3317 * 3318 * Return: 0 - function was executed 3319 * 1 - function was scheduled for execution 3320 */ 3321 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3322 { 3323 if (!in_interrupt()) { 3324 fn(&ew->work); 3325 return 0; 3326 } 3327 3328 INIT_WORK(&ew->work, fn); 3329 schedule_work(&ew->work); 3330 3331 return 1; 3332 } 3333 EXPORT_SYMBOL_GPL(execute_in_process_context); 3334 3335 /** 3336 * free_workqueue_attrs - free a workqueue_attrs 3337 * @attrs: workqueue_attrs to free 3338 * 3339 * Undo alloc_workqueue_attrs(). 3340 */ 3341 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3342 { 3343 if (attrs) { 3344 free_cpumask_var(attrs->cpumask); 3345 kfree(attrs); 3346 } 3347 } 3348 3349 /** 3350 * alloc_workqueue_attrs - allocate a workqueue_attrs 3351 * 3352 * Allocate a new workqueue_attrs, initialize with default settings and 3353 * return it. 3354 * 3355 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3356 */ 3357 struct workqueue_attrs *alloc_workqueue_attrs(void) 3358 { 3359 struct workqueue_attrs *attrs; 3360 3361 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3362 if (!attrs) 3363 goto fail; 3364 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3365 goto fail; 3366 3367 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3368 return attrs; 3369 fail: 3370 free_workqueue_attrs(attrs); 3371 return NULL; 3372 } 3373 3374 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3375 const struct workqueue_attrs *from) 3376 { 3377 to->nice = from->nice; 3378 cpumask_copy(to->cpumask, from->cpumask); 3379 /* 3380 * Unlike hash and equality test, this function doesn't ignore 3381 * ->no_numa as it is used for both pool and wq attrs. Instead, 3382 * get_unbound_pool() explicitly clears ->no_numa after copying. 3383 */ 3384 to->no_numa = from->no_numa; 3385 } 3386 3387 /* hash value of the content of @attr */ 3388 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3389 { 3390 u32 hash = 0; 3391 3392 hash = jhash_1word(attrs->nice, hash); 3393 hash = jhash(cpumask_bits(attrs->cpumask), 3394 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3395 return hash; 3396 } 3397 3398 /* content equality test */ 3399 static bool wqattrs_equal(const struct workqueue_attrs *a, 3400 const struct workqueue_attrs *b) 3401 { 3402 if (a->nice != b->nice) 3403 return false; 3404 if (!cpumask_equal(a->cpumask, b->cpumask)) 3405 return false; 3406 return true; 3407 } 3408 3409 /** 3410 * init_worker_pool - initialize a newly zalloc'd worker_pool 3411 * @pool: worker_pool to initialize 3412 * 3413 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3414 * 3415 * Return: 0 on success, -errno on failure. Even on failure, all fields 3416 * inside @pool proper are initialized and put_unbound_pool() can be called 3417 * on @pool safely to release it. 3418 */ 3419 static int init_worker_pool(struct worker_pool *pool) 3420 { 3421 raw_spin_lock_init(&pool->lock); 3422 pool->id = -1; 3423 pool->cpu = -1; 3424 pool->node = NUMA_NO_NODE; 3425 pool->flags |= POOL_DISASSOCIATED; 3426 pool->watchdog_ts = jiffies; 3427 INIT_LIST_HEAD(&pool->worklist); 3428 INIT_LIST_HEAD(&pool->idle_list); 3429 hash_init(pool->busy_hash); 3430 3431 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3432 3433 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3434 3435 INIT_LIST_HEAD(&pool->workers); 3436 3437 ida_init(&pool->worker_ida); 3438 INIT_HLIST_NODE(&pool->hash_node); 3439 pool->refcnt = 1; 3440 3441 /* shouldn't fail above this point */ 3442 pool->attrs = alloc_workqueue_attrs(); 3443 if (!pool->attrs) 3444 return -ENOMEM; 3445 return 0; 3446 } 3447 3448 #ifdef CONFIG_LOCKDEP 3449 static void wq_init_lockdep(struct workqueue_struct *wq) 3450 { 3451 char *lock_name; 3452 3453 lockdep_register_key(&wq->key); 3454 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3455 if (!lock_name) 3456 lock_name = wq->name; 3457 3458 wq->lock_name = lock_name; 3459 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3460 } 3461 3462 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3463 { 3464 lockdep_unregister_key(&wq->key); 3465 } 3466 3467 static void wq_free_lockdep(struct workqueue_struct *wq) 3468 { 3469 if (wq->lock_name != wq->name) 3470 kfree(wq->lock_name); 3471 } 3472 #else 3473 static void wq_init_lockdep(struct workqueue_struct *wq) 3474 { 3475 } 3476 3477 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3478 { 3479 } 3480 3481 static void wq_free_lockdep(struct workqueue_struct *wq) 3482 { 3483 } 3484 #endif 3485 3486 static void rcu_free_wq(struct rcu_head *rcu) 3487 { 3488 struct workqueue_struct *wq = 3489 container_of(rcu, struct workqueue_struct, rcu); 3490 3491 wq_free_lockdep(wq); 3492 3493 if (!(wq->flags & WQ_UNBOUND)) 3494 free_percpu(wq->cpu_pwqs); 3495 else 3496 free_workqueue_attrs(wq->unbound_attrs); 3497 3498 kfree(wq); 3499 } 3500 3501 static void rcu_free_pool(struct rcu_head *rcu) 3502 { 3503 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3504 3505 ida_destroy(&pool->worker_ida); 3506 free_workqueue_attrs(pool->attrs); 3507 kfree(pool); 3508 } 3509 3510 /* This returns with the lock held on success (pool manager is inactive). */ 3511 static bool wq_manager_inactive(struct worker_pool *pool) 3512 { 3513 raw_spin_lock_irq(&pool->lock); 3514 3515 if (pool->flags & POOL_MANAGER_ACTIVE) { 3516 raw_spin_unlock_irq(&pool->lock); 3517 return false; 3518 } 3519 return true; 3520 } 3521 3522 /** 3523 * put_unbound_pool - put a worker_pool 3524 * @pool: worker_pool to put 3525 * 3526 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3527 * safe manner. get_unbound_pool() calls this function on its failure path 3528 * and this function should be able to release pools which went through, 3529 * successfully or not, init_worker_pool(). 3530 * 3531 * Should be called with wq_pool_mutex held. 3532 */ 3533 static void put_unbound_pool(struct worker_pool *pool) 3534 { 3535 DECLARE_COMPLETION_ONSTACK(detach_completion); 3536 struct worker *worker; 3537 3538 lockdep_assert_held(&wq_pool_mutex); 3539 3540 if (--pool->refcnt) 3541 return; 3542 3543 /* sanity checks */ 3544 if (WARN_ON(!(pool->cpu < 0)) || 3545 WARN_ON(!list_empty(&pool->worklist))) 3546 return; 3547 3548 /* release id and unhash */ 3549 if (pool->id >= 0) 3550 idr_remove(&worker_pool_idr, pool->id); 3551 hash_del(&pool->hash_node); 3552 3553 /* 3554 * Become the manager and destroy all workers. This prevents 3555 * @pool's workers from blocking on attach_mutex. We're the last 3556 * manager and @pool gets freed with the flag set. 3557 * Because of how wq_manager_inactive() works, we will hold the 3558 * spinlock after a successful wait. 3559 */ 3560 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool), 3561 TASK_UNINTERRUPTIBLE); 3562 pool->flags |= POOL_MANAGER_ACTIVE; 3563 3564 while ((worker = first_idle_worker(pool))) 3565 destroy_worker(worker); 3566 WARN_ON(pool->nr_workers || pool->nr_idle); 3567 raw_spin_unlock_irq(&pool->lock); 3568 3569 mutex_lock(&wq_pool_attach_mutex); 3570 if (!list_empty(&pool->workers)) 3571 pool->detach_completion = &detach_completion; 3572 mutex_unlock(&wq_pool_attach_mutex); 3573 3574 if (pool->detach_completion) 3575 wait_for_completion(pool->detach_completion); 3576 3577 /* shut down the timers */ 3578 del_timer_sync(&pool->idle_timer); 3579 del_timer_sync(&pool->mayday_timer); 3580 3581 /* RCU protected to allow dereferences from get_work_pool() */ 3582 call_rcu(&pool->rcu, rcu_free_pool); 3583 } 3584 3585 /** 3586 * get_unbound_pool - get a worker_pool with the specified attributes 3587 * @attrs: the attributes of the worker_pool to get 3588 * 3589 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3590 * reference count and return it. If there already is a matching 3591 * worker_pool, it will be used; otherwise, this function attempts to 3592 * create a new one. 3593 * 3594 * Should be called with wq_pool_mutex held. 3595 * 3596 * Return: On success, a worker_pool with the same attributes as @attrs. 3597 * On failure, %NULL. 3598 */ 3599 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3600 { 3601 u32 hash = wqattrs_hash(attrs); 3602 struct worker_pool *pool; 3603 int node; 3604 int target_node = NUMA_NO_NODE; 3605 3606 lockdep_assert_held(&wq_pool_mutex); 3607 3608 /* do we already have a matching pool? */ 3609 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3610 if (wqattrs_equal(pool->attrs, attrs)) { 3611 pool->refcnt++; 3612 return pool; 3613 } 3614 } 3615 3616 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3617 if (wq_numa_enabled) { 3618 for_each_node(node) { 3619 if (cpumask_subset(attrs->cpumask, 3620 wq_numa_possible_cpumask[node])) { 3621 target_node = node; 3622 break; 3623 } 3624 } 3625 } 3626 3627 /* nope, create a new one */ 3628 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3629 if (!pool || init_worker_pool(pool) < 0) 3630 goto fail; 3631 3632 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3633 copy_workqueue_attrs(pool->attrs, attrs); 3634 pool->node = target_node; 3635 3636 /* 3637 * no_numa isn't a worker_pool attribute, always clear it. See 3638 * 'struct workqueue_attrs' comments for detail. 3639 */ 3640 pool->attrs->no_numa = false; 3641 3642 if (worker_pool_assign_id(pool) < 0) 3643 goto fail; 3644 3645 /* create and start the initial worker */ 3646 if (wq_online && !create_worker(pool)) 3647 goto fail; 3648 3649 /* install */ 3650 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3651 3652 return pool; 3653 fail: 3654 if (pool) 3655 put_unbound_pool(pool); 3656 return NULL; 3657 } 3658 3659 static void rcu_free_pwq(struct rcu_head *rcu) 3660 { 3661 kmem_cache_free(pwq_cache, 3662 container_of(rcu, struct pool_workqueue, rcu)); 3663 } 3664 3665 /* 3666 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3667 * and needs to be destroyed. 