xref: /openbmc/linux/kernel/workqueue.c (revision 6a143a7c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 
54 #include "workqueue_internal.h"
55 
56 enum {
57 	/*
58 	 * worker_pool flags
59 	 *
60 	 * A bound pool is either associated or disassociated with its CPU.
61 	 * While associated (!DISASSOCIATED), all workers are bound to the
62 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 	 * is in effect.
64 	 *
65 	 * While DISASSOCIATED, the cpu may be offline and all workers have
66 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 	 * be executing on any CPU.  The pool behaves as an unbound one.
68 	 *
69 	 * Note that DISASSOCIATED should be flipped only while holding
70 	 * wq_pool_attach_mutex to avoid changing binding state while
71 	 * worker_attach_to_pool() is in progress.
72 	 */
73 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
74 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
75 
76 	/* worker flags */
77 	WORKER_DIE		= 1 << 1,	/* die die die */
78 	WORKER_IDLE		= 1 << 2,	/* is idle */
79 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83 
84 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
85 				  WORKER_UNBOUND | WORKER_REBOUND,
86 
87 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88 
89 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
90 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91 
92 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
93 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
94 
95 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
96 						/* call for help after 10ms
97 						   (min two ticks) */
98 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
99 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
100 
101 	/*
102 	 * Rescue workers are used only on emergencies and shared by
103 	 * all cpus.  Give MIN_NICE.
104 	 */
105 	RESCUER_NICE_LEVEL	= MIN_NICE,
106 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
107 
108 	WQ_NAME_LEN		= 24,
109 };
110 
111 /*
112  * Structure fields follow one of the following exclusion rules.
113  *
114  * I: Modifiable by initialization/destruction paths and read-only for
115  *    everyone else.
116  *
117  * P: Preemption protected.  Disabling preemption is enough and should
118  *    only be modified and accessed from the local cpu.
119  *
120  * L: pool->lock protected.  Access with pool->lock held.
121  *
122  * X: During normal operation, modification requires pool->lock and should
123  *    be done only from local cpu.  Either disabling preemption on local
124  *    cpu or grabbing pool->lock is enough for read access.  If
125  *    POOL_DISASSOCIATED is set, it's identical to L.
126  *
127  * A: wq_pool_attach_mutex protected.
128  *
129  * PL: wq_pool_mutex protected.
130  *
131  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
132  *
133  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
134  *
135  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
136  *      RCU for reads.
137  *
138  * WQ: wq->mutex protected.
139  *
140  * WR: wq->mutex protected for writes.  RCU protected for reads.
141  *
142  * MD: wq_mayday_lock protected.
143  */
144 
145 /* struct worker is defined in workqueue_internal.h */
146 
147 struct worker_pool {
148 	raw_spinlock_t		lock;		/* the pool lock */
149 	int			cpu;		/* I: the associated cpu */
150 	int			node;		/* I: the associated node ID */
151 	int			id;		/* I: pool ID */
152 	unsigned int		flags;		/* X: flags */
153 
154 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
155 
156 	struct list_head	worklist;	/* L: list of pending works */
157 
158 	int			nr_workers;	/* L: total number of workers */
159 	int			nr_idle;	/* L: currently idle workers */
160 
161 	struct list_head	idle_list;	/* X: list of idle workers */
162 	struct timer_list	idle_timer;	/* L: worker idle timeout */
163 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
164 
165 	/* a workers is either on busy_hash or idle_list, or the manager */
166 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 						/* L: hash of busy workers */
168 
169 	struct worker		*manager;	/* L: purely informational */
170 	struct list_head	workers;	/* A: attached workers */
171 	struct completion	*detach_completion; /* all workers detached */
172 
173 	struct ida		worker_ida;	/* worker IDs for task name */
174 
175 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
176 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
177 	int			refcnt;		/* PL: refcnt for unbound pools */
178 
179 	/*
180 	 * The current concurrency level.  As it's likely to be accessed
181 	 * from other CPUs during try_to_wake_up(), put it in a separate
182 	 * cacheline.
183 	 */
184 	atomic_t		nr_running ____cacheline_aligned_in_smp;
185 
186 	/*
187 	 * Destruction of pool is RCU protected to allow dereferences
188 	 * from get_work_pool().
189 	 */
190 	struct rcu_head		rcu;
191 } ____cacheline_aligned_in_smp;
192 
193 /*
194  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
195  * of work_struct->data are used for flags and the remaining high bits
196  * point to the pwq; thus, pwqs need to be aligned at two's power of the
197  * number of flag bits.
198  */
199 struct pool_workqueue {
200 	struct worker_pool	*pool;		/* I: the associated pool */
201 	struct workqueue_struct *wq;		/* I: the owning workqueue */
202 	int			work_color;	/* L: current color */
203 	int			flush_color;	/* L: flushing color */
204 	int			refcnt;		/* L: reference count */
205 	int			nr_in_flight[WORK_NR_COLORS];
206 						/* L: nr of in_flight works */
207 	int			nr_active;	/* L: nr of active works */
208 	int			max_active;	/* L: max active works */
209 	struct list_head	delayed_works;	/* L: delayed works */
210 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
211 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
212 
213 	/*
214 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
215 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
216 	 * itself is also RCU protected so that the first pwq can be
217 	 * determined without grabbing wq->mutex.
218 	 */
219 	struct work_struct	unbound_release_work;
220 	struct rcu_head		rcu;
221 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
222 
223 /*
224  * Structure used to wait for workqueue flush.
225  */
226 struct wq_flusher {
227 	struct list_head	list;		/* WQ: list of flushers */
228 	int			flush_color;	/* WQ: flush color waiting for */
229 	struct completion	done;		/* flush completion */
230 };
231 
232 struct wq_device;
233 
234 /*
235  * The externally visible workqueue.  It relays the issued work items to
236  * the appropriate worker_pool through its pool_workqueues.
237  */
238 struct workqueue_struct {
239 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
240 	struct list_head	list;		/* PR: list of all workqueues */
241 
242 	struct mutex		mutex;		/* protects this wq */
243 	int			work_color;	/* WQ: current work color */
244 	int			flush_color;	/* WQ: current flush color */
245 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
246 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
247 	struct list_head	flusher_queue;	/* WQ: flush waiters */
248 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
249 
250 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
251 	struct worker		*rescuer;	/* MD: rescue worker */
252 
253 	int			nr_drainers;	/* WQ: drain in progress */
254 	int			saved_max_active; /* WQ: saved pwq max_active */
255 
256 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
257 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
258 
259 #ifdef CONFIG_SYSFS
260 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
261 #endif
262 #ifdef CONFIG_LOCKDEP
263 	char			*lock_name;
264 	struct lock_class_key	key;
265 	struct lockdep_map	lockdep_map;
266 #endif
267 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
268 
269 	/*
270 	 * Destruction of workqueue_struct is RCU protected to allow walking
271 	 * the workqueues list without grabbing wq_pool_mutex.
272 	 * This is used to dump all workqueues from sysrq.
273 	 */
274 	struct rcu_head		rcu;
275 
276 	/* hot fields used during command issue, aligned to cacheline */
277 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281 
282 static struct kmem_cache *pwq_cache;
283 
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 					/* possible CPUs of each node */
286 
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289 
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293 
294 static bool wq_online;			/* can kworkers be created yet? */
295 
296 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
297 
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300 
301 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
304 /* wait for manager to go away */
305 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
306 
307 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
308 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
309 
310 /* PL: allowable cpus for unbound wqs and work items */
311 static cpumask_var_t wq_unbound_cpumask;
312 
313 /* CPU where unbound work was last round robin scheduled from this CPU */
314 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
315 
316 /*
317  * Local execution of unbound work items is no longer guaranteed.  The
318  * following always forces round-robin CPU selection on unbound work items
319  * to uncover usages which depend on it.
320  */
321 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
322 static bool wq_debug_force_rr_cpu = true;
323 #else
324 static bool wq_debug_force_rr_cpu = false;
325 #endif
326 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
327 
328 /* the per-cpu worker pools */
329 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
330 
331 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
332 
333 /* PL: hash of all unbound pools keyed by pool->attrs */
334 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
335 
336 /* I: attributes used when instantiating standard unbound pools on demand */
337 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
338 
339 /* I: attributes used when instantiating ordered pools on demand */
340 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
341 
342 struct workqueue_struct *system_wq __read_mostly;
343 EXPORT_SYMBOL(system_wq);
344 struct workqueue_struct *system_highpri_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_highpri_wq);
346 struct workqueue_struct *system_long_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_long_wq);
348 struct workqueue_struct *system_unbound_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_unbound_wq);
350 struct workqueue_struct *system_freezable_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_freezable_wq);
352 struct workqueue_struct *system_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
354 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
355 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
356 
357 static int worker_thread(void *__worker);
358 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
359 static void show_pwq(struct pool_workqueue *pwq);
360 
361 #define CREATE_TRACE_POINTS
362 #include <trace/events/workqueue.h>
363 
364 #define assert_rcu_or_pool_mutex()					\
365 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
366 			 !lockdep_is_held(&wq_pool_mutex),		\
367 			 "RCU or wq_pool_mutex should be held")
368 
369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
370 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
371 			 !lockdep_is_held(&wq->mutex) &&		\
372 			 !lockdep_is_held(&wq_pool_mutex),		\
373 			 "RCU, wq->mutex or wq_pool_mutex should be held")
374 
375 #define for_each_cpu_worker_pool(pool, cpu)				\
376 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
377 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378 	     (pool)++)
379 
380 /**
381  * for_each_pool - iterate through all worker_pools in the system
382  * @pool: iteration cursor
383  * @pi: integer used for iteration
384  *
385  * This must be called either with wq_pool_mutex held or RCU read
386  * locked.  If the pool needs to be used beyond the locking in effect, the
387  * caller is responsible for guaranteeing that the pool stays online.
388  *
389  * The if/else clause exists only for the lockdep assertion and can be
390  * ignored.
391  */
392 #define for_each_pool(pool, pi)						\
393 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
394 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
395 		else
396 
397 /**
398  * for_each_pool_worker - iterate through all workers of a worker_pool
399  * @worker: iteration cursor
400  * @pool: worker_pool to iterate workers of
401  *
402  * This must be called with wq_pool_attach_mutex.
403  *
404  * The if/else clause exists only for the lockdep assertion and can be
405  * ignored.
406  */
407 #define for_each_pool_worker(worker, pool)				\
408 	list_for_each_entry((worker), &(pool)->workers, node)		\
409 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
410 		else
411 
412 /**
413  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414  * @pwq: iteration cursor
415  * @wq: the target workqueue
416  *
417  * This must be called either with wq->mutex held or RCU read locked.
418  * If the pwq needs to be used beyond the locking in effect, the caller is
419  * responsible for guaranteeing that the pwq stays online.
420  *
421  * The if/else clause exists only for the lockdep assertion and can be
422  * ignored.
423  */
424 #define for_each_pwq(pwq, wq)						\
425 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
426 				 lockdep_is_held(&(wq->mutex)))
427 
428 #ifdef CONFIG_DEBUG_OBJECTS_WORK
429 
430 static const struct debug_obj_descr work_debug_descr;
431 
432 static void *work_debug_hint(void *addr)
433 {
434 	return ((struct work_struct *) addr)->func;
435 }
436 
437 static bool work_is_static_object(void *addr)
438 {
439 	struct work_struct *work = addr;
440 
441 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
442 }
443 
444 /*
445  * fixup_init is called when:
446  * - an active object is initialized
447  */
448 static bool work_fixup_init(void *addr, enum debug_obj_state state)
449 {
450 	struct work_struct *work = addr;
451 
452 	switch (state) {
453 	case ODEBUG_STATE_ACTIVE:
454 		cancel_work_sync(work);
455 		debug_object_init(work, &work_debug_descr);
456 		return true;
457 	default:
458 		return false;
459 	}
460 }
461 
462 /*
463  * fixup_free is called when:
464  * - an active object is freed
465  */
466 static bool work_fixup_free(void *addr, enum debug_obj_state state)
467 {
468 	struct work_struct *work = addr;
469 
470 	switch (state) {
471 	case ODEBUG_STATE_ACTIVE:
472 		cancel_work_sync(work);
473 		debug_object_free(work, &work_debug_descr);
474 		return true;
475 	default:
476 		return false;
477 	}
478 }
479 
480 static const struct debug_obj_descr work_debug_descr = {
481 	.name		= "work_struct",
482 	.debug_hint	= work_debug_hint,
483 	.is_static_object = work_is_static_object,
484 	.fixup_init	= work_fixup_init,
485 	.fixup_free	= work_fixup_free,
486 };
487 
488 static inline void debug_work_activate(struct work_struct *work)
489 {
490 	debug_object_activate(work, &work_debug_descr);
491 }
492 
493 static inline void debug_work_deactivate(struct work_struct *work)
494 {
495 	debug_object_deactivate(work, &work_debug_descr);
496 }
497 
498 void __init_work(struct work_struct *work, int onstack)
499 {
500 	if (onstack)
501 		debug_object_init_on_stack(work, &work_debug_descr);
502 	else
503 		debug_object_init(work, &work_debug_descr);
504 }
505 EXPORT_SYMBOL_GPL(__init_work);
506 
507 void destroy_work_on_stack(struct work_struct *work)
508 {
509 	debug_object_free(work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
512 
513 void destroy_delayed_work_on_stack(struct delayed_work *work)
514 {
515 	destroy_timer_on_stack(&work->timer);
516 	debug_object_free(&work->work, &work_debug_descr);
517 }
518 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
519 
520 #else
521 static inline void debug_work_activate(struct work_struct *work) { }
522 static inline void debug_work_deactivate(struct work_struct *work) { }
523 #endif
524 
525 /**
526  * worker_pool_assign_id - allocate ID and assing it to @pool
527  * @pool: the pool pointer of interest
528  *
529  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
530  * successfully, -errno on failure.
531  */
532 static int worker_pool_assign_id(struct worker_pool *pool)
533 {
534 	int ret;
535 
536 	lockdep_assert_held(&wq_pool_mutex);
537 
538 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
539 			GFP_KERNEL);
540 	if (ret >= 0) {
541 		pool->id = ret;
542 		return 0;
543 	}
544 	return ret;
545 }
546 
547 /**
548  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
549  * @wq: the target workqueue
550  * @node: the node ID
551  *
552  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
553  * read locked.
554  * If the pwq needs to be used beyond the locking in effect, the caller is
555  * responsible for guaranteeing that the pwq stays online.
556  *
557  * Return: The unbound pool_workqueue for @node.
558  */
559 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
560 						  int node)
561 {
562 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
563 
564 	/*
565 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
566 	 * delayed item is pending.  The plan is to keep CPU -> NODE
567 	 * mapping valid and stable across CPU on/offlines.  Once that
568 	 * happens, this workaround can be removed.
569 	 */
570 	if (unlikely(node == NUMA_NO_NODE))
571 		return wq->dfl_pwq;
572 
573 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
574 }
575 
576 static unsigned int work_color_to_flags(int color)
577 {
578 	return color << WORK_STRUCT_COLOR_SHIFT;
579 }
580 
581 static int get_work_color(struct work_struct *work)
582 {
583 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
584 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
585 }
586 
587 static int work_next_color(int color)
588 {
589 	return (color + 1) % WORK_NR_COLORS;
590 }
591 
592 /*
593  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
594  * contain the pointer to the queued pwq.  Once execution starts, the flag
595  * is cleared and the high bits contain OFFQ flags and pool ID.
596  *
597  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
598  * and clear_work_data() can be used to set the pwq, pool or clear
599  * work->data.  These functions should only be called while the work is
600  * owned - ie. while the PENDING bit is set.
601  *
602  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
603  * corresponding to a work.  Pool is available once the work has been
604  * queued anywhere after initialization until it is sync canceled.  pwq is
605  * available only while the work item is queued.
606  *
607  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
608  * canceled.  While being canceled, a work item may have its PENDING set
609  * but stay off timer and worklist for arbitrarily long and nobody should
610  * try to steal the PENDING bit.
611  */
612 static inline void set_work_data(struct work_struct *work, unsigned long data,
613 				 unsigned long flags)
614 {
615 	WARN_ON_ONCE(!work_pending(work));
616 	atomic_long_set(&work->data, data | flags | work_static(work));
617 }
618 
619 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
620 			 unsigned long extra_flags)
621 {
622 	set_work_data(work, (unsigned long)pwq,
623 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
624 }
625 
626 static void set_work_pool_and_keep_pending(struct work_struct *work,
627 					   int pool_id)
628 {
629 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
630 		      WORK_STRUCT_PENDING);
631 }
632 
633 static void set_work_pool_and_clear_pending(struct work_struct *work,
634 					    int pool_id)
635 {
636 	/*
637 	 * The following wmb is paired with the implied mb in
638 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
639 	 * here are visible to and precede any updates by the next PENDING
640 	 * owner.
641 	 */
642 	smp_wmb();
643 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
644 	/*
645 	 * The following mb guarantees that previous clear of a PENDING bit
646 	 * will not be reordered with any speculative LOADS or STORES from
647 	 * work->current_func, which is executed afterwards.  This possible
648 	 * reordering can lead to a missed execution on attempt to queue
649 	 * the same @work.  E.g. consider this case:
650 	 *
651 	 *   CPU#0                         CPU#1
652 	 *   ----------------------------  --------------------------------
653 	 *
654 	 * 1  STORE event_indicated
655 	 * 2  queue_work_on() {
656 	 * 3    test_and_set_bit(PENDING)
657 	 * 4 }                             set_..._and_clear_pending() {
658 	 * 5                                 set_work_data() # clear bit
659 	 * 6                                 smp_mb()
660 	 * 7                               work->current_func() {
661 	 * 8				      LOAD event_indicated
662 	 *				   }
663 	 *
664 	 * Without an explicit full barrier speculative LOAD on line 8 can
665 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
666 	 * CPU#0 observes the PENDING bit is still set and new execution of
667 	 * a @work is not queued in a hope, that CPU#1 will eventually
668 	 * finish the queued @work.  Meanwhile CPU#1 does not see
669 	 * event_indicated is set, because speculative LOAD was executed
670 	 * before actual STORE.
671 	 */
672 	smp_mb();
673 }
674 
675 static void clear_work_data(struct work_struct *work)
676 {
677 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
678 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
679 }
680 
681 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
682 {
683 	unsigned long data = atomic_long_read(&work->data);
684 
685 	if (data & WORK_STRUCT_PWQ)
686 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
687 	else
688 		return NULL;
689 }
690 
691 /**
692  * get_work_pool - return the worker_pool a given work was associated with
693  * @work: the work item of interest
694  *
695  * Pools are created and destroyed under wq_pool_mutex, and allows read
696  * access under RCU read lock.  As such, this function should be
697  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
698  *
699  * All fields of the returned pool are accessible as long as the above
700  * mentioned locking is in effect.  If the returned pool needs to be used
701  * beyond the critical section, the caller is responsible for ensuring the
702  * returned pool is and stays online.
703  *
704  * Return: The worker_pool @work was last associated with.  %NULL if none.
705  */
706 static struct worker_pool *get_work_pool(struct work_struct *work)
707 {
708 	unsigned long data = atomic_long_read(&work->data);
709 	int pool_id;
710 
711 	assert_rcu_or_pool_mutex();
712 
713 	if (data & WORK_STRUCT_PWQ)
714 		return ((struct pool_workqueue *)
715 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
716 
717 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
718 	if (pool_id == WORK_OFFQ_POOL_NONE)
719 		return NULL;
720 
721 	return idr_find(&worker_pool_idr, pool_id);
722 }
723 
724 /**
725  * get_work_pool_id - return the worker pool ID a given work is associated with
726  * @work: the work item of interest
727  *
728  * Return: The worker_pool ID @work was last associated with.
729  * %WORK_OFFQ_POOL_NONE if none.
730  */
731 static int get_work_pool_id(struct work_struct *work)
732 {
733 	unsigned long data = atomic_long_read(&work->data);
734 
735 	if (data & WORK_STRUCT_PWQ)
736 		return ((struct pool_workqueue *)
737 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
738 
739 	return data >> WORK_OFFQ_POOL_SHIFT;
740 }
741 
742 static void mark_work_canceling(struct work_struct *work)
743 {
744 	unsigned long pool_id = get_work_pool_id(work);
745 
746 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
747 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
748 }
749 
750 static bool work_is_canceling(struct work_struct *work)
751 {
752 	unsigned long data = atomic_long_read(&work->data);
753 
754 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
755 }
756 
757 /*
758  * Policy functions.  These define the policies on how the global worker
759  * pools are managed.  Unless noted otherwise, these functions assume that
760  * they're being called with pool->lock held.
761  */
762 
763 static bool __need_more_worker(struct worker_pool *pool)
764 {
765 	return !atomic_read(&pool->nr_running);
766 }
767 
768 /*
769  * Need to wake up a worker?  Called from anything but currently
770  * running workers.
771  *
772  * Note that, because unbound workers never contribute to nr_running, this
773  * function will always return %true for unbound pools as long as the
774  * worklist isn't empty.
775  */
776 static bool need_more_worker(struct worker_pool *pool)
777 {
778 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
779 }
780 
781 /* Can I start working?  Called from busy but !running workers. */
782 static bool may_start_working(struct worker_pool *pool)
783 {
784 	return pool->nr_idle;
785 }
786 
787 /* Do I need to keep working?  Called from currently running workers. */
788 static bool keep_working(struct worker_pool *pool)
789 {
790 	return !list_empty(&pool->worklist) &&
791 		atomic_read(&pool->nr_running) <= 1;
792 }
793 
794 /* Do we need a new worker?  Called from manager. */
795 static bool need_to_create_worker(struct worker_pool *pool)
796 {
797 	return need_more_worker(pool) && !may_start_working(pool);
798 }
799 
800 /* Do we have too many workers and should some go away? */
801 static bool too_many_workers(struct worker_pool *pool)
802 {
803 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
804 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
805 	int nr_busy = pool->nr_workers - nr_idle;
806 
807 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
808 }
809 
810 /*
811  * Wake up functions.
812  */
813 
814 /* Return the first idle worker.  Safe with preemption disabled */
815 static struct worker *first_idle_worker(struct worker_pool *pool)
816 {
817 	if (unlikely(list_empty(&pool->idle_list)))
818 		return NULL;
819 
820 	return list_first_entry(&pool->idle_list, struct worker, entry);
821 }
822 
823 /**
824  * wake_up_worker - wake up an idle worker
825  * @pool: worker pool to wake worker from
826  *
827  * Wake up the first idle worker of @pool.
828  *
829  * CONTEXT:
830  * raw_spin_lock_irq(pool->lock).
831  */
832 static void wake_up_worker(struct worker_pool *pool)
833 {
834 	struct worker *worker = first_idle_worker(pool);
835 
836 	if (likely(worker))
837 		wake_up_process(worker->task);
838 }
839 
840 /**
841  * wq_worker_running - a worker is running again
842  * @task: task waking up
843  *
844  * This function is called when a worker returns from schedule()
845  */
846 void wq_worker_running(struct task_struct *task)
847 {
848 	struct worker *worker = kthread_data(task);
849 
850 	if (!worker->sleeping)
851 		return;
852 	if (!(worker->flags & WORKER_NOT_RUNNING))
853 		atomic_inc(&worker->pool->nr_running);
854 	worker->sleeping = 0;
855 }
856 
857 /**
858  * wq_worker_sleeping - a worker is going to sleep
859  * @task: task going to sleep
860  *
861  * This function is called from schedule() when a busy worker is
862  * going to sleep. Preemption needs to be disabled to protect ->sleeping
863  * assignment.
