xref: /openbmc/linux/kernel/workqueue.c (revision 63dc02bd)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 
45 #include "workqueue_sched.h"
46 
47 enum {
48 	/* global_cwq flags */
49 	GCWQ_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
50 	GCWQ_MANAGING_WORKERS	= 1 << 1,	/* managing workers */
51 	GCWQ_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
52 	GCWQ_FREEZING		= 1 << 3,	/* freeze in progress */
53 	GCWQ_HIGHPRI_PENDING	= 1 << 4,	/* highpri works on queue */
54 
55 	/* worker flags */
56 	WORKER_STARTED		= 1 << 0,	/* started */
57 	WORKER_DIE		= 1 << 1,	/* die die die */
58 	WORKER_IDLE		= 1 << 2,	/* is idle */
59 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
60 	WORKER_ROGUE		= 1 << 4,	/* not bound to any cpu */
61 	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
62 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
63 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
64 
65 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 				  WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
67 
68 	/* gcwq->trustee_state */
69 	TRUSTEE_START		= 0,		/* start */
70 	TRUSTEE_IN_CHARGE	= 1,		/* trustee in charge of gcwq */
71 	TRUSTEE_BUTCHER		= 2,		/* butcher workers */
72 	TRUSTEE_RELEASE		= 3,		/* release workers */
73 	TRUSTEE_DONE		= 4,		/* trustee is done */
74 
75 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
76 	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
77 	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
78 
79 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
80 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
81 
82 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
83 						/* call for help after 10ms
84 						   (min two ticks) */
85 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
86 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
87 	TRUSTEE_COOLDOWN	= HZ / 10,	/* for trustee draining */
88 
89 	/*
90 	 * Rescue workers are used only on emergencies and shared by
91 	 * all cpus.  Give -20.
92 	 */
93 	RESCUER_NICE_LEVEL	= -20,
94 };
95 
96 /*
97  * Structure fields follow one of the following exclusion rules.
98  *
99  * I: Modifiable by initialization/destruction paths and read-only for
100  *    everyone else.
101  *
102  * P: Preemption protected.  Disabling preemption is enough and should
103  *    only be modified and accessed from the local cpu.
104  *
105  * L: gcwq->lock protected.  Access with gcwq->lock held.
106  *
107  * X: During normal operation, modification requires gcwq->lock and
108  *    should be done only from local cpu.  Either disabling preemption
109  *    on local cpu or grabbing gcwq->lock is enough for read access.
110  *    If GCWQ_DISASSOCIATED is set, it's identical to L.
111  *
112  * F: wq->flush_mutex protected.
113  *
114  * W: workqueue_lock protected.
115  */
116 
117 struct global_cwq;
118 
119 /*
120  * The poor guys doing the actual heavy lifting.  All on-duty workers
121  * are either serving the manager role, on idle list or on busy hash.
122  */
123 struct worker {
124 	/* on idle list while idle, on busy hash table while busy */
125 	union {
126 		struct list_head	entry;	/* L: while idle */
127 		struct hlist_node	hentry;	/* L: while busy */
128 	};
129 
130 	struct work_struct	*current_work;	/* L: work being processed */
131 	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
132 	struct list_head	scheduled;	/* L: scheduled works */
133 	struct task_struct	*task;		/* I: worker task */
134 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
135 	/* 64 bytes boundary on 64bit, 32 on 32bit */
136 	unsigned long		last_active;	/* L: last active timestamp */
137 	unsigned int		flags;		/* X: flags */
138 	int			id;		/* I: worker id */
139 	struct work_struct	rebind_work;	/* L: rebind worker to cpu */
140 };
141 
142 /*
143  * Global per-cpu workqueue.  There's one and only one for each cpu
144  * and all works are queued and processed here regardless of their
145  * target workqueues.
146  */
147 struct global_cwq {
148 	spinlock_t		lock;		/* the gcwq lock */
149 	struct list_head	worklist;	/* L: list of pending works */
150 	unsigned int		cpu;		/* I: the associated cpu */
151 	unsigned int		flags;		/* L: GCWQ_* flags */
152 
153 	int			nr_workers;	/* L: total number of workers */
154 	int			nr_idle;	/* L: currently idle ones */
155 
156 	/* workers are chained either in the idle_list or busy_hash */
157 	struct list_head	idle_list;	/* X: list of idle workers */
158 	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
159 						/* L: hash of busy workers */
160 
161 	struct timer_list	idle_timer;	/* L: worker idle timeout */
162 	struct timer_list	mayday_timer;	/* L: SOS timer for dworkers */
163 
164 	struct ida		worker_ida;	/* L: for worker IDs */
165 
166 	struct task_struct	*trustee;	/* L: for gcwq shutdown */
167 	unsigned int		trustee_state;	/* L: trustee state */
168 	wait_queue_head_t	trustee_wait;	/* trustee wait */
169 	struct worker		*first_idle;	/* L: first idle worker */
170 } ____cacheline_aligned_in_smp;
171 
172 /*
173  * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
174  * work_struct->data are used for flags and thus cwqs need to be
175  * aligned at two's power of the number of flag bits.