3668 */ 3669 static void pwq_unbound_release_workfn(struct work_struct *work) 3670 { 3671 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3672 unbound_release_work); 3673 struct workqueue_struct *wq = pwq->wq; 3674 struct worker_pool *pool = pwq->pool; 3675 bool is_last; 3676 3677 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3678 return; 3679 3680 mutex_lock(&wq->mutex); 3681 list_del_rcu(&pwq->pwqs_node); 3682 is_last = list_empty(&wq->pwqs); 3683 mutex_unlock(&wq->mutex); 3684 3685 mutex_lock(&wq_pool_mutex); 3686 put_unbound_pool(pool); 3687 mutex_unlock(&wq_pool_mutex); 3688 3689 call_rcu(&pwq->rcu, rcu_free_pwq); 3690 3691 /* 3692 * If we're the last pwq going away, @wq is already dead and no one 3693 * is gonna access it anymore. Schedule RCU free. 3694 */ 3695 if (is_last) { 3696 wq_unregister_lockdep(wq); 3697 call_rcu(&wq->rcu, rcu_free_wq); 3698 } 3699 } 3700 3701 /** 3702 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3703 * @pwq: target pool_workqueue 3704 * 3705 * If @pwq isn't freezing, set @pwq->max_active to the associated 3706 * workqueue's saved_max_active and activate delayed work items 3707 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3708 */ 3709 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3710 { 3711 struct workqueue_struct *wq = pwq->wq; 3712 bool freezable = wq->flags & WQ_FREEZABLE; 3713 unsigned long flags; 3714 3715 /* for @wq->saved_max_active */ 3716 lockdep_assert_held(&wq->mutex); 3717 3718 /* fast exit for non-freezable wqs */ 3719 if (!freezable && pwq->max_active == wq->saved_max_active) 3720 return; 3721 3722 /* this function can be called during early boot w/ irq disabled */ 3723 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 3724 3725 /* 3726 * During [un]freezing, the caller is responsible for ensuring that 3727 * this function is called at least once after @workqueue_freezing 3728 * is updated and visible. 3729 */ 3730 if (!freezable || !workqueue_freezing) { 3731 pwq->max_active = wq->saved_max_active; 3732 3733 while (!list_empty(&pwq->delayed_works) && 3734 pwq->nr_active < pwq->max_active) 3735 pwq_activate_first_delayed(pwq); 3736 3737 /* 3738 * Need to kick a worker after thawed or an unbound wq's 3739 * max_active is bumped. It's a slow path. Do it always. 3740 */ 3741 wake_up_worker(pwq->pool); 3742 } else { 3743 pwq->max_active = 0; 3744 } 3745 3746 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 3747 } 3748 3749 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3750 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3751 struct worker_pool *pool) 3752 { 3753 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3754 3755 memset(pwq, 0, sizeof(*pwq)); 3756 3757 pwq->pool = pool; 3758 pwq->wq = wq; 3759 pwq->flush_color = -1; 3760 pwq->refcnt = 1; 3761 INIT_LIST_HEAD(&pwq->delayed_works); 3762 INIT_LIST_HEAD(&pwq->pwqs_node); 3763 INIT_LIST_HEAD(&pwq->mayday_node); 3764 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3765 } 3766 3767 /* sync @pwq with the current state of its associated wq and link it */ 3768 static void link_pwq(struct pool_workqueue *pwq) 3769 { 3770 struct workqueue_struct *wq = pwq->wq; 3771 3772 lockdep_assert_held(&wq->mutex); 3773 3774 /* may be called multiple times, ignore if already linked */ 3775 if (!list_empty(&pwq->pwqs_node)) 3776 return; 3777 3778 /* set the matching work_color */ 3779 pwq->work_color = wq->work_color; 3780 3781 /* sync max_active to the current setting */ 3782 pwq_adjust_max_active(pwq); 3783 3784 /* link in @pwq */ 3785 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3786 } 3787 3788 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3789 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3790 const struct workqueue_attrs *attrs) 3791 { 3792 struct worker_pool *pool; 3793 struct pool_workqueue *pwq; 3794 3795 lockdep_assert_held(&wq_pool_mutex); 3796 3797 pool = get_unbound_pool(attrs); 3798 if (!pool) 3799 return NULL; 3800 3801 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3802 if (!pwq) { 3803 put_unbound_pool(pool); 3804 return NULL; 3805 } 3806 3807 init_pwq(pwq, wq, pool); 3808 return pwq; 3809 } 3810 3811 /** 3812 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3813 * @attrs: the wq_attrs of the default pwq of the target workqueue 3814 * @node: the target NUMA node 3815 * @cpu_going_down: if >= 0, the CPU to consider as offline 3816 * @cpumask: outarg, the resulting cpumask 3817 * 3818 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3819 * @cpu_going_down is >= 0, that cpu is considered offline during 3820 * calculation. The result is stored in @cpumask. 3821 * 3822 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3823 * enabled and @node has online CPUs requested by @attrs, the returned 3824 * cpumask is the intersection of the possible CPUs of @node and 3825 * @attrs->cpumask. 3826 * 3827 * The caller is responsible for ensuring that the cpumask of @node stays 3828 * stable. 3829 * 3830 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3831 * %false if equal. 3832 */ 3833 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3834 int cpu_going_down, cpumask_t *cpumask) 3835 { 3836 if (!wq_numa_enabled || attrs->no_numa) 3837 goto use_dfl; 3838 3839 /* does @node have any online CPUs @attrs wants? */ 3840 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3841 if (cpu_going_down >= 0) 3842 cpumask_clear_cpu(cpu_going_down, cpumask); 3843 3844 if (cpumask_empty(cpumask)) 3845 goto use_dfl; 3846 3847 /* yeap, return possible CPUs in @node that @attrs wants */ 3848 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3849 3850 if (cpumask_empty(cpumask)) { 3851 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3852 "possible intersect\n"); 3853 return false; 3854 } 3855 3856 return !cpumask_equal(cpumask, attrs->cpumask); 3857 3858 use_dfl: 3859 cpumask_copy(cpumask, attrs->cpumask); 3860 return false; 3861 } 3862 3863 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3864 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3865 int node, 3866 struct pool_workqueue *pwq) 3867 { 3868 struct pool_workqueue *old_pwq; 3869 3870 lockdep_assert_held(&wq_pool_mutex); 3871 lockdep_assert_held(&wq->mutex); 3872 3873 /* link_pwq() can handle duplicate calls */ 3874 link_pwq(pwq); 3875 3876 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3877 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3878 return old_pwq; 3879 } 3880 3881 /* context to store the prepared attrs & pwqs before applying */ 3882 struct apply_wqattrs_ctx { 3883 struct workqueue_struct *wq; /* target workqueue */ 3884 struct workqueue_attrs *attrs; /* attrs to apply */ 3885 struct list_head list; /* queued for batching commit */ 3886 struct pool_workqueue *dfl_pwq; 3887 struct pool_workqueue *pwq_tbl[]; 3888 }; 3889 3890 /* free the resources after success or abort */ 3891 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3892 { 3893 if (ctx) { 3894 int node; 3895 3896 for_each_node(node) 3897 put_pwq_unlocked(ctx->pwq_tbl[node]); 3898 put_pwq_unlocked(ctx->dfl_pwq); 3899 3900 free_workqueue_attrs(ctx->attrs); 3901 3902 kfree(ctx); 3903 } 3904 } 3905 3906 /* allocate the attrs and pwqs for later installation */ 3907 static struct apply_wqattrs_ctx * 3908 apply_wqattrs_prepare(struct workqueue_struct *wq, 3909 const struct workqueue_attrs *attrs) 3910 { 3911 struct apply_wqattrs_ctx *ctx; 3912 struct workqueue_attrs *new_attrs, *tmp_attrs; 3913 int node; 3914 3915 lockdep_assert_held(&wq_pool_mutex); 3916 3917 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3918 3919 new_attrs = alloc_workqueue_attrs(); 3920 tmp_attrs = alloc_workqueue_attrs(); 3921 if (!ctx || !new_attrs || !tmp_attrs) 3922 goto out_free; 3923 3924 /* 3925 * Calculate the attrs of the default pwq. 3926 * If the user configured cpumask doesn't overlap with the 3927 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3928 */ 3929 copy_workqueue_attrs(new_attrs, attrs); 3930 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3931 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3932 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3933 3934 /* 3935 * We may create multiple pwqs with differing cpumasks. Make a 3936 * copy of @new_attrs which will be modified and used to obtain 3937 * pools. 3938 */ 3939 copy_workqueue_attrs(tmp_attrs, new_attrs); 3940 3941 /* 3942 * If something goes wrong during CPU up/down, we'll fall back to 3943 * the default pwq covering whole @attrs->cpumask. Always create 3944 * it even if we don't use it immediately. 3945 */ 3946 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3947 if (!ctx->dfl_pwq) 3948 goto out_free; 3949 3950 for_each_node(node) { 3951 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3952 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3953 if (!ctx->pwq_tbl[node]) 3954 goto out_free; 3955 } else { 3956 ctx->dfl_pwq->refcnt++; 3957 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3958 } 3959 } 3960 3961 /* save the user configured attrs and sanitize it. */ 3962 copy_workqueue_attrs(new_attrs, attrs); 3963 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3964 ctx->attrs = new_attrs; 3965 3966 ctx->wq = wq; 3967 free_workqueue_attrs(tmp_attrs); 3968 return ctx; 3969 3970 out_free: 3971 free_workqueue_attrs(tmp_attrs); 3972 free_workqueue_attrs(new_attrs); 3973 apply_wqattrs_cleanup(ctx); 3974 return NULL; 3975 } 3976 3977 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3978 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3979 { 3980 int node; 3981 3982 /* all pwqs have been created successfully, let's install'em */ 3983 mutex_lock(&ctx->wq->mutex); 3984 3985 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3986 3987 /* save the previous pwq and install the new one */ 3988 for_each_node(node) 3989 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3990 ctx->pwq_tbl[node]); 3991 3992 /* @dfl_pwq might not have been used, ensure it's linked */ 3993 link_pwq(ctx->dfl_pwq); 3994 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3995 