864  */
865 void wq_worker_sleeping(struct task_struct *task)
866 {
867 	struct worker *next, *worker = kthread_data(task);
868 	struct worker_pool *pool;
869 
870 	/*
871 	 * Rescuers, which may not have all the fields set up like normal
872 	 * workers, also reach here, let's not access anything before
873 	 * checking NOT_RUNNING.
874 	 */
875 	if (worker->flags & WORKER_NOT_RUNNING)
876 		return;
877 
878 	pool = worker->pool;
879 
880 	/* Return if preempted before wq_worker_running() was reached */
881 	if (worker->sleeping)
882 		return;
883 
884 	worker->sleeping = 1;
885 	raw_spin_lock_irq(&pool->lock);
886 
887 	/*
888 	 * The counterpart of the following dec_and_test, implied mb,
889 	 * worklist not empty test sequence is in insert_work().
890 	 * Please read comment there.
891 	 *
892 	 * NOT_RUNNING is clear.  This means that we're bound to and
893 	 * running on the local cpu w/ rq lock held and preemption
894 	 * disabled, which in turn means that none else could be
895 	 * manipulating idle_list, so dereferencing idle_list without pool
896 	 * lock is safe.
897 	 */
898 	if (atomic_dec_and_test(&pool->nr_running) &&
899 	    !list_empty(&pool->worklist)) {
900 		next = first_idle_worker(pool);
901 		if (next)
902 			wake_up_process(next->task);
903 	}
904 	raw_spin_unlock_irq(&pool->lock);
905 }
906 
907 /**
908  * wq_worker_last_func - retrieve worker's last work function
909  * @task: Task to retrieve last work function of.
910  *
911  * Determine the last function a worker executed. This is called from
912  * the scheduler to get a worker's last known identity.
913  *
914  * CONTEXT:
915  * raw_spin_lock_irq(rq->lock)
916  *
917  * This function is called during schedule() when a kworker is going
918  * to sleep. It's used by psi to identify aggregation workers during
919  * dequeuing, to allow periodic aggregation to shut-off when that
920  * worker is the last task in the system or cgroup to go to sleep.
921  *
922  * As this function doesn't involve any workqueue-related locking, it
923  * only returns stable values when called from inside the scheduler's
924  * queuing and dequeuing paths, when @task, which must be a kworker,
925  * is guaranteed to not be processing any works.
926  *
927  * Return:
928  * The last work function %current executed as a worker, NULL if it
929  * hasn't executed any work yet.
930  */
931 work_func_t wq_worker_last_func(struct task_struct *task)
932 {
933 	struct worker *worker = kthread_data(task);
934 
935 	return worker->last_func;
936 }
937 
938 /**
939  * worker_set_flags - set worker flags and adjust nr_running accordingly
940  * @worker: self
941  * @flags: flags to set
942  *
943  * Set @flags in @worker->flags and adjust nr_running accordingly.
944  *
945  * CONTEXT:
946  * raw_spin_lock_irq(pool->lock)
947  */
948 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
949 {
950 	struct worker_pool *pool = worker->pool;
951 
952 	WARN_ON_ONCE(worker->task != current);
953 
954 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
955 	if ((flags & WORKER_NOT_RUNNING) &&
956 	    !(worker->flags & WORKER_NOT_RUNNING)) {
957 		atomic_dec(&pool->nr_running);
958 	}
959 
960 	worker->flags |= flags;
961 }
962 
963 /**
964  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
965  * @worker: self
966  * @flags: flags to clear
967  *
968  * Clear @flags in @worker->flags and adjust nr_running accordingly.
969  *
970  * CONTEXT:
971  * raw_spin_lock_irq(pool->lock)
972  */
973 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
974 {
975 	struct worker_pool *pool = worker->pool;
976 	unsigned int oflags = worker->flags;
977 
978 	WARN_ON_ONCE(worker->task != current);
979 
980 	worker->flags &= ~flags;
981 
982 	/*
983 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
984 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
985 	 * of multiple flags, not a single flag.
986 	 */
987 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
988 		if (!(worker->flags & WORKER_NOT_RUNNING))
989 			atomic_inc(&pool->nr_running);
990 }
991 
992 /**
993  * find_worker_executing_work - find worker which is executing a work
994  * @pool: pool of interest
995  * @work: work to find worker for
996  *
997  * Find a worker which is executing @work on @pool by searching
998  * @pool->busy_hash which is keyed by the address of @work.  For a worker
999  * to match, its current execution should match the address of @work and
1000  * its work function.  This is to avoid unwanted dependency between
1001  * unrelated work executions through a work item being recycled while still
1002  * being executed.
1003  *
1004  * This is a bit tricky.  A work item may be freed once its execution
1005  * starts and nothing prevents the freed area from being recycled for
1006  * another work item.  If the same work item address ends up being reused
1007  * before the original execution finishes, workqueue will identify the
1008  * recycled work item as currently executing and make it wait until the
1009  * current execution finishes, introducing an unwanted dependency.
1010  *
1011  * This function checks the work item address and work function to avoid
1012  * false positives.  Note that this isn't complete as one may construct a
1013  * work function which can introduce dependency onto itself through a
1014  * recycled work item.  Well, if somebody wants to shoot oneself in the
1015  * foot that badly, there's only so much we can do, and if such deadlock
1016  * actually occurs, it should be easy to locate the culprit work function.
1017  *
1018  * CONTEXT:
1019  * raw_spin_lock_irq(pool->lock).
1020  *
1021  * Return:
1022  * Pointer to worker which is executing @work if found, %NULL
1023  * otherwise.
1024  */
1025 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1026 						 struct work_struct *work)
1027 {
1028 	struct worker *worker;
1029 
1030 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1031 			       (unsigned long)work)
1032 		if (worker->current_work == work &&
1033 		    worker->current_func == work->func)
1034 			return worker;
1035 
1036 	return NULL;
1037 }
1038 
1039 /**
1040  * move_linked_works - move linked works to a list
1041  * @work: start of series of works to be scheduled
1042  * @head: target list to append @work to
1043  * @nextp: out parameter for nested worklist walking
1044  *
1045  * Schedule linked works starting from @work to @head.  Work series to
1046  * be scheduled starts at @work and includes any consecutive work with
1047  * WORK_STRUCT_LINKED set in its predecessor.
1048  *
1049  * If @nextp is not NULL, it's updated to point to the next work of
1050  * the last scheduled work.  This allows move_linked_works() to be
1051  * nested inside outer list_for_each_entry_safe().
1052  *
1053  * CONTEXT:
1054  * raw_spin_lock_irq(pool->lock).
1055  */
1056 static void move_linked_works(struct work_struct *work, struct list_head *head,
1057 			      struct work_struct **nextp)
1058 {
1059 	struct work_struct *n;
1060 
1061 	/*
1062 	 * Linked worklist will always end before the end of the list,
1063 	 * use NULL for list head.
1064 	 */
1065 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1066 		list_move_tail(&work->entry, head);
1067 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1068 			break;
1069 	}
1070 
1071 	/*
1072 	 * If we're already inside safe list traversal and have moved
1073 	 * multiple works to the scheduled queue, the next position
1074 	 * needs to be updated.
1075 	 */
1076 	if (nextp)
1077 		*nextp = n;
1078 }
1079 
1080 /**
1081  * get_pwq - get an extra reference on the specified pool_workqueue
1082  * @pwq: pool_workqueue to get
1083  *
1084  * Obtain an extra reference on @pwq.  The caller should guarantee that
1085  * @pwq has positive refcnt and be holding the matching pool->lock.
1086  */
1087 static void get_pwq(struct pool_workqueue *pwq)
1088 {
1089 	lockdep_assert_held(&pwq->pool->lock);
1090 	WARN_ON_ONCE(pwq->refcnt <= 0);
1091 	pwq->refcnt++;
1092 }
1093 
1094 /**
1095  * put_pwq - put a pool_workqueue reference
1096  * @pwq: pool_workqueue to put
1097  *
1098  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1099  * destruction.  The caller should be holding the matching pool->lock.
1100  */
1101 static void put_pwq(struct pool_workqueue *pwq)
1102 {
1103 	lockdep_assert_held(&pwq->pool->lock);
1104 	if (likely(--pwq->refcnt))
1105 		return;
1106 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1107 		return;
1108 	/*
1109 	 * @pwq can't be released under pool->lock, bounce to
1110 	 * pwq_unbound_release_workfn().  This never recurses on the same
1111 	 * pool->lock as this path is taken only for unbound workqueues and
1112 	 * the release work item is scheduled on a per-cpu workqueue.  To
1113 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1114 	 * subclass of 1 in get_unbound_pool().
1115 	 */
1116 	schedule_work(&pwq->unbound_release_work);
1117 }
1118 
1119 /**
1120  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1121  * @pwq: pool_workqueue to put (can be %NULL)
1122  *
1123  * put_pwq() with locking.  This function also allows %NULL @pwq.
1124  */
1125 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1126 {
1127 	if (pwq) {
1128 		/*
1129 		 * As both pwqs and pools are RCU protected, the
1130 		 * following lock operations are safe.
1131 		 */
1132 		raw_spin_lock_irq(&pwq->pool->lock);
1133 		put_pwq(pwq);
1134 		raw_spin_unlock_irq(&pwq->pool->lock);
1135 	}
1136 }
1137 
1138 static void pwq_activate_delayed_work(struct work_struct *work)
1139 {
1140 	struct pool_workqueue *pwq = get_work_pwq(work);
1141 
1142 	trace_workqueue_activate_work(work);
1143 	if (list_empty(&pwq->pool->worklist))
1144 		pwq->pool->watchdog_ts = jiffies;
1145 	move_linked_works(work, &pwq->pool->worklist, NULL);
1146 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1147 	pwq->nr_active++;
1148 }
1149 
1150 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1151 {
1152 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1153 						    struct work_struct, entry);
1154 
1155 	pwq_activate_delayed_work(work);
1156 }
1157 
1158 /**
1159  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1160  * @pwq: pwq of interest
1161  * @color: color of work which left the queue
1162  *
1163  * A work either has completed or is removed from pending queue,
1164  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1165  *
1166  * CONTEXT:
1167  * raw_spin_lock_irq(pool->lock).
1168  */
1169 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1170 {
1171 	/* uncolored work items don't participate in flushing or nr_active */
1172 	if (color == WORK_NO_COLOR)
1173 		goto out_put;
1174 
1175 	pwq->nr_in_flight[color]--;
1176 
1177 	pwq->nr_active--;
1178 	if (!list_empty(&pwq->delayed_works)) {
1179 		/* one down, submit a delayed one */
1180 		if (pwq->nr_active < pwq->max_active)
1181 			pwq_activate_first_delayed(pwq);
1182 	}
1183 
1184 	/* is flush in progress and are we at the flushing tip? */
1185 	if (likely(pwq->flush_color != color))
1186 		goto out_put;
1187 
1188 	/* are there still in-flight works? */
1189 	if (pwq->nr_in_flight[color])
1190 		goto out_put;
1191 
1192 	/* this pwq is done, clear flush_color */
1193 	pwq->flush_color = -1;
1194 
1195 	/*
1196 	 * If this was the last pwq, wake up the first flusher.  It
1197 	 * will handle the rest.
1198 	 */
1199 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1200 		complete(&pwq->wq->first_flusher->done);
1201 out_put:
1202 	put_pwq(pwq);
1203 }
1204 
1205 /**
1206  * try_to_grab_pending - steal work item from worklist and disable irq
1207  * @work: work item to steal
1208  * @is_dwork: @work is a delayed_work
1209  * @flags: place to store irq state
1210  *
1211  * Try to grab PENDING bit of @work.  This function can handle @work in any
1212  * stable state - idle, on timer or on worklist.
1213  *
1214  * Return:
1215  *
1216  *  ========	================================================================
1217  *  1		if @work was pending and we successfully stole PENDING
1218  *  0		if @work was idle and we claimed PENDING
1219  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1220  *  -ENOENT	if someone else is canceling @work, this state may persist
1221  *		for arbitrarily long
1222  *  ========	================================================================
1223  *
1224  * Note:
1225  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1226  * interrupted while holding PENDING and @work off queue, irq must be
1227  * disabled on entry.  This, combined with delayed_work->timer being
1228  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1229  *
1230  * On successful return, >= 0, irq is disabled and the caller is
1231  * responsible for releasing it using local_irq_restore(*@flags).
1232  *
1233  * This function is safe to call from any context including IRQ handler.
1234  */
1235 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1236 			       unsigned long *flags)
1237 {
1238 	struct worker_pool *pool;
1239 	struct pool_workqueue *pwq;
1240 
1241 	local_irq_save(*flags);
1242 
1243 	/* try to steal the timer if it exists */
1244 	if (is_dwork) {
1245 		struct delayed_work *dwork = to_delayed_work(work);
1246 
1247 		/*
1248 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1249 		 * guaranteed that the timer is not queued anywhere and not
1250 		 * running on the local CPU.
1251 		 */
1252 		if (likely(del_timer(&dwork->timer)))
1253 			return 1;
1254 	}
1255 
1256 	/* try to claim PENDING the normal way */
1257 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1258 		return 0;
1259 
1260 	rcu_read_lock();
1261 	/*
1262 	 * The queueing is in progress, or it is already queued. Try to
1263 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1264 	 */
1265 	pool = get_work_pool(work);
1266 	if (!pool)
1267 		goto fail;
1268 
1269 	raw_spin_lock(&pool->lock);
1270 	/*
1271 	 * work->data is guaranteed to point to pwq only while the work
1272 	 * item is queued on pwq->wq, and both updating work->data to point
1273 	 * to pwq on queueing and to pool on dequeueing are done under
1274 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1275 	 * points to pwq which is associated with a locked pool, the work
1276 	 * item is currently queued on that pool.
1277 	 */
1278 	pwq = get_work_pwq(work);
1279 	if (pwq && pwq->pool == pool) {
1280 		debug_work_deactivate(work);
1281 
1282 		/*
1283 		 * A delayed work item cannot be grabbed directly because
1284 		 * it might have linked NO_COLOR work items which, if left
1285 		 * on the delayed_list, will confuse pwq->nr_active
1286 		 * management later on and cause stall.  Make sure the work
1287 		 * item is activated before grabbing.
1288 		 */
1289 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1290 			pwq_activate_delayed_work(work);
1291 
1292 		list_del_init(&work->entry);
1293 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1294 
1295 		/* work->data points to pwq iff queued, point to pool */
1296 		set_work_pool_and_keep_pending(work, pool->id);
1297 
1298 		raw_spin_unlock(&pool->lock);
1299 		rcu_read_unlock();
1300 		return 1;
1301 	}
1302 	raw_spin_unlock(&pool->lock);
1303 fail:
1304 	rcu_read_unlock();
1305 	local_irq_restore(*flags);
1306 	if (work_is_canceling(work))
1307 		return -ENOENT;
1308 	cpu_relax();
1309 	return -EAGAIN;
1310 }
1311 
1312 /**
1313  * insert_work - insert a work into a pool
1314  * @pwq: pwq @work belongs to
1315  * @work: work to insert
1316  * @head: insertion point
1317  * @extra_flags: extra WORK_STRUCT_* flags to set
1318  *
1319  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1320  * work_struct flags.
1321  *
1322  * CONTEXT:
1323  * raw_spin_lock_irq(pool->lock).
1324  */
1325 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1326 			struct list_head *head, unsigned int extra_flags)
1327 {
1328 	struct worker_pool *pool = pwq->pool;
1329 
1330 	/* record the work call stack in order to print it in KASAN reports */
1331 	kasan_record_aux_stack(work);
1332 
1333 	/* we own @work, set data and link */
1334 	set_work_pwq(work, pwq, extra_flags);
1335 	list_add_tail(&work->entry, head);
1336 	get_pwq(pwq);
1337 
1338 	/*
1339 	 * Ensure either wq_worker_sleeping() sees the above
1340 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1341 	 * around lazily while there are works to be processed.
1342 	 */
1343 	smp_mb();
1344 
1345 	if (__need_more_worker(pool))
1346 		wake_up_worker(pool);
1347 }
1348 
1349 /*
1350  * Test whether @work is being queued from another work executing on the
1351  * same workqueue.
1352  */
1353 static bool is_chained_work(struct workqueue_struct *wq)
1354 {
1355 	struct worker *worker;
1356 
1357 	worker = current_wq_worker();
1358 	/*
1359 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1360 	 * I'm @worker, it's safe to dereference it without locking.
1361 	 */
1362 	return worker && worker->current_pwq->wq == wq;
1363 }
1364 
1365 /*
1366  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1367  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1368  * avoid perturbing sensitive tasks.
1369  */
1370 static int wq_select_unbound_cpu(int cpu)
1371 {
1372 	static bool printed_dbg_warning;
1373 	int new_cpu;
1374 
1375 	if (likely(!wq_debug_force_rr_cpu)) {
1376 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1377 			return cpu;
1378 	} else if (!printed_dbg_warning) {
1379 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1380 		printed_dbg_warning = true;
1381 	}
1382 
1383 	if (cpumask_empty(wq_unbound_cpumask))
1384 		return cpu;
1385 
1386 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1387 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1388 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1389 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1390 		if (unlikely(new_cpu >= nr_cpu_ids))
1391 			return cpu;
1392 	}
1393 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1394 
1395 	return new_cpu;
1396 }
1397 
1398 static void __queue_work(int cpu, struct workqueue_struct *wq,
1399 			 struct work_struct *work)
1400 {
1401 	struct pool_workqueue *pwq;
1402 	struct worker_pool *last_pool;
1403 	struct list_head *worklist;
1404 	unsigned int work_flags;
1405 	unsigned int req_cpu = cpu;
1406 
1407 	/*
1408 	 * While a work item is PENDING && off queue, a task trying to
1409 	 * steal the PENDING will busy-loop waiting for it to either get
1410 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1411 	 * happen with IRQ disabled.
1412 	 */
1413 	lockdep_assert_irqs_disabled();
1414 
1415 	debug_work_activate(work);
1416 
1417 	/* if draining, only works from the same workqueue are allowed */
1418 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1419 	    WARN_ON_ONCE(!is_chained_work(wq)))
1420 		return;
1421 	rcu_read_lock();
1422 retry:
1423 	/* pwq which will be used unless @work is executing elsewhere */
1424 	if (wq->flags & WQ_UNBOUND) {
1425 		if (req_cpu == WORK_CPU_UNBOUND)
1426 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1427 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1428 	} else {
1429 		if (req_cpu == WORK_CPU_UNBOUND)
1430 			cpu = raw_smp_processor_id();
1431 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1432 	}
1433 
1434 	/*
1435 	 * If @work was previously on a different pool, it might still be
1436 	 * running there, in which case the work needs to be queued on that
1437 	 * pool to guarantee non-reentrancy.
1438 	 */
1439 	last_pool = get_work_pool(work);
1440 	if (last_pool && last_pool != pwq->pool) {
1441 		struct worker *worker;
1442 
1443 		raw_spin_lock(&last_pool->lock);
1444 
1445 		worker = find_worker_executing_work(last_pool, work);
1446 
1447 		if (worker && worker->current_pwq->wq == wq) {
1448 			pwq = worker->current_pwq;
1449 		} else {
1450 			/* meh... not running there, queue here */
1451 			raw_spin_unlock(&last_pool->lock);
1452 			raw_spin_lock(&pwq->pool->lock);
1453 		}
1454 	} else {
1455 		raw_spin_lock(&pwq->pool->lock);
1456 	}
1457 
1458 	/*
1459 	 * pwq is determined and locked.  For unbound pools, we could have
1460 	 * raced with pwq release and it could already be dead.  If its
1461 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1462 	 * without another pwq replacing it in the numa_pwq_tbl or while
1463 	 * work items are executing on it, so the retrying is guaranteed to
1464 	 * make forward-progress.
1465 	 */
1466 	if (unlikely(!pwq->refcnt)) {
1467 		if (wq->flags & WQ_UNBOUND) {
1468 			raw_spin_unlock(&pwq->pool->lock);
1469 			cpu_relax();
1470 			goto retry;
1471 		}
1472 		/* oops */
1473 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1474 			  wq->name, cpu);
1475 	}
1476 
1477 	/* pwq determined, queue */
1478 	trace_workqueue_queue_work(req_cpu, pwq, work);
1479 
1480 	if (WARN_ON(!list_empty(&work->entry)))
1481 		goto out;
1482 
1483 	pwq->nr_in_flight[pwq->work_color]++;
1484 	work_flags = work_color_to_flags(pwq->work_color);
1485 
1486 	if (likely(pwq->nr_active < pwq->max_active)) {
1487 		trace_workqueue_activate_work(work);
1488 		pwq->nr_active++;
1489 		worklist = &pwq->pool->worklist;
1490 		if (list_empty(worklist))
1491 			pwq->pool->watchdog_ts = jiffies;
1492 	} else {
1493 		work_flags |= WORK_STRUCT_DELAYED;
1494 		worklist = &pwq->delayed_works;
1495 	}
1496 
1497 	insert_work(pwq, work, worklist, work_flags);
1498 
1499 out:
1500 	raw_spin_unlock(&pwq->pool->lock);
1501 	rcu_read_unlock();
1502 }
1503 
1504 /**
1505  * queue_work_on - queue work on specific cpu
1506  * @cpu: CPU number to execute work on
1507  * @wq: workqueue to use
1508  * @work: work to queue
1509  *
1510  * We queue the work to a specific CPU, the caller must ensure it
1511  * can't go away.
1512  *
1513  * Return: %false if @work was already on a queue, %true otherwise.
1514  */
1515 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1516 		   struct work_struct *work)
1517 {
1518 	bool ret = false;
1519 	unsigned long flags;
1520 
1521 	local_irq_save(flags);
1522 
1523 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1524 		__queue_work(cpu, wq, work);
1525 		ret = true;
1526 	}
1527 
1528 	local_irq_restore(flags);
1529 	return ret;
1530 }
1531 EXPORT_SYMBOL(queue_work_on);
1532 
1533 /**
1534  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1535  * @node: NUMA node ID that we want to select a CPU from
1536  *
1537  * This function will attempt to find a "random" cpu available on a given
1538  * node. If there are no CPUs available on the given node it will return
1539  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1540  * available CPU if we need to schedule this work.
1541  */
1542 static int workqueue_select_cpu_near(int node)
1543 {
1544 	int cpu;
1545 
1546 	/* No point in doing this if NUMA isn't enabled for workqueues */
1547 	if (!wq_numa_enabled)
1548 		return WORK_CPU_UNBOUND;
1549 
1550 	/* Delay binding to CPU if node is not valid or online */
1551 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1552 		return WORK_CPU_UNBOUND;
1553 
1554 	/* Use local node/cpu if we are already there */
1555 	cpu = raw_smp_processor_id();
1556 	if (node == cpu_to_node(cpu))
1557 		return cpu;
1558 
1559 	/* Use "random" otherwise know as "first" online CPU of node */
1560 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1561 
1562 	/* If CPU is valid return that, otherwise just defer */
1563 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1564 }
1565 
1566 /**
1567  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1568  * @node: NUMA node that we are targeting the work for
1569  * @wq: workqueue to use
1570  * @work: work to queue
1571  *
1572  * We queue the work to a "random" CPU within a given NUMA node. The basic
1573  * idea here is to provide a way to somehow associate work with a given
1574  * NUMA node.
1575  *
1576  * This function will only make a best effort attempt at getting this onto
1577  * the right NUMA node. If no node is requested or the requested node is
1578  * offline then we just fall back to standard queue_work behavior.
1579  *
1580  * Currently the "random" CPU ends up being the first available CPU in the
1581  * intersection of cpu_online_mask and the cpumask of the node, unless we
1582  * are running on the node. In that case we just use the current CPU.
