1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * manager_mutex to avoid changing binding state while 69 * create_worker() is in progress. 70 */ 71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 73 POOL_FREEZING = 1 << 3, /* freeze in progress */ 74 75 /* worker flags */ 76 WORKER_STARTED = 1 << 0, /* started */ 77 WORKER_DIE = 1 << 1, /* die die die */ 78 WORKER_IDLE = 1 << 2, /* is idle */ 79 WORKER_PREP = 1 << 3, /* preparing to run works */ 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 83 84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 85 WORKER_UNBOUND | WORKER_REBOUND, 86 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 88 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 91 92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 94 95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 96 /* call for help after 10ms 97 (min two ticks) */ 98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 99 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 100 101 /* 102 * Rescue workers are used only on emergencies and shared by 103 * all cpus. Give -20. 104 */ 105 RESCUER_NICE_LEVEL = -20, 106 HIGHPRI_NICE_LEVEL = -20, 107 108 WQ_NAME_LEN = 24, 109 }; 110 111 /* 112 * Structure fields follow one of the following exclusion rules. 113 * 114 * I: Modifiable by initialization/destruction paths and read-only for 115 * everyone else. 116 * 117 * P: Preemption protected. Disabling preemption is enough and should 118 * only be modified and accessed from the local cpu. 119 * 120 * L: pool->lock protected. Access with pool->lock held. 121 * 122 * X: During normal operation, modification requires pool->lock and should 123 * be done only from local cpu. Either disabling preemption on local 124 * cpu or grabbing pool->lock is enough for read access. If 125 * POOL_DISASSOCIATED is set, it's identical to L. 126 * 127 * MG: pool->manager_mutex and pool->lock protected. Writes require both 128 * locks. Reads can happen under either lock. 129 * 130 * PL: wq_pool_mutex protected. 131 * 132 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 133 * 134 * WQ: wq->mutex protected. 135 * 136 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 137 * 138 * MD: wq_mayday_lock protected. 139 */ 140 141 /* struct worker is defined in workqueue_internal.h */ 142 143 struct worker_pool { 144 spinlock_t lock; /* the pool lock */ 145 int cpu; /* I: the associated cpu */ 146 int node; /* I: the associated node ID */ 147 int id; /* I: pool ID */ 148 unsigned int flags; /* X: flags */ 149 150 struct list_head worklist; /* L: list of pending works */ 151 int nr_workers; /* L: total number of workers */ 152 153 /* nr_idle includes the ones off idle_list for rebinding */ 154 int nr_idle; /* L: currently idle ones */ 155 156 struct list_head idle_list; /* X: list of idle workers */ 157 struct timer_list idle_timer; /* L: worker idle timeout */ 158 struct timer_list mayday_timer; /* L: SOS timer for workers */ 159 160 /* a workers is either on busy_hash or idle_list, or the manager */ 161 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 162 /* L: hash of busy workers */ 163 164 /* see manage_workers() for details on the two manager mutexes */ 165 struct mutex manager_arb; /* manager arbitration */ 166 struct mutex manager_mutex; /* manager exclusion */ 167 struct idr worker_idr; /* MG: worker IDs and iteration */ 168 169 struct workqueue_attrs *attrs; /* I: worker attributes */ 170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 171 int refcnt; /* PL: refcnt for unbound pools */ 172 173 /* 174 * The current concurrency level. As it's likely to be accessed 175 * from other CPUs during try_to_wake_up(), put it in a separate 176 * cacheline. 177 */ 178 atomic_t nr_running ____cacheline_aligned_in_smp; 179 180 /* 181 * Destruction of pool is sched-RCU protected to allow dereferences 182 * from get_work_pool(). 183 */ 184 struct rcu_head rcu; 185 } ____cacheline_aligned_in_smp; 186 187 /* 188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 189 * of work_struct->data are used for flags and the remaining high bits 190 * point to the pwq; thus, pwqs need to be aligned at two's power of the 191 * number of flag bits. 192 */ 193 struct pool_workqueue { 194 struct worker_pool *pool; /* I: the associated pool */ 195 struct workqueue_struct *wq; /* I: the owning workqueue */ 196 int work_color; /* L: current color */ 197 int flush_color; /* L: flushing color */ 198 int refcnt; /* L: reference count */ 199 int nr_in_flight[WORK_NR_COLORS]; 200 /* L: nr of in_flight works */ 201 int nr_active; /* L: nr of active works */ 202 int max_active; /* L: max active works */ 203 struct list_head delayed_works; /* L: delayed works */ 204 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 205 struct list_head mayday_node; /* MD: node on wq->maydays */ 206 207 /* 208 * Release of unbound pwq is punted to system_wq. See put_pwq() 209 * and pwq_unbound_release_workfn() for details. pool_workqueue 210 * itself is also sched-RCU protected so that the first pwq can be 211 * determined without grabbing wq->mutex. 212 */ 213 struct work_struct unbound_release_work; 214 struct rcu_head rcu; 215 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 216 217 /* 218 * Structure used to wait for workqueue flush. 219 */ 220 struct wq_flusher { 221 struct list_head list; /* WQ: list of flushers */ 222 int flush_color; /* WQ: flush color waiting for */ 223 struct completion done; /* flush completion */ 224 }; 225 226 struct wq_device; 227 228 /* 229 * The externally visible workqueue. It relays the issued work items to 230 * the appropriate worker_pool through its pool_workqueues. 231 */ 232 struct workqueue_struct { 233 struct list_head pwqs; /* WR: all pwqs of this wq */ 234 struct list_head list; /* PL: list of all workqueues */ 235 236 struct mutex mutex; /* protects this wq */ 237 int work_color; /* WQ: current work color */ 238 int flush_color; /* WQ: current flush color */ 239 atomic_t nr_pwqs_to_flush; /* flush in progress */ 240 struct wq_flusher *first_flusher; /* WQ: first flusher */ 241 struct list_head flusher_queue; /* WQ: flush waiters */ 242 struct list_head flusher_overflow; /* WQ: flush overflow list */ 243 244 struct list_head maydays; /* MD: pwqs requesting rescue */ 245 struct worker *rescuer; /* I: rescue worker */ 246 247 int nr_drainers; /* WQ: drain in progress */ 248 int saved_max_active; /* WQ: saved pwq max_active */ 249 250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */ 251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */ 252 253 #ifdef CONFIG_SYSFS 254 struct wq_device *wq_dev; /* I: for sysfs interface */ 255 #endif 256 #ifdef CONFIG_LOCKDEP 257 struct lockdep_map lockdep_map; 258 #endif 259 char name[WQ_NAME_LEN]; /* I: workqueue name */ 260 261 /* hot fields used during command issue, aligned to cacheline */ 262 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 263 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 264 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */ 265 }; 266 267 static struct kmem_cache *pwq_cache; 268 269 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */ 270 static cpumask_var_t *wq_numa_possible_cpumask; 271 /* possible CPUs of each node */ 272 273 static bool wq_disable_numa; 274 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 275 276 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT 278 static bool wq_power_efficient = true; 279 #else 280 static bool wq_power_efficient; 281 #endif 282 283 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 284 285 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 286 287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 288 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 289 290 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 291 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 292 293 static LIST_HEAD(workqueues); /* PL: list of all workqueues */ 294 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 295 296 /* the per-cpu worker pools */ 297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 298 cpu_worker_pools); 299 300 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 301 302 /* PL: hash of all unbound pools keyed by pool->attrs */ 303 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 304 305 /* I: attributes used when instantiating standard unbound pools on demand */ 306 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 307 308 /* I: attributes used when instantiating ordered pools on demand */ 309 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 310 311 struct workqueue_struct *system_wq __read_mostly; 312 EXPORT_SYMBOL(system_wq); 313 struct workqueue_struct *system_highpri_wq __read_mostly; 314 EXPORT_SYMBOL_GPL(system_highpri_wq); 315 struct workqueue_struct *system_long_wq __read_mostly; 316 EXPORT_SYMBOL_GPL(system_long_wq); 317 struct workqueue_struct *system_unbound_wq __read_mostly; 318 EXPORT_SYMBOL_GPL(system_unbound_wq); 319 struct workqueue_struct *system_freezable_wq __read_mostly; 320 EXPORT_SYMBOL_GPL(system_freezable_wq); 321 struct workqueue_struct *system_power_efficient_wq __read_mostly; 322 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 323 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 324 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 325 326 static int worker_thread(void *__worker); 327 static void copy_workqueue_attrs(struct workqueue_attrs *to, 328 const struct workqueue_attrs *from); 329 330 #define CREATE_TRACE_POINTS 331 #include <trace/events/workqueue.h> 332 333 #define assert_rcu_or_pool_mutex() \ 334 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 335 lockdep_is_held(&wq_pool_mutex), \ 336 "sched RCU or wq_pool_mutex should be held") 337 338 #define assert_rcu_or_wq_mutex(wq) \ 339 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 340 lockdep_is_held(&wq->mutex), \ 341 "sched RCU or wq->mutex should be held") 342 343 #ifdef CONFIG_LOCKDEP 344 #define assert_manager_or_pool_lock(pool) \ 345 WARN_ONCE(debug_locks && \ 346 !lockdep_is_held(&(pool)->manager_mutex) && \ 347 !lockdep_is_held(&(pool)->lock), \ 348 "pool->manager_mutex or ->lock should be held") 349 #else 350 #define assert_manager_or_pool_lock(pool) do { } while (0) 351 #endif 352 353 #define for_each_cpu_worker_pool(pool, cpu) \ 354 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 355 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 356 (pool)++) 357 358 /** 359 * for_each_pool - iterate through all worker_pools in the system 360 * @pool: iteration cursor 361 * @pi: integer used for iteration 362 * 363 * This must be called either with wq_pool_mutex held or sched RCU read 364 * locked. If the pool needs to be used beyond the locking in effect, the 365 * caller is responsible for guaranteeing that the pool stays online. 366 * 367 * The if/else clause exists only for the lockdep assertion and can be 368 * ignored. 369 */ 370 #define for_each_pool(pool, pi) \ 371 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 372 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 373 else 374 375 /** 376 * for_each_pool_worker - iterate through all workers of a worker_pool 377 * @worker: iteration cursor 378 * @wi: integer used for iteration 379 * @pool: worker_pool to iterate workers of 380 * 381 * This must be called with either @pool->manager_mutex or ->lock held. 382 * 383 * The if/else clause exists only for the lockdep assertion and can be 384 * ignored. 385 */ 386 #define for_each_pool_worker(worker, wi, pool) \ 387 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \ 388 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \ 389 else 390 391 /** 392 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 393 * @pwq: iteration cursor 394 * @wq: the target workqueue 395 * 396 * This must be called either with wq->mutex held or sched RCU read locked. 397 * If the pwq needs to be used beyond the locking in effect, the caller is 398 * responsible for guaranteeing that the pwq stays online. 399 * 400 * The if/else clause exists only for the lockdep assertion and can be 401 * ignored. 402 */ 403 #define for_each_pwq(pwq, wq) \ 404 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 405 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 406 else 407 408 #ifdef CONFIG_DEBUG_OBJECTS_WORK 409 410 static struct debug_obj_descr work_debug_descr; 411 412 static void *work_debug_hint(void *addr) 413 { 414 return ((struct work_struct *) addr)->func; 415 } 416 417 /* 418 * fixup_init is called when: 419 * - an active object is initialized 420 */ 421 static int work_fixup_init(void *addr, enum debug_obj_state state) 422 { 423 struct work_struct *work = addr; 424 425 switch (state) { 426 case ODEBUG_STATE_ACTIVE: 427 cancel_work_sync(work); 428 debug_object_init(work, &work_debug_descr); 429 return 1; 430 default: 431 return 0; 432 } 433 } 434 435 /* 436 * fixup_activate is called when: 437 * - an active object is activated 438 * - an unknown object is activated (might be a statically initialized object) 439 */ 440 static int work_fixup_activate(void *addr, enum debug_obj_state state) 441 { 442 struct work_struct *work = addr; 443 444 switch (state) { 445 446 case ODEBUG_STATE_NOTAVAILABLE: 447 /* 448 * This is not really a fixup. The work struct was 449 * statically initialized. We just make sure that it 450 * is tracked in the object tracker. 451 */ 452 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 453 debug_object_init(work, &work_debug_descr); 454 debug_object_activate(work, &work_debug_descr); 455 return 0; 456 } 457 WARN_ON_ONCE(1); 458 return 0; 459 460 case ODEBUG_STATE_ACTIVE: 461 WARN_ON(1); 462 463 default: 464 return 0; 465 } 466 } 467 468 /* 469 * fixup_free is called when: 470 * - an active object is freed 471 */ 472 static int work_fixup_free(void *addr, enum debug_obj_state state) 473 { 474 struct work_struct *work = addr; 475 476 switch (state) { 477 case ODEBUG_STATE_ACTIVE: 478 cancel_work_sync(work); 479 debug_object_free(work, &work_debug_descr); 480 return 1; 481 default: 482 return 0; 483 } 484 } 485 486 static struct debug_obj_descr work_debug_descr = { 487 .name = "work_struct", 488 .debug_hint = work_debug_hint, 489 .fixup_init = work_fixup_init, 490 .fixup_activate = work_fixup_activate, 491 .fixup_free = work_fixup_free, 492 }; 493 494 static inline void debug_work_activate(struct work_struct *work) 495 { 496 debug_object_activate(work, &work_debug_descr); 497 } 498 499 static inline void debug_work_deactivate(struct work_struct *work) 500 { 501 debug_object_deactivate(work, &work_debug_descr); 502 } 503 504 void __init_work(struct work_struct *work, int onstack) 505 { 506 if (onstack) 507 debug_object_init_on_stack(work, &work_debug_descr); 508 else 509 debug_object_init(work, &work_debug_descr); 510 } 511 EXPORT_SYMBOL_GPL(__init_work); 512 513 void destroy_work_on_stack(struct work_struct *work) 514 { 515 debug_object_free(work, &work_debug_descr); 516 } 517 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 518 519 void destroy_delayed_work_on_stack(struct delayed_work *work) 520 { 521 destroy_timer_on_stack(&work->timer); 522 debug_object_free(&work->work, &work_debug_descr); 523 } 524 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 525 526 #else 527 static inline void debug_work_activate(struct work_struct *work) { } 528 static inline void debug_work_deactivate(struct work_struct *work) { } 529 #endif 530 531 /** 532 * worker_pool_assign_id - allocate ID and assing it to @pool 533 * @pool: the pool pointer of interest 534 * 535 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 536 * successfully, -errno on failure. 537 */ 538 static int worker_pool_assign_id(struct worker_pool *pool) 539 { 540 int ret; 541 542 lockdep_assert_held(&wq_pool_mutex); 543 544 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 545 GFP_KERNEL); 546 if (ret >= 0) { 547 pool->id = ret; 548 return 0; 549 } 550 return ret; 551 } 552 553 /** 554 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 555 * @wq: the target workqueue 556 * @node: the node ID 557 * 558 * This must be called either with pwq_lock held or sched RCU read locked. 559 * If the pwq needs to be used beyond the locking in effect, the caller is 560 * responsible for guaranteeing that the pwq stays online. 561 * 562 * Return: The unbound pool_workqueue for @node. 563 */ 564 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 565 int node) 566 { 567 assert_rcu_or_wq_mutex(wq); 568 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 569 } 570 571 static unsigned int work_color_to_flags(int color) 572 { 573 return color << WORK_STRUCT_COLOR_SHIFT; 574 } 575 576 static int get_work_color(struct work_struct *work) 577 { 578 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 579 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 580 } 581 582 static int work_next_color(int color) 583 { 584 return (color + 1) % WORK_NR_COLORS; 585 } 586 587 /* 588 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 589 * contain the pointer to the queued pwq. Once execution starts, the flag 590 * is cleared and the high bits contain OFFQ flags and pool ID. 591 * 592 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 593 * and clear_work_data() can be used to set the pwq, pool or clear 594 * work->data. These functions should only be called while the work is 595 * owned - ie. while the PENDING bit is set. 596 * 597 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 598 * corresponding to a work. Pool is available once the work has been 599 * queued anywhere after initialization until it is sync canceled. pwq is 600 * available only while the work item is queued. 601 * 602 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 603 * canceled. While being canceled, a work item may have its PENDING set 604 * but stay off timer and worklist for arbitrarily long and nobody should 605 * try to steal the PENDING bit. 606 */ 607 static inline void set_work_data(struct work_struct *work, unsigned long data, 608 unsigned long flags) 609 { 610 WARN_ON_ONCE(!work_pending(work)); 611 atomic_long_set(&work->data, data | flags | work_static(work)); 612 } 613 614 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 615 unsigned long extra_flags) 616 { 617 set_work_data(work, (unsigned long)pwq, 618 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 619 } 620 621 static void set_work_pool_and_keep_pending(struct work_struct *work, 622 int pool_id) 623 { 624 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 625 WORK_STRUCT_PENDING); 626 } 627 628 static void set_work_pool_and_clear_pending(struct work_struct *work, 629 int pool_id) 630 { 631 /* 632 * The following wmb is paired with the implied mb in 633 * test_and_set_bit(PENDING) and ensures all updates to @work made 634 * here are visible to and precede any updates by the next PENDING 635 * owner. 636 */ 637 smp_wmb(); 638 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 639 } 640 641 static void clear_work_data(struct work_struct *work) 642 { 643 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 644 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 645 } 646 647 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 648 { 649 unsigned long data = atomic_long_read(&work->data); 650 651 if (data & WORK_STRUCT_PWQ) 652 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 653 else 654 return NULL; 655 } 656 657 /** 658 * get_work_pool - return the worker_pool a given work was associated with 659 * @work: the work item of interest 660 * 661 * Pools are created and destroyed under wq_pool_mutex, and allows read 662 * access under sched-RCU read lock. As such, this function should be 663 * called under wq_pool_mutex or with preemption disabled. 