176  */
177 struct cpu_workqueue_struct {
178 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
179 	struct workqueue_struct *wq;		/* I: the owning workqueue */
180 	int			work_color;	/* L: current color */
181 	int			flush_color;	/* L: flushing color */
182 	int			nr_in_flight[WORK_NR_COLORS];
183 						/* L: nr of in_flight works */
184 	int			nr_active;	/* L: nr of active works */
185 	int			max_active;	/* L: max active works */
186 	struct list_head	delayed_works;	/* L: delayed works */
187 };
188 
189 /*
190  * Structure used to wait for workqueue flush.
191  */
192 struct wq_flusher {
193 	struct list_head	list;		/* F: list of flushers */
194 	int			flush_color;	/* F: flush color waiting for */
195 	struct completion	done;		/* flush completion */
196 };
197 
198 /*
199  * All cpumasks are assumed to be always set on UP and thus can't be
200  * used to determine whether there's something to be done.
201  */
202 #ifdef CONFIG_SMP
203 typedef cpumask_var_t mayday_mask_t;
204 #define mayday_test_and_set_cpu(cpu, mask)	\
205 	cpumask_test_and_set_cpu((cpu), (mask))
206 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
207 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
208 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
209 #define free_mayday_mask(mask)			free_cpumask_var((mask))
210 #else
211 typedef unsigned long mayday_mask_t;
212 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
213 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
214 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
215 #define alloc_mayday_mask(maskp, gfp)		true
216 #define free_mayday_mask(mask)			do { } while (0)
217 #endif
218 
219 /*
220  * The externally visible workqueue abstraction is an array of
221  * per-CPU workqueues:
222  */
223 struct workqueue_struct {
224 	unsigned int		flags;		/* W: WQ_* flags */
225 	union {
226 		struct cpu_workqueue_struct __percpu	*pcpu;
227 		struct cpu_workqueue_struct		*single;
228 		unsigned long				v;
229 	} cpu_wq;				/* I: cwq's */
230 	struct list_head	list;		/* W: list of all workqueues */
231 
232 	struct mutex		flush_mutex;	/* protects wq flushing */
233 	int			work_color;	/* F: current work color */
234 	int			flush_color;	/* F: current flush color */
235 	atomic_t		nr_cwqs_to_flush; /* flush in progress */
236 	struct wq_flusher	*first_flusher;	/* F: first flusher */
237 	struct list_head	flusher_queue;	/* F: flush waiters */
238 	struct list_head	flusher_overflow; /* F: flush overflow list */
239 
240 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
241 	struct worker		*rescuer;	/* I: rescue worker */
242 
243 	int			nr_drainers;	/* W: drain in progress */
244 	int			saved_max_active; /* W: saved cwq max_active */
245 #ifdef CONFIG_LOCKDEP
246 	struct lockdep_map	lockdep_map;
247 #endif
248 	char			name[];		/* I: workqueue name */
249 };
250 
251 struct workqueue_struct *system_wq __read_mostly;
252 struct workqueue_struct *system_long_wq __read_mostly;
253 struct workqueue_struct *system_nrt_wq __read_mostly;
254 struct workqueue_struct *system_unbound_wq __read_mostly;
255 struct workqueue_struct *system_freezable_wq __read_mostly;
256 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
257 EXPORT_SYMBOL_GPL(system_wq);
258 EXPORT_SYMBOL_GPL(system_long_wq);
259 EXPORT_SYMBOL_GPL(system_nrt_wq);
260 EXPORT_SYMBOL_GPL(system_unbound_wq);
261 EXPORT_SYMBOL_GPL(system_freezable_wq);
262 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
263 
264 #define CREATE_TRACE_POINTS
265 #include <trace/events/workqueue.h>
266 
267 #define for_each_busy_worker(worker, i, pos, gcwq)			\
268 	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
269 		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
270 
271 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
272 				  unsigned int sw)
273 {
274 	if (cpu < nr_cpu_ids) {
275 		if (sw & 1) {
276 			cpu = cpumask_next(cpu, mask);
277 			if (cpu < nr_cpu_ids)
278 				return cpu;
279 		}
280 		if (sw & 2)
281 			return WORK_CPU_UNBOUND;
282 	}
283 	return WORK_CPU_NONE;
284 }
285 
286 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
287 				struct workqueue_struct *wq)
288 {
289 	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
290 }
291 
292 /*
293  * CPU iterators
294  *
295  * An extra gcwq is defined for an invalid cpu number
296  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
297  * specific CPU.  The following iterators are similar to
298  * for_each_*_cpu() iterators but also considers the unbound gcwq.
