1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * attach_mutex to avoid changing binding state while 69 * worker_attach_to_pool() is in progress. 70 */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 73 /* worker flags */ 74 WORKER_DIE = 1 << 1, /* die die die */ 75 WORKER_IDLE = 1 << 2, /* is idle */ 76 WORKER_PREP = 1 << 3, /* preparing to run works */ 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 80 81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 82 WORKER_UNBOUND | WORKER_REBOUND, 83 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 85 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 88 89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 91 92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 93 /* call for help after 10ms 94 (min two ticks) */ 95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 96 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 97 98 /* 99 * Rescue workers are used only on emergencies and shared by 100 * all cpus. Give MIN_NICE. 101 */ 102 RESCUER_NICE_LEVEL = MIN_NICE, 103 HIGHPRI_NICE_LEVEL = MIN_NICE, 104 105 WQ_NAME_LEN = 24, 106 }; 107 108 /* 109 * Structure fields follow one of the following exclusion rules. 110 * 111 * I: Modifiable by initialization/destruction paths and read-only for 112 * everyone else. 113 * 114 * P: Preemption protected. Disabling preemption is enough and should 115 * only be modified and accessed from the local cpu. 116 * 117 * L: pool->lock protected. Access with pool->lock held. 118 * 119 * X: During normal operation, modification requires pool->lock and should 120 * be done only from local cpu. Either disabling preemption on local 121 * cpu or grabbing pool->lock is enough for read access. If 122 * POOL_DISASSOCIATED is set, it's identical to L. 123 * 124 * A: pool->attach_mutex protected. 125 * 126 * PL: wq_pool_mutex protected. 127 * 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 129 * 130 * WQ: wq->mutex protected. 131 * 132 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 133 * 134 * MD: wq_mayday_lock protected. 135 */ 136 137 /* struct worker is defined in workqueue_internal.h */ 138 139 struct worker_pool { 140 spinlock_t lock; /* the pool lock */ 141 int cpu; /* I: the associated cpu */ 142 int node; /* I: the associated node ID */ 143 int id; /* I: pool ID */ 144 unsigned int flags; /* X: flags */ 145 146 struct list_head worklist; /* L: list of pending works */ 147 int nr_workers; /* L: total number of workers */ 148 149 /* nr_idle includes the ones off idle_list for rebinding */ 150 int nr_idle; /* L: currently idle ones */ 151 152 struct list_head idle_list; /* X: list of idle workers */ 153 struct timer_list idle_timer; /* L: worker idle timeout */ 154 struct timer_list mayday_timer; /* L: SOS timer for workers */ 155 156 /* a workers is either on busy_hash or idle_list, or the manager */ 157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 158 /* L: hash of busy workers */ 159 160 /* see manage_workers() for details on the two manager mutexes */ 161 struct mutex manager_arb; /* manager arbitration */ 162 struct mutex attach_mutex; /* attach/detach exclusion */ 163 struct list_head workers; /* A: attached workers */ 164 struct completion *detach_completion; /* all workers detached */ 165 166 struct ida worker_ida; /* worker IDs for task name */ 167 168 struct workqueue_attrs *attrs; /* I: worker attributes */ 169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 170 int refcnt; /* PL: refcnt for unbound pools */ 171 172 /* 173 * The current concurrency level. As it's likely to be accessed 174 * from other CPUs during try_to_wake_up(), put it in a separate 175 * cacheline. 176 */ 177 atomic_t nr_running ____cacheline_aligned_in_smp; 178 179 /* 180 * Destruction of pool is sched-RCU protected to allow dereferences 181 * from get_work_pool(). 182 */ 183 struct rcu_head rcu; 184 } ____cacheline_aligned_in_smp; 185 186 /* 187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 188 * of work_struct->data are used for flags and the remaining high bits 189 * point to the pwq; thus, pwqs need to be aligned at two's power of the 190 * number of flag bits. 191 */ 192 struct pool_workqueue { 193 struct worker_pool *pool; /* I: the associated pool */ 194 struct workqueue_struct *wq; /* I: the owning workqueue */ 195 int work_color; /* L: current color */ 196 int flush_color; /* L: flushing color */ 197 int refcnt; /* L: reference count */ 198 int nr_in_flight[WORK_NR_COLORS]; 199 /* L: nr of in_flight works */ 200 int nr_active; /* L: nr of active works */ 201 int max_active; /* L: max active works */ 202 struct list_head delayed_works; /* L: delayed works */ 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 204 struct list_head mayday_node; /* MD: node on wq->maydays */ 205 206 /* 207 * Release of unbound pwq is punted to system_wq. See put_pwq() 208 * and pwq_unbound_release_workfn() for details. pool_workqueue 209 * itself is also sched-RCU protected so that the first pwq can be 210 * determined without grabbing wq->mutex. 211 */ 212 struct work_struct unbound_release_work; 213 struct rcu_head rcu; 214 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 215 216 /* 217 * Structure used to wait for workqueue flush. 218 */ 219 struct wq_flusher { 220 struct list_head list; /* WQ: list of flushers */ 221 int flush_color; /* WQ: flush color waiting for */ 222 struct completion done; /* flush completion */ 223 }; 224 225 struct wq_device; 226 227 /* 228 * The externally visible workqueue. It relays the issued work items to 229 * the appropriate worker_pool through its pool_workqueues. 230 */ 231 struct workqueue_struct { 232 struct list_head pwqs; /* WR: all pwqs of this wq */ 233 struct list_head list; /* PL: list of all workqueues */ 234 235 struct mutex mutex; /* protects this wq */ 236 int work_color; /* WQ: current work color */ 237 int flush_color; /* WQ: current flush color */ 238 atomic_t nr_pwqs_to_flush; /* flush in progress */ 239 struct wq_flusher *first_flusher; /* WQ: first flusher */ 240 struct list_head flusher_queue; /* WQ: flush waiters */ 241 struct list_head flusher_overflow; /* WQ: flush overflow list */ 242 243 struct list_head maydays; /* MD: pwqs requesting rescue */ 244 struct worker *rescuer; /* I: rescue worker */ 245 246 int nr_drainers; /* WQ: drain in progress */ 247 int saved_max_active; /* WQ: saved pwq max_active */ 248 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */ 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */ 251 252 #ifdef CONFIG_SYSFS 253 struct wq_device *wq_dev; /* I: for sysfs interface */ 254 #endif 255 #ifdef CONFIG_LOCKDEP 256 struct lockdep_map lockdep_map; 257 #endif 258 char name[WQ_NAME_LEN]; /* I: workqueue name */ 259 260 /* hot fields used during command issue, aligned to cacheline */ 261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */ 264 }; 265 266 static struct kmem_cache *pwq_cache; 267 268 static cpumask_var_t *wq_numa_possible_cpumask; 269 /* possible CPUs of each node */ 270 271 static bool wq_disable_numa; 272 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 273 274 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 275 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT 276 static bool wq_power_efficient = true; 277 #else 278 static bool wq_power_efficient; 279 #endif 280 281 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 282 283 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 284 285 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 286 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 287 288 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 289 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 290 291 static LIST_HEAD(workqueues); /* PL: list of all workqueues */ 292 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 293 294 /* the per-cpu worker pools */ 295 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 296 cpu_worker_pools); 297 298 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 299 300 /* PL: hash of all unbound pools keyed by pool->attrs */ 301 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 302 303 /* I: attributes used when instantiating standard unbound pools on demand */ 304 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 305 306 /* I: attributes used when instantiating ordered pools on demand */ 307 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 308 309 struct workqueue_struct *system_wq __read_mostly; 310 EXPORT_SYMBOL(system_wq); 311 struct workqueue_struct *system_highpri_wq __read_mostly; 312 EXPORT_SYMBOL_GPL(system_highpri_wq); 313 struct workqueue_struct *system_long_wq __read_mostly; 314 EXPORT_SYMBOL_GPL(system_long_wq); 315 struct workqueue_struct *system_unbound_wq __read_mostly; 316 EXPORT_SYMBOL_GPL(system_unbound_wq); 317 struct workqueue_struct *system_freezable_wq __read_mostly; 318 EXPORT_SYMBOL_GPL(system_freezable_wq); 319 struct workqueue_struct *system_power_efficient_wq __read_mostly; 320 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 321 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 322 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 323 324 static int worker_thread(void *__worker); 325 static void copy_workqueue_attrs(struct workqueue_attrs *to, 326 const struct workqueue_attrs *from); 327 328 #define CREATE_TRACE_POINTS 329 #include <trace/events/workqueue.h> 330 331 #define assert_rcu_or_pool_mutex() \ 332 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 333 lockdep_is_held(&wq_pool_mutex), \ 334 "sched RCU or wq_pool_mutex should be held") 335 336 #define assert_rcu_or_wq_mutex(wq) \ 337 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 338 lockdep_is_held(&wq->mutex), \ 339 "sched RCU or wq->mutex should be held") 340 341 #define for_each_cpu_worker_pool(pool, cpu) \ 342 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 343 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 344 (pool)++) 345 346 /** 347 * for_each_pool - iterate through all worker_pools in the system 348 * @pool: iteration cursor 349 * @pi: integer used for iteration 350 * 351 * This must be called either with wq_pool_mutex held or sched RCU read 352 * locked. If the pool needs to be used beyond the locking in effect, the 353 * caller is responsible for guaranteeing that the pool stays online. 354 * 355 * The if/else clause exists only for the lockdep assertion and can be 356 * ignored. 357 */ 358 #define for_each_pool(pool, pi) \ 359 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 360 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 361 else 362 363 /** 364 * for_each_pool_worker - iterate through all workers of a worker_pool 365 * @worker: iteration cursor 366 * @pool: worker_pool to iterate workers of 367 * 368 * This must be called with @pool->attach_mutex. 369 * 370 * The if/else clause exists only for the lockdep assertion and can be 371 * ignored. 372 */ 373 #define for_each_pool_worker(worker, pool) \ 374 list_for_each_entry((worker), &(pool)->workers, node) \ 375 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 376 else 377 378 /** 379 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 380 * @pwq: iteration cursor 381 * @wq: the target workqueue 382 * 383 * This must be called either with wq->mutex held or sched RCU read locked. 384 * If the pwq needs to be used beyond the locking in effect, the caller is 385 * responsible for guaranteeing that the pwq stays online. 386 * 387 * The if/else clause exists only for the lockdep assertion and can be 388 * ignored. 389 */ 390 #define for_each_pwq(pwq, wq) \ 391 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 392 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 393 else 394 395 #ifdef CONFIG_DEBUG_OBJECTS_WORK 396 397 static struct debug_obj_descr work_debug_descr; 398 399 static void *work_debug_hint(void *addr) 400 { 401 return ((struct work_struct *) addr)->func; 402 } 403 404 /* 405 * fixup_init is called when: 406 * - an active object is initialized 407 */ 408 static int work_fixup_init(void *addr, enum debug_obj_state state) 409 { 410 struct work_struct *work = addr; 411 412 switch (state) { 413 case ODEBUG_STATE_ACTIVE: 414 cancel_work_sync(work); 415 debug_object_init(work, &work_debug_descr); 416 return 1; 417 default: 418 return 0; 419 } 420 } 421 422 /* 423 * fixup_activate is called when: 424 * - an active object is activated 425 * - an unknown object is activated (might be a statically initialized object) 426 */ 427 static int work_fixup_activate(void *addr, enum debug_obj_state state) 428 { 429 struct work_struct *work = addr; 430 431 switch (state) { 432 433 case ODEBUG_STATE_NOTAVAILABLE: 434 /* 435 * This is not really a fixup. The work struct was 436 * statically initialized. We just make sure that it 437 * is tracked in the object tracker. 438 */ 439 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 440 debug_object_init(work, &work_debug_descr); 441 debug_object_activate(work, &work_debug_descr); 442 return 0; 443 } 444 WARN_ON_ONCE(1); 445 return 0; 446 447 case ODEBUG_STATE_ACTIVE: 448 WARN_ON(1); 449 450 default: 451 return 0; 452 } 453 } 454 455 /* 456 * fixup_free is called when: 457 * - an active object is freed 458 */ 459 static int work_fixup_free(void *addr, enum debug_obj_state state) 460 { 461 struct work_struct *work = addr; 462 463 switch (state) { 464 case ODEBUG_STATE_ACTIVE: 465 cancel_work_sync(work); 466 debug_object_free(work, &work_debug_descr); 467 return 1; 468 default: 469 return 0; 470 } 471 } 472 473 static struct debug_obj_descr work_debug_descr = { 474 .name = "work_struct", 475 .debug_hint = work_debug_hint, 476 .fixup_init = work_fixup_init, 477 .fixup_activate = work_fixup_activate, 478 .fixup_free = work_fixup_free, 479 }; 480 481 static inline void debug_work_activate(struct work_struct *work) 482 { 483 debug_object_activate(work, &work_debug_descr); 484 } 485 486 static inline void debug_work_deactivate(struct work_struct *work) 487 { 488 debug_object_deactivate(work, &work_debug_descr); 489 } 490 491 void __init_work(struct work_struct *work, int onstack) 492 { 493 if (onstack) 494 debug_object_init_on_stack(work, &work_debug_descr); 495 else 496 debug_object_init(work, &work_debug_descr); 497 } 498 EXPORT_SYMBOL_GPL(__init_work); 499 500 void destroy_work_on_stack(struct work_struct *work) 501 { 502 debug_object_free(work, &work_debug_descr); 503 } 504 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 505 506 void destroy_delayed_work_on_stack(struct delayed_work *work) 507 { 508 destroy_timer_on_stack(&work->timer); 509 debug_object_free(&work->work, &work_debug_descr); 510 } 511 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 512 513 #else 514 static inline void debug_work_activate(struct work_struct *work) { } 515 static inline void debug_work_deactivate(struct work_struct *work) { } 516 #endif 517 518 /** 519 * worker_pool_assign_id - allocate ID and assing it to @pool 520 * @pool: the pool pointer of interest 521 * 522 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 523 * successfully, -errno on failure. 524 */ 525 static int worker_pool_assign_id(struct worker_pool *pool) 526 { 527 int ret; 528 529 lockdep_assert_held(&wq_pool_mutex); 530 531 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 532 GFP_KERNEL); 533 if (ret >= 0) { 534 pool->id = ret; 535 return 0; 536 } 537 return ret; 538 } 539 540 /** 541 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 542 * @wq: the target workqueue 543 * @node: the node ID 544 * 545 * This must be called either with pwq_lock held or sched RCU read locked. 546 * If the pwq needs to be used beyond the locking in effect, the caller is 547 * responsible for guaranteeing that the pwq stays online. 548 * 549 * Return: The unbound pool_workqueue for @node. 550 */ 551 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 552 int node) 553 { 554 assert_rcu_or_wq_mutex(wq); 555 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 556 } 557 558 static unsigned int work_color_to_flags(int color) 559 { 560 return color << WORK_STRUCT_COLOR_SHIFT; 561 } 562 563 static int get_work_color(struct work_struct *work) 564 { 565 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 566 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 567 } 568 569 static int work_next_color(int color) 570 { 571 return (color + 1) % WORK_NR_COLORS; 572 } 573 574 /* 575 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 576 * contain the pointer to the queued pwq. Once execution starts, the flag 577 * is cleared and the high bits contain OFFQ flags and pool ID. 578 * 579 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 580 * and clear_work_data() can be used to set the pwq, pool or clear 581 * work->data. These functions should only be called while the work is 582 * owned - ie. while the PENDING bit is set. 583 * 584 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 585 * corresponding to a work. Pool is available once the work has been 586 * queued anywhere after initialization until it is sync canceled. pwq is 587 * available only while the work item is queued. 588 * 589 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 590 * canceled. While being canceled, a work item may have its PENDING set 591 * but stay off timer and worklist for arbitrarily long and nobody should 592 * try to steal the PENDING bit. 593 */ 594 static inline void set_work_data(struct work_struct *work, unsigned long data, 595 unsigned long flags) 596 { 597 WARN_ON_ONCE(!work_pending(work)); 598 atomic_long_set(&work->data, data | flags | work_static(work)); 599 } 600 601 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 602 unsigned long extra_flags) 603 { 604 set_work_data(work, (unsigned long)pwq, 605 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 606 } 607 608 static void set_work_pool_and_keep_pending(struct work_struct *work, 609 int pool_id) 610 { 611 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 612 WORK_STRUCT_PENDING); 613 } 614 615 static void set_work_pool_and_clear_pending(struct work_struct *work, 616 int pool_id) 617 { 618 /* 619 * The following wmb is paired with the implied mb in 620 * test_and_set_bit(PENDING) and ensures all updates to @work made 621 * here are visible to and precede any updates by the next PENDING 622 * owner. 