664 * 665 * All fields of the returned pool are accessible as long as the above 666 * mentioned locking is in effect. If the returned pool needs to be used 667 * beyond the critical section, the caller is responsible for ensuring the 668 * returned pool is and stays online. 669 * 670 * Return: The worker_pool @work was last associated with. %NULL if none. 671 */ 672 static struct worker_pool *get_work_pool(struct work_struct *work) 673 { 674 unsigned long data = atomic_long_read(&work->data); 675 int pool_id; 676 677 assert_rcu_or_pool_mutex(); 678 679 if (data & WORK_STRUCT_PWQ) 680 return ((struct pool_workqueue *) 681 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 682 683 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 684 if (pool_id == WORK_OFFQ_POOL_NONE) 685 return NULL; 686 687 return idr_find(&worker_pool_idr, pool_id); 688 } 689 690 /** 691 * get_work_pool_id - return the worker pool ID a given work is associated with 692 * @work: the work item of interest 693 * 694 * Return: The worker_pool ID @work was last associated with. 695 * %WORK_OFFQ_POOL_NONE if none. 696 */ 697 static int get_work_pool_id(struct work_struct *work) 698 { 699 unsigned long data = atomic_long_read(&work->data); 700 701 if (data & WORK_STRUCT_PWQ) 702 return ((struct pool_workqueue *) 703 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 704 705 return data >> WORK_OFFQ_POOL_SHIFT; 706 } 707 708 static void mark_work_canceling(struct work_struct *work) 709 { 710 unsigned long pool_id = get_work_pool_id(work); 711 712 pool_id <<= WORK_OFFQ_POOL_SHIFT; 713 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 714 } 715 716 static bool work_is_canceling(struct work_struct *work) 717 { 718 unsigned long data = atomic_long_read(&work->data); 719 720 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 721 } 722 723 /* 724 * Policy functions. These define the policies on how the global worker 725 * pools are managed. Unless noted otherwise, these functions assume that 726 * they're being called with pool->lock held. 727 */ 728 729 static bool __need_more_worker(struct worker_pool *pool) 730 { 731 return !atomic_read(&pool->nr_running); 732 } 733 734 /* 735 * Need to wake up a worker? Called from anything but currently 736 * running workers. 737 * 738 * Note that, because unbound workers never contribute to nr_running, this 739 * function will always return %true for unbound pools as long as the 740 * worklist isn't empty. 741 */ 742 static bool need_more_worker(struct worker_pool *pool) 743 { 744 return !list_empty(&pool->worklist) && __need_more_worker(pool); 745 } 746 747 /* Can I start working? Called from busy but !running workers. */ 748 static bool may_start_working(struct worker_pool *pool) 749 { 750 return pool->nr_idle; 751 } 752 753 /* Do I need to keep working? Called from currently running workers. */ 754 static bool keep_working(struct worker_pool *pool) 755 { 756 return !list_empty(&pool->worklist) && 757 atomic_read(&pool->nr_running) <= 1; 758 } 759 760 /* Do we need a new worker? Called from manager. */ 761 static bool need_to_create_worker(struct worker_pool *pool) 762 { 763 return need_more_worker(pool) && !may_start_working(pool); 764 } 765 766 /* Do I need to be the manager? */ 767 static bool need_to_manage_workers(struct worker_pool *pool) 768 { 769 return need_to_create_worker(pool) || 770 (pool->flags & POOL_MANAGE_WORKERS); 771 } 772 773 /* Do we have too many workers and should some go away? */ 774 static bool too_many_workers(struct worker_pool *pool) 775 { 776 bool managing = mutex_is_locked(&pool->manager_arb); 777 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 778 int nr_busy = pool->nr_workers - nr_idle; 779 780 /* 781 * nr_idle and idle_list may disagree if idle rebinding is in 782 * progress. Never return %true if idle_list is empty. 783 */ 784 if (list_empty(&pool->idle_list)) 785 return false; 786 787 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 788 } 789 790 /* 791 * Wake up functions. 792 */ 793 794 /* Return the first worker. Safe with preemption disabled */ 795 static struct worker *first_worker(struct worker_pool *pool) 796 { 797 if (unlikely(list_empty(&pool->idle_list))) 798 return NULL; 799 800 return list_first_entry(&pool->idle_list, struct worker, entry); 801 } 802 803 /** 804 * wake_up_worker - wake up an idle worker 805 * @pool: worker pool to wake worker from 806 * 807 * Wake up the first idle worker of @pool. 808 * 809 * CONTEXT: 810 * spin_lock_irq(pool->lock). 811 */ 812 static void wake_up_worker(struct worker_pool *pool) 813 { 814 struct worker *worker = first_worker(pool); 815 816 if (likely(worker)) 817 wake_up_process(worker->task); 818 } 819 820 /** 821 * wq_worker_waking_up - a worker is waking up 822 * @task: task waking up 823 * @cpu: CPU @task is waking up to 824 * 825 * This function is called during try_to_wake_up() when a worker is 826 * being awoken. 827 * 828 * CONTEXT: 829 * spin_lock_irq(rq->lock) 830 */ 831 void wq_worker_waking_up(struct task_struct *task, int cpu) 832 { 833 struct worker *worker = kthread_data(task); 834 835 if (!(worker->flags & WORKER_NOT_RUNNING)) { 836 WARN_ON_ONCE(worker->pool->cpu != cpu); 837 atomic_inc(&worker->pool->nr_running); 838 } 839 } 840 841 /** 842 * wq_worker_sleeping - a worker is going to sleep 843 * @task: task going to sleep 844 * @cpu: CPU in question, must be the current CPU number 845 * 846 * This function is called during schedule() when a busy worker is 847 * going to sleep. Worker on the same cpu can be woken up by 848 * returning pointer to its task. 849 * 850 * CONTEXT: 851 * spin_lock_irq(rq->lock) 852 * 853 * Return: 854 * Worker task on @cpu to wake up, %NULL if none. 855 */ 856 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 857 { 858 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 859 struct worker_pool *pool; 860 861 /* 862 * Rescuers, which may not have all the fields set up like normal 863 * workers, also reach here, let's not access anything before 864 * checking NOT_RUNNING. 865 */ 866 if (worker->flags & WORKER_NOT_RUNNING) 867 return NULL; 868 869 pool = worker->pool; 870 871 /* this can only happen on the local cpu */ 872 if (WARN_ON_ONCE(cpu != raw_smp_processor_id())) 873 return NULL; 874 875 /* 876 * The counterpart of the following dec_and_test, implied mb, 877 * worklist not empty test sequence is in insert_work(). 878 * Please read comment there. 879 * 880 * NOT_RUNNING is clear. This means that we're bound to and 881 * running on the local cpu w/ rq lock held and preemption 882 * disabled, which in turn means that none else could be 883 * manipulating idle_list, so dereferencing idle_list without pool 884 * lock is safe. 885 */ 886 if (atomic_dec_and_test(&pool->nr_running) && 887 !list_empty(&pool->worklist)) 888 to_wakeup = first_worker(pool); 889 return to_wakeup ? to_wakeup->task : NULL; 890 } 891 892 /** 893 * worker_set_flags - set worker flags and adjust nr_running accordingly 894 * @worker: self 895 * @flags: flags to set 896 * @wakeup: wakeup an idle worker if necessary 897 * 898 * Set @flags in @worker->flags and adjust nr_running accordingly. If 899 * nr_running becomes zero and @wakeup is %true, an idle worker is 900 * woken up. 901 * 902 * CONTEXT: 903 * spin_lock_irq(pool->lock) 904 */ 905 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 906 bool wakeup) 907 { 908 struct worker_pool *pool = worker->pool; 909 910 WARN_ON_ONCE(worker->task != current); 911 912 /* 913 * If transitioning into NOT_RUNNING, adjust nr_running and 914 * wake up an idle worker as necessary if requested by 915 * @wakeup. 916 */ 917 if ((flags & WORKER_NOT_RUNNING) && 918 !(worker->flags & WORKER_NOT_RUNNING)) { 919 if (wakeup) { 920 if (atomic_dec_and_test(&pool->nr_running) && 921 !list_empty(&pool->worklist)) 922 wake_up_worker(pool); 923 } else 924 atomic_dec(&pool->nr_running); 925 } 926 927 worker->flags |= flags; 928 } 929 930 /** 931 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 932 * @worker: self 933 * @flags: flags to clear 934 * 935 * Clear @flags in @worker->flags and adjust nr_running accordingly. 936 * 937 * CONTEXT: 938 * spin_lock_irq(pool->lock) 939 */ 940 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 941 { 942 struct worker_pool *pool = worker->pool; 943 unsigned int oflags = worker->flags; 944 945 WARN_ON_ONCE(worker->task != current); 946 947 worker->flags &= ~flags; 948 949 /* 950 * If transitioning out of NOT_RUNNING, increment nr_running. Note 951 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 952 * of multiple flags, not a single flag. 953 */ 954 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 955 if (!(worker->flags & WORKER_NOT_RUNNING)) 956 atomic_inc(&pool->nr_running); 957 } 958 959 /** 960 * find_worker_executing_work - find worker which is executing a work 961 * @pool: pool of interest 962 * @work: work to find worker for 963 * 964 * Find a worker which is executing @work on @pool by searching 965 * @pool->busy_hash which is keyed by the address of @work. For a worker 966 * to match, its current execution should match the address of @work and 967 * its work function. This is to avoid unwanted dependency between 968 * unrelated work executions through a work item being recycled while still 969 * being executed. 970 * 971 * This is a bit tricky. A work item may be freed once its execution 972 * starts and nothing prevents the freed area from being recycled for 973 * another work item. If the same work item address ends up being reused 974 * before the original execution finishes, workqueue will identify the 975 * recycled work item as currently executing and make it wait until the 976 * current execution finishes, introducing an unwanted dependency. 977 * 978 * This function checks the work item address and work function to avoid 979 * false positives. Note that this isn't complete as one may construct a 980 * work function which can introduce dependency onto itself through a 981 * recycled work item. Well, if somebody wants to shoot oneself in the 982 * foot that badly, there's only so much we can do, and if such deadlock 983 * actually occurs, it should be easy to locate the culprit work function. 984 * 985 * CONTEXT: 986 * spin_lock_irq(pool->lock). 987 * 988 * Return: 989 * Pointer to worker which is executing @work if found, %NULL 990 * otherwise. 991 */ 992 static struct worker *find_worker_executing_work(struct worker_pool *pool, 993 struct work_struct *work) 994 { 995 struct worker *worker; 996 997 hash_for_each_possible(pool->busy_hash, worker, hentry, 998 (unsigned long)work) 999 if (worker->current_work == work && 1000 worker->current_func == work->func) 1001 return worker; 1002 1003 return NULL; 1004 } 1005 1006 /** 1007 * move_linked_works - move linked works to a list 1008 * @work: start of series of works to be scheduled 1009 * @head: target list to append @work to 1010 * @nextp: out paramter for nested worklist walking 1011 * 1012 * Schedule linked works starting from @work to @head. Work series to 1013 * be scheduled starts at @work and includes any consecutive work with 1014 * WORK_STRUCT_LINKED set in its predecessor. 1015 * 1016 * If @nextp is not NULL, it's updated to point to the next work of 1017 * the last scheduled work. This allows move_linked_works() to be 1018 * nested inside outer list_for_each_entry_safe(). 1019 * 1020 * CONTEXT: 1021 * spin_lock_irq(pool->lock). 1022 */ 1023 static void move_linked_works(struct work_struct *work, struct list_head *head, 1024 struct work_struct **nextp) 1025 { 1026 struct work_struct *n; 1027 1028 /* 1029 * Linked worklist will always end before the end of the list, 1030 * use NULL for list head. 1031 */ 1032 list_for_each_entry_safe_from(work, n, NULL, entry) { 1033 list_move_tail(&work->entry, head); 1034 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1035 break; 1036 } 1037 1038 /* 1039 * If we're already inside safe list traversal and have moved 1040 * multiple works to the scheduled queue, the next position 1041 * needs to be updated. 1042 */ 1043 if (nextp) 1044 *nextp = n; 1045 } 1046 1047 /** 1048 * get_pwq - get an extra reference on the specified pool_workqueue 1049 * @pwq: pool_workqueue to get 1050 * 1051 * Obtain an extra reference on @pwq. The caller should guarantee that 1052 * @pwq has positive refcnt and be holding the matching pool->lock. 1053 */ 1054 static void get_pwq(struct pool_workqueue *pwq) 1055 { 1056 lockdep_assert_held(&pwq->pool->lock); 1057 WARN_ON_ONCE(pwq->refcnt <= 0); 1058 pwq->refcnt++; 1059 } 1060 1061 /** 1062 * put_pwq - put a pool_workqueue reference 1063 * @pwq: pool_workqueue to put 1064 * 1065 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1066 * destruction. The caller should be holding the matching pool->lock. 1067 */ 1068 static void put_pwq(struct pool_workqueue *pwq) 1069 { 1070 lockdep_assert_held(&pwq->pool->lock); 1071 if (likely(--pwq->refcnt)) 1072 return; 1073 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1074 return; 1075 /* 1076 * @pwq can't be released under pool->lock, bounce to 1077 * pwq_unbound_release_workfn(). This never recurses on the same 1078 * pool->lock as this path is taken only for unbound workqueues and 1079 * the release work item is scheduled on a per-cpu workqueue. To 1080 * avoid lockdep warning, unbound pool->locks are given lockdep 1081 * subclass of 1 in get_unbound_pool(). 1082 */ 1083 schedule_work(&pwq->unbound_release_work); 1084 } 1085 1086 /** 1087 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1088 * @pwq: pool_workqueue to put (can be %NULL) 1089 * 1090 * put_pwq() with locking. This function also allows %NULL @pwq. 1091 */ 1092 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1093 { 1094 if (pwq) { 1095 /* 1096 * As both pwqs and pools are sched-RCU protected, the 1097 * following lock operations are safe. 1098 */ 1099 spin_lock_irq(&pwq->pool->lock); 1100 put_pwq(pwq); 1101 spin_unlock_irq(&pwq->pool->lock); 1102 } 1103 } 1104 1105 static void pwq_activate_delayed_work(struct work_struct *work) 1106 { 1107 struct pool_workqueue *pwq = get_work_pwq(work); 1108 1109 trace_workqueue_activate_work(work); 1110 move_linked_works(work, &pwq->pool->worklist, NULL); 1111 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1112 pwq->nr_active++; 1113 } 1114 1115 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1116 { 1117 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1118 struct work_struct, entry); 1119 1120 pwq_activate_delayed_work(work); 1121 } 1122 1123 /** 1124 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1125 * @pwq: pwq of interest 1126 * @color: color of work which left the queue 1127 * 1128 * A work either has completed or is removed from pending queue, 1129 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1130 * 1131 * CONTEXT: 1132 * spin_lock_irq(pool->lock). 1133 */ 1134 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1135 { 1136 /* uncolored work items don't participate in flushing or nr_active */ 1137 if (color == WORK_NO_COLOR) 1138 goto out_put; 1139 1140 pwq->nr_in_flight[color]--; 1141 1142 pwq->nr_active--; 1143 if (!list_empty(&pwq->delayed_works)) { 1144 /* one down, submit a delayed one */ 1145 if (pwq->nr_active < pwq->max_active) 1146 pwq_activate_first_delayed(pwq); 1147 } 1148 1149 /* is flush in progress and are we at the flushing tip? */ 1150 if (likely(pwq->flush_color != color)) 1151 goto out_put; 1152 1153 /* are there still in-flight works? */ 1154 if (pwq->nr_in_flight[color]) 1155 goto out_put; 1156 1157 /* this pwq is done, clear flush_color */ 1158 pwq->flush_color = -1; 1159 1160 /* 1161 * If this was the last pwq, wake up the first flusher. It 1162 * will handle the rest. 1163 */ 1164 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1165 complete(&pwq->wq->first_flusher->done); 1166 out_put: 1167 put_pwq(pwq); 1168 } 1169 1170 /** 1171 * try_to_grab_pending - steal work item from worklist and disable irq 1172 * @work: work item to steal 1173 * @is_dwork: @work is a delayed_work 1174 * @flags: place to store irq state 1175 * 1176 * Try to grab PENDING bit of @work. This function can handle @work in any 1177 * stable state - idle, on timer or on worklist. 1178 * 1179 * Return: 1180 * 1 if @work was pending and we successfully stole PENDING 1181 * 0 if @work was idle and we claimed PENDING 1182 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1183 * -ENOENT if someone else is canceling @work, this state may persist 1184 * for arbitrarily long 1185 * 1186 * Note: 1187 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1188 * interrupted while holding PENDING and @work off queue, irq must be 1189 * disabled on entry. This, combined with delayed_work->timer being 1190 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1191 * 1192 * On successful return, >= 0, irq is disabled and the caller is 1193 * responsible for releasing it using local_irq_restore(*@flags). 1194 * 1195 * This function is safe to call from any context including IRQ handler. 1196 */ 1197 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1198 unsigned long *flags) 1199 { 1200 struct worker_pool *pool; 1201 struct pool_workqueue *pwq; 1202 1203 local_irq_save(*flags); 1204 1205 /* try to steal the timer if it exists */ 1206 if (is_dwork) { 1207 struct delayed_work *dwork = to_delayed_work(work); 1208 1209 /* 1210 * dwork->timer is irqsafe. If del_timer() fails, it's 1211 * guaranteed that the timer is not queued anywhere and not 1212 * running on the local CPU. 1213 */ 1214 if (likely(del_timer(&dwork->timer))) 1215 return 1; 1216 } 1217 1218 /* try to claim PENDING the normal way */ 1219 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1220 return 0; 1221 1222 /* 1223 * The queueing is in progress, or it is already queued. Try to 1224 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1225 */ 1226 pool = get_work_pool(work); 1227 if (!pool) 1228 goto fail; 1229 1230 spin_lock(&pool->lock); 1231 /* 1232 * work->data is guaranteed to point to pwq only while the work 1233 * item is queued on pwq->wq, and both updating work->data to point 1234 * to pwq on queueing and to pool on dequeueing are done under 1235 * pwq->pool->lock. This in turn guarantees that, if work->data 1236 * points to pwq which is associated with a locked pool, the work 1237 * item is currently queued on that pool. 1238 */ 1239 pwq = get_work_pwq(work); 1240 if (pwq && pwq->pool == pool) { 1241 debug_work_deactivate(work); 1242 1243 /* 1244 * A delayed work item cannot be grabbed directly because 1245 * it might have linked NO_COLOR work items which, if left 1246 * on the delayed_list, will confuse pwq->nr_active 1247 * management later on and cause stall. Make sure the work 1248 * item is activated before grabbing. 1249 */ 1250 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1251 pwq_activate_delayed_work(work); 1252 1253 list_del_init(&work->entry); 1254 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work)); 1255 1256 /* work->data points to pwq iff queued, point to pool */ 1257 set_work_pool_and_keep_pending(work, pool->id); 1258 1259 spin_unlock(&pool->lock); 1260 return 1; 1261 } 1262 spin_unlock(&pool->lock); 1263 fail: 1264 local_irq_restore(*flags); 1265 if (work_is_canceling(work)) 1266 return -ENOENT; 1267 cpu_relax(); 1268 return -EAGAIN; 1269 } 1270 1271 /** 1272 * insert_work - insert a work into a pool 1273 * @pwq: pwq @work belongs to 1274 * @work: work to insert 1275 * @head: insertion point 1276 * @extra_flags: extra WORK_STRUCT_* flags to set 1277 * 1278 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1279 * work_struct flags. 