3996 mutex_unlock(&ctx->wq->mutex); 3997 } 3998 3999 static void apply_wqattrs_lock(void) 4000 { 4001 /* CPUs should stay stable across pwq creations and installations */ 4002 get_online_cpus(); 4003 mutex_lock(&wq_pool_mutex); 4004 } 4005 4006 static void apply_wqattrs_unlock(void) 4007 { 4008 mutex_unlock(&wq_pool_mutex); 4009 put_online_cpus(); 4010 } 4011 4012 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4013 const struct workqueue_attrs *attrs) 4014 { 4015 struct apply_wqattrs_ctx *ctx; 4016 4017 /* only unbound workqueues can change attributes */ 4018 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4019 return -EINVAL; 4020 4021 /* creating multiple pwqs breaks ordering guarantee */ 4022 if (!list_empty(&wq->pwqs)) { 4023 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4024 return -EINVAL; 4025 4026 wq->flags &= ~__WQ_ORDERED; 4027 } 4028 4029 ctx = apply_wqattrs_prepare(wq, attrs); 4030 if (!ctx) 4031 return -ENOMEM; 4032 4033 /* the ctx has been prepared successfully, let's commit it */ 4034 apply_wqattrs_commit(ctx); 4035 apply_wqattrs_cleanup(ctx); 4036 4037 return 0; 4038 } 4039 4040 /** 4041 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4042 * @wq: the target workqueue 4043 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4044 * 4045 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4046 * machines, this function maps a separate pwq to each NUMA node with 4047 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4048 * NUMA node it was issued on. Older pwqs are released as in-flight work 4049 * items finish. Note that a work item which repeatedly requeues itself 4050 * back-to-back will stay on its current pwq. 4051 * 4052 * Performs GFP_KERNEL allocations. 4053 * 4054 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus(). 4055 * 4056 * Return: 0 on success and -errno on failure. 4057 */ 4058 int apply_workqueue_attrs(struct workqueue_struct *wq, 4059 const struct workqueue_attrs *attrs) 4060 { 4061 int ret; 4062 4063 lockdep_assert_cpus_held(); 4064 4065 mutex_lock(&wq_pool_mutex); 4066 ret = apply_workqueue_attrs_locked(wq, attrs); 4067 mutex_unlock(&wq_pool_mutex); 4068 4069 return ret; 4070 } 4071 4072 /** 4073 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4074 * @wq: the target workqueue 4075 * @cpu: the CPU coming up or going down 4076 * @online: whether @cpu is coming up or going down 4077 * 4078 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4079 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4080 * @wq accordingly. 4081 * 4082 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4083 * falls back to @wq->dfl_pwq which may not be optimal but is always 4084 * correct. 4085 * 4086 * Note that when the last allowed CPU of a NUMA node goes offline for a 4087 * workqueue with a cpumask spanning multiple nodes, the workers which were 4088 * already executing the work items for the workqueue will lose their CPU 4089 * affinity and may execute on any CPU. This is similar to how per-cpu 4090 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4091 * affinity, it's the user's responsibility to flush the work item from 4092 * CPU_DOWN_PREPARE. 4093 */ 4094 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4095 bool online) 4096 { 4097 int node = cpu_to_node(cpu); 4098 int cpu_off = online ? -1 : cpu; 4099 struct pool_workqueue *old_pwq = NULL, *pwq; 4100 struct workqueue_attrs *target_attrs; 4101 cpumask_t *cpumask; 4102 4103 lockdep_assert_held(&wq_pool_mutex); 4104 4105 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4106 wq->unbound_attrs->no_numa) 4107 return; 4108 4109 /* 4110 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4111 * Let's use a preallocated one. The following buf is protected by 4112 * CPU hotplug exclusion. 4113 */ 4114 target_attrs = wq_update_unbound_numa_attrs_buf; 4115 cpumask = target_attrs->cpumask; 4116 4117 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4118 pwq = unbound_pwq_by_node(wq, node); 4119 4120 /* 4121 * Let's determine what needs to be done. If the target cpumask is 4122 * different from the default pwq's, we need to compare it to @pwq's 4123 * and create a new one if they don't match. If the target cpumask 4124 * equals the default pwq's, the default pwq should be used. 4125 */ 4126 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4127 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4128 return; 4129 } else { 4130 goto use_dfl_pwq; 4131 } 4132 4133 /* create a new pwq */ 4134 pwq = alloc_unbound_pwq(wq, target_attrs); 4135 if (!pwq) { 4136 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4137 wq->name); 4138 goto use_dfl_pwq; 4139 } 4140 4141 /* Install the new pwq. */ 4142 mutex_lock(&wq->mutex); 4143 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4144 goto out_unlock; 4145 4146 use_dfl_pwq: 4147 mutex_lock(&wq->mutex); 4148 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); 4149 get_pwq(wq->dfl_pwq); 4150 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4151 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4152 out_unlock: 4153 mutex_unlock(&wq->mutex); 4154 put_pwq_unlocked(old_pwq); 4155 } 4156 4157 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4158 { 4159 bool highpri = wq->flags & WQ_HIGHPRI; 4160 int cpu, ret; 4161 4162 if (!(wq->flags & WQ_UNBOUND)) { 4163 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4164 if (!wq->cpu_pwqs) 4165 return -ENOMEM; 4166 4167 for_each_possible_cpu(cpu) { 4168 struct pool_workqueue *pwq = 4169 per_cpu_ptr(wq->cpu_pwqs, cpu); 4170 struct worker_pool *cpu_pools = 4171 per_cpu(cpu_worker_pools, cpu); 4172 4173 init_pwq(pwq, wq, &cpu_pools[highpri]); 4174 4175 mutex_lock(&wq->mutex); 4176 link_pwq(pwq); 4177 mutex_unlock(&wq->mutex); 4178 } 4179 return 0; 4180 } 4181 4182 get_online_cpus(); 4183 if (wq->flags & __WQ_ORDERED) { 4184 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4185 /* there should only be single pwq for ordering guarantee */ 4186 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4187 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4188 "ordering guarantee broken for workqueue %s\n", wq->name); 4189 } else { 4190 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4191 } 4192 put_online_cpus(); 4193 4194 return ret; 4195 } 4196 4197 static int wq_clamp_max_active(int max_active, unsigned int flags, 4198 const char *name) 4199 { 4200 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4201 4202 if (max_active < 1 || max_active > lim) 4203 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4204 max_active, name, 1, lim); 4205 4206 return clamp_val(max_active, 1, lim); 4207 } 4208 4209 /* 4210 * Workqueues which may be used during memory reclaim should have a rescuer 4211 * to guarantee forward progress. 4212 */ 4213 static int init_rescuer(struct workqueue_struct *wq) 4214 { 4215 struct worker *rescuer; 4216 int ret; 4217 4218 if (!(wq->flags & WQ_MEM_RECLAIM)) 4219 return 0; 4220 4221 rescuer = alloc_worker(NUMA_NO_NODE); 4222 if (!rescuer) 4223 return -ENOMEM; 4224 4225 rescuer->rescue_wq = wq; 4226 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4227 if (IS_ERR(rescuer->task)) { 4228 ret = PTR_ERR(rescuer->task); 4229 kfree(rescuer); 4230 return ret; 4231 } 4232 4233 wq->rescuer = rescuer; 4234 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4235 wake_up_process(rescuer->task); 4236 4237 return 0; 4238 } 4239 4240 __printf(1, 4) 4241 struct workqueue_struct *alloc_workqueue(const char *fmt, 4242 unsigned int flags, 4243 int max_active, ...) 4244 { 4245 size_t tbl_size = 0; 4246 va_list args; 4247 struct workqueue_struct *wq; 4248 struct pool_workqueue *pwq; 4249 4250 /* 4251 * Unbound && max_active == 1 used to imply ordered, which is no 4252 * longer the case on NUMA machines due to per-node pools. While 4253 * alloc_ordered_workqueue() is the right way to create an ordered 4254 * workqueue, keep the previous behavior to avoid subtle breakages 4255 * on NUMA. 4256 */ 4257 if ((flags & WQ_UNBOUND) && max_active == 1) 4258 flags |= __WQ_ORDERED; 4259 4260 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4261 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4262 flags |= WQ_UNBOUND; 4263 4264 /* allocate wq and format name */ 4265 if (flags & WQ_UNBOUND) 4266 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4267 4268 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4269 if (!wq) 4270 return NULL; 4271 4272 if (flags & WQ_UNBOUND) { 4273 wq->unbound_attrs = alloc_workqueue_attrs(); 4274 if (!wq->unbound_attrs) 4275 goto err_free_wq; 4276 } 4277 4278 va_start(args, max_active); 4279 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4280 va_end(args); 4281 4282 max_active = max_active ?: WQ_DFL_ACTIVE; 4283 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4284 4285 /* init wq */ 4286 wq->flags = flags; 4287 wq->saved_max_active = max_active; 4288 mutex_init(&wq->mutex); 4289 atomic_set(&wq->nr_pwqs_to_flush, 0); 4290 INIT_LIST_HEAD(&wq->pwqs); 4291 INIT_LIST_HEAD(&wq->flusher_queue); 4292 INIT_LIST_HEAD(&wq->flusher_overflow); 4293 INIT_LIST_HEAD(&wq->maydays); 4294 4295 wq_init_lockdep(wq); 4296 INIT_LIST_HEAD(&wq->list); 4297 4298 if (alloc_and_link_pwqs(wq) < 0) 4299 goto err_unreg_lockdep; 4300 4301 if (wq_online && init_rescuer(wq) < 0) 4302 goto err_destroy; 4303 4304 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4305 goto err_destroy; 4306 4307 /* 4308 * wq_pool_mutex protects global freeze state and workqueues list. 4309 * Grab it, adjust max_active and add the new @wq to workqueues 4310 * list. 4311 */ 4312 mutex_lock(&wq_pool_mutex); 4313 4314 mutex_lock(&wq->mutex); 4315 for_each_pwq(pwq, wq) 4316 pwq_adjust_max_active(pwq); 4317 mutex_unlock(&wq->mutex); 4318 4319 list_add_tail_rcu(&wq->list, &workqueues); 4320 4321 mutex_unlock(&wq_pool_mutex); 4322 4323 return wq; 4324 4325 err_unreg_lockdep: 4326 wq_unregister_lockdep(wq); 4327 wq_free_lockdep(wq); 4328 err_free_wq: 4329 free_workqueue_attrs(wq->unbound_attrs); 4330 kfree(wq); 4331 return NULL; 4332 err_destroy: 4333 destroy_workqueue(wq); 4334 return NULL; 4335 } 4336 EXPORT_SYMBOL_GPL(alloc_workqueue); 4337 4338 static bool pwq_busy(struct pool_workqueue *pwq) 4339 { 4340 int i; 4341 4342 for (i = 0; i < WORK_NR_COLORS; i++) 4343 if (pwq->nr_in_flight[i]) 4344 return true; 4345 4346 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4347 return true; 4348 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4349 return true; 4350 4351 return false; 4352 } 4353 4354 /** 4355 * destroy_workqueue - safely terminate a workqueue 4356 * @wq: target workqueue 4357 * 4358 * Safely destroy a workqueue. All work currently pending will be done first. 