1583  *
1584  * Return: %false if @work was already on a queue, %true otherwise.
1585  */
1586 bool queue_work_node(int node, struct workqueue_struct *wq,
1587 		     struct work_struct *work)
1588 {
1589 	unsigned long flags;
1590 	bool ret = false;
1591 
1592 	/*
1593 	 * This current implementation is specific to unbound workqueues.
1594 	 * Specifically we only return the first available CPU for a given
1595 	 * node instead of cycling through individual CPUs within the node.
1596 	 *
1597 	 * If this is used with a per-cpu workqueue then the logic in
1598 	 * workqueue_select_cpu_near would need to be updated to allow for
1599 	 * some round robin type logic.
1600 	 */
1601 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1602 
1603 	local_irq_save(flags);
1604 
1605 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1606 		int cpu = workqueue_select_cpu_near(node);
1607 
1608 		__queue_work(cpu, wq, work);
1609 		ret = true;
1610 	}
1611 
1612 	local_irq_restore(flags);
1613 	return ret;
1614 }
1615 EXPORT_SYMBOL_GPL(queue_work_node);
1616 
1617 void delayed_work_timer_fn(struct timer_list *t)
1618 {
1619 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1620 
1621 	/* should have been called from irqsafe timer with irq already off */
1622 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1623 }
1624 EXPORT_SYMBOL(delayed_work_timer_fn);
1625 
1626 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1627 				struct delayed_work *dwork, unsigned long delay)
1628 {
1629 	struct timer_list *timer = &dwork->timer;
1630 	struct work_struct *work = &dwork->work;
1631 
1632 	WARN_ON_ONCE(!wq);
1633 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1634 	WARN_ON_ONCE(timer_pending(timer));
1635 	WARN_ON_ONCE(!list_empty(&work->entry));
1636 
1637 	/*
1638 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1639 	 * both optimization and correctness.  The earliest @timer can
1640 	 * expire is on the closest next tick and delayed_work users depend
1641 	 * on that there's no such delay when @delay is 0.
1642 	 */
1643 	if (!delay) {
1644 		__queue_work(cpu, wq, &dwork->work);
1645 		return;
1646 	}
1647 
1648 	dwork->wq = wq;
1649 	dwork->cpu = cpu;
1650 	timer->expires = jiffies + delay;
1651 
1652 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1653 		add_timer_on(timer, cpu);
1654 	else
1655 		add_timer(timer);
1656 }
1657 
1658 /**
1659  * queue_delayed_work_on - queue work on specific CPU after delay
1660  * @cpu: CPU number to execute work on
1661  * @wq: workqueue to use
1662  * @dwork: work to queue
1663  * @delay: number of jiffies to wait before queueing
1664  *
1665  * Return: %false if @work was already on a queue, %true otherwise.  If
1666  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1667  * execution.
1668  */
1669 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1670 			   struct delayed_work *dwork, unsigned long delay)
1671 {
1672 	struct work_struct *work = &dwork->work;
1673 	bool ret = false;
1674 	unsigned long flags;
1675 
1676 	/* read the comment in __queue_work() */
1677 	local_irq_save(flags);
1678 
1679 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1680 		__queue_delayed_work(cpu, wq, dwork, delay);
1681 		ret = true;
1682 	}
1683 
1684 	local_irq_restore(flags);
1685 	return ret;
1686 }
1687 EXPORT_SYMBOL(queue_delayed_work_on);
1688 
1689 /**
1690  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1691  * @cpu: CPU number to execute work on
1692  * @wq: workqueue to use
1693  * @dwork: work to queue
1694  * @delay: number of jiffies to wait before queueing
1695  *
1696  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1697  * modify @dwork's timer so that it expires after @delay.  If @delay is
1698  * zero, @work is guaranteed to be scheduled immediately regardless of its
1699  * current state.
1700  *
1701  * Return: %false if @dwork was idle and queued, %true if @dwork was
1702  * pending and its timer was modified.
1703  *
1704  * This function is safe to call from any context including IRQ handler.
1705  * See try_to_grab_pending() for details.
1706  */
1707 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1708 			 struct delayed_work *dwork, unsigned long delay)
1709 {
1710 	unsigned long flags;
1711 	int ret;
1712 
1713 	do {
1714 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1715 	} while (unlikely(ret == -EAGAIN));
1716 
1717 	if (likely(ret >= 0)) {
1718 		__queue_delayed_work(cpu, wq, dwork, delay);
1719 		local_irq_restore(flags);
1720 	}
1721 
1722 	/* -ENOENT from try_to_grab_pending() becomes %true */
1723 	return ret;
1724 }
1725 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1726 
1727 static void rcu_work_rcufn(struct rcu_head *rcu)
1728 {
1729 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1730 
1731 	/* read the comment in __queue_work() */
1732 	local_irq_disable();
1733 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1734 	local_irq_enable();
1735 }
1736 
1737 /**
1738  * queue_rcu_work - queue work after a RCU grace period
1739  * @wq: workqueue to use
1740  * @rwork: work to queue
1741  *
1742  * Return: %false if @rwork was already pending, %true otherwise.  Note
1743  * that a full RCU grace period is guaranteed only after a %true return.
1744  * While @rwork is guaranteed to be executed after a %false return, the
1745  * execution may happen before a full RCU grace period has passed.
1746  */
1747 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1748 {
1749 	struct work_struct *work = &rwork->work;
1750 
1751 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1752 		rwork->wq = wq;
1753 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1754 		return true;
1755 	}
1756 
1757 	return false;
1758 }
1759 EXPORT_SYMBOL(queue_rcu_work);
1760 
1761 /**
1762  * worker_enter_idle - enter idle state
1763  * @worker: worker which is entering idle state
1764  *
1765  * @worker is entering idle state.  Update stats and idle timer if
1766  * necessary.
1767  *
1768  * LOCKING:
1769  * raw_spin_lock_irq(pool->lock).
1770  */
1771 static void worker_enter_idle(struct worker *worker)
1772 {
1773 	struct worker_pool *pool = worker->pool;
1774 
1775 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1776 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1777 			 (worker->hentry.next || worker->hentry.pprev)))
1778 		return;
1779 
1780 	/* can't use worker_set_flags(), also called from create_worker() */
1781 	worker->flags |= WORKER_IDLE;
1782 	pool->nr_idle++;
1783 	worker->last_active = jiffies;
1784 
1785 	/* idle_list is LIFO */
1786 	list_add(&worker->entry, &pool->idle_list);
1787 
1788 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1789 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1790 
1791 	/*
1792 	 * Sanity check nr_running.  Because unbind_workers() releases
1793 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1794 	 * nr_running, the warning may trigger spuriously.  Check iff
1795 	 * unbind is not in progress.
1796 	 */
1797 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1798 		     pool->nr_workers == pool->nr_idle &&
1799 		     atomic_read(&pool->nr_running));
1800 }
1801 
1802 /**
1803  * worker_leave_idle - leave idle state
1804  * @worker: worker which is leaving idle state
1805  *
1806  * @worker is leaving idle state.  Update stats.
1807  *
1808  * LOCKING:
1809  * raw_spin_lock_irq(pool->lock).
1810  */
1811 static void worker_leave_idle(struct worker *worker)
1812 {
1813 	struct worker_pool *pool = worker->pool;
1814 
1815 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1816 		return;
1817 	worker_clr_flags(worker, WORKER_IDLE);
1818 	pool->nr_idle--;
1819 	list_del_init(&worker->entry);
1820 }
1821 
1822 static struct worker *alloc_worker(int node)
1823 {
1824 	struct worker *worker;
1825 
1826 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1827 	if (worker) {
1828 		INIT_LIST_HEAD(&worker->entry);
1829 		INIT_LIST_HEAD(&worker->scheduled);
1830 		INIT_LIST_HEAD(&worker->node);
1831 		/* on creation a worker is in !idle && prep state */
1832 		worker->flags = WORKER_PREP;
1833 	}
1834 	return worker;
1835 }
1836 
1837 /**
1838  * worker_attach_to_pool() - attach a worker to a pool
1839  * @worker: worker to be attached
1840  * @pool: the target pool
1841  *
1842  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1843  * cpu-binding of @worker are kept coordinated with the pool across
1844  * cpu-[un]hotplugs.
1845  */
1846 static void worker_attach_to_pool(struct worker *worker,
1847 				   struct worker_pool *pool)
1848 {
1849 	mutex_lock(&wq_pool_attach_mutex);
1850 
1851 	/*
1852 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1853 	 * stable across this function.  See the comments above the flag
1854 	 * definition for details.
1855 	 */
1856 	if (pool->flags & POOL_DISASSOCIATED)
1857 		worker->flags |= WORKER_UNBOUND;
1858 	else
1859 		kthread_set_per_cpu(worker->task, pool->cpu);
1860 
1861 	if (worker->rescue_wq)
1862 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1863 
1864 	list_add_tail(&worker->node, &pool->workers);
1865 	worker->pool = pool;
1866 
1867 	mutex_unlock(&wq_pool_attach_mutex);
1868 }
1869 
1870 /**
1871  * worker_detach_from_pool() - detach a worker from its pool
1872  * @worker: worker which is attached to its pool
1873  *
1874  * Undo the attaching which had been done in worker_attach_to_pool().  The
1875  * caller worker shouldn't access to the pool after detached except it has
1876  * other reference to the pool.
1877  */
1878 static void worker_detach_from_pool(struct worker *worker)
1879 {
1880 	struct worker_pool *pool = worker->pool;
1881 	struct completion *detach_completion = NULL;
1882 
1883 	mutex_lock(&wq_pool_attach_mutex);
1884 
1885 	kthread_set_per_cpu(worker->task, -1);
1886 	list_del(&worker->node);
1887 	worker->pool = NULL;
1888 
1889 	if (list_empty(&pool->workers))
1890 		detach_completion = pool->detach_completion;
1891 	mutex_unlock(&wq_pool_attach_mutex);
1892 
1893 	/* clear leftover flags without pool->lock after it is detached */
1894 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1895 
1896 	if (detach_completion)
1897 		complete(detach_completion);
1898 }
1899 
1900 /**
1901  * create_worker - create a new workqueue worker
1902  * @pool: pool the new worker will belong to
1903  *
1904  * Create and start a new worker which is attached to @pool.
1905  *
1906  * CONTEXT:
1907  * Might sleep.  Does GFP_KERNEL allocations.
1908  *
1909  * Return:
1910  * Pointer to the newly created worker.
1911  */
1912 static struct worker *create_worker(struct worker_pool *pool)
1913 {
1914 	struct worker *worker = NULL;
1915 	int id = -1;
1916 	char id_buf[16];
1917 
1918 	/* ID is needed to determine kthread name */
1919 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1920 	if (id < 0)
1921 		goto fail;
1922 
1923 	worker = alloc_worker(pool->node);
1924 	if (!worker)
1925 		goto fail;
1926 
1927 	worker->id = id;
1928 
1929 	if (pool->cpu >= 0)
1930 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1931 			 pool->attrs->nice < 0  ? "H" : "");
1932 	else
1933 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1934 
1935 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1936 					      "kworker/%s", id_buf);
1937 	if (IS_ERR(worker->task))
1938 		goto fail;
1939 
1940 	set_user_nice(worker->task, pool->attrs->nice);
1941 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1942 
1943 	/* successful, attach the worker to the pool */
1944 	worker_attach_to_pool(worker, pool);
1945 
1946 	/* start the newly created worker */
1947 	raw_spin_lock_irq(&pool->lock);
1948 	worker->pool->nr_workers++;
1949 	worker_enter_idle(worker);
1950 	wake_up_process(worker->task);
1951 	raw_spin_unlock_irq(&pool->lock);
1952 
1953 	return worker;
1954 
1955 fail:
1956 	if (id >= 0)
1957 		ida_simple_remove(&pool->worker_ida, id);
1958 	kfree(worker);
1959 	return NULL;
1960 }
1961 
1962 /**
1963  * destroy_worker - destroy a workqueue worker
1964  * @worker: worker to be destroyed
1965  *
1966  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1967  * be idle.
1968  *
1969  * CONTEXT:
1970  * raw_spin_lock_irq(pool->lock).
1971  */
1972 static void destroy_worker(struct worker *worker)
1973 {
1974 	struct worker_pool *pool = worker->pool;
1975 
1976 	lockdep_assert_held(&pool->lock);
1977 
1978 	/* sanity check frenzy */
1979 	if (WARN_ON(worker->current_work) ||
1980 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1981 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1982 		return;
1983 
1984 	pool->nr_workers--;
1985 	pool->nr_idle--;
1986 
1987 	list_del_init(&worker->entry);
1988 	worker->flags |= WORKER_DIE;
1989 	wake_up_process(worker->task);
1990 }
1991 
1992 static void idle_worker_timeout(struct timer_list *t)
1993 {
1994 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1995 
1996 	raw_spin_lock_irq(&pool->lock);
1997 
1998 	while (too_many_workers(pool)) {
1999 		struct worker *worker;
2000 		unsigned long expires;
2001 
2002 		/* idle_list is kept in LIFO order, check the last one */
2003 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2004 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2005 
2006 		if (time_before(jiffies, expires)) {
2007 			mod_timer(&pool->idle_timer, expires);
2008 			break;
2009 		}
2010 
2011 		destroy_worker(worker);
2012 	}
2013 
2014 	raw_spin_unlock_irq(&pool->lock);
2015 }
2016 
2017 static void send_mayday(struct work_struct *work)
2018 {
2019 	struct pool_workqueue *pwq = get_work_pwq(work);
2020 	struct workqueue_struct *wq = pwq->wq;
2021 
2022 	lockdep_assert_held(&wq_mayday_lock);
2023 
2024 	if (!wq->rescuer)
2025 		return;
2026 
2027 	/* mayday mayday mayday */
2028 	if (list_empty(&pwq->mayday_node)) {
2029 		/*
2030 		 * If @pwq is for an unbound wq, its base ref may be put at
2031 		 * any time due to an attribute change.  Pin @pwq until the
2032 		 * rescuer is done with it.
2033 		 */
2034 		get_pwq(pwq);
2035 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2036 		wake_up_process(wq->rescuer->task);
2037 	}
2038 }
2039 
2040 static void pool_mayday_timeout(struct timer_list *t)
2041 {
2042 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2043 	struct work_struct *work;
2044 
2045 	raw_spin_lock_irq(&pool->lock);
2046 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2047 
2048 	if (need_to_create_worker(pool)) {
2049 		/*
2050 		 * We've been trying to create a new worker but
2051 		 * haven't been successful.  We might be hitting an
2052 		 * allocation deadlock.  Send distress signals to
2053 		 * rescuers.
2054 		 */
2055 		list_for_each_entry(work, &pool->worklist, entry)
2056 			send_mayday(work);
2057 	}
2058 
2059 	raw_spin_unlock(&wq_mayday_lock);
2060 	raw_spin_unlock_irq(&pool->lock);
2061 
2062 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2063 }
2064 
2065 /**
2066  * maybe_create_worker - create a new worker if necessary
2067  * @pool: pool to create a new worker for
2068  *
2069  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2070  * have at least one idle worker on return from this function.  If
2071  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2072  * sent to all rescuers with works scheduled on @pool to resolve
2073  * possible allocation deadlock.
2074  *
2075  * On return, need_to_create_worker() is guaranteed to be %false and
2076  * may_start_working() %true.
2077  *
2078  * LOCKING:
2079  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2080  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2081  * manager.
2082  */
2083 static void maybe_create_worker(struct worker_pool *pool)
2084 __releases(&pool->lock)
2085 __acquires(&pool->lock)
2086 {
2087 restart:
2088 	raw_spin_unlock_irq(&pool->lock);
2089 
2090 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2091 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2092 
2093 	while (true) {
2094 		if (create_worker(pool) || !need_to_create_worker(pool))
2095 			break;
2096 
2097 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2098 
2099 		if (!need_to_create_worker(pool))
2100 			break;
2101 	}
2102 
2103 	del_timer_sync(&pool->mayday_timer);
2104 	raw_spin_lock_irq(&pool->lock);
2105 	/*
2106 	 * This is necessary even after a new worker was just successfully
2107 	 * created as @pool->lock was dropped and the new worker might have
2108 	 * already become busy.
2109 	 */
2110 	if (need_to_create_worker(pool))
2111 		goto restart;
2112 }
2113 
2114 /**
2115  * manage_workers - manage worker pool
2116  * @worker: self
2117  *
2118  * Assume the manager role and manage the worker pool @worker belongs
2119  * to.  At any given time, there can be only zero or one manager per
2120  * pool.  The exclusion is handled automatically by this function.
2121  *
2122  * The caller can safely start processing works on false return.  On
2123  * true return, it's guaranteed that need_to_create_worker() is false
2124  * and may_start_working() is true.
2125  *
2126  * CONTEXT:
2127  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2128  * multiple times.  Does GFP_KERNEL allocations.
2129  *
2130  * Return:
2131  * %false if the pool doesn't need management and the caller can safely
2132  * start processing works, %true if management function was performed and
2133  * the conditions that the caller verified before calling the function may
2134  * no longer be true.
2135  */
2136 static bool manage_workers(struct worker *worker)
2137 {
2138 	struct worker_pool *pool = worker->pool;
2139 
2140 	if (pool->flags & POOL_MANAGER_ACTIVE)
2141 		return false;
2142 
2143 	pool->flags |= POOL_MANAGER_ACTIVE;
2144 	pool->manager = worker;
2145 
2146 	maybe_create_worker(pool);
2147 
2148 	pool->manager = NULL;
2149 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2150 	rcuwait_wake_up(&manager_wait);
2151 	return true;
2152 }
2153 
2154 /**
2155  * process_one_work - process single work
2156  * @worker: self
2157  * @work: work to process
2158  *
2159  * Process @work.  This function contains all the logics necessary to
2160  * process a single work including synchronization against and
2161  * interaction with other workers on the same cpu, queueing and
2162  * flushing.  As long as context requirement is met, any worker can
2163  * call this function to process a work.
2164  *
2165  * CONTEXT:
2166  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2167  */
2168 static void process_one_work(struct worker *worker, struct work_struct *work)
2169 __releases(&pool->lock)
2170 __acquires(&pool->lock)
2171 {
2172 	struct pool_workqueue *pwq = get_work_pwq(work);
2173 	struct worker_pool *pool = worker->pool;
2174 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2175 	int work_color;
2176 	struct worker *collision;
2177 #ifdef CONFIG_LOCKDEP
2178 	/*
2179 	 * It is permissible to free the struct work_struct from
2180 	 * inside the function that is called from it, this we need to
2181 	 * take into account for lockdep too.  To avoid bogus "held
2182 	 * lock freed" warnings as well as problems when looking into
2183 	 * work->lockdep_map, make a copy and use that here.
2184 	 */
2185 	struct lockdep_map lockdep_map;
2186 
2187 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2188 #endif
2189 	/* ensure we're on the correct CPU */
2190 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2191 		     raw_smp_processor_id() != pool->cpu);
2192 
2193 	/*
2194 	 * A single work shouldn't be executed concurrently by
2195 	 * multiple workers on a single cpu.  Check whether anyone is
2196 	 * already processing the work.  If so, defer the work to the
2197 	 * currently executing one.
2198 	 */
2199 	collision = find_worker_executing_work(pool, work);
2200 	if (unlikely(collision)) {
2201 		move_linked_works(work, &collision->scheduled, NULL);
2202 		return;
2203 	}
2204 
2205 	/* claim and dequeue */
2206 	debug_work_deactivate(work);
2207 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2208 	worker->current_work = work;
2209 	worker->current_func = work->func;
2210 	worker->current_pwq = pwq;
2211 	work_color = get_work_color(work);
2212 
2213 	/*
2214 	 * Record wq name for cmdline and debug reporting, may get
2215 	 * overridden through set_worker_desc().
2216 	 */
2217 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2218 
2219 	list_del_init(&work->entry);
2220 
2221 	/*
2222 	 * CPU intensive works don't participate in concurrency management.
2223 	 * They're the scheduler's responsibility.  This takes @worker out
2224 	 * of concurrency management and the next code block will chain
2225 	 * execution of the pending work items.
2226 	 */
2227 	if (unlikely(cpu_intensive))
2228 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2229 
2230 	/*
2231 	 * Wake up another worker if necessary.  The condition is always
2232 	 * false for normal per-cpu workers since nr_running would always
2233 	 * be >= 1 at this point.  This is used to chain execution of the
2234 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2235 	 * UNBOUND and CPU_INTENSIVE ones.
2236 	 */
2237 	if (need_more_worker(pool))
2238 		wake_up_worker(pool);
2239 
2240 	/*
2241 	 * Record the last pool and clear PENDING which should be the last
2242 	 * update to @work.  Also, do this inside @pool->lock so that
2243 	 * PENDING and queued state changes happen together while IRQ is
2244 	 * disabled.
2245 	 */
2246 	set_work_pool_and_clear_pending(work, pool->id);
2247 
2248 	raw_spin_unlock_irq(&pool->lock);
2249 
2250 	lock_map_acquire(&pwq->wq->lockdep_map);
2251 	lock_map_acquire(&lockdep_map);
2252 	/*
2253 	 * Strictly speaking we should mark the invariant state without holding
2254 	 * any locks, that is, before these two lock_map_acquire()'s.
2255 	 *
2256 	 * However, that would result in:
2257 	 *
2258 	 *   A(W1)
2259 	 *   WFC(C)
2260 	 *		A(W1)
2261 	 *		C(C)
2262 	 *
2263 	 * Which would create W1->C->W1 dependencies, even though there is no
2264 	 * actual deadlock possible. There are two solutions, using a
2265 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2266 	 * hit the lockdep limitation on recursive locks, or simply discard
2267 	 * these locks.
2268 	 *
2269 	 * AFAICT there is no possible deadlock scenario between the
2270 	 * flush_work() and complete() primitives (except for single-threaded
2271 	 * workqueues), so hiding them isn't a problem.
2272 	 */
2273 	lockdep_invariant_state(true);
2274 	trace_workqueue_execute_start(work);
2275 	worker->current_func(work);
2276 	/*
2277 	 * While we must be careful to not use "work" after this, the trace
2278 	 * point will only record its address.
2279 	 */
2280 	trace_workqueue_execute_end(work, worker->current_func);
2281 	lock_map_release(&lockdep_map);
2282 	lock_map_release(&pwq->wq->lockdep_map);
2283 
2284 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2285 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2286 		       "     last function: %ps\n",
2287 		       current->comm, preempt_count(), task_pid_nr(current),
2288 		       worker->current_func);
2289 		debug_show_held_locks(current);
2290 		dump_stack();
2291 	}
2292 
2293 	/*
2294 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2295 	 * kernels, where a requeueing work item waiting for something to
2296 	 * happen could deadlock with stop_machine as such work item could
2297 	 * indefinitely requeue itself while all other CPUs are trapped in
2298 	 * stop_machine. At the same time, report a quiescent RCU state so
2299 	 * the same condition doesn't freeze RCU.
2300 	 */
2301 	cond_resched();
2302 
2303 	raw_spin_lock_irq(&pool->lock);
2304 
2305 	/* clear cpu intensive status */
2306 	if (unlikely(cpu_intensive))
2307 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2308 
2309 	/* tag the worker for identification in schedule() */
2310 	worker->last_func = worker->current_func;
2311 
2312 	/* we're done with it, release */
2313 	hash_del(&worker->hentry);
2314 	worker->current_work = NULL;
2315 	worker->current_func = NULL;
2316 	worker->current_pwq = NULL;
2317 	pwq_dec_nr_in_flight(pwq, work_color);
2318 }
2319 
2320 /**
2321  * process_scheduled_works - process scheduled works
2322  * @worker: self
2323  *
2324  * Process all scheduled works.  Please note that the scheduled list
2325  * may change while processing a work, so this function repeatedly
2326  * fetches a work from the top and executes it.