1280 * 1281 * CONTEXT: 1282 * spin_lock_irq(pool->lock). 1283 */ 1284 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1285 struct list_head *head, unsigned int extra_flags) 1286 { 1287 struct worker_pool *pool = pwq->pool; 1288 1289 /* we own @work, set data and link */ 1290 set_work_pwq(work, pwq, extra_flags); 1291 list_add_tail(&work->entry, head); 1292 get_pwq(pwq); 1293 1294 /* 1295 * Ensure either wq_worker_sleeping() sees the above 1296 * list_add_tail() or we see zero nr_running to avoid workers lying 1297 * around lazily while there are works to be processed. 1298 */ 1299 smp_mb(); 1300 1301 if (__need_more_worker(pool)) 1302 wake_up_worker(pool); 1303 } 1304 1305 /* 1306 * Test whether @work is being queued from another work executing on the 1307 * same workqueue. 1308 */ 1309 static bool is_chained_work(struct workqueue_struct *wq) 1310 { 1311 struct worker *worker; 1312 1313 worker = current_wq_worker(); 1314 /* 1315 * Return %true iff I'm a worker execuing a work item on @wq. If 1316 * I'm @worker, it's safe to dereference it without locking. 1317 */ 1318 return worker && worker->current_pwq->wq == wq; 1319 } 1320 1321 static void __queue_work(int cpu, struct workqueue_struct *wq, 1322 struct work_struct *work) 1323 { 1324 struct pool_workqueue *pwq; 1325 struct worker_pool *last_pool; 1326 struct list_head *worklist; 1327 unsigned int work_flags; 1328 unsigned int req_cpu = cpu; 1329 1330 /* 1331 * While a work item is PENDING && off queue, a task trying to 1332 * steal the PENDING will busy-loop waiting for it to either get 1333 * queued or lose PENDING. Grabbing PENDING and queueing should 1334 * happen with IRQ disabled. 1335 */ 1336 WARN_ON_ONCE(!irqs_disabled()); 1337 1338 debug_work_activate(work); 1339 1340 /* if draining, only works from the same workqueue are allowed */ 1341 if (unlikely(wq->flags & __WQ_DRAINING) && 1342 WARN_ON_ONCE(!is_chained_work(wq))) 1343 return; 1344 retry: 1345 if (req_cpu == WORK_CPU_UNBOUND) 1346 cpu = raw_smp_processor_id(); 1347 1348 /* pwq which will be used unless @work is executing elsewhere */ 1349 if (!(wq->flags & WQ_UNBOUND)) 1350 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1351 else 1352 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1353 1354 /* 1355 * If @work was previously on a different pool, it might still be 1356 * running there, in which case the work needs to be queued on that 1357 * pool to guarantee non-reentrancy. 1358 */ 1359 last_pool = get_work_pool(work); 1360 if (last_pool && last_pool != pwq->pool) { 1361 struct worker *worker; 1362 1363 spin_lock(&last_pool->lock); 1364 1365 worker = find_worker_executing_work(last_pool, work); 1366 1367 if (worker && worker->current_pwq->wq == wq) { 1368 pwq = worker->current_pwq; 1369 } else { 1370 /* meh... not running there, queue here */ 1371 spin_unlock(&last_pool->lock); 1372 spin_lock(&pwq->pool->lock); 1373 } 1374 } else { 1375 spin_lock(&pwq->pool->lock); 1376 } 1377 1378 /* 1379 * pwq is determined and locked. For unbound pools, we could have 1380 * raced with pwq release and it could already be dead. If its 1381 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1382 * without another pwq replacing it in the numa_pwq_tbl or while 1383 * work items are executing on it, so the retrying is guaranteed to 1384 * make forward-progress. 1385 */ 1386 if (unlikely(!pwq->refcnt)) { 1387 if (wq->flags & WQ_UNBOUND) { 1388 spin_unlock(&pwq->pool->lock); 1389 cpu_relax(); 1390 goto retry; 1391 } 1392 /* oops */ 1393 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1394 wq->name, cpu); 1395 } 1396 1397 /* pwq determined, queue */ 1398 trace_workqueue_queue_work(req_cpu, pwq, work); 1399 1400 if (WARN_ON(!list_empty(&work->entry))) { 1401 spin_unlock(&pwq->pool->lock); 1402 return; 1403 } 1404 1405 pwq->nr_in_flight[pwq->work_color]++; 1406 work_flags = work_color_to_flags(pwq->work_color); 1407 1408 if (likely(pwq->nr_active < pwq->max_active)) { 1409 trace_workqueue_activate_work(work); 1410 pwq->nr_active++; 1411 worklist = &pwq->pool->worklist; 1412 } else { 1413 work_flags |= WORK_STRUCT_DELAYED; 1414 worklist = &pwq->delayed_works; 1415 } 1416 1417 insert_work(pwq, work, worklist, work_flags); 1418 1419 spin_unlock(&pwq->pool->lock); 1420 } 1421 1422 /** 1423 * queue_work_on - queue work on specific cpu 1424 * @cpu: CPU number to execute work on 1425 * @wq: workqueue to use 1426 * @work: work to queue 1427 * 1428 * We queue the work to a specific CPU, the caller must ensure it 1429 * can't go away. 1430 * 1431 * Return: %false if @work was already on a queue, %true otherwise. 1432 */ 1433 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1434 struct work_struct *work) 1435 { 1436 bool ret = false; 1437 unsigned long flags; 1438 1439 local_irq_save(flags); 1440 1441 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1442 __queue_work(cpu, wq, work); 1443 ret = true; 1444 } 1445 1446 local_irq_restore(flags); 1447 return ret; 1448 } 1449 EXPORT_SYMBOL(queue_work_on); 1450 1451 void delayed_work_timer_fn(unsigned long __data) 1452 { 1453 struct delayed_work *dwork = (struct delayed_work *)__data; 1454 1455 /* should have been called from irqsafe timer with irq already off */ 1456 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1457 } 1458 EXPORT_SYMBOL(delayed_work_timer_fn); 1459 1460 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1461 struct delayed_work *dwork, unsigned long delay) 1462 { 1463 struct timer_list *timer = &dwork->timer; 1464 struct work_struct *work = &dwork->work; 1465 1466 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1467 timer->data != (unsigned long)dwork); 1468 WARN_ON_ONCE(timer_pending(timer)); 1469 WARN_ON_ONCE(!list_empty(&work->entry)); 1470 1471 /* 1472 * If @delay is 0, queue @dwork->work immediately. This is for 1473 * both optimization and correctness. The earliest @timer can 1474 * expire is on the closest next tick and delayed_work users depend 1475 * on that there's no such delay when @delay is 0. 1476 */ 1477 if (!delay) { 1478 __queue_work(cpu, wq, &dwork->work); 1479 return; 1480 } 1481 1482 timer_stats_timer_set_start_info(&dwork->timer); 1483 1484 dwork->wq = wq; 1485 dwork->cpu = cpu; 1486 timer->expires = jiffies + delay; 1487 1488 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1489 add_timer_on(timer, cpu); 1490 else 1491 add_timer(timer); 1492 } 1493 1494 /** 1495 * queue_delayed_work_on - queue work on specific CPU after delay 1496 * @cpu: CPU number to execute work on 1497 * @wq: workqueue to use 1498 * @dwork: work to queue 1499 * @delay: number of jiffies to wait before queueing 1500 * 1501 * Return: %false if @work was already on a queue, %true otherwise. If 1502 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1503 * execution. 1504 */ 1505 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1506 struct delayed_work *dwork, unsigned long delay) 1507 { 1508 struct work_struct *work = &dwork->work; 1509 bool ret = false; 1510 unsigned long flags; 1511 1512 /* read the comment in __queue_work() */ 1513 local_irq_save(flags); 1514 1515 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1516 __queue_delayed_work(cpu, wq, dwork, delay); 1517 ret = true; 1518 } 1519 1520 local_irq_restore(flags); 1521 return ret; 1522 } 1523 EXPORT_SYMBOL(queue_delayed_work_on); 1524 1525 /** 1526 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1527 * @cpu: CPU number to execute work on 1528 * @wq: workqueue to use 1529 * @dwork: work to queue 1530 * @delay: number of jiffies to wait before queueing 1531 * 1532 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1533 * modify @dwork's timer so that it expires after @delay. If @delay is 1534 * zero, @work is guaranteed to be scheduled immediately regardless of its 1535 * current state. 1536 * 1537 * Return: %false if @dwork was idle and queued, %true if @dwork was 1538 * pending and its timer was modified. 1539 * 1540 * This function is safe to call from any context including IRQ handler. 1541 * See try_to_grab_pending() for details. 1542 */ 1543 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1544 struct delayed_work *dwork, unsigned long delay) 1545 { 1546 unsigned long flags; 1547 int ret; 1548 1549 do { 1550 ret = try_to_grab_pending(&dwork->work, true, &flags); 1551 } while (unlikely(ret == -EAGAIN)); 1552 1553 if (likely(ret >= 0)) { 1554 __queue_delayed_work(cpu, wq, dwork, delay); 1555 local_irq_restore(flags); 1556 } 1557 1558 /* -ENOENT from try_to_grab_pending() becomes %true */ 1559 return ret; 1560 } 1561 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1562 1563 /** 1564 * worker_enter_idle - enter idle state 1565 * @worker: worker which is entering idle state 1566 * 1567 * @worker is entering idle state. Update stats and idle timer if 1568 * necessary. 1569 * 1570 * LOCKING: 1571 * spin_lock_irq(pool->lock). 1572 */ 1573 static void worker_enter_idle(struct worker *worker) 1574 { 1575 struct worker_pool *pool = worker->pool; 1576 1577 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1578 WARN_ON_ONCE(!list_empty(&worker->entry) && 1579 (worker->hentry.next || worker->hentry.pprev))) 1580 return; 1581 1582 /* can't use worker_set_flags(), also called from start_worker() */ 1583 worker->flags |= WORKER_IDLE; 1584 pool->nr_idle++; 1585 worker->last_active = jiffies; 1586 1587 /* idle_list is LIFO */ 1588 list_add(&worker->entry, &pool->idle_list); 1589 1590 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1591 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1592 1593 /* 1594 * Sanity check nr_running. Because wq_unbind_fn() releases 1595 * pool->lock between setting %WORKER_UNBOUND and zapping 1596 * nr_running, the warning may trigger spuriously. Check iff 1597 * unbind is not in progress. 1598 */ 1599 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1600 pool->nr_workers == pool->nr_idle && 1601 atomic_read(&pool->nr_running)); 1602 } 1603 1604 /** 1605 * worker_leave_idle - leave idle state 1606 * @worker: worker which is leaving idle state 1607 * 1608 * @worker is leaving idle state. Update stats. 1609 * 1610 * LOCKING: 1611 * spin_lock_irq(pool->lock). 1612 */ 1613 static void worker_leave_idle(struct worker *worker) 1614 { 1615 struct worker_pool *pool = worker->pool; 1616 1617 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1618 return; 1619 worker_clr_flags(worker, WORKER_IDLE); 1620 pool->nr_idle--; 1621 list_del_init(&worker->entry); 1622 } 1623 1624 /** 1625 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it 1626 * @pool: target worker_pool 1627 * 1628 * Bind %current to the cpu of @pool if it is associated and lock @pool. 1629 * 1630 * Works which are scheduled while the cpu is online must at least be 1631 * scheduled to a worker which is bound to the cpu so that if they are 1632 * flushed from cpu callbacks while cpu is going down, they are 1633 * guaranteed to execute on the cpu. 1634 * 1635 * This function is to be used by unbound workers and rescuers to bind 1636 * themselves to the target cpu and may race with cpu going down or 1637 * coming online. kthread_bind() can't be used because it may put the 1638 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1639 * verbatim as it's best effort and blocking and pool may be 1640 * [dis]associated in the meantime. 1641 * 1642 * This function tries set_cpus_allowed() and locks pool and verifies the 1643 * binding against %POOL_DISASSOCIATED which is set during 1644 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker 1645 * enters idle state or fetches works without dropping lock, it can 1646 * guarantee the scheduling requirement described in the first paragraph. 1647 * 1648 * CONTEXT: 1649 * Might sleep. Called without any lock but returns with pool->lock 1650 * held. 1651 * 1652 * Return: 1653 * %true if the associated pool is online (@worker is successfully 1654 * bound), %false if offline. 1655 */ 1656 static bool worker_maybe_bind_and_lock(struct worker_pool *pool) 1657 __acquires(&pool->lock) 1658 { 1659 while (true) { 1660 /* 1661 * The following call may fail, succeed or succeed 1662 * without actually migrating the task to the cpu if 1663 * it races with cpu hotunplug operation. Verify 1664 * against POOL_DISASSOCIATED. 1665 */ 1666 if (!(pool->flags & POOL_DISASSOCIATED)) 1667 set_cpus_allowed_ptr(current, pool->attrs->cpumask); 1668 1669 spin_lock_irq(&pool->lock); 1670 if (pool->flags & POOL_DISASSOCIATED) 1671 return false; 1672 if (task_cpu(current) == pool->cpu && 1673 cpumask_equal(¤t->cpus_allowed, pool->attrs->cpumask)) 1674 return true; 1675 spin_unlock_irq(&pool->lock); 1676 1677 /* 1678 * We've raced with CPU hot[un]plug. Give it a breather 1679 * and retry migration. cond_resched() is required here; 1680 * otherwise, we might deadlock against cpu_stop trying to 1681 * bring down the CPU on non-preemptive kernel. 1682 */ 1683 cpu_relax(); 1684 cond_resched(); 1685 } 1686 } 1687 1688 static struct worker *alloc_worker(void) 1689 { 1690 struct worker *worker; 1691 1692 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1693 if (worker) { 1694 INIT_LIST_HEAD(&worker->entry); 1695 INIT_LIST_HEAD(&worker->scheduled); 1696 /* on creation a worker is in !idle && prep state */ 1697 worker->flags = WORKER_PREP; 1698 } 1699 return worker; 1700 } 1701 1702 /** 1703 * create_worker - create a new workqueue worker 1704 * @pool: pool the new worker will belong to 1705 * 1706 * Create a new worker which is bound to @pool. The returned worker 1707 * can be started by calling start_worker() or destroyed using 1708 * destroy_worker(). 1709 * 1710 * CONTEXT: 1711 * Might sleep. Does GFP_KERNEL allocations. 1712 * 1713 * Return: 1714 * Pointer to the newly created worker. 1715 */ 1716 static struct worker *create_worker(struct worker_pool *pool) 1717 { 1718 struct worker *worker = NULL; 1719 int id = -1; 1720 char id_buf[16]; 1721 1722 lockdep_assert_held(&pool->manager_mutex); 1723 1724 /* 1725 * ID is needed to determine kthread name. Allocate ID first 1726 * without installing the pointer. 1727 */ 1728 idr_preload(GFP_KERNEL); 1729 spin_lock_irq(&pool->lock); 1730 1731 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT); 1732 1733 spin_unlock_irq(&pool->lock); 1734 idr_preload_end(); 1735 if (id < 0) 1736 goto fail; 1737 1738 worker = alloc_worker(); 1739 if (!worker) 1740 goto fail; 1741 1742 worker->pool = pool; 1743 worker->id = id; 1744 1745 if (pool->cpu >= 0) 1746 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1747 pool->attrs->nice < 0 ? "H" : ""); 1748 else 1749 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1750 1751 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1752 "kworker/%s", id_buf); 1753 if (IS_ERR(worker->task)) 1754 goto fail; 1755 1756 set_user_nice(worker->task, pool->attrs->nice); 1757 1758 /* prevent userland from meddling with cpumask of workqueue workers */ 1759 worker->task->flags |= PF_NO_SETAFFINITY; 1760 1761 /* 1762 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1763 * online CPUs. It'll be re-applied when any of the CPUs come up. 1764 */ 1765 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1766 1767 /* 1768 * The caller is responsible for ensuring %POOL_DISASSOCIATED 1769 * remains stable across this function. See the comments above the 1770 * flag definition for details. 1771 */ 1772 if (pool->flags & POOL_DISASSOCIATED) 1773 worker->flags |= WORKER_UNBOUND; 1774 1775 /* successful, commit the pointer to idr */ 1776 spin_lock_irq(&pool->lock); 1777 idr_replace(&pool->worker_idr, worker, worker->id); 1778 spin_unlock_irq(&pool->lock); 1779 1780 return worker; 1781 1782 fail: 1783 if (id >= 0) { 1784 spin_lock_irq(&pool->lock); 1785 idr_remove(&pool->worker_idr, id); 1786 spin_unlock_irq(&pool->lock); 1787 } 1788 kfree(worker); 1789 return NULL; 1790 } 1791 1792 /** 1793 * start_worker - start a newly created worker 1794 * @worker: worker to start 1795 * 1796 * Make the pool aware of @worker and start it. 1797 * 1798 * CONTEXT: 1799 * spin_lock_irq(pool->lock). 1800 */ 1801 static void start_worker(struct worker *worker) 1802 { 1803 worker->flags |= WORKER_STARTED; 1804 worker->pool->nr_workers++; 1805 worker_enter_idle(worker); 1806 wake_up_process(worker->task); 1807 } 1808 1809 /** 1810 * create_and_start_worker - create and start a worker for a pool 1811 * @pool: the target pool 1812 * 1813 * Grab the managership of @pool and create and start a new worker for it. 1814 * 1815 * Return: 0 on success. A negative error code otherwise. 1816 */ 1817 static int create_and_start_worker(struct worker_pool *pool) 1818 { 1819 struct worker *worker; 1820 1821 mutex_lock(&pool->manager_mutex); 1822 1823 worker = create_worker(pool); 1824 if (worker) { 1825 spin_lock_irq(&pool->lock); 1826 start_worker(worker); 1827 spin_unlock_irq(&pool->lock); 1828 } 1829 1830 mutex_unlock(&pool->manager_mutex); 1831 1832 return worker ? 0 : -ENOMEM; 1833 } 1834 1835 /** 1836 * destroy_worker - destroy a workqueue worker 1837 * @worker: worker to be destroyed 1838 * 1839 * Destroy @worker and adjust @pool stats accordingly. 1840 * 1841 * CONTEXT: 1842 * spin_lock_irq(pool->lock) which is released and regrabbed. 1843 */ 1844 static void destroy_worker(struct worker *worker) 1845 { 1846 struct worker_pool *pool = worker->pool; 1847 1848 lockdep_assert_held(&pool->manager_mutex); 1849 lockdep_assert_held(&pool->lock); 1850 1851 /* sanity check frenzy */ 1852 if (WARN_ON(worker->current_work) || 1853 WARN_ON(!list_empty(&worker->scheduled))) 1854 return; 1855 1856 if (worker->flags & WORKER_STARTED) 1857 pool->nr_workers--; 1858 if (worker->flags & WORKER_IDLE) 1859 pool->nr_idle--; 1860 1861 /* 1862 * Once WORKER_DIE is set, the kworker may destroy itself at any 1863 * point. Pin to ensure the task stays until we're done with it. 1864 */ 1865 get_task_struct(worker->task); 1866 1867 list_del_init(&worker->entry); 1868 worker->flags |= WORKER_DIE; 1869 1870 idr_remove(&pool->worker_idr, worker->id); 1871 1872 spin_unlock_irq(&pool->lock); 1873 1874 kthread_stop(worker->task); 1875 put_task_struct(worker->task); 1876 kfree(worker); 1877 1878 spin_lock_irq(&pool->lock); 1879 } 1880 1881 static void idle_worker_timeout(unsigned long __pool) 1882 { 1883 struct worker_pool *pool = (void *)__pool; 1884 1885 spin_lock_irq(&pool->lock); 1886 1887 if (too_many_workers(pool)) { 1888 struct worker *worker; 1889 unsigned long expires; 1890 1891 /* idle_list is kept in LIFO order, check the last one */ 1892 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1893 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1894 1895 if (time_before(jiffies, expires)) 1896 mod_timer(&pool->idle_timer, expires); 1897 else { 1898 /* it's been idle for too long, wake up manager */ 1899 pool->flags |= POOL_MANAGE_WORKERS; 1900 wake_up_worker(pool); 1901 } 1902 } 1903 1904 spin_unlock_irq(&pool->lock); 1905 } 1906 1907 static void send_mayday(struct work_struct *work) 1908 { 1909 struct pool_workqueue *pwq = get_work_pwq(work); 1910 struct workqueue_struct *wq = pwq->wq; 1911 1912 lockdep_assert_held(&wq_mayday_lock); 1913 1914 if (!wq->rescuer) 1915 return; 1916 1917 /* mayday mayday mayday */ 1918 if (list_empty(&pwq->mayday_node)) { 1919 list_add_tail(&pwq->mayday_node, &wq->maydays); 1920 wake_up_process(wq->rescuer->task); 1921 } 1922 } 1923 1924 static void pool_mayday_timeout(unsigned long __pool) 1925 { 1926 struct worker_pool *pool = (void *)__pool; 1927 struct work_struct *work; 1928 1929 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */ 1930 spin_lock(&pool->lock); 1931 1932 if (need_to_create_worker(pool)) { 1933 /* 1934 * We've been trying to create a new worker but 1935 * haven't been successful. We might be hitting an 1936 * allocation deadlock. Send distress signals to 1937 * rescuers. 