xref: /openbmc/linux/kernel/workqueue.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * manager_mutex to avoid changing binding state while
69 	 * create_worker() is in progress.
70 	 */
71 	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
72 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73 	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
74 
75 	/* worker flags */
76 	WORKER_STARTED		= 1 << 0,	/* started */
77 	WORKER_DIE		= 1 << 1,	/* die die die */
78 	WORKER_IDLE		= 1 << 2,	/* is idle */
79 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83 
84 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
85 				  WORKER_UNBOUND | WORKER_REBOUND,
86 
87 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88 
89 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
90 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91 
92 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
93 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
94 
95 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
96 						/* call for help after 10ms
97 						   (min two ticks) */
98 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
99 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
100 
101 	/*
102 	 * Rescue workers are used only on emergencies and shared by
103 	 * all cpus.  Give -20.
104 	 */
105 	RESCUER_NICE_LEVEL	= -20,
106 	HIGHPRI_NICE_LEVEL	= -20,
107 
108 	WQ_NAME_LEN		= 24,
109 };
110 
111 /*
112  * Structure fields follow one of the following exclusion rules.
113  *
114  * I: Modifiable by initialization/destruction paths and read-only for
115  *    everyone else.
116  *
117  * P: Preemption protected.  Disabling preemption is enough and should
118  *    only be modified and accessed from the local cpu.
119  *
120  * L: pool->lock protected.  Access with pool->lock held.
121  *
122  * X: During normal operation, modification requires pool->lock and should
123  *    be done only from local cpu.  Either disabling preemption on local
124  *    cpu or grabbing pool->lock is enough for read access.  If
125  *    POOL_DISASSOCIATED is set, it's identical to L.
126  *
127  * MG: pool->manager_mutex and pool->lock protected.  Writes require both
128  *     locks.  Reads can happen under either lock.
129  *
130  * PL: wq_pool_mutex protected.
131  *
132  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
133  *
134  * WQ: wq->mutex protected.
135  *
136  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
137  *
138  * MD: wq_mayday_lock protected.
139  */
140 
141 /* struct worker is defined in workqueue_internal.h */
142 
143 struct worker_pool {
144 	spinlock_t		lock;		/* the pool lock */
145 	int			cpu;		/* I: the associated cpu */
146 	int			node;		/* I: the associated node ID */
147 	int			id;		/* I: pool ID */
148 	unsigned int		flags;		/* X: flags */
149 
150 	struct list_head	worklist;	/* L: list of pending works */
151 	int			nr_workers;	/* L: total number of workers */
152 
153 	/* nr_idle includes the ones off idle_list for rebinding */
154 	int			nr_idle;	/* L: currently idle ones */
155 
156 	struct list_head	idle_list;	/* X: list of idle workers */
157 	struct timer_list	idle_timer;	/* L: worker idle timeout */
158 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
159 
160 	/* a workers is either on busy_hash or idle_list, or the manager */
161 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
162 						/* L: hash of busy workers */
163 
164 	/* see manage_workers() for details on the two manager mutexes */
165 	struct mutex		manager_arb;	/* manager arbitration */
166 	struct mutex		manager_mutex;	/* manager exclusion */
167 	struct idr		worker_idr;	/* MG: worker IDs and iteration */
168 
169 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
171 	int			refcnt;		/* PL: refcnt for unbound pools */
172 
173 	/*
174 	 * The current concurrency level.  As it's likely to be accessed
175 	 * from other CPUs during try_to_wake_up(), put it in a separate
176 	 * cacheline.
177 	 */
178 	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 
180 	/*
181 	 * Destruction of pool is sched-RCU protected to allow dereferences
182 	 * from get_work_pool().
183 	 */
184 	struct rcu_head		rcu;
185 } ____cacheline_aligned_in_smp;
186 
187 /*
188  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
189  * of work_struct->data are used for flags and the remaining high bits
190  * point to the pwq; thus, pwqs need to be aligned at two's power of the
191  * number of flag bits.
192  */
193 struct pool_workqueue {
194 	struct worker_pool	*pool;		/* I: the associated pool */
195 	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 	int			work_color;	/* L: current color */
197 	int			flush_color;	/* L: flushing color */
198 	int			refcnt;		/* L: reference count */
199 	int			nr_in_flight[WORK_NR_COLORS];
200 						/* L: nr of in_flight works */
201 	int			nr_active;	/* L: nr of active works */
202 	int			max_active;	/* L: max active works */
203 	struct list_head	delayed_works;	/* L: delayed works */
204 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
206 
207 	/*
208 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
209 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
210 	 * itself is also sched-RCU protected so that the first pwq can be
211 	 * determined without grabbing wq->mutex.
212 	 */
213 	struct work_struct	unbound_release_work;
214 	struct rcu_head		rcu;
215 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
216 
217 /*
218  * Structure used to wait for workqueue flush.
219  */
220 struct wq_flusher {
221 	struct list_head	list;		/* WQ: list of flushers */
222 	int			flush_color;	/* WQ: flush color waiting for */
223 	struct completion	done;		/* flush completion */
224 };
225 
226 struct wq_device;
227 
228 /*
229  * The externally visible workqueue.  It relays the issued work items to
230  * the appropriate worker_pool through its pool_workqueues.
231  */
232 struct workqueue_struct {
233 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234 	struct list_head	list;		/* PL: list of all workqueues */
235 
236 	struct mutex		mutex;		/* protects this wq */
237 	int			work_color;	/* WQ: current work color */
238 	int			flush_color;	/* WQ: current flush color */
239 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
241 	struct list_head	flusher_queue;	/* WQ: flush waiters */
242 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243 
244 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 	struct worker		*rescuer;	/* I: rescue worker */
246 
247 	int			nr_drainers;	/* WQ: drain in progress */
248 	int			saved_max_active; /* WQ: saved pwq max_active */
249 
250 	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251 	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252 
253 #ifdef CONFIG_SYSFS
254 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
255 #endif
256 #ifdef CONFIG_LOCKDEP
257 	struct lockdep_map	lockdep_map;
258 #endif
259 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260 
261 	/* hot fields used during command issue, aligned to cacheline */
262 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
263 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
265 };
266 
267 static struct kmem_cache *pwq_cache;
268 
269 static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
270 static cpumask_var_t *wq_numa_possible_cpumask;
271 					/* possible CPUs of each node */
272 
273 static bool wq_disable_numa;
274 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
275 
276 /* see the comment above the definition of WQ_POWER_EFFICIENT */
277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278 static bool wq_power_efficient = true;
279 #else
280 static bool wq_power_efficient;
281 #endif
282 
283 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
284 
285 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
286 
287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
289 
290 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
291 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
292 
293 static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
294 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
295 
296 /* the per-cpu worker pools */
297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
298 				     cpu_worker_pools);
299 
300 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
301 
302 /* PL: hash of all unbound pools keyed by pool->attrs */
303 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
304 
305 /* I: attributes used when instantiating standard unbound pools on demand */
306 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
307 
308 /* I: attributes used when instantiating ordered pools on demand */
309 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
310 
311 struct workqueue_struct *system_wq __read_mostly;
312 EXPORT_SYMBOL(system_wq);
313 struct workqueue_struct *system_highpri_wq __read_mostly;
314 EXPORT_SYMBOL_GPL(system_highpri_wq);
315 struct workqueue_struct *system_long_wq __read_mostly;
316 EXPORT_SYMBOL_GPL(system_long_wq);
317 struct workqueue_struct *system_unbound_wq __read_mostly;
318 EXPORT_SYMBOL_GPL(system_unbound_wq);
319 struct workqueue_struct *system_freezable_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_freezable_wq);
321 struct workqueue_struct *system_power_efficient_wq __read_mostly;
322 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
323 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
324 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
325 
326 static int worker_thread(void *__worker);
327 static void copy_workqueue_attrs(struct workqueue_attrs *to,
328 				 const struct workqueue_attrs *from);
329 
330 #define CREATE_TRACE_POINTS
331 #include <trace/events/workqueue.h>
332 
333 #define assert_rcu_or_pool_mutex()					\
334 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
335 			   lockdep_is_held(&wq_pool_mutex),		\
336 			   "sched RCU or wq_pool_mutex should be held")
337 
338 #define assert_rcu_or_wq_mutex(wq)					\
339 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
340 			   lockdep_is_held(&wq->mutex),			\
341 			   "sched RCU or wq->mutex should be held")
342 
343 #ifdef CONFIG_LOCKDEP
344 #define assert_manager_or_pool_lock(pool)				\
345 	WARN_ONCE(debug_locks &&					\
346 		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
347 		  !lockdep_is_held(&(pool)->lock),			\
348 		  "pool->manager_mutex or ->lock should be held")
349 #else
350 #define assert_manager_or_pool_lock(pool)	do { } while (0)
351 #endif
352 
353 #define for_each_cpu_worker_pool(pool, cpu)				\
354 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
355 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
356 	     (pool)++)
357 
358 /**
359  * for_each_pool - iterate through all worker_pools in the system
360  * @pool: iteration cursor
361  * @pi: integer used for iteration
362  *
363  * This must be called either with wq_pool_mutex held or sched RCU read
364  * locked.  If the pool needs to be used beyond the locking in effect, the
365  * caller is responsible for guaranteeing that the pool stays online.
366  *
367  * The if/else clause exists only for the lockdep assertion and can be
368  * ignored.
369  */
370 #define for_each_pool(pool, pi)						\
371 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
372 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
373 		else
374 
375 /**
376  * for_each_pool_worker - iterate through all workers of a worker_pool
377  * @worker: iteration cursor
378  * @wi: integer used for iteration
379  * @pool: worker_pool to iterate workers of
380  *
381  * This must be called with either @pool->manager_mutex or ->lock held.
382  *
383  * The if/else clause exists only for the lockdep assertion and can be
384  * ignored.
385  */
386 #define for_each_pool_worker(worker, wi, pool)				\
387 	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
388 		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
389 		else
390 
391 /**
392  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
393  * @pwq: iteration cursor
394  * @wq: the target workqueue
395  *
396  * This must be called either with wq->mutex held or sched RCU read locked.
397  * If the pwq needs to be used beyond the locking in effect, the caller is
398  * responsible for guaranteeing that the pwq stays online.
399  *
400  * The if/else clause exists only for the lockdep assertion and can be
401  * ignored.
402  */
403 #define for_each_pwq(pwq, wq)						\
404 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
405 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
406 		else
407 
408 #ifdef CONFIG_DEBUG_OBJECTS_WORK
409 
410 static struct debug_obj_descr work_debug_descr;
411 
412 static void *work_debug_hint(void *addr)
413 {
414 	return ((struct work_struct *) addr)->func;
415 }
416 
417 /*
418  * fixup_init is called when:
419  * - an active object is initialized
420  */
421 static int work_fixup_init(void *addr, enum debug_obj_state state)
422 {
423 	struct work_struct *work = addr;
424 
425 	switch (state) {
426 	case ODEBUG_STATE_ACTIVE:
427 		cancel_work_sync(work);
428 		debug_object_init(work, &work_debug_descr);
429 		return 1;
430 	default:
431 		return 0;
432 	}
433 }
434 
435 /*
436  * fixup_activate is called when:
437  * - an active object is activated
438  * - an unknown object is activated (might be a statically initialized object)
439  */
440 static int work_fixup_activate(void *addr, enum debug_obj_state state)
441 {
442 	struct work_struct *work = addr;
443 
444 	switch (state) {
445 
446 	case ODEBUG_STATE_NOTAVAILABLE:
447 		/*
448 		 * This is not really a fixup. The work struct was
449 		 * statically initialized. We just make sure that it
450 		 * is tracked in the object tracker.
451 		 */
452 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
453 			debug_object_init(work, &work_debug_descr);
454 			debug_object_activate(work, &work_debug_descr);
455 			return 0;
456 		}
457 		WARN_ON_ONCE(1);
458 		return 0;
459 
460 	case ODEBUG_STATE_ACTIVE:
461 		WARN_ON(1);
462 
463 	default:
464 		return 0;
465 	}
466 }
467 
468 /*
469  * fixup_free is called when:
470  * - an active object is freed
471  */
472 static int work_fixup_free(void *addr, enum debug_obj_state state)
473 {
474 	struct work_struct *work = addr;
475 
476 	switch (state) {
477 	case ODEBUG_STATE_ACTIVE:
478 		cancel_work_sync(work);
479 		debug_object_free(work, &work_debug_descr);
480 		return 1;
481 	default:
482 		return 0;
483 	}
484 }
485 
486 static struct debug_obj_descr work_debug_descr = {
487 	.name		= "work_struct",
488 	.debug_hint	= work_debug_hint,
489 	.fixup_init	= work_fixup_init,
490 	.fixup_activate	= work_fixup_activate,
491 	.fixup_free	= work_fixup_free,
492 };
493 
494 static inline void debug_work_activate(struct work_struct *work)
495 {
496 	debug_object_activate(work, &work_debug_descr);
497 }
498 
499 static inline void debug_work_deactivate(struct work_struct *work)
500 {
501 	debug_object_deactivate(work, &work_debug_descr);
502 }
503 
504 void __init_work(struct work_struct *work, int onstack)
505 {
506 	if (onstack)
507 		debug_object_init_on_stack(work, &work_debug_descr);
508 	else
509 		debug_object_init(work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(__init_work);
512 
513 void destroy_work_on_stack(struct work_struct *work)
514 {
515 	debug_object_free(work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
518 
519 void destroy_delayed_work_on_stack(struct delayed_work *work)
520 {
521 	destroy_timer_on_stack(&work->timer);
522 	debug_object_free(&work->work, &work_debug_descr);
523 }
524 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
525 
526 #else
527 static inline void debug_work_activate(struct work_struct *work) { }
528 static inline void debug_work_deactivate(struct work_struct *work) { }
529 #endif
530 
531 /**
532  * worker_pool_assign_id - allocate ID and assing it to @pool
533  * @pool: the pool pointer of interest
534  *
535  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
536  * successfully, -errno on failure.
537  */
538 static int worker_pool_assign_id(struct worker_pool *pool)
539 {
540 	int ret;
541 
542 	lockdep_assert_held(&wq_pool_mutex);
543 
544 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
545 			GFP_KERNEL);
546 	if (ret >= 0) {
547 		pool->id = ret;
548 		return 0;
549 	}
550 	return ret;
551 }
552 
553 /**
554  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
555  * @wq: the target workqueue
556  * @node: the node ID
557  *
558  * This must be called either with pwq_lock held or sched RCU read locked.
559  * If the pwq needs to be used beyond the locking in effect, the caller is
560  * responsible for guaranteeing that the pwq stays online.
561  *
562  * Return: The unbound pool_workqueue for @node.
563  */
564 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
565 						  int node)
566 {
567 	assert_rcu_or_wq_mutex(wq);
568 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
569 }
570 
571 static unsigned int work_color_to_flags(int color)
572 {
573 	return color << WORK_STRUCT_COLOR_SHIFT;
574 }
575 
576 static int get_work_color(struct work_struct *work)
577 {
578 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
579 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
580 }
581 
582 static int work_next_color(int color)
583 {
584 	return (color + 1) % WORK_NR_COLORS;
585 }
586 
587 /*
588  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
589  * contain the pointer to the queued pwq.  Once execution starts, the flag
590  * is cleared and the high bits contain OFFQ flags and pool ID.
591  *
592  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
593  * and clear_work_data() can be used to set the pwq, pool or clear
594  * work->data.  These functions should only be called while the work is
595  * owned - ie. while the PENDING bit is set.
596  *
597  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
598  * corresponding to a work.  Pool is available once the work has been
599  * queued anywhere after initialization until it is sync canceled.  pwq is
600  * available only while the work item is queued.
601  *
602  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
603  * canceled.  While being canceled, a work item may have its PENDING set
604  * but stay off timer and worklist for arbitrarily long and nobody should
605  * try to steal the PENDING bit.
606  */
607 static inline void set_work_data(struct work_struct *work, unsigned long data,
608 				 unsigned long flags)
609 {
610 	WARN_ON_ONCE(!work_pending(work));
611 	atomic_long_set(&work->data, data | flags | work_static(work));
612 }
613 
614 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
615 			 unsigned long extra_flags)
616 {
617 	set_work_data(work, (unsigned long)pwq,
618 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
619 }
620 
621 static void set_work_pool_and_keep_pending(struct work_struct *work,
622 					   int pool_id)
623 {
624 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
625 		      WORK_STRUCT_PENDING);
626 }
627 
628 static void set_work_pool_and_clear_pending(struct work_struct *work,
629 					    int pool_id)
630 {
631 	/*
632 	 * The following wmb is paired with the implied mb in
633 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
634 	 * here are visible to and precede any updates by the next PENDING
635 	 * owner.
636 	 */
637 	smp_wmb();
638 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
639 }
640 
641 static void clear_work_data(struct work_struct *work)
642 {
643 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
644 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
645 }
646 
647 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
648 {
649 	unsigned long data = atomic_long_read(&work->data);
650 
651 	if (data & WORK_STRUCT_PWQ)
652 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
653 	else
654 		return NULL;
655 }
656 
657 /**
658  * get_work_pool - return the worker_pool a given work was associated with
659  * @work: the work item of interest
660  *
661  * Pools are created and destroyed under wq_pool_mutex, and allows read
662  * access under sched-RCU read lock.  As such, this function should be
663  * called under wq_pool_mutex or with preemption disabled.
664  *
665  * All fields of the returned pool are accessible as long as the above
666  * mentioned locking is in effect.  If the returned pool needs to be used
667  * beyond the critical section, the caller is responsible for ensuring the
668  * returned pool is and stays online.
669  *
670  * Return: The worker_pool @work was last associated with.  %NULL if none.
671  */
672 static struct worker_pool *get_work_pool(struct work_struct *work)
673 {
674 	unsigned long data = atomic_long_read(&work->data);
675 	int pool_id;
676 
677 	assert_rcu_or_pool_mutex();
678 
679 	if (data & WORK_STRUCT_PWQ)
680 		return ((struct pool_workqueue *)
681 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
682 
683 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
684 	if (pool_id == WORK_OFFQ_POOL_NONE)
685 		return NULL;
686 
687 	return idr_find(&worker_pool_idr, pool_id);
688 }
689 
690 /**
691  * get_work_pool_id - return the worker pool ID a given work is associated with
692  * @work: the work item of interest
693  *
694  * Return: The worker_pool ID @work was last associated with.
695  * %WORK_OFFQ_POOL_NONE if none.
696  */
697 static int get_work_pool_id(struct work_struct *work)
698 {
699 	unsigned long data = atomic_long_read(&work->data);
700 
701 	if (data & WORK_STRUCT_PWQ)
702 		return ((struct pool_workqueue *)
703 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
704 
705 	return data >> WORK_OFFQ_POOL_SHIFT;
706 }
707 
708 static void mark_work_canceling(struct work_struct *work)
709 {
710 	unsigned long pool_id = get_work_pool_id(work);
711 
712 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
713 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
714 }
715 
716 static bool work_is_canceling(struct work_struct *work)
717 {
718 	unsigned long data = atomic_long_read(&work->data);
719 
720 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
721 }
722 
723 /*
724  * Policy functions.  These define the policies on how the global worker
725  * pools are managed.  Unless noted otherwise, these functions assume that
726  * they're being called with pool->lock held.
727  */
728 
729 static bool __need_more_worker(struct worker_pool *pool)
730 {
731 	return !atomic_read(&pool->nr_running);
732 }
733 
734 /*
735  * Need to wake up a worker?  Called from anything but currently
736  * running workers.
737  *
738  * Note that, because unbound workers never contribute to nr_running, this
739  * function will always return %true for unbound pools as long as the
740  * worklist isn't empty.