2327  *
2328  * CONTEXT:
2329  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2330  * multiple times.
2331  */
2332 static void process_scheduled_works(struct worker *worker)
2333 {
2334 	while (!list_empty(&worker->scheduled)) {
2335 		struct work_struct *work = list_first_entry(&worker->scheduled,
2336 						struct work_struct, entry);
2337 		process_one_work(worker, work);
2338 	}
2339 }
2340 
2341 static void set_pf_worker(bool val)
2342 {
2343 	mutex_lock(&wq_pool_attach_mutex);
2344 	if (val)
2345 		current->flags |= PF_WQ_WORKER;
2346 	else
2347 		current->flags &= ~PF_WQ_WORKER;
2348 	mutex_unlock(&wq_pool_attach_mutex);
2349 }
2350 
2351 /**
2352  * worker_thread - the worker thread function
2353  * @__worker: self
2354  *
2355  * The worker thread function.  All workers belong to a worker_pool -
2356  * either a per-cpu one or dynamic unbound one.  These workers process all
2357  * work items regardless of their specific target workqueue.  The only
2358  * exception is work items which belong to workqueues with a rescuer which
2359  * will be explained in rescuer_thread().
2360  *
2361  * Return: 0
2362  */
2363 static int worker_thread(void *__worker)
2364 {
2365 	struct worker *worker = __worker;
2366 	struct worker_pool *pool = worker->pool;
2367 
2368 	/* tell the scheduler that this is a workqueue worker */
2369 	set_pf_worker(true);
2370 woke_up:
2371 	raw_spin_lock_irq(&pool->lock);
2372 
2373 	/* am I supposed to die? */
2374 	if (unlikely(worker->flags & WORKER_DIE)) {
2375 		raw_spin_unlock_irq(&pool->lock);
2376 		WARN_ON_ONCE(!list_empty(&worker->entry));
2377 		set_pf_worker(false);
2378 
2379 		set_task_comm(worker->task, "kworker/dying");
2380 		ida_simple_remove(&pool->worker_ida, worker->id);
2381 		worker_detach_from_pool(worker);
2382 		kfree(worker);
2383 		return 0;
2384 	}
2385 
2386 	worker_leave_idle(worker);
2387 recheck:
2388 	/* no more worker necessary? */
2389 	if (!need_more_worker(pool))
2390 		goto sleep;
2391 
2392 	/* do we need to manage? */
2393 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2394 		goto recheck;
2395 
2396 	/*
2397 	 * ->scheduled list can only be filled while a worker is
2398 	 * preparing to process a work or actually processing it.
2399 	 * Make sure nobody diddled with it while I was sleeping.
2400 	 */
2401 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2402 
2403 	/*
2404 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2405 	 * worker or that someone else has already assumed the manager
2406 	 * role.  This is where @worker starts participating in concurrency
2407 	 * management if applicable and concurrency management is restored
2408 	 * after being rebound.  See rebind_workers() for details.
2409 	 */
2410 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2411 
2412 	do {
2413 		struct work_struct *work =
2414 			list_first_entry(&pool->worklist,
2415 					 struct work_struct, entry);
2416 
2417 		pool->watchdog_ts = jiffies;
2418 
2419 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2420 			/* optimization path, not strictly necessary */
2421 			process_one_work(worker, work);
2422 			if (unlikely(!list_empty(&worker->scheduled)))
2423 				process_scheduled_works(worker);
2424 		} else {
2425 			move_linked_works(work, &worker->scheduled, NULL);
2426 			process_scheduled_works(worker);
2427 		}
2428 	} while (keep_working(pool));
2429 
2430 	worker_set_flags(worker, WORKER_PREP);
2431 sleep:
2432 	/*
2433 	 * pool->lock is held and there's no work to process and no need to
2434 	 * manage, sleep.  Workers are woken up only while holding
2435 	 * pool->lock or from local cpu, so setting the current state
2436 	 * before releasing pool->lock is enough to prevent losing any
2437 	 * event.
2438 	 */
2439 	worker_enter_idle(worker);
2440 	__set_current_state(TASK_IDLE);
2441 	raw_spin_unlock_irq(&pool->lock);
2442 	schedule();
2443 	goto woke_up;
2444 }
2445 
2446 /**
2447  * rescuer_thread - the rescuer thread function
2448  * @__rescuer: self
2449  *
2450  * Workqueue rescuer thread function.  There's one rescuer for each
2451  * workqueue which has WQ_MEM_RECLAIM set.
2452  *
2453  * Regular work processing on a pool may block trying to create a new
2454  * worker which uses GFP_KERNEL allocation which has slight chance of
2455  * developing into deadlock if some works currently on the same queue
2456  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2457  * the problem rescuer solves.
2458  *
2459  * When such condition is possible, the pool summons rescuers of all
2460  * workqueues which have works queued on the pool and let them process
2461  * those works so that forward progress can be guaranteed.
2462  *
2463  * This should happen rarely.
2464  *
2465  * Return: 0
2466  */
2467 static int rescuer_thread(void *__rescuer)
2468 {
2469 	struct worker *rescuer = __rescuer;
2470 	struct workqueue_struct *wq = rescuer->rescue_wq;
2471 	struct list_head *scheduled = &rescuer->scheduled;
2472 	bool should_stop;
2473 
2474 	set_user_nice(current, RESCUER_NICE_LEVEL);
2475 
2476 	/*
2477 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2478 	 * doesn't participate in concurrency management.
2479 	 */
2480 	set_pf_worker(true);
2481 repeat:
2482 	set_current_state(TASK_IDLE);
2483 
2484 	/*
2485 	 * By the time the rescuer is requested to stop, the workqueue
2486 	 * shouldn't have any work pending, but @wq->maydays may still have
2487 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2488 	 * all the work items before the rescuer got to them.  Go through
2489 	 * @wq->maydays processing before acting on should_stop so that the
2490 	 * list is always empty on exit.
2491 	 */
2492 	should_stop = kthread_should_stop();
2493 
2494 	/* see whether any pwq is asking for help */
2495 	raw_spin_lock_irq(&wq_mayday_lock);
2496 
2497 	while (!list_empty(&wq->maydays)) {
2498 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2499 					struct pool_workqueue, mayday_node);
2500 		struct worker_pool *pool = pwq->pool;
2501 		struct work_struct *work, *n;
2502 		bool first = true;
2503 
2504 		__set_current_state(TASK_RUNNING);
2505 		list_del_init(&pwq->mayday_node);
2506 
2507 		raw_spin_unlock_irq(&wq_mayday_lock);
2508 
2509 		worker_attach_to_pool(rescuer, pool);
2510 
2511 		raw_spin_lock_irq(&pool->lock);
2512 
2513 		/*
2514 		 * Slurp in all works issued via this workqueue and
2515 		 * process'em.
2516 		 */
2517 		WARN_ON_ONCE(!list_empty(scheduled));
2518 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2519 			if (get_work_pwq(work) == pwq) {
2520 				if (first)
2521 					pool->watchdog_ts = jiffies;
2522 				move_linked_works(work, scheduled, &n);
2523 			}
2524 			first = false;
2525 		}
2526 
2527 		if (!list_empty(scheduled)) {
2528 			process_scheduled_works(rescuer);
2529 
2530 			/*
2531 			 * The above execution of rescued work items could
2532 			 * have created more to rescue through
2533 			 * pwq_activate_first_delayed() or chained
2534 			 * queueing.  Let's put @pwq back on mayday list so
2535 			 * that such back-to-back work items, which may be
2536 			 * being used to relieve memory pressure, don't
2537 			 * incur MAYDAY_INTERVAL delay inbetween.
2538 			 */
2539 			if (pwq->nr_active && need_to_create_worker(pool)) {
2540 				raw_spin_lock(&wq_mayday_lock);
2541 				/*
2542 				 * Queue iff we aren't racing destruction
2543 				 * and somebody else hasn't queued it already.
2544 				 */
2545 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2546 					get_pwq(pwq);
2547 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2548 				}
2549 				raw_spin_unlock(&wq_mayday_lock);
2550 			}
2551 		}
2552 
2553 		/*
2554 		 * Put the reference grabbed by send_mayday().  @pool won't
2555 		 * go away while we're still attached to it.
2556 		 */
2557 		put_pwq(pwq);
2558 
2559 		/*
2560 		 * Leave this pool.  If need_more_worker() is %true, notify a
2561 		 * regular worker; otherwise, we end up with 0 concurrency
2562 		 * and stalling the execution.
2563 		 */
2564 		if (need_more_worker(pool))
2565 			wake_up_worker(pool);
2566 
2567 		raw_spin_unlock_irq(&pool->lock);
2568 
2569 		worker_detach_from_pool(rescuer);
2570 
2571 		raw_spin_lock_irq(&wq_mayday_lock);
2572 	}
2573 
2574 	raw_spin_unlock_irq(&wq_mayday_lock);
2575 
2576 	if (should_stop) {
2577 		__set_current_state(TASK_RUNNING);
2578 		set_pf_worker(false);
2579 		return 0;
2580 	}
2581 
2582 	/* rescuers should never participate in concurrency management */
2583 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2584 	schedule();
2585 	goto repeat;
2586 }
2587 
2588 /**
2589  * check_flush_dependency - check for flush dependency sanity
2590  * @target_wq: workqueue being flushed
2591  * @target_work: work item being flushed (NULL for workqueue flushes)
2592  *
2593  * %current is trying to flush the whole @target_wq or @target_work on it.
2594  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2595  * reclaiming memory or running on a workqueue which doesn't have
2596  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2597  * a deadlock.
2598  */
2599 static void check_flush_dependency(struct workqueue_struct *target_wq,
2600 				   struct work_struct *target_work)
2601 {
2602 	work_func_t target_func = target_work ? target_work->func : NULL;
2603 	struct worker *worker;
2604 
2605 	if (target_wq->flags & WQ_MEM_RECLAIM)
2606 		return;
2607 
2608 	worker = current_wq_worker();
2609 
2610 	WARN_ONCE(current->flags & PF_MEMALLOC,
2611 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2612 		  current->pid, current->comm, target_wq->name, target_func);
2613 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2614 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2615 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2616 		  worker->current_pwq->wq->name, worker->current_func,
2617 		  target_wq->name, target_func);
2618 }
2619 
2620 struct wq_barrier {
2621 	struct work_struct	work;
2622 	struct completion	done;
2623 	struct task_struct	*task;	/* purely informational */
2624 };
2625 
2626 static void wq_barrier_func(struct work_struct *work)
2627 {
2628 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2629 	complete(&barr->done);
2630 }
2631 
2632 /**
2633  * insert_wq_barrier - insert a barrier work
2634  * @pwq: pwq to insert barrier into
2635  * @barr: wq_barrier to insert
2636  * @target: target work to attach @barr to
2637  * @worker: worker currently executing @target, NULL if @target is not executing
2638  *
2639  * @barr is linked to @target such that @barr is completed only after
2640  * @target finishes execution.  Please note that the ordering
2641  * guarantee is observed only with respect to @target and on the local
2642  * cpu.
2643  *
2644  * Currently, a queued barrier can't be canceled.  This is because
2645  * try_to_grab_pending() can't determine whether the work to be
2646  * grabbed is at the head of the queue and thus can't clear LINKED
2647  * flag of the previous work while there must be a valid next work
2648  * after a work with LINKED flag set.
2649  *
2650  * Note that when @worker is non-NULL, @target may be modified
2651  * underneath us, so we can't reliably determine pwq from @target.
2652  *
2653  * CONTEXT:
2654  * raw_spin_lock_irq(pool->lock).
2655  */
2656 static void insert_wq_barrier(struct pool_workqueue *pwq,
2657 			      struct wq_barrier *barr,
2658 			      struct work_struct *target, struct worker *worker)
2659 {
2660 	struct list_head *head;
2661 	unsigned int linked = 0;
2662 
2663 	/*
2664 	 * debugobject calls are safe here even with pool->lock locked
2665 	 * as we know for sure that this will not trigger any of the
2666 	 * checks and call back into the fixup functions where we
2667 	 * might deadlock.
2668 	 */
2669 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2670 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2671 
2672 	init_completion_map(&barr->done, &target->lockdep_map);
2673 
2674 	barr->task = current;
2675 
2676 	/*
2677 	 * If @target is currently being executed, schedule the
2678 	 * barrier to the worker; otherwise, put it after @target.
2679 	 */
2680 	if (worker)
2681 		head = worker->scheduled.next;
2682 	else {
2683 		unsigned long *bits = work_data_bits(target);
2684 
2685 		head = target->entry.next;
2686 		/* there can already be other linked works, inherit and set */
2687 		linked = *bits & WORK_STRUCT_LINKED;
2688 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2689 	}
2690 
2691 	debug_work_activate(&barr->work);
2692 	insert_work(pwq, &barr->work, head,
2693 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2694 }
2695 
2696 /**
2697  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2698  * @wq: workqueue being flushed
2699  * @flush_color: new flush color, < 0 for no-op
2700  * @work_color: new work color, < 0 for no-op
2701  *
2702  * Prepare pwqs for workqueue flushing.
2703  *
2704  * If @flush_color is non-negative, flush_color on all pwqs should be
2705  * -1.  If no pwq has in-flight commands at the specified color, all
2706  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2707  * has in flight commands, its pwq->flush_color is set to
2708  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2709  * wakeup logic is armed and %true is returned.
2710  *
2711  * The caller should have initialized @wq->first_flusher prior to
2712  * calling this function with non-negative @flush_color.  If
2713  * @flush_color is negative, no flush color update is done and %false
2714  * is returned.
2715  *
2716  * If @work_color is non-negative, all pwqs should have the same
2717  * work_color which is previous to @work_color and all will be
2718  * advanced to @work_color.
2719  *
2720  * CONTEXT:
2721  * mutex_lock(wq->mutex).
2722  *
2723  * Return:
2724  * %true if @flush_color >= 0 and there's something to flush.  %false
2725  * otherwise.
2726  */
2727 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2728 				      int flush_color, int work_color)
2729 {
2730 	bool wait = false;
2731 	struct pool_workqueue *pwq;
2732 
2733 	if (flush_color >= 0) {
2734 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2735 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2736 	}
2737 
2738 	for_each_pwq(pwq, wq) {
2739 		struct worker_pool *pool = pwq->pool;
2740 
2741 		raw_spin_lock_irq(&pool->lock);
2742 
2743 		if (flush_color >= 0) {
2744 			WARN_ON_ONCE(pwq->flush_color != -1);
2745 
2746 			if (pwq->nr_in_flight[flush_color]) {
2747 				pwq->flush_color = flush_color;
2748 				atomic_inc(&wq->nr_pwqs_to_flush);
2749 				wait = true;
2750 			}
2751 		}
2752 
2753 		if (work_color >= 0) {
2754 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2755 			pwq->work_color = work_color;
2756 		}
2757 
2758 		raw_spin_unlock_irq(&pool->lock);
2759 	}
2760 
2761 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2762 		complete(&wq->first_flusher->done);
2763 
2764 	return wait;
2765 }
2766 
2767 /**
2768  * flush_workqueue - ensure that any scheduled work has run to completion.
2769  * @wq: workqueue to flush
2770  *
2771  * This function sleeps until all work items which were queued on entry
2772  * have finished execution, but it is not livelocked by new incoming ones.
2773  */
2774 void flush_workqueue(struct workqueue_struct *wq)
2775 {
2776 	struct wq_flusher this_flusher = {
2777 		.list = LIST_HEAD_INIT(this_flusher.list),
2778 		.flush_color = -1,
2779 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2780 	};
2781 	int next_color;
2782 
2783 	if (WARN_ON(!wq_online))
2784 		return;
2785 
2786 	lock_map_acquire(&wq->lockdep_map);
2787 	lock_map_release(&wq->lockdep_map);
2788 
2789 	mutex_lock(&wq->mutex);
2790 
2791 	/*
2792 	 * Start-to-wait phase
2793 	 */
2794 	next_color = work_next_color(wq->work_color);
2795 
2796 	if (next_color != wq->flush_color) {
2797 		/*
2798 		 * Color space is not full.  The current work_color
2799 		 * becomes our flush_color and work_color is advanced
2800 		 * by one.
2801 		 */
2802 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2803 		this_flusher.flush_color = wq->work_color;
2804 		wq->work_color = next_color;
2805 
2806 		if (!wq->first_flusher) {
2807 			/* no flush in progress, become the first flusher */
2808 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2809 
2810 			wq->first_flusher = &this_flusher;
2811 
2812 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2813 						       wq->work_color)) {
2814 				/* nothing to flush, done */
2815 				wq->flush_color = next_color;
2816 				wq->first_flusher = NULL;
2817 				goto out_unlock;
2818 			}
2819 		} else {
2820 			/* wait in queue */
2821 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2822 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2823 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2824 		}
2825 	} else {
2826 		/*
2827 		 * Oops, color space is full, wait on overflow queue.
2828 		 * The next flush completion will assign us
2829 		 * flush_color and transfer to flusher_queue.
2830 		 */
2831 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2832 	}
2833 
2834 	check_flush_dependency(wq, NULL);
2835 
2836 	mutex_unlock(&wq->mutex);
2837 
2838 	wait_for_completion(&this_flusher.done);
2839 
2840 	/*
2841 	 * Wake-up-and-cascade phase
2842 	 *
2843 	 * First flushers are responsible for cascading flushes and
2844 	 * handling overflow.  Non-first flushers can simply return.
2845 	 */
2846 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2847 		return;
2848 
2849 	mutex_lock(&wq->mutex);
2850 
2851 	/* we might have raced, check again with mutex held */
2852 	if (wq->first_flusher != &this_flusher)
2853 		goto out_unlock;
2854 
2855 	WRITE_ONCE(wq->first_flusher, NULL);
2856 
2857 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2858 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2859 
2860 	while (true) {
2861 		struct wq_flusher *next, *tmp;
2862 
2863 		/* complete all the flushers sharing the current flush color */
2864 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2865 			if (next->flush_color != wq->flush_color)
2866 				break;
2867 			list_del_init(&next->list);
2868 			complete(&next->done);
2869 		}
2870 
2871 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2872 			     wq->flush_color != work_next_color(wq->work_color));
2873 
2874 		/* this flush_color is finished, advance by one */
2875 		wq->flush_color = work_next_color(wq->flush_color);
2876 
2877 		/* one color has been freed, handle overflow queue */
2878 		if (!list_empty(&wq->flusher_overflow)) {
2879 			/*
2880 			 * Assign the same color to all overflowed
2881 			 * flushers, advance work_color and append to
2882 			 * flusher_queue.  This is the start-to-wait
2883 			 * phase for these overflowed flushers.
2884 			 */
2885 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2886 				tmp->flush_color = wq->work_color;
2887 
2888 			wq->work_color = work_next_color(wq->work_color);
2889 
2890 			list_splice_tail_init(&wq->flusher_overflow,
2891 					      &wq->flusher_queue);
2892 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2893 		}
2894 
2895 		if (list_empty(&wq->flusher_queue)) {
2896 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2897 			break;
2898 		}
2899 
2900 		/*
2901 		 * Need to flush more colors.  Make the next flusher
2902 		 * the new first flusher and arm pwqs.
2903 		 */
2904 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2905 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2906 
2907 		list_del_init(&next->list);
2908 		wq->first_flusher = next;
2909 
2910 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2911 			break;
2912 
2913 		/*
2914 		 * Meh... this color is already done, clear first
2915 		 * flusher and repeat cascading.
2916 		 */
2917 		wq->first_flusher = NULL;
2918 	}
2919 
2920 out_unlock:
2921 	mutex_unlock(&wq->mutex);
2922 }
2923 EXPORT_SYMBOL(flush_workqueue);
2924 
2925 /**
2926  * drain_workqueue - drain a workqueue
2927  * @wq: workqueue to drain
2928  *
2929  * Wait until the workqueue becomes empty.  While draining is in progress,
2930  * only chain queueing is allowed.  IOW, only currently pending or running
2931  * work items on @wq can queue further work items on it.  @wq is flushed
2932  * repeatedly until it becomes empty.  The number of flushing is determined
2933  * by the depth of chaining and should be relatively short.  Whine if it
2934  * takes too long.
2935  */
2936 void drain_workqueue(struct workqueue_struct *wq)
2937 {
2938 	unsigned int flush_cnt = 0;
2939 	struct pool_workqueue *pwq;
2940 
2941 	/*
2942 	 * __queue_work() needs to test whether there are drainers, is much
2943 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2944 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2945 	 */
2946 	mutex_lock(&wq->mutex);
2947 	if (!wq->nr_drainers++)
2948 		wq->flags |= __WQ_DRAINING;
2949 	mutex_unlock(&wq->mutex);
2950 reflush:
2951 	flush_workqueue(wq);
2952 
2953 	mutex_lock(&wq->mutex);
2954 
2955 	for_each_pwq(pwq, wq) {
2956 		bool drained;
2957 
2958 		raw_spin_lock_irq(&pwq->pool->lock);
2959 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2960 		raw_spin_unlock_irq(&pwq->pool->lock);
2961 
2962 		if (drained)
2963 			continue;
2964 
2965 		if (++flush_cnt == 10 ||
2966 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2967 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
2968 				wq->name, __func__, flush_cnt);
2969 
2970 		mutex_unlock(&wq->mutex);
2971 		goto reflush;
2972 	}
2973 
2974 	if (!--wq->nr_drainers)
2975 		wq->flags &= ~__WQ_DRAINING;
2976 	mutex_unlock(&wq->mutex);
2977 }
2978 EXPORT_SYMBOL_GPL(drain_workqueue);
2979 
2980 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2981 			     bool from_cancel)
2982 {
2983 	struct worker *worker = NULL;
2984 	struct worker_pool *pool;
2985 	struct pool_workqueue *pwq;
2986 
2987 	might_sleep();
2988 
2989 	rcu_read_lock();
2990 	pool = get_work_pool(work);
2991 	if (!pool) {
2992 		rcu_read_unlock();
2993 		return false;
2994 	}
2995 
2996 	raw_spin_lock_irq(&pool->lock);
2997 	/* see the comment in try_to_grab_pending() with the same code */
2998 	pwq = get_work_pwq(work);
2999 	if (pwq) {
3000 		if (unlikely(pwq->pool != pool))
3001 			goto already_gone;
3002 	} else {
3003 		worker = find_worker_executing_work(pool, work);
3004 		if (!worker)
3005 			goto already_gone;
3006 		pwq = worker->current_pwq;
3007 	}
3008 
3009 	check_flush_dependency(pwq->wq, work);
3010 
3011 	insert_wq_barrier(pwq, barr, work, worker);
3012 	raw_spin_unlock_irq(&pool->lock);
3013 
3014 	/*
3015 	 * Force a lock recursion deadlock when using flush_work() inside a
3016 	 * single-threaded or rescuer equipped workqueue.
3017 	 *
3018 	 * For single threaded workqueues the deadlock happens when the work
3019 	 * is after the work issuing the flush_work(). For rescuer equipped
3020 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3021 	 * forward progress.