623 */ 624 smp_wmb(); 625 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 626 } 627 628 static void clear_work_data(struct work_struct *work) 629 { 630 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 631 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 632 } 633 634 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 635 { 636 unsigned long data = atomic_long_read(&work->data); 637 638 if (data & WORK_STRUCT_PWQ) 639 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 640 else 641 return NULL; 642 } 643 644 /** 645 * get_work_pool - return the worker_pool a given work was associated with 646 * @work: the work item of interest 647 * 648 * Pools are created and destroyed under wq_pool_mutex, and allows read 649 * access under sched-RCU read lock. As such, this function should be 650 * called under wq_pool_mutex or with preemption disabled. 651 * 652 * All fields of the returned pool are accessible as long as the above 653 * mentioned locking is in effect. If the returned pool needs to be used 654 * beyond the critical section, the caller is responsible for ensuring the 655 * returned pool is and stays online. 656 * 657 * Return: The worker_pool @work was last associated with. %NULL if none. 658 */ 659 static struct worker_pool *get_work_pool(struct work_struct *work) 660 { 661 unsigned long data = atomic_long_read(&work->data); 662 int pool_id; 663 664 assert_rcu_or_pool_mutex(); 665 666 if (data & WORK_STRUCT_PWQ) 667 return ((struct pool_workqueue *) 668 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 669 670 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 671 if (pool_id == WORK_OFFQ_POOL_NONE) 672 return NULL; 673 674 return idr_find(&worker_pool_idr, pool_id); 675 } 676 677 /** 678 * get_work_pool_id - return the worker pool ID a given work is associated with 679 * @work: the work item of interest 680 * 681 * Return: The worker_pool ID @work was last associated with. 682 * %WORK_OFFQ_POOL_NONE if none. 683 */ 684 static int get_work_pool_id(struct work_struct *work) 685 { 686 unsigned long data = atomic_long_read(&work->data); 687 688 if (data & WORK_STRUCT_PWQ) 689 return ((struct pool_workqueue *) 690 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 691 692 return data >> WORK_OFFQ_POOL_SHIFT; 693 } 694 695 static void mark_work_canceling(struct work_struct *work) 696 { 697 unsigned long pool_id = get_work_pool_id(work); 698 699 pool_id <<= WORK_OFFQ_POOL_SHIFT; 700 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 701 } 702 703 static bool work_is_canceling(struct work_struct *work) 704 { 705 unsigned long data = atomic_long_read(&work->data); 706 707 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 708 } 709 710 /* 711 * Policy functions. These define the policies on how the global worker 712 * pools are managed. Unless noted otherwise, these functions assume that 713 * they're being called with pool->lock held. 714 */ 715 716 static bool __need_more_worker(struct worker_pool *pool) 717 { 718 return !atomic_read(&pool->nr_running); 719 } 720 721 /* 722 * Need to wake up a worker? Called from anything but currently 723 * running workers. 724 * 725 * Note that, because unbound workers never contribute to nr_running, this 726 * function will always return %true for unbound pools as long as the 727 * worklist isn't empty. 728 */ 729 static bool need_more_worker(struct worker_pool *pool) 730 { 731 return !list_empty(&pool->worklist) && __need_more_worker(pool); 732 } 733 734 /* Can I start working? Called from busy but !running workers. */ 735 static bool may_start_working(struct worker_pool *pool) 736 { 737 return pool->nr_idle; 738 } 739 740 /* Do I need to keep working? Called from currently running workers. */ 741 static bool keep_working(struct worker_pool *pool) 742 { 743 return !list_empty(&pool->worklist) && 744 atomic_read(&pool->nr_running) <= 1; 745 } 746 747 /* Do we need a new worker? Called from manager. */ 748 static bool need_to_create_worker(struct worker_pool *pool) 749 { 750 return need_more_worker(pool) && !may_start_working(pool); 751 } 752 753 /* Do we have too many workers and should some go away? */ 754 static bool too_many_workers(struct worker_pool *pool) 755 { 756 bool managing = mutex_is_locked(&pool->manager_arb); 757 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 758 int nr_busy = pool->nr_workers - nr_idle; 759 760 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 761 } 762 763 /* 764 * Wake up functions. 765 */ 766 767 /* Return the first idle worker. Safe with preemption disabled */ 768 static struct worker *first_idle_worker(struct worker_pool *pool) 769 { 770 if (unlikely(list_empty(&pool->idle_list))) 771 return NULL; 772 773 return list_first_entry(&pool->idle_list, struct worker, entry); 774 } 775 776 /** 777 * wake_up_worker - wake up an idle worker 778 * @pool: worker pool to wake worker from 779 * 780 * Wake up the first idle worker of @pool. 781 * 782 * CONTEXT: 783 * spin_lock_irq(pool->lock). 784 */ 785 static void wake_up_worker(struct worker_pool *pool) 786 { 787 struct worker *worker = first_idle_worker(pool); 788 789 if (likely(worker)) 790 wake_up_process(worker->task); 791 } 792 793 /** 794 * wq_worker_waking_up - a worker is waking up 795 * @task: task waking up 796 * @cpu: CPU @task is waking up to 797 * 798 * This function is called during try_to_wake_up() when a worker is 799 * being awoken. 800 * 801 * CONTEXT: 802 * spin_lock_irq(rq->lock) 803 */ 804 void wq_worker_waking_up(struct task_struct *task, int cpu) 805 { 806 struct worker *worker = kthread_data(task); 807 808 if (!(worker->flags & WORKER_NOT_RUNNING)) { 809 WARN_ON_ONCE(worker->pool->cpu != cpu); 810 atomic_inc(&worker->pool->nr_running); 811 } 812 } 813 814 /** 815 * wq_worker_sleeping - a worker is going to sleep 816 * @task: task going to sleep 817 * @cpu: CPU in question, must be the current CPU number 818 * 819 * This function is called during schedule() when a busy worker is 820 * going to sleep. Worker on the same cpu can be woken up by 821 * returning pointer to its task. 822 * 823 * CONTEXT: 824 * spin_lock_irq(rq->lock) 825 * 826 * Return: 827 * Worker task on @cpu to wake up, %NULL if none. 828 */ 829 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 830 { 831 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 832 struct worker_pool *pool; 833 834 /* 835 * Rescuers, which may not have all the fields set up like normal 836 * workers, also reach here, let's not access anything before 837 * checking NOT_RUNNING. 838 */ 839 if (worker->flags & WORKER_NOT_RUNNING) 840 return NULL; 841 842 pool = worker->pool; 843 844 /* this can only happen on the local cpu */ 845 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu)) 846 return NULL; 847 848 /* 849 * The counterpart of the following dec_and_test, implied mb, 850 * worklist not empty test sequence is in insert_work(). 851 * Please read comment there. 852 * 853 * NOT_RUNNING is clear. This means that we're bound to and 854 * running on the local cpu w/ rq lock held and preemption 855 * disabled, which in turn means that none else could be 856 * manipulating idle_list, so dereferencing idle_list without pool 857 * lock is safe. 858 */ 859 if (atomic_dec_and_test(&pool->nr_running) && 860 !list_empty(&pool->worklist)) 861 to_wakeup = first_idle_worker(pool); 862 return to_wakeup ? to_wakeup->task : NULL; 863 } 864 865 /** 866 * worker_set_flags - set worker flags and adjust nr_running accordingly 867 * @worker: self 868 * @flags: flags to set 869 * 870 * Set @flags in @worker->flags and adjust nr_running accordingly. 871 * 872 * CONTEXT: 873 * spin_lock_irq(pool->lock) 874 */ 875 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 876 { 877 struct worker_pool *pool = worker->pool; 878 879 WARN_ON_ONCE(worker->task != current); 880 881 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 882 if ((flags & WORKER_NOT_RUNNING) && 883 !(worker->flags & WORKER_NOT_RUNNING)) { 884 atomic_dec(&pool->nr_running); 885 } 886 887 worker->flags |= flags; 888 } 889 890 /** 891 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 892 * @worker: self 893 * @flags: flags to clear 894 * 895 * Clear @flags in @worker->flags and adjust nr_running accordingly. 896 * 897 * CONTEXT: 898 * spin_lock_irq(pool->lock) 899 */ 900 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 901 { 902 struct worker_pool *pool = worker->pool; 903 unsigned int oflags = worker->flags; 904 905 WARN_ON_ONCE(worker->task != current); 906 907 worker->flags &= ~flags; 908 909 /* 910 * If transitioning out of NOT_RUNNING, increment nr_running. Note 911 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 912 * of multiple flags, not a single flag. 913 */ 914 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 915 if (!(worker->flags & WORKER_NOT_RUNNING)) 916 atomic_inc(&pool->nr_running); 917 } 918 919 /** 920 * find_worker_executing_work - find worker which is executing a work 921 * @pool: pool of interest 922 * @work: work to find worker for 923 * 924 * Find a worker which is executing @work on @pool by searching 925 * @pool->busy_hash which is keyed by the address of @work. For a worker 926 * to match, its current execution should match the address of @work and 927 * its work function. This is to avoid unwanted dependency between 928 * unrelated work executions through a work item being recycled while still 929 * being executed. 930 * 931 * This is a bit tricky. A work item may be freed once its execution 932 * starts and nothing prevents the freed area from being recycled for 933 * another work item. If the same work item address ends up being reused 934 * before the original execution finishes, workqueue will identify the 935 * recycled work item as currently executing and make it wait until the 936 * current execution finishes, introducing an unwanted dependency. 937 * 938 * This function checks the work item address and work function to avoid 939 * false positives. Note that this isn't complete as one may construct a 940 * work function which can introduce dependency onto itself through a 941 * recycled work item. Well, if somebody wants to shoot oneself in the 942 * foot that badly, there's only so much we can do, and if such deadlock 943 * actually occurs, it should be easy to locate the culprit work function. 944 * 945 * CONTEXT: 946 * spin_lock_irq(pool->lock). 947 * 948 * Return: 949 * Pointer to worker which is executing @work if found, %NULL 950 * otherwise. 951 */ 952 static struct worker *find_worker_executing_work(struct worker_pool *pool, 953 struct work_struct *work) 954 { 955 struct worker *worker; 956 957 hash_for_each_possible(pool->busy_hash, worker, hentry, 958 (unsigned long)work) 959 if (worker->current_work == work && 960 worker->current_func == work->func) 961 return worker; 962 963 return NULL; 964 } 965 966 /** 967 * move_linked_works - move linked works to a list 968 * @work: start of series of works to be scheduled 969 * @head: target list to append @work to 970 * @nextp: out paramter for nested worklist walking 971 * 972 * Schedule linked works starting from @work to @head. Work series to 973 * be scheduled starts at @work and includes any consecutive work with 974 * WORK_STRUCT_LINKED set in its predecessor. 975 * 976 * If @nextp is not NULL, it's updated to point to the next work of 977 * the last scheduled work. This allows move_linked_works() to be 978 * nested inside outer list_for_each_entry_safe(). 979 * 980 * CONTEXT: 981 * spin_lock_irq(pool->lock). 982 */ 983 static void move_linked_works(struct work_struct *work, struct list_head *head, 984 struct work_struct **nextp) 985 { 986 struct work_struct *n; 987 988 /* 989 * Linked worklist will always end before the end of the list, 990 * use NULL for list head. 991 */ 992 list_for_each_entry_safe_from(work, n, NULL, entry) { 993 list_move_tail(&work->entry, head); 994 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 995 break; 996 } 997 998 /* 999 * If we're already inside safe list traversal and have moved 1000 * multiple works to the scheduled queue, the next position 1001 * needs to be updated. 1002 */ 1003 if (nextp) 1004 *nextp = n; 1005 } 1006 1007 /** 1008 * get_pwq - get an extra reference on the specified pool_workqueue 1009 * @pwq: pool_workqueue to get 1010 * 1011 * Obtain an extra reference on @pwq. The caller should guarantee that 1012 * @pwq has positive refcnt and be holding the matching pool->lock. 1013 */ 1014 static void get_pwq(struct pool_workqueue *pwq) 1015 { 1016 lockdep_assert_held(&pwq->pool->lock); 1017 WARN_ON_ONCE(pwq->refcnt <= 0); 1018 pwq->refcnt++; 1019 } 1020 1021 /** 1022 * put_pwq - put a pool_workqueue reference 1023 * @pwq: pool_workqueue to put 1024 * 1025 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1026 * destruction. The caller should be holding the matching pool->lock. 1027 */ 1028 static void put_pwq(struct pool_workqueue *pwq) 1029 { 1030 lockdep_assert_held(&pwq->pool->lock); 1031 if (likely(--pwq->refcnt)) 1032 return; 1033 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1034 return; 1035 /* 1036 * @pwq can't be released under pool->lock, bounce to 1037 * pwq_unbound_release_workfn(). This never recurses on the same 1038 * pool->lock as this path is taken only for unbound workqueues and 1039 * the release work item is scheduled on a per-cpu workqueue. To 1040 * avoid lockdep warning, unbound pool->locks are given lockdep 1041 * subclass of 1 in get_unbound_pool(). 1042 */ 1043 schedule_work(&pwq->unbound_release_work); 1044 } 1045 1046 /** 1047 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1048 * @pwq: pool_workqueue to put (can be %NULL) 1049 * 1050 * put_pwq() with locking. This function also allows %NULL @pwq. 1051 */ 1052 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1053 { 1054 if (pwq) { 1055 /* 1056 * As both pwqs and pools are sched-RCU protected, the 1057 * following lock operations are safe. 1058 */ 1059 spin_lock_irq(&pwq->pool->lock); 1060 put_pwq(pwq); 1061 spin_unlock_irq(&pwq->pool->lock); 1062 } 1063 } 1064 1065 static void pwq_activate_delayed_work(struct work_struct *work) 1066 { 1067 struct pool_workqueue *pwq = get_work_pwq(work); 1068 1069 trace_workqueue_activate_work(work); 1070 move_linked_works(work, &pwq->pool->worklist, NULL); 1071 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1072 pwq->nr_active++; 1073 } 1074 1075 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1076 { 1077 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1078 struct work_struct, entry); 1079 1080 pwq_activate_delayed_work(work); 1081 } 1082 1083 /** 1084 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1085 * @pwq: pwq of interest 1086 * @color: color of work which left the queue 1087 * 1088 * A work either has completed or is removed from pending queue, 1089 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1090 * 1091 * CONTEXT: 1092 * spin_lock_irq(pool->lock). 1093 */ 1094 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1095 { 1096 /* uncolored work items don't participate in flushing or nr_active */ 1097 if (color == WORK_NO_COLOR) 1098 goto out_put; 1099 1100 pwq->nr_in_flight[color]--; 1101 1102 pwq->nr_active--; 1103 if (!list_empty(&pwq->delayed_works)) { 1104 /* one down, submit a delayed one */ 1105 if (pwq->nr_active < pwq->max_active) 1106 pwq_activate_first_delayed(pwq); 1107 } 1108 1109 /* is flush in progress and are we at the flushing tip? */ 1110 if (likely(pwq->flush_color != color)) 1111 goto out_put; 1112 1113 /* are there still in-flight works? */ 1114 if (pwq->nr_in_flight[color]) 1115 goto out_put; 1116 1117 /* this pwq is done, clear flush_color */ 1118 pwq->flush_color = -1; 1119 1120 /* 1121 * If this was the last pwq, wake up the first flusher. It 1122 * will handle the rest. 1123 */ 1124 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1125 complete(&pwq->wq->first_flusher->done); 1126 out_put: 1127 put_pwq(pwq); 1128 } 1129 1130 /** 1131 * try_to_grab_pending - steal work item from worklist and disable irq 1132 * @work: work item to steal 1133 * @is_dwork: @work is a delayed_work 1134 * @flags: place to store irq state 1135 * 1136 * Try to grab PENDING bit of @work. This function can handle @work in any 1137 * stable state - idle, on timer or on worklist. 1138 * 1139 * Return: 1140 * 1 if @work was pending and we successfully stole PENDING 1141 * 0 if @work was idle and we claimed PENDING 1142 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1143 * -ENOENT if someone else is canceling @work, this state may persist 1144 * for arbitrarily long 1145 * 1146 * Note: 1147 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1148 * interrupted while holding PENDING and @work off queue, irq must be 1149 * disabled on entry. This, combined with delayed_work->timer being 1150 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1151 * 1152 * On successful return, >= 0, irq is disabled and the caller is 1153 * responsible for releasing it using local_irq_restore(*@flags). 1154 * 1155 * This function is safe to call from any context including IRQ handler. 1156 */ 1157 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1158 unsigned long *flags) 1159 { 1160 struct worker_pool *pool; 1161 struct pool_workqueue *pwq; 1162 1163 local_irq_save(*flags); 1164 1165 /* try to steal the timer if it exists */ 1166 if (is_dwork) { 1167 struct delayed_work *dwork = to_delayed_work(work); 1168 1169 /* 1170 * dwork->timer is irqsafe. If del_timer() fails, it's 1171 * guaranteed that the timer is not queued anywhere and not 1172 * running on the local CPU. 1173 */ 1174 if (likely(del_timer(&dwork->timer))) 1175 return 1; 1176 } 1177 1178 /* try to claim PENDING the normal way */ 1179 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1180 return 0; 1181 1182 /* 1183 * The queueing is in progress, or it is already queued. Try to 1184 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1185 */ 1186 pool = get_work_pool(work); 1187 if (!pool) 1188 goto fail; 1189 1190 spin_lock(&pool->lock); 1191 /* 1192 * work->data is guaranteed to point to pwq only while the work 1193 * item is queued on pwq->wq, and both updating work->data to point 1194 * to pwq on queueing and to pool on dequeueing are done under 1195 * pwq->pool->lock. This in turn guarantees that, if work->data 1196 * points to pwq which is associated with a locked pool, the work 1197 * item is currently queued on that pool. 1198 */ 1199 pwq = get_work_pwq(work); 1200 if (pwq && pwq->pool == pool) { 1201 debug_work_deactivate(work); 1202 1203 /* 1204 * A delayed work item cannot be grabbed directly because 1205 * it might have linked NO_COLOR work items which, if left 1206 * on the delayed_list, will confuse pwq->nr_active 1207 * management later on and cause stall. Make sure the work 1208 * item is activated before grabbing. 