4359 */ 4360 void destroy_workqueue(struct workqueue_struct *wq) 4361 { 4362 struct pool_workqueue *pwq; 4363 int node; 4364 4365 /* 4366 * Remove it from sysfs first so that sanity check failure doesn't 4367 * lead to sysfs name conflicts. 4368 */ 4369 workqueue_sysfs_unregister(wq); 4370 4371 /* drain it before proceeding with destruction */ 4372 drain_workqueue(wq); 4373 4374 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4375 if (wq->rescuer) { 4376 struct worker *rescuer = wq->rescuer; 4377 4378 /* this prevents new queueing */ 4379 raw_spin_lock_irq(&wq_mayday_lock); 4380 wq->rescuer = NULL; 4381 raw_spin_unlock_irq(&wq_mayday_lock); 4382 4383 /* rescuer will empty maydays list before exiting */ 4384 kthread_stop(rescuer->task); 4385 kfree(rescuer); 4386 } 4387 4388 /* 4389 * Sanity checks - grab all the locks so that we wait for all 4390 * in-flight operations which may do put_pwq(). 4391 */ 4392 mutex_lock(&wq_pool_mutex); 4393 mutex_lock(&wq->mutex); 4394 for_each_pwq(pwq, wq) { 4395 raw_spin_lock_irq(&pwq->pool->lock); 4396 if (WARN_ON(pwq_busy(pwq))) { 4397 pr_warn("%s: %s has the following busy pwq\n", 4398 __func__, wq->name); 4399 show_pwq(pwq); 4400 raw_spin_unlock_irq(&pwq->pool->lock); 4401 mutex_unlock(&wq->mutex); 4402 mutex_unlock(&wq_pool_mutex); 4403 show_workqueue_state(); 4404 return; 4405 } 4406 raw_spin_unlock_irq(&pwq->pool->lock); 4407 } 4408 mutex_unlock(&wq->mutex); 4409 4410 /* 4411 * wq list is used to freeze wq, remove from list after 4412 * flushing is complete in case freeze races us. 4413 */ 4414 list_del_rcu(&wq->list); 4415 mutex_unlock(&wq_pool_mutex); 4416 4417 if (!(wq->flags & WQ_UNBOUND)) { 4418 wq_unregister_lockdep(wq); 4419 /* 4420 * The base ref is never dropped on per-cpu pwqs. Directly 4421 * schedule RCU free. 4422 */ 4423 call_rcu(&wq->rcu, rcu_free_wq); 4424 } else { 4425 /* 4426 * We're the sole accessor of @wq at this point. Directly 4427 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4428 * @wq will be freed when the last pwq is released. 4429 */ 4430 for_each_node(node) { 4431 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4432 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4433 put_pwq_unlocked(pwq); 4434 } 4435 4436 /* 4437 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4438 * put. Don't access it afterwards. 4439 */ 4440 pwq = wq->dfl_pwq; 4441 wq->dfl_pwq = NULL; 4442 put_pwq_unlocked(pwq); 4443 } 4444 } 4445 EXPORT_SYMBOL_GPL(destroy_workqueue); 4446 4447 /** 4448 * workqueue_set_max_active - adjust max_active of a workqueue 4449 * @wq: target workqueue 4450 * @max_active: new max_active value. 4451 * 4452 * Set max_active of @wq to @max_active. 4453 * 4454 * CONTEXT: 4455 * Don't call from IRQ context. 4456 */ 4457 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4458 { 4459 struct pool_workqueue *pwq; 4460 4461 /* disallow meddling with max_active for ordered workqueues */ 4462 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4463 return; 4464 4465 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4466 4467 mutex_lock(&wq->mutex); 4468 4469 wq->flags &= ~__WQ_ORDERED; 4470 wq->saved_max_active = max_active; 4471 4472 for_each_pwq(pwq, wq) 4473 pwq_adjust_max_active(pwq); 4474 4475 mutex_unlock(&wq->mutex); 4476 } 4477 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4478 4479 /** 4480 * current_work - retrieve %current task's work struct 4481 * 4482 * Determine if %current task is a workqueue worker and what it's working on. 4483 * Useful to find out the context that the %current task is running in. 4484 * 4485 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4486 */ 4487 struct work_struct *current_work(void) 4488 { 4489 struct worker *worker = current_wq_worker(); 4490 4491 return worker ? worker->current_work : NULL; 4492 } 4493 EXPORT_SYMBOL(current_work); 4494 4495 /** 4496 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4497 * 4498 * Determine whether %current is a workqueue rescuer. Can be used from 4499 * work functions to determine whether it's being run off the rescuer task. 4500 * 4501 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4502 */ 4503 bool current_is_workqueue_rescuer(void) 4504 { 4505 struct worker *worker = current_wq_worker(); 4506 4507 return worker && worker->rescue_wq; 4508 } 4509 4510 /** 4511 * workqueue_congested - test whether a workqueue is congested 4512 * @cpu: CPU in question 4513 * @wq: target workqueue 4514 * 4515 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4516 * no synchronization around this function and the test result is 4517 * unreliable and only useful as advisory hints or for debugging. 4518 * 4519 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4520 * Note that both per-cpu and unbound workqueues may be associated with 4521 * multiple pool_workqueues which have separate congested states. A 4522 * workqueue being congested on one CPU doesn't mean the workqueue is also 4523 * contested on other CPUs / NUMA nodes. 4524 * 4525 * Return: 4526 * %true if congested, %false otherwise. 4527 */ 4528 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4529 { 4530 struct pool_workqueue *pwq; 4531 bool ret; 4532 4533 rcu_read_lock(); 4534 preempt_disable(); 4535 4536 if (cpu == WORK_CPU_UNBOUND) 4537 cpu = smp_processor_id(); 4538 4539 if (!(wq->flags & WQ_UNBOUND)) 4540 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4541 else 4542 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4543 4544 ret = !list_empty(&pwq->delayed_works); 4545 preempt_enable(); 4546 rcu_read_unlock(); 4547 4548 return ret; 4549 } 4550 EXPORT_SYMBOL_GPL(workqueue_congested); 4551 4552 /** 4553 * work_busy - test whether a work is currently pending or running 4554 * @work: the work to be tested 4555 * 4556 * Test whether @work is currently pending or running. There is no 4557 * synchronization around this function and the test result is 4558 * unreliable and only useful as advisory hints or for debugging. 4559 * 4560 * Return: 4561 * OR'd bitmask of WORK_BUSY_* bits. 4562 */ 4563 unsigned int work_busy(struct work_struct *work) 4564 { 4565 struct worker_pool *pool; 4566 unsigned long flags; 4567 unsigned int ret = 0; 4568 4569 if (work_pending(work)) 4570 ret |= WORK_BUSY_PENDING; 4571 4572 rcu_read_lock(); 4573 pool = get_work_pool(work); 4574 if (pool) { 4575 raw_spin_lock_irqsave(&pool->lock, flags); 4576 if (find_worker_executing_work(pool, work)) 4577 ret |= WORK_BUSY_RUNNING; 4578 raw_spin_unlock_irqrestore(&pool->lock, flags); 4579 } 4580 rcu_read_unlock(); 4581 4582 return ret; 4583 } 4584 EXPORT_SYMBOL_GPL(work_busy); 4585 4586 /** 4587 * set_worker_desc - set description for the current work item 4588 * @fmt: printf-style format string 4589 * @...: arguments for the format string 4590 * 4591 * This function can be called by a running work function to describe what 4592 * the work item is about. If the worker task gets dumped, this 4593 * information will be printed out together to help debugging. The 4594 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4595 */ 4596 void set_worker_desc(const char *fmt, ...) 4597 { 4598 struct worker *worker = current_wq_worker(); 4599 va_list args; 4600 4601 if (worker) { 4602 va_start(args, fmt); 4603 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4604 va_end(args); 4605 } 4606 } 4607 EXPORT_SYMBOL_GPL(set_worker_desc); 4608 4609 /** 4610 * print_worker_info - print out worker information and description 4611 * @log_lvl: the log level to use when printing 4612 * @task: target task 4613 * 4614 * If @task is a worker and currently executing a work item, print out the 4615 * name of the workqueue being serviced and worker description set with 4616 * set_worker_desc() by the currently executing work item. 4617 * 4618 * This function can be safely called on any task as long as the 4619 * task_struct itself is accessible. While safe, this function isn't 4620 * synchronized and may print out mixups or garbages of limited length. 4621 */ 4622 void print_worker_info(const char *log_lvl, struct task_struct *task) 4623 { 4624 work_func_t *fn = NULL; 4625 char name[WQ_NAME_LEN] = { }; 4626 char desc[WORKER_DESC_LEN] = { }; 4627 struct pool_workqueue *pwq = NULL; 4628 struct workqueue_struct *wq = NULL; 4629 struct worker *worker; 4630 4631 if (!(task->flags & PF_WQ_WORKER)) 4632 return; 4633 4634 /* 4635 * This function is called without any synchronization and @task 4636 * could be in any state. Be careful with dereferences. 4637 */ 4638 worker = kthread_probe_data(task); 4639 4640 /* 4641 * Carefully copy the associated workqueue's workfn, name and desc. 4642 * Keep the original last '\0' in case the original is garbage. 