741  */
742 static bool need_more_worker(struct worker_pool *pool)
743 {
744 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
745 }
746 
747 /* Can I start working?  Called from busy but !running workers. */
748 static bool may_start_working(struct worker_pool *pool)
749 {
750 	return pool->nr_idle;
751 }
752 
753 /* Do I need to keep working?  Called from currently running workers. */
754 static bool keep_working(struct worker_pool *pool)
755 {
756 	return !list_empty(&pool->worklist) &&
757 		atomic_read(&pool->nr_running) <= 1;
758 }
759 
760 /* Do we need a new worker?  Called from manager. */
761 static bool need_to_create_worker(struct worker_pool *pool)
762 {
763 	return need_more_worker(pool) && !may_start_working(pool);
764 }
765 
766 /* Do I need to be the manager? */
767 static bool need_to_manage_workers(struct worker_pool *pool)
768 {
769 	return need_to_create_worker(pool) ||
770 		(pool->flags & POOL_MANAGE_WORKERS);
771 }
772 
773 /* Do we have too many workers and should some go away? */
774 static bool too_many_workers(struct worker_pool *pool)
775 {
776 	bool managing = mutex_is_locked(&pool->manager_arb);
777 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
778 	int nr_busy = pool->nr_workers - nr_idle;
779 
780 	/*
781 	 * nr_idle and idle_list may disagree if idle rebinding is in
782 	 * progress.  Never return %true if idle_list is empty.
783 	 */
784 	if (list_empty(&pool->idle_list))
785 		return false;
786 
787 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
788 }
789 
790 /*
791  * Wake up functions.
792  */
793 
794 /* Return the first worker.  Safe with preemption disabled */
795 static struct worker *first_worker(struct worker_pool *pool)
796 {
797 	if (unlikely(list_empty(&pool->idle_list)))
798 		return NULL;
799 
800 	return list_first_entry(&pool->idle_list, struct worker, entry);
801 }
802 
803 /**
804  * wake_up_worker - wake up an idle worker
805  * @pool: worker pool to wake worker from
806  *
807  * Wake up the first idle worker of @pool.
808  *
809  * CONTEXT:
810  * spin_lock_irq(pool->lock).
811  */
812 static void wake_up_worker(struct worker_pool *pool)
813 {
814 	struct worker *worker = first_worker(pool);
815 
816 	if (likely(worker))
817 		wake_up_process(worker->task);
818 }
819 
820 /**
821  * wq_worker_waking_up - a worker is waking up
822  * @task: task waking up
823  * @cpu: CPU @task is waking up to
824  *
825  * This function is called during try_to_wake_up() when a worker is
826  * being awoken.
827  *
828  * CONTEXT:
829  * spin_lock_irq(rq->lock)
830  */
831 void wq_worker_waking_up(struct task_struct *task, int cpu)
832 {
833 	struct worker *worker = kthread_data(task);
834 
835 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
836 		WARN_ON_ONCE(worker->pool->cpu != cpu);
837 		atomic_inc(&worker->pool->nr_running);
838 	}
839 }
840 
841 /**
842  * wq_worker_sleeping - a worker is going to sleep
843  * @task: task going to sleep
844  * @cpu: CPU in question, must be the current CPU number
845  *
846  * This function is called during schedule() when a busy worker is
847  * going to sleep.  Worker on the same cpu can be woken up by
848  * returning pointer to its task.
849  *
850  * CONTEXT:
851  * spin_lock_irq(rq->lock)
852  *
853  * Return:
854  * Worker task on @cpu to wake up, %NULL if none.
855  */
856 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
857 {
858 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
859 	struct worker_pool *pool;
860 
861 	/*
862 	 * Rescuers, which may not have all the fields set up like normal
863 	 * workers, also reach here, let's not access anything before
864 	 * checking NOT_RUNNING.
865 	 */
866 	if (worker->flags & WORKER_NOT_RUNNING)
867 		return NULL;
868 
869 	pool = worker->pool;
870 
871 	/* this can only happen on the local cpu */
872 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
873 		return NULL;
874 
875 	/*
876 	 * The counterpart of the following dec_and_test, implied mb,
877 	 * worklist not empty test sequence is in insert_work().
878 	 * Please read comment there.
879 	 *
880 	 * NOT_RUNNING is clear.  This means that we're bound to and
881 	 * running on the local cpu w/ rq lock held and preemption
882 	 * disabled, which in turn means that none else could be
883 	 * manipulating idle_list, so dereferencing idle_list without pool
884 	 * lock is safe.
885 	 */
886 	if (atomic_dec_and_test(&pool->nr_running) &&
887 	    !list_empty(&pool->worklist))
888 		to_wakeup = first_worker(pool);
889 	return to_wakeup ? to_wakeup->task : NULL;
890 }
891 
892 /**
893  * worker_set_flags - set worker flags and adjust nr_running accordingly
894  * @worker: self
895  * @flags: flags to set
896  * @wakeup: wakeup an idle worker if necessary
897  *
898  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
899  * nr_running becomes zero and @wakeup is %true, an idle worker is
900  * woken up.
901  *
902  * CONTEXT:
903  * spin_lock_irq(pool->lock)
904  */
905 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
906 				    bool wakeup)
907 {
908 	struct worker_pool *pool = worker->pool;
909 
910 	WARN_ON_ONCE(worker->task != current);
911 
912 	/*
913 	 * If transitioning into NOT_RUNNING, adjust nr_running and
914 	 * wake up an idle worker as necessary if requested by
915 	 * @wakeup.
916 	 */
917 	if ((flags & WORKER_NOT_RUNNING) &&
918 	    !(worker->flags & WORKER_NOT_RUNNING)) {
919 		if (wakeup) {
920 			if (atomic_dec_and_test(&pool->nr_running) &&
921 			    !list_empty(&pool->worklist))
922 				wake_up_worker(pool);
923 		} else
924 			atomic_dec(&pool->nr_running);
925 	}
926 
927 	worker->flags |= flags;
928 }
929 
930 /**
931  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
932  * @worker: self
933  * @flags: flags to clear
934  *
935  * Clear @flags in @worker->flags and adjust nr_running accordingly.
936  *
937  * CONTEXT:
938  * spin_lock_irq(pool->lock)
939  */
940 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
941 {
942 	struct worker_pool *pool = worker->pool;
943 	unsigned int oflags = worker->flags;
944 
945 	WARN_ON_ONCE(worker->task != current);
946 
947 	worker->flags &= ~flags;
948 
949 	/*
950 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
951 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
952 	 * of multiple flags, not a single flag.
953 	 */
954 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
955 		if (!(worker->flags & WORKER_NOT_RUNNING))
956 			atomic_inc(&pool->nr_running);
957 }
958 
959 /**
960  * find_worker_executing_work - find worker which is executing a work
961  * @pool: pool of interest
962  * @work: work to find worker for
963  *
964  * Find a worker which is executing @work on @pool by searching
965  * @pool->busy_hash which is keyed by the address of @work.  For a worker
966  * to match, its current execution should match the address of @work and
967  * its work function.  This is to avoid unwanted dependency between
968  * unrelated work executions through a work item being recycled while still
969  * being executed.
970  *
971  * This is a bit tricky.  A work item may be freed once its execution
972  * starts and nothing prevents the freed area from being recycled for
973  * another work item.  If the same work item address ends up being reused
974  * before the original execution finishes, workqueue will identify the
975  * recycled work item as currently executing and make it wait until the
976  * current execution finishes, introducing an unwanted dependency.
977  *
978  * This function checks the work item address and work function to avoid
979  * false positives.  Note that this isn't complete as one may construct a
980  * work function which can introduce dependency onto itself through a
981  * recycled work item.  Well, if somebody wants to shoot oneself in the
982  * foot that badly, there's only so much we can do, and if such deadlock
983  * actually occurs, it should be easy to locate the culprit work function.
984  *
985  * CONTEXT:
986  * spin_lock_irq(pool->lock).
987  *
988  * Return:
989  * Pointer to worker which is executing @work if found, %NULL
990  * otherwise.
991  */
992 static struct worker *find_worker_executing_work(struct worker_pool *pool,
993 						 struct work_struct *work)
994 {
995 	struct worker *worker;
996 
997 	hash_for_each_possible(pool->busy_hash, worker, hentry,
998 			       (unsigned long)work)
999 		if (worker->current_work == work &&
1000 		    worker->current_func == work->func)
1001 			return worker;
1002 
1003 	return NULL;
1004 }
1005 
1006 /**
1007  * move_linked_works - move linked works to a list
1008  * @work: start of series of works to be scheduled
1009  * @head: target list to append @work to
1010  * @nextp: out paramter for nested worklist walking
1011  *
1012  * Schedule linked works starting from @work to @head.  Work series to
1013  * be scheduled starts at @work and includes any consecutive work with
1014  * WORK_STRUCT_LINKED set in its predecessor.
1015  *
1016  * If @nextp is not NULL, it's updated to point to the next work of
1017  * the last scheduled work.  This allows move_linked_works() to be
1018  * nested inside outer list_for_each_entry_safe().
1019  *
1020  * CONTEXT:
1021  * spin_lock_irq(pool->lock).
1022  */
1023 static void move_linked_works(struct work_struct *work, struct list_head *head,
1024 			      struct work_struct **nextp)
1025 {
1026 	struct work_struct *n;
1027 
1028 	/*
1029 	 * Linked worklist will always end before the end of the list,
1030 	 * use NULL for list head.
1031 	 */
1032 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1033 		list_move_tail(&work->entry, head);
1034 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1035 			break;
1036 	}
1037 
1038 	/*
1039 	 * If we're already inside safe list traversal and have moved
1040 	 * multiple works to the scheduled queue, the next position
1041 	 * needs to be updated.
1042 	 */
1043 	if (nextp)
1044 		*nextp = n;
1045 }
1046 
1047 /**
1048  * get_pwq - get an extra reference on the specified pool_workqueue
1049  * @pwq: pool_workqueue to get
1050  *
1051  * Obtain an extra reference on @pwq.  The caller should guarantee that
1052  * @pwq has positive refcnt and be holding the matching pool->lock.
1053  */
1054 static void get_pwq(struct pool_workqueue *pwq)
1055 {
1056 	lockdep_assert_held(&pwq->pool->lock);
1057 	WARN_ON_ONCE(pwq->refcnt <= 0);
1058 	pwq->refcnt++;
1059 }
1060 
1061 /**
1062  * put_pwq - put a pool_workqueue reference
1063  * @pwq: pool_workqueue to put
1064  *
1065  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1066  * destruction.  The caller should be holding the matching pool->lock.
1067  */
1068 static void put_pwq(struct pool_workqueue *pwq)
1069 {
1070 	lockdep_assert_held(&pwq->pool->lock);
1071 	if (likely(--pwq->refcnt))
1072 		return;
1073 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1074 		return;
1075 	/*
1076 	 * @pwq can't be released under pool->lock, bounce to
1077 	 * pwq_unbound_release_workfn().  This never recurses on the same
1078 	 * pool->lock as this path is taken only for unbound workqueues and
1079 	 * the release work item is scheduled on a per-cpu workqueue.  To
1080 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1081 	 * subclass of 1 in get_unbound_pool().
1082 	 */
1083 	schedule_work(&pwq->unbound_release_work);
1084 }
1085 
1086 /**
1087  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1088  * @pwq: pool_workqueue to put (can be %NULL)
1089  *
1090  * put_pwq() with locking.  This function also allows %NULL @pwq.
1091  */
1092 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1093 {
1094 	if (pwq) {
1095 		/*
1096 		 * As both pwqs and pools are sched-RCU protected, the
1097 		 * following lock operations are safe.
1098 		 */
1099 		spin_lock_irq(&pwq->pool->lock);
1100 		put_pwq(pwq);
1101 		spin_unlock_irq(&pwq->pool->lock);
1102 	}
1103 }
1104 
1105 static void pwq_activate_delayed_work(struct work_struct *work)
1106 {
1107 	struct pool_workqueue *pwq = get_work_pwq(work);
1108 
1109 	trace_workqueue_activate_work(work);
1110 	move_linked_works(work, &pwq->pool->worklist, NULL);
1111 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1112 	pwq->nr_active++;
1113 }
1114 
1115 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1116 {
1117 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1118 						    struct work_struct, entry);
1119 
1120 	pwq_activate_delayed_work(work);
1121 }
1122 
1123 /**
1124  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1125  * @pwq: pwq of interest
1126  * @color: color of work which left the queue
1127  *
1128  * A work either has completed or is removed from pending queue,
1129  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1130  *
1131  * CONTEXT:
1132  * spin_lock_irq(pool->lock).
1133  */
1134 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1135 {
1136 	/* uncolored work items don't participate in flushing or nr_active */
1137 	if (color == WORK_NO_COLOR)
1138 		goto out_put;
1139 
1140 	pwq->nr_in_flight[color]--;
1141 
1142 	pwq->nr_active--;
1143 	if (!list_empty(&pwq->delayed_works)) {
1144 		/* one down, submit a delayed one */
1145 		if (pwq->nr_active < pwq->max_active)
1146 			pwq_activate_first_delayed(pwq);
1147 	}
1148 
1149 	/* is flush in progress and are we at the flushing tip? */
1150 	if (likely(pwq->flush_color != color))
1151 		goto out_put;
1152 
1153 	/* are there still in-flight works? */
1154 	if (pwq->nr_in_flight[color])
1155 		goto out_put;
1156 
1157 	/* this pwq is done, clear flush_color */
1158 	pwq->flush_color = -1;
1159 
1160 	/*
1161 	 * If this was the last pwq, wake up the first flusher.  It
1162 	 * will handle the rest.
1163 	 */
1164 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1165 		complete(&pwq->wq->first_flusher->done);
1166 out_put:
1167 	put_pwq(pwq);
1168 }
1169 
1170 /**
1171  * try_to_grab_pending - steal work item from worklist and disable irq
1172  * @work: work item to steal
1173  * @is_dwork: @work is a delayed_work
1174  * @flags: place to store irq state
1175  *
1176  * Try to grab PENDING bit of @work.  This function can handle @work in any
1177  * stable state - idle, on timer or on worklist.
1178  *
1179  * Return:
1180  *  1		if @work was pending and we successfully stole PENDING
1181  *  0		if @work was idle and we claimed PENDING
1182  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1183  *  -ENOENT	if someone else is canceling @work, this state may persist
1184  *		for arbitrarily long
1185  *
1186  * Note:
1187  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1188  * interrupted while holding PENDING and @work off queue, irq must be
1189  * disabled on entry.  This, combined with delayed_work->timer being
1190  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1191  *
1192  * On successful return, >= 0, irq is disabled and the caller is
1193  * responsible for releasing it using local_irq_restore(*@flags).
1194  *
1195  * This function is safe to call from any context including IRQ handler.
1196  */
1197 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1198 			       unsigned long *flags)
1199 {
1200 	struct worker_pool *pool;
1201 	struct pool_workqueue *pwq;
1202 
1203 	local_irq_save(*flags);
1204 
1205 	/* try to steal the timer if it exists */
1206 	if (is_dwork) {
1207 		struct delayed_work *dwork = to_delayed_work(work);
1208 
1209 		/*
1210 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1211 		 * guaranteed that the timer is not queued anywhere and not
1212 		 * running on the local CPU.
1213 		 */
1214 		if (likely(del_timer(&dwork->timer)))
1215 			return 1;
1216 	}
1217 
1218 	/* try to claim PENDING the normal way */
1219 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1220 		return 0;
1221 
1222 	/*
1223 	 * The queueing is in progress, or it is already queued. Try to
1224 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1225 	 */
1226 	pool = get_work_pool(work);
1227 	if (!pool)
1228 		goto fail;
1229 
1230 	spin_lock(&pool->lock);
1231 	/*
1232 	 * work->data is guaranteed to point to pwq only while the work
1233 	 * item is queued on pwq->wq, and both updating work->data to point
1234 	 * to pwq on queueing and to pool on dequeueing are done under
1235 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1236 	 * points to pwq which is associated with a locked pool, the work
1237 	 * item is currently queued on that pool.
1238 	 */
1239 	pwq = get_work_pwq(work);
1240 	if (pwq && pwq->pool == pool) {
1241 		debug_work_deactivate(work);
1242 
1243 		/*
1244 		 * A delayed work item cannot be grabbed directly because
1245 		 * it might have linked NO_COLOR work items which, if left
1246 		 * on the delayed_list, will confuse pwq->nr_active
1247 		 * management later on and cause stall.  Make sure the work
1248 		 * item is activated before grabbing.
1249 		 */
1250 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1251 			pwq_activate_delayed_work(work);
1252 
1253 		list_del_init(&work->entry);
1254 		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1255 
1256 		/* work->data points to pwq iff queued, point to pool */
1257 		set_work_pool_and_keep_pending(work, pool->id);
1258 
1259 		spin_unlock(&pool->lock);
1260 		return 1;
1261 	}
1262 	spin_unlock(&pool->lock);
1263 fail:
1264 	local_irq_restore(*flags);
1265 	if (work_is_canceling(work))
1266 		return -ENOENT;
1267 	cpu_relax();
1268 	return -EAGAIN;
1269 }
1270 
1271 /**
1272  * insert_work - insert a work into a pool
1273  * @pwq: pwq @work belongs to
1274  * @work: work to insert
1275  * @head: insertion point
1276  * @extra_flags: extra WORK_STRUCT_* flags to set
1277  *
1278  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1279  * work_struct flags.
1280  *
1281  * CONTEXT:
1282  * spin_lock_irq(pool->lock).
1283  */
1284 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1285 			struct list_head *head, unsigned int extra_flags)
1286 {
1287 	struct worker_pool *pool = pwq->pool;
1288 
1289 	/* we own @work, set data and link */
1290 	set_work_pwq(work, pwq, extra_flags);
1291 	list_add_tail(&work->entry, head);
1292 	get_pwq(pwq);
1293 
1294 	/*
1295 	 * Ensure either wq_worker_sleeping() sees the above
1296 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1297 	 * around lazily while there are works to be processed.
1298 	 */
1299 	smp_mb();
1300 
1301 	if (__need_more_worker(pool))
1302 		wake_up_worker(pool);
1303 }
1304 
1305 /*
1306  * Test whether @work is being queued from another work executing on the
1307  * same workqueue.
1308  */
1309 static bool is_chained_work(struct workqueue_struct *wq)
1310 {
1311 	struct worker *worker;
1312 
1313 	worker = current_wq_worker();
1314 	/*
1315 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1316 	 * I'm @worker, it's safe to dereference it without locking.
1317 	 */
1318 	return worker && worker->current_pwq->wq == wq;
1319 }
1320 
1321 static void __queue_work(int cpu, struct workqueue_struct *wq,
1322 			 struct work_struct *work)
1323 {
1324 	struct pool_workqueue *pwq;
1325 	struct worker_pool *last_pool;
1326 	struct list_head *worklist;
1327 	unsigned int work_flags;
1328 	unsigned int req_cpu = cpu;
1329 
1330 	/*
1331 	 * While a work item is PENDING && off queue, a task trying to
1332 	 * steal the PENDING will busy-loop waiting for it to either get
1333 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1334 	 * happen with IRQ disabled.
1335 	 */
1336 	WARN_ON_ONCE(!irqs_disabled());
1337 
1338 	debug_work_activate(work);
1339 
1340 	/* if draining, only works from the same workqueue are allowed */
1341 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1342 	    WARN_ON_ONCE(!is_chained_work(wq)))
1343 		return;
1344 retry:
1345 	if (req_cpu == WORK_CPU_UNBOUND)
1346 		cpu = raw_smp_processor_id();
1347 
1348 	/* pwq which will be used unless @work is executing elsewhere */
1349 	if (!(wq->flags & WQ_UNBOUND))
1350 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1351 	else
1352 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1353 
1354 	/*
1355 	 * If @work was previously on a different pool, it might still be
1356 	 * running there, in which case the work needs to be queued on that
1357 	 * pool to guarantee non-reentrancy.