1938 */ 1939 list_for_each_entry(work, &pool->worklist, entry) 1940 send_mayday(work); 1941 } 1942 1943 spin_unlock(&pool->lock); 1944 spin_unlock_irq(&wq_mayday_lock); 1945 1946 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1947 } 1948 1949 /** 1950 * maybe_create_worker - create a new worker if necessary 1951 * @pool: pool to create a new worker for 1952 * 1953 * Create a new worker for @pool if necessary. @pool is guaranteed to 1954 * have at least one idle worker on return from this function. If 1955 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1956 * sent to all rescuers with works scheduled on @pool to resolve 1957 * possible allocation deadlock. 1958 * 1959 * On return, need_to_create_worker() is guaranteed to be %false and 1960 * may_start_working() %true. 1961 * 1962 * LOCKING: 1963 * spin_lock_irq(pool->lock) which may be released and regrabbed 1964 * multiple times. Does GFP_KERNEL allocations. Called only from 1965 * manager. 1966 * 1967 * Return: 1968 * %false if no action was taken and pool->lock stayed locked, %true 1969 * otherwise. 1970 */ 1971 static bool maybe_create_worker(struct worker_pool *pool) 1972 __releases(&pool->lock) 1973 __acquires(&pool->lock) 1974 { 1975 if (!need_to_create_worker(pool)) 1976 return false; 1977 restart: 1978 spin_unlock_irq(&pool->lock); 1979 1980 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1981 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1982 1983 while (true) { 1984 struct worker *worker; 1985 1986 worker = create_worker(pool); 1987 if (worker) { 1988 del_timer_sync(&pool->mayday_timer); 1989 spin_lock_irq(&pool->lock); 1990 start_worker(worker); 1991 if (WARN_ON_ONCE(need_to_create_worker(pool))) 1992 goto restart; 1993 return true; 1994 } 1995 1996 if (!need_to_create_worker(pool)) 1997 break; 1998 1999 __set_current_state(TASK_INTERRUPTIBLE); 2000 schedule_timeout(CREATE_COOLDOWN); 2001 2002 if (!need_to_create_worker(pool)) 2003 break; 2004 } 2005 2006 del_timer_sync(&pool->mayday_timer); 2007 spin_lock_irq(&pool->lock); 2008 if (need_to_create_worker(pool)) 2009 goto restart; 2010 return true; 2011 } 2012 2013 /** 2014 * maybe_destroy_worker - destroy workers which have been idle for a while 2015 * @pool: pool to destroy workers for 2016 * 2017 * Destroy @pool workers which have been idle for longer than 2018 * IDLE_WORKER_TIMEOUT. 2019 * 2020 * LOCKING: 2021 * spin_lock_irq(pool->lock) which may be released and regrabbed 2022 * multiple times. Called only from manager. 2023 * 2024 * Return: 2025 * %false if no action was taken and pool->lock stayed locked, %true 2026 * otherwise. 2027 */ 2028 static bool maybe_destroy_workers(struct worker_pool *pool) 2029 { 2030 bool ret = false; 2031 2032 while (too_many_workers(pool)) { 2033 struct worker *worker; 2034 unsigned long expires; 2035 2036 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2037 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2038 2039 if (time_before(jiffies, expires)) { 2040 mod_timer(&pool->idle_timer, expires); 2041 break; 2042 } 2043 2044 destroy_worker(worker); 2045 ret = true; 2046 } 2047 2048 return ret; 2049 } 2050 2051 /** 2052 * manage_workers - manage worker pool 2053 * @worker: self 2054 * 2055 * Assume the manager role and manage the worker pool @worker belongs 2056 * to. At any given time, there can be only zero or one manager per 2057 * pool. The exclusion is handled automatically by this function. 2058 * 2059 * The caller can safely start processing works on false return. On 2060 * true return, it's guaranteed that need_to_create_worker() is false 2061 * and may_start_working() is true. 2062 * 2063 * CONTEXT: 2064 * spin_lock_irq(pool->lock) which may be released and regrabbed 2065 * multiple times. Does GFP_KERNEL allocations. 2066 * 2067 * Return: 2068 * %false if the pool don't need management and the caller can safely start 2069 * processing works, %true indicates that the function released pool->lock 2070 * and reacquired it to perform some management function and that the 2071 * conditions that the caller verified while holding the lock before 2072 * calling the function might no longer be true. 2073 */ 2074 static bool manage_workers(struct worker *worker) 2075 { 2076 struct worker_pool *pool = worker->pool; 2077 bool ret = false; 2078 2079 /* 2080 * Managership is governed by two mutexes - manager_arb and 2081 * manager_mutex. manager_arb handles arbitration of manager role. 2082 * Anyone who successfully grabs manager_arb wins the arbitration 2083 * and becomes the manager. mutex_trylock() on pool->manager_arb 2084 * failure while holding pool->lock reliably indicates that someone 2085 * else is managing the pool and the worker which failed trylock 2086 * can proceed to executing work items. This means that anyone 2087 * grabbing manager_arb is responsible for actually performing 2088 * manager duties. If manager_arb is grabbed and released without 2089 * actual management, the pool may stall indefinitely. 2090 * 2091 * manager_mutex is used for exclusion of actual management 2092 * operations. The holder of manager_mutex can be sure that none 2093 * of management operations, including creation and destruction of 2094 * workers, won't take place until the mutex is released. Because 2095 * manager_mutex doesn't interfere with manager role arbitration, 2096 * it is guaranteed that the pool's management, while may be 2097 * delayed, won't be disturbed by someone else grabbing 2098 * manager_mutex. 2099 */ 2100 if (!mutex_trylock(&pool->manager_arb)) 2101 return ret; 2102 2103 /* 2104 * With manager arbitration won, manager_mutex would be free in 2105 * most cases. trylock first without dropping @pool->lock. 2106 */ 2107 if (unlikely(!mutex_trylock(&pool->manager_mutex))) { 2108 spin_unlock_irq(&pool->lock); 2109 mutex_lock(&pool->manager_mutex); 2110 spin_lock_irq(&pool->lock); 2111 ret = true; 2112 } 2113 2114 pool->flags &= ~POOL_MANAGE_WORKERS; 2115 2116 /* 2117 * Destroy and then create so that may_start_working() is true 2118 * on return. 2119 */ 2120 ret |= maybe_destroy_workers(pool); 2121 ret |= maybe_create_worker(pool); 2122 2123 mutex_unlock(&pool->manager_mutex); 2124 mutex_unlock(&pool->manager_arb); 2125 return ret; 2126 } 2127 2128 /** 2129 * process_one_work - process single work 2130 * @worker: self 2131 * @work: work to process 2132 * 2133 * Process @work. This function contains all the logics necessary to 2134 * process a single work including synchronization against and 2135 * interaction with other workers on the same cpu, queueing and 2136 * flushing. As long as context requirement is met, any worker can 2137 * call this function to process a work. 2138 * 2139 * CONTEXT: 2140 * spin_lock_irq(pool->lock) which is released and regrabbed. 2141 */ 2142 static void process_one_work(struct worker *worker, struct work_struct *work) 2143 __releases(&pool->lock) 2144 __acquires(&pool->lock) 2145 { 2146 struct pool_workqueue *pwq = get_work_pwq(work); 2147 struct worker_pool *pool = worker->pool; 2148 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2149 int work_color; 2150 struct worker *collision; 2151 #ifdef CONFIG_LOCKDEP 2152 /* 2153 * It is permissible to free the struct work_struct from 2154 * inside the function that is called from it, this we need to 2155 * take into account for lockdep too. To avoid bogus "held 2156 * lock freed" warnings as well as problems when looking into 2157 * work->lockdep_map, make a copy and use that here. 2158 */ 2159 struct lockdep_map lockdep_map; 2160 2161 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2162 #endif 2163 /* 2164 * Ensure we're on the correct CPU. DISASSOCIATED test is 2165 * necessary to avoid spurious warnings from rescuers servicing the 2166 * unbound or a disassociated pool. 2167 */ 2168 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) && 2169 !(pool->flags & POOL_DISASSOCIATED) && 2170 raw_smp_processor_id() != pool->cpu); 2171 2172 /* 2173 * A single work shouldn't be executed concurrently by 2174 * multiple workers on a single cpu. Check whether anyone is 2175 * already processing the work. If so, defer the work to the 2176 * currently executing one. 2177 */ 2178 collision = find_worker_executing_work(pool, work); 2179 if (unlikely(collision)) { 2180 move_linked_works(work, &collision->scheduled, NULL); 2181 return; 2182 } 2183 2184 /* claim and dequeue */ 2185 debug_work_deactivate(work); 2186 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2187 worker->current_work = work; 2188 worker->current_func = work->func; 2189 worker->current_pwq = pwq; 2190 work_color = get_work_color(work); 2191 2192 list_del_init(&work->entry); 2193 2194 /* 2195 * CPU intensive works don't participate in concurrency 2196 * management. They're the scheduler's responsibility. 2197 */ 2198 if (unlikely(cpu_intensive)) 2199 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 2200 2201 /* 2202 * Unbound pool isn't concurrency managed and work items should be 2203 * executed ASAP. Wake up another worker if necessary. 2204 */ 2205 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool)) 2206 wake_up_worker(pool); 2207 2208 /* 2209 * Record the last pool and clear PENDING which should be the last 2210 * update to @work. Also, do this inside @pool->lock so that 2211 * PENDING and queued state changes happen together while IRQ is 2212 * disabled. 2213 */ 2214 set_work_pool_and_clear_pending(work, pool->id); 2215 2216 spin_unlock_irq(&pool->lock); 2217 2218 lock_map_acquire_read(&pwq->wq->lockdep_map); 2219 lock_map_acquire(&lockdep_map); 2220 trace_workqueue_execute_start(work); 2221 worker->current_func(work); 2222 /* 2223 * While we must be careful to not use "work" after this, the trace 2224 * point will only record its address. 2225 */ 2226 trace_workqueue_execute_end(work); 2227 lock_map_release(&lockdep_map); 2228 lock_map_release(&pwq->wq->lockdep_map); 2229 2230 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2231 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2232 " last function: %pf\n", 2233 current->comm, preempt_count(), task_pid_nr(current), 2234 worker->current_func); 2235 debug_show_held_locks(current); 2236 dump_stack(); 2237 } 2238 2239 /* 2240 * The following prevents a kworker from hogging CPU on !PREEMPT 2241 * kernels, where a requeueing work item waiting for something to 2242 * happen could deadlock with stop_machine as such work item could 2243 * indefinitely requeue itself while all other CPUs are trapped in 2244 * stop_machine. 2245 */ 2246 cond_resched(); 2247 2248 spin_lock_irq(&pool->lock); 2249 2250 /* clear cpu intensive status */ 2251 if (unlikely(cpu_intensive)) 2252 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2253 2254 /* we're done with it, release */ 2255 hash_del(&worker->hentry); 2256 worker->current_work = NULL; 2257 worker->current_func = NULL; 2258 worker->current_pwq = NULL; 2259 worker->desc_valid = false; 2260 pwq_dec_nr_in_flight(pwq, work_color); 2261 } 2262 2263 /** 2264 * process_scheduled_works - process scheduled works 2265 * @worker: self 2266 * 2267 * Process all scheduled works. Please note that the scheduled list 2268 * may change while processing a work, so this function repeatedly 2269 * fetches a work from the top and executes it. 2270 * 2271 * CONTEXT: 2272 * spin_lock_irq(pool->lock) which may be released and regrabbed 2273 * multiple times. 2274 */ 2275 static void process_scheduled_works(struct worker *worker) 2276 { 2277 while (!list_empty(&worker->scheduled)) { 2278 struct work_struct *work = list_first_entry(&worker->scheduled, 2279 struct work_struct, entry); 2280 process_one_work(worker, work); 2281 } 2282 } 2283 2284 /** 2285 * worker_thread - the worker thread function 2286 * @__worker: self 2287 * 2288 * The worker thread function. All workers belong to a worker_pool - 2289 * either a per-cpu one or dynamic unbound one. These workers process all 2290 * work items regardless of their specific target workqueue. The only 2291 * exception is work items which belong to workqueues with a rescuer which 2292 * will be explained in rescuer_thread(). 2293 * 2294 * Return: 0 2295 */ 2296 static int worker_thread(void *__worker) 2297 { 2298 struct worker *worker = __worker; 2299 struct worker_pool *pool = worker->pool; 2300 2301 /* tell the scheduler that this is a workqueue worker */ 2302 worker->task->flags |= PF_WQ_WORKER; 2303 woke_up: 2304 spin_lock_irq(&pool->lock); 2305 2306 /* am I supposed to die? */ 2307 if (unlikely(worker->flags & WORKER_DIE)) { 2308 spin_unlock_irq(&pool->lock); 2309 WARN_ON_ONCE(!list_empty(&worker->entry)); 2310 worker->task->flags &= ~PF_WQ_WORKER; 2311 return 0; 2312 } 2313 2314 worker_leave_idle(worker); 2315 recheck: 2316 /* no more worker necessary? */ 2317 if (!need_more_worker(pool)) 2318 goto sleep; 2319 2320 /* do we need to manage? */ 2321 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2322 goto recheck; 2323 2324 /* 2325 * ->scheduled list can only be filled while a worker is 2326 * preparing to process a work or actually processing it. 2327 * Make sure nobody diddled with it while I was sleeping. 2328 */ 2329 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2330 2331 /* 2332 * Finish PREP stage. We're guaranteed to have at least one idle 2333 * worker or that someone else has already assumed the manager 2334 * role. This is where @worker starts participating in concurrency 2335 * management if applicable and concurrency management is restored 2336 * after being rebound. See rebind_workers() for details. 2337 */ 2338 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2339 2340 do { 2341 struct work_struct *work = 2342 list_first_entry(&pool->worklist, 2343 struct work_struct, entry); 2344 2345 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2346 /* optimization path, not strictly necessary */ 2347 process_one_work(worker, work); 2348 if (unlikely(!list_empty(&worker->scheduled))) 2349 process_scheduled_works(worker); 2350 } else { 2351 move_linked_works(work, &worker->scheduled, NULL); 2352 process_scheduled_works(worker); 2353 } 2354 } while (keep_working(pool)); 2355 2356 worker_set_flags(worker, WORKER_PREP, false); 2357 sleep: 2358 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker)) 2359 goto recheck; 2360 2361 /* 2362 * pool->lock is held and there's no work to process and no need to 2363 * manage, sleep. Workers are woken up only while holding 2364 * pool->lock or from local cpu, so setting the current state 2365 * before releasing pool->lock is enough to prevent losing any 2366 * event. 2367 */ 2368 worker_enter_idle(worker); 2369 __set_current_state(TASK_INTERRUPTIBLE); 2370 spin_unlock_irq(&pool->lock); 2371 schedule(); 2372 goto woke_up; 2373 } 2374 2375 /** 2376 * rescuer_thread - the rescuer thread function 2377 * @__rescuer: self 2378 * 2379 * Workqueue rescuer thread function. There's one rescuer for each 2380 * workqueue which has WQ_MEM_RECLAIM set. 2381 * 2382 * Regular work processing on a pool may block trying to create a new 2383 * worker which uses GFP_KERNEL allocation which has slight chance of 2384 * developing into deadlock if some works currently on the same queue 2385 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2386 * the problem rescuer solves. 2387 * 2388 * When such condition is possible, the pool summons rescuers of all 2389 * workqueues which have works queued on the pool and let them process 2390 * those works so that forward progress can be guaranteed. 2391 * 2392 * This should happen rarely. 2393 * 2394 * Return: 0 2395 */ 2396 static int rescuer_thread(void *__rescuer) 2397 { 2398 struct worker *rescuer = __rescuer; 2399 struct workqueue_struct *wq = rescuer->rescue_wq; 2400 struct list_head *scheduled = &rescuer->scheduled; 2401 2402 set_user_nice(current, RESCUER_NICE_LEVEL); 2403 2404 /* 2405 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2406 * doesn't participate in concurrency management. 2407 */ 2408 rescuer->task->flags |= PF_WQ_WORKER; 2409 repeat: 2410 set_current_state(TASK_INTERRUPTIBLE); 2411 2412 if (kthread_should_stop()) { 2413 __set_current_state(TASK_RUNNING); 2414 rescuer->task->flags &= ~PF_WQ_WORKER; 2415 return 0; 2416 } 2417 2418 /* see whether any pwq is asking for help */ 2419 spin_lock_irq(&wq_mayday_lock); 2420 2421 while (!list_empty(&wq->maydays)) { 2422 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2423 struct pool_workqueue, mayday_node); 2424 struct worker_pool *pool = pwq->pool; 2425 struct work_struct *work, *n; 2426 2427 __set_current_state(TASK_RUNNING); 2428 list_del_init(&pwq->mayday_node); 2429 2430 spin_unlock_irq(&wq_mayday_lock); 2431 2432 /* migrate to the target cpu if possible */ 2433 worker_maybe_bind_and_lock(pool); 2434 rescuer->pool = pool; 2435 2436 /* 2437 * Slurp in all works issued via this workqueue and 2438 * process'em. 2439 */ 2440 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 2441 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2442 if (get_work_pwq(work) == pwq) 2443 move_linked_works(work, scheduled, &n); 2444 2445 process_scheduled_works(rescuer); 2446 2447 /* 2448 * Leave this pool. If keep_working() is %true, notify a 2449 * regular worker; otherwise, we end up with 0 concurrency 2450 * and stalling the execution. 2451 */ 2452 if (keep_working(pool)) 2453 wake_up_worker(pool); 2454 2455 rescuer->pool = NULL; 2456 spin_unlock(&pool->lock); 2457 spin_lock(&wq_mayday_lock); 2458 } 2459 2460 spin_unlock_irq(&wq_mayday_lock); 2461 2462 /* rescuers should never participate in concurrency management */ 2463 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2464 schedule(); 2465 goto repeat; 2466 } 2467 2468 struct wq_barrier { 2469 struct work_struct work; 2470 struct completion done; 2471 }; 2472 2473 static void wq_barrier_func(struct work_struct *work) 2474 { 2475 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2476 complete(&barr->done); 2477 } 2478 2479 /** 2480 * insert_wq_barrier - insert a barrier work 2481 * @pwq: pwq to insert barrier into 2482 * @barr: wq_barrier to insert 2483 * @target: target work to attach @barr to 2484 * @worker: worker currently executing @target, NULL if @target is not executing 2485 * 2486 * @barr is linked to @target such that @barr is completed only after 2487 * @target finishes execution. Please note that the ordering 2488 * guarantee is observed only with respect to @target and on the local 2489 * cpu. 2490 * 2491 * Currently, a queued barrier can't be canceled. This is because 2492 * try_to_grab_pending() can't determine whether the work to be 2493 * grabbed is at the head of the queue and thus can't clear LINKED 2494 * flag of the previous work while there must be a valid next work 2495 * after a work with LINKED flag set. 2496 * 2497 * Note that when @worker is non-NULL, @target may be modified 2498 * underneath us, so we can't reliably determine pwq from @target. 