299  *
300  * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
301  * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
302  * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
303  *				  WORK_CPU_UNBOUND for unbound workqueues
304  */
305 #define for_each_gcwq_cpu(cpu)						\
306 	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
307 	     (cpu) < WORK_CPU_NONE;					\
308 	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
309 
310 #define for_each_online_gcwq_cpu(cpu)					\
311 	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
312 	     (cpu) < WORK_CPU_NONE;					\
313 	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
314 
315 #define for_each_cwq_cpu(cpu, wq)					\
316 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
317 	     (cpu) < WORK_CPU_NONE;					\
318 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
319 
320 #ifdef CONFIG_DEBUG_OBJECTS_WORK
321 
322 static struct debug_obj_descr work_debug_descr;
323 
324 static void *work_debug_hint(void *addr)
325 {
326 	return ((struct work_struct *) addr)->func;
327 }
328 
329 /*
330  * fixup_init is called when:
331  * - an active object is initialized
332  */
333 static int work_fixup_init(void *addr, enum debug_obj_state state)
334 {
335 	struct work_struct *work = addr;
336 
337 	switch (state) {
338 	case ODEBUG_STATE_ACTIVE:
339 		cancel_work_sync(work);
340 		debug_object_init(work, &work_debug_descr);
341 		return 1;
342 	default:
343 		return 0;
344 	}
345 }
346 
347 /*
348  * fixup_activate is called when:
349  * - an active object is activated
350  * - an unknown object is activated (might be a statically initialized object)
351  */
352 static int work_fixup_activate(void *addr, enum debug_obj_state state)
353 {
354 	struct work_struct *work = addr;
355 
356 	switch (state) {
357 
358 	case ODEBUG_STATE_NOTAVAILABLE:
359 		/*
360 		 * This is not really a fixup. The work struct was
361 		 * statically initialized. We just make sure that it
362 		 * is tracked in the object tracker.
363 		 */
364 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
365 			debug_object_init(work, &work_debug_descr);
366 			debug_object_activate(work, &work_debug_descr);
367 			return 0;
368 		}
369 		WARN_ON_ONCE(1);
370 		return 0;
371 
372 	case ODEBUG_STATE_ACTIVE:
373 		WARN_ON(1);
374 
375 	default:
376 		return 0;
377 	}
378 }
379 
380 /*
381  * fixup_free is called when:
382  * - an active object is freed
383  */
384 static int work_fixup_free(void *addr, enum debug_obj_state state)
385 {
386 	struct work_struct *work = addr;
387 
388 	switch (state) {
389 	case ODEBUG_STATE_ACTIVE:
390 		cancel_work_sync(work);
391 		debug_object_free(work, &work_debug_descr);
392 		return 1;
393 	default:
394 		return 0;
395 	}
396 }
397 
398 static struct debug_obj_descr work_debug_descr = {
399 	.name		= "work_struct",
400 	.debug_hint	= work_debug_hint,
401 	.fixup_init	= work_fixup_init,
402 	.fixup_activate	= work_fixup_activate,
403 	.fixup_free	= work_fixup_free,
404 };
405 
406 static inline void debug_work_activate(struct work_struct *work)
407 {
408 	debug_object_activate(work, &work_debug_descr);
409 }
410 
411 static inline void debug_work_deactivate(struct work_struct *work)
412 {
413 	debug_object_deactivate(work, &work_debug_descr);
414 }
415 
416 void __init_work(struct work_struct *work, int onstack)
417 {
418 	if (onstack)
419 		debug_object_init_on_stack(work, &work_debug_descr);
420 	else
421 		debug_object_init(work, &work_debug_descr);
422 }
423 EXPORT_SYMBOL_GPL(__init_work);
424 
425 void destroy_work_on_stack(struct work_struct *work)
426 {
427 	debug_object_free(work, &work_debug_descr);
428 }
429 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
430 
431 #else
432 static inline void debug_work_activate(struct work_struct *work) { }
433 static inline void debug_work_deactivate(struct work_struct *work) { }
434 #endif
435 
436 /* Serializes the accesses to the list of workqueues. */
437 static DEFINE_SPINLOCK(workqueue_lock);
438 static LIST_HEAD(workqueues);
439 static bool workqueue_freezing;		/* W: have wqs started freezing? */
440 
441 /*
442  * The almighty global cpu workqueues.  nr_running is the only field
443  * which is expected to be used frequently by other cpus via
444  * try_to_wake_up().  Put it in a separate cacheline.