3022 	 */
3023 	if (!from_cancel &&
3024 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3025 		lock_map_acquire(&pwq->wq->lockdep_map);
3026 		lock_map_release(&pwq->wq->lockdep_map);
3027 	}
3028 	rcu_read_unlock();
3029 	return true;
3030 already_gone:
3031 	raw_spin_unlock_irq(&pool->lock);
3032 	rcu_read_unlock();
3033 	return false;
3034 }
3035 
3036 static bool __flush_work(struct work_struct *work, bool from_cancel)
3037 {
3038 	struct wq_barrier barr;
3039 
3040 	if (WARN_ON(!wq_online))
3041 		return false;
3042 
3043 	if (WARN_ON(!work->func))
3044 		return false;
3045 
3046 	if (!from_cancel) {
3047 		lock_map_acquire(&work->lockdep_map);
3048 		lock_map_release(&work->lockdep_map);
3049 	}
3050 
3051 	if (start_flush_work(work, &barr, from_cancel)) {
3052 		wait_for_completion(&barr.done);
3053 		destroy_work_on_stack(&barr.work);
3054 		return true;
3055 	} else {
3056 		return false;
3057 	}
3058 }
3059 
3060 /**
3061  * flush_work - wait for a work to finish executing the last queueing instance
3062  * @work: the work to flush
3063  *
3064  * Wait until @work has finished execution.  @work is guaranteed to be idle
3065  * on return if it hasn't been requeued since flush started.
3066  *
3067  * Return:
3068  * %true if flush_work() waited for the work to finish execution,
3069  * %false if it was already idle.
3070  */
3071 bool flush_work(struct work_struct *work)
3072 {
3073 	return __flush_work(work, false);
3074 }
3075 EXPORT_SYMBOL_GPL(flush_work);
3076 
3077 struct cwt_wait {
3078 	wait_queue_entry_t		wait;
3079 	struct work_struct	*work;
3080 };
3081 
3082 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3083 {
3084 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3085 
3086 	if (cwait->work != key)
3087 		return 0;
3088 	return autoremove_wake_function(wait, mode, sync, key);
3089 }
3090 
3091 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3092 {
3093 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3094 	unsigned long flags;
3095 	int ret;
3096 
3097 	do {
3098 		ret = try_to_grab_pending(work, is_dwork, &flags);
3099 		/*
3100 		 * If someone else is already canceling, wait for it to
3101 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3102 		 * because we may get scheduled between @work's completion
3103 		 * and the other canceling task resuming and clearing
3104 		 * CANCELING - flush_work() will return false immediately
3105 		 * as @work is no longer busy, try_to_grab_pending() will
3106 		 * return -ENOENT as @work is still being canceled and the
3107 		 * other canceling task won't be able to clear CANCELING as
3108 		 * we're hogging the CPU.
3109 		 *
3110 		 * Let's wait for completion using a waitqueue.  As this
3111 		 * may lead to the thundering herd problem, use a custom
3112 		 * wake function which matches @work along with exclusive
3113 		 * wait and wakeup.
3114 		 */
3115 		if (unlikely(ret == -ENOENT)) {
3116 			struct cwt_wait cwait;
3117 
3118 			init_wait(&cwait.wait);
3119 			cwait.wait.func = cwt_wakefn;
3120 			cwait.work = work;
3121 
3122 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3123 						  TASK_UNINTERRUPTIBLE);
3124 			if (work_is_canceling(work))
3125 				schedule();
3126 			finish_wait(&cancel_waitq, &cwait.wait);
3127 		}
3128 	} while (unlikely(ret < 0));
3129 
3130 	/* tell other tasks trying to grab @work to back off */
3131 	mark_work_canceling(work);
3132 	local_irq_restore(flags);
3133 
3134 	/*
3135 	 * This allows canceling during early boot.  We know that @work
3136 	 * isn't executing.
3137 	 */
3138 	if (wq_online)
3139 		__flush_work(work, true);
3140 
3141 	clear_work_data(work);
3142 
3143 	/*
3144 	 * Paired with prepare_to_wait() above so that either
3145 	 * waitqueue_active() is visible here or !work_is_canceling() is
3146 	 * visible there.
3147 	 */
3148 	smp_mb();
3149 	if (waitqueue_active(&cancel_waitq))
3150 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3151 
3152 	return ret;
3153 }
3154 
3155 /**
3156  * cancel_work_sync - cancel a work and wait for it to finish
3157  * @work: the work to cancel
3158  *
3159  * Cancel @work and wait for its execution to finish.  This function
3160  * can be used even if the work re-queues itself or migrates to
3161  * another workqueue.  On return from this function, @work is
3162  * guaranteed to be not pending or executing on any CPU.
3163  *
3164  * cancel_work_sync(&delayed_work->work) must not be used for
3165  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3166  *
3167  * The caller must ensure that the workqueue on which @work was last
3168  * queued can't be destroyed before this function returns.
3169  *
3170  * Return:
3171  * %true if @work was pending, %false otherwise.
3172  */
3173 bool cancel_work_sync(struct work_struct *work)
3174 {
3175 	return __cancel_work_timer(work, false);
3176 }
3177 EXPORT_SYMBOL_GPL(cancel_work_sync);
3178 
3179 /**
3180  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3181  * @dwork: the delayed work to flush
3182  *
3183  * Delayed timer is cancelled and the pending work is queued for
3184  * immediate execution.  Like flush_work(), this function only
3185  * considers the last queueing instance of @dwork.
3186  *
3187  * Return:
3188  * %true if flush_work() waited for the work to finish execution,
3189  * %false if it was already idle.
3190  */
3191 bool flush_delayed_work(struct delayed_work *dwork)
3192 {
3193 	local_irq_disable();
3194 	if (del_timer_sync(&dwork->timer))
3195 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3196 	local_irq_enable();
3197 	return flush_work(&dwork->work);
3198 }
3199 EXPORT_SYMBOL(flush_delayed_work);
3200 
3201 /**
3202  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3203  * @rwork: the rcu work to flush
3204  *
3205  * Return:
3206  * %true if flush_rcu_work() waited for the work to finish execution,
3207  * %false if it was already idle.
3208  */
3209 bool flush_rcu_work(struct rcu_work *rwork)
3210 {
3211 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3212 		rcu_barrier();
3213 		flush_work(&rwork->work);
3214 		return true;
3215 	} else {
3216 		return flush_work(&rwork->work);
3217 	}
3218 }
3219 EXPORT_SYMBOL(flush_rcu_work);
3220 
3221 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3222 {
3223 	unsigned long flags;
3224 	int ret;
3225 
3226 	do {
3227 		ret = try_to_grab_pending(work, is_dwork, &flags);
3228 	} while (unlikely(ret == -EAGAIN));
3229 
3230 	if (unlikely(ret < 0))
3231 		return false;
3232 
3233 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3234 	local_irq_restore(flags);
3235 	return ret;
3236 }
3237 
3238 /**
3239  * cancel_delayed_work - cancel a delayed work
3240  * @dwork: delayed_work to cancel
3241  *
3242  * Kill off a pending delayed_work.
3243  *
3244  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3245  * pending.
3246  *
3247  * Note:
3248  * The work callback function may still be running on return, unless
3249  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3250  * use cancel_delayed_work_sync() to wait on it.
3251  *
3252  * This function is safe to call from any context including IRQ handler.
3253  */
3254 bool cancel_delayed_work(struct delayed_work *dwork)
3255 {
3256 	return __cancel_work(&dwork->work, true);
3257 }
3258 EXPORT_SYMBOL(cancel_delayed_work);
3259 
3260 /**
3261  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3262  * @dwork: the delayed work cancel
3263  *
3264  * This is cancel_work_sync() for delayed works.
3265  *
3266  * Return:
3267  * %true if @dwork was pending, %false otherwise.
3268  */
3269 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3270 {
3271 	return __cancel_work_timer(&dwork->work, true);
3272 }
3273 EXPORT_SYMBOL(cancel_delayed_work_sync);
3274 
3275 /**
3276  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3277  * @func: the function to call
3278  *
3279  * schedule_on_each_cpu() executes @func on each online CPU using the
3280  * system workqueue and blocks until all CPUs have completed.
3281  * schedule_on_each_cpu() is very slow.
3282  *
3283  * Return:
3284  * 0 on success, -errno on failure.
3285  */
3286 int schedule_on_each_cpu(work_func_t func)
3287 {
3288 	int cpu;
3289 	struct work_struct __percpu *works;
3290 
3291 	works = alloc_percpu(struct work_struct);
3292 	if (!works)
3293 		return -ENOMEM;
3294 
3295 	get_online_cpus();
3296 
3297 	for_each_online_cpu(cpu) {
3298 		struct work_struct *work = per_cpu_ptr(works, cpu);
3299 
3300 		INIT_WORK(work, func);
3301 		schedule_work_on(cpu, work);
3302 	}
3303 
3304 	for_each_online_cpu(cpu)
3305 		flush_work(per_cpu_ptr(works, cpu));
3306 
3307 	put_online_cpus();
3308 	free_percpu(works);
3309 	return 0;
3310 }
3311 
3312 /**
3313  * execute_in_process_context - reliably execute the routine with user context
3314  * @fn:		the function to execute
3315  * @ew:		guaranteed storage for the execute work structure (must
3316  *		be available when the work executes)
3317  *
3318  * Executes the function immediately if process context is available,
3319  * otherwise schedules the function for delayed execution.
3320  *
3321  * Return:	0 - function was executed
3322  *		1 - function was scheduled for execution
3323  */
3324 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3325 {
3326 	if (!in_interrupt()) {
3327 		fn(&ew->work);
3328 		return 0;
3329 	}
3330 
3331 	INIT_WORK(&ew->work, fn);
3332 	schedule_work(&ew->work);
3333 
3334 	return 1;
3335 }
3336 EXPORT_SYMBOL_GPL(execute_in_process_context);
3337 
3338 /**
3339  * free_workqueue_attrs - free a workqueue_attrs
3340  * @attrs: workqueue_attrs to free
3341  *
3342  * Undo alloc_workqueue_attrs().
3343  */
3344 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3345 {
3346 	if (attrs) {
3347 		free_cpumask_var(attrs->cpumask);
3348 		kfree(attrs);
3349 	}
3350 }
3351 
3352 /**
3353  * alloc_workqueue_attrs - allocate a workqueue_attrs
3354  *
3355  * Allocate a new workqueue_attrs, initialize with default settings and
3356  * return it.
3357  *
3358  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3359  */
3360 struct workqueue_attrs *alloc_workqueue_attrs(void)
3361 {
3362 	struct workqueue_attrs *attrs;
3363 
3364 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3365 	if (!attrs)
3366 		goto fail;
3367 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3368 		goto fail;
3369 
3370 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3371 	return attrs;
3372 fail:
3373 	free_workqueue_attrs(attrs);
3374 	return NULL;
3375 }
3376 
3377 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3378 				 const struct workqueue_attrs *from)
3379 {
3380 	to->nice = from->nice;
3381 	cpumask_copy(to->cpumask, from->cpumask);
3382 	/*
3383 	 * Unlike hash and equality test, this function doesn't ignore
3384 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3385 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3386 	 */
3387 	to->no_numa = from->no_numa;
3388 }
3389 
3390 /* hash value of the content of @attr */
3391 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3392 {
3393 	u32 hash = 0;
3394 
3395 	hash = jhash_1word(attrs->nice, hash);
3396 	hash = jhash(cpumask_bits(attrs->cpumask),
3397 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3398 	return hash;
3399 }
3400 
3401 /* content equality test */
3402 static bool wqattrs_equal(const struct workqueue_attrs *a,
3403 			  const struct workqueue_attrs *b)
3404 {
3405 	if (a->nice != b->nice)
3406 		return false;
3407 	if (!cpumask_equal(a->cpumask, b->cpumask))
3408 		return false;
3409 	return true;
3410 }
3411 
3412 /**
3413  * init_worker_pool - initialize a newly zalloc'd worker_pool
3414  * @pool: worker_pool to initialize
3415  *
3416  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3417  *
3418  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3419  * inside @pool proper are initialized and put_unbound_pool() can be called
3420  * on @pool safely to release it.
3421  */
3422 static int init_worker_pool(struct worker_pool *pool)
3423 {
3424 	raw_spin_lock_init(&pool->lock);
3425 	pool->id = -1;
3426 	pool->cpu = -1;
3427 	pool->node = NUMA_NO_NODE;
3428 	pool->flags |= POOL_DISASSOCIATED;
3429 	pool->watchdog_ts = jiffies;
3430 	INIT_LIST_HEAD(&pool->worklist);
3431 	INIT_LIST_HEAD(&pool->idle_list);
3432 	hash_init(pool->busy_hash);
3433 
3434 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3435 
3436 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3437 
3438 	INIT_LIST_HEAD(&pool->workers);
3439 
3440 	ida_init(&pool->worker_ida);
3441 	INIT_HLIST_NODE(&pool->hash_node);
3442 	pool->refcnt = 1;
3443 
3444 	/* shouldn't fail above this point */
3445 	pool->attrs = alloc_workqueue_attrs();
3446 	if (!pool->attrs)
3447 		return -ENOMEM;
3448 	return 0;
3449 }
3450 
3451 #ifdef CONFIG_LOCKDEP
3452 static void wq_init_lockdep(struct workqueue_struct *wq)
3453 {
3454 	char *lock_name;
3455 
3456 	lockdep_register_key(&wq->key);
3457 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3458 	if (!lock_name)
3459 		lock_name = wq->name;
3460 
3461 	wq->lock_name = lock_name;
3462 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3463 }
3464 
3465 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3466 {
3467 	lockdep_unregister_key(&wq->key);
3468 }
3469 
3470 static void wq_free_lockdep(struct workqueue_struct *wq)
3471 {
3472 	if (wq->lock_name != wq->name)
3473 		kfree(wq->lock_name);
3474 }
3475 #else
3476 static void wq_init_lockdep(struct workqueue_struct *wq)
3477 {
3478 }
3479 
3480 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3481 {
3482 }
3483 
3484 static void wq_free_lockdep(struct workqueue_struct *wq)
3485 {
3486 }
3487 #endif
3488 
3489 static void rcu_free_wq(struct rcu_head *rcu)
3490 {
3491 	struct workqueue_struct *wq =
3492 		container_of(rcu, struct workqueue_struct, rcu);
3493 
3494 	wq_free_lockdep(wq);
3495 
3496 	if (!(wq->flags & WQ_UNBOUND))
3497 		free_percpu(wq->cpu_pwqs);
3498 	else
3499 		free_workqueue_attrs(wq->unbound_attrs);
3500 
3501 	kfree(wq);
3502 }
3503 
3504 static void rcu_free_pool(struct rcu_head *rcu)
3505 {
3506 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3507 
3508 	ida_destroy(&pool->worker_ida);
3509 	free_workqueue_attrs(pool->attrs);
3510 	kfree(pool);
3511 }
3512 
3513 /* This returns with the lock held on success (pool manager is inactive). */
3514 static bool wq_manager_inactive(struct worker_pool *pool)
3515 {
3516 	raw_spin_lock_irq(&pool->lock);
3517 
3518 	if (pool->flags & POOL_MANAGER_ACTIVE) {
3519 		raw_spin_unlock_irq(&pool->lock);
3520 		return false;
3521 	}
3522 	return true;
3523 }
3524 
3525 /**
3526  * put_unbound_pool - put a worker_pool
3527  * @pool: worker_pool to put
3528  *
3529  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3530  * safe manner.  get_unbound_pool() calls this function on its failure path
3531  * and this function should be able to release pools which went through,
3532  * successfully or not, init_worker_pool().
3533  *
3534  * Should be called with wq_pool_mutex held.
3535  */
3536 static void put_unbound_pool(struct worker_pool *pool)
3537 {
3538 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3539 	struct worker *worker;
3540 
3541 	lockdep_assert_held(&wq_pool_mutex);
3542 
3543 	if (--pool->refcnt)
3544 		return;
3545 
3546 	/* sanity checks */
3547 	if (WARN_ON(!(pool->cpu < 0)) ||
3548 	    WARN_ON(!list_empty(&pool->worklist)))
3549 		return;
3550 
3551 	/* release id and unhash */
3552 	if (pool->id >= 0)
3553 		idr_remove(&worker_pool_idr, pool->id);
3554 	hash_del(&pool->hash_node);
3555 
3556 	/*
3557 	 * Become the manager and destroy all workers.  This prevents
3558 	 * @pool's workers from blocking on attach_mutex.  We're the last
3559 	 * manager and @pool gets freed with the flag set.
3560 	 * Because of how wq_manager_inactive() works, we will hold the
3561 	 * spinlock after a successful wait.
3562 	 */
3563 	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3564 			   TASK_UNINTERRUPTIBLE);
3565 	pool->flags |= POOL_MANAGER_ACTIVE;
3566 
3567 	while ((worker = first_idle_worker(pool)))
3568 		destroy_worker(worker);
3569 	WARN_ON(pool->nr_workers || pool->nr_idle);
3570 	raw_spin_unlock_irq(&pool->lock);
3571 
3572 	mutex_lock(&wq_pool_attach_mutex);
3573 	if (!list_empty(&pool->workers))
3574 		pool->detach_completion = &detach_completion;
3575 	mutex_unlock(&wq_pool_attach_mutex);
3576 
3577 	if (pool->detach_completion)
3578 		wait_for_completion(pool->detach_completion);
3579 
3580 	/* shut down the timers */
3581 	del_timer_sync(&pool->idle_timer);
3582 	del_timer_sync(&pool->mayday_timer);
3583 
3584 	/* RCU protected to allow dereferences from get_work_pool() */
3585 	call_rcu(&pool->rcu, rcu_free_pool);
3586 }
3587 
3588 /**
3589  * get_unbound_pool - get a worker_pool with the specified attributes
3590  * @attrs: the attributes of the worker_pool to get
3591  *
3592  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3593  * reference count and return it.  If there already is a matching
3594  * worker_pool, it will be used; otherwise, this function attempts to
3595  * create a new one.
3596  *
3597  * Should be called with wq_pool_mutex held.
3598  *
3599  * Return: On success, a worker_pool with the same attributes as @attrs.
3600  * On failure, %NULL.
3601  */
3602 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3603 {
3604 	u32 hash = wqattrs_hash(attrs);
3605 	struct worker_pool *pool;
3606 	int node;
3607 	int target_node = NUMA_NO_NODE;
3608 
3609 	lockdep_assert_held(&wq_pool_mutex);
3610 
3611 	/* do we already have a matching pool? */
3612 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3613 		if (wqattrs_equal(pool->attrs, attrs)) {
3614 			pool->refcnt++;
3615 			return pool;
3616 		}
3617 	}
3618 
3619 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3620 	if (wq_numa_enabled) {
3621 		for_each_node(node) {
3622 			if (cpumask_subset(attrs->cpumask,
3623 					   wq_numa_possible_cpumask[node])) {
3624 				target_node = node;
3625 				break;
3626 			}
3627 		}
3628 	}
3629 
3630 	/* nope, create a new one */
3631 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3632 	if (!pool || init_worker_pool(pool) < 0)
3633 		goto fail;
3634 
3635 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3636 	copy_workqueue_attrs(pool->attrs, attrs);
3637 	pool->node = target_node;
3638 
3639 	/*
3640 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3641 	 * 'struct workqueue_attrs' comments for detail.
3642 	 */
3643 	pool->attrs->no_numa = false;
3644 
3645 	if (worker_pool_assign_id(pool) < 0)
3646 		goto fail;
3647 
3648 	/* create and start the initial worker */
3649 	if (wq_online && !create_worker(pool))
3650 		goto fail;
3651 
3652 	/* install */
3653 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3654 
3655 	return pool;
3656 fail:
3657 	if (pool)
3658 		put_unbound_pool(pool);
3659 	return NULL;
3660 }
3661 
3662 static void rcu_free_pwq(struct rcu_head *rcu)
3663 {
3664 	kmem_cache_free(pwq_cache,
3665 			container_of(rcu, struct pool_workqueue, rcu));
3666 }
3667 
3668 /*
3669  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3670  * and needs to be destroyed.
3671  */
3672 static void pwq_unbound_release_workfn(struct work_struct *work)
3673 {
3674 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3675 						  unbound_release_work);
3676 	struct workqueue_struct *wq = pwq->wq;
3677 	struct worker_pool *pool = pwq->pool;
3678 	bool is_last;
3679 
3680 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3681 		return;
3682 
3683 	mutex_lock(&wq->mutex);
3684 	list_del_rcu(&pwq->pwqs_node);
3685 	is_last = list_empty(&wq->pwqs);
3686 	mutex_unlock(&wq->mutex);
3687 
3688 	mutex_lock(&wq_pool_mutex);
3689 	put_unbound_pool(pool);
3690 	mutex_unlock(&wq_pool_mutex);
3691 
3692 	call_rcu(&pwq->rcu, rcu_free_pwq);
3693 
3694 	/*
3695 	 * If we're the last pwq going away, @wq is already dead and no one
3696 	 * is gonna access it anymore.  Schedule RCU free.
3697 	 */
3698 	if (is_last) {
3699 		wq_unregister_lockdep(wq);
3700 		call_rcu(&wq->rcu, rcu_free_wq);
3701 	}
3702 }
3703 
3704 /**
3705  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3706  * @pwq: target pool_workqueue
3707  *
3708  * If @pwq isn't freezing, set @pwq->max_active to the associated
3709  * workqueue's saved_max_active and activate delayed work items
3710  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3711  */
3712 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3713 {
3714 	struct workqueue_struct *wq = pwq->wq;
3715 	bool freezable = wq->flags & WQ_FREEZABLE;
3716 	unsigned long flags;
3717 
3718 	/* for @wq->saved_max_active */
3719 	lockdep_assert_held(&wq->mutex);
3720 
3721 	/* fast exit for non-freezable wqs */
3722 	if (!freezable && pwq->max_active == wq->saved_max_active)
3723 		return;
3724 
3725 	/* this function can be called during early boot w/ irq disabled */
3726 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3727 
3728 	/*
3729 	 * During [un]freezing, the caller is responsible for ensuring that
3730 	 * this function is called at least once after @workqueue_freezing
3731 	 * is updated and visible.
3732 	 */
3733 	if (!freezable || !workqueue_freezing) {
3734 		bool kick = false;
3735 
3736 		pwq->max_active = wq->saved_max_active;
3737 
3738 		while (!list_empty(&pwq->delayed_works) &&
3739 		       pwq->nr_active < pwq->max_active) {
3740 			pwq_activate_first_delayed(pwq);
3741 			kick = true;
3742 		}
3743 
3744 		/*
3745 		 * Need to kick a worker after thawed or an unbound wq's
3746 		 * max_active is bumped. In realtime scenarios, always kicking a
3747 		 * worker will cause interference on the isolated cpu cores, so
3748 		 * let's kick iff work items were activated.