2499 * 2500 * CONTEXT: 2501 * spin_lock_irq(pool->lock). 2502 */ 2503 static void insert_wq_barrier(struct pool_workqueue *pwq, 2504 struct wq_barrier *barr, 2505 struct work_struct *target, struct worker *worker) 2506 { 2507 struct list_head *head; 2508 unsigned int linked = 0; 2509 2510 /* 2511 * debugobject calls are safe here even with pool->lock locked 2512 * as we know for sure that this will not trigger any of the 2513 * checks and call back into the fixup functions where we 2514 * might deadlock. 2515 */ 2516 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2517 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2518 init_completion(&barr->done); 2519 2520 /* 2521 * If @target is currently being executed, schedule the 2522 * barrier to the worker; otherwise, put it after @target. 2523 */ 2524 if (worker) 2525 head = worker->scheduled.next; 2526 else { 2527 unsigned long *bits = work_data_bits(target); 2528 2529 head = target->entry.next; 2530 /* there can already be other linked works, inherit and set */ 2531 linked = *bits & WORK_STRUCT_LINKED; 2532 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2533 } 2534 2535 debug_work_activate(&barr->work); 2536 insert_work(pwq, &barr->work, head, 2537 work_color_to_flags(WORK_NO_COLOR) | linked); 2538 } 2539 2540 /** 2541 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2542 * @wq: workqueue being flushed 2543 * @flush_color: new flush color, < 0 for no-op 2544 * @work_color: new work color, < 0 for no-op 2545 * 2546 * Prepare pwqs for workqueue flushing. 2547 * 2548 * If @flush_color is non-negative, flush_color on all pwqs should be 2549 * -1. If no pwq has in-flight commands at the specified color, all 2550 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2551 * has in flight commands, its pwq->flush_color is set to 2552 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2553 * wakeup logic is armed and %true is returned. 2554 * 2555 * The caller should have initialized @wq->first_flusher prior to 2556 * calling this function with non-negative @flush_color. If 2557 * @flush_color is negative, no flush color update is done and %false 2558 * is returned. 2559 * 2560 * If @work_color is non-negative, all pwqs should have the same 2561 * work_color which is previous to @work_color and all will be 2562 * advanced to @work_color. 2563 * 2564 * CONTEXT: 2565 * mutex_lock(wq->mutex). 2566 * 2567 * Return: 2568 * %true if @flush_color >= 0 and there's something to flush. %false 2569 * otherwise. 2570 */ 2571 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2572 int flush_color, int work_color) 2573 { 2574 bool wait = false; 2575 struct pool_workqueue *pwq; 2576 2577 if (flush_color >= 0) { 2578 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2579 atomic_set(&wq->nr_pwqs_to_flush, 1); 2580 } 2581 2582 for_each_pwq(pwq, wq) { 2583 struct worker_pool *pool = pwq->pool; 2584 2585 spin_lock_irq(&pool->lock); 2586 2587 if (flush_color >= 0) { 2588 WARN_ON_ONCE(pwq->flush_color != -1); 2589 2590 if (pwq->nr_in_flight[flush_color]) { 2591 pwq->flush_color = flush_color; 2592 atomic_inc(&wq->nr_pwqs_to_flush); 2593 wait = true; 2594 } 2595 } 2596 2597 if (work_color >= 0) { 2598 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2599 pwq->work_color = work_color; 2600 } 2601 2602 spin_unlock_irq(&pool->lock); 2603 } 2604 2605 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2606 complete(&wq->first_flusher->done); 2607 2608 return wait; 2609 } 2610 2611 /** 2612 * flush_workqueue - ensure that any scheduled work has run to completion. 2613 * @wq: workqueue to flush 2614 * 2615 * This function sleeps until all work items which were queued on entry 2616 * have finished execution, but it is not livelocked by new incoming ones. 2617 */ 2618 void flush_workqueue(struct workqueue_struct *wq) 2619 { 2620 struct wq_flusher this_flusher = { 2621 .list = LIST_HEAD_INIT(this_flusher.list), 2622 .flush_color = -1, 2623 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2624 }; 2625 int next_color; 2626 2627 lock_map_acquire(&wq->lockdep_map); 2628 lock_map_release(&wq->lockdep_map); 2629 2630 mutex_lock(&wq->mutex); 2631 2632 /* 2633 * Start-to-wait phase 2634 */ 2635 next_color = work_next_color(wq->work_color); 2636 2637 if (next_color != wq->flush_color) { 2638 /* 2639 * Color space is not full. The current work_color 2640 * becomes our flush_color and work_color is advanced 2641 * by one. 2642 */ 2643 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2644 this_flusher.flush_color = wq->work_color; 2645 wq->work_color = next_color; 2646 2647 if (!wq->first_flusher) { 2648 /* no flush in progress, become the first flusher */ 2649 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2650 2651 wq->first_flusher = &this_flusher; 2652 2653 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2654 wq->work_color)) { 2655 /* nothing to flush, done */ 2656 wq->flush_color = next_color; 2657 wq->first_flusher = NULL; 2658 goto out_unlock; 2659 } 2660 } else { 2661 /* wait in queue */ 2662 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2663 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2664 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2665 } 2666 } else { 2667 /* 2668 * Oops, color space is full, wait on overflow queue. 2669 * The next flush completion will assign us 2670 * flush_color and transfer to flusher_queue. 2671 */ 2672 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2673 } 2674 2675 mutex_unlock(&wq->mutex); 2676 2677 wait_for_completion(&this_flusher.done); 2678 2679 /* 2680 * Wake-up-and-cascade phase 2681 * 2682 * First flushers are responsible for cascading flushes and 2683 * handling overflow. Non-first flushers can simply return. 2684 */ 2685 if (wq->first_flusher != &this_flusher) 2686 return; 2687 2688 mutex_lock(&wq->mutex); 2689 2690 /* we might have raced, check again with mutex held */ 2691 if (wq->first_flusher != &this_flusher) 2692 goto out_unlock; 2693 2694 wq->first_flusher = NULL; 2695 2696 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2697 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2698 2699 while (true) { 2700 struct wq_flusher *next, *tmp; 2701 2702 /* complete all the flushers sharing the current flush color */ 2703 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2704 if (next->flush_color != wq->flush_color) 2705 break; 2706 list_del_init(&next->list); 2707 complete(&next->done); 2708 } 2709 2710 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2711 wq->flush_color != work_next_color(wq->work_color)); 2712 2713 /* this flush_color is finished, advance by one */ 2714 wq->flush_color = work_next_color(wq->flush_color); 2715 2716 /* one color has been freed, handle overflow queue */ 2717 if (!list_empty(&wq->flusher_overflow)) { 2718 /* 2719 * Assign the same color to all overflowed 2720 * flushers, advance work_color and append to 2721 * flusher_queue. This is the start-to-wait 2722 * phase for these overflowed flushers. 2723 */ 2724 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2725 tmp->flush_color = wq->work_color; 2726 2727 wq->work_color = work_next_color(wq->work_color); 2728 2729 list_splice_tail_init(&wq->flusher_overflow, 2730 &wq->flusher_queue); 2731 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2732 } 2733 2734 if (list_empty(&wq->flusher_queue)) { 2735 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2736 break; 2737 } 2738 2739 /* 2740 * Need to flush more colors. Make the next flusher 2741 * the new first flusher and arm pwqs. 2742 */ 2743 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2744 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2745 2746 list_del_init(&next->list); 2747 wq->first_flusher = next; 2748 2749 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2750 break; 2751 2752 /* 2753 * Meh... this color is already done, clear first 2754 * flusher and repeat cascading. 2755 */ 2756 wq->first_flusher = NULL; 2757 } 2758 2759 out_unlock: 2760 mutex_unlock(&wq->mutex); 2761 } 2762 EXPORT_SYMBOL_GPL(flush_workqueue); 2763 2764 /** 2765 * drain_workqueue - drain a workqueue 2766 * @wq: workqueue to drain 2767 * 2768 * Wait until the workqueue becomes empty. While draining is in progress, 2769 * only chain queueing is allowed. IOW, only currently pending or running 2770 * work items on @wq can queue further work items on it. @wq is flushed 2771 * repeatedly until it becomes empty. The number of flushing is detemined 2772 * by the depth of chaining and should be relatively short. Whine if it 2773 * takes too long. 2774 */ 2775 void drain_workqueue(struct workqueue_struct *wq) 2776 { 2777 unsigned int flush_cnt = 0; 2778 struct pool_workqueue *pwq; 2779 2780 /* 2781 * __queue_work() needs to test whether there are drainers, is much 2782 * hotter than drain_workqueue() and already looks at @wq->flags. 2783 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2784 */ 2785 mutex_lock(&wq->mutex); 2786 if (!wq->nr_drainers++) 2787 wq->flags |= __WQ_DRAINING; 2788 mutex_unlock(&wq->mutex); 2789 reflush: 2790 flush_workqueue(wq); 2791 2792 mutex_lock(&wq->mutex); 2793 2794 for_each_pwq(pwq, wq) { 2795 bool drained; 2796 2797 spin_lock_irq(&pwq->pool->lock); 2798 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2799 spin_unlock_irq(&pwq->pool->lock); 2800 2801 if (drained) 2802 continue; 2803 2804 if (++flush_cnt == 10 || 2805 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2806 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2807 wq->name, flush_cnt); 2808 2809 mutex_unlock(&wq->mutex); 2810 goto reflush; 2811 } 2812 2813 if (!--wq->nr_drainers) 2814 wq->flags &= ~__WQ_DRAINING; 2815 mutex_unlock(&wq->mutex); 2816 } 2817 EXPORT_SYMBOL_GPL(drain_workqueue); 2818 2819 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2820 { 2821 struct worker *worker = NULL; 2822 struct worker_pool *pool; 2823 struct pool_workqueue *pwq; 2824 2825 might_sleep(); 2826 2827 local_irq_disable(); 2828 pool = get_work_pool(work); 2829 if (!pool) { 2830 local_irq_enable(); 2831 return false; 2832 } 2833 2834 spin_lock(&pool->lock); 2835 /* see the comment in try_to_grab_pending() with the same code */ 2836 pwq = get_work_pwq(work); 2837 if (pwq) { 2838 if (unlikely(pwq->pool != pool)) 2839 goto already_gone; 2840 } else { 2841 worker = find_worker_executing_work(pool, work); 2842 if (!worker) 2843 goto already_gone; 2844 pwq = worker->current_pwq; 2845 } 2846 2847 insert_wq_barrier(pwq, barr, work, worker); 2848 spin_unlock_irq(&pool->lock); 2849 2850 /* 2851 * If @max_active is 1 or rescuer is in use, flushing another work 2852 * item on the same workqueue may lead to deadlock. Make sure the 2853 * flusher is not running on the same workqueue by verifying write 2854 * access. 2855 */ 2856 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2857 lock_map_acquire(&pwq->wq->lockdep_map); 2858 else 2859 lock_map_acquire_read(&pwq->wq->lockdep_map); 2860 lock_map_release(&pwq->wq->lockdep_map); 2861 2862 return true; 2863 already_gone: 2864 spin_unlock_irq(&pool->lock); 2865 return false; 2866 } 2867 2868 /** 2869 * flush_work - wait for a work to finish executing the last queueing instance 2870 * @work: the work to flush 2871 * 2872 * Wait until @work has finished execution. @work is guaranteed to be idle 2873 * on return if it hasn't been requeued since flush started. 2874 * 2875 * Return: 2876 * %true if flush_work() waited for the work to finish execution, 2877 * %false if it was already idle. 2878 */ 2879 bool flush_work(struct work_struct *work) 2880 { 2881 struct wq_barrier barr; 2882 2883 lock_map_acquire(&work->lockdep_map); 2884 lock_map_release(&work->lockdep_map); 2885 2886 if (start_flush_work(work, &barr)) { 2887 wait_for_completion(&barr.done); 2888 destroy_work_on_stack(&barr.work); 2889 return true; 2890 } else { 2891 return false; 2892 } 2893 } 2894 EXPORT_SYMBOL_GPL(flush_work); 2895 2896 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2897 { 2898 unsigned long flags; 2899 int ret; 2900 2901 do { 2902 ret = try_to_grab_pending(work, is_dwork, &flags); 2903 /* 2904 * If someone else is canceling, wait for the same event it 2905 * would be waiting for before retrying. 2906 */ 2907 if (unlikely(ret == -ENOENT)) 2908 flush_work(work); 2909 } while (unlikely(ret < 0)); 2910 2911 /* tell other tasks trying to grab @work to back off */ 2912 mark_work_canceling(work); 2913 local_irq_restore(flags); 2914 2915 flush_work(work); 2916 clear_work_data(work); 2917 return ret; 2918 } 2919 2920 /** 2921 * cancel_work_sync - cancel a work and wait for it to finish 2922 * @work: the work to cancel 2923 * 2924 * Cancel @work and wait for its execution to finish. This function 2925 * can be used even if the work re-queues itself or migrates to 2926 * another workqueue. On return from this function, @work is 2927 * guaranteed to be not pending or executing on any CPU. 2928 * 2929 * cancel_work_sync(&delayed_work->work) must not be used for 2930 * delayed_work's. Use cancel_delayed_work_sync() instead. 2931 * 2932 * The caller must ensure that the workqueue on which @work was last 2933 * queued can't be destroyed before this function returns. 2934 * 2935 * Return: 2936 * %true if @work was pending, %false otherwise. 2937 */ 2938 bool cancel_work_sync(struct work_struct *work) 2939 { 2940 return __cancel_work_timer(work, false); 2941 } 2942 EXPORT_SYMBOL_GPL(cancel_work_sync); 2943 2944 /** 2945 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2946 * @dwork: the delayed work to flush 2947 * 2948 * Delayed timer is cancelled and the pending work is queued for 2949 * immediate execution. Like flush_work(), this function only 2950 * considers the last queueing instance of @dwork. 2951 * 2952 * Return: 2953 * %true if flush_work() waited for the work to finish execution, 2954 * %false if it was already idle. 2955 */ 2956 bool flush_delayed_work(struct delayed_work *dwork) 2957 { 2958 local_irq_disable(); 2959 if (del_timer_sync(&dwork->timer)) 2960 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2961 local_irq_enable(); 2962 return flush_work(&dwork->work); 2963 } 2964 EXPORT_SYMBOL(flush_delayed_work); 2965 2966 /** 2967 * cancel_delayed_work - cancel a delayed work 2968 * @dwork: delayed_work to cancel 2969 * 2970 * Kill off a pending delayed_work. 2971 * 2972 * Return: %true if @dwork was pending and canceled; %false if it wasn't 2973 * pending. 2974 * 2975 * Note: 2976 * The work callback function may still be running on return, unless 2977 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 2978 * use cancel_delayed_work_sync() to wait on it. 2979 * 2980 * This function is safe to call from any context including IRQ handler. 2981 */ 2982 bool cancel_delayed_work(struct delayed_work *dwork) 2983 { 2984 unsigned long flags; 2985 int ret; 2986 2987 do { 2988 ret = try_to_grab_pending(&dwork->work, true, &flags); 2989 } while (unlikely(ret == -EAGAIN)); 2990 2991 if (unlikely(ret < 0)) 2992 return false; 2993 2994 set_work_pool_and_clear_pending(&dwork->work, 2995 get_work_pool_id(&dwork->work)); 2996 local_irq_restore(flags); 2997 return ret; 2998 } 2999 EXPORT_SYMBOL(cancel_delayed_work); 3000 3001 /** 3002 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3003 * @dwork: the delayed work cancel 3004 * 3005 * This is cancel_work_sync() for delayed works. 3006 * 3007 * Return: 3008 * %true if @dwork was pending, %false otherwise. 3009 */ 3010 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3011 { 3012 return __cancel_work_timer(&dwork->work, true); 3013 } 3014 EXPORT_SYMBOL(cancel_delayed_work_sync); 3015 3016 /** 3017 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3018 * @func: the function to call 3019 * 3020 * schedule_on_each_cpu() executes @func on each online CPU using the 3021 * system workqueue and blocks until all CPUs have completed. 3022 * schedule_on_each_cpu() is very slow. 3023 * 3024 * Return: 3025 * 0 on success, -errno on failure. 3026 */ 3027 int schedule_on_each_cpu(work_func_t func) 3028 { 3029 int cpu; 3030 struct work_struct __percpu *works; 3031 3032 works = alloc_percpu(struct work_struct); 3033 if (!works) 3034 return -ENOMEM; 3035 3036 get_online_cpus(); 3037 3038 for_each_online_cpu(cpu) { 3039 struct work_struct *work = per_cpu_ptr(works, cpu); 3040 3041 INIT_WORK(work, func); 3042 schedule_work_on(cpu, work); 3043 } 3044 3045 for_each_online_cpu(cpu) 3046 flush_work(per_cpu_ptr(works, cpu)); 3047 3048 put_online_cpus(); 3049 free_percpu(works); 3050 return 0; 3051 } 3052 3053 /** 3054 * flush_scheduled_work - ensure that any scheduled work has run to completion. 3055 * 3056 * Forces execution of the kernel-global workqueue and blocks until its 3057 * completion. 3058 * 3059 * Think twice before calling this function! It's very easy to get into 3060 * trouble if you don't take great care. Either of the following situations 3061 * will lead to deadlock: 3062 * 3063 * One of the work items currently on the workqueue needs to acquire 3064 * a lock held by your code or its caller. 3065 * 3066 * Your code is running in the context of a work routine. 3067 * 3068 * They will be detected by lockdep when they occur, but the first might not 3069 * occur very often. It depends on what work items are on the workqueue and 3070 * what locks they need, which you have no control over. 3071 * 3072 * In most situations flushing the entire workqueue is overkill; you merely 3073 * need to know that a particular work item isn't queued and isn't running. 3074 * In such cases you should use cancel_delayed_work_sync() or 3075 * cancel_work_sync() instead. 3076 */ 3077 void flush_scheduled_work(void) 3078 { 3079 flush_workqueue(system_wq); 3080 } 3081 EXPORT_SYMBOL(flush_scheduled_work); 3082 3083 /** 3084 * execute_in_process_context - reliably execute the routine with user context 3085 * @fn: the function to execute 3086 * @ew: guaranteed storage for the execute work structure (must 3087 * be available when the work executes) 3088 * 3089 * Executes the function immediately if process context is available, 3090 * otherwise schedules the function for delayed execution. 3091 * 3092 * Return: 0 - function was executed 3093 * 1 - function was scheduled for execution 3094 */ 3095 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3096 { 3097 if (!in_interrupt()) { 3098 fn(&ew->work); 3099 return 0; 3100 } 3101 3102 INIT_WORK(&ew->work, fn); 3103 schedule_work(&ew->work); 3104 3105 return 1; 3106 } 3107 EXPORT_SYMBOL_GPL(execute_in_process_context); 3108 3109 #ifdef CONFIG_SYSFS 3110 /* 3111 * Workqueues with WQ_SYSFS flag set is visible to userland via 3112 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 3113 * following attributes. 3114 * 3115 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 3116 * max_active RW int : maximum number of in-flight work items 3117 * 3118 * Unbound workqueues have the following extra attributes. 