1358 	 */
1359 	last_pool = get_work_pool(work);
1360 	if (last_pool && last_pool != pwq->pool) {
1361 		struct worker *worker;
1362 
1363 		spin_lock(&last_pool->lock);
1364 
1365 		worker = find_worker_executing_work(last_pool, work);
1366 
1367 		if (worker && worker->current_pwq->wq == wq) {
1368 			pwq = worker->current_pwq;
1369 		} else {
1370 			/* meh... not running there, queue here */
1371 			spin_unlock(&last_pool->lock);
1372 			spin_lock(&pwq->pool->lock);
1373 		}
1374 	} else {
1375 		spin_lock(&pwq->pool->lock);
1376 	}
1377 
1378 	/*
1379 	 * pwq is determined and locked.  For unbound pools, we could have
1380 	 * raced with pwq release and it could already be dead.  If its
1381 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1382 	 * without another pwq replacing it in the numa_pwq_tbl or while
1383 	 * work items are executing on it, so the retrying is guaranteed to
1384 	 * make forward-progress.
1385 	 */
1386 	if (unlikely(!pwq->refcnt)) {
1387 		if (wq->flags & WQ_UNBOUND) {
1388 			spin_unlock(&pwq->pool->lock);
1389 			cpu_relax();
1390 			goto retry;
1391 		}
1392 		/* oops */
1393 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1394 			  wq->name, cpu);
1395 	}
1396 
1397 	/* pwq determined, queue */
1398 	trace_workqueue_queue_work(req_cpu, pwq, work);
1399 
1400 	if (WARN_ON(!list_empty(&work->entry))) {
1401 		spin_unlock(&pwq->pool->lock);
1402 		return;
1403 	}
1404 
1405 	pwq->nr_in_flight[pwq->work_color]++;
1406 	work_flags = work_color_to_flags(pwq->work_color);
1407 
1408 	if (likely(pwq->nr_active < pwq->max_active)) {
1409 		trace_workqueue_activate_work(work);
1410 		pwq->nr_active++;
1411 		worklist = &pwq->pool->worklist;
1412 	} else {
1413 		work_flags |= WORK_STRUCT_DELAYED;
1414 		worklist = &pwq->delayed_works;
1415 	}
1416 
1417 	insert_work(pwq, work, worklist, work_flags);
1418 
1419 	spin_unlock(&pwq->pool->lock);
1420 }
1421 
1422 /**
1423  * queue_work_on - queue work on specific cpu
1424  * @cpu: CPU number to execute work on
1425  * @wq: workqueue to use
1426  * @work: work to queue
1427  *
1428  * We queue the work to a specific CPU, the caller must ensure it
1429  * can't go away.
1430  *
1431  * Return: %false if @work was already on a queue, %true otherwise.
1432  */
1433 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1434 		   struct work_struct *work)
1435 {
1436 	bool ret = false;
1437 	unsigned long flags;
1438 
1439 	local_irq_save(flags);
1440 
1441 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1442 		__queue_work(cpu, wq, work);
1443 		ret = true;
1444 	}
1445 
1446 	local_irq_restore(flags);
1447 	return ret;
1448 }
1449 EXPORT_SYMBOL(queue_work_on);
1450 
1451 void delayed_work_timer_fn(unsigned long __data)
1452 {
1453 	struct delayed_work *dwork = (struct delayed_work *)__data;
1454 
1455 	/* should have been called from irqsafe timer with irq already off */
1456 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1457 }
1458 EXPORT_SYMBOL(delayed_work_timer_fn);
1459 
1460 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1461 				struct delayed_work *dwork, unsigned long delay)
1462 {
1463 	struct timer_list *timer = &dwork->timer;
1464 	struct work_struct *work = &dwork->work;
1465 
1466 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1467 		     timer->data != (unsigned long)dwork);
1468 	WARN_ON_ONCE(timer_pending(timer));
1469 	WARN_ON_ONCE(!list_empty(&work->entry));
1470 
1471 	/*
1472 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1473 	 * both optimization and correctness.  The earliest @timer can
1474 	 * expire is on the closest next tick and delayed_work users depend
1475 	 * on that there's no such delay when @delay is 0.
1476 	 */
1477 	if (!delay) {
1478 		__queue_work(cpu, wq, &dwork->work);
1479 		return;
1480 	}
1481 
1482 	timer_stats_timer_set_start_info(&dwork->timer);
1483 
1484 	dwork->wq = wq;
1485 	dwork->cpu = cpu;
1486 	timer->expires = jiffies + delay;
1487 
1488 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1489 		add_timer_on(timer, cpu);
1490 	else
1491 		add_timer(timer);
1492 }
1493 
1494 /**
1495  * queue_delayed_work_on - queue work on specific CPU after delay
1496  * @cpu: CPU number to execute work on
1497  * @wq: workqueue to use
1498  * @dwork: work to queue
1499  * @delay: number of jiffies to wait before queueing
1500  *
1501  * Return: %false if @work was already on a queue, %true otherwise.  If
1502  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1503  * execution.
1504  */
1505 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1506 			   struct delayed_work *dwork, unsigned long delay)
1507 {
1508 	struct work_struct *work = &dwork->work;
1509 	bool ret = false;
1510 	unsigned long flags;
1511 
1512 	/* read the comment in __queue_work() */
1513 	local_irq_save(flags);
1514 
1515 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1516 		__queue_delayed_work(cpu, wq, dwork, delay);
1517 		ret = true;
1518 	}
1519 
1520 	local_irq_restore(flags);
1521 	return ret;
1522 }
1523 EXPORT_SYMBOL(queue_delayed_work_on);
1524 
1525 /**
1526  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1527  * @cpu: CPU number to execute work on
1528  * @wq: workqueue to use
1529  * @dwork: work to queue
1530  * @delay: number of jiffies to wait before queueing
1531  *
1532  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1533  * modify @dwork's timer so that it expires after @delay.  If @delay is
1534  * zero, @work is guaranteed to be scheduled immediately regardless of its
1535  * current state.
1536  *
1537  * Return: %false if @dwork was idle and queued, %true if @dwork was
1538  * pending and its timer was modified.
1539  *
1540  * This function is safe to call from any context including IRQ handler.
1541  * See try_to_grab_pending() for details.
1542  */
1543 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1544 			 struct delayed_work *dwork, unsigned long delay)
1545 {
1546 	unsigned long flags;
1547 	int ret;
1548 
1549 	do {
1550 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1551 	} while (unlikely(ret == -EAGAIN));
1552 
1553 	if (likely(ret >= 0)) {
1554 		__queue_delayed_work(cpu, wq, dwork, delay);
1555 		local_irq_restore(flags);
1556 	}
1557 
1558 	/* -ENOENT from try_to_grab_pending() becomes %true */
1559 	return ret;
1560 }
1561 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1562 
1563 /**
1564  * worker_enter_idle - enter idle state
1565  * @worker: worker which is entering idle state
1566  *
1567  * @worker is entering idle state.  Update stats and idle timer if
1568  * necessary.
1569  *
1570  * LOCKING:
1571  * spin_lock_irq(pool->lock).
1572  */
1573 static void worker_enter_idle(struct worker *worker)
1574 {
1575 	struct worker_pool *pool = worker->pool;
1576 
1577 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1578 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1579 			 (worker->hentry.next || worker->hentry.pprev)))
1580 		return;
1581 
1582 	/* can't use worker_set_flags(), also called from start_worker() */
1583 	worker->flags |= WORKER_IDLE;
1584 	pool->nr_idle++;
1585 	worker->last_active = jiffies;
1586 
1587 	/* idle_list is LIFO */
1588 	list_add(&worker->entry, &pool->idle_list);
1589 
1590 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1591 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1592 
1593 	/*
1594 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1595 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1596 	 * nr_running, the warning may trigger spuriously.  Check iff
1597 	 * unbind is not in progress.
1598 	 */
1599 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1600 		     pool->nr_workers == pool->nr_idle &&
1601 		     atomic_read(&pool->nr_running));
1602 }
1603 
1604 /**
1605  * worker_leave_idle - leave idle state
1606  * @worker: worker which is leaving idle state
1607  *
1608  * @worker is leaving idle state.  Update stats.
1609  *
1610  * LOCKING:
1611  * spin_lock_irq(pool->lock).
1612  */
1613 static void worker_leave_idle(struct worker *worker)
1614 {
1615 	struct worker_pool *pool = worker->pool;
1616 
1617 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1618 		return;
1619 	worker_clr_flags(worker, WORKER_IDLE);
1620 	pool->nr_idle--;
1621 	list_del_init(&worker->entry);
1622 }
1623 
1624 /**
1625  * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1626  * @pool: target worker_pool
1627  *
1628  * Bind %current to the cpu of @pool if it is associated and lock @pool.
1629  *
1630  * Works which are scheduled while the cpu is online must at least be
1631  * scheduled to a worker which is bound to the cpu so that if they are
1632  * flushed from cpu callbacks while cpu is going down, they are
1633  * guaranteed to execute on the cpu.
1634  *
1635  * This function is to be used by unbound workers and rescuers to bind
1636  * themselves to the target cpu and may race with cpu going down or
1637  * coming online.  kthread_bind() can't be used because it may put the
1638  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1639  * verbatim as it's best effort and blocking and pool may be
1640  * [dis]associated in the meantime.
1641  *
1642  * This function tries set_cpus_allowed() and locks pool and verifies the
1643  * binding against %POOL_DISASSOCIATED which is set during
1644  * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1645  * enters idle state or fetches works without dropping lock, it can
1646  * guarantee the scheduling requirement described in the first paragraph.
1647  *
1648  * CONTEXT:
1649  * Might sleep.  Called without any lock but returns with pool->lock
1650  * held.
1651  *
1652  * Return:
1653  * %true if the associated pool is online (@worker is successfully
1654  * bound), %false if offline.
1655  */
1656 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1657 __acquires(&pool->lock)
1658 {
1659 	while (true) {
1660 		/*
1661 		 * The following call may fail, succeed or succeed
1662 		 * without actually migrating the task to the cpu if
1663 		 * it races with cpu hotunplug operation.  Verify
1664 		 * against POOL_DISASSOCIATED.
1665 		 */
1666 		if (!(pool->flags & POOL_DISASSOCIATED))
1667 			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1668 
1669 		spin_lock_irq(&pool->lock);
1670 		if (pool->flags & POOL_DISASSOCIATED)
1671 			return false;
1672 		if (task_cpu(current) == pool->cpu &&
1673 		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1674 			return true;
1675 		spin_unlock_irq(&pool->lock);
1676 
1677 		/*
1678 		 * We've raced with CPU hot[un]plug.  Give it a breather
1679 		 * and retry migration.  cond_resched() is required here;
1680 		 * otherwise, we might deadlock against cpu_stop trying to
1681 		 * bring down the CPU on non-preemptive kernel.
1682 		 */
1683 		cpu_relax();
1684 		cond_resched();
1685 	}
1686 }
1687 
1688 static struct worker *alloc_worker(void)
1689 {
1690 	struct worker *worker;
1691 
1692 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1693 	if (worker) {
1694 		INIT_LIST_HEAD(&worker->entry);
1695 		INIT_LIST_HEAD(&worker->scheduled);
1696 		/* on creation a worker is in !idle && prep state */
1697 		worker->flags = WORKER_PREP;
1698 	}
1699 	return worker;
1700 }
1701 
1702 /**
1703  * create_worker - create a new workqueue worker
1704  * @pool: pool the new worker will belong to
1705  *
1706  * Create a new worker which is bound to @pool.  The returned worker
1707  * can be started by calling start_worker() or destroyed using
1708  * destroy_worker().
1709  *
1710  * CONTEXT:
1711  * Might sleep.  Does GFP_KERNEL allocations.
1712  *
1713  * Return:
1714  * Pointer to the newly created worker.
1715  */
1716 static struct worker *create_worker(struct worker_pool *pool)
1717 {
1718 	struct worker *worker = NULL;
1719 	int id = -1;
1720 	char id_buf[16];
1721 
1722 	lockdep_assert_held(&pool->manager_mutex);
1723 
1724 	/*
1725 	 * ID is needed to determine kthread name.  Allocate ID first
1726 	 * without installing the pointer.
1727 	 */
1728 	idr_preload(GFP_KERNEL);
1729 	spin_lock_irq(&pool->lock);
1730 
1731 	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1732 
1733 	spin_unlock_irq(&pool->lock);
1734 	idr_preload_end();
1735 	if (id < 0)
1736 		goto fail;
1737 
1738 	worker = alloc_worker();
1739 	if (!worker)
1740 		goto fail;
1741 
1742 	worker->pool = pool;
1743 	worker->id = id;
1744 
1745 	if (pool->cpu >= 0)
1746 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1747 			 pool->attrs->nice < 0  ? "H" : "");
1748 	else
1749 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1750 
1751 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1752 					      "kworker/%s", id_buf);
1753 	if (IS_ERR(worker->task))
1754 		goto fail;
1755 
1756 	set_user_nice(worker->task, pool->attrs->nice);
1757 
1758 	/* prevent userland from meddling with cpumask of workqueue workers */
1759 	worker->task->flags |= PF_NO_SETAFFINITY;
1760 
1761 	/*
1762 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1763 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1764 	 */
1765 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1766 
1767 	/*
1768 	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1769 	 * remains stable across this function.  See the comments above the
1770 	 * flag definition for details.
1771 	 */
1772 	if (pool->flags & POOL_DISASSOCIATED)
1773 		worker->flags |= WORKER_UNBOUND;
1774 
1775 	/* successful, commit the pointer to idr */
1776 	spin_lock_irq(&pool->lock);
1777 	idr_replace(&pool->worker_idr, worker, worker->id);
1778 	spin_unlock_irq(&pool->lock);
1779 
1780 	return worker;
1781 
1782 fail:
1783 	if (id >= 0) {
1784 		spin_lock_irq(&pool->lock);
1785 		idr_remove(&pool->worker_idr, id);
1786 		spin_unlock_irq(&pool->lock);
1787 	}
1788 	kfree(worker);
1789 	return NULL;
1790 }
1791 
1792 /**
1793  * start_worker - start a newly created worker
1794  * @worker: worker to start
1795  *
1796  * Make the pool aware of @worker and start it.
1797  *
1798  * CONTEXT:
1799  * spin_lock_irq(pool->lock).
1800  */
1801 static void start_worker(struct worker *worker)
1802 {
1803 	worker->flags |= WORKER_STARTED;
1804 	worker->pool->nr_workers++;
1805 	worker_enter_idle(worker);
1806 	wake_up_process(worker->task);
1807 }
1808 
1809 /**
1810  * create_and_start_worker - create and start a worker for a pool
1811  * @pool: the target pool
1812  *
1813  * Grab the managership of @pool and create and start a new worker for it.
1814  *
1815  * Return: 0 on success. A negative error code otherwise.
1816  */
1817 static int create_and_start_worker(struct worker_pool *pool)
1818 {
1819 	struct worker *worker;
1820 
1821 	mutex_lock(&pool->manager_mutex);
1822 
1823 	worker = create_worker(pool);
1824 	if (worker) {
1825 		spin_lock_irq(&pool->lock);
1826 		start_worker(worker);
1827 		spin_unlock_irq(&pool->lock);
1828 	}
1829 
1830 	mutex_unlock(&pool->manager_mutex);
1831 
1832 	return worker ? 0 : -ENOMEM;
1833 }
1834 
1835 /**
1836  * destroy_worker - destroy a workqueue worker
1837  * @worker: worker to be destroyed
1838  *
1839  * Destroy @worker and adjust @pool stats accordingly.
1840  *
1841  * CONTEXT:
1842  * spin_lock_irq(pool->lock) which is released and regrabbed.
1843  */
1844 static void destroy_worker(struct worker *worker)
1845 {
1846 	struct worker_pool *pool = worker->pool;
1847 
1848 	lockdep_assert_held(&pool->manager_mutex);
1849 	lockdep_assert_held(&pool->lock);
1850 
1851 	/* sanity check frenzy */
1852 	if (WARN_ON(worker->current_work) ||
1853 	    WARN_ON(!list_empty(&worker->scheduled)))
1854 		return;
1855 
1856 	if (worker->flags & WORKER_STARTED)
1857 		pool->nr_workers--;
1858 	if (worker->flags & WORKER_IDLE)
1859 		pool->nr_idle--;
1860 
1861 	/*
1862 	 * Once WORKER_DIE is set, the kworker may destroy itself at any
1863 	 * point.  Pin to ensure the task stays until we're done with it.
1864 	 */
1865 	get_task_struct(worker->task);
1866 
1867 	list_del_init(&worker->entry);
1868 	worker->flags |= WORKER_DIE;
1869 
1870 	idr_remove(&pool->worker_idr, worker->id);
1871 
1872 	spin_unlock_irq(&pool->lock);
1873 
1874 	kthread_stop(worker->task);
1875 	put_task_struct(worker->task);
1876 	kfree(worker);
1877 
1878 	spin_lock_irq(&pool->lock);
1879 }
1880 
1881 static void idle_worker_timeout(unsigned long __pool)
1882 {
1883 	struct worker_pool *pool = (void *)__pool;
1884 
1885 	spin_lock_irq(&pool->lock);
1886 
1887 	if (too_many_workers(pool)) {
1888 		struct worker *worker;
1889 		unsigned long expires;
1890 
1891 		/* idle_list is kept in LIFO order, check the last one */
1892 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1893 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1894 
1895 		if (time_before(jiffies, expires))
1896 			mod_timer(&pool->idle_timer, expires);
1897 		else {
1898 			/* it's been idle for too long, wake up manager */
1899 			pool->flags |= POOL_MANAGE_WORKERS;
1900 			wake_up_worker(pool);
1901 		}
1902 	}
1903 
1904 	spin_unlock_irq(&pool->lock);
1905 }
1906 
1907 static void send_mayday(struct work_struct *work)
1908 {
1909 	struct pool_workqueue *pwq = get_work_pwq(work);
1910 	struct workqueue_struct *wq = pwq->wq;
1911 
1912 	lockdep_assert_held(&wq_mayday_lock);
1913 
1914 	if (!wq->rescuer)
1915 		return;
1916 
1917 	/* mayday mayday mayday */
1918 	if (list_empty(&pwq->mayday_node)) {
1919 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1920 		wake_up_process(wq->rescuer->task);
1921 	}
1922 }
1923 
1924 static void pool_mayday_timeout(unsigned long __pool)
1925 {
1926 	struct worker_pool *pool = (void *)__pool;
1927 	struct work_struct *work;
1928 
1929 	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1930 	spin_lock(&pool->lock);
1931 
1932 	if (need_to_create_worker(pool)) {
1933 		/*
1934 		 * We've been trying to create a new worker but
1935 		 * haven't been successful.  We might be hitting an
1936 		 * allocation deadlock.  Send distress signals to
1937 		 * rescuers.
1938 		 */
1939 		list_for_each_entry(work, &pool->worklist, entry)
1940 			send_mayday(work);
1941 	}
1942 
1943 	spin_unlock(&pool->lock);
1944 	spin_unlock_irq(&wq_mayday_lock);
1945 
1946 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1947 }
1948 
1949 /**
1950  * maybe_create_worker - create a new worker if necessary
1951  * @pool: pool to create a new worker for
1952  *
1953  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1954  * have at least one idle worker on return from this function.  If
1955  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1956  * sent to all rescuers with works scheduled on @pool to resolve
1957  * possible allocation deadlock.
1958  *
1959  * On return, need_to_create_worker() is guaranteed to be %false and
1960  * may_start_working() %true.
1961  *
1962  * LOCKING:
1963  * spin_lock_irq(pool->lock) which may be released and regrabbed
1964  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1965  * manager.
1966  *
1967  * Return:
1968  * %false if no action was taken and pool->lock stayed locked, %true
1969  * otherwise.