445  */
446 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
447 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
448 
449 /*
450  * Global cpu workqueue and nr_running counter for unbound gcwq.  The
451  * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
452  * workers have WORKER_UNBOUND set.
453  */
454 static struct global_cwq unbound_global_cwq;
455 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0);	/* always 0 */
456 
457 static int worker_thread(void *__worker);
458 
459 static struct global_cwq *get_gcwq(unsigned int cpu)
460 {
461 	if (cpu != WORK_CPU_UNBOUND)
462 		return &per_cpu(global_cwq, cpu);
463 	else
464 		return &unbound_global_cwq;
465 }
466 
467 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
468 {
469 	if (cpu != WORK_CPU_UNBOUND)
470 		return &per_cpu(gcwq_nr_running, cpu);
471 	else
472 		return &unbound_gcwq_nr_running;
473 }
474 
475 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
476 					    struct workqueue_struct *wq)
477 {
478 	if (!(wq->flags & WQ_UNBOUND)) {
479 		if (likely(cpu < nr_cpu_ids))
480 			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
481 	} else if (likely(cpu == WORK_CPU_UNBOUND))
482 		return wq->cpu_wq.single;
483 	return NULL;
484 }
485 
486 static unsigned int work_color_to_flags(int color)
487 {
488 	return color << WORK_STRUCT_COLOR_SHIFT;
489 }
490 
491 static int get_work_color(struct work_struct *work)
492 {
493 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
494 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
495 }
496 
497 static int work_next_color(int color)
498 {
499 	return (color + 1) % WORK_NR_COLORS;
500 }
501 
502 /*
503  * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
504  * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
505  * cleared and the work data contains the cpu number it was last on.
506  *
507  * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
508  * cwq, cpu or clear work->data.  These functions should only be
509  * called while the work is owned - ie. while the PENDING bit is set.
510  *
511  * get_work_[g]cwq() can be used to obtain the gcwq or cwq
512  * corresponding to a work.  gcwq is available once the work has been
513  * queued anywhere after initialization.  cwq is available only from
514  * queueing until execution starts.
515  */
516 static inline void set_work_data(struct work_struct *work, unsigned long data,
517 				 unsigned long flags)
518 {
519 	BUG_ON(!work_pending(work));
520 	atomic_long_set(&work->data, data | flags | work_static(work));
521 }
522 
523 static void set_work_cwq(struct work_struct *work,
524 			 struct cpu_workqueue_struct *cwq,
525 			 unsigned long extra_flags)
526 {
527 	set_work_data(work, (unsigned long)cwq,
528 		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
529 }
530 
531 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
532 {
533 	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
534 }
535 
536 static void clear_work_data(struct work_struct *work)
537 {
538 	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
539 }
540 
541 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
542 {
543 	unsigned long data = atomic_long_read(&work->data);
544 
545 	if (data & WORK_STRUCT_CWQ)
546 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
547 	else
548 		return NULL;
549 }
550 
551 static struct global_cwq *get_work_gcwq(struct work_struct *work)
552 {
553 	unsigned long data = atomic_long_read(&work->data);
554 	unsigned int cpu;
555 
556 	if (data & WORK_STRUCT_CWQ)
557 		return ((struct cpu_workqueue_struct *)
558 			(data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
559 
560 	cpu = data >> WORK_STRUCT_FLAG_BITS;
561 	if (cpu == WORK_CPU_NONE)
562 		return NULL;
563 
564 	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
565 	return get_gcwq(cpu);
566 }
567 
568 /*
569  * Policy functions.  These define the policies on how the global
570  * worker pool is managed.  Unless noted otherwise, these functions
571  * assume that they're being called with gcwq->lock held.
572  */
573 
574 static bool __need_more_worker(struct global_cwq *gcwq)
575 {
576 	return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
577 		gcwq->flags & GCWQ_HIGHPRI_PENDING;
578 }
579 
580 /*
581  * Need to wake up a worker?  Called from anything but currently
582  * running workers.