4643 */ 4644 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 4645 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 4646 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 4647 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 4648 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 4649 4650 if (fn || name[0] || desc[0]) { 4651 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4652 if (strcmp(name, desc)) 4653 pr_cont(" (%s)", desc); 4654 pr_cont("\n"); 4655 } 4656 } 4657 4658 static void pr_cont_pool_info(struct worker_pool *pool) 4659 { 4660 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4661 if (pool->node != NUMA_NO_NODE) 4662 pr_cont(" node=%d", pool->node); 4663 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4664 } 4665 4666 static void pr_cont_work(bool comma, struct work_struct *work) 4667 { 4668 if (work->func == wq_barrier_func) { 4669 struct wq_barrier *barr; 4670 4671 barr = container_of(work, struct wq_barrier, work); 4672 4673 pr_cont("%s BAR(%d)", comma ? "," : "", 4674 task_pid_nr(barr->task)); 4675 } else { 4676 pr_cont("%s %ps", comma ? "," : "", work->func); 4677 } 4678 } 4679 4680 static void show_pwq(struct pool_workqueue *pwq) 4681 { 4682 struct worker_pool *pool = pwq->pool; 4683 struct work_struct *work; 4684 struct worker *worker; 4685 bool has_in_flight = false, has_pending = false; 4686 int bkt; 4687 4688 pr_info(" pwq %d:", pool->id); 4689 pr_cont_pool_info(pool); 4690 4691 pr_cont(" active=%d/%d refcnt=%d%s\n", 4692 pwq->nr_active, pwq->max_active, pwq->refcnt, 4693 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4694 4695 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4696 if (worker->current_pwq == pwq) { 4697 has_in_flight = true; 4698 break; 4699 } 4700 } 4701 if (has_in_flight) { 4702 bool comma = false; 4703 4704 pr_info(" in-flight:"); 4705 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4706 if (worker->current_pwq != pwq) 4707 continue; 4708 4709 pr_cont("%s %d%s:%ps", comma ? "," : "", 4710 task_pid_nr(worker->task), 4711 worker->rescue_wq ? "(RESCUER)" : "", 4712 worker->current_func); 4713 list_for_each_entry(work, &worker->scheduled, entry) 4714 pr_cont_work(false, work); 4715 comma = true; 4716 } 4717 pr_cont("\n"); 4718 } 4719 4720 list_for_each_entry(work, &pool->worklist, entry) { 4721 if (get_work_pwq(work) == pwq) { 4722 has_pending = true; 4723 break; 4724 } 4725 } 4726 if (has_pending) { 4727 bool comma = false; 4728 4729 pr_info(" pending:"); 4730 list_for_each_entry(work, &pool->worklist, entry) { 4731 if (get_work_pwq(work) != pwq) 4732 continue; 4733 4734 pr_cont_work(comma, work); 4735 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4736 } 4737 pr_cont("\n"); 4738 } 4739 4740 if (!list_empty(&pwq->delayed_works)) { 4741 bool comma = false; 4742 4743 pr_info(" delayed:"); 4744 list_for_each_entry(work, &pwq->delayed_works, entry) { 4745 pr_cont_work(comma, work); 4746 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4747 } 4748 pr_cont("\n"); 4749 } 4750 } 4751 4752 /** 4753 * show_workqueue_state - dump workqueue state 4754 * 4755 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4756 * all busy workqueues and pools. 4757 */ 4758 void show_workqueue_state(void) 4759 { 4760 struct workqueue_struct *wq; 4761 struct worker_pool *pool; 4762 unsigned long flags; 4763 int pi; 4764 4765 rcu_read_lock(); 4766 4767 pr_info("Showing busy workqueues and worker pools:\n"); 4768 4769 list_for_each_entry_rcu(wq, &workqueues, list) { 4770 struct pool_workqueue *pwq; 4771 bool idle = true; 4772 4773 for_each_pwq(pwq, wq) { 4774 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4775 idle = false; 4776 break; 4777 } 4778 } 4779 if (idle) 4780 continue; 4781 4782 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4783 4784 for_each_pwq(pwq, wq) { 4785 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 4786 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4787 show_pwq(pwq); 4788 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 4789 /* 4790 * We could be printing a lot from atomic context, e.g. 4791 * sysrq-t -> show_workqueue_state(). Avoid triggering 4792 * hard lockup. 4793 */ 4794 touch_nmi_watchdog(); 4795 } 4796 } 4797 4798 for_each_pool(pool, pi) { 4799 struct worker *worker; 4800 bool first = true; 4801 4802 raw_spin_lock_irqsave(&pool->lock, flags); 4803 if (pool->nr_workers == pool->nr_idle) 4804 goto next_pool; 4805 4806 pr_info("pool %d:", pool->id); 4807 pr_cont_pool_info(pool); 4808 pr_cont(" hung=%us workers=%d", 4809 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4810 pool->nr_workers); 4811 if (pool->manager) 4812 pr_cont(" manager: %d", 4813 task_pid_nr(pool->manager->task)); 4814 list_for_each_entry(worker, &pool->idle_list, entry) { 4815 pr_cont(" %s%d", first ? "idle: " : "", 4816 task_pid_nr(worker->task)); 4817 first = false; 4818 } 4819 pr_cont("\n"); 4820 next_pool: 4821 raw_spin_unlock_irqrestore(&pool->lock, flags); 4822 /* 4823 * We could be printing a lot from atomic context, e.g. 4824 * sysrq-t -> show_workqueue_state(). Avoid triggering 4825 * hard lockup. 4826 */ 4827 touch_nmi_watchdog(); 4828 } 4829 4830 rcu_read_unlock(); 4831 } 4832 4833 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4834 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4835 { 4836 int off; 4837 4838 /* always show the actual comm */ 4839 off = strscpy(buf, task->comm, size); 4840 if (off < 0) 4841 return; 4842 4843 /* stabilize PF_WQ_WORKER and worker pool association */ 4844 mutex_lock(&wq_pool_attach_mutex); 4845 4846 if (task->flags & PF_WQ_WORKER) { 4847 struct worker *worker = kthread_data(task); 4848 struct worker_pool *pool = worker->pool; 4849 4850 if (pool) { 4851 raw_spin_lock_irq(&pool->lock); 4852 /* 4853 * ->desc tracks information (wq name or 4854 * set_worker_desc()) for the latest execution. If 4855 * current, prepend '+', otherwise '-'. 4856 */ 4857 if (worker->desc[0] != '\0') { 4858 if (worker->current_work) 4859 scnprintf(buf + off, size - off, "+%s", 4860 worker->desc); 4861 else 4862 scnprintf(buf + off, size - off, "-%s", 4863 worker->desc); 4864 } 4865 raw_spin_unlock_irq(&pool->lock); 4866 } 4867 } 4868 4869 mutex_unlock(&wq_pool_attach_mutex); 4870 } 4871 4872 #ifdef CONFIG_SMP 4873 4874 /* 4875 * CPU hotplug. 4876 * 4877 * There are two challenges in supporting CPU hotplug. Firstly, there 4878 * are a lot of assumptions on strong associations among work, pwq and 4879 * pool which make migrating pending and scheduled works very 4880 * difficult to implement without impacting hot paths. Secondly, 4881 * worker pools serve mix of short, long and very long running works making 4882 * blocked draining impractical. 4883 * 4884 * This is solved by allowing the pools to be disassociated from the CPU 4885 * running as an unbound one and allowing it to be reattached later if the 4886 * cpu comes back online. 4887 */ 4888 4889 static void unbind_workers(int cpu) 4890 { 4891 struct worker_pool *pool; 4892 struct worker *worker; 4893 4894 for_each_cpu_worker_pool(pool, cpu) { 4895 mutex_lock(&wq_pool_attach_mutex); 4896 raw_spin_lock_irq(&pool->lock); 4897 4898 /* 4899 * We've blocked all attach/detach operations. Make all workers 4900 * unbound and set DISASSOCIATED. Before this, all workers 4901 * except for the ones which are still executing works from 4902 * before the last CPU down must be on the cpu. After 4903 * this, they may become diasporas. 4904 */ 4905 for_each_pool_worker(worker, pool) 4906 worker->flags |= WORKER_UNBOUND; 4907 4908 pool->flags |= POOL_DISASSOCIATED; 4909 4910 raw_spin_unlock_irq(&pool->lock); 4911 mutex_unlock(&wq_pool_attach_mutex); 4912 4913 /* 4914 * Call schedule() so that we cross rq->lock and thus can 4915 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4916 * This is necessary as scheduler callbacks may be invoked 4917 * from other cpus. 4918 */ 4919 schedule(); 4920 4921 /* 4922 * Sched callbacks are disabled now. Zap nr_running. 4923 * After this, nr_running stays zero and need_more_worker() 4924 * and keep_working() are always true as long as the 4925 * worklist is not empty. This pool now behaves as an 4926 * unbound (in terms of concurrency management) pool which 4927 * are served by workers tied to the pool. 4928 */ 4929 atomic_set(&pool->nr_running, 0); 4930 4931 /* 4932 * With concurrency management just turned off, a busy 4933 * worker blocking could lead to lengthy stalls. Kick off 4934 * unbound chain execution of currently pending work items. 4935 */ 4936 raw_spin_lock_irq(&pool->lock); 4937 wake_up_worker(pool); 4938 raw_spin_unlock_irq(&pool->lock); 4939 } 4940 } 4941 4942 /** 4943 * rebind_workers - rebind all workers of a pool to the associated CPU 4944 * @pool: pool of interest 4945 * 4946 * @pool->cpu is coming online. Rebind all workers to the CPU. 4947 */ 4948 static void rebind_workers(struct worker_pool *pool) 4949 { 4950 struct worker *worker; 4951 4952 lockdep_assert_held(&wq_pool_attach_mutex); 4953 4954 /* 4955 * Restore CPU affinity of all workers. As all idle workers should 4956 * be on the run-queue of the associated CPU before any local 4957 * wake-ups for concurrency management happen, restore CPU affinity 4958 * of all workers first and then clear UNBOUND. As we're called 4959 * from CPU_ONLINE, the following shouldn't fail. 4960 */ 4961 for_each_pool_worker(worker, pool) 4962 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4963 pool->attrs->cpumask) < 0); 4964 4965 raw_spin_lock_irq(&pool->lock); 4966 4967 pool->flags &= ~POOL_DISASSOCIATED; 4968 4969 for_each_pool_worker(worker, pool) { 4970 unsigned int worker_flags = worker->flags; 4971 4972 /* 4973 * A bound idle worker should actually be on the runqueue 4974 * of the associated CPU for local wake-ups targeting it to 4975 * work. Kick all idle workers so that they migrate to the 4976 * associated CPU. Doing this in the same loop as 4977 * replacing UNBOUND with REBOUND is safe as no worker will 4978 * be bound before @pool->lock is released. 4979 */ 4980 if (worker_flags & WORKER_IDLE) 4981 wake_up_process(worker->task); 4982 4983 /* 4984 * We want to clear UNBOUND but can't directly call 4985 * worker_clr_flags() or adjust nr_running. Atomically 4986 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4987 * @worker will clear REBOUND using worker_clr_flags() when 4988 * it initiates the next execution cycle thus restoring 4989 * concurrency management. Note that when or whether 4990 * @worker clears REBOUND doesn't affect correctness. 