1970  */
1971 static bool maybe_create_worker(struct worker_pool *pool)
1972 __releases(&pool->lock)
1973 __acquires(&pool->lock)
1974 {
1975 	if (!need_to_create_worker(pool))
1976 		return false;
1977 restart:
1978 	spin_unlock_irq(&pool->lock);
1979 
1980 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1981 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1982 
1983 	while (true) {
1984 		struct worker *worker;
1985 
1986 		worker = create_worker(pool);
1987 		if (worker) {
1988 			del_timer_sync(&pool->mayday_timer);
1989 			spin_lock_irq(&pool->lock);
1990 			start_worker(worker);
1991 			if (WARN_ON_ONCE(need_to_create_worker(pool)))
1992 				goto restart;
1993 			return true;
1994 		}
1995 
1996 		if (!need_to_create_worker(pool))
1997 			break;
1998 
1999 		__set_current_state(TASK_INTERRUPTIBLE);
2000 		schedule_timeout(CREATE_COOLDOWN);
2001 
2002 		if (!need_to_create_worker(pool))
2003 			break;
2004 	}
2005 
2006 	del_timer_sync(&pool->mayday_timer);
2007 	spin_lock_irq(&pool->lock);
2008 	if (need_to_create_worker(pool))
2009 		goto restart;
2010 	return true;
2011 }
2012 
2013 /**
2014  * maybe_destroy_worker - destroy workers which have been idle for a while
2015  * @pool: pool to destroy workers for
2016  *
2017  * Destroy @pool workers which have been idle for longer than
2018  * IDLE_WORKER_TIMEOUT.
2019  *
2020  * LOCKING:
2021  * spin_lock_irq(pool->lock) which may be released and regrabbed
2022  * multiple times.  Called only from manager.
2023  *
2024  * Return:
2025  * %false if no action was taken and pool->lock stayed locked, %true
2026  * otherwise.
2027  */
2028 static bool maybe_destroy_workers(struct worker_pool *pool)
2029 {
2030 	bool ret = false;
2031 
2032 	while (too_many_workers(pool)) {
2033 		struct worker *worker;
2034 		unsigned long expires;
2035 
2036 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2037 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2038 
2039 		if (time_before(jiffies, expires)) {
2040 			mod_timer(&pool->idle_timer, expires);
2041 			break;
2042 		}
2043 
2044 		destroy_worker(worker);
2045 		ret = true;
2046 	}
2047 
2048 	return ret;
2049 }
2050 
2051 /**
2052  * manage_workers - manage worker pool
2053  * @worker: self
2054  *
2055  * Assume the manager role and manage the worker pool @worker belongs
2056  * to.  At any given time, there can be only zero or one manager per
2057  * pool.  The exclusion is handled automatically by this function.
2058  *
2059  * The caller can safely start processing works on false return.  On
2060  * true return, it's guaranteed that need_to_create_worker() is false
2061  * and may_start_working() is true.
2062  *
2063  * CONTEXT:
2064  * spin_lock_irq(pool->lock) which may be released and regrabbed
2065  * multiple times.  Does GFP_KERNEL allocations.
2066  *
2067  * Return:
2068  * %false if the pool don't need management and the caller can safely start
2069  * processing works, %true indicates that the function released pool->lock
2070  * and reacquired it to perform some management function and that the
2071  * conditions that the caller verified while holding the lock before
2072  * calling the function might no longer be true.
2073  */
2074 static bool manage_workers(struct worker *worker)
2075 {
2076 	struct worker_pool *pool = worker->pool;
2077 	bool ret = false;
2078 
2079 	/*
2080 	 * Managership is governed by two mutexes - manager_arb and
2081 	 * manager_mutex.  manager_arb handles arbitration of manager role.
2082 	 * Anyone who successfully grabs manager_arb wins the arbitration
2083 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
2084 	 * failure while holding pool->lock reliably indicates that someone
2085 	 * else is managing the pool and the worker which failed trylock
2086 	 * can proceed to executing work items.  This means that anyone
2087 	 * grabbing manager_arb is responsible for actually performing
2088 	 * manager duties.  If manager_arb is grabbed and released without
2089 	 * actual management, the pool may stall indefinitely.
2090 	 *
2091 	 * manager_mutex is used for exclusion of actual management
2092 	 * operations.  The holder of manager_mutex can be sure that none
2093 	 * of management operations, including creation and destruction of
2094 	 * workers, won't take place until the mutex is released.  Because
2095 	 * manager_mutex doesn't interfere with manager role arbitration,
2096 	 * it is guaranteed that the pool's management, while may be
2097 	 * delayed, won't be disturbed by someone else grabbing
2098 	 * manager_mutex.
2099 	 */
2100 	if (!mutex_trylock(&pool->manager_arb))
2101 		return ret;
2102 
2103 	/*
2104 	 * With manager arbitration won, manager_mutex would be free in
2105 	 * most cases.  trylock first without dropping @pool->lock.
2106 	 */
2107 	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2108 		spin_unlock_irq(&pool->lock);
2109 		mutex_lock(&pool->manager_mutex);
2110 		spin_lock_irq(&pool->lock);
2111 		ret = true;
2112 	}
2113 
2114 	pool->flags &= ~POOL_MANAGE_WORKERS;
2115 
2116 	/*
2117 	 * Destroy and then create so that may_start_working() is true
2118 	 * on return.
2119 	 */
2120 	ret |= maybe_destroy_workers(pool);
2121 	ret |= maybe_create_worker(pool);
2122 
2123 	mutex_unlock(&pool->manager_mutex);
2124 	mutex_unlock(&pool->manager_arb);
2125 	return ret;
2126 }
2127 
2128 /**
2129  * process_one_work - process single work
2130  * @worker: self
2131  * @work: work to process
2132  *
2133  * Process @work.  This function contains all the logics necessary to
2134  * process a single work including synchronization against and
2135  * interaction with other workers on the same cpu, queueing and
2136  * flushing.  As long as context requirement is met, any worker can
2137  * call this function to process a work.
2138  *
2139  * CONTEXT:
2140  * spin_lock_irq(pool->lock) which is released and regrabbed.
2141  */
2142 static void process_one_work(struct worker *worker, struct work_struct *work)
2143 __releases(&pool->lock)
2144 __acquires(&pool->lock)
2145 {
2146 	struct pool_workqueue *pwq = get_work_pwq(work);
2147 	struct worker_pool *pool = worker->pool;
2148 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2149 	int work_color;
2150 	struct worker *collision;
2151 #ifdef CONFIG_LOCKDEP
2152 	/*
2153 	 * It is permissible to free the struct work_struct from
2154 	 * inside the function that is called from it, this we need to
2155 	 * take into account for lockdep too.  To avoid bogus "held
2156 	 * lock freed" warnings as well as problems when looking into
2157 	 * work->lockdep_map, make a copy and use that here.
2158 	 */
2159 	struct lockdep_map lockdep_map;
2160 
2161 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2162 #endif
2163 	/*
2164 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2165 	 * necessary to avoid spurious warnings from rescuers servicing the
2166 	 * unbound or a disassociated pool.
2167 	 */
2168 	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2169 		     !(pool->flags & POOL_DISASSOCIATED) &&
2170 		     raw_smp_processor_id() != pool->cpu);
2171 
2172 	/*
2173 	 * A single work shouldn't be executed concurrently by
2174 	 * multiple workers on a single cpu.  Check whether anyone is
2175 	 * already processing the work.  If so, defer the work to the
2176 	 * currently executing one.
2177 	 */
2178 	collision = find_worker_executing_work(pool, work);
2179 	if (unlikely(collision)) {
2180 		move_linked_works(work, &collision->scheduled, NULL);
2181 		return;
2182 	}
2183 
2184 	/* claim and dequeue */
2185 	debug_work_deactivate(work);
2186 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2187 	worker->current_work = work;
2188 	worker->current_func = work->func;
2189 	worker->current_pwq = pwq;
2190 	work_color = get_work_color(work);
2191 
2192 	list_del_init(&work->entry);
2193 
2194 	/*
2195 	 * CPU intensive works don't participate in concurrency
2196 	 * management.  They're the scheduler's responsibility.
2197 	 */
2198 	if (unlikely(cpu_intensive))
2199 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2200 
2201 	/*
2202 	 * Unbound pool isn't concurrency managed and work items should be
2203 	 * executed ASAP.  Wake up another worker if necessary.
2204 	 */
2205 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2206 		wake_up_worker(pool);
2207 
2208 	/*
2209 	 * Record the last pool and clear PENDING which should be the last
2210 	 * update to @work.  Also, do this inside @pool->lock so that
2211 	 * PENDING and queued state changes happen together while IRQ is
2212 	 * disabled.
2213 	 */
2214 	set_work_pool_and_clear_pending(work, pool->id);
2215 
2216 	spin_unlock_irq(&pool->lock);
2217 
2218 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2219 	lock_map_acquire(&lockdep_map);
2220 	trace_workqueue_execute_start(work);
2221 	worker->current_func(work);
2222 	/*
2223 	 * While we must be careful to not use "work" after this, the trace
2224 	 * point will only record its address.
2225 	 */
2226 	trace_workqueue_execute_end(work);
2227 	lock_map_release(&lockdep_map);
2228 	lock_map_release(&pwq->wq->lockdep_map);
2229 
2230 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2231 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2232 		       "     last function: %pf\n",
2233 		       current->comm, preempt_count(), task_pid_nr(current),
2234 		       worker->current_func);
2235 		debug_show_held_locks(current);
2236 		dump_stack();
2237 	}
2238 
2239 	/*
2240 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2241 	 * kernels, where a requeueing work item waiting for something to
2242 	 * happen could deadlock with stop_machine as such work item could
2243 	 * indefinitely requeue itself while all other CPUs are trapped in
2244 	 * stop_machine.
2245 	 */
2246 	cond_resched();
2247 
2248 	spin_lock_irq(&pool->lock);
2249 
2250 	/* clear cpu intensive status */
2251 	if (unlikely(cpu_intensive))
2252 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2253 
2254 	/* we're done with it, release */
2255 	hash_del(&worker->hentry);
2256 	worker->current_work = NULL;
2257 	worker->current_func = NULL;
2258 	worker->current_pwq = NULL;
2259 	worker->desc_valid = false;
2260 	pwq_dec_nr_in_flight(pwq, work_color);
2261 }
2262 
2263 /**
2264  * process_scheduled_works - process scheduled works
2265  * @worker: self
2266  *
2267  * Process all scheduled works.  Please note that the scheduled list
2268  * may change while processing a work, so this function repeatedly
2269  * fetches a work from the top and executes it.
2270  *
2271  * CONTEXT:
2272  * spin_lock_irq(pool->lock) which may be released and regrabbed
2273  * multiple times.
2274  */
2275 static void process_scheduled_works(struct worker *worker)
2276 {
2277 	while (!list_empty(&worker->scheduled)) {
2278 		struct work_struct *work = list_first_entry(&worker->scheduled,
2279 						struct work_struct, entry);
2280 		process_one_work(worker, work);
2281 	}
2282 }
2283 
2284 /**
2285  * worker_thread - the worker thread function
2286  * @__worker: self
2287  *
2288  * The worker thread function.  All workers belong to a worker_pool -
2289  * either a per-cpu one or dynamic unbound one.  These workers process all
2290  * work items regardless of their specific target workqueue.  The only
2291  * exception is work items which belong to workqueues with a rescuer which
2292  * will be explained in rescuer_thread().
2293  *
2294  * Return: 0
2295  */
2296 static int worker_thread(void *__worker)
2297 {
2298 	struct worker *worker = __worker;
2299 	struct worker_pool *pool = worker->pool;
2300 
2301 	/* tell the scheduler that this is a workqueue worker */
2302 	worker->task->flags |= PF_WQ_WORKER;
2303 woke_up:
2304 	spin_lock_irq(&pool->lock);
2305 
2306 	/* am I supposed to die? */
2307 	if (unlikely(worker->flags & WORKER_DIE)) {
2308 		spin_unlock_irq(&pool->lock);
2309 		WARN_ON_ONCE(!list_empty(&worker->entry));
2310 		worker->task->flags &= ~PF_WQ_WORKER;
2311 		return 0;
2312 	}
2313 
2314 	worker_leave_idle(worker);
2315 recheck:
2316 	/* no more worker necessary? */
2317 	if (!need_more_worker(pool))
2318 		goto sleep;
2319 
2320 	/* do we need to manage? */
2321 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2322 		goto recheck;
2323 
2324 	/*
2325 	 * ->scheduled list can only be filled while a worker is
2326 	 * preparing to process a work or actually processing it.
2327 	 * Make sure nobody diddled with it while I was sleeping.
2328 	 */
2329 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2330 
2331 	/*
2332 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2333 	 * worker or that someone else has already assumed the manager
2334 	 * role.  This is where @worker starts participating in concurrency
2335 	 * management if applicable and concurrency management is restored
2336 	 * after being rebound.  See rebind_workers() for details.
2337 	 */
2338 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2339 
2340 	do {
2341 		struct work_struct *work =
2342 			list_first_entry(&pool->worklist,
2343 					 struct work_struct, entry);
2344 
2345 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2346 			/* optimization path, not strictly necessary */
2347 			process_one_work(worker, work);
2348 			if (unlikely(!list_empty(&worker->scheduled)))
2349 				process_scheduled_works(worker);
2350 		} else {
2351 			move_linked_works(work, &worker->scheduled, NULL);
2352 			process_scheduled_works(worker);
2353 		}
2354 	} while (keep_working(pool));
2355 
2356 	worker_set_flags(worker, WORKER_PREP, false);
2357 sleep:
2358 	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2359 		goto recheck;
2360 
2361 	/*
2362 	 * pool->lock is held and there's no work to process and no need to
2363 	 * manage, sleep.  Workers are woken up only while holding
2364 	 * pool->lock or from local cpu, so setting the current state
2365 	 * before releasing pool->lock is enough to prevent losing any
2366 	 * event.
2367 	 */
2368 	worker_enter_idle(worker);
2369 	__set_current_state(TASK_INTERRUPTIBLE);
2370 	spin_unlock_irq(&pool->lock);
2371 	schedule();
2372 	goto woke_up;
2373 }
2374 
2375 /**
2376  * rescuer_thread - the rescuer thread function
2377  * @__rescuer: self
2378  *
2379  * Workqueue rescuer thread function.  There's one rescuer for each
2380  * workqueue which has WQ_MEM_RECLAIM set.
2381  *
2382  * Regular work processing on a pool may block trying to create a new
2383  * worker which uses GFP_KERNEL allocation which has slight chance of
2384  * developing into deadlock if some works currently on the same queue
2385  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2386  * the problem rescuer solves.
2387  *
2388  * When such condition is possible, the pool summons rescuers of all
2389  * workqueues which have works queued on the pool and let them process
2390  * those works so that forward progress can be guaranteed.
2391  *
2392  * This should happen rarely.
2393  *
2394  * Return: 0
2395  */
2396 static int rescuer_thread(void *__rescuer)
2397 {
2398 	struct worker *rescuer = __rescuer;
2399 	struct workqueue_struct *wq = rescuer->rescue_wq;
2400 	struct list_head *scheduled = &rescuer->scheduled;
2401 
2402 	set_user_nice(current, RESCUER_NICE_LEVEL);
2403 
2404 	/*
2405 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2406 	 * doesn't participate in concurrency management.
2407 	 */
2408 	rescuer->task->flags |= PF_WQ_WORKER;
2409 repeat:
2410 	set_current_state(TASK_INTERRUPTIBLE);
2411 
2412 	if (kthread_should_stop()) {
2413 		__set_current_state(TASK_RUNNING);
2414 		rescuer->task->flags &= ~PF_WQ_WORKER;
2415 		return 0;
2416 	}
2417 
2418 	/* see whether any pwq is asking for help */
2419 	spin_lock_irq(&wq_mayday_lock);
2420 
2421 	while (!list_empty(&wq->maydays)) {
2422 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2423 					struct pool_workqueue, mayday_node);
2424 		struct worker_pool *pool = pwq->pool;
2425 		struct work_struct *work, *n;
2426 
2427 		__set_current_state(TASK_RUNNING);
2428 		list_del_init(&pwq->mayday_node);
2429 
2430 		spin_unlock_irq(&wq_mayday_lock);
2431 
2432 		/* migrate to the target cpu if possible */
2433 		worker_maybe_bind_and_lock(pool);
2434 		rescuer->pool = pool;
2435 
2436 		/*
2437 		 * Slurp in all works issued via this workqueue and
2438 		 * process'em.
2439 		 */
2440 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2441 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2442 			if (get_work_pwq(work) == pwq)
2443 				move_linked_works(work, scheduled, &n);
2444 
2445 		process_scheduled_works(rescuer);
2446 
2447 		/*
2448 		 * Leave this pool.  If keep_working() is %true, notify a
2449 		 * regular worker; otherwise, we end up with 0 concurrency
2450 		 * and stalling the execution.
2451 		 */
2452 		if (keep_working(pool))
2453 			wake_up_worker(pool);
2454 
2455 		rescuer->pool = NULL;
2456 		spin_unlock(&pool->lock);
2457 		spin_lock(&wq_mayday_lock);
2458 	}
2459 
2460 	spin_unlock_irq(&wq_mayday_lock);
2461 
2462 	/* rescuers should never participate in concurrency management */
2463 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2464 	schedule();
2465 	goto repeat;
2466 }
2467 
2468 struct wq_barrier {
2469 	struct work_struct	work;
2470 	struct completion	done;
2471 };
2472 
2473 static void wq_barrier_func(struct work_struct *work)
2474 {
2475 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2476 	complete(&barr->done);
2477 }
2478 
2479 /**
2480  * insert_wq_barrier - insert a barrier work
2481  * @pwq: pwq to insert barrier into
2482  * @barr: wq_barrier to insert
2483  * @target: target work to attach @barr to
2484  * @worker: worker currently executing @target, NULL if @target is not executing
2485  *
2486  * @barr is linked to @target such that @barr is completed only after
2487  * @target finishes execution.  Please note that the ordering
2488  * guarantee is observed only with respect to @target and on the local
2489  * cpu.
2490  *
2491  * Currently, a queued barrier can't be canceled.  This is because
2492  * try_to_grab_pending() can't determine whether the work to be
2493  * grabbed is at the head of the queue and thus can't clear LINKED
2494  * flag of the previous work while there must be a valid next work
2495  * after a work with LINKED flag set.
2496  *
2497  * Note that when @worker is non-NULL, @target may be modified
2498  * underneath us, so we can't reliably determine pwq from @target.
2499  *
2500  * CONTEXT:
2501  * spin_lock_irq(pool->lock).
2502  */
2503 static void insert_wq_barrier(struct pool_workqueue *pwq,
2504 			      struct wq_barrier *barr,
2505 			      struct work_struct *target, struct worker *worker)
2506 {
2507 	struct list_head *head;
2508 	unsigned int linked = 0;
2509 
2510 	/*
2511 	 * debugobject calls are safe here even with pool->lock locked
2512 	 * as we know for sure that this will not trigger any of the
2513 	 * checks and call back into the fixup functions where we
2514 	 * might deadlock.
2515 	 */
2516 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2517 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2518 	init_completion(&barr->done);
2519 
2520 	/*
2521 	 * If @target is currently being executed, schedule the
2522 	 * barrier to the worker; otherwise, put it after @target.
2523 	 */
2524 	if (worker)
2525 		head = worker->scheduled.next;
2526 	else {
2527 		unsigned long *bits = work_data_bits(target);
2528 
2529 		head = target->entry.next;
2530 		/* there can already be other linked works, inherit and set */
2531 		linked = *bits & WORK_STRUCT_LINKED;
2532 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2533 	}
2534 
2535 	debug_work_activate(&barr->work);
2536 	insert_work(pwq, &barr->work, head,
2537 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2538 }
2539 
2540 /**
2541  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2542  * @wq: workqueue being flushed
2543  * @flush_color: new flush color, < 0 for no-op
2544  * @work_color: new work color, < 0 for no-op
2545  *
2546  * Prepare pwqs for workqueue flushing.
2547  *
2548  * If @flush_color is non-negative, flush_color on all pwqs should be
2549  * -1.  If no pwq has in-flight commands at the specified color, all
2550  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2551  * has in flight commands, its pwq->flush_color is set to
2552  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2553  * wakeup logic is armed and %true is returned.
2554  *
2555  * The caller should have initialized @wq->first_flusher prior to
2556  * calling this function with non-negative @flush_color.  If
2557  * @flush_color is negative, no flush color update is done and %false
2558  * is returned.
2559  *
2560  * If @work_color is non-negative, all pwqs should have the same
2561  * work_color which is previous to @work_color and all will be
2562  * advanced to @work_color.