1209 */ 1210 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1211 pwq_activate_delayed_work(work); 1212 1213 list_del_init(&work->entry); 1214 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1215 1216 /* work->data points to pwq iff queued, point to pool */ 1217 set_work_pool_and_keep_pending(work, pool->id); 1218 1219 spin_unlock(&pool->lock); 1220 return 1; 1221 } 1222 spin_unlock(&pool->lock); 1223 fail: 1224 local_irq_restore(*flags); 1225 if (work_is_canceling(work)) 1226 return -ENOENT; 1227 cpu_relax(); 1228 return -EAGAIN; 1229 } 1230 1231 /** 1232 * insert_work - insert a work into a pool 1233 * @pwq: pwq @work belongs to 1234 * @work: work to insert 1235 * @head: insertion point 1236 * @extra_flags: extra WORK_STRUCT_* flags to set 1237 * 1238 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1239 * work_struct flags. 1240 * 1241 * CONTEXT: 1242 * spin_lock_irq(pool->lock). 1243 */ 1244 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1245 struct list_head *head, unsigned int extra_flags) 1246 { 1247 struct worker_pool *pool = pwq->pool; 1248 1249 /* we own @work, set data and link */ 1250 set_work_pwq(work, pwq, extra_flags); 1251 list_add_tail(&work->entry, head); 1252 get_pwq(pwq); 1253 1254 /* 1255 * Ensure either wq_worker_sleeping() sees the above 1256 * list_add_tail() or we see zero nr_running to avoid workers lying 1257 * around lazily while there are works to be processed. 1258 */ 1259 smp_mb(); 1260 1261 if (__need_more_worker(pool)) 1262 wake_up_worker(pool); 1263 } 1264 1265 /* 1266 * Test whether @work is being queued from another work executing on the 1267 * same workqueue. 1268 */ 1269 static bool is_chained_work(struct workqueue_struct *wq) 1270 { 1271 struct worker *worker; 1272 1273 worker = current_wq_worker(); 1274 /* 1275 * Return %true iff I'm a worker execuing a work item on @wq. If 1276 * I'm @worker, it's safe to dereference it without locking. 1277 */ 1278 return worker && worker->current_pwq->wq == wq; 1279 } 1280 1281 static void __queue_work(int cpu, struct workqueue_struct *wq, 1282 struct work_struct *work) 1283 { 1284 struct pool_workqueue *pwq; 1285 struct worker_pool *last_pool; 1286 struct list_head *worklist; 1287 unsigned int work_flags; 1288 unsigned int req_cpu = cpu; 1289 1290 /* 1291 * While a work item is PENDING && off queue, a task trying to 1292 * steal the PENDING will busy-loop waiting for it to either get 1293 * queued or lose PENDING. Grabbing PENDING and queueing should 1294 * happen with IRQ disabled. 1295 */ 1296 WARN_ON_ONCE(!irqs_disabled()); 1297 1298 debug_work_activate(work); 1299 1300 /* if draining, only works from the same workqueue are allowed */ 1301 if (unlikely(wq->flags & __WQ_DRAINING) && 1302 WARN_ON_ONCE(!is_chained_work(wq))) 1303 return; 1304 retry: 1305 if (req_cpu == WORK_CPU_UNBOUND) 1306 cpu = raw_smp_processor_id(); 1307 1308 /* pwq which will be used unless @work is executing elsewhere */ 1309 if (!(wq->flags & WQ_UNBOUND)) 1310 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1311 else 1312 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1313 1314 /* 1315 * If @work was previously on a different pool, it might still be 1316 * running there, in which case the work needs to be queued on that 1317 * pool to guarantee non-reentrancy. 1318 */ 1319 last_pool = get_work_pool(work); 1320 if (last_pool && last_pool != pwq->pool) { 1321 struct worker *worker; 1322 1323 spin_lock(&last_pool->lock); 1324 1325 worker = find_worker_executing_work(last_pool, work); 1326 1327 if (worker && worker->current_pwq->wq == wq) { 1328 pwq = worker->current_pwq; 1329 } else { 1330 /* meh... not running there, queue here */ 1331 spin_unlock(&last_pool->lock); 1332 spin_lock(&pwq->pool->lock); 1333 } 1334 } else { 1335 spin_lock(&pwq->pool->lock); 1336 } 1337 1338 /* 1339 * pwq is determined and locked. For unbound pools, we could have 1340 * raced with pwq release and it could already be dead. If its 1341 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1342 * without another pwq replacing it in the numa_pwq_tbl or while 1343 * work items are executing on it, so the retrying is guaranteed to 1344 * make forward-progress. 1345 */ 1346 if (unlikely(!pwq->refcnt)) { 1347 if (wq->flags & WQ_UNBOUND) { 1348 spin_unlock(&pwq->pool->lock); 1349 cpu_relax(); 1350 goto retry; 1351 } 1352 /* oops */ 1353 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1354 wq->name, cpu); 1355 } 1356 1357 /* pwq determined, queue */ 1358 trace_workqueue_queue_work(req_cpu, pwq, work); 1359 1360 if (WARN_ON(!list_empty(&work->entry))) { 1361 spin_unlock(&pwq->pool->lock); 1362 return; 1363 } 1364 1365 pwq->nr_in_flight[pwq->work_color]++; 1366 work_flags = work_color_to_flags(pwq->work_color); 1367 1368 if (likely(pwq->nr_active < pwq->max_active)) { 1369 trace_workqueue_activate_work(work); 1370 pwq->nr_active++; 1371 worklist = &pwq->pool->worklist; 1372 } else { 1373 work_flags |= WORK_STRUCT_DELAYED; 1374 worklist = &pwq->delayed_works; 1375 } 1376 1377 insert_work(pwq, work, worklist, work_flags); 1378 1379 spin_unlock(&pwq->pool->lock); 1380 } 1381 1382 /** 1383 * queue_work_on - queue work on specific cpu 1384 * @cpu: CPU number to execute work on 1385 * @wq: workqueue to use 1386 * @work: work to queue 1387 * 1388 * We queue the work to a specific CPU, the caller must ensure it 1389 * can't go away. 1390 * 1391 * Return: %false if @work was already on a queue, %true otherwise. 1392 */ 1393 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1394 struct work_struct *work) 1395 { 1396 bool ret = false; 1397 unsigned long flags; 1398 1399 local_irq_save(flags); 1400 1401 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1402 __queue_work(cpu, wq, work); 1403 ret = true; 1404 } 1405 1406 local_irq_restore(flags); 1407 return ret; 1408 } 1409 EXPORT_SYMBOL(queue_work_on); 1410 1411 void delayed_work_timer_fn(unsigned long __data) 1412 { 1413 struct delayed_work *dwork = (struct delayed_work *)__data; 1414 1415 /* should have been called from irqsafe timer with irq already off */ 1416 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1417 } 1418 EXPORT_SYMBOL(delayed_work_timer_fn); 1419 1420 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1421 struct delayed_work *dwork, unsigned long delay) 1422 { 1423 struct timer_list *timer = &dwork->timer; 1424 struct work_struct *work = &dwork->work; 1425 1426 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1427 timer->data != (unsigned long)dwork); 1428 WARN_ON_ONCE(timer_pending(timer)); 1429 WARN_ON_ONCE(!list_empty(&work->entry)); 1430 1431 /* 1432 * If @delay is 0, queue @dwork->work immediately. This is for 1433 * both optimization and correctness. The earliest @timer can 1434 * expire is on the closest next tick and delayed_work users depend 1435 * on that there's no such delay when @delay is 0. 1436 */ 1437 if (!delay) { 1438 __queue_work(cpu, wq, &dwork->work); 1439 return; 1440 } 1441 1442 timer_stats_timer_set_start_info(&dwork->timer); 1443 1444 dwork->wq = wq; 1445 dwork->cpu = cpu; 1446 timer->expires = jiffies + delay; 1447 1448 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1449 add_timer_on(timer, cpu); 1450 else 1451 add_timer(timer); 1452 } 1453 1454 /** 1455 * queue_delayed_work_on - queue work on specific CPU after delay 1456 * @cpu: CPU number to execute work on 1457 * @wq: workqueue to use 1458 * @dwork: work to queue 1459 * @delay: number of jiffies to wait before queueing 1460 * 1461 * Return: %false if @work was already on a queue, %true otherwise. If 1462 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1463 * execution. 1464 */ 1465 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1466 struct delayed_work *dwork, unsigned long delay) 1467 { 1468 struct work_struct *work = &dwork->work; 1469 bool ret = false; 1470 unsigned long flags; 1471 1472 /* read the comment in __queue_work() */ 1473 local_irq_save(flags); 1474 1475 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1476 __queue_delayed_work(cpu, wq, dwork, delay); 1477 ret = true; 1478 } 1479 1480 local_irq_restore(flags); 1481 return ret; 1482 } 1483 EXPORT_SYMBOL(queue_delayed_work_on); 1484 1485 /** 1486 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1487 * @cpu: CPU number to execute work on 1488 * @wq: workqueue to use 1489 * @dwork: work to queue 1490 * @delay: number of jiffies to wait before queueing 1491 * 1492 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1493 * modify @dwork's timer so that it expires after @delay. If @delay is 1494 * zero, @work is guaranteed to be scheduled immediately regardless of its 1495 * current state. 1496 * 1497 * Return: %false if @dwork was idle and queued, %true if @dwork was 1498 * pending and its timer was modified. 1499 * 1500 * This function is safe to call from any context including IRQ handler. 1501 * See try_to_grab_pending() for details. 1502 */ 1503 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1504 struct delayed_work *dwork, unsigned long delay) 1505 { 1506 unsigned long flags; 1507 int ret; 1508 1509 do { 1510 ret = try_to_grab_pending(&dwork->work, true, &flags); 1511 } while (unlikely(ret == -EAGAIN)); 1512 1513 if (likely(ret >= 0)) { 1514 __queue_delayed_work(cpu, wq, dwork, delay); 1515 local_irq_restore(flags); 1516 } 1517 1518 /* -ENOENT from try_to_grab_pending() becomes %true */ 1519 return ret; 1520 } 1521 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1522 1523 /** 1524 * worker_enter_idle - enter idle state 1525 * @worker: worker which is entering idle state 1526 * 1527 * @worker is entering idle state. Update stats and idle timer if 1528 * necessary. 1529 * 1530 * LOCKING: 1531 * spin_lock_irq(pool->lock). 1532 */ 1533 static void worker_enter_idle(struct worker *worker) 1534 { 1535 struct worker_pool *pool = worker->pool; 1536 1537 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1538 WARN_ON_ONCE(!list_empty(&worker->entry) && 1539 (worker->hentry.next || worker->hentry.pprev))) 1540 return; 1541 1542 /* can't use worker_set_flags(), also called from create_worker() */ 1543 worker->flags |= WORKER_IDLE; 1544 pool->nr_idle++; 1545 worker->last_active = jiffies; 1546 1547 /* idle_list is LIFO */ 1548 list_add(&worker->entry, &pool->idle_list); 1549 1550 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1551 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1552 1553 /* 1554 * Sanity check nr_running. Because wq_unbind_fn() releases 1555 * pool->lock between setting %WORKER_UNBOUND and zapping 1556 * nr_running, the warning may trigger spuriously. Check iff 1557 * unbind is not in progress. 1558 */ 1559 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1560 pool->nr_workers == pool->nr_idle && 1561 atomic_read(&pool->nr_running)); 1562 } 1563 1564 /** 1565 * worker_leave_idle - leave idle state 1566 * @worker: worker which is leaving idle state 1567 * 1568 * @worker is leaving idle state. Update stats. 1569 * 1570 * LOCKING: 1571 * spin_lock_irq(pool->lock). 1572 */ 1573 static void worker_leave_idle(struct worker *worker) 1574 { 1575 struct worker_pool *pool = worker->pool; 1576 1577 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1578 return; 1579 worker_clr_flags(worker, WORKER_IDLE); 1580 pool->nr_idle--; 1581 list_del_init(&worker->entry); 1582 } 1583 1584 static struct worker *alloc_worker(int node) 1585 { 1586 struct worker *worker; 1587 1588 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1589 if (worker) { 1590 INIT_LIST_HEAD(&worker->entry); 1591 INIT_LIST_HEAD(&worker->scheduled); 1592 INIT_LIST_HEAD(&worker->node); 1593 /* on creation a worker is in !idle && prep state */ 1594 worker->flags = WORKER_PREP; 1595 } 1596 return worker; 1597 } 1598 1599 /** 1600 * worker_attach_to_pool() - attach a worker to a pool 1601 * @worker: worker to be attached 1602 * @pool: the target pool 1603 * 1604 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1605 * cpu-binding of @worker are kept coordinated with the pool across 1606 * cpu-[un]hotplugs. 1607 */ 1608 static void worker_attach_to_pool(struct worker *worker, 1609 struct worker_pool *pool) 1610 { 1611 mutex_lock(&pool->attach_mutex); 1612 1613 /* 1614 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1615 * online CPUs. It'll be re-applied when any of the CPUs come up. 1616 */ 1617 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1618 1619 /* 1620 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1621 * stable across this function. See the comments above the 1622 * flag definition for details. 1623 */ 1624 if (pool->flags & POOL_DISASSOCIATED) 1625 worker->flags |= WORKER_UNBOUND; 1626 1627 list_add_tail(&worker->node, &pool->workers); 1628 1629 mutex_unlock(&pool->attach_mutex); 1630 } 1631 1632 /** 1633 * worker_detach_from_pool() - detach a worker from its pool 1634 * @worker: worker which is attached to its pool 1635 * @pool: the pool @worker is attached to 1636 * 1637 * Undo the attaching which had been done in worker_attach_to_pool(). The 1638 * caller worker shouldn't access to the pool after detached except it has 1639 * other reference to the pool. 1640 */ 1641 static void worker_detach_from_pool(struct worker *worker, 1642 struct worker_pool *pool) 1643 { 1644 struct completion *detach_completion = NULL; 1645 1646 mutex_lock(&pool->attach_mutex); 1647 list_del(&worker->node); 1648 if (list_empty(&pool->workers)) 1649 detach_completion = pool->detach_completion; 1650 mutex_unlock(&pool->attach_mutex); 1651 1652 /* clear leftover flags without pool->lock after it is detached */ 1653 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1654 1655 if (detach_completion) 1656 complete(detach_completion); 1657 } 1658 1659 /** 1660 * create_worker - create a new workqueue worker 1661 * @pool: pool the new worker will belong to 1662 * 1663 * Create and start a new worker which is attached to @pool. 1664 * 1665 * CONTEXT: 1666 * Might sleep. Does GFP_KERNEL allocations. 1667 * 1668 * Return: 1669 * Pointer to the newly created worker. 1670 */ 1671 static struct worker *create_worker(struct worker_pool *pool) 1672 { 1673 struct worker *worker = NULL; 1674 int id = -1; 1675 char id_buf[16]; 1676 1677 /* ID is needed to determine kthread name */ 1678 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1679 if (id < 0) 1680 goto fail; 1681 1682 worker = alloc_worker(pool->node); 1683 if (!worker) 1684 goto fail; 1685 1686 worker->pool = pool; 1687 worker->id = id; 1688 1689 if (pool->cpu >= 0) 1690 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1691 pool->attrs->nice < 0 ? "H" : ""); 1692 else 1693 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1694 1695 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1696 "kworker/%s", id_buf); 1697 if (IS_ERR(worker->task)) 1698 goto fail; 1699 1700 set_user_nice(worker->task, pool->attrs->nice); 1701 1702 /* prevent userland from meddling with cpumask of workqueue workers */ 1703 worker->task->flags |= PF_NO_SETAFFINITY; 1704 1705 /* successful, attach the worker to the pool */ 1706 worker_attach_to_pool(worker, pool); 1707 1708 /* start the newly created worker */ 1709 spin_lock_irq(&pool->lock); 1710 worker->pool->nr_workers++; 1711 worker_enter_idle(worker); 1712 wake_up_process(worker->task); 1713 spin_unlock_irq(&pool->lock); 1714 1715 return worker; 1716 1717 fail: 1718 if (id >= 0) 1719 ida_simple_remove(&pool->worker_ida, id); 1720 kfree(worker); 1721 return NULL; 1722 } 1723 1724 /** 1725 * destroy_worker - destroy a workqueue worker 1726 * @worker: worker to be destroyed 1727 * 1728 * Destroy @worker and adjust @pool stats accordingly. The worker should 1729 * be idle. 1730 * 1731 * CONTEXT: 1732 * spin_lock_irq(pool->lock). 1733 */ 1734 static void destroy_worker(struct worker *worker) 1735 { 1736 struct worker_pool *pool = worker->pool; 1737 1738 lockdep_assert_held(&pool->lock); 1739 1740 /* sanity check frenzy */ 1741 if (WARN_ON(worker->current_work) || 1742 WARN_ON(!list_empty(&worker->scheduled)) || 1743 WARN_ON(!(worker->flags & WORKER_IDLE))) 1744 return; 1745 1746 pool->nr_workers--; 1747 pool->nr_idle--; 1748 1749 list_del_init(&worker->entry); 1750 worker->flags |= WORKER_DIE; 1751 wake_up_process(worker->task); 1752 } 1753 1754 static void idle_worker_timeout(unsigned long __pool) 1755 { 1756 struct worker_pool *pool = (void *)__pool; 1757 1758 spin_lock_irq(&pool->lock); 1759 1760 while (too_many_workers(pool)) { 1761 struct worker *worker; 1762 unsigned long expires; 1763 1764 /* idle_list is kept in LIFO order, check the last one */ 1765 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1766 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1767 1768 if (time_before(jiffies, expires)) { 1769 mod_timer(&pool->idle_timer, expires); 1770 break; 1771 } 1772 1773 destroy_worker(worker); 1774 } 1775 1776 spin_unlock_irq(&pool->lock); 1777 } 1778 1779 static void send_mayday(struct work_struct *work) 1780 { 1781 struct pool_workqueue *pwq = get_work_pwq(work); 1782 struct workqueue_struct *wq = pwq->wq; 1783 1784 lockdep_assert_held(&wq_mayday_lock); 1785 1786 if (!wq->rescuer) 1787 return; 1788 1789 /* mayday mayday mayday */ 1790 if (list_empty(&pwq->mayday_node)) { 1791 /* 1792 * If @pwq is for an unbound wq, its base ref may be put at 1793 * any time due to an attribute change. Pin @pwq until the 1794 * rescuer is done with it. 1795 */ 1796 get_pwq(pwq); 1797 list_add_tail(&pwq->mayday_node, &wq->maydays); 1798 wake_up_process(wq->rescuer->task); 1799 } 1800 } 1801 1802 static void pool_mayday_timeout(unsigned long __pool) 1803 { 1804 struct worker_pool *pool = (void *)__pool; 1805 struct work_struct *work; 1806 1807 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */ 1808 spin_lock(&pool->lock); 1809 1810 if (need_to_create_worker(pool)) { 1811 /* 1812 * We've been trying to create a new worker but 1813 * haven't been successful. We might be hitting an 1814 * allocation deadlock. Send distress signals to 1815 * rescuers. 1816 */ 1817 list_for_each_entry(work, &pool->worklist, entry) 1818 send_mayday(work); 1819 } 1820 1821 spin_unlock(&pool->lock); 1822 spin_unlock_irq(&wq_mayday_lock); 1823 1824 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1825 } 1826 1827 /** 1828 * maybe_create_worker - create a new worker if necessary 1829 * @pool: pool to create a new worker for 1830 * 1831 * Create a new worker for @pool if necessary. @pool is guaranteed to 1832 * have at least one idle worker on return from this function. If 1833 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1834 * sent to all rescuers with works scheduled on @pool to resolve 1835 * possible allocation deadlock. 1836 * 1837 * On return, need_to_create_worker() is guaranteed to be %false and 1838 * may_start_working() %true. 1839 * 1840 * LOCKING: 1841 * spin_lock_irq(pool->lock) which may be released and regrabbed 1842 * multiple times. Does GFP_KERNEL allocations. Called only from 1843 * manager. 