4991 * 4992 * WRITE_ONCE() is necessary because @worker->flags may be 4993 * tested without holding any lock in 4994 * wq_worker_running(). Without it, NOT_RUNNING test may 4995 * fail incorrectly leading to premature concurrency 4996 * management operations. 4997 */ 4998 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4999 worker_flags |= WORKER_REBOUND; 5000 worker_flags &= ~WORKER_UNBOUND; 5001 WRITE_ONCE(worker->flags, worker_flags); 5002 } 5003 5004 raw_spin_unlock_irq(&pool->lock); 5005 } 5006 5007 /** 5008 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 5009 * @pool: unbound pool of interest 5010 * @cpu: the CPU which is coming up 5011 * 5012 * An unbound pool may end up with a cpumask which doesn't have any online 5013 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5014 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5015 * online CPU before, cpus_allowed of all its workers should be restored. 5016 */ 5017 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5018 { 5019 static cpumask_t cpumask; 5020 struct worker *worker; 5021 5022 lockdep_assert_held(&wq_pool_attach_mutex); 5023 5024 /* is @cpu allowed for @pool? */ 5025 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5026 return; 5027 5028 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5029 5030 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5031 for_each_pool_worker(worker, pool) 5032 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5033 } 5034 5035 int workqueue_prepare_cpu(unsigned int cpu) 5036 { 5037 struct worker_pool *pool; 5038 5039 for_each_cpu_worker_pool(pool, cpu) { 5040 if (pool->nr_workers) 5041 continue; 5042 if (!create_worker(pool)) 5043 return -ENOMEM; 5044 } 5045 return 0; 5046 } 5047 5048 int workqueue_online_cpu(unsigned int cpu) 5049 { 5050 struct worker_pool *pool; 5051 struct workqueue_struct *wq; 5052 int pi; 5053 5054 mutex_lock(&wq_pool_mutex); 5055 5056 for_each_pool(pool, pi) { 5057 mutex_lock(&wq_pool_attach_mutex); 5058 5059 if (pool->cpu == cpu) 5060 rebind_workers(pool); 5061 else if (pool->cpu < 0) 5062 restore_unbound_workers_cpumask(pool, cpu); 5063 5064 mutex_unlock(&wq_pool_attach_mutex); 5065 } 5066 5067 /* update NUMA affinity of unbound workqueues */ 5068 list_for_each_entry(wq, &workqueues, list) 5069 wq_update_unbound_numa(wq, cpu, true); 5070 5071 mutex_unlock(&wq_pool_mutex); 5072 return 0; 5073 } 5074 5075 int workqueue_offline_cpu(unsigned int cpu) 5076 { 5077 struct workqueue_struct *wq; 5078 5079 /* unbinding per-cpu workers should happen on the local CPU */ 5080 if (WARN_ON(cpu != smp_processor_id())) 5081 return -1; 5082 5083 unbind_workers(cpu); 5084 5085 /* update NUMA affinity of unbound workqueues */ 5086 mutex_lock(&wq_pool_mutex); 5087 list_for_each_entry(wq, &workqueues, list) 5088 wq_update_unbound_numa(wq, cpu, false); 5089 mutex_unlock(&wq_pool_mutex); 5090 5091 return 0; 5092 } 5093 5094 struct work_for_cpu { 5095 struct work_struct work; 5096 long (*fn)(void *); 5097 void *arg; 5098 long ret; 5099 }; 5100 5101 static void work_for_cpu_fn(struct work_struct *work) 5102 { 5103 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5104 5105 wfc->ret = wfc->fn(wfc->arg); 5106 } 5107 5108 /** 5109 * work_on_cpu - run a function in thread context on a particular cpu 5110 * @cpu: the cpu to run on 5111 * @fn: the function to run 5112 * @arg: the function arg 5113 * 5114 * It is up to the caller to ensure that the cpu doesn't go offline. 5115 * The caller must not hold any locks which would prevent @fn from completing. 5116 * 5117 * Return: The value @fn returns. 5118 */ 5119 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5120 { 5121 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5122 5123 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5124 schedule_work_on(cpu, &wfc.work); 5125 flush_work(&wfc.work); 5126 destroy_work_on_stack(&wfc.work); 5127 return wfc.ret; 5128 } 5129 EXPORT_SYMBOL_GPL(work_on_cpu); 5130 5131 /** 5132 * work_on_cpu_safe - run a function in thread context on a particular cpu 5133 * @cpu: the cpu to run on 5134 * @fn: the function to run 5135 * @arg: the function argument 5136 * 5137 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5138 * any locks which would prevent @fn from completing. 5139 * 5140 * Return: The value @fn returns. 5141 */ 5142 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5143 { 5144 long ret = -ENODEV; 5145 5146 get_online_cpus(); 5147 if (cpu_online(cpu)) 5148 ret = work_on_cpu(cpu, fn, arg); 5149 put_online_cpus(); 5150 return ret; 5151 } 5152 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5153 #endif /* CONFIG_SMP */ 5154 5155 #ifdef CONFIG_FREEZER 5156 5157 /** 5158 * freeze_workqueues_begin - begin freezing workqueues 5159 * 5160 * Start freezing workqueues. After this function returns, all freezable 5161 * workqueues will queue new works to their delayed_works list instead of 5162 * pool->worklist. 5163 * 5164 * CONTEXT: 5165 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5166 */ 5167 void freeze_workqueues_begin(void) 5168 { 5169 struct workqueue_struct *wq; 5170 struct pool_workqueue *pwq; 5171 5172 mutex_lock(&wq_pool_mutex); 5173 5174 WARN_ON_ONCE(workqueue_freezing); 5175 workqueue_freezing = true; 5176 5177 list_for_each_entry(wq, &workqueues, list) { 5178 mutex_lock(&wq->mutex); 5179 for_each_pwq(pwq, wq) 5180 pwq_adjust_max_active(pwq); 5181 mutex_unlock(&wq->mutex); 5182 } 5183 5184 mutex_unlock(&wq_pool_mutex); 5185 } 5186 5187 /** 5188 * freeze_workqueues_busy - are freezable workqueues still busy? 5189 * 5190 * Check whether freezing is complete. This function must be called 5191 * between freeze_workqueues_begin() and thaw_workqueues(). 5192 * 5193 * CONTEXT: 5194 * Grabs and releases wq_pool_mutex. 5195 * 5196 * Return: 5197 * %true if some freezable workqueues are still busy. %false if freezing 5198 * is complete. 5199 */ 5200 bool freeze_workqueues_busy(void) 5201 { 5202 bool busy = false; 5203 struct workqueue_struct *wq; 5204 struct pool_workqueue *pwq; 5205 5206 mutex_lock(&wq_pool_mutex); 5207 5208 WARN_ON_ONCE(!workqueue_freezing); 5209 5210 list_for_each_entry(wq, &workqueues, list) { 5211 if (!(wq->flags & WQ_FREEZABLE)) 5212 continue; 5213 /* 5214 * nr_active is monotonically decreasing. It's safe 5215 * to peek without lock. 5216 */ 5217 rcu_read_lock(); 5218 for_each_pwq(pwq, wq) { 5219 WARN_ON_ONCE(pwq->nr_active < 0); 5220 if (pwq->nr_active) { 5221 busy = true; 5222 rcu_read_unlock(); 5223 goto out_unlock; 5224 } 5225 } 5226 rcu_read_unlock(); 5227 } 5228 out_unlock: 5229 mutex_unlock(&wq_pool_mutex); 5230 return busy; 5231 } 5232 5233 /** 5234 * thaw_workqueues - thaw workqueues 5235 * 5236 * Thaw workqueues. Normal queueing is restored and all collected 5237 * frozen works are transferred to their respective pool worklists. 5238 * 5239 * CONTEXT: 5240 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5241 */ 5242 void thaw_workqueues(void) 5243 { 5244 struct workqueue_struct *wq; 5245 struct pool_workqueue *pwq; 5246 5247 mutex_lock(&wq_pool_mutex); 5248 5249 if (!workqueue_freezing) 5250 goto out_unlock; 5251 5252 workqueue_freezing = false; 5253 5254 /* restore max_active and repopulate worklist */ 5255 list_for_each_entry(wq, &workqueues, list) { 5256 mutex_lock(&wq->mutex); 5257 for_each_pwq(pwq, wq) 5258 pwq_adjust_max_active(pwq); 5259 mutex_unlock(&wq->mutex); 5260 } 5261 5262 out_unlock: 5263 mutex_unlock(&wq_pool_mutex); 5264 } 5265 #endif /* CONFIG_FREEZER */ 5266 5267 static int workqueue_apply_unbound_cpumask(void) 5268 { 5269 LIST_HEAD(ctxs); 5270 int ret = 0; 5271 struct workqueue_struct *wq; 5272 struct apply_wqattrs_ctx *ctx, *n; 5273 5274 lockdep_assert_held(&wq_pool_mutex); 5275 5276 list_for_each_entry(wq, &workqueues, list) { 5277 if (!(wq->flags & WQ_UNBOUND)) 5278 continue; 5279 /* creating multiple pwqs breaks ordering guarantee */ 5280 if (wq->flags & __WQ_ORDERED) 5281 continue; 5282 5283 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5284 if (!ctx) { 5285 ret = -ENOMEM; 5286 break; 5287 } 5288 5289 list_add_tail(&ctx->list, &ctxs); 5290 } 5291 5292 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5293 if (!ret) 5294 apply_wqattrs_commit(ctx); 5295 apply_wqattrs_cleanup(ctx); 5296 } 5297 5298 return ret; 5299 } 5300 5301 /** 5302 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5303 * @cpumask: the cpumask to set 5304 * 5305 * The low-level workqueues cpumask is a global cpumask that limits 5306 * the affinity of all unbound workqueues. This function check the @cpumask 5307 * and apply it to all unbound workqueues and updates all pwqs of them. 5308 * 5309 * Retun: 0 - Success 5310 * -EINVAL - Invalid @cpumask 5311 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5312 */ 5313 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5314 { 5315 int ret = -EINVAL; 5316 cpumask_var_t saved_cpumask; 5317 5318 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5319 return -ENOMEM; 5320 5321 /* 5322 * Not excluding isolated cpus on purpose. 5323 * If the user wishes to include them, we allow that. 5324 */ 5325 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5326 if (!cpumask_empty(cpumask)) { 5327 apply_wqattrs_lock(); 5328 5329 /* save the old wq_unbound_cpumask. */ 5330 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5331 5332 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5333 cpumask_copy(wq_unbound_cpumask, cpumask); 5334 ret = workqueue_apply_unbound_cpumask(); 5335 5336 /* restore the wq_unbound_cpumask when failed. */ 5337 if (ret < 0) 5338 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5339 5340 apply_wqattrs_unlock(); 5341 } 5342 5343 free_cpumask_var(saved_cpumask); 5344 return ret; 5345 } 5346 5347 #ifdef CONFIG_SYSFS 5348 /* 5349 * Workqueues with WQ_SYSFS flag set is visible to userland via 5350 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5351 * following attributes. 