3119 * 3120 * id RO int : the associated pool ID 3121 * nice RW int : nice value of the workers 3122 * cpumask RW mask : bitmask of allowed CPUs for the workers 3123 */ 3124 struct wq_device { 3125 struct workqueue_struct *wq; 3126 struct device dev; 3127 }; 3128 3129 static struct workqueue_struct *dev_to_wq(struct device *dev) 3130 { 3131 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3132 3133 return wq_dev->wq; 3134 } 3135 3136 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 3137 char *buf) 3138 { 3139 struct workqueue_struct *wq = dev_to_wq(dev); 3140 3141 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 3142 } 3143 static DEVICE_ATTR_RO(per_cpu); 3144 3145 static ssize_t max_active_show(struct device *dev, 3146 struct device_attribute *attr, char *buf) 3147 { 3148 struct workqueue_struct *wq = dev_to_wq(dev); 3149 3150 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 3151 } 3152 3153 static ssize_t max_active_store(struct device *dev, 3154 struct device_attribute *attr, const char *buf, 3155 size_t count) 3156 { 3157 struct workqueue_struct *wq = dev_to_wq(dev); 3158 int val; 3159 3160 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 3161 return -EINVAL; 3162 3163 workqueue_set_max_active(wq, val); 3164 return count; 3165 } 3166 static DEVICE_ATTR_RW(max_active); 3167 3168 static struct attribute *wq_sysfs_attrs[] = { 3169 &dev_attr_per_cpu.attr, 3170 &dev_attr_max_active.attr, 3171 NULL, 3172 }; 3173 ATTRIBUTE_GROUPS(wq_sysfs); 3174 3175 static ssize_t wq_pool_ids_show(struct device *dev, 3176 struct device_attribute *attr, char *buf) 3177 { 3178 struct workqueue_struct *wq = dev_to_wq(dev); 3179 const char *delim = ""; 3180 int node, written = 0; 3181 3182 rcu_read_lock_sched(); 3183 for_each_node(node) { 3184 written += scnprintf(buf + written, PAGE_SIZE - written, 3185 "%s%d:%d", delim, node, 3186 unbound_pwq_by_node(wq, node)->pool->id); 3187 delim = " "; 3188 } 3189 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3190 rcu_read_unlock_sched(); 3191 3192 return written; 3193 } 3194 3195 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 3196 char *buf) 3197 { 3198 struct workqueue_struct *wq = dev_to_wq(dev); 3199 int written; 3200 3201 mutex_lock(&wq->mutex); 3202 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 3203 mutex_unlock(&wq->mutex); 3204 3205 return written; 3206 } 3207 3208 /* prepare workqueue_attrs for sysfs store operations */ 3209 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 3210 { 3211 struct workqueue_attrs *attrs; 3212 3213 attrs = alloc_workqueue_attrs(GFP_KERNEL); 3214 if (!attrs) 3215 return NULL; 3216 3217 mutex_lock(&wq->mutex); 3218 copy_workqueue_attrs(attrs, wq->unbound_attrs); 3219 mutex_unlock(&wq->mutex); 3220 return attrs; 3221 } 3222 3223 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 3224 const char *buf, size_t count) 3225 { 3226 struct workqueue_struct *wq = dev_to_wq(dev); 3227 struct workqueue_attrs *attrs; 3228 int ret; 3229 3230 attrs = wq_sysfs_prep_attrs(wq); 3231 if (!attrs) 3232 return -ENOMEM; 3233 3234 if (sscanf(buf, "%d", &attrs->nice) == 1 && 3235 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 3236 ret = apply_workqueue_attrs(wq, attrs); 3237 else 3238 ret = -EINVAL; 3239 3240 free_workqueue_attrs(attrs); 3241 return ret ?: count; 3242 } 3243 3244 static ssize_t wq_cpumask_show(struct device *dev, 3245 struct device_attribute *attr, char *buf) 3246 { 3247 struct workqueue_struct *wq = dev_to_wq(dev); 3248 int written; 3249 3250 mutex_lock(&wq->mutex); 3251 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask); 3252 mutex_unlock(&wq->mutex); 3253 3254 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3255 return written; 3256 } 3257 3258 static ssize_t wq_cpumask_store(struct device *dev, 3259 struct device_attribute *attr, 3260 const char *buf, size_t count) 3261 { 3262 struct workqueue_struct *wq = dev_to_wq(dev); 3263 struct workqueue_attrs *attrs; 3264 int ret; 3265 3266 attrs = wq_sysfs_prep_attrs(wq); 3267 if (!attrs) 3268 return -ENOMEM; 3269 3270 ret = cpumask_parse(buf, attrs->cpumask); 3271 if (!ret) 3272 ret = apply_workqueue_attrs(wq, attrs); 3273 3274 free_workqueue_attrs(attrs); 3275 return ret ?: count; 3276 } 3277 3278 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 3279 char *buf) 3280 { 3281 struct workqueue_struct *wq = dev_to_wq(dev); 3282 int written; 3283 3284 mutex_lock(&wq->mutex); 3285 written = scnprintf(buf, PAGE_SIZE, "%d\n", 3286 !wq->unbound_attrs->no_numa); 3287 mutex_unlock(&wq->mutex); 3288 3289 return written; 3290 } 3291 3292 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 3293 const char *buf, size_t count) 3294 { 3295 struct workqueue_struct *wq = dev_to_wq(dev); 3296 struct workqueue_attrs *attrs; 3297 int v, ret; 3298 3299 attrs = wq_sysfs_prep_attrs(wq); 3300 if (!attrs) 3301 return -ENOMEM; 3302 3303 ret = -EINVAL; 3304 if (sscanf(buf, "%d", &v) == 1) { 3305 attrs->no_numa = !v; 3306 ret = apply_workqueue_attrs(wq, attrs); 3307 } 3308 3309 free_workqueue_attrs(attrs); 3310 return ret ?: count; 3311 } 3312 3313 static struct device_attribute wq_sysfs_unbound_attrs[] = { 3314 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 3315 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 3316 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 3317 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 3318 __ATTR_NULL, 3319 }; 3320 3321 static struct bus_type wq_subsys = { 3322 .name = "workqueue", 3323 .dev_groups = wq_sysfs_groups, 3324 }; 3325 3326 static int __init wq_sysfs_init(void) 3327 { 3328 return subsys_virtual_register(&wq_subsys, NULL); 3329 } 3330 core_initcall(wq_sysfs_init); 3331 3332 static void wq_device_release(struct device *dev) 3333 { 3334 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3335 3336 kfree(wq_dev); 3337 } 3338 3339 /** 3340 * workqueue_sysfs_register - make a workqueue visible in sysfs 3341 * @wq: the workqueue to register 3342 * 3343 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 3344 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 3345 * which is the preferred method. 3346 * 3347 * Workqueue user should use this function directly iff it wants to apply 3348 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 3349 * apply_workqueue_attrs() may race against userland updating the 3350 * attributes. 3351 * 3352 * Return: 0 on success, -errno on failure. 3353 */ 3354 int workqueue_sysfs_register(struct workqueue_struct *wq) 3355 { 3356 struct wq_device *wq_dev; 3357 int ret; 3358 3359 /* 3360 * Adjusting max_active or creating new pwqs by applyting 3361 * attributes breaks ordering guarantee. Disallow exposing ordered 3362 * workqueues. 3363 */ 3364 if (WARN_ON(wq->flags & __WQ_ORDERED)) 3365 return -EINVAL; 3366 3367 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 3368 if (!wq_dev) 3369 return -ENOMEM; 3370 3371 wq_dev->wq = wq; 3372 wq_dev->dev.bus = &wq_subsys; 3373 wq_dev->dev.init_name = wq->name; 3374 wq_dev->dev.release = wq_device_release; 3375 3376 /* 3377 * unbound_attrs are created separately. Suppress uevent until 3378 * everything is ready. 3379 */ 3380 dev_set_uevent_suppress(&wq_dev->dev, true); 3381 3382 ret = device_register(&wq_dev->dev); 3383 if (ret) { 3384 kfree(wq_dev); 3385 wq->wq_dev = NULL; 3386 return ret; 3387 } 3388 3389 if (wq->flags & WQ_UNBOUND) { 3390 struct device_attribute *attr; 3391 3392 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 3393 ret = device_create_file(&wq_dev->dev, attr); 3394 if (ret) { 3395 device_unregister(&wq_dev->dev); 3396 wq->wq_dev = NULL; 3397 return ret; 3398 } 3399 } 3400 } 3401 3402 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 3403 return 0; 3404 } 3405 3406 /** 3407 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 3408 * @wq: the workqueue to unregister 3409 * 3410 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 3411 */ 3412 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 3413 { 3414 struct wq_device *wq_dev = wq->wq_dev; 3415 3416 if (!wq->wq_dev) 3417 return; 3418 3419 wq->wq_dev = NULL; 3420 device_unregister(&wq_dev->dev); 3421 } 3422 #else /* CONFIG_SYSFS */ 3423 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 3424 #endif /* CONFIG_SYSFS */ 3425 3426 /** 3427 * free_workqueue_attrs - free a workqueue_attrs 3428 * @attrs: workqueue_attrs to free 3429 * 3430 * Undo alloc_workqueue_attrs(). 3431 */ 3432 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3433 { 3434 if (attrs) { 3435 free_cpumask_var(attrs->cpumask); 3436 kfree(attrs); 3437 } 3438 } 3439 3440 /** 3441 * alloc_workqueue_attrs - allocate a workqueue_attrs 3442 * @gfp_mask: allocation mask to use 3443 * 3444 * Allocate a new workqueue_attrs, initialize with default settings and 3445 * return it. 3446 * 3447 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3448 */ 3449 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3450 { 3451 struct workqueue_attrs *attrs; 3452 3453 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3454 if (!attrs) 3455 goto fail; 3456 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3457 goto fail; 3458 3459 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3460 return attrs; 3461 fail: 3462 free_workqueue_attrs(attrs); 3463 return NULL; 3464 } 3465 3466 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3467 const struct workqueue_attrs *from) 3468 { 3469 to->nice = from->nice; 3470 cpumask_copy(to->cpumask, from->cpumask); 3471 /* 3472 * Unlike hash and equality test, this function doesn't ignore 3473 * ->no_numa as it is used for both pool and wq attrs. Instead, 3474 * get_unbound_pool() explicitly clears ->no_numa after copying. 3475 */ 3476 to->no_numa = from->no_numa; 3477 } 3478 3479 /* hash value of the content of @attr */ 3480 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3481 { 3482 u32 hash = 0; 3483 3484 hash = jhash_1word(attrs->nice, hash); 3485 hash = jhash(cpumask_bits(attrs->cpumask), 3486 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3487 return hash; 3488 } 3489 3490 /* content equality test */ 3491 static bool wqattrs_equal(const struct workqueue_attrs *a, 3492 const struct workqueue_attrs *b) 3493 { 3494 if (a->nice != b->nice) 3495 return false; 3496 if (!cpumask_equal(a->cpumask, b->cpumask)) 3497 return false; 3498 return true; 3499 } 3500 3501 /** 3502 * init_worker_pool - initialize a newly zalloc'd worker_pool 3503 * @pool: worker_pool to initialize 3504 * 3505 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs. 3506 * 3507 * Return: 0 on success, -errno on failure. Even on failure, all fields 3508 * inside @pool proper are initialized and put_unbound_pool() can be called 3509 * on @pool safely to release it. 3510 */ 3511 static int init_worker_pool(struct worker_pool *pool) 3512 { 3513 spin_lock_init(&pool->lock); 3514 pool->id = -1; 3515 pool->cpu = -1; 3516 pool->node = NUMA_NO_NODE; 3517 pool->flags |= POOL_DISASSOCIATED; 3518 INIT_LIST_HEAD(&pool->worklist); 3519 INIT_LIST_HEAD(&pool->idle_list); 3520 hash_init(pool->busy_hash); 3521 3522 init_timer_deferrable(&pool->idle_timer); 3523 pool->idle_timer.function = idle_worker_timeout; 3524 pool->idle_timer.data = (unsigned long)pool; 3525 3526 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3527 (unsigned long)pool); 3528 3529 mutex_init(&pool->manager_arb); 3530 mutex_init(&pool->manager_mutex); 3531 idr_init(&pool->worker_idr); 3532 3533 INIT_HLIST_NODE(&pool->hash_node); 3534 pool->refcnt = 1; 3535 3536 /* shouldn't fail above this point */ 3537 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3538 if (!pool->attrs) 3539 return -ENOMEM; 3540 return 0; 3541 } 3542 3543 static void rcu_free_pool(struct rcu_head *rcu) 3544 { 3545 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3546 3547 idr_destroy(&pool->worker_idr); 3548 free_workqueue_attrs(pool->attrs); 3549 kfree(pool); 3550 } 3551 3552 /** 3553 * put_unbound_pool - put a worker_pool 3554 * @pool: worker_pool to put 3555 * 3556 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3557 * safe manner. get_unbound_pool() calls this function on its failure path 3558 * and this function should be able to release pools which went through, 3559 * successfully or not, init_worker_pool(). 3560 * 3561 * Should be called with wq_pool_mutex held. 3562 */ 3563 static void put_unbound_pool(struct worker_pool *pool) 3564 { 3565 struct worker *worker; 3566 3567 lockdep_assert_held(&wq_pool_mutex); 3568 3569 if (--pool->refcnt) 3570 return; 3571 3572 /* sanity checks */ 3573 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) || 3574 WARN_ON(!list_empty(&pool->worklist))) 3575 return; 3576 3577 /* release id and unhash */ 3578 if (pool->id >= 0) 3579 idr_remove(&worker_pool_idr, pool->id); 3580 hash_del(&pool->hash_node); 3581 3582 /* 3583 * Become the manager and destroy all workers. Grabbing 3584 * manager_arb prevents @pool's workers from blocking on 3585 * manager_mutex. 3586 */ 3587 mutex_lock(&pool->manager_arb); 3588 mutex_lock(&pool->manager_mutex); 3589 spin_lock_irq(&pool->lock); 3590 3591 while ((worker = first_worker(pool))) 3592 destroy_worker(worker); 3593 WARN_ON(pool->nr_workers || pool->nr_idle); 3594 3595 spin_unlock_irq(&pool->lock); 3596 mutex_unlock(&pool->manager_mutex); 3597 mutex_unlock(&pool->manager_arb); 3598 3599 /* shut down the timers */ 3600 del_timer_sync(&pool->idle_timer); 3601 del_timer_sync(&pool->mayday_timer); 3602 3603 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3604 call_rcu_sched(&pool->rcu, rcu_free_pool); 3605 } 3606 3607 /** 3608 * get_unbound_pool - get a worker_pool with the specified attributes 3609 * @attrs: the attributes of the worker_pool to get 3610 * 3611 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3612 * reference count and return it. If there already is a matching 3613 * worker_pool, it will be used; otherwise, this function attempts to 3614 * create a new one. 3615 * 3616 * Should be called with wq_pool_mutex held. 3617 * 3618 * Return: On success, a worker_pool with the same attributes as @attrs. 3619 * On failure, %NULL. 3620 */ 3621 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3622 { 3623 u32 hash = wqattrs_hash(attrs); 3624 struct worker_pool *pool; 3625 int node; 3626 3627 lockdep_assert_held(&wq_pool_mutex); 3628 3629 /* do we already have a matching pool? */ 3630 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3631 if (wqattrs_equal(pool->attrs, attrs)) { 3632 pool->refcnt++; 3633 goto out_unlock; 3634 } 3635 } 3636 3637 /* nope, create a new one */ 3638 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 3639 if (!pool || init_worker_pool(pool) < 0) 3640 goto fail; 3641 3642 if (workqueue_freezing) 3643 pool->flags |= POOL_FREEZING; 3644 3645 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3646 copy_workqueue_attrs(pool->attrs, attrs); 3647 3648 /* 3649 * no_numa isn't a worker_pool attribute, always clear it. See 3650 * 'struct workqueue_attrs' comments for detail. 3651 */ 3652 pool->attrs->no_numa = false; 3653 3654 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3655 if (wq_numa_enabled) { 3656 for_each_node(node) { 3657 if (cpumask_subset(pool->attrs->cpumask, 3658 wq_numa_possible_cpumask[node])) { 3659 pool->node = node; 3660 break; 3661 } 3662 } 3663 } 3664 3665 if (worker_pool_assign_id(pool) < 0) 3666 goto fail; 3667 3668 /* create and start the initial worker */ 3669 if (create_and_start_worker(pool) < 0) 3670 goto fail; 3671 3672 /* install */ 3673 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3674 out_unlock: 3675 return pool; 3676 fail: 3677 if (pool) 3678 put_unbound_pool(pool); 3679 return NULL; 3680 } 3681 3682 static void rcu_free_pwq(struct rcu_head *rcu) 3683 { 3684 kmem_cache_free(pwq_cache, 3685 container_of(rcu, struct pool_workqueue, rcu)); 3686 } 3687 3688 /* 3689 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3690 * and needs to be destroyed. 3691 */ 3692 static void pwq_unbound_release_workfn(struct work_struct *work) 3693 { 3694 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3695 unbound_release_work); 3696 struct workqueue_struct *wq = pwq->wq; 3697 struct worker_pool *pool = pwq->pool; 3698 bool is_last; 3699 3700 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3701 return; 3702 3703 /* 3704 * Unlink @pwq. Synchronization against wq->mutex isn't strictly 3705 * necessary on release but do it anyway. It's easier to verify 3706 * and consistent with the linking path. 3707 */ 3708 mutex_lock(&wq->mutex); 3709 list_del_rcu(&pwq->pwqs_node); 3710 is_last = list_empty(&wq->pwqs); 3711 mutex_unlock(&wq->mutex); 3712 3713 mutex_lock(&wq_pool_mutex); 3714 put_unbound_pool(pool); 3715 mutex_unlock(&wq_pool_mutex); 3716 3717 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3718 3719 /* 3720 * If we're the last pwq going away, @wq is already dead and no one 3721 * is gonna access it anymore. Free it. 3722 */ 3723 if (is_last) { 3724 free_workqueue_attrs(wq->unbound_attrs); 3725 kfree(wq); 3726 } 3727 } 3728 3729 /** 3730 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3731 * @pwq: target pool_workqueue 3732 * 3733 * If @pwq isn't freezing, set @pwq->max_active to the associated 3734 * workqueue's saved_max_active and activate delayed work items 3735 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3736 */ 3737 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3738 { 3739 struct workqueue_struct *wq = pwq->wq; 3740 bool freezable = wq->flags & WQ_FREEZABLE; 3741 3742 /* for @wq->saved_max_active */ 3743 lockdep_assert_held(&wq->mutex); 3744 3745 /* fast exit for non-freezable wqs */ 3746 if (!freezable && pwq->max_active == wq->saved_max_active) 3747 return; 3748 3749 spin_lock_irq(&pwq->pool->lock); 3750 3751 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) { 3752 pwq->max_active = wq->saved_max_active; 3753 3754 while (!list_empty(&pwq->delayed_works) && 3755 pwq->nr_active < pwq->max_active) 3756 pwq_activate_first_delayed(pwq); 3757 3758 /* 3759 * Need to kick a worker after thawed or an unbound wq's 3760 * max_active is bumped. It's a slow path. Do it always. 3761 */ 3762 wake_up_worker(pwq->pool); 3763 } else { 3764 pwq->max_active = 0; 3765 } 3766 3767 spin_unlock_irq(&pwq->pool->lock); 3768 } 3769 3770 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3771 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3772 struct worker_pool *pool) 3773 { 3774 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3775 3776 memset(pwq, 0, sizeof(*pwq)); 3777 3778 pwq->pool = pool; 3779 pwq->wq = wq; 3780 pwq->flush_color = -1; 3781 pwq->refcnt = 1; 3782 INIT_LIST_HEAD(&pwq->delayed_works); 3783 INIT_LIST_HEAD(&pwq->pwqs_node); 3784 INIT_LIST_HEAD(&pwq->mayday_node); 3785 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3786 } 3787 3788 /* sync @pwq with the current state of its associated wq and link it */ 3789 static void link_pwq(struct pool_workqueue *pwq) 3790 { 3791 struct workqueue_struct *wq = pwq->wq; 3792 3793 lockdep_assert_held(&wq->mutex); 3794 3795 /* may be called multiple times, ignore if already linked */ 3796 if (!list_empty(&pwq->pwqs_node)) 3797 return; 3798 3799 /* 3800 * Set the matching work_color. This is synchronized with 3801 * wq->mutex to avoid confusing flush_workqueue(). 