2563  *
2564  * CONTEXT:
2565  * mutex_lock(wq->mutex).
2566  *
2567  * Return:
2568  * %true if @flush_color >= 0 and there's something to flush.  %false
2569  * otherwise.
2570  */
2571 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2572 				      int flush_color, int work_color)
2573 {
2574 	bool wait = false;
2575 	struct pool_workqueue *pwq;
2576 
2577 	if (flush_color >= 0) {
2578 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2579 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2580 	}
2581 
2582 	for_each_pwq(pwq, wq) {
2583 		struct worker_pool *pool = pwq->pool;
2584 
2585 		spin_lock_irq(&pool->lock);
2586 
2587 		if (flush_color >= 0) {
2588 			WARN_ON_ONCE(pwq->flush_color != -1);
2589 
2590 			if (pwq->nr_in_flight[flush_color]) {
2591 				pwq->flush_color = flush_color;
2592 				atomic_inc(&wq->nr_pwqs_to_flush);
2593 				wait = true;
2594 			}
2595 		}
2596 
2597 		if (work_color >= 0) {
2598 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2599 			pwq->work_color = work_color;
2600 		}
2601 
2602 		spin_unlock_irq(&pool->lock);
2603 	}
2604 
2605 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2606 		complete(&wq->first_flusher->done);
2607 
2608 	return wait;
2609 }
2610 
2611 /**
2612  * flush_workqueue - ensure that any scheduled work has run to completion.
2613  * @wq: workqueue to flush
2614  *
2615  * This function sleeps until all work items which were queued on entry
2616  * have finished execution, but it is not livelocked by new incoming ones.
2617  */
2618 void flush_workqueue(struct workqueue_struct *wq)
2619 {
2620 	struct wq_flusher this_flusher = {
2621 		.list = LIST_HEAD_INIT(this_flusher.list),
2622 		.flush_color = -1,
2623 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2624 	};
2625 	int next_color;
2626 
2627 	lock_map_acquire(&wq->lockdep_map);
2628 	lock_map_release(&wq->lockdep_map);
2629 
2630 	mutex_lock(&wq->mutex);
2631 
2632 	/*
2633 	 * Start-to-wait phase
2634 	 */
2635 	next_color = work_next_color(wq->work_color);
2636 
2637 	if (next_color != wq->flush_color) {
2638 		/*
2639 		 * Color space is not full.  The current work_color
2640 		 * becomes our flush_color and work_color is advanced
2641 		 * by one.
2642 		 */
2643 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2644 		this_flusher.flush_color = wq->work_color;
2645 		wq->work_color = next_color;
2646 
2647 		if (!wq->first_flusher) {
2648 			/* no flush in progress, become the first flusher */
2649 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2650 
2651 			wq->first_flusher = &this_flusher;
2652 
2653 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2654 						       wq->work_color)) {
2655 				/* nothing to flush, done */
2656 				wq->flush_color = next_color;
2657 				wq->first_flusher = NULL;
2658 				goto out_unlock;
2659 			}
2660 		} else {
2661 			/* wait in queue */
2662 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2663 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2664 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2665 		}
2666 	} else {
2667 		/*
2668 		 * Oops, color space is full, wait on overflow queue.
2669 		 * The next flush completion will assign us
2670 		 * flush_color and transfer to flusher_queue.
2671 		 */
2672 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2673 	}
2674 
2675 	mutex_unlock(&wq->mutex);
2676 
2677 	wait_for_completion(&this_flusher.done);
2678 
2679 	/*
2680 	 * Wake-up-and-cascade phase
2681 	 *
2682 	 * First flushers are responsible for cascading flushes and
2683 	 * handling overflow.  Non-first flushers can simply return.
2684 	 */
2685 	if (wq->first_flusher != &this_flusher)
2686 		return;
2687 
2688 	mutex_lock(&wq->mutex);
2689 
2690 	/* we might have raced, check again with mutex held */
2691 	if (wq->first_flusher != &this_flusher)
2692 		goto out_unlock;
2693 
2694 	wq->first_flusher = NULL;
2695 
2696 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2697 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2698 
2699 	while (true) {
2700 		struct wq_flusher *next, *tmp;
2701 
2702 		/* complete all the flushers sharing the current flush color */
2703 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2704 			if (next->flush_color != wq->flush_color)
2705 				break;
2706 			list_del_init(&next->list);
2707 			complete(&next->done);
2708 		}
2709 
2710 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2711 			     wq->flush_color != work_next_color(wq->work_color));
2712 
2713 		/* this flush_color is finished, advance by one */
2714 		wq->flush_color = work_next_color(wq->flush_color);
2715 
2716 		/* one color has been freed, handle overflow queue */
2717 		if (!list_empty(&wq->flusher_overflow)) {
2718 			/*
2719 			 * Assign the same color to all overflowed
2720 			 * flushers, advance work_color and append to
2721 			 * flusher_queue.  This is the start-to-wait
2722 			 * phase for these overflowed flushers.
2723 			 */
2724 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2725 				tmp->flush_color = wq->work_color;
2726 
2727 			wq->work_color = work_next_color(wq->work_color);
2728 
2729 			list_splice_tail_init(&wq->flusher_overflow,
2730 					      &wq->flusher_queue);
2731 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2732 		}
2733 
2734 		if (list_empty(&wq->flusher_queue)) {
2735 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2736 			break;
2737 		}
2738 
2739 		/*
2740 		 * Need to flush more colors.  Make the next flusher
2741 		 * the new first flusher and arm pwqs.
2742 		 */
2743 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2744 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2745 
2746 		list_del_init(&next->list);
2747 		wq->first_flusher = next;
2748 
2749 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2750 			break;
2751 
2752 		/*
2753 		 * Meh... this color is already done, clear first
2754 		 * flusher and repeat cascading.
2755 		 */
2756 		wq->first_flusher = NULL;
2757 	}
2758 
2759 out_unlock:
2760 	mutex_unlock(&wq->mutex);
2761 }
2762 EXPORT_SYMBOL_GPL(flush_workqueue);
2763 
2764 /**
2765  * drain_workqueue - drain a workqueue
2766  * @wq: workqueue to drain
2767  *
2768  * Wait until the workqueue becomes empty.  While draining is in progress,
2769  * only chain queueing is allowed.  IOW, only currently pending or running
2770  * work items on @wq can queue further work items on it.  @wq is flushed
2771  * repeatedly until it becomes empty.  The number of flushing is detemined
2772  * by the depth of chaining and should be relatively short.  Whine if it
2773  * takes too long.
2774  */
2775 void drain_workqueue(struct workqueue_struct *wq)
2776 {
2777 	unsigned int flush_cnt = 0;
2778 	struct pool_workqueue *pwq;
2779 
2780 	/*
2781 	 * __queue_work() needs to test whether there are drainers, is much
2782 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2783 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2784 	 */
2785 	mutex_lock(&wq->mutex);
2786 	if (!wq->nr_drainers++)
2787 		wq->flags |= __WQ_DRAINING;
2788 	mutex_unlock(&wq->mutex);
2789 reflush:
2790 	flush_workqueue(wq);
2791 
2792 	mutex_lock(&wq->mutex);
2793 
2794 	for_each_pwq(pwq, wq) {
2795 		bool drained;
2796 
2797 		spin_lock_irq(&pwq->pool->lock);
2798 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2799 		spin_unlock_irq(&pwq->pool->lock);
2800 
2801 		if (drained)
2802 			continue;
2803 
2804 		if (++flush_cnt == 10 ||
2805 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2806 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2807 				wq->name, flush_cnt);
2808 
2809 		mutex_unlock(&wq->mutex);
2810 		goto reflush;
2811 	}
2812 
2813 	if (!--wq->nr_drainers)
2814 		wq->flags &= ~__WQ_DRAINING;
2815 	mutex_unlock(&wq->mutex);
2816 }
2817 EXPORT_SYMBOL_GPL(drain_workqueue);
2818 
2819 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2820 {
2821 	struct worker *worker = NULL;
2822 	struct worker_pool *pool;
2823 	struct pool_workqueue *pwq;
2824 
2825 	might_sleep();
2826 
2827 	local_irq_disable();
2828 	pool = get_work_pool(work);
2829 	if (!pool) {
2830 		local_irq_enable();
2831 		return false;
2832 	}
2833 
2834 	spin_lock(&pool->lock);
2835 	/* see the comment in try_to_grab_pending() with the same code */
2836 	pwq = get_work_pwq(work);
2837 	if (pwq) {
2838 		if (unlikely(pwq->pool != pool))
2839 			goto already_gone;
2840 	} else {
2841 		worker = find_worker_executing_work(pool, work);
2842 		if (!worker)
2843 			goto already_gone;
2844 		pwq = worker->current_pwq;
2845 	}
2846 
2847 	insert_wq_barrier(pwq, barr, work, worker);
2848 	spin_unlock_irq(&pool->lock);
2849 
2850 	/*
2851 	 * If @max_active is 1 or rescuer is in use, flushing another work
2852 	 * item on the same workqueue may lead to deadlock.  Make sure the
2853 	 * flusher is not running on the same workqueue by verifying write
2854 	 * access.
2855 	 */
2856 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2857 		lock_map_acquire(&pwq->wq->lockdep_map);
2858 	else
2859 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2860 	lock_map_release(&pwq->wq->lockdep_map);
2861 
2862 	return true;
2863 already_gone:
2864 	spin_unlock_irq(&pool->lock);
2865 	return false;
2866 }
2867 
2868 /**
2869  * flush_work - wait for a work to finish executing the last queueing instance
2870  * @work: the work to flush
2871  *
2872  * Wait until @work has finished execution.  @work is guaranteed to be idle
2873  * on return if it hasn't been requeued since flush started.
2874  *
2875  * Return:
2876  * %true if flush_work() waited for the work to finish execution,
2877  * %false if it was already idle.
2878  */
2879 bool flush_work(struct work_struct *work)
2880 {
2881 	struct wq_barrier barr;
2882 
2883 	lock_map_acquire(&work->lockdep_map);
2884 	lock_map_release(&work->lockdep_map);
2885 
2886 	if (start_flush_work(work, &barr)) {
2887 		wait_for_completion(&barr.done);
2888 		destroy_work_on_stack(&barr.work);
2889 		return true;
2890 	} else {
2891 		return false;
2892 	}
2893 }
2894 EXPORT_SYMBOL_GPL(flush_work);
2895 
2896 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2897 {
2898 	unsigned long flags;
2899 	int ret;
2900 
2901 	do {
2902 		ret = try_to_grab_pending(work, is_dwork, &flags);
2903 		/*
2904 		 * If someone else is canceling, wait for the same event it
2905 		 * would be waiting for before retrying.
2906 		 */
2907 		if (unlikely(ret == -ENOENT))
2908 			flush_work(work);
2909 	} while (unlikely(ret < 0));
2910 
2911 	/* tell other tasks trying to grab @work to back off */
2912 	mark_work_canceling(work);
2913 	local_irq_restore(flags);
2914 
2915 	flush_work(work);
2916 	clear_work_data(work);
2917 	return ret;
2918 }
2919 
2920 /**
2921  * cancel_work_sync - cancel a work and wait for it to finish
2922  * @work: the work to cancel
2923  *
2924  * Cancel @work and wait for its execution to finish.  This function
2925  * can be used even if the work re-queues itself or migrates to
2926  * another workqueue.  On return from this function, @work is
2927  * guaranteed to be not pending or executing on any CPU.
2928  *
2929  * cancel_work_sync(&delayed_work->work) must not be used for
2930  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2931  *
2932  * The caller must ensure that the workqueue on which @work was last
2933  * queued can't be destroyed before this function returns.
2934  *
2935  * Return:
2936  * %true if @work was pending, %false otherwise.
2937  */
2938 bool cancel_work_sync(struct work_struct *work)
2939 {
2940 	return __cancel_work_timer(work, false);
2941 }
2942 EXPORT_SYMBOL_GPL(cancel_work_sync);
2943 
2944 /**
2945  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2946  * @dwork: the delayed work to flush
2947  *
2948  * Delayed timer is cancelled and the pending work is queued for
2949  * immediate execution.  Like flush_work(), this function only
2950  * considers the last queueing instance of @dwork.
2951  *
2952  * Return:
2953  * %true if flush_work() waited for the work to finish execution,
2954  * %false if it was already idle.
2955  */
2956 bool flush_delayed_work(struct delayed_work *dwork)
2957 {
2958 	local_irq_disable();
2959 	if (del_timer_sync(&dwork->timer))
2960 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2961 	local_irq_enable();
2962 	return flush_work(&dwork->work);
2963 }
2964 EXPORT_SYMBOL(flush_delayed_work);
2965 
2966 /**
2967  * cancel_delayed_work - cancel a delayed work
2968  * @dwork: delayed_work to cancel
2969  *
2970  * Kill off a pending delayed_work.
2971  *
2972  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2973  * pending.
2974  *
2975  * Note:
2976  * The work callback function may still be running on return, unless
2977  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2978  * use cancel_delayed_work_sync() to wait on it.
2979  *
2980  * This function is safe to call from any context including IRQ handler.
2981  */
2982 bool cancel_delayed_work(struct delayed_work *dwork)
2983 {
2984 	unsigned long flags;
2985 	int ret;
2986 
2987 	do {
2988 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2989 	} while (unlikely(ret == -EAGAIN));
2990 
2991 	if (unlikely(ret < 0))
2992 		return false;
2993 
2994 	set_work_pool_and_clear_pending(&dwork->work,
2995 					get_work_pool_id(&dwork->work));
2996 	local_irq_restore(flags);
2997 	return ret;
2998 }
2999 EXPORT_SYMBOL(cancel_delayed_work);
3000 
3001 /**
3002  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3003  * @dwork: the delayed work cancel
3004  *
3005  * This is cancel_work_sync() for delayed works.
3006  *
3007  * Return:
3008  * %true if @dwork was pending, %false otherwise.
3009  */
3010 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3011 {
3012 	return __cancel_work_timer(&dwork->work, true);
3013 }
3014 EXPORT_SYMBOL(cancel_delayed_work_sync);
3015 
3016 /**
3017  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3018  * @func: the function to call
3019  *
3020  * schedule_on_each_cpu() executes @func on each online CPU using the
3021  * system workqueue and blocks until all CPUs have completed.
3022  * schedule_on_each_cpu() is very slow.
3023  *
3024  * Return:
3025  * 0 on success, -errno on failure.
3026  */
3027 int schedule_on_each_cpu(work_func_t func)
3028 {
3029 	int cpu;
3030 	struct work_struct __percpu *works;
3031 
3032 	works = alloc_percpu(struct work_struct);
3033 	if (!works)
3034 		return -ENOMEM;
3035 
3036 	get_online_cpus();
3037 
3038 	for_each_online_cpu(cpu) {
3039 		struct work_struct *work = per_cpu_ptr(works, cpu);
3040 
3041 		INIT_WORK(work, func);
3042 		schedule_work_on(cpu, work);
3043 	}
3044 
3045 	for_each_online_cpu(cpu)
3046 		flush_work(per_cpu_ptr(works, cpu));
3047 
3048 	put_online_cpus();
3049 	free_percpu(works);
3050 	return 0;
3051 }
3052 
3053 /**
3054  * flush_scheduled_work - ensure that any scheduled work has run to completion.
3055  *
3056  * Forces execution of the kernel-global workqueue and blocks until its
3057  * completion.
3058  *
3059  * Think twice before calling this function!  It's very easy to get into
3060  * trouble if you don't take great care.  Either of the following situations
3061  * will lead to deadlock:
3062  *
3063  *	One of the work items currently on the workqueue needs to acquire
3064  *	a lock held by your code or its caller.
3065  *
3066  *	Your code is running in the context of a work routine.
3067  *
3068  * They will be detected by lockdep when they occur, but the first might not
3069  * occur very often.  It depends on what work items are on the workqueue and
3070  * what locks they need, which you have no control over.
3071  *
3072  * In most situations flushing the entire workqueue is overkill; you merely
3073  * need to know that a particular work item isn't queued and isn't running.
3074  * In such cases you should use cancel_delayed_work_sync() or
3075  * cancel_work_sync() instead.
3076  */
3077 void flush_scheduled_work(void)
3078 {
3079 	flush_workqueue(system_wq);
3080 }
3081 EXPORT_SYMBOL(flush_scheduled_work);
3082 
3083 /**
3084  * execute_in_process_context - reliably execute the routine with user context
3085  * @fn:		the function to execute
3086  * @ew:		guaranteed storage for the execute work structure (must
3087  *		be available when the work executes)
3088  *
3089  * Executes the function immediately if process context is available,
3090  * otherwise schedules the function for delayed execution.
3091  *
3092  * Return:	0 - function was executed
3093  *		1 - function was scheduled for execution
3094  */
3095 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3096 {
3097 	if (!in_interrupt()) {
3098 		fn(&ew->work);
3099 		return 0;
3100 	}
3101 
3102 	INIT_WORK(&ew->work, fn);
3103 	schedule_work(&ew->work);
3104 
3105 	return 1;
3106 }
3107 EXPORT_SYMBOL_GPL(execute_in_process_context);
3108 
3109 #ifdef CONFIG_SYSFS
3110 /*
3111  * Workqueues with WQ_SYSFS flag set is visible to userland via
3112  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
3113  * following attributes.
3114  *
3115  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
3116  *  max_active	RW int	: maximum number of in-flight work items
3117  *
3118  * Unbound workqueues have the following extra attributes.