1844 * 1845 * Return: 1846 * %false if no action was taken and pool->lock stayed locked, %true 1847 * otherwise. 1848 */ 1849 static bool maybe_create_worker(struct worker_pool *pool) 1850 __releases(&pool->lock) 1851 __acquires(&pool->lock) 1852 { 1853 if (!need_to_create_worker(pool)) 1854 return false; 1855 restart: 1856 spin_unlock_irq(&pool->lock); 1857 1858 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1859 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1860 1861 while (true) { 1862 if (create_worker(pool) || !need_to_create_worker(pool)) 1863 break; 1864 1865 schedule_timeout_interruptible(CREATE_COOLDOWN); 1866 1867 if (!need_to_create_worker(pool)) 1868 break; 1869 } 1870 1871 del_timer_sync(&pool->mayday_timer); 1872 spin_lock_irq(&pool->lock); 1873 /* 1874 * This is necessary even after a new worker was just successfully 1875 * created as @pool->lock was dropped and the new worker might have 1876 * already become busy. 1877 */ 1878 if (need_to_create_worker(pool)) 1879 goto restart; 1880 return true; 1881 } 1882 1883 /** 1884 * manage_workers - manage worker pool 1885 * @worker: self 1886 * 1887 * Assume the manager role and manage the worker pool @worker belongs 1888 * to. At any given time, there can be only zero or one manager per 1889 * pool. The exclusion is handled automatically by this function. 1890 * 1891 * The caller can safely start processing works on false return. On 1892 * true return, it's guaranteed that need_to_create_worker() is false 1893 * and may_start_working() is true. 1894 * 1895 * CONTEXT: 1896 * spin_lock_irq(pool->lock) which may be released and regrabbed 1897 * multiple times. Does GFP_KERNEL allocations. 1898 * 1899 * Return: 1900 * %false if the pool don't need management and the caller can safely start 1901 * processing works, %true indicates that the function released pool->lock 1902 * and reacquired it to perform some management function and that the 1903 * conditions that the caller verified while holding the lock before 1904 * calling the function might no longer be true. 1905 */ 1906 static bool manage_workers(struct worker *worker) 1907 { 1908 struct worker_pool *pool = worker->pool; 1909 bool ret = false; 1910 1911 /* 1912 * Anyone who successfully grabs manager_arb wins the arbitration 1913 * and becomes the manager. mutex_trylock() on pool->manager_arb 1914 * failure while holding pool->lock reliably indicates that someone 1915 * else is managing the pool and the worker which failed trylock 1916 * can proceed to executing work items. This means that anyone 1917 * grabbing manager_arb is responsible for actually performing 1918 * manager duties. If manager_arb is grabbed and released without 1919 * actual management, the pool may stall indefinitely. 1920 */ 1921 if (!mutex_trylock(&pool->manager_arb)) 1922 return ret; 1923 1924 ret |= maybe_create_worker(pool); 1925 1926 mutex_unlock(&pool->manager_arb); 1927 return ret; 1928 } 1929 1930 /** 1931 * process_one_work - process single work 1932 * @worker: self 1933 * @work: work to process 1934 * 1935 * Process @work. This function contains all the logics necessary to 1936 * process a single work including synchronization against and 1937 * interaction with other workers on the same cpu, queueing and 1938 * flushing. As long as context requirement is met, any worker can 1939 * call this function to process a work. 1940 * 1941 * CONTEXT: 1942 * spin_lock_irq(pool->lock) which is released and regrabbed. 1943 */ 1944 static void process_one_work(struct worker *worker, struct work_struct *work) 1945 __releases(&pool->lock) 1946 __acquires(&pool->lock) 1947 { 1948 struct pool_workqueue *pwq = get_work_pwq(work); 1949 struct worker_pool *pool = worker->pool; 1950 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 1951 int work_color; 1952 struct worker *collision; 1953 #ifdef CONFIG_LOCKDEP 1954 /* 1955 * It is permissible to free the struct work_struct from 1956 * inside the function that is called from it, this we need to 1957 * take into account for lockdep too. To avoid bogus "held 1958 * lock freed" warnings as well as problems when looking into 1959 * work->lockdep_map, make a copy and use that here. 1960 */ 1961 struct lockdep_map lockdep_map; 1962 1963 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 1964 #endif 1965 /* ensure we're on the correct CPU */ 1966 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1967 raw_smp_processor_id() != pool->cpu); 1968 1969 /* 1970 * A single work shouldn't be executed concurrently by 1971 * multiple workers on a single cpu. Check whether anyone is 1972 * already processing the work. If so, defer the work to the 1973 * currently executing one. 1974 */ 1975 collision = find_worker_executing_work(pool, work); 1976 if (unlikely(collision)) { 1977 move_linked_works(work, &collision->scheduled, NULL); 1978 return; 1979 } 1980 1981 /* claim and dequeue */ 1982 debug_work_deactivate(work); 1983 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 1984 worker->current_work = work; 1985 worker->current_func = work->func; 1986 worker->current_pwq = pwq; 1987 work_color = get_work_color(work); 1988 1989 list_del_init(&work->entry); 1990 1991 /* 1992 * CPU intensive works don't participate in concurrency management. 1993 * They're the scheduler's responsibility. This takes @worker out 1994 * of concurrency management and the next code block will chain 1995 * execution of the pending work items. 1996 */ 1997 if (unlikely(cpu_intensive)) 1998 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1999 2000 /* 2001 * Wake up another worker if necessary. The condition is always 2002 * false for normal per-cpu workers since nr_running would always 2003 * be >= 1 at this point. This is used to chain execution of the 2004 * pending work items for WORKER_NOT_RUNNING workers such as the 2005 * UNBOUND and CPU_INTENSIVE ones. 2006 */ 2007 if (need_more_worker(pool)) 2008 wake_up_worker(pool); 2009 2010 /* 2011 * Record the last pool and clear PENDING which should be the last 2012 * update to @work. Also, do this inside @pool->lock so that 2013 * PENDING and queued state changes happen together while IRQ is 2014 * disabled. 2015 */ 2016 set_work_pool_and_clear_pending(work, pool->id); 2017 2018 spin_unlock_irq(&pool->lock); 2019 2020 lock_map_acquire_read(&pwq->wq->lockdep_map); 2021 lock_map_acquire(&lockdep_map); 2022 trace_workqueue_execute_start(work); 2023 worker->current_func(work); 2024 /* 2025 * While we must be careful to not use "work" after this, the trace 2026 * point will only record its address. 2027 */ 2028 trace_workqueue_execute_end(work); 2029 lock_map_release(&lockdep_map); 2030 lock_map_release(&pwq->wq->lockdep_map); 2031 2032 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2033 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2034 " last function: %pf\n", 2035 current->comm, preempt_count(), task_pid_nr(current), 2036 worker->current_func); 2037 debug_show_held_locks(current); 2038 dump_stack(); 2039 } 2040 2041 /* 2042 * The following prevents a kworker from hogging CPU on !PREEMPT 2043 * kernels, where a requeueing work item waiting for something to 2044 * happen could deadlock with stop_machine as such work item could 2045 * indefinitely requeue itself while all other CPUs are trapped in 2046 * stop_machine. At the same time, report a quiescent RCU state so 2047 * the same condition doesn't freeze RCU. 2048 */ 2049 cond_resched_rcu_qs(); 2050 2051 spin_lock_irq(&pool->lock); 2052 2053 /* clear cpu intensive status */ 2054 if (unlikely(cpu_intensive)) 2055 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2056 2057 /* we're done with it, release */ 2058 hash_del(&worker->hentry); 2059 worker->current_work = NULL; 2060 worker->current_func = NULL; 2061 worker->current_pwq = NULL; 2062 worker->desc_valid = false; 2063 pwq_dec_nr_in_flight(pwq, work_color); 2064 } 2065 2066 /** 2067 * process_scheduled_works - process scheduled works 2068 * @worker: self 2069 * 2070 * Process all scheduled works. Please note that the scheduled list 2071 * may change while processing a work, so this function repeatedly 2072 * fetches a work from the top and executes it. 2073 * 2074 * CONTEXT: 2075 * spin_lock_irq(pool->lock) which may be released and regrabbed 2076 * multiple times. 2077 */ 2078 static void process_scheduled_works(struct worker *worker) 2079 { 2080 while (!list_empty(&worker->scheduled)) { 2081 struct work_struct *work = list_first_entry(&worker->scheduled, 2082 struct work_struct, entry); 2083 process_one_work(worker, work); 2084 } 2085 } 2086 2087 /** 2088 * worker_thread - the worker thread function 2089 * @__worker: self 2090 * 2091 * The worker thread function. All workers belong to a worker_pool - 2092 * either a per-cpu one or dynamic unbound one. These workers process all 2093 * work items regardless of their specific target workqueue. The only 2094 * exception is work items which belong to workqueues with a rescuer which 2095 * will be explained in rescuer_thread(). 2096 * 2097 * Return: 0 2098 */ 2099 static int worker_thread(void *__worker) 2100 { 2101 struct worker *worker = __worker; 2102 struct worker_pool *pool = worker->pool; 2103 2104 /* tell the scheduler that this is a workqueue worker */ 2105 worker->task->flags |= PF_WQ_WORKER; 2106 woke_up: 2107 spin_lock_irq(&pool->lock); 2108 2109 /* am I supposed to die? */ 2110 if (unlikely(worker->flags & WORKER_DIE)) { 2111 spin_unlock_irq(&pool->lock); 2112 WARN_ON_ONCE(!list_empty(&worker->entry)); 2113 worker->task->flags &= ~PF_WQ_WORKER; 2114 2115 set_task_comm(worker->task, "kworker/dying"); 2116 ida_simple_remove(&pool->worker_ida, worker->id); 2117 worker_detach_from_pool(worker, pool); 2118 kfree(worker); 2119 return 0; 2120 } 2121 2122 worker_leave_idle(worker); 2123 recheck: 2124 /* no more worker necessary? */ 2125 if (!need_more_worker(pool)) 2126 goto sleep; 2127 2128 /* do we need to manage? */ 2129 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2130 goto recheck; 2131 2132 /* 2133 * ->scheduled list can only be filled while a worker is 2134 * preparing to process a work or actually processing it. 2135 * Make sure nobody diddled with it while I was sleeping. 2136 */ 2137 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2138 2139 /* 2140 * Finish PREP stage. We're guaranteed to have at least one idle 2141 * worker or that someone else has already assumed the manager 2142 * role. This is where @worker starts participating in concurrency 2143 * management if applicable and concurrency management is restored 2144 * after being rebound. See rebind_workers() for details. 2145 */ 2146 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2147 2148 do { 2149 struct work_struct *work = 2150 list_first_entry(&pool->worklist, 2151 struct work_struct, entry); 2152 2153 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2154 /* optimization path, not strictly necessary */ 2155 process_one_work(worker, work); 2156 if (unlikely(!list_empty(&worker->scheduled))) 2157 process_scheduled_works(worker); 2158 } else { 2159 move_linked_works(work, &worker->scheduled, NULL); 2160 process_scheduled_works(worker); 2161 } 2162 } while (keep_working(pool)); 2163 2164 worker_set_flags(worker, WORKER_PREP); 2165 sleep: 2166 /* 2167 * pool->lock is held and there's no work to process and no need to 2168 * manage, sleep. Workers are woken up only while holding 2169 * pool->lock or from local cpu, so setting the current state 2170 * before releasing pool->lock is enough to prevent losing any 2171 * event. 2172 */ 2173 worker_enter_idle(worker); 2174 __set_current_state(TASK_INTERRUPTIBLE); 2175 spin_unlock_irq(&pool->lock); 2176 schedule(); 2177 goto woke_up; 2178 } 2179 2180 /** 2181 * rescuer_thread - the rescuer thread function 2182 * @__rescuer: self 2183 * 2184 * Workqueue rescuer thread function. There's one rescuer for each 2185 * workqueue which has WQ_MEM_RECLAIM set. 2186 * 2187 * Regular work processing on a pool may block trying to create a new 2188 * worker which uses GFP_KERNEL allocation which has slight chance of 2189 * developing into deadlock if some works currently on the same queue 2190 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2191 * the problem rescuer solves. 2192 * 2193 * When such condition is possible, the pool summons rescuers of all 2194 * workqueues which have works queued on the pool and let them process 2195 * those works so that forward progress can be guaranteed. 2196 * 2197 * This should happen rarely. 2198 * 2199 * Return: 0 2200 */ 2201 static int rescuer_thread(void *__rescuer) 2202 { 2203 struct worker *rescuer = __rescuer; 2204 struct workqueue_struct *wq = rescuer->rescue_wq; 2205 struct list_head *scheduled = &rescuer->scheduled; 2206 bool should_stop; 2207 2208 set_user_nice(current, RESCUER_NICE_LEVEL); 2209 2210 /* 2211 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2212 * doesn't participate in concurrency management. 2213 */ 2214 rescuer->task->flags |= PF_WQ_WORKER; 2215 repeat: 2216 set_current_state(TASK_INTERRUPTIBLE); 2217 2218 /* 2219 * By the time the rescuer is requested to stop, the workqueue 2220 * shouldn't have any work pending, but @wq->maydays may still have 2221 * pwq(s) queued. This can happen by non-rescuer workers consuming 2222 * all the work items before the rescuer got to them. Go through 2223 * @wq->maydays processing before acting on should_stop so that the 2224 * list is always empty on exit. 2225 */ 2226 should_stop = kthread_should_stop(); 2227 2228 /* see whether any pwq is asking for help */ 2229 spin_lock_irq(&wq_mayday_lock); 2230 2231 while (!list_empty(&wq->maydays)) { 2232 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2233 struct pool_workqueue, mayday_node); 2234 struct worker_pool *pool = pwq->pool; 2235 struct work_struct *work, *n; 2236 2237 __set_current_state(TASK_RUNNING); 2238 list_del_init(&pwq->mayday_node); 2239 2240 spin_unlock_irq(&wq_mayday_lock); 2241 2242 worker_attach_to_pool(rescuer, pool); 2243 2244 spin_lock_irq(&pool->lock); 2245 rescuer->pool = pool; 2246 2247 /* 2248 * Slurp in all works issued via this workqueue and 2249 * process'em. 2250 */ 2251 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 2252 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2253 if (get_work_pwq(work) == pwq) 2254 move_linked_works(work, scheduled, &n); 2255 2256 process_scheduled_works(rescuer); 2257 2258 /* 2259 * Put the reference grabbed by send_mayday(). @pool won't 2260 * go away while we're still attached to it. 2261 */ 2262 put_pwq(pwq); 2263 2264 /* 2265 * Leave this pool. If need_more_worker() is %true, notify a 2266 * regular worker; otherwise, we end up with 0 concurrency 2267 * and stalling the execution. 2268 */ 2269 if (need_more_worker(pool)) 2270 wake_up_worker(pool); 2271 2272 rescuer->pool = NULL; 2273 spin_unlock_irq(&pool->lock); 2274 2275 worker_detach_from_pool(rescuer, pool); 2276 2277 spin_lock_irq(&wq_mayday_lock); 2278 } 2279 2280 spin_unlock_irq(&wq_mayday_lock); 2281 2282 if (should_stop) { 2283 __set_current_state(TASK_RUNNING); 2284 rescuer->task->flags &= ~PF_WQ_WORKER; 2285 return 0; 2286 } 2287 2288 /* rescuers should never participate in concurrency management */ 2289 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2290 schedule(); 2291 goto repeat; 2292 } 2293 2294 struct wq_barrier { 2295 struct work_struct work; 2296 struct completion done; 2297 }; 2298 2299 static void wq_barrier_func(struct work_struct *work) 2300 { 2301 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2302 complete(&barr->done); 2303 } 2304 2305 /** 2306 * insert_wq_barrier - insert a barrier work 2307 * @pwq: pwq to insert barrier into 2308 * @barr: wq_barrier to insert 2309 * @target: target work to attach @barr to 2310 * @worker: worker currently executing @target, NULL if @target is not executing 2311 * 2312 * @barr is linked to @target such that @barr is completed only after 2313 * @target finishes execution. Please note that the ordering 2314 * guarantee is observed only with respect to @target and on the local 2315 * cpu. 2316 * 2317 * Currently, a queued barrier can't be canceled. This is because 2318 * try_to_grab_pending() can't determine whether the work to be 2319 * grabbed is at the head of the queue and thus can't clear LINKED 2320 * flag of the previous work while there must be a valid next work 2321 * after a work with LINKED flag set. 2322 * 2323 * Note that when @worker is non-NULL, @target may be modified 2324 * underneath us, so we can't reliably determine pwq from @target. 2325 * 2326 * CONTEXT: 2327 * spin_lock_irq(pool->lock). 2328 */ 2329 static void insert_wq_barrier(struct pool_workqueue *pwq, 2330 struct wq_barrier *barr, 2331 struct work_struct *target, struct worker *worker) 2332 { 2333 struct list_head *head; 2334 unsigned int linked = 0; 2335 2336 /* 2337 * debugobject calls are safe here even with pool->lock locked 2338 * as we know for sure that this will not trigger any of the 2339 * checks and call back into the fixup functions where we 2340 * might deadlock. 2341 */ 2342 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2343 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2344 init_completion(&barr->done); 2345 2346 /* 2347 * If @target is currently being executed, schedule the 2348 * barrier to the worker; otherwise, put it after @target. 2349 */ 2350 if (worker) 2351 head = worker->scheduled.next; 2352 else { 2353 unsigned long *bits = work_data_bits(target); 2354 2355 head = target->entry.next; 2356 /* there can already be other linked works, inherit and set */ 2357 linked = *bits & WORK_STRUCT_LINKED; 2358 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2359 } 2360 2361 debug_work_activate(&barr->work); 2362 insert_work(pwq, &barr->work, head, 2363 work_color_to_flags(WORK_NO_COLOR) | linked); 2364 } 2365 2366 /** 2367 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2368 * @wq: workqueue being flushed 2369 * @flush_color: new flush color, < 0 for no-op 2370 * @work_color: new work color, < 0 for no-op 2371 * 2372 * Prepare pwqs for workqueue flushing. 2373 * 2374 * If @flush_color is non-negative, flush_color on all pwqs should be 2375 * -1. If no pwq has in-flight commands at the specified color, all 2376 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2377 * has in flight commands, its pwq->flush_color is set to 2378 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2379 * wakeup logic is armed and %true is returned. 2380 * 2381 * The caller should have initialized @wq->first_flusher prior to 2382 * calling this function with non-negative @flush_color. If 2383 * @flush_color is negative, no flush color update is done and %false 2384 * is returned. 