3749 		 */
3750 		if (kick)
3751 			wake_up_worker(pwq->pool);
3752 	} else {
3753 		pwq->max_active = 0;
3754 	}
3755 
3756 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3757 }
3758 
3759 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3760 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3761 		     struct worker_pool *pool)
3762 {
3763 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3764 
3765 	memset(pwq, 0, sizeof(*pwq));
3766 
3767 	pwq->pool = pool;
3768 	pwq->wq = wq;
3769 	pwq->flush_color = -1;
3770 	pwq->refcnt = 1;
3771 	INIT_LIST_HEAD(&pwq->delayed_works);
3772 	INIT_LIST_HEAD(&pwq->pwqs_node);
3773 	INIT_LIST_HEAD(&pwq->mayday_node);
3774 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3775 }
3776 
3777 /* sync @pwq with the current state of its associated wq and link it */
3778 static void link_pwq(struct pool_workqueue *pwq)
3779 {
3780 	struct workqueue_struct *wq = pwq->wq;
3781 
3782 	lockdep_assert_held(&wq->mutex);
3783 
3784 	/* may be called multiple times, ignore if already linked */
3785 	if (!list_empty(&pwq->pwqs_node))
3786 		return;
3787 
3788 	/* set the matching work_color */
3789 	pwq->work_color = wq->work_color;
3790 
3791 	/* sync max_active to the current setting */
3792 	pwq_adjust_max_active(pwq);
3793 
3794 	/* link in @pwq */
3795 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3796 }
3797 
3798 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3799 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3800 					const struct workqueue_attrs *attrs)
3801 {
3802 	struct worker_pool *pool;
3803 	struct pool_workqueue *pwq;
3804 
3805 	lockdep_assert_held(&wq_pool_mutex);
3806 
3807 	pool = get_unbound_pool(attrs);
3808 	if (!pool)
3809 		return NULL;
3810 
3811 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3812 	if (!pwq) {
3813 		put_unbound_pool(pool);
3814 		return NULL;
3815 	}
3816 
3817 	init_pwq(pwq, wq, pool);
3818 	return pwq;
3819 }
3820 
3821 /**
3822  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3823  * @attrs: the wq_attrs of the default pwq of the target workqueue
3824  * @node: the target NUMA node
3825  * @cpu_going_down: if >= 0, the CPU to consider as offline
3826  * @cpumask: outarg, the resulting cpumask
3827  *
3828  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3829  * @cpu_going_down is >= 0, that cpu is considered offline during
3830  * calculation.  The result is stored in @cpumask.
3831  *
3832  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3833  * enabled and @node has online CPUs requested by @attrs, the returned
3834  * cpumask is the intersection of the possible CPUs of @node and
3835  * @attrs->cpumask.
3836  *
3837  * The caller is responsible for ensuring that the cpumask of @node stays
3838  * stable.
3839  *
3840  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3841  * %false if equal.
3842  */
3843 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3844 				 int cpu_going_down, cpumask_t *cpumask)
3845 {
3846 	if (!wq_numa_enabled || attrs->no_numa)
3847 		goto use_dfl;
3848 
3849 	/* does @node have any online CPUs @attrs wants? */
3850 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3851 	if (cpu_going_down >= 0)
3852 		cpumask_clear_cpu(cpu_going_down, cpumask);
3853 
3854 	if (cpumask_empty(cpumask))
3855 		goto use_dfl;
3856 
3857 	/* yeap, return possible CPUs in @node that @attrs wants */
3858 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3859 
3860 	if (cpumask_empty(cpumask)) {
3861 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3862 				"possible intersect\n");
3863 		return false;
3864 	}
3865 
3866 	return !cpumask_equal(cpumask, attrs->cpumask);
3867 
3868 use_dfl:
3869 	cpumask_copy(cpumask, attrs->cpumask);
3870 	return false;
3871 }
3872 
3873 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3874 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3875 						   int node,
3876 						   struct pool_workqueue *pwq)
3877 {
3878 	struct pool_workqueue *old_pwq;
3879 
3880 	lockdep_assert_held(&wq_pool_mutex);
3881 	lockdep_assert_held(&wq->mutex);
3882 
3883 	/* link_pwq() can handle duplicate calls */
3884 	link_pwq(pwq);
3885 
3886 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3887 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3888 	return old_pwq;
3889 }
3890 
3891 /* context to store the prepared attrs & pwqs before applying */
3892 struct apply_wqattrs_ctx {
3893 	struct workqueue_struct	*wq;		/* target workqueue */
3894 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3895 	struct list_head	list;		/* queued for batching commit */
3896 	struct pool_workqueue	*dfl_pwq;
3897 	struct pool_workqueue	*pwq_tbl[];
3898 };
3899 
3900 /* free the resources after success or abort */
3901 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3902 {
3903 	if (ctx) {
3904 		int node;
3905 
3906 		for_each_node(node)
3907 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3908 		put_pwq_unlocked(ctx->dfl_pwq);
3909 
3910 		free_workqueue_attrs(ctx->attrs);
3911 
3912 		kfree(ctx);
3913 	}
3914 }
3915 
3916 /* allocate the attrs and pwqs for later installation */
3917 static struct apply_wqattrs_ctx *
3918 apply_wqattrs_prepare(struct workqueue_struct *wq,
3919 		      const struct workqueue_attrs *attrs)
3920 {
3921 	struct apply_wqattrs_ctx *ctx;
3922 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3923 	int node;
3924 
3925 	lockdep_assert_held(&wq_pool_mutex);
3926 
3927 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3928 
3929 	new_attrs = alloc_workqueue_attrs();
3930 	tmp_attrs = alloc_workqueue_attrs();
3931 	if (!ctx || !new_attrs || !tmp_attrs)
3932 		goto out_free;
3933 
3934 	/*
3935 	 * Calculate the attrs of the default pwq.
3936 	 * If the user configured cpumask doesn't overlap with the
3937 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3938 	 */
3939 	copy_workqueue_attrs(new_attrs, attrs);
3940 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3941 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3942 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3943 
3944 	/*
3945 	 * We may create multiple pwqs with differing cpumasks.  Make a
3946 	 * copy of @new_attrs which will be modified and used to obtain
3947 	 * pools.
3948 	 */
3949 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3950 
3951 	/*
3952 	 * If something goes wrong during CPU up/down, we'll fall back to
3953 	 * the default pwq covering whole @attrs->cpumask.  Always create
3954 	 * it even if we don't use it immediately.
3955 	 */
3956 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3957 	if (!ctx->dfl_pwq)
3958 		goto out_free;
3959 
3960 	for_each_node(node) {
3961 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3962 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3963 			if (!ctx->pwq_tbl[node])
3964 				goto out_free;
3965 		} else {
3966 			ctx->dfl_pwq->refcnt++;
3967 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3968 		}
3969 	}
3970 
3971 	/* save the user configured attrs and sanitize it. */
3972 	copy_workqueue_attrs(new_attrs, attrs);
3973 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3974 	ctx->attrs = new_attrs;
3975 
3976 	ctx->wq = wq;
3977 	free_workqueue_attrs(tmp_attrs);
3978 	return ctx;
3979 
3980 out_free:
3981 	free_workqueue_attrs(tmp_attrs);
3982 	free_workqueue_attrs(new_attrs);
3983 	apply_wqattrs_cleanup(ctx);
3984 	return NULL;
3985 }
3986 
3987 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3988 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3989 {
3990 	int node;
3991 
3992 	/* all pwqs have been created successfully, let's install'em */
3993 	mutex_lock(&ctx->wq->mutex);
3994 
3995 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3996 
3997 	/* save the previous pwq and install the new one */
3998 	for_each_node(node)
3999 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4000 							  ctx->pwq_tbl[node]);
4001 
4002 	/* @dfl_pwq might not have been used, ensure it's linked */
4003 	link_pwq(ctx->dfl_pwq);
4004 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4005 
4006 	mutex_unlock(&ctx->wq->mutex);
4007 }
4008 
4009 static void apply_wqattrs_lock(void)
4010 {
4011 	/* CPUs should stay stable across pwq creations and installations */
4012 	get_online_cpus();
4013 	mutex_lock(&wq_pool_mutex);
4014 }
4015 
4016 static void apply_wqattrs_unlock(void)
4017 {
4018 	mutex_unlock(&wq_pool_mutex);
4019 	put_online_cpus();
4020 }
4021 
4022 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4023 					const struct workqueue_attrs *attrs)
4024 {
4025 	struct apply_wqattrs_ctx *ctx;
4026 
4027 	/* only unbound workqueues can change attributes */
4028 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4029 		return -EINVAL;
4030 
4031 	/* creating multiple pwqs breaks ordering guarantee */
4032 	if (!list_empty(&wq->pwqs)) {
4033 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4034 			return -EINVAL;
4035 
4036 		wq->flags &= ~__WQ_ORDERED;
4037 	}
4038 
4039 	ctx = apply_wqattrs_prepare(wq, attrs);
4040 	if (!ctx)
4041 		return -ENOMEM;
4042 
4043 	/* the ctx has been prepared successfully, let's commit it */
4044 	apply_wqattrs_commit(ctx);
4045 	apply_wqattrs_cleanup(ctx);
4046 
4047 	return 0;
4048 }
4049 
4050 /**
4051  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4052  * @wq: the target workqueue
4053  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4054  *
4055  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4056  * machines, this function maps a separate pwq to each NUMA node with
4057  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4058  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4059  * items finish.  Note that a work item which repeatedly requeues itself
4060  * back-to-back will stay on its current pwq.
4061  *
4062  * Performs GFP_KERNEL allocations.
4063  *
4064  * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4065  *
4066  * Return: 0 on success and -errno on failure.
4067  */
4068 int apply_workqueue_attrs(struct workqueue_struct *wq,
4069 			  const struct workqueue_attrs *attrs)
4070 {
4071 	int ret;
4072 
4073 	lockdep_assert_cpus_held();
4074 
4075 	mutex_lock(&wq_pool_mutex);
4076 	ret = apply_workqueue_attrs_locked(wq, attrs);
4077 	mutex_unlock(&wq_pool_mutex);
4078 
4079 	return ret;
4080 }
4081 
4082 /**
4083  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4084  * @wq: the target workqueue
4085  * @cpu: the CPU coming up or going down
4086  * @online: whether @cpu is coming up or going down
4087  *
4088  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4089  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4090  * @wq accordingly.
4091  *
4092  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4093  * falls back to @wq->dfl_pwq which may not be optimal but is always
4094  * correct.
4095  *
4096  * Note that when the last allowed CPU of a NUMA node goes offline for a
4097  * workqueue with a cpumask spanning multiple nodes, the workers which were
4098  * already executing the work items for the workqueue will lose their CPU
4099  * affinity and may execute on any CPU.  This is similar to how per-cpu
4100  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4101  * affinity, it's the user's responsibility to flush the work item from
4102  * CPU_DOWN_PREPARE.
4103  */
4104 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4105 				   bool online)
4106 {
4107 	int node = cpu_to_node(cpu);
4108 	int cpu_off = online ? -1 : cpu;
4109 	struct pool_workqueue *old_pwq = NULL, *pwq;
4110 	struct workqueue_attrs *target_attrs;
4111 	cpumask_t *cpumask;
4112 
4113 	lockdep_assert_held(&wq_pool_mutex);
4114 
4115 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4116 	    wq->unbound_attrs->no_numa)
4117 		return;
4118 
4119 	/*
4120 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4121 	 * Let's use a preallocated one.  The following buf is protected by
4122 	 * CPU hotplug exclusion.
4123 	 */
4124 	target_attrs = wq_update_unbound_numa_attrs_buf;
4125 	cpumask = target_attrs->cpumask;
4126 
4127 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4128 	pwq = unbound_pwq_by_node(wq, node);
4129 
4130 	/*
4131 	 * Let's determine what needs to be done.  If the target cpumask is
4132 	 * different from the default pwq's, we need to compare it to @pwq's
4133 	 * and create a new one if they don't match.  If the target cpumask
4134 	 * equals the default pwq's, the default pwq should be used.
4135 	 */
4136 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4137 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4138 			return;
4139 	} else {
4140 		goto use_dfl_pwq;
4141 	}
4142 
4143 	/* create a new pwq */
4144 	pwq = alloc_unbound_pwq(wq, target_attrs);
4145 	if (!pwq) {
4146 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4147 			wq->name);
4148 		goto use_dfl_pwq;
4149 	}
4150 
4151 	/* Install the new pwq. */
4152 	mutex_lock(&wq->mutex);
4153 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4154 	goto out_unlock;
4155 
4156 use_dfl_pwq:
4157 	mutex_lock(&wq->mutex);
4158 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4159 	get_pwq(wq->dfl_pwq);
4160 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4161 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4162 out_unlock:
4163 	mutex_unlock(&wq->mutex);
4164 	put_pwq_unlocked(old_pwq);
4165 }
4166 
4167 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4168 {
4169 	bool highpri = wq->flags & WQ_HIGHPRI;
4170 	int cpu, ret;
4171 
4172 	if (!(wq->flags & WQ_UNBOUND)) {
4173 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4174 		if (!wq->cpu_pwqs)
4175 			return -ENOMEM;
4176 
4177 		for_each_possible_cpu(cpu) {
4178 			struct pool_workqueue *pwq =
4179 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4180 			struct worker_pool *cpu_pools =
4181 				per_cpu(cpu_worker_pools, cpu);
4182 
4183 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4184 
4185 			mutex_lock(&wq->mutex);
4186 			link_pwq(pwq);
4187 			mutex_unlock(&wq->mutex);
4188 		}
4189 		return 0;
4190 	}
4191 
4192 	get_online_cpus();
4193 	if (wq->flags & __WQ_ORDERED) {
4194 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4195 		/* there should only be single pwq for ordering guarantee */
4196 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4197 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4198 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4199 	} else {
4200 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4201 	}
4202 	put_online_cpus();
4203 
4204 	return ret;
4205 }
4206 
4207 static int wq_clamp_max_active(int max_active, unsigned int flags,
4208 			       const char *name)
4209 {
4210 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4211 
4212 	if (max_active < 1 || max_active > lim)
4213 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4214 			max_active, name, 1, lim);
4215 
4216 	return clamp_val(max_active, 1, lim);
4217 }
4218 
4219 /*
4220  * Workqueues which may be used during memory reclaim should have a rescuer
4221  * to guarantee forward progress.
4222  */
4223 static int init_rescuer(struct workqueue_struct *wq)
4224 {
4225 	struct worker *rescuer;
4226 	int ret;
4227 
4228 	if (!(wq->flags & WQ_MEM_RECLAIM))
4229 		return 0;
4230 
4231 	rescuer = alloc_worker(NUMA_NO_NODE);
4232 	if (!rescuer)
4233 		return -ENOMEM;
4234 
4235 	rescuer->rescue_wq = wq;
4236 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4237 	if (IS_ERR(rescuer->task)) {
4238 		ret = PTR_ERR(rescuer->task);
4239 		kfree(rescuer);
4240 		return ret;
4241 	}
4242 
4243 	wq->rescuer = rescuer;
4244 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4245 	wake_up_process(rescuer->task);
4246 
4247 	return 0;
4248 }
4249 
4250 __printf(1, 4)
4251 struct workqueue_struct *alloc_workqueue(const char *fmt,
4252 					 unsigned int flags,
4253 					 int max_active, ...)
4254 {
4255 	size_t tbl_size = 0;
4256 	va_list args;
4257 	struct workqueue_struct *wq;
4258 	struct pool_workqueue *pwq;
4259 
4260 	/*
4261 	 * Unbound && max_active == 1 used to imply ordered, which is no
4262 	 * longer the case on NUMA machines due to per-node pools.  While
4263 	 * alloc_ordered_workqueue() is the right way to create an ordered
4264 	 * workqueue, keep the previous behavior to avoid subtle breakages
4265 	 * on NUMA.
4266 	 */
4267 	if ((flags & WQ_UNBOUND) && max_active == 1)
4268 		flags |= __WQ_ORDERED;
4269 
4270 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4271 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4272 		flags |= WQ_UNBOUND;
4273 
4274 	/* allocate wq and format name */
4275 	if (flags & WQ_UNBOUND)
4276 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4277 
4278 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4279 	if (!wq)
4280 		return NULL;
4281 
4282 	if (flags & WQ_UNBOUND) {
4283 		wq->unbound_attrs = alloc_workqueue_attrs();
4284 		if (!wq->unbound_attrs)
4285 			goto err_free_wq;
4286 	}
4287 
4288 	va_start(args, max_active);
4289 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4290 	va_end(args);
4291 
4292 	max_active = max_active ?: WQ_DFL_ACTIVE;
4293 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4294 
4295 	/* init wq */
4296 	wq->flags = flags;
4297 	wq->saved_max_active = max_active;
4298 	mutex_init(&wq->mutex);
4299 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4300 	INIT_LIST_HEAD(&wq->pwqs);
4301 	INIT_LIST_HEAD(&wq->flusher_queue);
4302 	INIT_LIST_HEAD(&wq->flusher_overflow);
4303 	INIT_LIST_HEAD(&wq->maydays);
4304 
4305 	wq_init_lockdep(wq);
4306 	INIT_LIST_HEAD(&wq->list);
4307 
4308 	if (alloc_and_link_pwqs(wq) < 0)
4309 		goto err_unreg_lockdep;
4310 
4311 	if (wq_online && init_rescuer(wq) < 0)
4312 		goto err_destroy;
4313 
4314 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4315 		goto err_destroy;
4316 
4317 	/*
4318 	 * wq_pool_mutex protects global freeze state and workqueues list.
4319 	 * Grab it, adjust max_active and add the new @wq to workqueues
4320 	 * list.
4321 	 */
4322 	mutex_lock(&wq_pool_mutex);
4323 
4324 	mutex_lock(&wq->mutex);
4325 	for_each_pwq(pwq, wq)
4326 		pwq_adjust_max_active(pwq);
4327 	mutex_unlock(&wq->mutex);
4328 
4329 	list_add_tail_rcu(&wq->list, &workqueues);
4330 
4331 	mutex_unlock(&wq_pool_mutex);
4332 
4333 	return wq;
4334 
4335 err_unreg_lockdep:
4336 	wq_unregister_lockdep(wq);
4337 	wq_free_lockdep(wq);
4338 err_free_wq:
4339 	free_workqueue_attrs(wq->unbound_attrs);
4340 	kfree(wq);
4341 	return NULL;
4342 err_destroy:
4343 	destroy_workqueue(wq);
4344 	return NULL;
4345 }
4346 EXPORT_SYMBOL_GPL(alloc_workqueue);
4347 
4348 static bool pwq_busy(struct pool_workqueue *pwq)
4349 {
4350 	int i;
4351 
4352 	for (i = 0; i < WORK_NR_COLORS; i++)
4353 		if (pwq->nr_in_flight[i])
4354 			return true;
4355 
4356 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4357 		return true;
4358 	if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4359 		return true;
4360 
4361 	return false;
4362 }
4363 
4364 /**
4365  * destroy_workqueue - safely terminate a workqueue
4366  * @wq: target workqueue
4367  *
4368  * Safely destroy a workqueue. All work currently pending will be done first.
4369  */
4370 void destroy_workqueue(struct workqueue_struct *wq)
4371 {
4372 	struct pool_workqueue *pwq;
4373 	int node;
4374 
4375 	/*
4376 	 * Remove it from sysfs first so that sanity check failure doesn't
4377 	 * lead to sysfs name conflicts.
4378 	 */
4379 	workqueue_sysfs_unregister(wq);
4380 
4381 	/* drain it before proceeding with destruction */
4382 	drain_workqueue(wq);
4383 
4384 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4385 	if (wq->rescuer) {
4386 		struct worker *rescuer = wq->rescuer;
4387 
4388 		/* this prevents new queueing */
4389 		raw_spin_lock_irq(&wq_mayday_lock);
4390 		wq->rescuer = NULL;
4391 		raw_spin_unlock_irq(&wq_mayday_lock);
4392 
4393 		/* rescuer will empty maydays list before exiting */
4394 		kthread_stop(rescuer->task);
4395 		kfree(rescuer);
4396 	}
4397 
4398 	/*
4399 	 * Sanity checks - grab all the locks so that we wait for all
4400 	 * in-flight operations which may do put_pwq().
4401 	 */
4402 	mutex_lock(&wq_pool_mutex);
4403 	mutex_lock(&wq->mutex);
4404 	for_each_pwq(pwq, wq) {
4405 		raw_spin_lock_irq(&pwq->pool->lock);
4406 		if (WARN_ON(pwq_busy(pwq))) {
4407 			pr_warn("%s: %s has the following busy pwq\n",
4408 				__func__, wq->name);
4409 			show_pwq(pwq);
4410 			raw_spin_unlock_irq(&pwq->pool->lock);
4411 			mutex_unlock(&wq->mutex);
4412 			mutex_unlock(&wq_pool_mutex);
4413 			show_workqueue_state();
4414 			return;
4415 		}
4416 		raw_spin_unlock_irq(&pwq->pool->lock);
4417 	}
4418 	mutex_unlock(&wq->mutex);
4419 
4420 	/*
4421 	 * wq list is used to freeze wq, remove from list after
4422 	 * flushing is complete in case freeze races us.
4423 	 */
4424 	list_del_rcu(&wq->list);
4425 	mutex_unlock(&wq_pool_mutex);
4426 
4427 	if (!(wq->flags & WQ_UNBOUND)) {
4428 		wq_unregister_lockdep(wq);
4429 		/*
4430 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4431 		 * schedule RCU free.
4432 		 */
4433 		call_rcu(&wq->rcu, rcu_free_wq);
4434 	} else {
4435 		/*
4436 		 * We're the sole accessor of @wq at this point.  Directly
4437 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4438 		 * @wq will be freed when the last pwq is released.
4439 		 */
4440 		for_each_node(node) {
4441 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4442 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4443 			put_pwq_unlocked(pwq);
4444 		}
4445 
4446 		/*
4447 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4448 		 * put.  Don't access it afterwards.
4449 		 */
4450 		pwq = wq->dfl_pwq;
4451 		wq->dfl_pwq = NULL;
4452 		put_pwq_unlocked(pwq);
4453 	}
4454 }
4455 EXPORT_SYMBOL_GPL(destroy_workqueue);
4456 
4457 /**
4458  * workqueue_set_max_active - adjust max_active of a workqueue
4459  * @wq: target workqueue
4460  * @max_active: new max_active value.
4461  *
4462  * Set max_active of @wq to @max_active.
4463  *
4464  * CONTEXT:
4465  * Don't call from IRQ context.
4466  */
4467 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4468 {
4469 	struct pool_workqueue *pwq;
4470 
4471 	/* disallow meddling with max_active for ordered workqueues */
4472 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4473 		return;
4474 
4475 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4476 
4477 	mutex_lock(&wq->mutex);
4478 
4479 	wq->flags &= ~__WQ_ORDERED;
4480 	wq->saved_max_active = max_active;
4481 
4482 	for_each_pwq(pwq, wq)
4483 		pwq_adjust_max_active(pwq);
4484 
4485 	mutex_unlock(&wq->mutex);
4486 }
4487 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4488 
4489 /**
4490  * current_work - retrieve %current task's work struct
4491  *
4492  * Determine if %current task is a workqueue worker and what it's working on.
4493  * Useful to find out the context that the %current task is running in.
4494  *
4495  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4496  */
4497 struct work_struct *current_work(void)
4498 {
4499 	struct worker *worker = current_wq_worker();
4500 
4501 	return worker ? worker->current_work : NULL;
4502 }
4503 EXPORT_SYMBOL(current_work);
4504 
4505 /**
4506  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4507  *
4508  * Determine whether %current is a workqueue rescuer.  Can be used from
4509  * work functions to determine whether it's being run off the rescuer task.
4510  *
4511  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4512  */
4513 bool current_is_workqueue_rescuer(void)
4514 {
4515 	struct worker *worker = current_wq_worker();
4516 
4517 	return worker && worker->rescue_wq;
4518 }
4519 
4520 /**
4521  * workqueue_congested - test whether a workqueue is congested
4522  * @cpu: CPU in question
4523  * @wq: target workqueue
4524  *
4525  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4526  * no synchronization around this function and the test result is
4527  * unreliable and only useful as advisory hints or for debugging.
4528  *
4529  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4530  * Note that both per-cpu and unbound workqueues may be associated with
4531  * multiple pool_workqueues which have separate congested states.  A
4532  * workqueue being congested on one CPU doesn't mean the workqueue is also
4533  * contested on other CPUs / NUMA nodes.
4534  *
4535  * Return:
4536  * %true if congested, %false otherwise.