583  */
584 static bool need_more_worker(struct global_cwq *gcwq)
585 {
586 	return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
587 }
588 
589 /* Can I start working?  Called from busy but !running workers. */
590 static bool may_start_working(struct global_cwq *gcwq)
591 {
592 	return gcwq->nr_idle;
593 }
594 
595 /* Do I need to keep working?  Called from currently running workers. */
596 static bool keep_working(struct global_cwq *gcwq)
597 {
598 	atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
599 
600 	return !list_empty(&gcwq->worklist) &&
601 		(atomic_read(nr_running) <= 1 ||
602 		 gcwq->flags & GCWQ_HIGHPRI_PENDING);
603 }
604 
605 /* Do we need a new worker?  Called from manager. */
606 static bool need_to_create_worker(struct global_cwq *gcwq)
607 {
608 	return need_more_worker(gcwq) && !may_start_working(gcwq);
609 }
610 
611 /* Do I need to be the manager? */
612 static bool need_to_manage_workers(struct global_cwq *gcwq)
613 {
614 	return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
615 }
616 
617 /* Do we have too many workers and should some go away? */
618 static bool too_many_workers(struct global_cwq *gcwq)
619 {
620 	bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
621 	int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
622 	int nr_busy = gcwq->nr_workers - nr_idle;
623 
624 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
625 }
626 
627 /*
628  * Wake up functions.
629  */
630 
631 /* Return the first worker.  Safe with preemption disabled */
632 static struct worker *first_worker(struct global_cwq *gcwq)
633 {
634 	if (unlikely(list_empty(&gcwq->idle_list)))
635 		return NULL;
636 
637 	return list_first_entry(&gcwq->idle_list, struct worker, entry);
638 }
639 
640 /**
641  * wake_up_worker - wake up an idle worker
642  * @gcwq: gcwq to wake worker for
643  *
644  * Wake up the first idle worker of @gcwq.
645  *
646  * CONTEXT:
647  * spin_lock_irq(gcwq->lock).
648  */
649 static void wake_up_worker(struct global_cwq *gcwq)
650 {
651 	struct worker *worker = first_worker(gcwq);
652 
653 	if (likely(worker))
654 		wake_up_process(worker->task);
655 }
656 
657 /**
658  * wq_worker_waking_up - a worker is waking up
659  * @task: task waking up
660  * @cpu: CPU @task is waking up to
661  *
662  * This function is called during try_to_wake_up() when a worker is
663  * being awoken.
664  *
665  * CONTEXT:
666  * spin_lock_irq(rq->lock)
667  */
668 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
669 {
670 	struct worker *worker = kthread_data(task);
671 
672 	if (!(worker->flags & WORKER_NOT_RUNNING))
673 		atomic_inc(get_gcwq_nr_running(cpu));
674 }
675 
676 /**
677  * wq_worker_sleeping - a worker is going to sleep
678  * @task: task going to sleep
679  * @cpu: CPU in question, must be the current CPU number
680  *
681  * This function is called during schedule() when a busy worker is
682  * going to sleep.  Worker on the same cpu can be woken up by
683  * returning pointer to its task.
684  *
685  * CONTEXT:
686  * spin_lock_irq(rq->lock)
687  *
688  * RETURNS:
689  * Worker task on @cpu to wake up, %NULL if none.
690  */
691 struct task_struct *wq_worker_sleeping(struct task_struct *task,
692 				       unsigned int cpu)
693 {
694 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
695 	struct global_cwq *gcwq = get_gcwq(cpu);
696 	atomic_t *nr_running = get_gcwq_nr_running(cpu);
697 
698 	if (worker->flags & WORKER_NOT_RUNNING)
699 		return NULL;
700 
701 	/* this can only happen on the local cpu */
702 	BUG_ON(cpu != raw_smp_processor_id());
703 
704 	/*
705 	 * The counterpart of the following dec_and_test, implied mb,
706 	 * worklist not empty test sequence is in insert_work().
707 	 * Please read comment there.
708 	 *
709 	 * NOT_RUNNING is clear.  This means that trustee is not in
710 	 * charge and we're running on the local cpu w/ rq lock held
711 	 * and preemption disabled, which in turn means that none else
712 	 * could be manipulating idle_list, so dereferencing idle_list
713 	 * without gcwq lock is safe.
714 	 */
715 	if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
716 		to_wakeup = first_worker(gcwq);
717 	return to_wakeup ? to_wakeup->task : NULL;
718 }
719 
720 /**
721  * worker_set_flags - set worker flags and adjust nr_running accordingly
722  * @worker: self
723  * @flags: flags to set
724  * @wakeup: wakeup an idle worker if necessary
725  *
726  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
727  * nr_running becomes zero and @wakeup is %true, an idle worker is
728  * woken up.