3119  *
3120  *  id		RO int	: the associated pool ID
3121  *  nice	RW int	: nice value of the workers
3122  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
3123  */
3124 struct wq_device {
3125 	struct workqueue_struct		*wq;
3126 	struct device			dev;
3127 };
3128 
3129 static struct workqueue_struct *dev_to_wq(struct device *dev)
3130 {
3131 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3132 
3133 	return wq_dev->wq;
3134 }
3135 
3136 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3137 			    char *buf)
3138 {
3139 	struct workqueue_struct *wq = dev_to_wq(dev);
3140 
3141 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3142 }
3143 static DEVICE_ATTR_RO(per_cpu);
3144 
3145 static ssize_t max_active_show(struct device *dev,
3146 			       struct device_attribute *attr, char *buf)
3147 {
3148 	struct workqueue_struct *wq = dev_to_wq(dev);
3149 
3150 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3151 }
3152 
3153 static ssize_t max_active_store(struct device *dev,
3154 				struct device_attribute *attr, const char *buf,
3155 				size_t count)
3156 {
3157 	struct workqueue_struct *wq = dev_to_wq(dev);
3158 	int val;
3159 
3160 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3161 		return -EINVAL;
3162 
3163 	workqueue_set_max_active(wq, val);
3164 	return count;
3165 }
3166 static DEVICE_ATTR_RW(max_active);
3167 
3168 static struct attribute *wq_sysfs_attrs[] = {
3169 	&dev_attr_per_cpu.attr,
3170 	&dev_attr_max_active.attr,
3171 	NULL,
3172 };
3173 ATTRIBUTE_GROUPS(wq_sysfs);
3174 
3175 static ssize_t wq_pool_ids_show(struct device *dev,
3176 				struct device_attribute *attr, char *buf)
3177 {
3178 	struct workqueue_struct *wq = dev_to_wq(dev);
3179 	const char *delim = "";
3180 	int node, written = 0;
3181 
3182 	rcu_read_lock_sched();
3183 	for_each_node(node) {
3184 		written += scnprintf(buf + written, PAGE_SIZE - written,
3185 				     "%s%d:%d", delim, node,
3186 				     unbound_pwq_by_node(wq, node)->pool->id);
3187 		delim = " ";
3188 	}
3189 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3190 	rcu_read_unlock_sched();
3191 
3192 	return written;
3193 }
3194 
3195 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3196 			    char *buf)
3197 {
3198 	struct workqueue_struct *wq = dev_to_wq(dev);
3199 	int written;
3200 
3201 	mutex_lock(&wq->mutex);
3202 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3203 	mutex_unlock(&wq->mutex);
3204 
3205 	return written;
3206 }
3207 
3208 /* prepare workqueue_attrs for sysfs store operations */
3209 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3210 {
3211 	struct workqueue_attrs *attrs;
3212 
3213 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
3214 	if (!attrs)
3215 		return NULL;
3216 
3217 	mutex_lock(&wq->mutex);
3218 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
3219 	mutex_unlock(&wq->mutex);
3220 	return attrs;
3221 }
3222 
3223 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3224 			     const char *buf, size_t count)
3225 {
3226 	struct workqueue_struct *wq = dev_to_wq(dev);
3227 	struct workqueue_attrs *attrs;
3228 	int ret;
3229 
3230 	attrs = wq_sysfs_prep_attrs(wq);
3231 	if (!attrs)
3232 		return -ENOMEM;
3233 
3234 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3235 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3236 		ret = apply_workqueue_attrs(wq, attrs);
3237 	else
3238 		ret = -EINVAL;
3239 
3240 	free_workqueue_attrs(attrs);
3241 	return ret ?: count;
3242 }
3243 
3244 static ssize_t wq_cpumask_show(struct device *dev,
3245 			       struct device_attribute *attr, char *buf)
3246 {
3247 	struct workqueue_struct *wq = dev_to_wq(dev);
3248 	int written;
3249 
3250 	mutex_lock(&wq->mutex);
3251 	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3252 	mutex_unlock(&wq->mutex);
3253 
3254 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3255 	return written;
3256 }
3257 
3258 static ssize_t wq_cpumask_store(struct device *dev,
3259 				struct device_attribute *attr,
3260 				const char *buf, size_t count)
3261 {
3262 	struct workqueue_struct *wq = dev_to_wq(dev);
3263 	struct workqueue_attrs *attrs;
3264 	int ret;
3265 
3266 	attrs = wq_sysfs_prep_attrs(wq);
3267 	if (!attrs)
3268 		return -ENOMEM;
3269 
3270 	ret = cpumask_parse(buf, attrs->cpumask);
3271 	if (!ret)
3272 		ret = apply_workqueue_attrs(wq, attrs);
3273 
3274 	free_workqueue_attrs(attrs);
3275 	return ret ?: count;
3276 }
3277 
3278 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3279 			    char *buf)
3280 {
3281 	struct workqueue_struct *wq = dev_to_wq(dev);
3282 	int written;
3283 
3284 	mutex_lock(&wq->mutex);
3285 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
3286 			    !wq->unbound_attrs->no_numa);
3287 	mutex_unlock(&wq->mutex);
3288 
3289 	return written;
3290 }
3291 
3292 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3293 			     const char *buf, size_t count)
3294 {
3295 	struct workqueue_struct *wq = dev_to_wq(dev);
3296 	struct workqueue_attrs *attrs;
3297 	int v, ret;
3298 
3299 	attrs = wq_sysfs_prep_attrs(wq);
3300 	if (!attrs)
3301 		return -ENOMEM;
3302 
3303 	ret = -EINVAL;
3304 	if (sscanf(buf, "%d", &v) == 1) {
3305 		attrs->no_numa = !v;
3306 		ret = apply_workqueue_attrs(wq, attrs);
3307 	}
3308 
3309 	free_workqueue_attrs(attrs);
3310 	return ret ?: count;
3311 }
3312 
3313 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3314 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3315 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3316 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3317 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3318 	__ATTR_NULL,
3319 };
3320 
3321 static struct bus_type wq_subsys = {
3322 	.name				= "workqueue",
3323 	.dev_groups			= wq_sysfs_groups,
3324 };
3325 
3326 static int __init wq_sysfs_init(void)
3327 {
3328 	return subsys_virtual_register(&wq_subsys, NULL);
3329 }
3330 core_initcall(wq_sysfs_init);
3331 
3332 static void wq_device_release(struct device *dev)
3333 {
3334 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3335 
3336 	kfree(wq_dev);
3337 }
3338 
3339 /**
3340  * workqueue_sysfs_register - make a workqueue visible in sysfs
3341  * @wq: the workqueue to register
3342  *
3343  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3344  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3345  * which is the preferred method.
3346  *
3347  * Workqueue user should use this function directly iff it wants to apply
3348  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3349  * apply_workqueue_attrs() may race against userland updating the
3350  * attributes.
3351  *
3352  * Return: 0 on success, -errno on failure.
3353  */
3354 int workqueue_sysfs_register(struct workqueue_struct *wq)
3355 {
3356 	struct wq_device *wq_dev;
3357 	int ret;
3358 
3359 	/*
3360 	 * Adjusting max_active or creating new pwqs by applyting
3361 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
3362 	 * workqueues.
3363 	 */
3364 	if (WARN_ON(wq->flags & __WQ_ORDERED))
3365 		return -EINVAL;
3366 
3367 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3368 	if (!wq_dev)
3369 		return -ENOMEM;
3370 
3371 	wq_dev->wq = wq;
3372 	wq_dev->dev.bus = &wq_subsys;
3373 	wq_dev->dev.init_name = wq->name;
3374 	wq_dev->dev.release = wq_device_release;
3375 
3376 	/*
3377 	 * unbound_attrs are created separately.  Suppress uevent until
3378 	 * everything is ready.
3379 	 */
3380 	dev_set_uevent_suppress(&wq_dev->dev, true);
3381 
3382 	ret = device_register(&wq_dev->dev);
3383 	if (ret) {
3384 		kfree(wq_dev);
3385 		wq->wq_dev = NULL;
3386 		return ret;
3387 	}
3388 
3389 	if (wq->flags & WQ_UNBOUND) {
3390 		struct device_attribute *attr;
3391 
3392 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3393 			ret = device_create_file(&wq_dev->dev, attr);
3394 			if (ret) {
3395 				device_unregister(&wq_dev->dev);
3396 				wq->wq_dev = NULL;
3397 				return ret;
3398 			}
3399 		}
3400 	}
3401 
3402 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3403 	return 0;
3404 }
3405 
3406 /**
3407  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3408  * @wq: the workqueue to unregister
3409  *
3410  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3411  */
3412 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3413 {
3414 	struct wq_device *wq_dev = wq->wq_dev;
3415 
3416 	if (!wq->wq_dev)
3417 		return;
3418 
3419 	wq->wq_dev = NULL;
3420 	device_unregister(&wq_dev->dev);
3421 }
3422 #else	/* CONFIG_SYSFS */
3423 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
3424 #endif	/* CONFIG_SYSFS */
3425 
3426 /**
3427  * free_workqueue_attrs - free a workqueue_attrs
3428  * @attrs: workqueue_attrs to free
3429  *
3430  * Undo alloc_workqueue_attrs().
3431  */
3432 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3433 {
3434 	if (attrs) {
3435 		free_cpumask_var(attrs->cpumask);
3436 		kfree(attrs);
3437 	}
3438 }
3439 
3440 /**
3441  * alloc_workqueue_attrs - allocate a workqueue_attrs
3442  * @gfp_mask: allocation mask to use
3443  *
3444  * Allocate a new workqueue_attrs, initialize with default settings and
3445  * return it.
3446  *
3447  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3448  */
3449 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3450 {
3451 	struct workqueue_attrs *attrs;
3452 
3453 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3454 	if (!attrs)
3455 		goto fail;
3456 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3457 		goto fail;
3458 
3459 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3460 	return attrs;
3461 fail:
3462 	free_workqueue_attrs(attrs);
3463 	return NULL;
3464 }
3465 
3466 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3467 				 const struct workqueue_attrs *from)
3468 {
3469 	to->nice = from->nice;
3470 	cpumask_copy(to->cpumask, from->cpumask);
3471 	/*
3472 	 * Unlike hash and equality test, this function doesn't ignore
3473 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3474 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3475 	 */
3476 	to->no_numa = from->no_numa;
3477 }
3478 
3479 /* hash value of the content of @attr */
3480 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3481 {
3482 	u32 hash = 0;
3483 
3484 	hash = jhash_1word(attrs->nice, hash);
3485 	hash = jhash(cpumask_bits(attrs->cpumask),
3486 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3487 	return hash;
3488 }
3489 
3490 /* content equality test */
3491 static bool wqattrs_equal(const struct workqueue_attrs *a,
3492 			  const struct workqueue_attrs *b)
3493 {
3494 	if (a->nice != b->nice)
3495 		return false;
3496 	if (!cpumask_equal(a->cpumask, b->cpumask))
3497 		return false;
3498 	return true;
3499 }
3500 
3501 /**
3502  * init_worker_pool - initialize a newly zalloc'd worker_pool
3503  * @pool: worker_pool to initialize
3504  *
3505  * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3506  *
3507  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3508  * inside @pool proper are initialized and put_unbound_pool() can be called
3509  * on @pool safely to release it.
3510  */
3511 static int init_worker_pool(struct worker_pool *pool)
3512 {
3513 	spin_lock_init(&pool->lock);
3514 	pool->id = -1;
3515 	pool->cpu = -1;
3516 	pool->node = NUMA_NO_NODE;
3517 	pool->flags |= POOL_DISASSOCIATED;
3518 	INIT_LIST_HEAD(&pool->worklist);
3519 	INIT_LIST_HEAD(&pool->idle_list);
3520 	hash_init(pool->busy_hash);
3521 
3522 	init_timer_deferrable(&pool->idle_timer);
3523 	pool->idle_timer.function = idle_worker_timeout;
3524 	pool->idle_timer.data = (unsigned long)pool;
3525 
3526 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3527 		    (unsigned long)pool);
3528 
3529 	mutex_init(&pool->manager_arb);
3530 	mutex_init(&pool->manager_mutex);
3531 	idr_init(&pool->worker_idr);
3532 
3533 	INIT_HLIST_NODE(&pool->hash_node);
3534 	pool->refcnt = 1;
3535 
3536 	/* shouldn't fail above this point */
3537 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3538 	if (!pool->attrs)
3539 		return -ENOMEM;
3540 	return 0;
3541 }
3542 
3543 static void rcu_free_pool(struct rcu_head *rcu)
3544 {
3545 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3546 
3547 	idr_destroy(&pool->worker_idr);
3548 	free_workqueue_attrs(pool->attrs);
3549 	kfree(pool);
3550 }
3551 
3552 /**
3553  * put_unbound_pool - put a worker_pool
3554  * @pool: worker_pool to put
3555  *
3556  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3557  * safe manner.  get_unbound_pool() calls this function on its failure path
3558  * and this function should be able to release pools which went through,
3559  * successfully or not, init_worker_pool().
3560  *
3561  * Should be called with wq_pool_mutex held.
3562  */
3563 static void put_unbound_pool(struct worker_pool *pool)
3564 {
3565 	struct worker *worker;
3566 
3567 	lockdep_assert_held(&wq_pool_mutex);
3568 
3569 	if (--pool->refcnt)
3570 		return;
3571 
3572 	/* sanity checks */
3573 	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3574 	    WARN_ON(!list_empty(&pool->worklist)))
3575 		return;
3576 
3577 	/* release id and unhash */
3578 	if (pool->id >= 0)
3579 		idr_remove(&worker_pool_idr, pool->id);
3580 	hash_del(&pool->hash_node);
3581 
3582 	/*
3583 	 * Become the manager and destroy all workers.  Grabbing
3584 	 * manager_arb prevents @pool's workers from blocking on
3585 	 * manager_mutex.
3586 	 */
3587 	mutex_lock(&pool->manager_arb);
3588 	mutex_lock(&pool->manager_mutex);
3589 	spin_lock_irq(&pool->lock);
3590 
3591 	while ((worker = first_worker(pool)))
3592 		destroy_worker(worker);
3593 	WARN_ON(pool->nr_workers || pool->nr_idle);
3594 
3595 	spin_unlock_irq(&pool->lock);
3596 	mutex_unlock(&pool->manager_mutex);
3597 	mutex_unlock(&pool->manager_arb);
3598 
3599 	/* shut down the timers */
3600 	del_timer_sync(&pool->idle_timer);
3601 	del_timer_sync(&pool->mayday_timer);
3602 
3603 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3604 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3605 }
3606 
3607 /**
3608  * get_unbound_pool - get a worker_pool with the specified attributes
3609  * @attrs: the attributes of the worker_pool to get
3610  *
3611  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3612  * reference count and return it.  If there already is a matching
3613  * worker_pool, it will be used; otherwise, this function attempts to
3614  * create a new one.
3615  *
3616  * Should be called with wq_pool_mutex held.
3617  *
3618  * Return: On success, a worker_pool with the same attributes as @attrs.
3619  * On failure, %NULL.
3620  */
3621 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3622 {
3623 	u32 hash = wqattrs_hash(attrs);
3624 	struct worker_pool *pool;
3625 	int node;
3626 
3627 	lockdep_assert_held(&wq_pool_mutex);
3628 
3629 	/* do we already have a matching pool? */
3630 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3631 		if (wqattrs_equal(pool->attrs, attrs)) {
3632 			pool->refcnt++;
3633 			goto out_unlock;
3634 		}
3635 	}
3636 
3637 	/* nope, create a new one */
3638 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3639 	if (!pool || init_worker_pool(pool) < 0)
3640 		goto fail;
3641 
3642 	if (workqueue_freezing)
3643 		pool->flags |= POOL_FREEZING;
3644 
3645 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3646 	copy_workqueue_attrs(pool->attrs, attrs);
3647 
3648 	/*
3649 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3650 	 * 'struct workqueue_attrs' comments for detail.
3651 	 */
3652 	pool->attrs->no_numa = false;
3653 
3654 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3655 	if (wq_numa_enabled) {
3656 		for_each_node(node) {
3657 			if (cpumask_subset(pool->attrs->cpumask,
3658 					   wq_numa_possible_cpumask[node])) {
3659 				pool->node = node;
3660 				break;
3661 			}
3662 		}
3663 	}
3664 
3665 	if (worker_pool_assign_id(pool) < 0)
3666 		goto fail;
3667 
3668 	/* create and start the initial worker */
3669 	if (create_and_start_worker(pool) < 0)
3670 		goto fail;
3671 
3672 	/* install */
3673 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3674 out_unlock:
3675 	return pool;
3676 fail:
3677 	if (pool)
3678 		put_unbound_pool(pool);
3679 	return NULL;
3680 }
3681 
3682 static void rcu_free_pwq(struct rcu_head *rcu)
3683 {
3684 	kmem_cache_free(pwq_cache,
3685 			container_of(rcu, struct pool_workqueue, rcu));
3686 }
3687 
3688 /*
3689  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3690  * and needs to be destroyed.
3691  */
3692 static void pwq_unbound_release_workfn(struct work_struct *work)
3693 {
3694 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3695 						  unbound_release_work);
3696 	struct workqueue_struct *wq = pwq->wq;
3697 	struct worker_pool *pool = pwq->pool;
3698 	bool is_last;
3699 
3700 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3701 		return;
3702 
3703 	/*
3704 	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3705 	 * necessary on release but do it anyway.  It's easier to verify
3706 	 * and consistent with the linking path.
3707 	 */
3708 	mutex_lock(&wq->mutex);
3709 	list_del_rcu(&pwq->pwqs_node);
3710 	is_last = list_empty(&wq->pwqs);
3711 	mutex_unlock(&wq->mutex);
3712 
3713 	mutex_lock(&wq_pool_mutex);
3714 	put_unbound_pool(pool);
3715 	mutex_unlock(&wq_pool_mutex);
3716 
3717 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3718 
3719 	/*
3720 	 * If we're the last pwq going away, @wq is already dead and no one
3721 	 * is gonna access it anymore.  Free it.
3722 	 */
3723 	if (is_last) {
3724 		free_workqueue_attrs(wq->unbound_attrs);
3725 		kfree(wq);
3726 	}
3727 }
3728 
3729 /**
3730  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3731  * @pwq: target pool_workqueue
3732  *
3733  * If @pwq isn't freezing, set @pwq->max_active to the associated
3734  * workqueue's saved_max_active and activate delayed work items
3735  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3736  */
3737 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3738 {
3739 	struct workqueue_struct *wq = pwq->wq;
3740 	bool freezable = wq->flags & WQ_FREEZABLE;
3741 
3742 	/* for @wq->saved_max_active */
3743 	lockdep_assert_held(&wq->mutex);
3744 
3745 	/* fast exit for non-freezable wqs */
3746 	if (!freezable && pwq->max_active == wq->saved_max_active)
3747 		return;
3748 
3749 	spin_lock_irq(&pwq->pool->lock);
3750 
3751 	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3752 		pwq->max_active = wq->saved_max_active;
3753 
3754 		while (!list_empty(&pwq->delayed_works) &&
3755 		       pwq->nr_active < pwq->max_active)
3756 			pwq_activate_first_delayed(pwq);
3757 
3758 		/*
3759 		 * Need to kick a worker after thawed or an unbound wq's
3760 		 * max_active is bumped.  It's a slow path.  Do it always.
3761 		 */
3762 		wake_up_worker(pwq->pool);
3763 	} else {
3764 		pwq->max_active = 0;
3765 	}
3766 
3767 	spin_unlock_irq(&pwq->pool->lock);
3768 }
3769 
3770 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3771 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3772 		     struct worker_pool *pool)
3773 {
3774 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3775 
3776 	memset(pwq, 0, sizeof(*pwq));
3777 
3778 	pwq->pool = pool;
3779 	pwq->wq = wq;
3780 	pwq->flush_color = -1;
3781 	pwq->refcnt = 1;
3782 	INIT_LIST_HEAD(&pwq->delayed_works);
3783 	INIT_LIST_HEAD(&pwq->pwqs_node);
3784 	INIT_LIST_HEAD(&pwq->mayday_node);
3785 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3786 }
3787 
3788 /* sync @pwq with the current state of its associated wq and link it */
3789 static void link_pwq(struct pool_workqueue *pwq)
3790 {
3791 	struct workqueue_struct *wq = pwq->wq;
3792 
3793 	lockdep_assert_held(&wq->mutex);
3794 
3795 	/* may be called multiple times, ignore if already linked */
3796 	if (!list_empty(&pwq->pwqs_node))
3797 		return;
3798 
3799 	/*
3800 	 * Set the matching work_color.  This is synchronized with
3801 	 * wq->mutex to avoid confusing flush_workqueue().
3802 	 */
3803 	pwq->work_color = wq->work_color;
3804 
3805 	/* sync max_active to the current setting */
3806 	pwq_adjust_max_active(pwq);
3807 
3808 	/* link in @pwq */
3809 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3810 }
3811 
3812 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3813 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3814 					const struct workqueue_attrs *attrs)
3815 {
3816 	struct worker_pool *pool;
3817 	struct pool_workqueue *pwq;
3818 
3819 	lockdep_assert_held(&wq_pool_mutex);
3820 
3821 	pool = get_unbound_pool(attrs);
3822 	if (!pool)
3823 		return NULL;
3824 
3825 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3826 	if (!pwq) {
3827 		put_unbound_pool(pool);
3828 		return NULL;
3829 	}
3830 
3831 	init_pwq(pwq, wq, pool);
3832 	return pwq;
3833 }
3834 
3835 /* undo alloc_unbound_pwq(), used only in the error path */
3836 static void free_unbound_pwq(struct pool_workqueue *pwq)
3837 {
3838 	lockdep_assert_held(&wq_pool_mutex);
3839 
3840 	if (pwq) {
3841 		put_unbound_pool(pwq->pool);
3842 		kmem_cache_free(pwq_cache, pwq);
3843 	}
3844 }
3845 
3846 /**
3847  * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3848  * @attrs: the wq_attrs of interest
3849  * @node: the target NUMA node
3850  * @cpu_going_down: if >= 0, the CPU to consider as offline
3851  * @cpumask: outarg, the resulting cpumask
3852  *
3853  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3854  * @cpu_going_down is >= 0, that cpu is considered offline during
3855  * calculation.  The result is stored in @cpumask.
3856  *
3857  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3858  * enabled and @node has online CPUs requested by @attrs, the returned
3859  * cpumask is the intersection of the possible CPUs of @node and
3860  * @attrs->cpumask.