5352 * 5353 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5354 * max_active RW int : maximum number of in-flight work items 5355 * 5356 * Unbound workqueues have the following extra attributes. 5357 * 5358 * pool_ids RO int : the associated pool IDs for each node 5359 * nice RW int : nice value of the workers 5360 * cpumask RW mask : bitmask of allowed CPUs for the workers 5361 * numa RW bool : whether enable NUMA affinity 5362 */ 5363 struct wq_device { 5364 struct workqueue_struct *wq; 5365 struct device dev; 5366 }; 5367 5368 static struct workqueue_struct *dev_to_wq(struct device *dev) 5369 { 5370 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5371 5372 return wq_dev->wq; 5373 } 5374 5375 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5376 char *buf) 5377 { 5378 struct workqueue_struct *wq = dev_to_wq(dev); 5379 5380 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5381 } 5382 static DEVICE_ATTR_RO(per_cpu); 5383 5384 static ssize_t max_active_show(struct device *dev, 5385 struct device_attribute *attr, char *buf) 5386 { 5387 struct workqueue_struct *wq = dev_to_wq(dev); 5388 5389 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5390 } 5391 5392 static ssize_t max_active_store(struct device *dev, 5393 struct device_attribute *attr, const char *buf, 5394 size_t count) 5395 { 5396 struct workqueue_struct *wq = dev_to_wq(dev); 5397 int val; 5398 5399 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5400 return -EINVAL; 5401 5402 workqueue_set_max_active(wq, val); 5403 return count; 5404 } 5405 static DEVICE_ATTR_RW(max_active); 5406 5407 static struct attribute *wq_sysfs_attrs[] = { 5408 &dev_attr_per_cpu.attr, 5409 &dev_attr_max_active.attr, 5410 NULL, 5411 }; 5412 ATTRIBUTE_GROUPS(wq_sysfs); 5413 5414 static ssize_t wq_pool_ids_show(struct device *dev, 5415 struct device_attribute *attr, char *buf) 5416 { 5417 struct workqueue_struct *wq = dev_to_wq(dev); 5418 const char *delim = ""; 5419 int node, written = 0; 5420 5421 get_online_cpus(); 5422 rcu_read_lock(); 5423 for_each_node(node) { 5424 written += scnprintf(buf + written, PAGE_SIZE - written, 5425 "%s%d:%d", delim, node, 5426 unbound_pwq_by_node(wq, node)->pool->id); 5427 delim = " "; 5428 } 5429 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5430 rcu_read_unlock(); 5431 put_online_cpus(); 5432 5433 return written; 5434 } 5435 5436 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5437 char *buf) 5438 { 5439 struct workqueue_struct *wq = dev_to_wq(dev); 5440 int written; 5441 5442 mutex_lock(&wq->mutex); 5443 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5444 mutex_unlock(&wq->mutex); 5445 5446 return written; 5447 } 5448 5449 /* prepare workqueue_attrs for sysfs store operations */ 5450 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5451 { 5452 struct workqueue_attrs *attrs; 5453 5454 lockdep_assert_held(&wq_pool_mutex); 5455 5456 attrs = alloc_workqueue_attrs(); 5457 if (!attrs) 5458 return NULL; 5459 5460 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5461 return attrs; 5462 } 5463 5464 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5465 const char *buf, size_t count) 5466 { 5467 struct workqueue_struct *wq = dev_to_wq(dev); 5468 struct workqueue_attrs *attrs; 5469 int ret = -ENOMEM; 5470 5471 apply_wqattrs_lock(); 5472 5473 attrs = wq_sysfs_prep_attrs(wq); 5474 if (!attrs) 5475 goto out_unlock; 5476 5477 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5478 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5479 ret = apply_workqueue_attrs_locked(wq, attrs); 5480 else 5481 ret = -EINVAL; 5482 5483 out_unlock: 5484 apply_wqattrs_unlock(); 5485 free_workqueue_attrs(attrs); 5486 return ret ?: count; 5487 } 5488 5489 static ssize_t wq_cpumask_show(struct device *dev, 5490 struct device_attribute *attr, char *buf) 5491 { 5492 struct workqueue_struct *wq = dev_to_wq(dev); 5493 int written; 5494 5495 mutex_lock(&wq->mutex); 5496 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5497 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5498 mutex_unlock(&wq->mutex); 5499 return written; 5500 } 5501 5502 static ssize_t wq_cpumask_store(struct device *dev, 5503 struct device_attribute *attr, 5504 const char *buf, size_t count) 5505 { 5506 struct workqueue_struct *wq = dev_to_wq(dev); 5507 struct workqueue_attrs *attrs; 5508 int ret = -ENOMEM; 5509 5510 apply_wqattrs_lock(); 5511 5512 attrs = wq_sysfs_prep_attrs(wq); 5513 if (!attrs) 5514 goto out_unlock; 5515 5516 ret = cpumask_parse(buf, attrs->cpumask); 5517 if (!ret) 5518 ret = apply_workqueue_attrs_locked(wq, attrs); 5519 5520 out_unlock: 5521 apply_wqattrs_unlock(); 5522 free_workqueue_attrs(attrs); 5523 return ret ?: count; 5524 } 5525 5526 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5527 char *buf) 5528 { 5529 struct workqueue_struct *wq = dev_to_wq(dev); 5530 int written; 5531 5532 mutex_lock(&wq->mutex); 5533 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5534 !wq->unbound_attrs->no_numa); 5535 mutex_unlock(&wq->mutex); 5536 5537 return written; 5538 } 5539 5540 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5541 const char *buf, size_t count) 5542 { 5543 struct workqueue_struct *wq = dev_to_wq(dev); 5544 struct workqueue_attrs *attrs; 5545 int v, ret = -ENOMEM; 5546 5547 apply_wqattrs_lock(); 5548 5549 attrs = wq_sysfs_prep_attrs(wq); 5550 if (!attrs) 5551 goto out_unlock; 5552 5553 ret = -EINVAL; 5554 if (sscanf(buf, "%d", &v) == 1) { 5555 attrs->no_numa = !v; 5556 ret = apply_workqueue_attrs_locked(wq, attrs); 5557 } 5558 5559 out_unlock: 5560 apply_wqattrs_unlock(); 5561 free_workqueue_attrs(attrs); 5562 return ret ?: count; 5563 } 5564 5565 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5566 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5567 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5568 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5569 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5570 __ATTR_NULL, 5571 }; 5572 5573 static struct bus_type wq_subsys = { 5574 .name = "workqueue", 5575 .dev_groups = wq_sysfs_groups, 5576 }; 5577 5578 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5579 struct device_attribute *attr, char *buf) 5580 { 5581 int written; 5582 5583 mutex_lock(&wq_pool_mutex); 5584 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5585 cpumask_pr_args(wq_unbound_cpumask)); 5586 mutex_unlock(&wq_pool_mutex); 5587 5588 return written; 5589 } 5590 5591 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5592 struct device_attribute *attr, const char *buf, size_t count) 5593 { 5594 cpumask_var_t cpumask; 5595 int ret; 5596 5597 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5598 return -ENOMEM; 5599 5600 ret = cpumask_parse(buf, cpumask); 5601 if (!ret) 5602 ret = workqueue_set_unbound_cpumask(cpumask); 5603 5604 free_cpumask_var(cpumask); 5605 return ret ? ret : count; 5606 } 5607 5608 static struct device_attribute wq_sysfs_cpumask_attr = 5609 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5610 wq_unbound_cpumask_store); 5611 5612 static int __init wq_sysfs_init(void) 5613 { 5614 int err; 5615 5616 err = subsys_virtual_register(&wq_subsys, NULL); 5617 if (err) 5618 return err; 5619 5620 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5621 } 5622 core_initcall(wq_sysfs_init); 5623 5624 static void wq_device_release(struct device *dev) 5625 { 5626 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5627 5628 kfree(wq_dev); 5629 } 5630 5631 /** 5632 * workqueue_sysfs_register - make a workqueue visible in sysfs 5633 * @wq: the workqueue to register 5634 * 5635 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5636 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5637 * which is the preferred method. 5638 * 5639 * Workqueue user should use this function directly iff it wants to apply 5640 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5641 * apply_workqueue_attrs() may race against userland updating the 5642 * attributes. 5643 * 5644 * Return: 0 on success, -errno on failure. 5645 */ 5646 int workqueue_sysfs_register(struct workqueue_struct *wq) 5647 { 5648 struct wq_device *wq_dev; 5649 int ret; 5650 5651 /* 5652 * Adjusting max_active or creating new pwqs by applying 5653 * attributes breaks ordering guarantee. Disallow exposing ordered 5654 * workqueues. 5655 */ 5656 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5657 return -EINVAL; 5658 5659 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5660 if (!wq_dev) 5661 return -ENOMEM; 5662 5663 wq_dev->wq = wq; 5664 wq_dev->dev.bus = &wq_subsys; 5665 wq_dev->dev.release = wq_device_release; 5666 dev_set_name(&wq_dev->dev, "%s", wq->name); 5667 5668 /* 5669 * unbound_attrs are created separately. Suppress uevent until 5670 * everything is ready. 5671 */ 5672 dev_set_uevent_suppress(&wq_dev->dev, true); 5673 5674 ret = device_register(&wq_dev->dev); 5675 if (ret) { 5676 put_device(&wq_dev->dev); 5677 wq->wq_dev = NULL; 5678 return ret; 5679 } 5680 5681 if (wq->flags & WQ_UNBOUND) { 5682 struct device_attribute *attr; 5683 5684 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5685 ret = device_create_file(&wq_dev->dev, attr); 5686 if (ret) { 5687 device_unregister(&wq_dev->dev); 5688 wq->wq_dev = NULL; 5689 return ret; 5690 } 5691 } 5692 } 5693 5694 dev_set_uevent_suppress(&wq_dev->dev, false); 5695 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5696 return 0; 5697 } 5698 5699 /** 5700 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5701 * @wq: the workqueue to unregister 5702 * 5703 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5704 */ 5705 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5706 { 5707 struct wq_device *wq_dev = wq->wq_dev; 5708 5709 if (!wq->wq_dev) 5710 return; 5711 5712 wq->wq_dev = NULL; 5713 device_unregister(&wq_dev->dev); 5714 } 5715 #else /* CONFIG_SYSFS */ 5716 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5717 #endif /* CONFIG_SYSFS */ 5718 5719 /* 5720 * Workqueue watchdog. 