2385 * 2386 * If @work_color is non-negative, all pwqs should have the same 2387 * work_color which is previous to @work_color and all will be 2388 * advanced to @work_color. 2389 * 2390 * CONTEXT: 2391 * mutex_lock(wq->mutex). 2392 * 2393 * Return: 2394 * %true if @flush_color >= 0 and there's something to flush. %false 2395 * otherwise. 2396 */ 2397 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2398 int flush_color, int work_color) 2399 { 2400 bool wait = false; 2401 struct pool_workqueue *pwq; 2402 2403 if (flush_color >= 0) { 2404 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2405 atomic_set(&wq->nr_pwqs_to_flush, 1); 2406 } 2407 2408 for_each_pwq(pwq, wq) { 2409 struct worker_pool *pool = pwq->pool; 2410 2411 spin_lock_irq(&pool->lock); 2412 2413 if (flush_color >= 0) { 2414 WARN_ON_ONCE(pwq->flush_color != -1); 2415 2416 if (pwq->nr_in_flight[flush_color]) { 2417 pwq->flush_color = flush_color; 2418 atomic_inc(&wq->nr_pwqs_to_flush); 2419 wait = true; 2420 } 2421 } 2422 2423 if (work_color >= 0) { 2424 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2425 pwq->work_color = work_color; 2426 } 2427 2428 spin_unlock_irq(&pool->lock); 2429 } 2430 2431 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2432 complete(&wq->first_flusher->done); 2433 2434 return wait; 2435 } 2436 2437 /** 2438 * flush_workqueue - ensure that any scheduled work has run to completion. 2439 * @wq: workqueue to flush 2440 * 2441 * This function sleeps until all work items which were queued on entry 2442 * have finished execution, but it is not livelocked by new incoming ones. 2443 */ 2444 void flush_workqueue(struct workqueue_struct *wq) 2445 { 2446 struct wq_flusher this_flusher = { 2447 .list = LIST_HEAD_INIT(this_flusher.list), 2448 .flush_color = -1, 2449 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2450 }; 2451 int next_color; 2452 2453 lock_map_acquire(&wq->lockdep_map); 2454 lock_map_release(&wq->lockdep_map); 2455 2456 mutex_lock(&wq->mutex); 2457 2458 /* 2459 * Start-to-wait phase 2460 */ 2461 next_color = work_next_color(wq->work_color); 2462 2463 if (next_color != wq->flush_color) { 2464 /* 2465 * Color space is not full. The current work_color 2466 * becomes our flush_color and work_color is advanced 2467 * by one. 2468 */ 2469 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2470 this_flusher.flush_color = wq->work_color; 2471 wq->work_color = next_color; 2472 2473 if (!wq->first_flusher) { 2474 /* no flush in progress, become the first flusher */ 2475 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2476 2477 wq->first_flusher = &this_flusher; 2478 2479 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2480 wq->work_color)) { 2481 /* nothing to flush, done */ 2482 wq->flush_color = next_color; 2483 wq->first_flusher = NULL; 2484 goto out_unlock; 2485 } 2486 } else { 2487 /* wait in queue */ 2488 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2489 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2490 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2491 } 2492 } else { 2493 /* 2494 * Oops, color space is full, wait on overflow queue. 2495 * The next flush completion will assign us 2496 * flush_color and transfer to flusher_queue. 2497 */ 2498 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2499 } 2500 2501 mutex_unlock(&wq->mutex); 2502 2503 wait_for_completion(&this_flusher.done); 2504 2505 /* 2506 * Wake-up-and-cascade phase 2507 * 2508 * First flushers are responsible for cascading flushes and 2509 * handling overflow. Non-first flushers can simply return. 2510 */ 2511 if (wq->first_flusher != &this_flusher) 2512 return; 2513 2514 mutex_lock(&wq->mutex); 2515 2516 /* we might have raced, check again with mutex held */ 2517 if (wq->first_flusher != &this_flusher) 2518 goto out_unlock; 2519 2520 wq->first_flusher = NULL; 2521 2522 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2523 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2524 2525 while (true) { 2526 struct wq_flusher *next, *tmp; 2527 2528 /* complete all the flushers sharing the current flush color */ 2529 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2530 if (next->flush_color != wq->flush_color) 2531 break; 2532 list_del_init(&next->list); 2533 complete(&next->done); 2534 } 2535 2536 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2537 wq->flush_color != work_next_color(wq->work_color)); 2538 2539 /* this flush_color is finished, advance by one */ 2540 wq->flush_color = work_next_color(wq->flush_color); 2541 2542 /* one color has been freed, handle overflow queue */ 2543 if (!list_empty(&wq->flusher_overflow)) { 2544 /* 2545 * Assign the same color to all overflowed 2546 * flushers, advance work_color and append to 2547 * flusher_queue. This is the start-to-wait 2548 * phase for these overflowed flushers. 2549 */ 2550 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2551 tmp->flush_color = wq->work_color; 2552 2553 wq->work_color = work_next_color(wq->work_color); 2554 2555 list_splice_tail_init(&wq->flusher_overflow, 2556 &wq->flusher_queue); 2557 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2558 } 2559 2560 if (list_empty(&wq->flusher_queue)) { 2561 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2562 break; 2563 } 2564 2565 /* 2566 * Need to flush more colors. Make the next flusher 2567 * the new first flusher and arm pwqs. 2568 */ 2569 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2570 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2571 2572 list_del_init(&next->list); 2573 wq->first_flusher = next; 2574 2575 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2576 break; 2577 2578 /* 2579 * Meh... this color is already done, clear first 2580 * flusher and repeat cascading. 2581 */ 2582 wq->first_flusher = NULL; 2583 } 2584 2585 out_unlock: 2586 mutex_unlock(&wq->mutex); 2587 } 2588 EXPORT_SYMBOL_GPL(flush_workqueue); 2589 2590 /** 2591 * drain_workqueue - drain a workqueue 2592 * @wq: workqueue to drain 2593 * 2594 * Wait until the workqueue becomes empty. While draining is in progress, 2595 * only chain queueing is allowed. IOW, only currently pending or running 2596 * work items on @wq can queue further work items on it. @wq is flushed 2597 * repeatedly until it becomes empty. The number of flushing is detemined 2598 * by the depth of chaining and should be relatively short. Whine if it 2599 * takes too long. 2600 */ 2601 void drain_workqueue(struct workqueue_struct *wq) 2602 { 2603 unsigned int flush_cnt = 0; 2604 struct pool_workqueue *pwq; 2605 2606 /* 2607 * __queue_work() needs to test whether there are drainers, is much 2608 * hotter than drain_workqueue() and already looks at @wq->flags. 2609 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2610 */ 2611 mutex_lock(&wq->mutex); 2612 if (!wq->nr_drainers++) 2613 wq->flags |= __WQ_DRAINING; 2614 mutex_unlock(&wq->mutex); 2615 reflush: 2616 flush_workqueue(wq); 2617 2618 mutex_lock(&wq->mutex); 2619 2620 for_each_pwq(pwq, wq) { 2621 bool drained; 2622 2623 spin_lock_irq(&pwq->pool->lock); 2624 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2625 spin_unlock_irq(&pwq->pool->lock); 2626 2627 if (drained) 2628 continue; 2629 2630 if (++flush_cnt == 10 || 2631 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2632 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2633 wq->name, flush_cnt); 2634 2635 mutex_unlock(&wq->mutex); 2636 goto reflush; 2637 } 2638 2639 if (!--wq->nr_drainers) 2640 wq->flags &= ~__WQ_DRAINING; 2641 mutex_unlock(&wq->mutex); 2642 } 2643 EXPORT_SYMBOL_GPL(drain_workqueue); 2644 2645 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2646 { 2647 struct worker *worker = NULL; 2648 struct worker_pool *pool; 2649 struct pool_workqueue *pwq; 2650 2651 might_sleep(); 2652 2653 local_irq_disable(); 2654 pool = get_work_pool(work); 2655 if (!pool) { 2656 local_irq_enable(); 2657 return false; 2658 } 2659 2660 spin_lock(&pool->lock); 2661 /* see the comment in try_to_grab_pending() with the same code */ 2662 pwq = get_work_pwq(work); 2663 if (pwq) { 2664 if (unlikely(pwq->pool != pool)) 2665 goto already_gone; 2666 } else { 2667 worker = find_worker_executing_work(pool, work); 2668 if (!worker) 2669 goto already_gone; 2670 pwq = worker->current_pwq; 2671 } 2672 2673 insert_wq_barrier(pwq, barr, work, worker); 2674 spin_unlock_irq(&pool->lock); 2675 2676 /* 2677 * If @max_active is 1 or rescuer is in use, flushing another work 2678 * item on the same workqueue may lead to deadlock. Make sure the 2679 * flusher is not running on the same workqueue by verifying write 2680 * access. 2681 */ 2682 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2683 lock_map_acquire(&pwq->wq->lockdep_map); 2684 else 2685 lock_map_acquire_read(&pwq->wq->lockdep_map); 2686 lock_map_release(&pwq->wq->lockdep_map); 2687 2688 return true; 2689 already_gone: 2690 spin_unlock_irq(&pool->lock); 2691 return false; 2692 } 2693 2694 /** 2695 * flush_work - wait for a work to finish executing the last queueing instance 2696 * @work: the work to flush 2697 * 2698 * Wait until @work has finished execution. @work is guaranteed to be idle 2699 * on return if it hasn't been requeued since flush started. 2700 * 2701 * Return: 2702 * %true if flush_work() waited for the work to finish execution, 2703 * %false if it was already idle. 2704 */ 2705 bool flush_work(struct work_struct *work) 2706 { 2707 struct wq_barrier barr; 2708 2709 lock_map_acquire(&work->lockdep_map); 2710 lock_map_release(&work->lockdep_map); 2711 2712 if (start_flush_work(work, &barr)) { 2713 wait_for_completion(&barr.done); 2714 destroy_work_on_stack(&barr.work); 2715 return true; 2716 } else { 2717 return false; 2718 } 2719 } 2720 EXPORT_SYMBOL_GPL(flush_work); 2721 2722 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2723 { 2724 unsigned long flags; 2725 int ret; 2726 2727 do { 2728 ret = try_to_grab_pending(work, is_dwork, &flags); 2729 /* 2730 * If someone else is canceling, wait for the same event it 2731 * would be waiting for before retrying. 2732 */ 2733 if (unlikely(ret == -ENOENT)) 2734 flush_work(work); 2735 } while (unlikely(ret < 0)); 2736 2737 /* tell other tasks trying to grab @work to back off */ 2738 mark_work_canceling(work); 2739 local_irq_restore(flags); 2740 2741 flush_work(work); 2742 clear_work_data(work); 2743 return ret; 2744 } 2745 2746 /** 2747 * cancel_work_sync - cancel a work and wait for it to finish 2748 * @work: the work to cancel 2749 * 2750 * Cancel @work and wait for its execution to finish. This function 2751 * can be used even if the work re-queues itself or migrates to 2752 * another workqueue. On return from this function, @work is 2753 * guaranteed to be not pending or executing on any CPU. 2754 * 2755 * cancel_work_sync(&delayed_work->work) must not be used for 2756 * delayed_work's. Use cancel_delayed_work_sync() instead. 2757 * 2758 * The caller must ensure that the workqueue on which @work was last 2759 * queued can't be destroyed before this function returns. 2760 * 2761 * Return: 2762 * %true if @work was pending, %false otherwise. 2763 */ 2764 bool cancel_work_sync(struct work_struct *work) 2765 { 2766 return __cancel_work_timer(work, false); 2767 } 2768 EXPORT_SYMBOL_GPL(cancel_work_sync); 2769 2770 /** 2771 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2772 * @dwork: the delayed work to flush 2773 * 2774 * Delayed timer is cancelled and the pending work is queued for 2775 * immediate execution. Like flush_work(), this function only 2776 * considers the last queueing instance of @dwork. 2777 * 2778 * Return: 2779 * %true if flush_work() waited for the work to finish execution, 2780 * %false if it was already idle. 2781 */ 2782 bool flush_delayed_work(struct delayed_work *dwork) 2783 { 2784 local_irq_disable(); 2785 if (del_timer_sync(&dwork->timer)) 2786 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2787 local_irq_enable(); 2788 return flush_work(&dwork->work); 2789 } 2790 EXPORT_SYMBOL(flush_delayed_work); 2791 2792 /** 2793 * cancel_delayed_work - cancel a delayed work 2794 * @dwork: delayed_work to cancel 2795 * 2796 * Kill off a pending delayed_work. 2797 * 2798 * Return: %true if @dwork was pending and canceled; %false if it wasn't 2799 * pending. 2800 * 2801 * Note: 2802 * The work callback function may still be running on return, unless 2803 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 2804 * use cancel_delayed_work_sync() to wait on it. 2805 * 2806 * This function is safe to call from any context including IRQ handler. 2807 */ 2808 bool cancel_delayed_work(struct delayed_work *dwork) 2809 { 2810 unsigned long flags; 2811 int ret; 2812 2813 do { 2814 ret = try_to_grab_pending(&dwork->work, true, &flags); 2815 } while (unlikely(ret == -EAGAIN)); 2816 2817 if (unlikely(ret < 0)) 2818 return false; 2819 2820 set_work_pool_and_clear_pending(&dwork->work, 2821 get_work_pool_id(&dwork->work)); 2822 local_irq_restore(flags); 2823 return ret; 2824 } 2825 EXPORT_SYMBOL(cancel_delayed_work); 2826 2827 /** 2828 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2829 * @dwork: the delayed work cancel 2830 * 2831 * This is cancel_work_sync() for delayed works. 2832 * 2833 * Return: 2834 * %true if @dwork was pending, %false otherwise. 2835 */ 2836 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2837 { 2838 return __cancel_work_timer(&dwork->work, true); 2839 } 2840 EXPORT_SYMBOL(cancel_delayed_work_sync); 2841 2842 /** 2843 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2844 * @func: the function to call 2845 * 2846 * schedule_on_each_cpu() executes @func on each online CPU using the 2847 * system workqueue and blocks until all CPUs have completed. 2848 * schedule_on_each_cpu() is very slow. 2849 * 2850 * Return: 2851 * 0 on success, -errno on failure. 2852 */ 2853 int schedule_on_each_cpu(work_func_t func) 2854 { 2855 int cpu; 2856 struct work_struct __percpu *works; 2857 2858 works = alloc_percpu(struct work_struct); 2859 if (!works) 2860 return -ENOMEM; 2861 2862 get_online_cpus(); 2863 2864 for_each_online_cpu(cpu) { 2865 struct work_struct *work = per_cpu_ptr(works, cpu); 2866 2867 INIT_WORK(work, func); 2868 schedule_work_on(cpu, work); 2869 } 2870 2871 for_each_online_cpu(cpu) 2872 flush_work(per_cpu_ptr(works, cpu)); 2873 2874 put_online_cpus(); 2875 free_percpu(works); 2876 return 0; 2877 } 2878 2879 /** 2880 * flush_scheduled_work - ensure that any scheduled work has run to completion. 2881 * 2882 * Forces execution of the kernel-global workqueue and blocks until its 2883 * completion. 2884 * 2885 * Think twice before calling this function! It's very easy to get into 2886 * trouble if you don't take great care. Either of the following situations 2887 * will lead to deadlock: 2888 * 2889 * One of the work items currently on the workqueue needs to acquire 2890 * a lock held by your code or its caller. 2891 * 2892 * Your code is running in the context of a work routine. 2893 * 2894 * They will be detected by lockdep when they occur, but the first might not 2895 * occur very often. It depends on what work items are on the workqueue and 2896 * what locks they need, which you have no control over. 2897 * 2898 * In most situations flushing the entire workqueue is overkill; you merely 2899 * need to know that a particular work item isn't queued and isn't running. 2900 * In such cases you should use cancel_delayed_work_sync() or 2901 * cancel_work_sync() instead. 2902 */ 2903 void flush_scheduled_work(void) 2904 { 2905 flush_workqueue(system_wq); 2906 } 2907 EXPORT_SYMBOL(flush_scheduled_work); 2908 2909 /** 2910 * execute_in_process_context - reliably execute the routine with user context 2911 * @fn: the function to execute 2912 * @ew: guaranteed storage for the execute work structure (must 2913 * be available when the work executes) 2914 * 2915 * Executes the function immediately if process context is available, 2916 * otherwise schedules the function for delayed execution. 2917 * 2918 * Return: 0 - function was executed 2919 * 1 - function was scheduled for execution 2920 */ 2921 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2922 { 2923 if (!in_interrupt()) { 2924 fn(&ew->work); 2925 return 0; 2926 } 2927 2928 INIT_WORK(&ew->work, fn); 2929 schedule_work(&ew->work); 2930 2931 return 1; 2932 } 2933 EXPORT_SYMBOL_GPL(execute_in_process_context); 2934 2935 #ifdef CONFIG_SYSFS 2936 /* 2937 * Workqueues with WQ_SYSFS flag set is visible to userland via 2938 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 2939 * following attributes. 2940 * 2941 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 2942 * max_active RW int : maximum number of in-flight work items 2943 * 2944 * Unbound workqueues have the following extra attributes. 