3861  *
3862  * The caller is responsible for ensuring that the cpumask of @node stays
3863  * stable.
3864  *
3865  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3866  * %false if equal.
3867  */
3868 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3869 				 int cpu_going_down, cpumask_t *cpumask)
3870 {
3871 	if (!wq_numa_enabled || attrs->no_numa)
3872 		goto use_dfl;
3873 
3874 	/* does @node have any online CPUs @attrs wants? */
3875 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3876 	if (cpu_going_down >= 0)
3877 		cpumask_clear_cpu(cpu_going_down, cpumask);
3878 
3879 	if (cpumask_empty(cpumask))
3880 		goto use_dfl;
3881 
3882 	/* yeap, return possible CPUs in @node that @attrs wants */
3883 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3884 	return !cpumask_equal(cpumask, attrs->cpumask);
3885 
3886 use_dfl:
3887 	cpumask_copy(cpumask, attrs->cpumask);
3888 	return false;
3889 }
3890 
3891 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3892 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3893 						   int node,
3894 						   struct pool_workqueue *pwq)
3895 {
3896 	struct pool_workqueue *old_pwq;
3897 
3898 	lockdep_assert_held(&wq->mutex);
3899 
3900 	/* link_pwq() can handle duplicate calls */
3901 	link_pwq(pwq);
3902 
3903 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3904 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3905 	return old_pwq;
3906 }
3907 
3908 /**
3909  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3910  * @wq: the target workqueue
3911  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3912  *
3913  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3914  * machines, this function maps a separate pwq to each NUMA node with
3915  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3916  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3917  * items finish.  Note that a work item which repeatedly requeues itself
3918  * back-to-back will stay on its current pwq.
3919  *
3920  * Performs GFP_KERNEL allocations.
3921  *
3922  * Return: 0 on success and -errno on failure.
3923  */
3924 int apply_workqueue_attrs(struct workqueue_struct *wq,
3925 			  const struct workqueue_attrs *attrs)
3926 {
3927 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3928 	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3929 	int node, ret;
3930 
3931 	/* only unbound workqueues can change attributes */
3932 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3933 		return -EINVAL;
3934 
3935 	/* creating multiple pwqs breaks ordering guarantee */
3936 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3937 		return -EINVAL;
3938 
3939 	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3940 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3941 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3942 	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3943 		goto enomem;
3944 
3945 	/* make a copy of @attrs and sanitize it */
3946 	copy_workqueue_attrs(new_attrs, attrs);
3947 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3948 
3949 	/*
3950 	 * We may create multiple pwqs with differing cpumasks.  Make a
3951 	 * copy of @new_attrs which will be modified and used to obtain
3952 	 * pools.
3953 	 */
3954 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3955 
3956 	/*
3957 	 * CPUs should stay stable across pwq creations and installations.
3958 	 * Pin CPUs, determine the target cpumask for each node and create
3959 	 * pwqs accordingly.
3960 	 */
3961 	get_online_cpus();
3962 
3963 	mutex_lock(&wq_pool_mutex);
3964 
3965 	/*
3966 	 * If something goes wrong during CPU up/down, we'll fall back to
3967 	 * the default pwq covering whole @attrs->cpumask.  Always create
3968 	 * it even if we don't use it immediately.
3969 	 */
3970 	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3971 	if (!dfl_pwq)
3972 		goto enomem_pwq;
3973 
3974 	for_each_node(node) {
3975 		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3976 			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3977 			if (!pwq_tbl[node])
3978 				goto enomem_pwq;
3979 		} else {
3980 			dfl_pwq->refcnt++;
3981 			pwq_tbl[node] = dfl_pwq;
3982 		}
3983 	}
3984 
3985 	mutex_unlock(&wq_pool_mutex);
3986 
3987 	/* all pwqs have been created successfully, let's install'em */
3988 	mutex_lock(&wq->mutex);
3989 
3990 	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3991 
3992 	/* save the previous pwq and install the new one */
3993 	for_each_node(node)
3994 		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3995 
3996 	/* @dfl_pwq might not have been used, ensure it's linked */
3997 	link_pwq(dfl_pwq);
3998 	swap(wq->dfl_pwq, dfl_pwq);
3999 
4000 	mutex_unlock(&wq->mutex);
4001 
4002 	/* put the old pwqs */
4003 	for_each_node(node)
4004 		put_pwq_unlocked(pwq_tbl[node]);
4005 	put_pwq_unlocked(dfl_pwq);
4006 
4007 	put_online_cpus();
4008 	ret = 0;
4009 	/* fall through */
4010 out_free:
4011 	free_workqueue_attrs(tmp_attrs);
4012 	free_workqueue_attrs(new_attrs);
4013 	kfree(pwq_tbl);
4014 	return ret;
4015 
4016 enomem_pwq:
4017 	free_unbound_pwq(dfl_pwq);
4018 	for_each_node(node)
4019 		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4020 			free_unbound_pwq(pwq_tbl[node]);
4021 	mutex_unlock(&wq_pool_mutex);
4022 	put_online_cpus();
4023 enomem:
4024 	ret = -ENOMEM;
4025 	goto out_free;
4026 }
4027 
4028 /**
4029  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4030  * @wq: the target workqueue
4031  * @cpu: the CPU coming up or going down
4032  * @online: whether @cpu is coming up or going down
4033  *
4034  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4035  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4036  * @wq accordingly.
4037  *
4038  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4039  * falls back to @wq->dfl_pwq which may not be optimal but is always
4040  * correct.
4041  *
4042  * Note that when the last allowed CPU of a NUMA node goes offline for a
4043  * workqueue with a cpumask spanning multiple nodes, the workers which were
4044  * already executing the work items for the workqueue will lose their CPU
4045  * affinity and may execute on any CPU.  This is similar to how per-cpu
4046  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4047  * affinity, it's the user's responsibility to flush the work item from
4048  * CPU_DOWN_PREPARE.
4049  */
4050 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4051 				   bool online)
4052 {
4053 	int node = cpu_to_node(cpu);
4054 	int cpu_off = online ? -1 : cpu;
4055 	struct pool_workqueue *old_pwq = NULL, *pwq;
4056 	struct workqueue_attrs *target_attrs;
4057 	cpumask_t *cpumask;
4058 
4059 	lockdep_assert_held(&wq_pool_mutex);
4060 
4061 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4062 		return;
4063 
4064 	/*
4065 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4066 	 * Let's use a preallocated one.  The following buf is protected by
4067 	 * CPU hotplug exclusion.
4068 	 */
4069 	target_attrs = wq_update_unbound_numa_attrs_buf;
4070 	cpumask = target_attrs->cpumask;
4071 
4072 	mutex_lock(&wq->mutex);
4073 	if (wq->unbound_attrs->no_numa)
4074 		goto out_unlock;
4075 
4076 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4077 	pwq = unbound_pwq_by_node(wq, node);
4078 
4079 	/*
4080 	 * Let's determine what needs to be done.  If the target cpumask is
4081 	 * different from wq's, we need to compare it to @pwq's and create
4082 	 * a new one if they don't match.  If the target cpumask equals
4083 	 * wq's, the default pwq should be used.  If @pwq is already the
4084 	 * default one, nothing to do; otherwise, install the default one.
4085 	 */
4086 	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4087 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4088 			goto out_unlock;
4089 	} else {
4090 		if (pwq == wq->dfl_pwq)
4091 			goto out_unlock;
4092 		else
4093 			goto use_dfl_pwq;
4094 	}
4095 
4096 	mutex_unlock(&wq->mutex);
4097 
4098 	/* create a new pwq */
4099 	pwq = alloc_unbound_pwq(wq, target_attrs);
4100 	if (!pwq) {
4101 		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4102 			   wq->name);
4103 		goto out_unlock;
4104 	}
4105 
4106 	/*
4107 	 * Install the new pwq.  As this function is called only from CPU
4108 	 * hotplug callbacks and applying a new attrs is wrapped with
4109 	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4110 	 * inbetween.
4111 	 */
4112 	mutex_lock(&wq->mutex);
4113 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4114 	goto out_unlock;
4115 
4116 use_dfl_pwq:
4117 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4118 	get_pwq(wq->dfl_pwq);
4119 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4120 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4121 out_unlock:
4122 	mutex_unlock(&wq->mutex);
4123 	put_pwq_unlocked(old_pwq);
4124 }
4125 
4126 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4127 {
4128 	bool highpri = wq->flags & WQ_HIGHPRI;
4129 	int cpu, ret;
4130 
4131 	if (!(wq->flags & WQ_UNBOUND)) {
4132 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4133 		if (!wq->cpu_pwqs)
4134 			return -ENOMEM;
4135 
4136 		for_each_possible_cpu(cpu) {
4137 			struct pool_workqueue *pwq =
4138 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4139 			struct worker_pool *cpu_pools =
4140 				per_cpu(cpu_worker_pools, cpu);
4141 
4142 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4143 
4144 			mutex_lock(&wq->mutex);
4145 			link_pwq(pwq);
4146 			mutex_unlock(&wq->mutex);
4147 		}
4148 		return 0;
4149 	} else if (wq->flags & __WQ_ORDERED) {
4150 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4151 		/* there should only be single pwq for ordering guarantee */
4152 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4153 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4154 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4155 		return ret;
4156 	} else {
4157 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4158 	}
4159 }
4160 
4161 static int wq_clamp_max_active(int max_active, unsigned int flags,
4162 			       const char *name)
4163 {
4164 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4165 
4166 	if (max_active < 1 || max_active > lim)
4167 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4168 			max_active, name, 1, lim);
4169 
4170 	return clamp_val(max_active, 1, lim);
4171 }
4172 
4173 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4174 					       unsigned int flags,
4175 					       int max_active,
4176 					       struct lock_class_key *key,
4177 					       const char *lock_name, ...)
4178 {
4179 	size_t tbl_size = 0;
4180 	va_list args;
4181 	struct workqueue_struct *wq;
4182 	struct pool_workqueue *pwq;
4183 
4184 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4185 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4186 		flags |= WQ_UNBOUND;
4187 
4188 	/* allocate wq and format name */
4189 	if (flags & WQ_UNBOUND)
4190 		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4191 
4192 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4193 	if (!wq)
4194 		return NULL;
4195 
4196 	if (flags & WQ_UNBOUND) {
4197 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4198 		if (!wq->unbound_attrs)
4199 			goto err_free_wq;
4200 	}
4201 
4202 	va_start(args, lock_name);
4203 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4204 	va_end(args);
4205 
4206 	max_active = max_active ?: WQ_DFL_ACTIVE;
4207 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4208 
4209 	/* init wq */
4210 	wq->flags = flags;
4211 	wq->saved_max_active = max_active;
4212 	mutex_init(&wq->mutex);
4213 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4214 	INIT_LIST_HEAD(&wq->pwqs);
4215 	INIT_LIST_HEAD(&wq->flusher_queue);
4216 	INIT_LIST_HEAD(&wq->flusher_overflow);
4217 	INIT_LIST_HEAD(&wq->maydays);
4218 
4219 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4220 	INIT_LIST_HEAD(&wq->list);
4221 
4222 	if (alloc_and_link_pwqs(wq) < 0)
4223 		goto err_free_wq;
4224 
4225 	/*
4226 	 * Workqueues which may be used during memory reclaim should
4227 	 * have a rescuer to guarantee forward progress.
4228 	 */
4229 	if (flags & WQ_MEM_RECLAIM) {
4230 		struct worker *rescuer;
4231 
4232 		rescuer = alloc_worker();
4233 		if (!rescuer)
4234 			goto err_destroy;
4235 
4236 		rescuer->rescue_wq = wq;
4237 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4238 					       wq->name);
4239 		if (IS_ERR(rescuer->task)) {
4240 			kfree(rescuer);
4241 			goto err_destroy;
4242 		}
4243 
4244 		wq->rescuer = rescuer;
4245 		rescuer->task->flags |= PF_NO_SETAFFINITY;
4246 		wake_up_process(rescuer->task);
4247 	}
4248 
4249 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4250 		goto err_destroy;
4251 
4252 	/*
4253 	 * wq_pool_mutex protects global freeze state and workqueues list.
4254 	 * Grab it, adjust max_active and add the new @wq to workqueues
4255 	 * list.
4256 	 */
4257 	mutex_lock(&wq_pool_mutex);
4258 
4259 	mutex_lock(&wq->mutex);
4260 	for_each_pwq(pwq, wq)
4261 		pwq_adjust_max_active(pwq);
4262 	mutex_unlock(&wq->mutex);
4263 
4264 	list_add(&wq->list, &workqueues);
4265 
4266 	mutex_unlock(&wq_pool_mutex);
4267 
4268 	return wq;
4269 
4270 err_free_wq:
4271 	free_workqueue_attrs(wq->unbound_attrs);
4272 	kfree(wq);
4273 	return NULL;
4274 err_destroy:
4275 	destroy_workqueue(wq);
4276 	return NULL;
4277 }
4278 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4279 
4280 /**
4281  * destroy_workqueue - safely terminate a workqueue
4282  * @wq: target workqueue
4283  *
4284  * Safely destroy a workqueue. All work currently pending will be done first.
4285  */
4286 void destroy_workqueue(struct workqueue_struct *wq)
4287 {
4288 	struct pool_workqueue *pwq;
4289 	int node;
4290 
4291 	/* drain it before proceeding with destruction */
4292 	drain_workqueue(wq);
4293 
4294 	/* sanity checks */
4295 	mutex_lock(&wq->mutex);
4296 	for_each_pwq(pwq, wq) {
4297 		int i;
4298 
4299 		for (i = 0; i < WORK_NR_COLORS; i++) {
4300 			if (WARN_ON(pwq->nr_in_flight[i])) {
4301 				mutex_unlock(&wq->mutex);
4302 				return;
4303 			}
4304 		}
4305 
4306 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4307 		    WARN_ON(pwq->nr_active) ||
4308 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4309 			mutex_unlock(&wq->mutex);
4310 			return;
4311 		}
4312 	}
4313 	mutex_unlock(&wq->mutex);
4314 
4315 	/*
4316 	 * wq list is used to freeze wq, remove from list after
4317 	 * flushing is complete in case freeze races us.
4318 	 */
4319 	mutex_lock(&wq_pool_mutex);
4320 	list_del_init(&wq->list);
4321 	mutex_unlock(&wq_pool_mutex);
4322 
4323 	workqueue_sysfs_unregister(wq);
4324 
4325 	if (wq->rescuer) {
4326 		kthread_stop(wq->rescuer->task);
4327 		kfree(wq->rescuer);
4328 		wq->rescuer = NULL;
4329 	}
4330 
4331 	if (!(wq->flags & WQ_UNBOUND)) {
4332 		/*
4333 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4334 		 * free the pwqs and wq.
4335 		 */
4336 		free_percpu(wq->cpu_pwqs);
4337 		kfree(wq);
4338 	} else {
4339 		/*
4340 		 * We're the sole accessor of @wq at this point.  Directly
4341 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4342 		 * @wq will be freed when the last pwq is released.
4343 		 */
4344 		for_each_node(node) {
4345 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4346 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4347 			put_pwq_unlocked(pwq);
4348 		}
4349 
4350 		/*
4351 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4352 		 * put.  Don't access it afterwards.
4353 		 */
4354 		pwq = wq->dfl_pwq;
4355 		wq->dfl_pwq = NULL;
4356 		put_pwq_unlocked(pwq);
4357 	}
4358 }
4359 EXPORT_SYMBOL_GPL(destroy_workqueue);
4360 
4361 /**
4362  * workqueue_set_max_active - adjust max_active of a workqueue
4363  * @wq: target workqueue
4364  * @max_active: new max_active value.
4365  *
4366  * Set max_active of @wq to @max_active.
4367  *
4368  * CONTEXT:
4369  * Don't call from IRQ context.
4370  */
4371 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4372 {
4373 	struct pool_workqueue *pwq;
4374 
4375 	/* disallow meddling with max_active for ordered workqueues */
4376 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4377 		return;
4378 
4379 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4380 
4381 	mutex_lock(&wq->mutex);
4382 
4383 	wq->saved_max_active = max_active;
4384 
4385 	for_each_pwq(pwq, wq)
4386 		pwq_adjust_max_active(pwq);
4387 
4388 	mutex_unlock(&wq->mutex);
4389 }
4390 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4391 
4392 /**
4393  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4394  *
4395  * Determine whether %current is a workqueue rescuer.  Can be used from
4396  * work functions to determine whether it's being run off the rescuer task.
4397  *
4398  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4399  */
4400 bool current_is_workqueue_rescuer(void)
4401 {
4402 	struct worker *worker = current_wq_worker();
4403 
4404 	return worker && worker->rescue_wq;
4405 }
4406 
4407 /**
4408  * workqueue_congested - test whether a workqueue is congested
4409  * @cpu: CPU in question
4410  * @wq: target workqueue
4411  *
4412  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4413  * no synchronization around this function and the test result is
4414  * unreliable and only useful as advisory hints or for debugging.
4415  *
4416  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4417  * Note that both per-cpu and unbound workqueues may be associated with
4418  * multiple pool_workqueues which have separate congested states.  A
4419  * workqueue being congested on one CPU doesn't mean the workqueue is also
4420  * contested on other CPUs / NUMA nodes.
4421  *
4422  * Return:
4423  * %true if congested, %false otherwise.
4424  */
4425 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4426 {
4427 	struct pool_workqueue *pwq;
4428 	bool ret;
4429 
4430 	rcu_read_lock_sched();
4431 
4432 	if (cpu == WORK_CPU_UNBOUND)
4433 		cpu = smp_processor_id();
4434 
4435 	if (!(wq->flags & WQ_UNBOUND))
4436 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4437 	else
4438 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4439 
4440 	ret = !list_empty(&pwq->delayed_works);
4441 	rcu_read_unlock_sched();
4442 
4443 	return ret;
4444 }
4445 EXPORT_SYMBOL_GPL(workqueue_congested);
4446 
4447 /**
4448  * work_busy - test whether a work is currently pending or running
4449  * @work: the work to be tested
4450  *
4451  * Test whether @work is currently pending or running.  There is no
4452  * synchronization around this function and the test result is
4453  * unreliable and only useful as advisory hints or for debugging.
4454  *
4455  * Return:
4456  * OR'd bitmask of WORK_BUSY_* bits.
4457  */
4458 unsigned int work_busy(struct work_struct *work)
4459 {
4460 	struct worker_pool *pool;
4461 	unsigned long flags;
4462 	unsigned int ret = 0;
4463 
4464 	if (work_pending(work))
4465 		ret |= WORK_BUSY_PENDING;
4466 
4467 	local_irq_save(flags);
4468 	pool = get_work_pool(work);
4469 	if (pool) {
4470 		spin_lock(&pool->lock);
4471 		if (find_worker_executing_work(pool, work))
4472 			ret |= WORK_BUSY_RUNNING;
4473 		spin_unlock(&pool->lock);
4474 	}
4475 	local_irq_restore(flags);
4476 
4477 	return ret;
4478 }
4479 EXPORT_SYMBOL_GPL(work_busy);
4480 
4481 /**
4482  * set_worker_desc - set description for the current work item
4483  * @fmt: printf-style format string
4484  * @...: arguments for the format string
4485  *
4486  * This function can be called by a running work function to describe what
4487  * the work item is about.  If the worker task gets dumped, this
4488  * information will be printed out together to help debugging.  The
4489  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4490  */
4491 void set_worker_desc(const char *fmt, ...)
4492 {
4493 	struct worker *worker = current_wq_worker();
4494 	va_list args;
4495 
4496 	if (worker) {
4497 		va_start(args, fmt);
4498 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4499 		va_end(args);
4500 		worker->desc_valid = true;
4501 	}
4502 }
4503 
4504 /**
4505  * print_worker_info - print out worker information and description
4506  * @log_lvl: the log level to use when printing
4507  * @task: target task
4508  *
4509  * If @task is a worker and currently executing a work item, print out the
4510  * name of the workqueue being serviced and worker description set with
4511  * set_worker_desc() by the currently executing work item.