4537  */
4538 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4539 {
4540 	struct pool_workqueue *pwq;
4541 	bool ret;
4542 
4543 	rcu_read_lock();
4544 	preempt_disable();
4545 
4546 	if (cpu == WORK_CPU_UNBOUND)
4547 		cpu = smp_processor_id();
4548 
4549 	if (!(wq->flags & WQ_UNBOUND))
4550 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4551 	else
4552 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4553 
4554 	ret = !list_empty(&pwq->delayed_works);
4555 	preempt_enable();
4556 	rcu_read_unlock();
4557 
4558 	return ret;
4559 }
4560 EXPORT_SYMBOL_GPL(workqueue_congested);
4561 
4562 /**
4563  * work_busy - test whether a work is currently pending or running
4564  * @work: the work to be tested
4565  *
4566  * Test whether @work is currently pending or running.  There is no
4567  * synchronization around this function and the test result is
4568  * unreliable and only useful as advisory hints or for debugging.
4569  *
4570  * Return:
4571  * OR'd bitmask of WORK_BUSY_* bits.
4572  */
4573 unsigned int work_busy(struct work_struct *work)
4574 {
4575 	struct worker_pool *pool;
4576 	unsigned long flags;
4577 	unsigned int ret = 0;
4578 
4579 	if (work_pending(work))
4580 		ret |= WORK_BUSY_PENDING;
4581 
4582 	rcu_read_lock();
4583 	pool = get_work_pool(work);
4584 	if (pool) {
4585 		raw_spin_lock_irqsave(&pool->lock, flags);
4586 		if (find_worker_executing_work(pool, work))
4587 			ret |= WORK_BUSY_RUNNING;
4588 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4589 	}
4590 	rcu_read_unlock();
4591 
4592 	return ret;
4593 }
4594 EXPORT_SYMBOL_GPL(work_busy);
4595 
4596 /**
4597  * set_worker_desc - set description for the current work item
4598  * @fmt: printf-style format string
4599  * @...: arguments for the format string
4600  *
4601  * This function can be called by a running work function to describe what
4602  * the work item is about.  If the worker task gets dumped, this
4603  * information will be printed out together to help debugging.  The
4604  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4605  */
4606 void set_worker_desc(const char *fmt, ...)
4607 {
4608 	struct worker *worker = current_wq_worker();
4609 	va_list args;
4610 
4611 	if (worker) {
4612 		va_start(args, fmt);
4613 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4614 		va_end(args);
4615 	}
4616 }
4617 EXPORT_SYMBOL_GPL(set_worker_desc);
4618 
4619 /**
4620  * print_worker_info - print out worker information and description
4621  * @log_lvl: the log level to use when printing
4622  * @task: target task
4623  *
4624  * If @task is a worker and currently executing a work item, print out the
4625  * name of the workqueue being serviced and worker description set with
4626  * set_worker_desc() by the currently executing work item.
4627  *
4628  * This function can be safely called on any task as long as the
4629  * task_struct itself is accessible.  While safe, this function isn't
4630  * synchronized and may print out mixups or garbages of limited length.
4631  */
4632 void print_worker_info(const char *log_lvl, struct task_struct *task)
4633 {
4634 	work_func_t *fn = NULL;
4635 	char name[WQ_NAME_LEN] = { };
4636 	char desc[WORKER_DESC_LEN] = { };
4637 	struct pool_workqueue *pwq = NULL;
4638 	struct workqueue_struct *wq = NULL;
4639 	struct worker *worker;
4640 
4641 	if (!(task->flags & PF_WQ_WORKER))
4642 		return;
4643 
4644 	/*
4645 	 * This function is called without any synchronization and @task
4646 	 * could be in any state.  Be careful with dereferences.
4647 	 */
4648 	worker = kthread_probe_data(task);
4649 
4650 	/*
4651 	 * Carefully copy the associated workqueue's workfn, name and desc.
4652 	 * Keep the original last '\0' in case the original is garbage.
4653 	 */
4654 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4655 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4656 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4657 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4658 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4659 
4660 	if (fn || name[0] || desc[0]) {
4661 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4662 		if (strcmp(name, desc))
4663 			pr_cont(" (%s)", desc);
4664 		pr_cont("\n");
4665 	}
4666 }
4667 
4668 static void pr_cont_pool_info(struct worker_pool *pool)
4669 {
4670 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4671 	if (pool->node != NUMA_NO_NODE)
4672 		pr_cont(" node=%d", pool->node);
4673 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4674 }
4675 
4676 static void pr_cont_work(bool comma, struct work_struct *work)
4677 {
4678 	if (work->func == wq_barrier_func) {
4679 		struct wq_barrier *barr;
4680 
4681 		barr = container_of(work, struct wq_barrier, work);
4682 
4683 		pr_cont("%s BAR(%d)", comma ? "," : "",
4684 			task_pid_nr(barr->task));
4685 	} else {
4686 		pr_cont("%s %ps", comma ? "," : "", work->func);
4687 	}
4688 }
4689 
4690 static void show_pwq(struct pool_workqueue *pwq)
4691 {
4692 	struct worker_pool *pool = pwq->pool;
4693 	struct work_struct *work;
4694 	struct worker *worker;
4695 	bool has_in_flight = false, has_pending = false;
4696 	int bkt;
4697 
4698 	pr_info("  pwq %d:", pool->id);
4699 	pr_cont_pool_info(pool);
4700 
4701 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4702 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4703 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4704 
4705 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4706 		if (worker->current_pwq == pwq) {
4707 			has_in_flight = true;
4708 			break;
4709 		}
4710 	}
4711 	if (has_in_flight) {
4712 		bool comma = false;
4713 
4714 		pr_info("    in-flight:");
4715 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4716 			if (worker->current_pwq != pwq)
4717 				continue;
4718 
4719 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4720 				task_pid_nr(worker->task),
4721 				worker->rescue_wq ? "(RESCUER)" : "",
4722 				worker->current_func);
4723 			list_for_each_entry(work, &worker->scheduled, entry)
4724 				pr_cont_work(false, work);
4725 			comma = true;
4726 		}
4727 		pr_cont("\n");
4728 	}
4729 
4730 	list_for_each_entry(work, &pool->worklist, entry) {
4731 		if (get_work_pwq(work) == pwq) {
4732 			has_pending = true;
4733 			break;
4734 		}
4735 	}
4736 	if (has_pending) {
4737 		bool comma = false;
4738 
4739 		pr_info("    pending:");
4740 		list_for_each_entry(work, &pool->worklist, entry) {
4741 			if (get_work_pwq(work) != pwq)
4742 				continue;
4743 
4744 			pr_cont_work(comma, work);
4745 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4746 		}
4747 		pr_cont("\n");
4748 	}
4749 
4750 	if (!list_empty(&pwq->delayed_works)) {
4751 		bool comma = false;
4752 
4753 		pr_info("    delayed:");
4754 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4755 			pr_cont_work(comma, work);
4756 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4757 		}
4758 		pr_cont("\n");
4759 	}
4760 }
4761 
4762 /**
4763  * show_workqueue_state - dump workqueue state
4764  *
4765  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4766  * all busy workqueues and pools.
4767  */
4768 void show_workqueue_state(void)
4769 {
4770 	struct workqueue_struct *wq;
4771 	struct worker_pool *pool;
4772 	unsigned long flags;
4773 	int pi;
4774 
4775 	rcu_read_lock();
4776 
4777 	pr_info("Showing busy workqueues and worker pools:\n");
4778 
4779 	list_for_each_entry_rcu(wq, &workqueues, list) {
4780 		struct pool_workqueue *pwq;
4781 		bool idle = true;
4782 
4783 		for_each_pwq(pwq, wq) {
4784 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4785 				idle = false;
4786 				break;
4787 			}
4788 		}
4789 		if (idle)
4790 			continue;
4791 
4792 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4793 
4794 		for_each_pwq(pwq, wq) {
4795 			raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4796 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4797 				show_pwq(pwq);
4798 			raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4799 			/*
4800 			 * We could be printing a lot from atomic context, e.g.
4801 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4802 			 * hard lockup.
4803 			 */
4804 			touch_nmi_watchdog();
4805 		}
4806 	}
4807 
4808 	for_each_pool(pool, pi) {
4809 		struct worker *worker;
4810 		bool first = true;
4811 
4812 		raw_spin_lock_irqsave(&pool->lock, flags);
4813 		if (pool->nr_workers == pool->nr_idle)
4814 			goto next_pool;
4815 
4816 		pr_info("pool %d:", pool->id);
4817 		pr_cont_pool_info(pool);
4818 		pr_cont(" hung=%us workers=%d",
4819 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4820 			pool->nr_workers);
4821 		if (pool->manager)
4822 			pr_cont(" manager: %d",
4823 				task_pid_nr(pool->manager->task));
4824 		list_for_each_entry(worker, &pool->idle_list, entry) {
4825 			pr_cont(" %s%d", first ? "idle: " : "",
4826 				task_pid_nr(worker->task));
4827 			first = false;
4828 		}
4829 		pr_cont("\n");
4830 	next_pool:
4831 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4832 		/*
4833 		 * We could be printing a lot from atomic context, e.g.
4834 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4835 		 * hard lockup.
4836 		 */
4837 		touch_nmi_watchdog();
4838 	}
4839 
4840 	rcu_read_unlock();
4841 }
4842 
4843 /* used to show worker information through /proc/PID/{comm,stat,status} */
4844 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4845 {
4846 	int off;
4847 
4848 	/* always show the actual comm */
4849 	off = strscpy(buf, task->comm, size);
4850 	if (off < 0)
4851 		return;
4852 
4853 	/* stabilize PF_WQ_WORKER and worker pool association */
4854 	mutex_lock(&wq_pool_attach_mutex);
4855 
4856 	if (task->flags & PF_WQ_WORKER) {
4857 		struct worker *worker = kthread_data(task);
4858 		struct worker_pool *pool = worker->pool;
4859 
4860 		if (pool) {
4861 			raw_spin_lock_irq(&pool->lock);
4862 			/*
4863 			 * ->desc tracks information (wq name or
4864 			 * set_worker_desc()) for the latest execution.  If
4865 			 * current, prepend '+', otherwise '-'.
4866 			 */
4867 			if (worker->desc[0] != '\0') {
4868 				if (worker->current_work)
4869 					scnprintf(buf + off, size - off, "+%s",
4870 						  worker->desc);
4871 				else
4872 					scnprintf(buf + off, size - off, "-%s",
4873 						  worker->desc);
4874 			}
4875 			raw_spin_unlock_irq(&pool->lock);
4876 		}
4877 	}
4878 
4879 	mutex_unlock(&wq_pool_attach_mutex);
4880 }
4881 
4882 #ifdef CONFIG_SMP
4883 
4884 /*
4885  * CPU hotplug.
4886  *
4887  * There are two challenges in supporting CPU hotplug.  Firstly, there
4888  * are a lot of assumptions on strong associations among work, pwq and
4889  * pool which make migrating pending and scheduled works very
4890  * difficult to implement without impacting hot paths.  Secondly,
4891  * worker pools serve mix of short, long and very long running works making
4892  * blocked draining impractical.
4893  *
4894  * This is solved by allowing the pools to be disassociated from the CPU
4895  * running as an unbound one and allowing it to be reattached later if the
4896  * cpu comes back online.
4897  */
4898 
4899 static void unbind_workers(int cpu)
4900 {
4901 	struct worker_pool *pool;
4902 	struct worker *worker;
4903 
4904 	for_each_cpu_worker_pool(pool, cpu) {
4905 		mutex_lock(&wq_pool_attach_mutex);
4906 		raw_spin_lock_irq(&pool->lock);
4907 
4908 		/*
4909 		 * We've blocked all attach/detach operations. Make all workers
4910 		 * unbound and set DISASSOCIATED.  Before this, all workers
4911 		 * except for the ones which are still executing works from
4912 		 * before the last CPU down must be on the cpu.  After
4913 		 * this, they may become diasporas.
4914 		 */
4915 		for_each_pool_worker(worker, pool)
4916 			worker->flags |= WORKER_UNBOUND;
4917 
4918 		pool->flags |= POOL_DISASSOCIATED;
4919 
4920 		raw_spin_unlock_irq(&pool->lock);
4921 
4922 		for_each_pool_worker(worker, pool) {
4923 			kthread_set_per_cpu(worker->task, -1);
4924 			WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
4925 		}
4926 
4927 		mutex_unlock(&wq_pool_attach_mutex);
4928 
4929 		/*
4930 		 * Call schedule() so that we cross rq->lock and thus can
4931 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4932 		 * This is necessary as scheduler callbacks may be invoked
4933 		 * from other cpus.
4934 		 */
4935 		schedule();
4936 
4937 		/*
4938 		 * Sched callbacks are disabled now.  Zap nr_running.
4939 		 * After this, nr_running stays zero and need_more_worker()
4940 		 * and keep_working() are always true as long as the
4941 		 * worklist is not empty.  This pool now behaves as an
4942 		 * unbound (in terms of concurrency management) pool which
4943 		 * are served by workers tied to the pool.
4944 		 */
4945 		atomic_set(&pool->nr_running, 0);
4946 
4947 		/*
4948 		 * With concurrency management just turned off, a busy
4949 		 * worker blocking could lead to lengthy stalls.  Kick off
4950 		 * unbound chain execution of currently pending work items.
4951 		 */
4952 		raw_spin_lock_irq(&pool->lock);
4953 		wake_up_worker(pool);
4954 		raw_spin_unlock_irq(&pool->lock);
4955 	}
4956 }
4957 
4958 /**
4959  * rebind_workers - rebind all workers of a pool to the associated CPU
4960  * @pool: pool of interest
4961  *
4962  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4963  */
4964 static void rebind_workers(struct worker_pool *pool)
4965 {
4966 	struct worker *worker;
4967 
4968 	lockdep_assert_held(&wq_pool_attach_mutex);
4969 
4970 	/*
4971 	 * Restore CPU affinity of all workers.  As all idle workers should
4972 	 * be on the run-queue of the associated CPU before any local
4973 	 * wake-ups for concurrency management happen, restore CPU affinity
4974 	 * of all workers first and then clear UNBOUND.  As we're called
4975 	 * from CPU_ONLINE, the following shouldn't fail.
4976 	 */
4977 	for_each_pool_worker(worker, pool) {
4978 		kthread_set_per_cpu(worker->task, pool->cpu);
4979 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4980 						  pool->attrs->cpumask) < 0);
4981 	}
4982 
4983 	raw_spin_lock_irq(&pool->lock);
4984 
4985 	pool->flags &= ~POOL_DISASSOCIATED;
4986 
4987 	for_each_pool_worker(worker, pool) {
4988 		unsigned int worker_flags = worker->flags;
4989 
4990 		/*
4991 		 * A bound idle worker should actually be on the runqueue
4992 		 * of the associated CPU for local wake-ups targeting it to
4993 		 * work.  Kick all idle workers so that they migrate to the
4994 		 * associated CPU.  Doing this in the same loop as
4995 		 * replacing UNBOUND with REBOUND is safe as no worker will
4996 		 * be bound before @pool->lock is released.
4997 		 */
4998 		if (worker_flags & WORKER_IDLE)
4999 			wake_up_process(worker->task);
5000 
5001 		/*
5002 		 * We want to clear UNBOUND but can't directly call
5003 		 * worker_clr_flags() or adjust nr_running.  Atomically
5004 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5005 		 * @worker will clear REBOUND using worker_clr_flags() when
5006 		 * it initiates the next execution cycle thus restoring
5007 		 * concurrency management.  Note that when or whether
5008 		 * @worker clears REBOUND doesn't affect correctness.
5009 		 *
5010 		 * WRITE_ONCE() is necessary because @worker->flags may be
5011 		 * tested without holding any lock in
5012 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5013 		 * fail incorrectly leading to premature concurrency
5014 		 * management operations.
5015 		 */
5016 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5017 		worker_flags |= WORKER_REBOUND;
5018 		worker_flags &= ~WORKER_UNBOUND;
5019 		WRITE_ONCE(worker->flags, worker_flags);
5020 	}
5021 
5022 	raw_spin_unlock_irq(&pool->lock);
5023 }
5024 
5025 /**
5026  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5027  * @pool: unbound pool of interest
5028  * @cpu: the CPU which is coming up
5029  *
5030  * An unbound pool may end up with a cpumask which doesn't have any online
5031  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5032  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5033  * online CPU before, cpus_allowed of all its workers should be restored.
5034  */
5035 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5036 {
5037 	static cpumask_t cpumask;
5038 	struct worker *worker;
5039 
5040 	lockdep_assert_held(&wq_pool_attach_mutex);
5041 
5042 	/* is @cpu allowed for @pool? */
5043 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5044 		return;
5045 
5046 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5047 
5048 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5049 	for_each_pool_worker(worker, pool)
5050 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5051 }
5052 
5053 int workqueue_prepare_cpu(unsigned int cpu)
5054 {
5055 	struct worker_pool *pool;
5056 
5057 	for_each_cpu_worker_pool(pool, cpu) {
5058 		if (pool->nr_workers)
5059 			continue;
5060 		if (!create_worker(pool))
5061 			return -ENOMEM;
5062 	}
5063 	return 0;
5064 }
5065 
5066 int workqueue_online_cpu(unsigned int cpu)
5067 {
5068 	struct worker_pool *pool;
5069 	struct workqueue_struct *wq;
5070 	int pi;
5071 
5072 	mutex_lock(&wq_pool_mutex);
5073 
5074 	for_each_pool(pool, pi) {
5075 		mutex_lock(&wq_pool_attach_mutex);
5076 
5077 		if (pool->cpu == cpu)
5078 			rebind_workers(pool);
5079 		else if (pool->cpu < 0)
5080 			restore_unbound_workers_cpumask(pool, cpu);
5081 
5082 		mutex_unlock(&wq_pool_attach_mutex);
5083 	}
5084 
5085 	/* update NUMA affinity of unbound workqueues */
5086 	list_for_each_entry(wq, &workqueues, list)
5087 		wq_update_unbound_numa(wq, cpu, true);
5088 
5089 	mutex_unlock(&wq_pool_mutex);
5090 	return 0;
5091 }
5092 
5093 int workqueue_offline_cpu(unsigned int cpu)
5094 {
5095 	struct workqueue_struct *wq;
5096 
5097 	/* unbinding per-cpu workers should happen on the local CPU */
5098 	if (WARN_ON(cpu != smp_processor_id()))
5099 		return -1;
5100 
5101 	unbind_workers(cpu);
5102 
5103 	/* update NUMA affinity of unbound workqueues */
5104 	mutex_lock(&wq_pool_mutex);
5105 	list_for_each_entry(wq, &workqueues, list)
5106 		wq_update_unbound_numa(wq, cpu, false);
5107 	mutex_unlock(&wq_pool_mutex);
5108 
5109 	return 0;
5110 }
5111 
5112 struct work_for_cpu {
5113 	struct work_struct work;
5114 	long (*fn)(void *);
5115 	void *arg;
5116 	long ret;
5117 };
5118 
5119 static void work_for_cpu_fn(struct work_struct *work)
5120 {
5121 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5122 
5123 	wfc->ret = wfc->fn(wfc->arg);
5124 }
5125 
5126 /**
5127  * work_on_cpu - run a function in thread context on a particular cpu
5128  * @cpu: the cpu to run on
5129  * @fn: the function to run
5130  * @arg: the function arg
5131  *
5132  * It is up to the caller to ensure that the cpu doesn't go offline.
5133  * The caller must not hold any locks which would prevent @fn from completing.
5134  *
5135  * Return: The value @fn returns.
5136  */
5137 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5138 {
5139 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5140 
5141 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5142 	schedule_work_on(cpu, &wfc.work);
5143 	flush_work(&wfc.work);
5144 	destroy_work_on_stack(&wfc.work);
5145 	return wfc.ret;
5146 }
5147 EXPORT_SYMBOL_GPL(work_on_cpu);
5148 
5149 /**
5150  * work_on_cpu_safe - run a function in thread context on a particular cpu
5151  * @cpu: the cpu to run on
5152  * @fn:  the function to run
5153  * @arg: the function argument
5154  *
5155  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5156  * any locks which would prevent @fn from completing.
5157  *
5158  * Return: The value @fn returns.
5159  */
5160 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5161 {
5162 	long ret = -ENODEV;
5163 
5164 	get_online_cpus();
5165 	if (cpu_online(cpu))
5166 		ret = work_on_cpu(cpu, fn, arg);
5167 	put_online_cpus();
5168 	return ret;
5169 }
5170 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5171 #endif /* CONFIG_SMP */
5172 
5173 #ifdef CONFIG_FREEZER
5174 
5175 /**
5176  * freeze_workqueues_begin - begin freezing workqueues
5177  *
5178  * Start freezing workqueues.  After this function returns, all freezable
5179  * workqueues will queue new works to their delayed_works list instead of
5180  * pool->worklist.
5181  *
5182  * CONTEXT:
5183  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5184  */
5185 void freeze_workqueues_begin(void)
5186 {
5187 	struct workqueue_struct *wq;
5188 	struct pool_workqueue *pwq;
5189 
5190 	mutex_lock(&wq_pool_mutex);
5191 
5192 	WARN_ON_ONCE(workqueue_freezing);
5193 	workqueue_freezing = true;
5194 
5195 	list_for_each_entry(wq, &workqueues, list) {
5196 		mutex_lock(&wq->mutex);
5197 		for_each_pwq(pwq, wq)
5198 			pwq_adjust_max_active(pwq);
5199 		mutex_unlock(&wq->mutex);
5200 	}
5201 
5202 	mutex_unlock(&wq_pool_mutex);
5203 }
5204 
5205 /**
5206  * freeze_workqueues_busy - are freezable workqueues still busy?
5207  *
5208  * Check whether freezing is complete.  This function must be called
5209  * between freeze_workqueues_begin() and thaw_workqueues().
5210  *
5211  * CONTEXT:
5212  * Grabs and releases wq_pool_mutex.
5213  *
5214  * Return:
5215  * %true if some freezable workqueues are still busy.  %false if freezing
5216  * is complete.
5217  */
5218 bool freeze_workqueues_busy(void)
5219 {
5220 	bool busy = false;
5221 	struct workqueue_struct *wq;
5222 	struct pool_workqueue *pwq;
5223 
5224 	mutex_lock(&wq_pool_mutex);
5225 
5226 	WARN_ON_ONCE(!workqueue_freezing);
5227 
5228 	list_for_each_entry(wq, &workqueues, list) {
5229 		if (!(wq->flags & WQ_FREEZABLE))
5230 			continue;
5231 		/*
5232 		 * nr_active is monotonically decreasing.  It's safe
5233 		 * to peek without lock.
5234 		 */
5235 		rcu_read_lock();
5236 		for_each_pwq(pwq, wq) {
5237 			WARN_ON_ONCE(pwq->nr_active < 0);
5238 			if (pwq->nr_active) {
5239 				busy = true;
5240 				rcu_read_unlock();
5241 				goto out_unlock;
5242 			}
5243 		}
5244 		rcu_read_unlock();
5245 	}
5246 out_unlock:
5247 	mutex_unlock(&wq_pool_mutex);
5248 	return busy;
5249 }
5250 
5251 /**
5252  * thaw_workqueues - thaw workqueues
5253  *
5254  * Thaw workqueues.  Normal queueing is restored and all collected
5255  * frozen works are transferred to their respective pool worklists.