729  *
730  * CONTEXT:
731  * spin_lock_irq(gcwq->lock)
732  */
733 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
734 				    bool wakeup)
735 {
736 	struct global_cwq *gcwq = worker->gcwq;
737 
738 	WARN_ON_ONCE(worker->task != current);
739 
740 	/*
741 	 * If transitioning into NOT_RUNNING, adjust nr_running and
742 	 * wake up an idle worker as necessary if requested by
743 	 * @wakeup.
744 	 */
745 	if ((flags & WORKER_NOT_RUNNING) &&
746 	    !(worker->flags & WORKER_NOT_RUNNING)) {
747 		atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
748 
749 		if (wakeup) {
750 			if (atomic_dec_and_test(nr_running) &&
751 			    !list_empty(&gcwq->worklist))
752 				wake_up_worker(gcwq);
753 		} else
754 			atomic_dec(nr_running);
755 	}
756 
757 	worker->flags |= flags;
758 }
759 
760 /**
761  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
762  * @worker: self
763  * @flags: flags to clear
764  *
765  * Clear @flags in @worker->flags and adjust nr_running accordingly.
766  *
767  * CONTEXT:
768  * spin_lock_irq(gcwq->lock)
769  */
770 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
771 {
772 	struct global_cwq *gcwq = worker->gcwq;
773 	unsigned int oflags = worker->flags;
774 
775 	WARN_ON_ONCE(worker->task != current);
776 
777 	worker->flags &= ~flags;
778 
779 	/*
780 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
781 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
782 	 * of multiple flags, not a single flag.
783 	 */
784 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
785 		if (!(worker->flags & WORKER_NOT_RUNNING))
786 			atomic_inc(get_gcwq_nr_running(gcwq->cpu));
787 }
788 
789 /**
790  * busy_worker_head - return the busy hash head for a work
791  * @gcwq: gcwq of interest
792  * @work: work to be hashed
793  *
794  * Return hash head of @gcwq for @work.
795  *
796  * CONTEXT:
797  * spin_lock_irq(gcwq->lock).
798  *
799  * RETURNS:
800  * Pointer to the hash head.
801  */
802 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
803 					   struct work_struct *work)
804 {
805 	const int base_shift = ilog2(sizeof(struct work_struct));
806 	unsigned long v = (unsigned long)work;
807 
808 	/* simple shift and fold hash, do we need something better? */
809 	v >>= base_shift;
810 	v += v >> BUSY_WORKER_HASH_ORDER;
811 	v &= BUSY_WORKER_HASH_MASK;
812 
813 	return &gcwq->busy_hash[v];
814 }
815 
816 /**
817  * __find_worker_executing_work - find worker which is executing a work
818  * @gcwq: gcwq of interest
819  * @bwh: hash head as returned by busy_worker_head()
820  * @work: work to find worker for
821  *
822  * Find a worker which is executing @work on @gcwq.  @bwh should be
823  * the hash head obtained by calling busy_worker_head() with the same
824  * work.
825  *
826  * CONTEXT:
827  * spin_lock_irq(gcwq->lock).
828  *
829  * RETURNS:
830  * Pointer to worker which is executing @work if found, NULL
831  * otherwise.
832  */
833 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
834 						   struct hlist_head *bwh,
835 						   struct work_struct *work)
836 {
837 	struct worker *worker;
838 	struct hlist_node *tmp;
839 
840 	hlist_for_each_entry(worker, tmp, bwh, hentry)
841 		if (worker->current_work == work)
842 			return worker;
843 	return NULL;
844 }
845 
846 /**
847  * find_worker_executing_work - find worker which is executing a work
848  * @gcwq: gcwq of interest
849  * @work: work to find worker for
850  *
851  * Find a worker which is executing @work on @gcwq.  This function is
852  * identical to __find_worker_executing_work() except that this
853  * function calculates @bwh itself.
854  *
855  * CONTEXT:
856  * spin_lock_irq(gcwq->lock).
857  *
858  * RETURNS:
859  * Pointer to worker which is executing @work if found, NULL
860  * otherwise.
861  */
862 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
863 						 struct work_struct *work)
864 {
865 	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
866 					    work);
867 }
868 
869 /**
870  * gcwq_determine_ins_pos - find insertion position
871  * @gcwq: gcwq of interest
872  * @cwq: cwq a work is being queued for
873  *
874  * A work for @cwq is about to be queued on @gcwq, determine insertion
875  * position for the work.  If @cwq is for HIGHPRI wq, the work is
876  * queued at the head of the queue but in FIFO order with respect to
877  * other HIGHPRI works; otherwise, at the end of the queue.  This
878  * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
879  * there are HIGHPRI works pending.