5721 * 5722 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5723 * flush dependency, a concurrency managed work item which stays RUNNING 5724 * indefinitely. Workqueue stalls can be very difficult to debug as the 5725 * usual warning mechanisms don't trigger and internal workqueue state is 5726 * largely opaque. 5727 * 5728 * Workqueue watchdog monitors all worker pools periodically and dumps 5729 * state if some pools failed to make forward progress for a while where 5730 * forward progress is defined as the first item on ->worklist changing. 5731 * 5732 * This mechanism is controlled through the kernel parameter 5733 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5734 * corresponding sysfs parameter file. 5735 */ 5736 #ifdef CONFIG_WQ_WATCHDOG 5737 5738 static unsigned long wq_watchdog_thresh = 30; 5739 static struct timer_list wq_watchdog_timer; 5740 5741 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5742 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5743 5744 static void wq_watchdog_reset_touched(void) 5745 { 5746 int cpu; 5747 5748 wq_watchdog_touched = jiffies; 5749 for_each_possible_cpu(cpu) 5750 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5751 } 5752 5753 static void wq_watchdog_timer_fn(struct timer_list *unused) 5754 { 5755 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5756 bool lockup_detected = false; 5757 struct worker_pool *pool; 5758 int pi; 5759 5760 if (!thresh) 5761 return; 5762 5763 rcu_read_lock(); 5764 5765 for_each_pool(pool, pi) { 5766 unsigned long pool_ts, touched, ts; 5767 5768 if (list_empty(&pool->worklist)) 5769 continue; 5770 5771 /* get the latest of pool and touched timestamps */ 5772 pool_ts = READ_ONCE(pool->watchdog_ts); 5773 touched = READ_ONCE(wq_watchdog_touched); 5774 5775 if (time_after(pool_ts, touched)) 5776 ts = pool_ts; 5777 else 5778 ts = touched; 5779 5780 if (pool->cpu >= 0) { 5781 unsigned long cpu_touched = 5782 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5783 pool->cpu)); 5784 if (time_after(cpu_touched, ts)) 5785 ts = cpu_touched; 5786 } 5787 5788 /* did we stall? */ 5789 if (time_after(jiffies, ts + thresh)) { 5790 lockup_detected = true; 5791 pr_emerg("BUG: workqueue lockup - pool"); 5792 pr_cont_pool_info(pool); 5793 pr_cont(" stuck for %us!\n", 5794 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5795 } 5796 } 5797 5798 rcu_read_unlock(); 5799 5800 if (lockup_detected) 5801 show_workqueue_state(); 5802 5803 wq_watchdog_reset_touched(); 5804 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5805 } 5806 5807 notrace void wq_watchdog_touch(int cpu) 5808 { 5809 if (cpu >= 0) 5810 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5811 else 5812 wq_watchdog_touched = jiffies; 5813 } 5814 5815 static void wq_watchdog_set_thresh(unsigned long thresh) 5816 { 5817 wq_watchdog_thresh = 0; 5818 del_timer_sync(&wq_watchdog_timer); 5819 5820 if (thresh) { 5821 wq_watchdog_thresh = thresh; 5822 wq_watchdog_reset_touched(); 5823 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5824 } 5825 } 5826 5827 static int wq_watchdog_param_set_thresh(const char *val, 5828 const struct kernel_param *kp) 5829 { 5830 unsigned long thresh; 5831 int ret; 5832 5833 ret = kstrtoul(val, 0, &thresh); 5834 if (ret) 5835 return ret; 5836 5837 if (system_wq) 5838 wq_watchdog_set_thresh(thresh); 5839 else 5840 wq_watchdog_thresh = thresh; 5841 5842 return 0; 5843 } 5844 5845 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5846 .set = wq_watchdog_param_set_thresh, 5847 .get = param_get_ulong, 5848 }; 5849 5850 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5851 0644); 5852 5853 static void wq_watchdog_init(void) 5854 { 5855 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5856 wq_watchdog_set_thresh(wq_watchdog_thresh); 5857 } 5858 5859 #else /* CONFIG_WQ_WATCHDOG */ 5860 5861 static inline void wq_watchdog_init(void) { } 5862 5863 #endif /* CONFIG_WQ_WATCHDOG */ 5864 5865 static void __init wq_numa_init(void) 5866 { 5867 cpumask_var_t *tbl; 5868 int node, cpu; 5869 5870 if (num_possible_nodes() <= 1) 5871 return; 5872 5873 if (wq_disable_numa) { 5874 pr_info("workqueue: NUMA affinity support disabled\n"); 5875 return; 5876 } 5877 5878 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 5879 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5880 5881 /* 5882 * We want masks of possible CPUs of each node which isn't readily 5883 * available. Build one from cpu_to_node() which should have been 5884 * fully initialized by now. 5885 */ 5886 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5887 BUG_ON(!tbl); 5888 5889 for_each_node(node) 5890 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5891 node_online(node) ? node : NUMA_NO_NODE)); 5892 5893 for_each_possible_cpu(cpu) { 5894 node = cpu_to_node(cpu); 5895 if (WARN_ON(node == NUMA_NO_NODE)) { 5896 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5897 /* happens iff arch is bonkers, let's just proceed */ 5898 return; 5899 } 5900 cpumask_set_cpu(cpu, tbl[node]); 5901 } 5902 5903 wq_numa_possible_cpumask = tbl; 5904 wq_numa_enabled = true; 5905 } 5906 5907 /** 5908 * workqueue_init_early - early init for workqueue subsystem 5909 * 5910 * This is the first half of two-staged workqueue subsystem initialization 5911 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5912 * idr are up. It sets up all the data structures and system workqueues 5913 * and allows early boot code to create workqueues and queue/cancel work 5914 * items. Actual work item execution starts only after kthreads can be 5915 * created and scheduled right before early initcalls. 5916 */ 5917 void __init workqueue_init_early(void) 5918 { 5919 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5920 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5921 int i, cpu; 5922 5923 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5924 5925 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5926 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5927 5928 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5929 5930 /* initialize CPU pools */ 5931 for_each_possible_cpu(cpu) { 5932 struct worker_pool *pool; 5933 5934 i = 0; 5935 for_each_cpu_worker_pool(pool, cpu) { 5936 BUG_ON(init_worker_pool(pool)); 5937 pool->cpu = cpu; 5938 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5939 pool->attrs->nice = std_nice[i++]; 5940 pool->node = cpu_to_node(cpu); 5941 5942 /* alloc pool ID */ 5943 mutex_lock(&wq_pool_mutex); 5944 BUG_ON(worker_pool_assign_id(pool)); 5945 mutex_unlock(&wq_pool_mutex); 5946 } 5947 } 5948 5949 /* create default unbound and ordered wq attrs */ 5950 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5951 struct workqueue_attrs *attrs; 5952 5953 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5954 attrs->nice = std_nice[i]; 5955 unbound_std_wq_attrs[i] = attrs; 5956 5957 /* 5958 * An ordered wq should have only one pwq as ordering is 5959 * guaranteed by max_active which is enforced by pwqs. 5960 * Turn off NUMA so that dfl_pwq is used for all nodes. 5961 */ 5962 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5963 attrs->nice = std_nice[i]; 5964 attrs->no_numa = true; 5965 ordered_wq_attrs[i] = attrs; 5966 } 5967 5968 system_wq = alloc_workqueue("events", 0, 0); 5969 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5970 system_long_wq = alloc_workqueue("events_long", 0, 0); 5971 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5972 WQ_UNBOUND_MAX_ACTIVE); 5973 system_freezable_wq = alloc_workqueue("events_freezable", 5974 WQ_FREEZABLE, 0); 5975 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5976 WQ_POWER_EFFICIENT, 0); 5977 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5978 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5979 0); 5980 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5981 !system_unbound_wq || !system_freezable_wq || 5982 !system_power_efficient_wq || 5983 !system_freezable_power_efficient_wq); 5984 } 5985 5986 /** 5987 * workqueue_init - bring workqueue subsystem fully online 5988 * 5989 * This is the latter half of two-staged workqueue subsystem initialization 5990 * and invoked as soon as kthreads can be created and scheduled. 5991 * Workqueues have been created and work items queued on them, but there 5992 * are no kworkers executing the work items yet. Populate the worker pools 5993 * with the initial workers and enable future kworker creations. 5994 */ 5995 void __init workqueue_init(void) 5996 { 5997 struct workqueue_struct *wq; 5998 struct worker_pool *pool; 5999 int cpu, bkt; 6000 6001 /* 6002 * It'd be simpler to initialize NUMA in workqueue_init_early() but 6003 * CPU to node mapping may not be available that early on some 6004 * archs such as power and arm64. As per-cpu pools created 6005 * previously could be missing node hint and unbound pools NUMA 6006 * affinity, fix them up. 6007 * 6008 * Also, while iterating workqueues, create rescuers if requested. 6009 */ 6010 wq_numa_init(); 6011 6012 mutex_lock(&wq_pool_mutex); 6013 6014 for_each_possible_cpu(cpu) { 6015 for_each_cpu_worker_pool(pool, cpu) { 6016 pool->node = cpu_to_node(cpu); 6017 } 6018 } 6019 6020 list_for_each_entry(wq, &workqueues, list) { 6021 wq_update_unbound_numa(wq, smp_processor_id(), true); 6022 WARN(init_rescuer(wq), 6023 "workqueue: failed to create early rescuer for %s", 6024 wq->name); 6025 } 6026 6027 mutex_unlock(&wq_pool_mutex); 6028 6029 /* create the initial workers */ 6030 for_each_online_cpu(cpu) { 6031 for_each_cpu_worker_pool(pool, cpu) { 6032 pool->flags &= ~POOL_DISASSOCIATED; 6033 BUG_ON(!create_worker(pool)); 6034 } 6035 } 6036 6037 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6038 BUG_ON(!create_worker(pool)); 6039 6040 wq_online = true; 6041 wq_watchdog_init(); 6042 } 6043