2945 * 2946 * id RO int : the associated pool ID 2947 * nice RW int : nice value of the workers 2948 * cpumask RW mask : bitmask of allowed CPUs for the workers 2949 */ 2950 struct wq_device { 2951 struct workqueue_struct *wq; 2952 struct device dev; 2953 }; 2954 2955 static struct workqueue_struct *dev_to_wq(struct device *dev) 2956 { 2957 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 2958 2959 return wq_dev->wq; 2960 } 2961 2962 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 2963 char *buf) 2964 { 2965 struct workqueue_struct *wq = dev_to_wq(dev); 2966 2967 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 2968 } 2969 static DEVICE_ATTR_RO(per_cpu); 2970 2971 static ssize_t max_active_show(struct device *dev, 2972 struct device_attribute *attr, char *buf) 2973 { 2974 struct workqueue_struct *wq = dev_to_wq(dev); 2975 2976 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 2977 } 2978 2979 static ssize_t max_active_store(struct device *dev, 2980 struct device_attribute *attr, const char *buf, 2981 size_t count) 2982 { 2983 struct workqueue_struct *wq = dev_to_wq(dev); 2984 int val; 2985 2986 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 2987 return -EINVAL; 2988 2989 workqueue_set_max_active(wq, val); 2990 return count; 2991 } 2992 static DEVICE_ATTR_RW(max_active); 2993 2994 static struct attribute *wq_sysfs_attrs[] = { 2995 &dev_attr_per_cpu.attr, 2996 &dev_attr_max_active.attr, 2997 NULL, 2998 }; 2999 ATTRIBUTE_GROUPS(wq_sysfs); 3000 3001 static ssize_t wq_pool_ids_show(struct device *dev, 3002 struct device_attribute *attr, char *buf) 3003 { 3004 struct workqueue_struct *wq = dev_to_wq(dev); 3005 const char *delim = ""; 3006 int node, written = 0; 3007 3008 rcu_read_lock_sched(); 3009 for_each_node(node) { 3010 written += scnprintf(buf + written, PAGE_SIZE - written, 3011 "%s%d:%d", delim, node, 3012 unbound_pwq_by_node(wq, node)->pool->id); 3013 delim = " "; 3014 } 3015 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3016 rcu_read_unlock_sched(); 3017 3018 return written; 3019 } 3020 3021 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 3022 char *buf) 3023 { 3024 struct workqueue_struct *wq = dev_to_wq(dev); 3025 int written; 3026 3027 mutex_lock(&wq->mutex); 3028 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 3029 mutex_unlock(&wq->mutex); 3030 3031 return written; 3032 } 3033 3034 /* prepare workqueue_attrs for sysfs store operations */ 3035 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 3036 { 3037 struct workqueue_attrs *attrs; 3038 3039 attrs = alloc_workqueue_attrs(GFP_KERNEL); 3040 if (!attrs) 3041 return NULL; 3042 3043 mutex_lock(&wq->mutex); 3044 copy_workqueue_attrs(attrs, wq->unbound_attrs); 3045 mutex_unlock(&wq->mutex); 3046 return attrs; 3047 } 3048 3049 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 3050 const char *buf, size_t count) 3051 { 3052 struct workqueue_struct *wq = dev_to_wq(dev); 3053 struct workqueue_attrs *attrs; 3054 int ret; 3055 3056 attrs = wq_sysfs_prep_attrs(wq); 3057 if (!attrs) 3058 return -ENOMEM; 3059 3060 if (sscanf(buf, "%d", &attrs->nice) == 1 && 3061 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 3062 ret = apply_workqueue_attrs(wq, attrs); 3063 else 3064 ret = -EINVAL; 3065 3066 free_workqueue_attrs(attrs); 3067 return ret ?: count; 3068 } 3069 3070 static ssize_t wq_cpumask_show(struct device *dev, 3071 struct device_attribute *attr, char *buf) 3072 { 3073 struct workqueue_struct *wq = dev_to_wq(dev); 3074 int written; 3075 3076 mutex_lock(&wq->mutex); 3077 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask); 3078 mutex_unlock(&wq->mutex); 3079 3080 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3081 return written; 3082 } 3083 3084 static ssize_t wq_cpumask_store(struct device *dev, 3085 struct device_attribute *attr, 3086 const char *buf, size_t count) 3087 { 3088 struct workqueue_struct *wq = dev_to_wq(dev); 3089 struct workqueue_attrs *attrs; 3090 int ret; 3091 3092 attrs = wq_sysfs_prep_attrs(wq); 3093 if (!attrs) 3094 return -ENOMEM; 3095 3096 ret = cpumask_parse(buf, attrs->cpumask); 3097 if (!ret) 3098 ret = apply_workqueue_attrs(wq, attrs); 3099 3100 free_workqueue_attrs(attrs); 3101 return ret ?: count; 3102 } 3103 3104 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 3105 char *buf) 3106 { 3107 struct workqueue_struct *wq = dev_to_wq(dev); 3108 int written; 3109 3110 mutex_lock(&wq->mutex); 3111 written = scnprintf(buf, PAGE_SIZE, "%d\n", 3112 !wq->unbound_attrs->no_numa); 3113 mutex_unlock(&wq->mutex); 3114 3115 return written; 3116 } 3117 3118 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 3119 const char *buf, size_t count) 3120 { 3121 struct workqueue_struct *wq = dev_to_wq(dev); 3122 struct workqueue_attrs *attrs; 3123 int v, ret; 3124 3125 attrs = wq_sysfs_prep_attrs(wq); 3126 if (!attrs) 3127 return -ENOMEM; 3128 3129 ret = -EINVAL; 3130 if (sscanf(buf, "%d", &v) == 1) { 3131 attrs->no_numa = !v; 3132 ret = apply_workqueue_attrs(wq, attrs); 3133 } 3134 3135 free_workqueue_attrs(attrs); 3136 return ret ?: count; 3137 } 3138 3139 static struct device_attribute wq_sysfs_unbound_attrs[] = { 3140 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 3141 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 3142 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 3143 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 3144 __ATTR_NULL, 3145 }; 3146 3147 static struct bus_type wq_subsys = { 3148 .name = "workqueue", 3149 .dev_groups = wq_sysfs_groups, 3150 }; 3151 3152 static int __init wq_sysfs_init(void) 3153 { 3154 return subsys_virtual_register(&wq_subsys, NULL); 3155 } 3156 core_initcall(wq_sysfs_init); 3157 3158 static void wq_device_release(struct device *dev) 3159 { 3160 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3161 3162 kfree(wq_dev); 3163 } 3164 3165 /** 3166 * workqueue_sysfs_register - make a workqueue visible in sysfs 3167 * @wq: the workqueue to register 3168 * 3169 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 3170 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 3171 * which is the preferred method. 3172 * 3173 * Workqueue user should use this function directly iff it wants to apply 3174 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 3175 * apply_workqueue_attrs() may race against userland updating the 3176 * attributes. 3177 * 3178 * Return: 0 on success, -errno on failure. 3179 */ 3180 int workqueue_sysfs_register(struct workqueue_struct *wq) 3181 { 3182 struct wq_device *wq_dev; 3183 int ret; 3184 3185 /* 3186 * Adjusting max_active or creating new pwqs by applyting 3187 * attributes breaks ordering guarantee. Disallow exposing ordered 3188 * workqueues. 3189 */ 3190 if (WARN_ON(wq->flags & __WQ_ORDERED)) 3191 return -EINVAL; 3192 3193 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 3194 if (!wq_dev) 3195 return -ENOMEM; 3196 3197 wq_dev->wq = wq; 3198 wq_dev->dev.bus = &wq_subsys; 3199 wq_dev->dev.init_name = wq->name; 3200 wq_dev->dev.release = wq_device_release; 3201 3202 /* 3203 * unbound_attrs are created separately. Suppress uevent until 3204 * everything is ready. 3205 */ 3206 dev_set_uevent_suppress(&wq_dev->dev, true); 3207 3208 ret = device_register(&wq_dev->dev); 3209 if (ret) { 3210 kfree(wq_dev); 3211 wq->wq_dev = NULL; 3212 return ret; 3213 } 3214 3215 if (wq->flags & WQ_UNBOUND) { 3216 struct device_attribute *attr; 3217 3218 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 3219 ret = device_create_file(&wq_dev->dev, attr); 3220 if (ret) { 3221 device_unregister(&wq_dev->dev); 3222 wq->wq_dev = NULL; 3223 return ret; 3224 } 3225 } 3226 } 3227 3228 dev_set_uevent_suppress(&wq_dev->dev, false); 3229 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 3230 return 0; 3231 } 3232 3233 /** 3234 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 3235 * @wq: the workqueue to unregister 3236 * 3237 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 3238 */ 3239 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 3240 { 3241 struct wq_device *wq_dev = wq->wq_dev; 3242 3243 if (!wq->wq_dev) 3244 return; 3245 3246 wq->wq_dev = NULL; 3247 device_unregister(&wq_dev->dev); 3248 } 3249 #else /* CONFIG_SYSFS */ 3250 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 3251 #endif /* CONFIG_SYSFS */ 3252 3253 /** 3254 * free_workqueue_attrs - free a workqueue_attrs 3255 * @attrs: workqueue_attrs to free 3256 * 3257 * Undo alloc_workqueue_attrs(). 3258 */ 3259 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3260 { 3261 if (attrs) { 3262 free_cpumask_var(attrs->cpumask); 3263 kfree(attrs); 3264 } 3265 } 3266 3267 /** 3268 * alloc_workqueue_attrs - allocate a workqueue_attrs 3269 * @gfp_mask: allocation mask to use 3270 * 3271 * Allocate a new workqueue_attrs, initialize with default settings and 3272 * return it. 3273 * 3274 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3275 */ 3276 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3277 { 3278 struct workqueue_attrs *attrs; 3279 3280 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3281 if (!attrs) 3282 goto fail; 3283 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3284 goto fail; 3285 3286 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3287 return attrs; 3288 fail: 3289 free_workqueue_attrs(attrs); 3290 return NULL; 3291 } 3292 3293 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3294 const struct workqueue_attrs *from) 3295 { 3296 to->nice = from->nice; 3297 cpumask_copy(to->cpumask, from->cpumask); 3298 /* 3299 * Unlike hash and equality test, this function doesn't ignore 3300 * ->no_numa as it is used for both pool and wq attrs. Instead, 3301 * get_unbound_pool() explicitly clears ->no_numa after copying. 3302 */ 3303 to->no_numa = from->no_numa; 3304 } 3305 3306 /* hash value of the content of @attr */ 3307 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3308 { 3309 u32 hash = 0; 3310 3311 hash = jhash_1word(attrs->nice, hash); 3312 hash = jhash(cpumask_bits(attrs->cpumask), 3313 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3314 return hash; 3315 } 3316 3317 /* content equality test */ 3318 static bool wqattrs_equal(const struct workqueue_attrs *a, 3319 const struct workqueue_attrs *b) 3320 { 3321 if (a->nice != b->nice) 3322 return false; 3323 if (!cpumask_equal(a->cpumask, b->cpumask)) 3324 return false; 3325 return true; 3326 } 3327 3328 /** 3329 * init_worker_pool - initialize a newly zalloc'd worker_pool 3330 * @pool: worker_pool to initialize 3331 * 3332 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs. 3333 * 3334 * Return: 0 on success, -errno on failure. Even on failure, all fields 3335 * inside @pool proper are initialized and put_unbound_pool() can be called 3336 * on @pool safely to release it. 3337 */ 3338 static int init_worker_pool(struct worker_pool *pool) 3339 { 3340 spin_lock_init(&pool->lock); 3341 pool->id = -1; 3342 pool->cpu = -1; 3343 pool->node = NUMA_NO_NODE; 3344 pool->flags |= POOL_DISASSOCIATED; 3345 INIT_LIST_HEAD(&pool->worklist); 3346 INIT_LIST_HEAD(&pool->idle_list); 3347 hash_init(pool->busy_hash); 3348 3349 init_timer_deferrable(&pool->idle_timer); 3350 pool->idle_timer.function = idle_worker_timeout; 3351 pool->idle_timer.data = (unsigned long)pool; 3352 3353 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3354 (unsigned long)pool); 3355 3356 mutex_init(&pool->manager_arb); 3357 mutex_init(&pool->attach_mutex); 3358 INIT_LIST_HEAD(&pool->workers); 3359 3360 ida_init(&pool->worker_ida); 3361 INIT_HLIST_NODE(&pool->hash_node); 3362 pool->refcnt = 1; 3363 3364 /* shouldn't fail above this point */ 3365 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3366 if (!pool->attrs) 3367 return -ENOMEM; 3368 return 0; 3369 } 3370 3371 static void rcu_free_pool(struct rcu_head *rcu) 3372 { 3373 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3374 3375 ida_destroy(&pool->worker_ida); 3376 free_workqueue_attrs(pool->attrs); 3377 kfree(pool); 3378 } 3379 3380 /** 3381 * put_unbound_pool - put a worker_pool 3382 * @pool: worker_pool to put 3383 * 3384 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3385 * safe manner. get_unbound_pool() calls this function on its failure path 3386 * and this function should be able to release pools which went through, 3387 * successfully or not, init_worker_pool(). 3388 * 3389 * Should be called with wq_pool_mutex held. 3390 */ 3391 static void put_unbound_pool(struct worker_pool *pool) 3392 { 3393 DECLARE_COMPLETION_ONSTACK(detach_completion); 3394 struct worker *worker; 3395 3396 lockdep_assert_held(&wq_pool_mutex); 3397 3398 if (--pool->refcnt) 3399 return; 3400 3401 /* sanity checks */ 3402 if (WARN_ON(!(pool->cpu < 0)) || 3403 WARN_ON(!list_empty(&pool->worklist))) 3404 return; 3405 3406 /* release id and unhash */ 3407 if (pool->id >= 0) 3408 idr_remove(&worker_pool_idr, pool->id); 3409 hash_del(&pool->hash_node); 3410 3411 /* 3412 * Become the manager and destroy all workers. Grabbing 3413 * manager_arb prevents @pool's workers from blocking on 3414 * attach_mutex. 3415 */ 3416 mutex_lock(&pool->manager_arb); 3417 3418 spin_lock_irq(&pool->lock); 3419 while ((worker = first_idle_worker(pool))) 3420 destroy_worker(worker); 3421 WARN_ON(pool->nr_workers || pool->nr_idle); 3422 spin_unlock_irq(&pool->lock); 3423 3424 mutex_lock(&pool->attach_mutex); 3425 if (!list_empty(&pool->workers)) 3426 pool->detach_completion = &detach_completion; 3427 mutex_unlock(&pool->attach_mutex); 3428 3429 if (pool->detach_completion) 3430 wait_for_completion(pool->detach_completion); 3431 3432 mutex_unlock(&pool->manager_arb); 3433 3434 /* shut down the timers */ 3435 del_timer_sync(&pool->idle_timer); 3436 del_timer_sync(&pool->mayday_timer); 3437 3438 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3439 call_rcu_sched(&pool->rcu, rcu_free_pool); 3440 } 3441 3442 /** 3443 * get_unbound_pool - get a worker_pool with the specified attributes 3444 * @attrs: the attributes of the worker_pool to get 3445 * 3446 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3447 * reference count and return it. If there already is a matching 3448 * worker_pool, it will be used; otherwise, this function attempts to 3449 * create a new one. 3450 * 3451 * Should be called with wq_pool_mutex held. 3452 * 3453 * Return: On success, a worker_pool with the same attributes as @attrs. 3454 * On failure, %NULL. 3455 */ 3456 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3457 { 3458 u32 hash = wqattrs_hash(attrs); 3459 struct worker_pool *pool; 3460 int node; 3461 3462 lockdep_assert_held(&wq_pool_mutex); 3463 3464 /* do we already have a matching pool? */ 3465 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3466 if (wqattrs_equal(pool->attrs, attrs)) { 3467 pool->refcnt++; 3468 return pool; 3469 } 3470 } 3471 3472 /* nope, create a new one */ 3473 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 3474 if (!pool || init_worker_pool(pool) < 0) 3475 goto fail; 3476 3477 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3478 copy_workqueue_attrs(pool->attrs, attrs); 3479 3480 /* 3481 * no_numa isn't a worker_pool attribute, always clear it. See 3482 * 'struct workqueue_attrs' comments for detail. 3483 */ 3484 pool->attrs->no_numa = false; 3485 3486 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3487 if (wq_numa_enabled) { 3488 for_each_node(node) { 3489 if (cpumask_subset(pool->attrs->cpumask, 3490 wq_numa_possible_cpumask[node])) { 3491 pool->node = node; 3492 break; 3493 } 3494 } 3495 } 3496 3497 if (worker_pool_assign_id(pool) < 0) 3498 goto fail; 3499 3500 /* create and start the initial worker */ 3501 if (!create_worker(pool)) 3502 goto fail; 3503 3504 /* install */ 3505 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3506 3507 return pool; 3508 fail: 3509 if (pool) 3510 put_unbound_pool(pool); 3511 return NULL; 3512 } 3513 3514 static void rcu_free_pwq(struct rcu_head *rcu) 3515 { 3516 kmem_cache_free(pwq_cache, 3517 container_of(rcu, struct pool_workqueue, rcu)); 3518 } 3519 3520 /* 3521 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3522 * and needs to be destroyed. 3523 */ 3524 static void pwq_unbound_release_workfn(struct work_struct *work) 3525 { 3526 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3527 unbound_release_work); 3528 struct workqueue_struct *wq = pwq->wq; 3529 struct worker_pool *pool = pwq->pool; 3530 bool is_last; 3531 3532 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3533 return; 3534 3535 mutex_lock(&wq->mutex); 3536 list_del_rcu(&pwq->pwqs_node); 3537 is_last = list_empty(&wq->pwqs); 3538 mutex_unlock(&wq->mutex); 3539 3540 mutex_lock(&wq_pool_mutex); 3541 put_unbound_pool(pool); 3542 mutex_unlock(&wq_pool_mutex); 3543 3544 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3545 3546 /* 3547 * If we're the last pwq going away, @wq is already dead and no one 3548 * is gonna access it anymore. Free it. 3549 */ 3550 if (is_last) { 3551 free_workqueue_attrs(wq->unbound_attrs); 3552 kfree(wq); 3553 } 3554 } 3555 3556 /** 3557 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3558 * @pwq: target pool_workqueue 3559 * 3560 * If @pwq isn't freezing, set @pwq->max_active to the associated 3561 * workqueue's saved_max_active and activate delayed work items 3562 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3563 */ 3564 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3565 { 3566 struct workqueue_struct *wq = pwq->wq; 3567 bool freezable = wq->flags & WQ_FREEZABLE; 3568 3569 /* for @wq->saved_max_active */ 3570 lockdep_assert_held(&wq->mutex); 3571 3572 /* fast exit for non-freezable wqs */ 3573 if (!freezable && pwq->max_active == wq->saved_max_active) 3574 return; 3575 3576 spin_lock_irq(&pwq->pool->lock); 3577 3578 /* 3579 * During [un]freezing, the caller is responsible for ensuring that 3580 * this function is called at least once after @workqueue_freezing 3581 * is updated and visible. 3582 */ 3583 if (!freezable || !workqueue_freezing) { 3584 pwq->max_active = wq->saved_max_active; 3585 3586 while (!list_empty(&pwq->delayed_works) && 3587 pwq->nr_active < pwq->max_active) 3588 pwq_activate_first_delayed(pwq); 3589 3590 /* 3591 * Need to kick a worker after thawed or an unbound wq's 3592 * max_active is bumped. It's a slow path. Do it always. 3593 */ 3594 wake_up_worker(pwq->pool); 3595 } else { 3596 pwq->max_active = 0; 3597 } 3598 3599 spin_unlock_irq(&pwq->pool->lock); 3600 } 3601 3602 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3603 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3604 struct worker_pool *pool) 3605 { 3606 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3607 3608 memset(pwq, 0, sizeof(*pwq)); 3609 3610 pwq->pool = pool; 3611 pwq->wq = wq; 3612 pwq->flush_color = -1; 3613 pwq->refcnt = 1; 3614 INIT_LIST_HEAD(&pwq->delayed_works); 3615 INIT_LIST_HEAD(&pwq->pwqs_node); 3616 INIT_LIST_HEAD(&pwq->mayday_node); 3617 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3618 } 3619 3620 /* sync @pwq with the current state of its associated wq and link it */ 3621 static void link_pwq(struct pool_workqueue *pwq) 3622 { 3623 struct workqueue_struct *wq = pwq->wq; 3624 3625 lockdep_assert_held(&wq->mutex); 3626 3627 /* may be called multiple times, ignore if already linked */ 3628 if (!list_empty(&pwq->pwqs_node)) 3629 return; 3630 3631 /* set the matching work_color */ 3632 pwq->work_color = wq->work_color; 3633 3634 /* sync max_active to the current setting */ 3635 pwq_adjust_max_active(pwq); 3636 3637 /* link in @pwq */ 3638 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3639 } 3640 3641 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3642 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3643 const struct workqueue_attrs *attrs) 3644 { 3645 struct worker_pool *pool; 3646 struct pool_workqueue *pwq; 3647 3648 lockdep_assert_held(&wq_pool_mutex); 3649 3650 pool = get_unbound_pool(attrs); 3651 if (!pool) 3652 return NULL; 3653 3654 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3655 if (!pwq) { 3656 put_unbound_pool(pool); 3657 return NULL; 3658 } 3659 3660 init_pwq(pwq, wq, pool); 3661 return pwq; 3662 } 3663 3664 /* undo alloc_unbound_pwq(), used only in the error path */ 3665 static void free_unbound_pwq(struct pool_workqueue *pwq) 3666 { 3667 lockdep_assert_held(&wq_pool_mutex); 3668 3669 if (pwq) { 3670 put_unbound_pool(pwq->pool); 3671 kmem_cache_free(pwq_cache, pwq); 3672 } 3673 } 3674 3675 /** 3676 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node 3677 * @attrs: the wq_attrs of interest 3678 * @node: the target NUMA node 3679 * @cpu_going_down: if >= 0, the CPU to consider as offline 3680 * @cpumask: outarg, the resulting cpumask 3681 * 3682 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3683 * @cpu_going_down is >= 0, that cpu is considered offline during 3684 * calculation. The result is stored in @cpumask. 