880  *
881  * CONTEXT:
882  * spin_lock_irq(gcwq->lock).
883  *
884  * RETURNS:
885  * Pointer to inserstion position.
886  */
887 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
888 					       struct cpu_workqueue_struct *cwq)
889 {
890 	struct work_struct *twork;
891 
892 	if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
893 		return &gcwq->worklist;
894 
895 	list_for_each_entry(twork, &gcwq->worklist, entry) {
896 		struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
897 
898 		if (!(tcwq->wq->flags & WQ_HIGHPRI))
899 			break;
900 	}
901 
902 	gcwq->flags |= GCWQ_HIGHPRI_PENDING;
903 	return &twork->entry;
904 }
905 
906 /**
907  * insert_work - insert a work into gcwq
908  * @cwq: cwq @work belongs to
909  * @work: work to insert
910  * @head: insertion point
911  * @extra_flags: extra WORK_STRUCT_* flags to set
912  *
913  * Insert @work which belongs to @cwq into @gcwq after @head.
914  * @extra_flags is or'd to work_struct flags.
915  *
916  * CONTEXT:
917  * spin_lock_irq(gcwq->lock).
918  */
919 static void insert_work(struct cpu_workqueue_struct *cwq,
920 			struct work_struct *work, struct list_head *head,
921 			unsigned int extra_flags)
922 {
923 	struct global_cwq *gcwq = cwq->gcwq;
924 
925 	/* we own @work, set data and link */
926 	set_work_cwq(work, cwq, extra_flags);
927 
928 	/*
929 	 * Ensure that we get the right work->data if we see the
930 	 * result of list_add() below, see try_to_grab_pending().
931 	 */
932 	smp_wmb();
933 
934 	list_add_tail(&work->entry, head);
935 
936 	/*
937 	 * Ensure either worker_sched_deactivated() sees the above
938 	 * list_add_tail() or we see zero nr_running to avoid workers
939 	 * lying around lazily while there are works to be processed.
940 	 */
941 	smp_mb();
942 
943 	if (__need_more_worker(gcwq))
944 		wake_up_worker(gcwq);
945 }
946 
947 /*
948  * Test whether @work is being queued from another work executing on the
949  * same workqueue.  This is rather expensive and should only be used from
950  * cold paths.
951  */
952 static bool is_chained_work(struct workqueue_struct *wq)
953 {
954 	unsigned long flags;
955 	unsigned int cpu;
956 
957 	for_each_gcwq_cpu(cpu) {
958 		struct global_cwq *gcwq = get_gcwq(cpu);
959 		struct worker *worker;
960 		struct hlist_node *pos;
961 		int i;
962 
963 		spin_lock_irqsave(&gcwq->lock, flags);
964 		for_each_busy_worker(worker, i, pos, gcwq) {
965 			if (worker->task != current)
966 				continue;
967 			spin_unlock_irqrestore(&gcwq->lock, flags);
968 			/*
969 			 * I'm @worker, no locking necessary.  See if @work
970 			 * is headed to the same workqueue.
971 			 */
972 			return worker->current_cwq->wq == wq;
973 		}
974 		spin_unlock_irqrestore(&gcwq->lock, flags);
975 	}
976 	return false;
977 }
978 
979 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
980 			 struct work_struct *work)
981 {
982 	struct global_cwq *gcwq;
983 	struct cpu_workqueue_struct *cwq;
984 	struct list_head *worklist;
985 	unsigned int work_flags;
986 	unsigned long flags;
987 
988 	debug_work_activate(work);
989 
990 	/* if dying, only works from the same workqueue are allowed */
991 	if (unlikely(wq->flags & WQ_DRAINING) &&
992 	    WARN_ON_ONCE(!is_chained_work(wq)))
993 		return;
994 
995 	/* determine gcwq to use */
996 	if (!(wq->flags & WQ_UNBOUND)) {
997 		struct global_cwq *last_gcwq;
998 
999 		if (unlikely(cpu == WORK_CPU_UNBOUND))
1000 			cpu = raw_smp_processor_id();
1001 
1002 		/*
1003 		 * It's multi cpu.  If @wq is non-reentrant and @work
1004 		 * was previously on a different cpu, it might still
1005 		 * be running there, in which case the work needs to
1006 		 * be queued on that cpu to guarantee non-reentrance.