5256  *
5257  * CONTEXT:
5258  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5259  */
5260 void thaw_workqueues(void)
5261 {
5262 	struct workqueue_struct *wq;
5263 	struct pool_workqueue *pwq;
5264 
5265 	mutex_lock(&wq_pool_mutex);
5266 
5267 	if (!workqueue_freezing)
5268 		goto out_unlock;
5269 
5270 	workqueue_freezing = false;
5271 
5272 	/* restore max_active and repopulate worklist */
5273 	list_for_each_entry(wq, &workqueues, list) {
5274 		mutex_lock(&wq->mutex);
5275 		for_each_pwq(pwq, wq)
5276 			pwq_adjust_max_active(pwq);
5277 		mutex_unlock(&wq->mutex);
5278 	}
5279 
5280 out_unlock:
5281 	mutex_unlock(&wq_pool_mutex);
5282 }
5283 #endif /* CONFIG_FREEZER */
5284 
5285 static int workqueue_apply_unbound_cpumask(void)
5286 {
5287 	LIST_HEAD(ctxs);
5288 	int ret = 0;
5289 	struct workqueue_struct *wq;
5290 	struct apply_wqattrs_ctx *ctx, *n;
5291 
5292 	lockdep_assert_held(&wq_pool_mutex);
5293 
5294 	list_for_each_entry(wq, &workqueues, list) {
5295 		if (!(wq->flags & WQ_UNBOUND))
5296 			continue;
5297 		/* creating multiple pwqs breaks ordering guarantee */
5298 		if (wq->flags & __WQ_ORDERED)
5299 			continue;
5300 
5301 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5302 		if (!ctx) {
5303 			ret = -ENOMEM;
5304 			break;
5305 		}
5306 
5307 		list_add_tail(&ctx->list, &ctxs);
5308 	}
5309 
5310 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5311 		if (!ret)
5312 			apply_wqattrs_commit(ctx);
5313 		apply_wqattrs_cleanup(ctx);
5314 	}
5315 
5316 	return ret;
5317 }
5318 
5319 /**
5320  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5321  *  @cpumask: the cpumask to set
5322  *
5323  *  The low-level workqueues cpumask is a global cpumask that limits
5324  *  the affinity of all unbound workqueues.  This function check the @cpumask
5325  *  and apply it to all unbound workqueues and updates all pwqs of them.
5326  *
5327  *  Retun:	0	- Success
5328  *  		-EINVAL	- Invalid @cpumask
5329  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5330  */
5331 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5332 {
5333 	int ret = -EINVAL;
5334 	cpumask_var_t saved_cpumask;
5335 
5336 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5337 		return -ENOMEM;
5338 
5339 	/*
5340 	 * Not excluding isolated cpus on purpose.
5341 	 * If the user wishes to include them, we allow that.
5342 	 */
5343 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5344 	if (!cpumask_empty(cpumask)) {
5345 		apply_wqattrs_lock();
5346 
5347 		/* save the old wq_unbound_cpumask. */
5348 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5349 
5350 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5351 		cpumask_copy(wq_unbound_cpumask, cpumask);
5352 		ret = workqueue_apply_unbound_cpumask();
5353 
5354 		/* restore the wq_unbound_cpumask when failed. */
5355 		if (ret < 0)
5356 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5357 
5358 		apply_wqattrs_unlock();
5359 	}
5360 
5361 	free_cpumask_var(saved_cpumask);
5362 	return ret;
5363 }
5364 
5365 #ifdef CONFIG_SYSFS
5366 /*
5367  * Workqueues with WQ_SYSFS flag set is visible to userland via
5368  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5369  * following attributes.
5370  *
5371  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5372  *  max_active	RW int	: maximum number of in-flight work items
5373  *
5374  * Unbound workqueues have the following extra attributes.
5375  *
5376  *  pool_ids	RO int	: the associated pool IDs for each node
5377  *  nice	RW int	: nice value of the workers
5378  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5379  *  numa	RW bool	: whether enable NUMA affinity
5380  */
5381 struct wq_device {
5382 	struct workqueue_struct		*wq;
5383 	struct device			dev;
5384 };
5385 
5386 static struct workqueue_struct *dev_to_wq(struct device *dev)
5387 {
5388 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5389 
5390 	return wq_dev->wq;
5391 }
5392 
5393 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5394 			    char *buf)
5395 {
5396 	struct workqueue_struct *wq = dev_to_wq(dev);
5397 
5398 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5399 }
5400 static DEVICE_ATTR_RO(per_cpu);
5401 
5402 static ssize_t max_active_show(struct device *dev,
5403 			       struct device_attribute *attr, char *buf)
5404 {
5405 	struct workqueue_struct *wq = dev_to_wq(dev);
5406 
5407 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5408 }
5409 
5410 static ssize_t max_active_store(struct device *dev,
5411 				struct device_attribute *attr, const char *buf,
5412 				size_t count)
5413 {
5414 	struct workqueue_struct *wq = dev_to_wq(dev);
5415 	int val;
5416 
5417 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5418 		return -EINVAL;
5419 
5420 	workqueue_set_max_active(wq, val);
5421 	return count;
5422 }
5423 static DEVICE_ATTR_RW(max_active);
5424 
5425 static struct attribute *wq_sysfs_attrs[] = {
5426 	&dev_attr_per_cpu.attr,
5427 	&dev_attr_max_active.attr,
5428 	NULL,
5429 };
5430 ATTRIBUTE_GROUPS(wq_sysfs);
5431 
5432 static ssize_t wq_pool_ids_show(struct device *dev,
5433 				struct device_attribute *attr, char *buf)
5434 {
5435 	struct workqueue_struct *wq = dev_to_wq(dev);
5436 	const char *delim = "";
5437 	int node, written = 0;
5438 
5439 	get_online_cpus();
5440 	rcu_read_lock();
5441 	for_each_node(node) {
5442 		written += scnprintf(buf + written, PAGE_SIZE - written,
5443 				     "%s%d:%d", delim, node,
5444 				     unbound_pwq_by_node(wq, node)->pool->id);
5445 		delim = " ";
5446 	}
5447 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5448 	rcu_read_unlock();
5449 	put_online_cpus();
5450 
5451 	return written;
5452 }
5453 
5454 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5455 			    char *buf)
5456 {
5457 	struct workqueue_struct *wq = dev_to_wq(dev);
5458 	int written;
5459 
5460 	mutex_lock(&wq->mutex);
5461 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5462 	mutex_unlock(&wq->mutex);
5463 
5464 	return written;
5465 }
5466 
5467 /* prepare workqueue_attrs for sysfs store operations */
5468 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5469 {
5470 	struct workqueue_attrs *attrs;
5471 
5472 	lockdep_assert_held(&wq_pool_mutex);
5473 
5474 	attrs = alloc_workqueue_attrs();
5475 	if (!attrs)
5476 		return NULL;
5477 
5478 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5479 	return attrs;
5480 }
5481 
5482 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5483 			     const char *buf, size_t count)
5484 {
5485 	struct workqueue_struct *wq = dev_to_wq(dev);
5486 	struct workqueue_attrs *attrs;
5487 	int ret = -ENOMEM;
5488 
5489 	apply_wqattrs_lock();
5490 
5491 	attrs = wq_sysfs_prep_attrs(wq);
5492 	if (!attrs)
5493 		goto out_unlock;
5494 
5495 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5496 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5497 		ret = apply_workqueue_attrs_locked(wq, attrs);
5498 	else
5499 		ret = -EINVAL;
5500 
5501 out_unlock:
5502 	apply_wqattrs_unlock();
5503 	free_workqueue_attrs(attrs);
5504 	return ret ?: count;
5505 }
5506 
5507 static ssize_t wq_cpumask_show(struct device *dev,
5508 			       struct device_attribute *attr, char *buf)
5509 {
5510 	struct workqueue_struct *wq = dev_to_wq(dev);
5511 	int written;
5512 
5513 	mutex_lock(&wq->mutex);
5514 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5515 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5516 	mutex_unlock(&wq->mutex);
5517 	return written;
5518 }
5519 
5520 static ssize_t wq_cpumask_store(struct device *dev,
5521 				struct device_attribute *attr,
5522 				const char *buf, size_t count)
5523 {
5524 	struct workqueue_struct *wq = dev_to_wq(dev);
5525 	struct workqueue_attrs *attrs;
5526 	int ret = -ENOMEM;
5527 
5528 	apply_wqattrs_lock();
5529 
5530 	attrs = wq_sysfs_prep_attrs(wq);
5531 	if (!attrs)
5532 		goto out_unlock;
5533 
5534 	ret = cpumask_parse(buf, attrs->cpumask);
5535 	if (!ret)
5536 		ret = apply_workqueue_attrs_locked(wq, attrs);
5537 
5538 out_unlock:
5539 	apply_wqattrs_unlock();
5540 	free_workqueue_attrs(attrs);
5541 	return ret ?: count;
5542 }
5543 
5544 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5545 			    char *buf)
5546 {
5547 	struct workqueue_struct *wq = dev_to_wq(dev);
5548 	int written;
5549 
5550 	mutex_lock(&wq->mutex);
5551 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5552 			    !wq->unbound_attrs->no_numa);
5553 	mutex_unlock(&wq->mutex);
5554 
5555 	return written;
5556 }
5557 
5558 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5559 			     const char *buf, size_t count)
5560 {
5561 	struct workqueue_struct *wq = dev_to_wq(dev);
5562 	struct workqueue_attrs *attrs;
5563 	int v, ret = -ENOMEM;
5564 
5565 	apply_wqattrs_lock();
5566 
5567 	attrs = wq_sysfs_prep_attrs(wq);
5568 	if (!attrs)
5569 		goto out_unlock;
5570 
5571 	ret = -EINVAL;
5572 	if (sscanf(buf, "%d", &v) == 1) {
5573 		attrs->no_numa = !v;
5574 		ret = apply_workqueue_attrs_locked(wq, attrs);
5575 	}
5576 
5577 out_unlock:
5578 	apply_wqattrs_unlock();
5579 	free_workqueue_attrs(attrs);
5580 	return ret ?: count;
5581 }
5582 
5583 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5584 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5585 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5586 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5587 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5588 	__ATTR_NULL,
5589 };
5590 
5591 static struct bus_type wq_subsys = {
5592 	.name				= "workqueue",
5593 	.dev_groups			= wq_sysfs_groups,
5594 };
5595 
5596 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5597 		struct device_attribute *attr, char *buf)
5598 {
5599 	int written;
5600 
5601 	mutex_lock(&wq_pool_mutex);
5602 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5603 			    cpumask_pr_args(wq_unbound_cpumask));
5604 	mutex_unlock(&wq_pool_mutex);
5605 
5606 	return written;
5607 }
5608 
5609 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5610 		struct device_attribute *attr, const char *buf, size_t count)
5611 {
5612 	cpumask_var_t cpumask;
5613 	int ret;
5614 
5615 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5616 		return -ENOMEM;
5617 
5618 	ret = cpumask_parse(buf, cpumask);
5619 	if (!ret)
5620 		ret = workqueue_set_unbound_cpumask(cpumask);
5621 
5622 	free_cpumask_var(cpumask);
5623 	return ret ? ret : count;
5624 }
5625 
5626 static struct device_attribute wq_sysfs_cpumask_attr =
5627 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5628 	       wq_unbound_cpumask_store);
5629 
5630 static int __init wq_sysfs_init(void)
5631 {
5632 	int err;
5633 
5634 	err = subsys_virtual_register(&wq_subsys, NULL);
5635 	if (err)
5636 		return err;
5637 
5638 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5639 }
5640 core_initcall(wq_sysfs_init);
5641 
5642 static void wq_device_release(struct device *dev)
5643 {
5644 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5645 
5646 	kfree(wq_dev);
5647 }
5648 
5649 /**
5650  * workqueue_sysfs_register - make a workqueue visible in sysfs
5651  * @wq: the workqueue to register
5652  *
5653  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5654  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5655  * which is the preferred method.
5656  *
5657  * Workqueue user should use this function directly iff it wants to apply
5658  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5659  * apply_workqueue_attrs() may race against userland updating the
5660  * attributes.
5661  *
5662  * Return: 0 on success, -errno on failure.
5663  */
5664 int workqueue_sysfs_register(struct workqueue_struct *wq)
5665 {
5666 	struct wq_device *wq_dev;
5667 	int ret;
5668 
5669 	/*
5670 	 * Adjusting max_active or creating new pwqs by applying
5671 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5672 	 * workqueues.
5673 	 */
5674 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5675 		return -EINVAL;
5676 
5677 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5678 	if (!wq_dev)
5679 		return -ENOMEM;
5680 
5681 	wq_dev->wq = wq;
5682 	wq_dev->dev.bus = &wq_subsys;
5683 	wq_dev->dev.release = wq_device_release;
5684 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5685 
5686 	/*
5687 	 * unbound_attrs are created separately.  Suppress uevent until
5688 	 * everything is ready.
5689 	 */
5690 	dev_set_uevent_suppress(&wq_dev->dev, true);
5691 
5692 	ret = device_register(&wq_dev->dev);
5693 	if (ret) {
5694 		put_device(&wq_dev->dev);
5695 		wq->wq_dev = NULL;
5696 		return ret;
5697 	}
5698 
5699 	if (wq->flags & WQ_UNBOUND) {
5700 		struct device_attribute *attr;
5701 
5702 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5703 			ret = device_create_file(&wq_dev->dev, attr);
5704 			if (ret) {
5705 				device_unregister(&wq_dev->dev);
5706 				wq->wq_dev = NULL;
5707 				return ret;
5708 			}
5709 		}
5710 	}
5711 
5712 	dev_set_uevent_suppress(&wq_dev->dev, false);
5713 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5714 	return 0;
5715 }
5716 
5717 /**
5718  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5719  * @wq: the workqueue to unregister
5720  *
5721  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5722  */
5723 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5724 {
5725 	struct wq_device *wq_dev = wq->wq_dev;
5726 
5727 	if (!wq->wq_dev)
5728 		return;
5729 
5730 	wq->wq_dev = NULL;
5731 	device_unregister(&wq_dev->dev);
5732 }
5733 #else	/* CONFIG_SYSFS */
5734 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5735 #endif	/* CONFIG_SYSFS */
5736 
5737 /*
5738  * Workqueue watchdog.
5739  *
5740  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5741  * flush dependency, a concurrency managed work item which stays RUNNING
5742  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5743  * usual warning mechanisms don't trigger and internal workqueue state is
5744  * largely opaque.
5745  *
5746  * Workqueue watchdog monitors all worker pools periodically and dumps
5747  * state if some pools failed to make forward progress for a while where
5748  * forward progress is defined as the first item on ->worklist changing.
5749  *
5750  * This mechanism is controlled through the kernel parameter
5751  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5752  * corresponding sysfs parameter file.
5753  */
5754 #ifdef CONFIG_WQ_WATCHDOG
5755 
5756 static unsigned long wq_watchdog_thresh = 30;
5757 static struct timer_list wq_watchdog_timer;
5758 
5759 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5760 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5761 
5762 static void wq_watchdog_reset_touched(void)
5763 {
5764 	int cpu;
5765 
5766 	wq_watchdog_touched = jiffies;
5767 	for_each_possible_cpu(cpu)
5768 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5769 }
5770 
5771 static void wq_watchdog_timer_fn(struct timer_list *unused)
5772 {
5773 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5774 	bool lockup_detected = false;
5775 	struct worker_pool *pool;
5776 	int pi;
5777 
5778 	if (!thresh)
5779 		return;
5780 
5781 	rcu_read_lock();
5782 
5783 	for_each_pool(pool, pi) {
5784 		unsigned long pool_ts, touched, ts;
5785 
5786 		if (list_empty(&pool->worklist))
5787 			continue;
5788 
5789 		/* get the latest of pool and touched timestamps */
5790 		pool_ts = READ_ONCE(pool->watchdog_ts);
5791 		touched = READ_ONCE(wq_watchdog_touched);
5792 
5793 		if (time_after(pool_ts, touched))
5794 			ts = pool_ts;
5795 		else
5796 			ts = touched;
5797 
5798 		if (pool->cpu >= 0) {
5799 			unsigned long cpu_touched =
5800 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5801 						  pool->cpu));
5802 			if (time_after(cpu_touched, ts))
5803 				ts = cpu_touched;
5804 		}
5805 
5806 		/* did we stall? */
5807 		if (time_after(jiffies, ts + thresh)) {
5808 			lockup_detected = true;
5809 			pr_emerg("BUG: workqueue lockup - pool");
5810 			pr_cont_pool_info(pool);
5811 			pr_cont(" stuck for %us!\n",
5812 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5813 		}
5814 	}
5815 
5816 	rcu_read_unlock();
5817 
5818 	if (lockup_detected)
5819 		show_workqueue_state();
5820 
5821 	wq_watchdog_reset_touched();
5822 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5823 }
5824 
5825 notrace void wq_watchdog_touch(int cpu)
5826 {
5827 	if (cpu >= 0)
5828 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5829 	else
5830 		wq_watchdog_touched = jiffies;
5831 }
5832 
5833 static void wq_watchdog_set_thresh(unsigned long thresh)
5834 {
5835 	wq_watchdog_thresh = 0;
5836 	del_timer_sync(&wq_watchdog_timer);
5837 
5838 	if (thresh) {
5839 		wq_watchdog_thresh = thresh;
5840 		wq_watchdog_reset_touched();
5841 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5842 	}
5843 }
5844 
5845 static int wq_watchdog_param_set_thresh(const char *val,
5846 					const struct kernel_param *kp)
5847 {
5848 	unsigned long thresh;
5849 	int ret;
5850 
5851 	ret = kstrtoul(val, 0, &thresh);
5852 	if (ret)
5853 		return ret;
5854 
5855 	if (system_wq)
5856 		wq_watchdog_set_thresh(thresh);
5857 	else
5858 		wq_watchdog_thresh = thresh;
5859 
5860 	return 0;
5861 }
5862 
5863 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5864 	.set	= wq_watchdog_param_set_thresh,
5865 	.get	= param_get_ulong,
5866 };
5867 
5868 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5869 		0644);
5870 
5871 static void wq_watchdog_init(void)
5872 {
5873 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5874 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5875 }
5876 
5877 #else	/* CONFIG_WQ_WATCHDOG */
5878 
5879 static inline void wq_watchdog_init(void) { }
5880 
5881 #endif	/* CONFIG_WQ_WATCHDOG */
5882 
5883 static void __init wq_numa_init(void)
5884 {
5885 	cpumask_var_t *tbl;
5886 	int node, cpu;
5887 
5888 	if (num_possible_nodes() <= 1)
5889 		return;
5890 
5891 	if (wq_disable_numa) {
5892 		pr_info("workqueue: NUMA affinity support disabled\n");
5893 		return;
5894 	}
5895 
5896 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5897 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5898 
5899 	/*
5900 	 * We want masks of possible CPUs of each node which isn't readily
5901 	 * available.  Build one from cpu_to_node() which should have been
5902 	 * fully initialized by now.
5903 	 */
5904 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5905 	BUG_ON(!tbl);
5906 
5907 	for_each_node(node)
5908 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5909 				node_online(node) ? node : NUMA_NO_NODE));
5910 
5911 	for_each_possible_cpu(cpu) {
5912 		node = cpu_to_node(cpu);
5913 		if (WARN_ON(node == NUMA_NO_NODE)) {
5914 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5915 			/* happens iff arch is bonkers, let's just proceed */
5916 			return;
5917 		}
5918 		cpumask_set_cpu(cpu, tbl[node]);
5919 	}
5920 
5921 	wq_numa_possible_cpumask = tbl;
5922 	wq_numa_enabled = true;
5923 }
5924 
5925 /**
5926  * workqueue_init_early - early init for workqueue subsystem
5927  *
5928  * This is the first half of two-staged workqueue subsystem initialization
5929  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5930  * idr are up.  It sets up all the data structures and system workqueues
5931  * and allows early boot code to create workqueues and queue/cancel work
5932  * items.  Actual work item execution starts only after kthreads can be
5933  * created and scheduled right before early initcalls.
5934  */
5935 void __init workqueue_init_early(void)
5936 {
5937 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5938 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5939 	int i, cpu;
5940 
5941 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5942 
5943 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5944 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5945 
5946 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5947 
5948 	/* initialize CPU pools */
5949 	for_each_possible_cpu(cpu) {
5950 		struct worker_pool *pool;
5951 
5952 		i = 0;
5953 		for_each_cpu_worker_pool(pool, cpu) {
5954 			BUG_ON(init_worker_pool(pool));
5955 			pool->cpu = cpu;
5956 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5957 			pool->attrs->nice = std_nice[i++];
5958 			pool->node = cpu_to_node(cpu);
5959 
5960 			/* alloc pool ID */
5961 			mutex_lock(&wq_pool_mutex);
5962 			BUG_ON(worker_pool_assign_id(pool));
5963 			mutex_unlock(&wq_pool_mutex);
5964 		}
5965 	}
5966 
5967 	/* create default unbound and ordered wq attrs */
5968 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5969 		struct workqueue_attrs *attrs;
5970 
5971 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5972 		attrs->nice = std_nice[i];
5973 		unbound_std_wq_attrs[i] = attrs;
5974 
5975 		/*
5976 		 * An ordered wq should have only one pwq as ordering is
5977 		 * guaranteed by max_active which is enforced by pwqs.
5978 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5979 		 */
5980 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5981 		attrs->nice = std_nice[i];
5982 		attrs->no_numa = true;
5983 		ordered_wq_attrs[i] = attrs;
5984 	}
5985 
5986 	system_wq = alloc_workqueue("events", 0, 0);
5987 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5988 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5989 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5990 					    WQ_UNBOUND_MAX_ACTIVE);
5991 	system_freezable_wq = alloc_workqueue("events_freezable",
5992 					      WQ_FREEZABLE, 0);
5993 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5994 					      WQ_POWER_EFFICIENT, 0);
5995 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5996 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5997 					      0);
5998 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5999 	       !system_unbound_wq || !system_freezable_wq ||
6000 	       !system_power_efficient_wq ||
6001 	       !system_freezable_power_efficient_wq);
6002 }
6003 
6004 /**
6005  * workqueue_init - bring workqueue subsystem fully online
6006  *
6007  * This is the latter half of two-staged workqueue subsystem initialization
6008  * and invoked as soon as kthreads can be created and scheduled.
6009  * Workqueues have been created and work items queued on them, but there
6010  * are no kworkers executing the work items yet.  Populate the worker pools
6011  * with the initial workers and enable future kworker creations.
6012  */
6013 void __init workqueue_init(void)
6014 {
6015 	struct workqueue_struct *wq;
6016 	struct worker_pool *pool;
6017 	int cpu, bkt;
6018 
6019 	/*
6020 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6021 	 * CPU to node mapping may not be available that early on some
6022 	 * archs such as power and arm64.  As per-cpu pools created
6023 	 * previously could be missing node hint and unbound pools NUMA
6024 	 * affinity, fix them up.
6025 	 *
6026 	 * Also, while iterating workqueues, create rescuers if requested.
6027 	 */
6028 	wq_numa_init();
6029 
6030 	mutex_lock(&wq_pool_mutex);
6031 
6032 	for_each_possible_cpu(cpu) {
6033 		for_each_cpu_worker_pool(pool, cpu) {
6034 			pool->node = cpu_to_node(cpu);
6035 		}
6036 	}
6037 
6038 	list_for_each_entry(wq, &workqueues, list) {
6039 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6040 		WARN(init_rescuer(wq),
6041 		     "workqueue: failed to create early rescuer for %s",
6042 		     wq->name);
6043 	}
6044 
6045 	mutex_unlock(&wq_pool_mutex);
6046 
6047 	/* create the initial workers */
6048 	for_each_online_cpu(cpu) {
6049 		for_each_cpu_worker_pool(pool, cpu) {
6050 			pool->flags &= ~POOL_DISASSOCIATED;
6051 			BUG_ON(!create_worker(pool));
6052 		}
6053 	}
6054 
6055 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6056 		BUG_ON(!create_worker(pool));
6057 
6058 	wq_online = true;
6059 	wq_watchdog_init();
6060 }
6061