3685 * 3686 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3687 * enabled and @node has online CPUs requested by @attrs, the returned 3688 * cpumask is the intersection of the possible CPUs of @node and 3689 * @attrs->cpumask. 3690 * 3691 * The caller is responsible for ensuring that the cpumask of @node stays 3692 * stable. 3693 * 3694 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3695 * %false if equal. 3696 */ 3697 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3698 int cpu_going_down, cpumask_t *cpumask) 3699 { 3700 if (!wq_numa_enabled || attrs->no_numa) 3701 goto use_dfl; 3702 3703 /* does @node have any online CPUs @attrs wants? */ 3704 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3705 if (cpu_going_down >= 0) 3706 cpumask_clear_cpu(cpu_going_down, cpumask); 3707 3708 if (cpumask_empty(cpumask)) 3709 goto use_dfl; 3710 3711 /* yeap, return possible CPUs in @node that @attrs wants */ 3712 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3713 return !cpumask_equal(cpumask, attrs->cpumask); 3714 3715 use_dfl: 3716 cpumask_copy(cpumask, attrs->cpumask); 3717 return false; 3718 } 3719 3720 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3721 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3722 int node, 3723 struct pool_workqueue *pwq) 3724 { 3725 struct pool_workqueue *old_pwq; 3726 3727 lockdep_assert_held(&wq->mutex); 3728 3729 /* link_pwq() can handle duplicate calls */ 3730 link_pwq(pwq); 3731 3732 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3733 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3734 return old_pwq; 3735 } 3736 3737 /** 3738 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3739 * @wq: the target workqueue 3740 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3741 * 3742 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3743 * machines, this function maps a separate pwq to each NUMA node with 3744 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3745 * NUMA node it was issued on. Older pwqs are released as in-flight work 3746 * items finish. Note that a work item which repeatedly requeues itself 3747 * back-to-back will stay on its current pwq. 3748 * 3749 * Performs GFP_KERNEL allocations. 3750 * 3751 * Return: 0 on success and -errno on failure. 3752 */ 3753 int apply_workqueue_attrs(struct workqueue_struct *wq, 3754 const struct workqueue_attrs *attrs) 3755 { 3756 struct workqueue_attrs *new_attrs, *tmp_attrs; 3757 struct pool_workqueue **pwq_tbl, *dfl_pwq; 3758 int node, ret; 3759 3760 /* only unbound workqueues can change attributes */ 3761 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3762 return -EINVAL; 3763 3764 /* creating multiple pwqs breaks ordering guarantee */ 3765 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3766 return -EINVAL; 3767 3768 pwq_tbl = kzalloc(nr_node_ids * sizeof(pwq_tbl[0]), GFP_KERNEL); 3769 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3770 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3771 if (!pwq_tbl || !new_attrs || !tmp_attrs) 3772 goto enomem; 3773 3774 /* make a copy of @attrs and sanitize it */ 3775 copy_workqueue_attrs(new_attrs, attrs); 3776 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3777 3778 /* 3779 * We may create multiple pwqs with differing cpumasks. Make a 3780 * copy of @new_attrs which will be modified and used to obtain 3781 * pools. 3782 */ 3783 copy_workqueue_attrs(tmp_attrs, new_attrs); 3784 3785 /* 3786 * CPUs should stay stable across pwq creations and installations. 3787 * Pin CPUs, determine the target cpumask for each node and create 3788 * pwqs accordingly. 3789 */ 3790 get_online_cpus(); 3791 3792 mutex_lock(&wq_pool_mutex); 3793 3794 /* 3795 * If something goes wrong during CPU up/down, we'll fall back to 3796 * the default pwq covering whole @attrs->cpumask. Always create 3797 * it even if we don't use it immediately. 3798 */ 3799 dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3800 if (!dfl_pwq) 3801 goto enomem_pwq; 3802 3803 for_each_node(node) { 3804 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) { 3805 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3806 if (!pwq_tbl[node]) 3807 goto enomem_pwq; 3808 } else { 3809 dfl_pwq->refcnt++; 3810 pwq_tbl[node] = dfl_pwq; 3811 } 3812 } 3813 3814 mutex_unlock(&wq_pool_mutex); 3815 3816 /* all pwqs have been created successfully, let's install'em */ 3817 mutex_lock(&wq->mutex); 3818 3819 copy_workqueue_attrs(wq->unbound_attrs, new_attrs); 3820 3821 /* save the previous pwq and install the new one */ 3822 for_each_node(node) 3823 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]); 3824 3825 /* @dfl_pwq might not have been used, ensure it's linked */ 3826 link_pwq(dfl_pwq); 3827 swap(wq->dfl_pwq, dfl_pwq); 3828 3829 mutex_unlock(&wq->mutex); 3830 3831 /* put the old pwqs */ 3832 for_each_node(node) 3833 put_pwq_unlocked(pwq_tbl[node]); 3834 put_pwq_unlocked(dfl_pwq); 3835 3836 put_online_cpus(); 3837 ret = 0; 3838 /* fall through */ 3839 out_free: 3840 free_workqueue_attrs(tmp_attrs); 3841 free_workqueue_attrs(new_attrs); 3842 kfree(pwq_tbl); 3843 return ret; 3844 3845 enomem_pwq: 3846 free_unbound_pwq(dfl_pwq); 3847 for_each_node(node) 3848 if (pwq_tbl && pwq_tbl[node] != dfl_pwq) 3849 free_unbound_pwq(pwq_tbl[node]); 3850 mutex_unlock(&wq_pool_mutex); 3851 put_online_cpus(); 3852 enomem: 3853 ret = -ENOMEM; 3854 goto out_free; 3855 } 3856 3857 /** 3858 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3859 * @wq: the target workqueue 3860 * @cpu: the CPU coming up or going down 3861 * @online: whether @cpu is coming up or going down 3862 * 3863 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3864 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3865 * @wq accordingly. 3866 * 3867 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3868 * falls back to @wq->dfl_pwq which may not be optimal but is always 3869 * correct. 3870 * 3871 * Note that when the last allowed CPU of a NUMA node goes offline for a 3872 * workqueue with a cpumask spanning multiple nodes, the workers which were 3873 * already executing the work items for the workqueue will lose their CPU 3874 * affinity and may execute on any CPU. This is similar to how per-cpu 3875 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3876 * affinity, it's the user's responsibility to flush the work item from 3877 * CPU_DOWN_PREPARE. 3878 */ 3879 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3880 bool online) 3881 { 3882 int node = cpu_to_node(cpu); 3883 int cpu_off = online ? -1 : cpu; 3884 struct pool_workqueue *old_pwq = NULL, *pwq; 3885 struct workqueue_attrs *target_attrs; 3886 cpumask_t *cpumask; 3887 3888 lockdep_assert_held(&wq_pool_mutex); 3889 3890 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND)) 3891 return; 3892 3893 /* 3894 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3895 * Let's use a preallocated one. The following buf is protected by 3896 * CPU hotplug exclusion. 3897 */ 3898 target_attrs = wq_update_unbound_numa_attrs_buf; 3899 cpumask = target_attrs->cpumask; 3900 3901 mutex_lock(&wq->mutex); 3902 if (wq->unbound_attrs->no_numa) 3903 goto out_unlock; 3904 3905 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3906 pwq = unbound_pwq_by_node(wq, node); 3907 3908 /* 3909 * Let's determine what needs to be done. If the target cpumask is 3910 * different from wq's, we need to compare it to @pwq's and create 3911 * a new one if they don't match. If the target cpumask equals 3912 * wq's, the default pwq should be used. 3913 */ 3914 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) { 3915 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3916 goto out_unlock; 3917 } else { 3918 goto use_dfl_pwq; 3919 } 3920 3921 mutex_unlock(&wq->mutex); 3922 3923 /* create a new pwq */ 3924 pwq = alloc_unbound_pwq(wq, target_attrs); 3925 if (!pwq) { 3926 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3927 wq->name); 3928 mutex_lock(&wq->mutex); 3929 goto use_dfl_pwq; 3930 } 3931 3932 /* 3933 * Install the new pwq. As this function is called only from CPU 3934 * hotplug callbacks and applying a new attrs is wrapped with 3935 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed 3936 * inbetween. 3937 */ 3938 mutex_lock(&wq->mutex); 3939 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3940 goto out_unlock; 3941 3942 use_dfl_pwq: 3943 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3944 get_pwq(wq->dfl_pwq); 3945 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3946 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3947 out_unlock: 3948 mutex_unlock(&wq->mutex); 3949 put_pwq_unlocked(old_pwq); 3950 } 3951 3952 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3953 { 3954 bool highpri = wq->flags & WQ_HIGHPRI; 3955 int cpu, ret; 3956 3957 if (!(wq->flags & WQ_UNBOUND)) { 3958 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3959 if (!wq->cpu_pwqs) 3960 return -ENOMEM; 3961 3962 for_each_possible_cpu(cpu) { 3963 struct pool_workqueue *pwq = 3964 per_cpu_ptr(wq->cpu_pwqs, cpu); 3965 struct worker_pool *cpu_pools = 3966 per_cpu(cpu_worker_pools, cpu); 3967 3968 init_pwq(pwq, wq, &cpu_pools[highpri]); 3969 3970 mutex_lock(&wq->mutex); 3971 link_pwq(pwq); 3972 mutex_unlock(&wq->mutex); 3973 } 3974 return 0; 3975 } else if (wq->flags & __WQ_ORDERED) { 3976 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3977 /* there should only be single pwq for ordering guarantee */ 3978 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3979 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3980 "ordering guarantee broken for workqueue %s\n", wq->name); 3981 return ret; 3982 } else { 3983 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3984 } 3985 } 3986 3987 static int wq_clamp_max_active(int max_active, unsigned int flags, 3988 const char *name) 3989 { 3990 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3991 3992 if (max_active < 1 || max_active > lim) 3993 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3994 max_active, name, 1, lim); 3995 3996 return clamp_val(max_active, 1, lim); 3997 } 3998 3999 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4000 unsigned int flags, 4001 int max_active, 4002 struct lock_class_key *key, 4003 const char *lock_name, ...) 4004 { 4005 size_t tbl_size = 0; 4006 va_list args; 4007 struct workqueue_struct *wq; 4008 struct pool_workqueue *pwq; 4009 4010 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4011 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4012 flags |= WQ_UNBOUND; 4013 4014 /* allocate wq and format name */ 4015 if (flags & WQ_UNBOUND) 4016 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4017 4018 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4019 if (!wq) 4020 return NULL; 4021 4022 if (flags & WQ_UNBOUND) { 4023 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4024 if (!wq->unbound_attrs) 4025 goto err_free_wq; 4026 } 4027 4028 va_start(args, lock_name); 4029 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4030 va_end(args); 4031 4032 max_active = max_active ?: WQ_DFL_ACTIVE; 4033 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4034 4035 /* init wq */ 4036 wq->flags = flags; 4037 wq->saved_max_active = max_active; 4038 mutex_init(&wq->mutex); 4039 atomic_set(&wq->nr_pwqs_to_flush, 0); 4040 INIT_LIST_HEAD(&wq->pwqs); 4041 INIT_LIST_HEAD(&wq->flusher_queue); 4042 INIT_LIST_HEAD(&wq->flusher_overflow); 4043 INIT_LIST_HEAD(&wq->maydays); 4044 4045 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4046 INIT_LIST_HEAD(&wq->list); 4047 4048 if (alloc_and_link_pwqs(wq) < 0) 4049 goto err_free_wq; 4050 4051 /* 4052 * Workqueues which may be used during memory reclaim should 4053 * have a rescuer to guarantee forward progress. 4054 */ 4055 if (flags & WQ_MEM_RECLAIM) { 4056 struct worker *rescuer; 4057 4058 rescuer = alloc_worker(NUMA_NO_NODE); 4059 if (!rescuer) 4060 goto err_destroy; 4061 4062 rescuer->rescue_wq = wq; 4063 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 4064 wq->name); 4065 if (IS_ERR(rescuer->task)) { 4066 kfree(rescuer); 4067 goto err_destroy; 4068 } 4069 4070 wq->rescuer = rescuer; 4071 rescuer->task->flags |= PF_NO_SETAFFINITY; 4072 wake_up_process(rescuer->task); 4073 } 4074 4075 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4076 goto err_destroy; 4077 4078 /* 4079 * wq_pool_mutex protects global freeze state and workqueues list. 4080 * Grab it, adjust max_active and add the new @wq to workqueues 4081 * list. 4082 */ 4083 mutex_lock(&wq_pool_mutex); 4084 4085 mutex_lock(&wq->mutex); 4086 for_each_pwq(pwq, wq) 4087 pwq_adjust_max_active(pwq); 4088 mutex_unlock(&wq->mutex); 4089 4090 list_add(&wq->list, &workqueues); 4091 4092 mutex_unlock(&wq_pool_mutex); 4093 4094 return wq; 4095 4096 err_free_wq: 4097 free_workqueue_attrs(wq->unbound_attrs); 4098 kfree(wq); 4099 return NULL; 4100 err_destroy: 4101 destroy_workqueue(wq); 4102 return NULL; 4103 } 4104 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4105 4106 /** 4107 * destroy_workqueue - safely terminate a workqueue 4108 * @wq: target workqueue 4109 * 4110 * Safely destroy a workqueue. All work currently pending will be done first. 4111 */ 4112 void destroy_workqueue(struct workqueue_struct *wq) 4113 { 4114 struct pool_workqueue *pwq; 4115 int node; 4116 4117 /* drain it before proceeding with destruction */ 4118 drain_workqueue(wq); 4119 4120 /* sanity checks */ 4121 mutex_lock(&wq->mutex); 4122 for_each_pwq(pwq, wq) { 4123 int i; 4124 4125 for (i = 0; i < WORK_NR_COLORS; i++) { 4126 if (WARN_ON(pwq->nr_in_flight[i])) { 4127 mutex_unlock(&wq->mutex); 4128 return; 4129 } 4130 } 4131 4132 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4133 WARN_ON(pwq->nr_active) || 4134 WARN_ON(!list_empty(&pwq->delayed_works))) { 4135 mutex_unlock(&wq->mutex); 4136 return; 4137 } 4138 } 4139 mutex_unlock(&wq->mutex); 4140 4141 /* 4142 * wq list is used to freeze wq, remove from list after 4143 * flushing is complete in case freeze races us. 4144 */ 4145 mutex_lock(&wq_pool_mutex); 4146 list_del_init(&wq->list); 4147 mutex_unlock(&wq_pool_mutex); 4148 4149 workqueue_sysfs_unregister(wq); 4150 4151 if (wq->rescuer) { 4152 kthread_stop(wq->rescuer->task); 4153 kfree(wq->rescuer); 4154 wq->rescuer = NULL; 4155 } 4156 4157 if (!(wq->flags & WQ_UNBOUND)) { 4158 /* 4159 * The base ref is never dropped on per-cpu pwqs. Directly 4160 * free the pwqs and wq. 4161 */ 4162 free_percpu(wq->cpu_pwqs); 4163 kfree(wq); 4164 } else { 4165 /* 4166 * We're the sole accessor of @wq at this point. Directly 4167 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4168 * @wq will be freed when the last pwq is released. 4169 */ 4170 for_each_node(node) { 4171 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4172 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4173 put_pwq_unlocked(pwq); 4174 } 4175 4176 /* 4177 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4178 * put. Don't access it afterwards. 4179 */ 4180 pwq = wq->dfl_pwq; 4181 wq->dfl_pwq = NULL; 4182 put_pwq_unlocked(pwq); 4183 } 4184 } 4185 EXPORT_SYMBOL_GPL(destroy_workqueue); 4186 4187 /** 4188 * workqueue_set_max_active - adjust max_active of a workqueue 4189 * @wq: target workqueue 4190 * @max_active: new max_active value. 4191 * 4192 * Set max_active of @wq to @max_active. 4193 * 4194 * CONTEXT: 4195 * Don't call from IRQ context. 4196 */ 4197 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4198 { 4199 struct pool_workqueue *pwq; 4200 4201 /* disallow meddling with max_active for ordered workqueues */ 4202 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4203 return; 4204 4205 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4206 4207 mutex_lock(&wq->mutex); 4208 4209 wq->saved_max_active = max_active; 4210 4211 for_each_pwq(pwq, wq) 4212 pwq_adjust_max_active(pwq); 4213 4214 mutex_unlock(&wq->mutex); 4215 } 4216 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4217 4218 /** 4219 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4220 * 4221 * Determine whether %current is a workqueue rescuer. Can be used from 4222 * work functions to determine whether it's being run off the rescuer task. 4223 * 4224 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4225 */ 4226 bool current_is_workqueue_rescuer(void) 4227 { 4228 struct worker *worker = current_wq_worker(); 4229 4230 return worker && worker->rescue_wq; 4231 } 4232 4233 /** 4234 * workqueue_congested - test whether a workqueue is congested 4235 * @cpu: CPU in question 4236 * @wq: target workqueue 4237 * 4238 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4239 * no synchronization around this function and the test result is 4240 * unreliable and only useful as advisory hints or for debugging. 4241 * 4242 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4243 * Note that both per-cpu and unbound workqueues may be associated with 4244 * multiple pool_workqueues which have separate congested states. A 4245 * workqueue being congested on one CPU doesn't mean the workqueue is also 4246 * contested on other CPUs / NUMA nodes. 4247 * 4248 * Return: 4249 * %true if congested, %false otherwise. 4250 */ 4251 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4252 { 4253 struct pool_workqueue *pwq; 4254 bool ret; 4255 4256 rcu_read_lock_sched(); 4257 4258 if (cpu == WORK_CPU_UNBOUND) 4259 cpu = smp_processor_id(); 4260 4261 if (!(wq->flags & WQ_UNBOUND)) 4262 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4263 else 4264 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4265 4266 ret = !list_empty(&pwq->delayed_works); 4267 rcu_read_unlock_sched(); 4268 4269 return ret; 4270 } 4271 EXPORT_SYMBOL_GPL(workqueue_congested); 4272 4273 /** 4274 * work_busy - test whether a work is currently pending or running 4275 * @work: the work to be tested 4276 * 4277 * Test whether @work is currently pending or running. There is no 4278 * synchronization around this function and the test result is 4279 * unreliable and only useful as advisory hints or for debugging. 