4512  *
4513  * This function can be safely called on any task as long as the
4514  * task_struct itself is accessible.  While safe, this function isn't
4515  * synchronized and may print out mixups or garbages of limited length.
4516  */
4517 void print_worker_info(const char *log_lvl, struct task_struct *task)
4518 {
4519 	work_func_t *fn = NULL;
4520 	char name[WQ_NAME_LEN] = { };
4521 	char desc[WORKER_DESC_LEN] = { };
4522 	struct pool_workqueue *pwq = NULL;
4523 	struct workqueue_struct *wq = NULL;
4524 	bool desc_valid = false;
4525 	struct worker *worker;
4526 
4527 	if (!(task->flags & PF_WQ_WORKER))
4528 		return;
4529 
4530 	/*
4531 	 * This function is called without any synchronization and @task
4532 	 * could be in any state.  Be careful with dereferences.
4533 	 */
4534 	worker = probe_kthread_data(task);
4535 
4536 	/*
4537 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4538 	 * the original last '\0' in case the original contains garbage.
4539 	 */
4540 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4541 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4542 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4543 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4544 
4545 	/* copy worker description */
4546 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4547 	if (desc_valid)
4548 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4549 
4550 	if (fn || name[0] || desc[0]) {
4551 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4552 		if (desc[0])
4553 			pr_cont(" (%s)", desc);
4554 		pr_cont("\n");
4555 	}
4556 }
4557 
4558 /*
4559  * CPU hotplug.
4560  *
4561  * There are two challenges in supporting CPU hotplug.  Firstly, there
4562  * are a lot of assumptions on strong associations among work, pwq and
4563  * pool which make migrating pending and scheduled works very
4564  * difficult to implement without impacting hot paths.  Secondly,
4565  * worker pools serve mix of short, long and very long running works making
4566  * blocked draining impractical.
4567  *
4568  * This is solved by allowing the pools to be disassociated from the CPU
4569  * running as an unbound one and allowing it to be reattached later if the
4570  * cpu comes back online.
4571  */
4572 
4573 static void wq_unbind_fn(struct work_struct *work)
4574 {
4575 	int cpu = smp_processor_id();
4576 	struct worker_pool *pool;
4577 	struct worker *worker;
4578 	int wi;
4579 
4580 	for_each_cpu_worker_pool(pool, cpu) {
4581 		WARN_ON_ONCE(cpu != smp_processor_id());
4582 
4583 		mutex_lock(&pool->manager_mutex);
4584 		spin_lock_irq(&pool->lock);
4585 
4586 		/*
4587 		 * We've blocked all manager operations.  Make all workers
4588 		 * unbound and set DISASSOCIATED.  Before this, all workers
4589 		 * except for the ones which are still executing works from
4590 		 * before the last CPU down must be on the cpu.  After
4591 		 * this, they may become diasporas.
4592 		 */
4593 		for_each_pool_worker(worker, wi, pool)
4594 			worker->flags |= WORKER_UNBOUND;
4595 
4596 		pool->flags |= POOL_DISASSOCIATED;
4597 
4598 		spin_unlock_irq(&pool->lock);
4599 		mutex_unlock(&pool->manager_mutex);
4600 
4601 		/*
4602 		 * Call schedule() so that we cross rq->lock and thus can
4603 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4604 		 * This is necessary as scheduler callbacks may be invoked
4605 		 * from other cpus.
4606 		 */
4607 		schedule();
4608 
4609 		/*
4610 		 * Sched callbacks are disabled now.  Zap nr_running.
4611 		 * After this, nr_running stays zero and need_more_worker()
4612 		 * and keep_working() are always true as long as the
4613 		 * worklist is not empty.  This pool now behaves as an
4614 		 * unbound (in terms of concurrency management) pool which
4615 		 * are served by workers tied to the pool.
4616 		 */
4617 		atomic_set(&pool->nr_running, 0);
4618 
4619 		/*
4620 		 * With concurrency management just turned off, a busy
4621 		 * worker blocking could lead to lengthy stalls.  Kick off
4622 		 * unbound chain execution of currently pending work items.
4623 		 */
4624 		spin_lock_irq(&pool->lock);
4625 		wake_up_worker(pool);
4626 		spin_unlock_irq(&pool->lock);
4627 	}
4628 }
4629 
4630 /**
4631  * rebind_workers - rebind all workers of a pool to the associated CPU
4632  * @pool: pool of interest
4633  *
4634  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4635  */
4636 static void rebind_workers(struct worker_pool *pool)
4637 {
4638 	struct worker *worker;
4639 	int wi;
4640 
4641 	lockdep_assert_held(&pool->manager_mutex);
4642 
4643 	/*
4644 	 * Restore CPU affinity of all workers.  As all idle workers should
4645 	 * be on the run-queue of the associated CPU before any local
4646 	 * wake-ups for concurrency management happen, restore CPU affinty
4647 	 * of all workers first and then clear UNBOUND.  As we're called
4648 	 * from CPU_ONLINE, the following shouldn't fail.
4649 	 */
4650 	for_each_pool_worker(worker, wi, pool)
4651 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4652 						  pool->attrs->cpumask) < 0);
4653 
4654 	spin_lock_irq(&pool->lock);
4655 
4656 	for_each_pool_worker(worker, wi, pool) {
4657 		unsigned int worker_flags = worker->flags;
4658 
4659 		/*
4660 		 * A bound idle worker should actually be on the runqueue
4661 		 * of the associated CPU for local wake-ups targeting it to
4662 		 * work.  Kick all idle workers so that they migrate to the
4663 		 * associated CPU.  Doing this in the same loop as
4664 		 * replacing UNBOUND with REBOUND is safe as no worker will
4665 		 * be bound before @pool->lock is released.
4666 		 */
4667 		if (worker_flags & WORKER_IDLE)
4668 			wake_up_process(worker->task);
4669 
4670 		/*
4671 		 * We want to clear UNBOUND but can't directly call
4672 		 * worker_clr_flags() or adjust nr_running.  Atomically
4673 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4674 		 * @worker will clear REBOUND using worker_clr_flags() when
4675 		 * it initiates the next execution cycle thus restoring
4676 		 * concurrency management.  Note that when or whether
4677 		 * @worker clears REBOUND doesn't affect correctness.
4678 		 *
4679 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4680 		 * tested without holding any lock in
4681 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4682 		 * fail incorrectly leading to premature concurrency
4683 		 * management operations.
4684 		 */
4685 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4686 		worker_flags |= WORKER_REBOUND;
4687 		worker_flags &= ~WORKER_UNBOUND;
4688 		ACCESS_ONCE(worker->flags) = worker_flags;
4689 	}
4690 
4691 	spin_unlock_irq(&pool->lock);
4692 }
4693 
4694 /**
4695  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4696  * @pool: unbound pool of interest
4697  * @cpu: the CPU which is coming up
4698  *
4699  * An unbound pool may end up with a cpumask which doesn't have any online
4700  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4701  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4702  * online CPU before, cpus_allowed of all its workers should be restored.
4703  */
4704 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4705 {
4706 	static cpumask_t cpumask;
4707 	struct worker *worker;
4708 	int wi;
4709 
4710 	lockdep_assert_held(&pool->manager_mutex);
4711 
4712 	/* is @cpu allowed for @pool? */
4713 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4714 		return;
4715 
4716 	/* is @cpu the only online CPU? */
4717 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4718 	if (cpumask_weight(&cpumask) != 1)
4719 		return;
4720 
4721 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4722 	for_each_pool_worker(worker, wi, pool)
4723 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4724 						  pool->attrs->cpumask) < 0);
4725 }
4726 
4727 /*
4728  * Workqueues should be brought up before normal priority CPU notifiers.
4729  * This will be registered high priority CPU notifier.
4730  */
4731 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4732 					       unsigned long action,
4733 					       void *hcpu)
4734 {
4735 	int cpu = (unsigned long)hcpu;
4736 	struct worker_pool *pool;
4737 	struct workqueue_struct *wq;
4738 	int pi;
4739 
4740 	switch (action & ~CPU_TASKS_FROZEN) {
4741 	case CPU_UP_PREPARE:
4742 		for_each_cpu_worker_pool(pool, cpu) {
4743 			if (pool->nr_workers)
4744 				continue;
4745 			if (create_and_start_worker(pool) < 0)
4746 				return NOTIFY_BAD;
4747 		}
4748 		break;
4749 
4750 	case CPU_DOWN_FAILED:
4751 	case CPU_ONLINE:
4752 		mutex_lock(&wq_pool_mutex);
4753 
4754 		for_each_pool(pool, pi) {
4755 			mutex_lock(&pool->manager_mutex);
4756 
4757 			if (pool->cpu == cpu) {
4758 				spin_lock_irq(&pool->lock);
4759 				pool->flags &= ~POOL_DISASSOCIATED;
4760 				spin_unlock_irq(&pool->lock);
4761 
4762 				rebind_workers(pool);
4763 			} else if (pool->cpu < 0) {
4764 				restore_unbound_workers_cpumask(pool, cpu);
4765 			}
4766 
4767 			mutex_unlock(&pool->manager_mutex);
4768 		}
4769 
4770 		/* update NUMA affinity of unbound workqueues */
4771 		list_for_each_entry(wq, &workqueues, list)
4772 			wq_update_unbound_numa(wq, cpu, true);
4773 
4774 		mutex_unlock(&wq_pool_mutex);
4775 		break;
4776 	}
4777 	return NOTIFY_OK;
4778 }
4779 
4780 /*
4781  * Workqueues should be brought down after normal priority CPU notifiers.
4782  * This will be registered as low priority CPU notifier.
4783  */
4784 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4785 						 unsigned long action,
4786 						 void *hcpu)
4787 {
4788 	int cpu = (unsigned long)hcpu;
4789 	struct work_struct unbind_work;
4790 	struct workqueue_struct *wq;
4791 
4792 	switch (action & ~CPU_TASKS_FROZEN) {
4793 	case CPU_DOWN_PREPARE:
4794 		/* unbinding per-cpu workers should happen on the local CPU */
4795 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4796 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4797 
4798 		/* update NUMA affinity of unbound workqueues */
4799 		mutex_lock(&wq_pool_mutex);
4800 		list_for_each_entry(wq, &workqueues, list)
4801 			wq_update_unbound_numa(wq, cpu, false);
4802 		mutex_unlock(&wq_pool_mutex);
4803 
4804 		/* wait for per-cpu unbinding to finish */
4805 		flush_work(&unbind_work);
4806 		destroy_work_on_stack(&unbind_work);
4807 		break;
4808 	}
4809 	return NOTIFY_OK;
4810 }
4811 
4812 #ifdef CONFIG_SMP
4813 
4814 struct work_for_cpu {
4815 	struct work_struct work;
4816 	long (*fn)(void *);
4817 	void *arg;
4818 	long ret;
4819 };
4820 
4821 static void work_for_cpu_fn(struct work_struct *work)
4822 {
4823 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4824 
4825 	wfc->ret = wfc->fn(wfc->arg);
4826 }
4827 
4828 /**
4829  * work_on_cpu - run a function in user context on a particular cpu
4830  * @cpu: the cpu to run on
4831  * @fn: the function to run
4832  * @arg: the function arg
4833  *
4834  * It is up to the caller to ensure that the cpu doesn't go offline.
4835  * The caller must not hold any locks which would prevent @fn from completing.
4836  *
4837  * Return: The value @fn returns.
4838  */
4839 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4840 {
4841 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4842 
4843 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4844 	schedule_work_on(cpu, &wfc.work);
4845 	flush_work(&wfc.work);
4846 	destroy_work_on_stack(&wfc.work);
4847 	return wfc.ret;
4848 }
4849 EXPORT_SYMBOL_GPL(work_on_cpu);
4850 #endif /* CONFIG_SMP */
4851 
4852 #ifdef CONFIG_FREEZER
4853 
4854 /**
4855  * freeze_workqueues_begin - begin freezing workqueues
4856  *
4857  * Start freezing workqueues.  After this function returns, all freezable
4858  * workqueues will queue new works to their delayed_works list instead of
4859  * pool->worklist.
4860  *
4861  * CONTEXT:
4862  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4863  */
4864 void freeze_workqueues_begin(void)
4865 {
4866 	struct worker_pool *pool;
4867 	struct workqueue_struct *wq;
4868 	struct pool_workqueue *pwq;
4869 	int pi;
4870 
4871 	mutex_lock(&wq_pool_mutex);
4872 
4873 	WARN_ON_ONCE(workqueue_freezing);
4874 	workqueue_freezing = true;
4875 
4876 	/* set FREEZING */
4877 	for_each_pool(pool, pi) {
4878 		spin_lock_irq(&pool->lock);
4879 		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4880 		pool->flags |= POOL_FREEZING;
4881 		spin_unlock_irq(&pool->lock);
4882 	}
4883 
4884 	list_for_each_entry(wq, &workqueues, list) {
4885 		mutex_lock(&wq->mutex);
4886 		for_each_pwq(pwq, wq)
4887 			pwq_adjust_max_active(pwq);
4888 		mutex_unlock(&wq->mutex);
4889 	}
4890 
4891 	mutex_unlock(&wq_pool_mutex);
4892 }
4893 
4894 /**
4895  * freeze_workqueues_busy - are freezable workqueues still busy?
4896  *
4897  * Check whether freezing is complete.  This function must be called
4898  * between freeze_workqueues_begin() and thaw_workqueues().
4899  *
4900  * CONTEXT:
4901  * Grabs and releases wq_pool_mutex.
4902  *
4903  * Return:
4904  * %true if some freezable workqueues are still busy.  %false if freezing
4905  * is complete.
4906  */
4907 bool freeze_workqueues_busy(void)
4908 {
4909 	bool busy = false;
4910 	struct workqueue_struct *wq;
4911 	struct pool_workqueue *pwq;
4912 
4913 	mutex_lock(&wq_pool_mutex);
4914 
4915 	WARN_ON_ONCE(!workqueue_freezing);
4916 
4917 	list_for_each_entry(wq, &workqueues, list) {
4918 		if (!(wq->flags & WQ_FREEZABLE))
4919 			continue;
4920 		/*
4921 		 * nr_active is monotonically decreasing.  It's safe
4922 		 * to peek without lock.
4923 		 */
4924 		rcu_read_lock_sched();
4925 		for_each_pwq(pwq, wq) {
4926 			WARN_ON_ONCE(pwq->nr_active < 0);
4927 			if (pwq->nr_active) {
4928 				busy = true;
4929 				rcu_read_unlock_sched();
4930 				goto out_unlock;
4931 			}
4932 		}
4933 		rcu_read_unlock_sched();
4934 	}
4935 out_unlock:
4936 	mutex_unlock(&wq_pool_mutex);
4937 	return busy;
4938 }
4939 
4940 /**
4941  * thaw_workqueues - thaw workqueues
4942  *
4943  * Thaw workqueues.  Normal queueing is restored and all collected
4944  * frozen works are transferred to their respective pool worklists.
4945  *
4946  * CONTEXT:
4947  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4948  */
4949 void thaw_workqueues(void)
4950 {
4951 	struct workqueue_struct *wq;
4952 	struct pool_workqueue *pwq;
4953 	struct worker_pool *pool;
4954 	int pi;
4955 
4956 	mutex_lock(&wq_pool_mutex);
4957 
4958 	if (!workqueue_freezing)
4959 		goto out_unlock;
4960 
4961 	/* clear FREEZING */
4962 	for_each_pool(pool, pi) {
4963 		spin_lock_irq(&pool->lock);
4964 		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4965 		pool->flags &= ~POOL_FREEZING;
4966 		spin_unlock_irq(&pool->lock);
4967 	}
4968 
4969 	/* restore max_active and repopulate worklist */
4970 	list_for_each_entry(wq, &workqueues, list) {
4971 		mutex_lock(&wq->mutex);
4972 		for_each_pwq(pwq, wq)
4973 			pwq_adjust_max_active(pwq);
4974 		mutex_unlock(&wq->mutex);
4975 	}
4976 
4977 	workqueue_freezing = false;
4978 out_unlock:
4979 	mutex_unlock(&wq_pool_mutex);
4980 }
4981 #endif /* CONFIG_FREEZER */
4982 
4983 static void __init wq_numa_init(void)
4984 {
4985 	cpumask_var_t *tbl;
4986 	int node, cpu;
4987 
4988 	/* determine NUMA pwq table len - highest node id + 1 */
4989 	for_each_node(node)
4990 		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4991 
4992 	if (num_possible_nodes() <= 1)
4993 		return;
4994 
4995 	if (wq_disable_numa) {
4996 		pr_info("workqueue: NUMA affinity support disabled\n");
4997 		return;
4998 	}
4999 
5000 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5001 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5002 
5003 	/*
5004 	 * We want masks of possible CPUs of each node which isn't readily
5005 	 * available.  Build one from cpu_to_node() which should have been
5006 	 * fully initialized by now.
5007 	 */
5008 	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5009 	BUG_ON(!tbl);
5010 
5011 	for_each_node(node)
5012 		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5013 				node_online(node) ? node : NUMA_NO_NODE));
5014 
5015 	for_each_possible_cpu(cpu) {
5016 		node = cpu_to_node(cpu);
5017 		if (WARN_ON(node == NUMA_NO_NODE)) {
5018 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5019 			/* happens iff arch is bonkers, let's just proceed */
5020 			return;
5021 		}
5022 		cpumask_set_cpu(cpu, tbl[node]);
5023 	}
5024 
5025 	wq_numa_possible_cpumask = tbl;
5026 	wq_numa_enabled = true;
5027 }
5028 
5029 static int __init init_workqueues(void)
5030 {
5031 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5032 	int i, cpu;
5033 
5034 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5035 
5036 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5037 
5038 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5039 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5040 
5041 	wq_numa_init();
5042 
5043 	/* initialize CPU pools */
5044 	for_each_possible_cpu(cpu) {
5045 		struct worker_pool *pool;
5046 
5047 		i = 0;
5048 		for_each_cpu_worker_pool(pool, cpu) {
5049 			BUG_ON(init_worker_pool(pool));
5050 			pool->cpu = cpu;
5051 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5052 			pool->attrs->nice = std_nice[i++];
5053 			pool->node = cpu_to_node(cpu);
5054 
5055 			/* alloc pool ID */
5056 			mutex_lock(&wq_pool_mutex);
5057 			BUG_ON(worker_pool_assign_id(pool));
5058 			mutex_unlock(&wq_pool_mutex);
5059 		}
5060 	}
5061 
5062 	/* create the initial worker */
5063 	for_each_online_cpu(cpu) {
5064 		struct worker_pool *pool;
5065 
5066 		for_each_cpu_worker_pool(pool, cpu) {
5067 			pool->flags &= ~POOL_DISASSOCIATED;
5068 			BUG_ON(create_and_start_worker(pool) < 0);
5069 		}
5070 	}
5071 
5072 	/* create default unbound and ordered wq attrs */
5073 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5074 		struct workqueue_attrs *attrs;
5075 
5076 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5077 		attrs->nice = std_nice[i];
5078 		unbound_std_wq_attrs[i] = attrs;
5079 
5080 		/*
5081 		 * An ordered wq should have only one pwq as ordering is
5082 		 * guaranteed by max_active which is enforced by pwqs.
5083 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5084 		 */
5085 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5086 		attrs->nice = std_nice[i];
5087 		attrs->no_numa = true;
5088 		ordered_wq_attrs[i] = attrs;
5089 	}
5090 
5091 	system_wq = alloc_workqueue("events", 0, 0);
5092 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5093 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5094 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5095 					    WQ_UNBOUND_MAX_ACTIVE);
5096 	system_freezable_wq = alloc_workqueue("events_freezable",
5097 					      WQ_FREEZABLE, 0);
5098 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5099 					      WQ_POWER_EFFICIENT, 0);
5100 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5101 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5102 					      0);
5103 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5104 	       !system_unbound_wq || !system_freezable_wq ||
5105 	       !system_power_efficient_wq ||
5106 	       !system_freezable_power_efficient_wq);
5107 	return 0;
5108 }
5109 early_initcall(init_workqueues);
5110