3802 */ 3803 pwq->work_color = wq->work_color; 3804 3805 /* sync max_active to the current setting */ 3806 pwq_adjust_max_active(pwq); 3807 3808 /* link in @pwq */ 3809 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3810 } 3811 3812 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3813 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3814 const struct workqueue_attrs *attrs) 3815 { 3816 struct worker_pool *pool; 3817 struct pool_workqueue *pwq; 3818 3819 lockdep_assert_held(&wq_pool_mutex); 3820 3821 pool = get_unbound_pool(attrs); 3822 if (!pool) 3823 return NULL; 3824 3825 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3826 if (!pwq) { 3827 put_unbound_pool(pool); 3828 return NULL; 3829 } 3830 3831 init_pwq(pwq, wq, pool); 3832 return pwq; 3833 } 3834 3835 /* undo alloc_unbound_pwq(), used only in the error path */ 3836 static void free_unbound_pwq(struct pool_workqueue *pwq) 3837 { 3838 lockdep_assert_held(&wq_pool_mutex); 3839 3840 if (pwq) { 3841 put_unbound_pool(pwq->pool); 3842 kmem_cache_free(pwq_cache, pwq); 3843 } 3844 } 3845 3846 /** 3847 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node 3848 * @attrs: the wq_attrs of interest 3849 * @node: the target NUMA node 3850 * @cpu_going_down: if >= 0, the CPU to consider as offline 3851 * @cpumask: outarg, the resulting cpumask 3852 * 3853 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3854 * @cpu_going_down is >= 0, that cpu is considered offline during 3855 * calculation. The result is stored in @cpumask. 3856 * 3857 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3858 * enabled and @node has online CPUs requested by @attrs, the returned 3859 * cpumask is the intersection of the possible CPUs of @node and 3860 * @attrs->cpumask. 3861 * 3862 * The caller is responsible for ensuring that the cpumask of @node stays 3863 * stable. 3864 * 3865 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3866 * %false if equal. 3867 */ 3868 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3869 int cpu_going_down, cpumask_t *cpumask) 3870 { 3871 if (!wq_numa_enabled || attrs->no_numa) 3872 goto use_dfl; 3873 3874 /* does @node have any online CPUs @attrs wants? */ 3875 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3876 if (cpu_going_down >= 0) 3877 cpumask_clear_cpu(cpu_going_down, cpumask); 3878 3879 if (cpumask_empty(cpumask)) 3880 goto use_dfl; 3881 3882 /* yeap, return possible CPUs in @node that @attrs wants */ 3883 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3884 return !cpumask_equal(cpumask, attrs->cpumask); 3885 3886 use_dfl: 3887 cpumask_copy(cpumask, attrs->cpumask); 3888 return false; 3889 } 3890 3891 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3892 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3893 int node, 3894 struct pool_workqueue *pwq) 3895 { 3896 struct pool_workqueue *old_pwq; 3897 3898 lockdep_assert_held(&wq->mutex); 3899 3900 /* link_pwq() can handle duplicate calls */ 3901 link_pwq(pwq); 3902 3903 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3904 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3905 return old_pwq; 3906 } 3907 3908 /** 3909 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3910 * @wq: the target workqueue 3911 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3912 * 3913 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3914 * machines, this function maps a separate pwq to each NUMA node with 3915 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3916 * NUMA node it was issued on. Older pwqs are released as in-flight work 3917 * items finish. Note that a work item which repeatedly requeues itself 3918 * back-to-back will stay on its current pwq. 3919 * 3920 * Performs GFP_KERNEL allocations. 3921 * 3922 * Return: 0 on success and -errno on failure. 3923 */ 3924 int apply_workqueue_attrs(struct workqueue_struct *wq, 3925 const struct workqueue_attrs *attrs) 3926 { 3927 struct workqueue_attrs *new_attrs, *tmp_attrs; 3928 struct pool_workqueue **pwq_tbl, *dfl_pwq; 3929 int node, ret; 3930 3931 /* only unbound workqueues can change attributes */ 3932 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3933 return -EINVAL; 3934 3935 /* creating multiple pwqs breaks ordering guarantee */ 3936 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3937 return -EINVAL; 3938 3939 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL); 3940 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3941 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3942 if (!pwq_tbl || !new_attrs || !tmp_attrs) 3943 goto enomem; 3944 3945 /* make a copy of @attrs and sanitize it */ 3946 copy_workqueue_attrs(new_attrs, attrs); 3947 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3948 3949 /* 3950 * We may create multiple pwqs with differing cpumasks. Make a 3951 * copy of @new_attrs which will be modified and used to obtain 3952 * pools. 3953 */ 3954 copy_workqueue_attrs(tmp_attrs, new_attrs); 3955 3956 /* 3957 * CPUs should stay stable across pwq creations and installations. 3958 * Pin CPUs, determine the target cpumask for each node and create 3959 * pwqs accordingly. 3960 */ 3961 get_online_cpus(); 3962 3963 mutex_lock(&wq_pool_mutex); 3964 3965 /* 3966 * If something goes wrong during CPU up/down, we'll fall back to 3967 * the default pwq covering whole @attrs->cpumask. Always create 3968 * it even if we don't use it immediately. 3969 */ 3970 dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3971 if (!dfl_pwq) 3972 goto enomem_pwq; 3973 3974 for_each_node(node) { 3975 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) { 3976 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3977 if (!pwq_tbl[node]) 3978 goto enomem_pwq; 3979 } else { 3980 dfl_pwq->refcnt++; 3981 pwq_tbl[node] = dfl_pwq; 3982 } 3983 } 3984 3985 mutex_unlock(&wq_pool_mutex); 3986 3987 /* all pwqs have been created successfully, let's install'em */ 3988 mutex_lock(&wq->mutex); 3989 3990 copy_workqueue_attrs(wq->unbound_attrs, new_attrs); 3991 3992 /* save the previous pwq and install the new one */ 3993 for_each_node(node) 3994 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]); 3995 3996 /* @dfl_pwq might not have been used, ensure it's linked */ 3997 link_pwq(dfl_pwq); 3998 swap(wq->dfl_pwq, dfl_pwq); 3999 4000 mutex_unlock(&wq->mutex); 4001 4002 /* put the old pwqs */ 4003 for_each_node(node) 4004 put_pwq_unlocked(pwq_tbl[node]); 4005 put_pwq_unlocked(dfl_pwq); 4006 4007 put_online_cpus(); 4008 ret = 0; 4009 /* fall through */ 4010 out_free: 4011 free_workqueue_attrs(tmp_attrs); 4012 free_workqueue_attrs(new_attrs); 4013 kfree(pwq_tbl); 4014 return ret; 4015 4016 enomem_pwq: 4017 free_unbound_pwq(dfl_pwq); 4018 for_each_node(node) 4019 if (pwq_tbl && pwq_tbl[node] != dfl_pwq) 4020 free_unbound_pwq(pwq_tbl[node]); 4021 mutex_unlock(&wq_pool_mutex); 4022 put_online_cpus(); 4023 enomem: 4024 ret = -ENOMEM; 4025 goto out_free; 4026 } 4027 4028 /** 4029 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4030 * @wq: the target workqueue 4031 * @cpu: the CPU coming up or going down 4032 * @online: whether @cpu is coming up or going down 4033 * 4034 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4035 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4036 * @wq accordingly. 4037 * 4038 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4039 * falls back to @wq->dfl_pwq which may not be optimal but is always 4040 * correct. 4041 * 4042 * Note that when the last allowed CPU of a NUMA node goes offline for a 4043 * workqueue with a cpumask spanning multiple nodes, the workers which were 4044 * already executing the work items for the workqueue will lose their CPU 4045 * affinity and may execute on any CPU. This is similar to how per-cpu 4046 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4047 * affinity, it's the user's responsibility to flush the work item from 4048 * CPU_DOWN_PREPARE. 4049 */ 4050 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4051 bool online) 4052 { 4053 int node = cpu_to_node(cpu); 4054 int cpu_off = online ? -1 : cpu; 4055 struct pool_workqueue *old_pwq = NULL, *pwq; 4056 struct workqueue_attrs *target_attrs; 4057 cpumask_t *cpumask; 4058 4059 lockdep_assert_held(&wq_pool_mutex); 4060 4061 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND)) 4062 return; 4063 4064 /* 4065 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4066 * Let's use a preallocated one. The following buf is protected by 4067 * CPU hotplug exclusion. 4068 */ 4069 target_attrs = wq_update_unbound_numa_attrs_buf; 4070 cpumask = target_attrs->cpumask; 4071 4072 mutex_lock(&wq->mutex); 4073 if (wq->unbound_attrs->no_numa) 4074 goto out_unlock; 4075 4076 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4077 pwq = unbound_pwq_by_node(wq, node); 4078 4079 /* 4080 * Let's determine what needs to be done. If the target cpumask is 4081 * different from wq's, we need to compare it to @pwq's and create 4082 * a new one if they don't match. If the target cpumask equals 4083 * wq's, the default pwq should be used. If @pwq is already the 4084 * default one, nothing to do; otherwise, install the default one. 4085 */ 4086 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) { 4087 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4088 goto out_unlock; 4089 } else { 4090 if (pwq == wq->dfl_pwq) 4091 goto out_unlock; 4092 else 4093 goto use_dfl_pwq; 4094 } 4095 4096 mutex_unlock(&wq->mutex); 4097 4098 /* create a new pwq */ 4099 pwq = alloc_unbound_pwq(wq, target_attrs); 4100 if (!pwq) { 4101 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4102 wq->name); 4103 goto out_unlock; 4104 } 4105 4106 /* 4107 * Install the new pwq. As this function is called only from CPU 4108 * hotplug callbacks and applying a new attrs is wrapped with 4109 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed 4110 * inbetween. 4111 */ 4112 mutex_lock(&wq->mutex); 4113 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4114 goto out_unlock; 4115 4116 use_dfl_pwq: 4117 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4118 get_pwq(wq->dfl_pwq); 4119 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4120 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4121 out_unlock: 4122 mutex_unlock(&wq->mutex); 4123 put_pwq_unlocked(old_pwq); 4124 } 4125 4126 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4127 { 4128 bool highpri = wq->flags & WQ_HIGHPRI; 4129 int cpu, ret; 4130 4131 if (!(wq->flags & WQ_UNBOUND)) { 4132 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4133 if (!wq->cpu_pwqs) 4134 return -ENOMEM; 4135 4136 for_each_possible_cpu(cpu) { 4137 struct pool_workqueue *pwq = 4138 per_cpu_ptr(wq->cpu_pwqs, cpu); 4139 struct worker_pool *cpu_pools = 4140 per_cpu(cpu_worker_pools, cpu); 4141 4142 init_pwq(pwq, wq, &cpu_pools[highpri]); 4143 4144 mutex_lock(&wq->mutex); 4145 link_pwq(pwq); 4146 mutex_unlock(&wq->mutex); 4147 } 4148 return 0; 4149 } else if (wq->flags & __WQ_ORDERED) { 4150 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4151 /* there should only be single pwq for ordering guarantee */ 4152 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4153 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4154 "ordering guarantee broken for workqueue %s\n", wq->name); 4155 return ret; 4156 } else { 4157 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4158 } 4159 } 4160 4161 static int wq_clamp_max_active(int max_active, unsigned int flags, 4162 const char *name) 4163 { 4164 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4165 4166 if (max_active < 1 || max_active > lim) 4167 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4168 max_active, name, 1, lim); 4169 4170 return clamp_val(max_active, 1, lim); 4171 } 4172 4173 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4174 unsigned int flags, 4175 int max_active, 4176 struct lock_class_key *key, 4177 const char *lock_name, ...) 4178 { 4179 size_t tbl_size = 0; 4180 va_list args; 4181 struct workqueue_struct *wq; 4182 struct pool_workqueue *pwq; 4183 4184 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4185 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4186 flags |= WQ_UNBOUND; 4187 4188 /* allocate wq and format name */ 4189 if (flags & WQ_UNBOUND) 4190 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]); 4191 4192 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4193 if (!wq) 4194 return NULL; 4195 4196 if (flags & WQ_UNBOUND) { 4197 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4198 if (!wq->unbound_attrs) 4199 goto err_free_wq; 4200 } 4201 4202 va_start(args, lock_name); 4203 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4204 va_end(args); 4205 4206 max_active = max_active ?: WQ_DFL_ACTIVE; 4207 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4208 4209 /* init wq */ 4210 wq->flags = flags; 4211 wq->saved_max_active = max_active; 4212 mutex_init(&wq->mutex); 4213 atomic_set(&wq->nr_pwqs_to_flush, 0); 4214 INIT_LIST_HEAD(&wq->pwqs); 4215 INIT_LIST_HEAD(&wq->flusher_queue); 4216 INIT_LIST_HEAD(&wq->flusher_overflow); 4217 INIT_LIST_HEAD(&wq->maydays); 4218 4219 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4220 INIT_LIST_HEAD(&wq->list); 4221 4222 if (alloc_and_link_pwqs(wq) < 0) 4223 goto err_free_wq; 4224 4225 /* 4226 * Workqueues which may be used during memory reclaim should 4227 * have a rescuer to guarantee forward progress. 4228 */ 4229 if (flags & WQ_MEM_RECLAIM) { 4230 struct worker *rescuer; 4231 4232 rescuer = alloc_worker(); 4233 if (!rescuer) 4234 goto err_destroy; 4235 4236 rescuer->rescue_wq = wq; 4237 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 4238 wq->name); 4239 if (IS_ERR(rescuer->task)) { 4240 kfree(rescuer); 4241 goto err_destroy; 4242 } 4243 4244 wq->rescuer = rescuer; 4245 rescuer->task->flags |= PF_NO_SETAFFINITY; 4246 wake_up_process(rescuer->task); 4247 } 4248 4249 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4250 goto err_destroy; 4251 4252 /* 4253 * wq_pool_mutex protects global freeze state and workqueues list. 4254 * Grab it, adjust max_active and add the new @wq to workqueues 4255 * list. 4256 */ 4257 mutex_lock(&wq_pool_mutex); 4258 4259 mutex_lock(&wq->mutex); 4260 for_each_pwq(pwq, wq) 4261 pwq_adjust_max_active(pwq); 4262 mutex_unlock(&wq->mutex); 4263 4264 list_add(&wq->list, &workqueues); 4265 4266 mutex_unlock(&wq_pool_mutex); 4267 4268 return wq; 4269 4270 err_free_wq: 4271 free_workqueue_attrs(wq->unbound_attrs); 4272 kfree(wq); 4273 return NULL; 4274 err_destroy: 4275 destroy_workqueue(wq); 4276 return NULL; 4277 } 4278 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4279 4280 /** 4281 * destroy_workqueue - safely terminate a workqueue 4282 * @wq: target workqueue 4283 * 4284 * Safely destroy a workqueue. All work currently pending will be done first. 4285 */ 4286 void destroy_workqueue(struct workqueue_struct *wq) 4287 { 4288 struct pool_workqueue *pwq; 4289 int node; 4290 4291 /* drain it before proceeding with destruction */ 4292 drain_workqueue(wq); 4293 4294 /* sanity checks */ 4295 mutex_lock(&wq->mutex); 4296 for_each_pwq(pwq, wq) { 4297 int i; 4298 4299 for (i = 0; i < WORK_NR_COLORS; i++) { 4300 if (WARN_ON(pwq->nr_in_flight[i])) { 4301 mutex_unlock(&wq->mutex); 4302 return; 4303 } 4304 } 4305 4306 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4307 WARN_ON(pwq->nr_active) || 4308 WARN_ON(!list_empty(&pwq->delayed_works))) { 4309 mutex_unlock(&wq->mutex); 4310 return; 4311 } 4312 } 4313 mutex_unlock(&wq->mutex); 4314 4315 /* 4316 * wq list is used to freeze wq, remove from list after 4317 * flushing is complete in case freeze races us. 4318 */ 4319 mutex_lock(&wq_pool_mutex); 4320 list_del_init(&wq->list); 4321 mutex_unlock(&wq_pool_mutex); 4322 4323 workqueue_sysfs_unregister(wq); 4324 4325 if (wq->rescuer) { 4326 kthread_stop(wq->rescuer->task); 4327 kfree(wq->rescuer); 4328 wq->rescuer = NULL; 4329 } 4330 4331 if (!(wq->flags & WQ_UNBOUND)) { 4332 /* 4333 * The base ref is never dropped on per-cpu pwqs. Directly 4334 * free the pwqs and wq. 4335 */ 4336 free_percpu(wq->cpu_pwqs); 4337 kfree(wq); 4338 } else { 4339 /* 4340 * We're the sole accessor of @wq at this point. Directly 4341 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4342 * @wq will be freed when the last pwq is released. 4343 */ 4344 for_each_node(node) { 4345 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4346 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4347 put_pwq_unlocked(pwq); 4348 } 4349 4350 /* 4351 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4352 * put. Don't access it afterwards. 4353 */ 4354 pwq = wq->dfl_pwq; 4355 wq->dfl_pwq = NULL; 4356 put_pwq_unlocked(pwq); 4357 } 4358 } 4359 EXPORT_SYMBOL_GPL(destroy_workqueue); 4360 4361 /** 4362 * workqueue_set_max_active - adjust max_active of a workqueue 4363 * @wq: target workqueue 4364 * @max_active: new max_active value. 4365 * 4366 * Set max_active of @wq to @max_active. 4367 * 4368 * CONTEXT: 4369 * Don't call from IRQ context. 4370 */ 4371 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4372 { 4373 struct pool_workqueue *pwq; 4374 4375 /* disallow meddling with max_active for ordered workqueues */ 4376 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4377 return; 4378 4379 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4380 4381 mutex_lock(&wq->mutex); 4382 4383 wq->saved_max_active = max_active; 4384 4385 for_each_pwq(pwq, wq) 4386 pwq_adjust_max_active(pwq); 4387 4388 mutex_unlock(&wq->mutex); 4389 } 4390 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4391 4392 /** 4393 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4394 * 4395 * Determine whether %current is a workqueue rescuer. Can be used from 4396 * work functions to determine whether it's being run off the rescuer task. 4397 * 4398 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4399 */ 4400 bool current_is_workqueue_rescuer(void) 4401 { 4402 struct worker *worker = current_wq_worker(); 4403 4404 return worker && worker->rescue_wq; 4405 } 4406 4407 /** 4408 * workqueue_congested - test whether a workqueue is congested 4409 * @cpu: CPU in question 4410 * @wq: target workqueue 4411 * 4412 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4413 * no synchronization around this function and the test result is 4414 * unreliable and only useful as advisory hints or for debugging. 4415 * 4416 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4417 * Note that both per-cpu and unbound workqueues may be associated with 4418 * multiple pool_workqueues which have separate congested states. A 4419 * workqueue being congested on one CPU doesn't mean the workqueue is also 4420 * contested on other CPUs / NUMA nodes. 4421 * 4422 * Return: 4423 * %true if congested, %false otherwise. 4424 */ 4425 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4426 { 4427 struct pool_workqueue *pwq; 4428 bool ret; 4429 4430 rcu_read_lock_sched(); 4431 4432 if (cpu == WORK_CPU_UNBOUND) 4433 cpu = smp_processor_id(); 4434 4435 if (!(wq->flags & WQ_UNBOUND)) 4436 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4437 else 4438 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4439 4440 ret = !list_empty(&pwq->delayed_works); 4441 rcu_read_unlock_sched(); 4442 4443 return ret; 4444 } 4445 EXPORT_SYMBOL_GPL(workqueue_congested); 4446 4447 /** 4448 * work_busy - test whether a work is currently pending or running 4449 * @work: the work to be tested 4450 * 4451 * Test whether @work is currently pending or running. There is no 4452 * synchronization around this function and the test result is 4453 * unreliable and only useful as advisory hints or for debugging. 4454 * 4455 * Return: 4456 * OR'd bitmask of WORK_BUSY_* bits. 4457 */ 4458 unsigned int work_busy(struct work_struct *work) 4459 { 4460 struct worker_pool *pool; 4461 unsigned long flags; 4462 unsigned int ret = 0; 4463 4464 if (work_pending(work)) 4465 ret |= WORK_BUSY_PENDING; 4466 4467 local_irq_save(flags); 4468 pool = get_work_pool(work); 4469 if (pool) { 4470 spin_lock(&pool->lock); 4471 if (find_worker_executing_work(pool, work)) 4472 ret |= WORK_BUSY_RUNNING; 4473 spin_unlock(&pool->lock); 4474 } 4475 local_irq_restore(flags); 4476 4477 return ret; 4478 } 4479 EXPORT_SYMBOL_GPL(work_busy); 4480 4481 /** 4482 * set_worker_desc - set description for the current work item 4483 * @fmt: printf-style format string 4484 * @...: arguments for the format string 4485 * 4486 * This function can be called by a running work function to describe what 4487 * the work item is about. If the worker task gets dumped, this 4488 * information will be printed out together to help debugging. The 4489 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4490 */ 4491 void set_worker_desc(const char *fmt, ...) 