4280 * 4281 * Return: 4282 * OR'd bitmask of WORK_BUSY_* bits. 4283 */ 4284 unsigned int work_busy(struct work_struct *work) 4285 { 4286 struct worker_pool *pool; 4287 unsigned long flags; 4288 unsigned int ret = 0; 4289 4290 if (work_pending(work)) 4291 ret |= WORK_BUSY_PENDING; 4292 4293 local_irq_save(flags); 4294 pool = get_work_pool(work); 4295 if (pool) { 4296 spin_lock(&pool->lock); 4297 if (find_worker_executing_work(pool, work)) 4298 ret |= WORK_BUSY_RUNNING; 4299 spin_unlock(&pool->lock); 4300 } 4301 local_irq_restore(flags); 4302 4303 return ret; 4304 } 4305 EXPORT_SYMBOL_GPL(work_busy); 4306 4307 /** 4308 * set_worker_desc - set description for the current work item 4309 * @fmt: printf-style format string 4310 * @...: arguments for the format string 4311 * 4312 * This function can be called by a running work function to describe what 4313 * the work item is about. If the worker task gets dumped, this 4314 * information will be printed out together to help debugging. The 4315 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4316 */ 4317 void set_worker_desc(const char *fmt, ...) 4318 { 4319 struct worker *worker = current_wq_worker(); 4320 va_list args; 4321 4322 if (worker) { 4323 va_start(args, fmt); 4324 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4325 va_end(args); 4326 worker->desc_valid = true; 4327 } 4328 } 4329 4330 /** 4331 * print_worker_info - print out worker information and description 4332 * @log_lvl: the log level to use when printing 4333 * @task: target task 4334 * 4335 * If @task is a worker and currently executing a work item, print out the 4336 * name of the workqueue being serviced and worker description set with 4337 * set_worker_desc() by the currently executing work item. 4338 * 4339 * This function can be safely called on any task as long as the 4340 * task_struct itself is accessible. While safe, this function isn't 4341 * synchronized and may print out mixups or garbages of limited length. 4342 */ 4343 void print_worker_info(const char *log_lvl, struct task_struct *task) 4344 { 4345 work_func_t *fn = NULL; 4346 char name[WQ_NAME_LEN] = { }; 4347 char desc[WORKER_DESC_LEN] = { }; 4348 struct pool_workqueue *pwq = NULL; 4349 struct workqueue_struct *wq = NULL; 4350 bool desc_valid = false; 4351 struct worker *worker; 4352 4353 if (!(task->flags & PF_WQ_WORKER)) 4354 return; 4355 4356 /* 4357 * This function is called without any synchronization and @task 4358 * could be in any state. Be careful with dereferences. 4359 */ 4360 worker = probe_kthread_data(task); 4361 4362 /* 4363 * Carefully copy the associated workqueue's workfn and name. Keep 4364 * the original last '\0' in case the original contains garbage. 4365 */ 4366 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4367 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4368 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4369 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4370 4371 /* copy worker description */ 4372 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4373 if (desc_valid) 4374 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4375 4376 if (fn || name[0] || desc[0]) { 4377 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4378 if (desc[0]) 4379 pr_cont(" (%s)", desc); 4380 pr_cont("\n"); 4381 } 4382 } 4383 4384 /* 4385 * CPU hotplug. 4386 * 4387 * There are two challenges in supporting CPU hotplug. Firstly, there 4388 * are a lot of assumptions on strong associations among work, pwq and 4389 * pool which make migrating pending and scheduled works very 4390 * difficult to implement without impacting hot paths. Secondly, 4391 * worker pools serve mix of short, long and very long running works making 4392 * blocked draining impractical. 4393 * 4394 * This is solved by allowing the pools to be disassociated from the CPU 4395 * running as an unbound one and allowing it to be reattached later if the 4396 * cpu comes back online. 4397 */ 4398 4399 static void wq_unbind_fn(struct work_struct *work) 4400 { 4401 int cpu = smp_processor_id(); 4402 struct worker_pool *pool; 4403 struct worker *worker; 4404 4405 for_each_cpu_worker_pool(pool, cpu) { 4406 mutex_lock(&pool->attach_mutex); 4407 spin_lock_irq(&pool->lock); 4408 4409 /* 4410 * We've blocked all attach/detach operations. Make all workers 4411 * unbound and set DISASSOCIATED. Before this, all workers 4412 * except for the ones which are still executing works from 4413 * before the last CPU down must be on the cpu. After 4414 * this, they may become diasporas. 4415 */ 4416 for_each_pool_worker(worker, pool) 4417 worker->flags |= WORKER_UNBOUND; 4418 4419 pool->flags |= POOL_DISASSOCIATED; 4420 4421 spin_unlock_irq(&pool->lock); 4422 mutex_unlock(&pool->attach_mutex); 4423 4424 /* 4425 * Call schedule() so that we cross rq->lock and thus can 4426 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4427 * This is necessary as scheduler callbacks may be invoked 4428 * from other cpus. 4429 */ 4430 schedule(); 4431 4432 /* 4433 * Sched callbacks are disabled now. Zap nr_running. 4434 * After this, nr_running stays zero and need_more_worker() 4435 * and keep_working() are always true as long as the 4436 * worklist is not empty. This pool now behaves as an 4437 * unbound (in terms of concurrency management) pool which 4438 * are served by workers tied to the pool. 4439 */ 4440 atomic_set(&pool->nr_running, 0); 4441 4442 /* 4443 * With concurrency management just turned off, a busy 4444 * worker blocking could lead to lengthy stalls. Kick off 4445 * unbound chain execution of currently pending work items. 4446 */ 4447 spin_lock_irq(&pool->lock); 4448 wake_up_worker(pool); 4449 spin_unlock_irq(&pool->lock); 4450 } 4451 } 4452 4453 /** 4454 * rebind_workers - rebind all workers of a pool to the associated CPU 4455 * @pool: pool of interest 4456 * 4457 * @pool->cpu is coming online. Rebind all workers to the CPU. 4458 */ 4459 static void rebind_workers(struct worker_pool *pool) 4460 { 4461 struct worker *worker; 4462 4463 lockdep_assert_held(&pool->attach_mutex); 4464 4465 /* 4466 * Restore CPU affinity of all workers. As all idle workers should 4467 * be on the run-queue of the associated CPU before any local 4468 * wake-ups for concurrency management happen, restore CPU affinty 4469 * of all workers first and then clear UNBOUND. As we're called 4470 * from CPU_ONLINE, the following shouldn't fail. 4471 */ 4472 for_each_pool_worker(worker, pool) 4473 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4474 pool->attrs->cpumask) < 0); 4475 4476 spin_lock_irq(&pool->lock); 4477 pool->flags &= ~POOL_DISASSOCIATED; 4478 4479 for_each_pool_worker(worker, pool) { 4480 unsigned int worker_flags = worker->flags; 4481 4482 /* 4483 * A bound idle worker should actually be on the runqueue 4484 * of the associated CPU for local wake-ups targeting it to 4485 * work. Kick all idle workers so that they migrate to the 4486 * associated CPU. Doing this in the same loop as 4487 * replacing UNBOUND with REBOUND is safe as no worker will 4488 * be bound before @pool->lock is released. 4489 */ 4490 if (worker_flags & WORKER_IDLE) 4491 wake_up_process(worker->task); 4492 4493 /* 4494 * We want to clear UNBOUND but can't directly call 4495 * worker_clr_flags() or adjust nr_running. Atomically 4496 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4497 * @worker will clear REBOUND using worker_clr_flags() when 4498 * it initiates the next execution cycle thus restoring 4499 * concurrency management. Note that when or whether 4500 * @worker clears REBOUND doesn't affect correctness. 4501 * 4502 * ACCESS_ONCE() is necessary because @worker->flags may be 4503 * tested without holding any lock in 4504 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4505 * fail incorrectly leading to premature concurrency 4506 * management operations. 4507 */ 4508 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4509 worker_flags |= WORKER_REBOUND; 4510 worker_flags &= ~WORKER_UNBOUND; 4511 ACCESS_ONCE(worker->flags) = worker_flags; 4512 } 4513 4514 spin_unlock_irq(&pool->lock); 4515 } 4516 4517 /** 4518 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4519 * @pool: unbound pool of interest 4520 * @cpu: the CPU which is coming up 4521 * 4522 * An unbound pool may end up with a cpumask which doesn't have any online 4523 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4524 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4525 * online CPU before, cpus_allowed of all its workers should be restored. 4526 */ 4527 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4528 { 4529 static cpumask_t cpumask; 4530 struct worker *worker; 4531 4532 lockdep_assert_held(&pool->attach_mutex); 4533 4534 /* is @cpu allowed for @pool? */ 4535 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4536 return; 4537 4538 /* is @cpu the only online CPU? */ 4539 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4540 if (cpumask_weight(&cpumask) != 1) 4541 return; 4542 4543 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4544 for_each_pool_worker(worker, pool) 4545 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4546 pool->attrs->cpumask) < 0); 4547 } 4548 4549 /* 4550 * Workqueues should be brought up before normal priority CPU notifiers. 4551 * This will be registered high priority CPU notifier. 4552 */ 4553 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4554 unsigned long action, 4555 void *hcpu) 4556 { 4557 int cpu = (unsigned long)hcpu; 4558 struct worker_pool *pool; 4559 struct workqueue_struct *wq; 4560 int pi; 4561 4562 switch (action & ~CPU_TASKS_FROZEN) { 4563 case CPU_UP_PREPARE: 4564 for_each_cpu_worker_pool(pool, cpu) { 4565 if (pool->nr_workers) 4566 continue; 4567 if (!create_worker(pool)) 4568 return NOTIFY_BAD; 4569 } 4570 break; 4571 4572 case CPU_DOWN_FAILED: 4573 case CPU_ONLINE: 4574 mutex_lock(&wq_pool_mutex); 4575 4576 for_each_pool(pool, pi) { 4577 mutex_lock(&pool->attach_mutex); 4578 4579 if (pool->cpu == cpu) 4580 rebind_workers(pool); 4581 else if (pool->cpu < 0) 4582 restore_unbound_workers_cpumask(pool, cpu); 4583 4584 mutex_unlock(&pool->attach_mutex); 4585 } 4586 4587 /* update NUMA affinity of unbound workqueues */ 4588 list_for_each_entry(wq, &workqueues, list) 4589 wq_update_unbound_numa(wq, cpu, true); 4590 4591 mutex_unlock(&wq_pool_mutex); 4592 break; 4593 } 4594 return NOTIFY_OK; 4595 } 4596 4597 /* 4598 * Workqueues should be brought down after normal priority CPU notifiers. 4599 * This will be registered as low priority CPU notifier. 4600 */ 4601 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4602 unsigned long action, 4603 void *hcpu) 4604 { 4605 int cpu = (unsigned long)hcpu; 4606 struct work_struct unbind_work; 4607 struct workqueue_struct *wq; 4608 4609 switch (action & ~CPU_TASKS_FROZEN) { 4610 case CPU_DOWN_PREPARE: 4611 /* unbinding per-cpu workers should happen on the local CPU */ 4612 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4613 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4614 4615 /* update NUMA affinity of unbound workqueues */ 4616 mutex_lock(&wq_pool_mutex); 4617 list_for_each_entry(wq, &workqueues, list) 4618 wq_update_unbound_numa(wq, cpu, false); 4619 mutex_unlock(&wq_pool_mutex); 4620 4621 /* wait for per-cpu unbinding to finish */ 4622 flush_work(&unbind_work); 4623 destroy_work_on_stack(&unbind_work); 4624 break; 4625 } 4626 return NOTIFY_OK; 4627 } 4628 4629 #ifdef CONFIG_SMP 4630 4631 struct work_for_cpu { 4632 struct work_struct work; 4633 long (*fn)(void *); 4634 void *arg; 4635 long ret; 4636 }; 4637 4638 static void work_for_cpu_fn(struct work_struct *work) 4639 { 4640 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4641 4642 wfc->ret = wfc->fn(wfc->arg); 4643 } 4644 4645 /** 4646 * work_on_cpu - run a function in user context on a particular cpu 4647 * @cpu: the cpu to run on 4648 * @fn: the function to run 4649 * @arg: the function arg 4650 * 4651 * It is up to the caller to ensure that the cpu doesn't go offline. 4652 * The caller must not hold any locks which would prevent @fn from completing. 4653 * 4654 * Return: The value @fn returns. 4655 */ 4656 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4657 { 4658 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4659 4660 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4661 schedule_work_on(cpu, &wfc.work); 4662 flush_work(&wfc.work); 4663 destroy_work_on_stack(&wfc.work); 4664 return wfc.ret; 4665 } 4666 EXPORT_SYMBOL_GPL(work_on_cpu); 4667 #endif /* CONFIG_SMP */ 4668 4669 #ifdef CONFIG_FREEZER 4670 4671 /** 4672 * freeze_workqueues_begin - begin freezing workqueues 4673 * 4674 * Start freezing workqueues. After this function returns, all freezable 4675 * workqueues will queue new works to their delayed_works list instead of 4676 * pool->worklist. 4677 * 4678 * CONTEXT: 4679 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4680 */ 4681 void freeze_workqueues_begin(void) 4682 { 4683 struct workqueue_struct *wq; 4684 struct pool_workqueue *pwq; 4685 4686 mutex_lock(&wq_pool_mutex); 4687 4688 WARN_ON_ONCE(workqueue_freezing); 4689 workqueue_freezing = true; 4690 4691 list_for_each_entry(wq, &workqueues, list) { 4692 mutex_lock(&wq->mutex); 4693 for_each_pwq(pwq, wq) 4694 pwq_adjust_max_active(pwq); 4695 mutex_unlock(&wq->mutex); 4696 } 4697 4698 mutex_unlock(&wq_pool_mutex); 4699 } 4700 4701 /** 4702 * freeze_workqueues_busy - are freezable workqueues still busy? 4703 * 4704 * Check whether freezing is complete. This function must be called 4705 * between freeze_workqueues_begin() and thaw_workqueues(). 4706 * 4707 * CONTEXT: 4708 * Grabs and releases wq_pool_mutex. 4709 * 4710 * Return: 4711 * %true if some freezable workqueues are still busy. %false if freezing 4712 * is complete. 4713 */ 4714 bool freeze_workqueues_busy(void) 4715 { 4716 bool busy = false; 4717 struct workqueue_struct *wq; 4718 struct pool_workqueue *pwq; 4719 4720 mutex_lock(&wq_pool_mutex); 4721 4722 WARN_ON_ONCE(!workqueue_freezing); 4723 4724 list_for_each_entry(wq, &workqueues, list) { 4725 if (!(wq->flags & WQ_FREEZABLE)) 4726 continue; 4727 /* 4728 * nr_active is monotonically decreasing. It's safe 4729 * to peek without lock. 4730 */ 4731 rcu_read_lock_sched(); 4732 for_each_pwq(pwq, wq) { 4733 WARN_ON_ONCE(pwq->nr_active < 0); 4734 if (pwq->nr_active) { 4735 busy = true; 4736 rcu_read_unlock_sched(); 4737 goto out_unlock; 4738 } 4739 } 4740 rcu_read_unlock_sched(); 4741 } 4742 out_unlock: 4743 mutex_unlock(&wq_pool_mutex); 4744 return busy; 4745 } 4746 4747 /** 4748 * thaw_workqueues - thaw workqueues 4749 * 4750 * Thaw workqueues. Normal queueing is restored and all collected 4751 * frozen works are transferred to their respective pool worklists. 4752 * 4753 * CONTEXT: 4754 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4755 */ 4756 void thaw_workqueues(void) 4757 { 4758 struct workqueue_struct *wq; 4759 struct pool_workqueue *pwq; 4760 4761 mutex_lock(&wq_pool_mutex); 4762 4763 if (!workqueue_freezing) 4764 goto out_unlock; 4765 4766 workqueue_freezing = false; 4767 4768 /* restore max_active and repopulate worklist */ 4769 list_for_each_entry(wq, &workqueues, list) { 4770 mutex_lock(&wq->mutex); 4771 for_each_pwq(pwq, wq) 4772 pwq_adjust_max_active(pwq); 4773 mutex_unlock(&wq->mutex); 4774 } 4775 4776 out_unlock: 4777 mutex_unlock(&wq_pool_mutex); 4778 } 4779 #endif /* CONFIG_FREEZER */ 4780 4781 static void __init wq_numa_init(void) 4782 { 4783 cpumask_var_t *tbl; 4784 int node, cpu; 4785 4786 if (num_possible_nodes() <= 1) 4787 return; 4788 4789 if (wq_disable_numa) { 4790 pr_info("workqueue: NUMA affinity support disabled\n"); 4791 return; 4792 } 4793 4794 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 4795 BUG_ON(!wq_update_unbound_numa_attrs_buf); 4796 4797 /* 4798 * We want masks of possible CPUs of each node which isn't readily 4799 * available. Build one from cpu_to_node() which should have been 4800 * fully initialized by now. 4801 */ 4802 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 4803 BUG_ON(!tbl); 4804 4805 for_each_node(node) 4806 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 4807 node_online(node) ? node : NUMA_NO_NODE)); 4808 4809 for_each_possible_cpu(cpu) { 4810 node = cpu_to_node(cpu); 4811 if (WARN_ON(node == NUMA_NO_NODE)) { 4812 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 4813 /* happens iff arch is bonkers, let's just proceed */ 4814 return; 4815 } 4816 cpumask_set_cpu(cpu, tbl[node]); 4817 } 4818 4819 wq_numa_possible_cpumask = tbl; 4820 wq_numa_enabled = true; 4821 } 4822 4823 static int __init init_workqueues(void) 4824 { 4825 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 4826 int i, cpu; 4827 4828 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 4829 4830 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 4831 4832 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 4833 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 4834 4835 wq_numa_init(); 4836 4837 /* initialize CPU pools */ 4838 for_each_possible_cpu(cpu) { 4839 struct worker_pool *pool; 4840 4841 i = 0; 4842 for_each_cpu_worker_pool(pool, cpu) { 4843 BUG_ON(init_worker_pool(pool)); 4844 pool->cpu = cpu; 4845 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 4846 pool->attrs->nice = std_nice[i++]; 4847 pool->node = cpu_to_node(cpu); 4848 4849 /* alloc pool ID */ 4850 mutex_lock(&wq_pool_mutex); 4851 BUG_ON(worker_pool_assign_id(pool)); 4852 mutex_unlock(&wq_pool_mutex); 4853 } 4854 } 4855 4856 /* create the initial worker */ 4857 for_each_online_cpu(cpu) { 4858 struct worker_pool *pool; 4859 4860 for_each_cpu_worker_pool(pool, cpu) { 4861 pool->flags &= ~POOL_DISASSOCIATED; 4862 BUG_ON(!create_worker(pool)); 4863 } 4864 } 4865 4866 /* create default unbound and ordered wq attrs */ 4867 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 4868 struct workqueue_attrs *attrs; 4869 4870 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 4871 attrs->nice = std_nice[i]; 4872 unbound_std_wq_attrs[i] = attrs; 4873 4874 /* 4875 * An ordered wq should have only one pwq as ordering is 4876 * guaranteed by max_active which is enforced by pwqs. 4877 * Turn off NUMA so that dfl_pwq is used for all nodes. 4878 */ 4879 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 4880 attrs->nice = std_nice[i]; 4881 attrs->no_numa = true; 4882 ordered_wq_attrs[i] = attrs; 4883 } 4884 4885 system_wq = alloc_workqueue("events", 0, 0); 4886 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 4887 system_long_wq = alloc_workqueue("events_long", 0, 0); 4888 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 4889 WQ_UNBOUND_MAX_ACTIVE); 4890 system_freezable_wq = alloc_workqueue("events_freezable", 4891 WQ_FREEZABLE, 0); 4892 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 4893 WQ_POWER_EFFICIENT, 0); 4894 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 4895 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 4896 0); 4897 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 4898 !system_unbound_wq || !system_freezable_wq || 4899 !system_power_efficient_wq || 4900 !system_freezable_power_efficient_wq); 4901 return 0; 4902 } 4903 early_initcall(init_workqueues); 4904