4492 { 4493 struct worker *worker = current_wq_worker(); 4494 va_list args; 4495 4496 if (worker) { 4497 va_start(args, fmt); 4498 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4499 va_end(args); 4500 worker->desc_valid = true; 4501 } 4502 } 4503 4504 /** 4505 * print_worker_info - print out worker information and description 4506 * @log_lvl: the log level to use when printing 4507 * @task: target task 4508 * 4509 * If @task is a worker and currently executing a work item, print out the 4510 * name of the workqueue being serviced and worker description set with 4511 * set_worker_desc() by the currently executing work item. 4512 * 4513 * This function can be safely called on any task as long as the 4514 * task_struct itself is accessible. While safe, this function isn't 4515 * synchronized and may print out mixups or garbages of limited length. 4516 */ 4517 void print_worker_info(const char *log_lvl, struct task_struct *task) 4518 { 4519 work_func_t *fn = NULL; 4520 char name[WQ_NAME_LEN] = { }; 4521 char desc[WORKER_DESC_LEN] = { }; 4522 struct pool_workqueue *pwq = NULL; 4523 struct workqueue_struct *wq = NULL; 4524 bool desc_valid = false; 4525 struct worker *worker; 4526 4527 if (!(task->flags & PF_WQ_WORKER)) 4528 return; 4529 4530 /* 4531 * This function is called without any synchronization and @task 4532 * could be in any state. Be careful with dereferences. 4533 */ 4534 worker = probe_kthread_data(task); 4535 4536 /* 4537 * Carefully copy the associated workqueue's workfn and name. Keep 4538 * the original last '\0' in case the original contains garbage. 4539 */ 4540 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4541 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4542 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4543 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4544 4545 /* copy worker description */ 4546 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4547 if (desc_valid) 4548 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4549 4550 if (fn || name[0] || desc[0]) { 4551 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4552 if (desc[0]) 4553 pr_cont(" (%s)", desc); 4554 pr_cont("\n"); 4555 } 4556 } 4557 4558 /* 4559 * CPU hotplug. 4560 * 4561 * There are two challenges in supporting CPU hotplug. Firstly, there 4562 * are a lot of assumptions on strong associations among work, pwq and 4563 * pool which make migrating pending and scheduled works very 4564 * difficult to implement without impacting hot paths. Secondly, 4565 * worker pools serve mix of short, long and very long running works making 4566 * blocked draining impractical. 4567 * 4568 * This is solved by allowing the pools to be disassociated from the CPU 4569 * running as an unbound one and allowing it to be reattached later if the 4570 * cpu comes back online. 4571 */ 4572 4573 static void wq_unbind_fn(struct work_struct *work) 4574 { 4575 int cpu = smp_processor_id(); 4576 struct worker_pool *pool; 4577 struct worker *worker; 4578 int wi; 4579 4580 for_each_cpu_worker_pool(pool, cpu) { 4581 WARN_ON_ONCE(cpu != smp_processor_id()); 4582 4583 mutex_lock(&pool->manager_mutex); 4584 spin_lock_irq(&pool->lock); 4585 4586 /* 4587 * We've blocked all manager operations. Make all workers 4588 * unbound and set DISASSOCIATED. Before this, all workers 4589 * except for the ones which are still executing works from 4590 * before the last CPU down must be on the cpu. After 4591 * this, they may become diasporas. 4592 */ 4593 for_each_pool_worker(worker, wi, pool) 4594 worker->flags |= WORKER_UNBOUND; 4595 4596 pool->flags |= POOL_DISASSOCIATED; 4597 4598 spin_unlock_irq(&pool->lock); 4599 mutex_unlock(&pool->manager_mutex); 4600 4601 /* 4602 * Call schedule() so that we cross rq->lock and thus can 4603 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4604 * This is necessary as scheduler callbacks may be invoked 4605 * from other cpus. 4606 */ 4607 schedule(); 4608 4609 /* 4610 * Sched callbacks are disabled now. Zap nr_running. 4611 * After this, nr_running stays zero and need_more_worker() 4612 * and keep_working() are always true as long as the 4613 * worklist is not empty. This pool now behaves as an 4614 * unbound (in terms of concurrency management) pool which 4615 * are served by workers tied to the pool. 4616 */ 4617 atomic_set(&pool->nr_running, 0); 4618 4619 /* 4620 * With concurrency management just turned off, a busy 4621 * worker blocking could lead to lengthy stalls. Kick off 4622 * unbound chain execution of currently pending work items. 4623 */ 4624 spin_lock_irq(&pool->lock); 4625 wake_up_worker(pool); 4626 spin_unlock_irq(&pool->lock); 4627 } 4628 } 4629 4630 /** 4631 * rebind_workers - rebind all workers of a pool to the associated CPU 4632 * @pool: pool of interest 4633 * 4634 * @pool->cpu is coming online. Rebind all workers to the CPU. 4635 */ 4636 static void rebind_workers(struct worker_pool *pool) 4637 { 4638 struct worker *worker; 4639 int wi; 4640 4641 lockdep_assert_held(&pool->manager_mutex); 4642 4643 /* 4644 * Restore CPU affinity of all workers. As all idle workers should 4645 * be on the run-queue of the associated CPU before any local 4646 * wake-ups for concurrency management happen, restore CPU affinty 4647 * of all workers first and then clear UNBOUND. As we're called 4648 * from CPU_ONLINE, the following shouldn't fail. 4649 */ 4650 for_each_pool_worker(worker, wi, pool) 4651 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4652 pool->attrs->cpumask) < 0); 4653 4654 spin_lock_irq(&pool->lock); 4655 4656 for_each_pool_worker(worker, wi, pool) { 4657 unsigned int worker_flags = worker->flags; 4658 4659 /* 4660 * A bound idle worker should actually be on the runqueue 4661 * of the associated CPU for local wake-ups targeting it to 4662 * work. Kick all idle workers so that they migrate to the 4663 * associated CPU. Doing this in the same loop as 4664 * replacing UNBOUND with REBOUND is safe as no worker will 4665 * be bound before @pool->lock is released. 4666 */ 4667 if (worker_flags & WORKER_IDLE) 4668 wake_up_process(worker->task); 4669 4670 /* 4671 * We want to clear UNBOUND but can't directly call 4672 * worker_clr_flags() or adjust nr_running. Atomically 4673 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4674 * @worker will clear REBOUND using worker_clr_flags() when 4675 * it initiates the next execution cycle thus restoring 4676 * concurrency management. Note that when or whether 4677 * @worker clears REBOUND doesn't affect correctness. 4678 * 4679 * ACCESS_ONCE() is necessary because @worker->flags may be 4680 * tested without holding any lock in 4681 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4682 * fail incorrectly leading to premature concurrency 4683 * management operations. 4684 */ 4685 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4686 worker_flags |= WORKER_REBOUND; 4687 worker_flags &= ~WORKER_UNBOUND; 4688 ACCESS_ONCE(worker->flags) = worker_flags; 4689 } 4690 4691 spin_unlock_irq(&pool->lock); 4692 } 4693 4694 /** 4695 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4696 * @pool: unbound pool of interest 4697 * @cpu: the CPU which is coming up 4698 * 4699 * An unbound pool may end up with a cpumask which doesn't have any online 4700 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4701 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4702 * online CPU before, cpus_allowed of all its workers should be restored. 4703 */ 4704 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4705 { 4706 static cpumask_t cpumask; 4707 struct worker *worker; 4708 int wi; 4709 4710 lockdep_assert_held(&pool->manager_mutex); 4711 4712 /* is @cpu allowed for @pool? */ 4713 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4714 return; 4715 4716 /* is @cpu the only online CPU? */ 4717 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4718 if (cpumask_weight(&cpumask) != 1) 4719 return; 4720 4721 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4722 for_each_pool_worker(worker, wi, pool) 4723 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4724 pool->attrs->cpumask) < 0); 4725 } 4726 4727 /* 4728 * Workqueues should be brought up before normal priority CPU notifiers. 4729 * This will be registered high priority CPU notifier. 4730 */ 4731 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4732 unsigned long action, 4733 void *hcpu) 4734 { 4735 int cpu = (unsigned long)hcpu; 4736 struct worker_pool *pool; 4737 struct workqueue_struct *wq; 4738 int pi; 4739 4740 switch (action & ~CPU_TASKS_FROZEN) { 4741 case CPU_UP_PREPARE: 4742 for_each_cpu_worker_pool(pool, cpu) { 4743 if (pool->nr_workers) 4744 continue; 4745 if (create_and_start_worker(pool) < 0) 4746 return NOTIFY_BAD; 4747 } 4748 break; 4749 4750 case CPU_DOWN_FAILED: 4751 case CPU_ONLINE: 4752 mutex_lock(&wq_pool_mutex); 4753 4754 for_each_pool(pool, pi) { 4755 mutex_lock(&pool->manager_mutex); 4756 4757 if (pool->cpu == cpu) { 4758 spin_lock_irq(&pool->lock); 4759 pool->flags &= ~POOL_DISASSOCIATED; 4760 spin_unlock_irq(&pool->lock); 4761 4762 rebind_workers(pool); 4763 } else if (pool->cpu < 0) { 4764 restore_unbound_workers_cpumask(pool, cpu); 4765 } 4766 4767 mutex_unlock(&pool->manager_mutex); 4768 } 4769 4770 /* update NUMA affinity of unbound workqueues */ 4771 list_for_each_entry(wq, &workqueues, list) 4772 wq_update_unbound_numa(wq, cpu, true); 4773 4774 mutex_unlock(&wq_pool_mutex); 4775 break; 4776 } 4777 return NOTIFY_OK; 4778 } 4779 4780 /* 4781 * Workqueues should be brought down after normal priority CPU notifiers. 4782 * This will be registered as low priority CPU notifier. 4783 */ 4784 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4785 unsigned long action, 4786 void *hcpu) 4787 { 4788 int cpu = (unsigned long)hcpu; 4789 struct work_struct unbind_work; 4790 struct workqueue_struct *wq; 4791 4792 switch (action & ~CPU_TASKS_FROZEN) { 4793 case CPU_DOWN_PREPARE: 4794 /* unbinding per-cpu workers should happen on the local CPU */ 4795 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4796 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4797 4798 /* update NUMA affinity of unbound workqueues */ 4799 mutex_lock(&wq_pool_mutex); 4800 list_for_each_entry(wq, &workqueues, list) 4801 wq_update_unbound_numa(wq, cpu, false); 4802 mutex_unlock(&wq_pool_mutex); 4803 4804 /* wait for per-cpu unbinding to finish */ 4805 flush_work(&unbind_work); 4806 destroy_work_on_stack(&unbind_work); 4807 break; 4808 } 4809 return NOTIFY_OK; 4810 } 4811 4812 #ifdef CONFIG_SMP 4813 4814 struct work_for_cpu { 4815 struct work_struct work; 4816 long (*fn)(void *); 4817 void *arg; 4818 long ret; 4819 }; 4820 4821 static void work_for_cpu_fn(struct work_struct *work) 4822 { 4823 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4824 4825 wfc->ret = wfc->fn(wfc->arg); 4826 } 4827 4828 /** 4829 * work_on_cpu - run a function in user context on a particular cpu 4830 * @cpu: the cpu to run on 4831 * @fn: the function to run 4832 * @arg: the function arg 4833 * 4834 * It is up to the caller to ensure that the cpu doesn't go offline. 4835 * The caller must not hold any locks which would prevent @fn from completing. 4836 * 4837 * Return: The value @fn returns. 4838 */ 4839 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4840 { 4841 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4842 4843 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4844 schedule_work_on(cpu, &wfc.work); 4845 flush_work(&wfc.work); 4846 destroy_work_on_stack(&wfc.work); 4847 return wfc.ret; 4848 } 4849 EXPORT_SYMBOL_GPL(work_on_cpu); 4850 #endif /* CONFIG_SMP */ 4851 4852 #ifdef CONFIG_FREEZER 4853 4854 /** 4855 * freeze_workqueues_begin - begin freezing workqueues 4856 * 4857 * Start freezing workqueues. After this function returns, all freezable 4858 * workqueues will queue new works to their delayed_works list instead of 4859 * pool->worklist. 4860 * 4861 * CONTEXT: 4862 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4863 */ 4864 void freeze_workqueues_begin(void) 4865 { 4866 struct worker_pool *pool; 4867 struct workqueue_struct *wq; 4868 struct pool_workqueue *pwq; 4869 int pi; 4870 4871 mutex_lock(&wq_pool_mutex); 4872 4873 WARN_ON_ONCE(workqueue_freezing); 4874 workqueue_freezing = true; 4875 4876 /* set FREEZING */ 4877 for_each_pool(pool, pi) { 4878 spin_lock_irq(&pool->lock); 4879 WARN_ON_ONCE(pool->flags & POOL_FREEZING); 4880 pool->flags |= POOL_FREEZING; 4881 spin_unlock_irq(&pool->lock); 4882 } 4883 4884 list_for_each_entry(wq, &workqueues, list) { 4885 mutex_lock(&wq->mutex); 4886 for_each_pwq(pwq, wq) 4887 pwq_adjust_max_active(pwq); 4888 mutex_unlock(&wq->mutex); 4889 } 4890 4891 mutex_unlock(&wq_pool_mutex); 4892 } 4893 4894 /** 4895 * freeze_workqueues_busy - are freezable workqueues still busy? 4896 * 4897 * Check whether freezing is complete. This function must be called 4898 * between freeze_workqueues_begin() and thaw_workqueues(). 4899 * 4900 * CONTEXT: 4901 * Grabs and releases wq_pool_mutex. 4902 * 4903 * Return: 4904 * %true if some freezable workqueues are still busy. %false if freezing 4905 * is complete. 4906 */ 4907 bool freeze_workqueues_busy(void) 4908 { 4909 bool busy = false; 4910 struct workqueue_struct *wq; 4911 struct pool_workqueue *pwq; 4912 4913 mutex_lock(&wq_pool_mutex); 4914 4915 WARN_ON_ONCE(!workqueue_freezing); 4916 4917 list_for_each_entry(wq, &workqueues, list) { 4918 if (!(wq->flags & WQ_FREEZABLE)) 4919 continue; 4920 /* 4921 * nr_active is monotonically decreasing. It's safe 4922 * to peek without lock. 4923 */ 4924 rcu_read_lock_sched(); 4925 for_each_pwq(pwq, wq) { 4926 WARN_ON_ONCE(pwq->nr_active < 0); 4927 if (pwq->nr_active) { 4928 busy = true; 4929 rcu_read_unlock_sched(); 4930 goto out_unlock; 4931 } 4932 } 4933 rcu_read_unlock_sched(); 4934 } 4935 out_unlock: 4936 mutex_unlock(&wq_pool_mutex); 4937 return busy; 4938 } 4939 4940 /** 4941 * thaw_workqueues - thaw workqueues 4942 * 4943 * Thaw workqueues. Normal queueing is restored and all collected 4944 * frozen works are transferred to their respective pool worklists. 4945 * 4946 * CONTEXT: 4947 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4948 */ 4949 void thaw_workqueues(void) 4950 { 4951 struct workqueue_struct *wq; 4952 struct pool_workqueue *pwq; 4953 struct worker_pool *pool; 4954 int pi; 4955 4956 mutex_lock(&wq_pool_mutex); 4957 4958 if (!workqueue_freezing) 4959 goto out_unlock; 4960 4961 /* clear FREEZING */ 4962 for_each_pool(pool, pi) { 4963 spin_lock_irq(&pool->lock); 4964 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING)); 4965 pool->flags &= ~POOL_FREEZING; 4966 spin_unlock_irq(&pool->lock); 4967 } 4968 4969 /* restore max_active and repopulate worklist */ 4970 list_for_each_entry(wq, &workqueues, list) { 4971 mutex_lock(&wq->mutex); 4972 for_each_pwq(pwq, wq) 4973 pwq_adjust_max_active(pwq); 4974 mutex_unlock(&wq->mutex); 4975 } 4976 4977 workqueue_freezing = false; 4978 out_unlock: 4979 mutex_unlock(&wq_pool_mutex); 4980 } 4981 #endif /* CONFIG_FREEZER */ 4982 4983 static void __init wq_numa_init(void) 4984 { 4985 cpumask_var_t *tbl; 4986 int node, cpu; 4987 4988 /* determine NUMA pwq table len - highest node id + 1 */ 4989 for_each_node(node) 4990 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1); 4991 4992 if (num_possible_nodes() <= 1) 4993 return; 4994 4995 if (wq_disable_numa) { 4996 pr_info("workqueue: NUMA affinity support disabled\n"); 4997 return; 4998 } 4999 5000 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5001 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5002 5003 /* 5004 * We want masks of possible CPUs of each node which isn't readily 5005 * available. Build one from cpu_to_node() which should have been 5006 * fully initialized by now. 5007 */ 5008 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL); 5009 BUG_ON(!tbl); 5010 5011 for_each_node(node) 5012 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5013 node_online(node) ? node : NUMA_NO_NODE)); 5014 5015 for_each_possible_cpu(cpu) { 5016 node = cpu_to_node(cpu); 5017 if (WARN_ON(node == NUMA_NO_NODE)) { 5018 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5019 /* happens iff arch is bonkers, let's just proceed */ 5020 return; 5021 } 5022 cpumask_set_cpu(cpu, tbl[node]); 5023 } 5024 5025 wq_numa_possible_cpumask = tbl; 5026 wq_numa_enabled = true; 5027 } 5028 5029 static int __init init_workqueues(void) 5030 { 5031 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5032 int i, cpu; 5033 5034 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5035 5036 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5037 5038 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 5039 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 5040 5041 wq_numa_init(); 5042 5043 /* initialize CPU pools */ 5044 for_each_possible_cpu(cpu) { 5045 struct worker_pool *pool; 5046 5047 i = 0; 5048 for_each_cpu_worker_pool(pool, cpu) { 5049 BUG_ON(init_worker_pool(pool)); 5050 pool->cpu = cpu; 5051 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5052 pool->attrs->nice = std_nice[i++]; 5053 pool->node = cpu_to_node(cpu); 5054 5055 /* alloc pool ID */ 5056 mutex_lock(&wq_pool_mutex); 5057 BUG_ON(worker_pool_assign_id(pool)); 5058 mutex_unlock(&wq_pool_mutex); 5059 } 5060 } 5061 5062 /* create the initial worker */ 5063 for_each_online_cpu(cpu) { 5064 struct worker_pool *pool; 5065 5066 for_each_cpu_worker_pool(pool, cpu) { 5067 pool->flags &= ~POOL_DISASSOCIATED; 5068 BUG_ON(create_and_start_worker(pool) < 0); 5069 } 5070 } 5071 5072 /* create default unbound and ordered wq attrs */ 5073 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5074 struct workqueue_attrs *attrs; 5075 5076 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5077 attrs->nice = std_nice[i]; 5078 unbound_std_wq_attrs[i] = attrs; 5079 5080 /* 5081 * An ordered wq should have only one pwq as ordering is 5082 * guaranteed by max_active which is enforced by pwqs. 5083 * Turn off NUMA so that dfl_pwq is used for all nodes. 5084 */ 5085 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5086 attrs->nice = std_nice[i]; 5087 attrs->no_numa = true; 5088 ordered_wq_attrs[i] = attrs; 5089 } 5090 5091 system_wq = alloc_workqueue("events", 0, 0); 5092 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5093 system_long_wq = alloc_workqueue("events_long", 0, 0); 5094 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5095 WQ_UNBOUND_MAX_ACTIVE); 5096 system_freezable_wq = alloc_workqueue("events_freezable", 5097 WQ_FREEZABLE, 0); 5098 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5099 WQ_POWER_EFFICIENT, 0); 5100 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5101 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5102 0); 5103 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5104 !system_unbound_wq || !system_freezable_wq || 5105 !system_power_efficient_wq || 5106 !system_freezable_power_efficient_wq); 5107 return 0; 5108 } 5109 early_initcall(init_workqueues); 5110