1007 		 */
1008 		gcwq = get_gcwq(cpu);
1009 		if (wq->flags & WQ_NON_REENTRANT &&
1010 		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1011 			struct worker *worker;
1012 
1013 			spin_lock_irqsave(&last_gcwq->lock, flags);
1014 
1015 			worker = find_worker_executing_work(last_gcwq, work);
1016 
1017 			if (worker && worker->current_cwq->wq == wq)
1018 				gcwq = last_gcwq;
1019 			else {
1020 				/* meh... not running there, queue here */
1021 				spin_unlock_irqrestore(&last_gcwq->lock, flags);
1022 				spin_lock_irqsave(&gcwq->lock, flags);
1023 			}
1024 		} else
1025 			spin_lock_irqsave(&gcwq->lock, flags);
1026 	} else {
1027 		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1028 		spin_lock_irqsave(&gcwq->lock, flags);
1029 	}
1030 
1031 	/* gcwq determined, get cwq and queue */
1032 	cwq = get_cwq(gcwq->cpu, wq);
1033 	trace_workqueue_queue_work(cpu, cwq, work);
1034 
1035 	BUG_ON(!list_empty(&work->entry));
1036 
1037 	cwq->nr_in_flight[cwq->work_color]++;
1038 	work_flags = work_color_to_flags(cwq->work_color);
1039 
1040 	if (likely(cwq->nr_active < cwq->max_active)) {
1041 		trace_workqueue_activate_work(work);
1042 		cwq->nr_active++;
1043 		worklist = gcwq_determine_ins_pos(gcwq, cwq);
1044 	} else {
1045 		work_flags |= WORK_STRUCT_DELAYED;
1046 		worklist = &cwq->delayed_works;
1047 	}
1048 
1049 	insert_work(cwq, work, worklist, work_flags);
1050 
1051 	spin_unlock_irqrestore(&gcwq->lock, flags);
1052 }
1053 
1054 /**
1055  * queue_work - queue work on a workqueue
1056  * @wq: workqueue to use
1057  * @work: work to queue
1058  *
1059  * Returns 0 if @work was already on a queue, non-zero otherwise.
1060  *
1061  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1062  * it can be processed by another CPU.
1063  */
1064 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1065 {
1066 	int ret;
1067 
1068 	ret = queue_work_on(get_cpu(), wq, work);
1069 	put_cpu();
1070 
1071 	return ret;
1072 }
1073 EXPORT_SYMBOL_GPL(queue_work);
1074 
1075 /**
1076  * queue_work_on - queue work on specific cpu
1077  * @cpu: CPU number to execute work on
1078  * @wq: workqueue to use
1079  * @work: work to queue
1080  *
1081  * Returns 0 if @work was already on a queue, non-zero otherwise.
1082  *
1083  * We queue the work to a specific CPU, the caller must ensure it
1084  * can't go away.
1085  */
1086 int
1087 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1088 {
1089 	int ret = 0;
1090 
1091 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1092 		__queue_work(cpu, wq, work);
1093 		ret = 1;
1094 	}
1095 	return ret;
1096 }
1097 EXPORT_SYMBOL_GPL(queue_work_on);
1098 
1099 static void delayed_work_timer_fn(unsigned long __data)
1100 {
1101 	struct delayed_work *dwork = (struct delayed_work *)__data;
1102 	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1103 
1104 	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1105 }
1106 
1107 /**
1108  * queue_delayed_work - queue work on a workqueue after delay
1109  * @wq: workqueue to use
1110  * @dwork: delayable work to queue
1111  * @delay: number of jiffies to wait before queueing
1112  *
1113  * Returns 0 if @work was already on a queue, non-zero otherwise.
1114  */
1115 int queue_delayed_work(struct workqueue_struct *wq,
1116 			struct delayed_work *dwork, unsigned long delay)
1117 {
1118 	if (delay == 0)
1119 		return queue_work(wq, &dwork->work);
1120 
1121 	return queue_delayed_work_on(-1, wq, dwork, delay);
1122 }
1123 EXPORT_SYMBOL_GPL(queue_delayed_work);
1124 
1125 /**
1126  * queue_delayed_work_on - queue work on specific CPU after delay
1127  * @cpu: CPU number to execute work on
1128  * @wq: workqueue to use
1129  * @dwork: work to queue
1130  * @delay: number of jiffies to wait before queueing
1131  *
1132  * Returns 0 if @work was already on a queue, non-zero otherwise.
1133  */
1134 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1135 			struct delayed_work *dwork, unsigned long delay)
1136 {
1137 	int ret = 0;
1138 	struct timer_list *timer = &dwork->timer;
1139 	struct work_struct *work = &dwork->work;
1140 
1141 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1142 		unsigned int lcpu;
1143 
1144 		BUG_ON(timer_pending(timer));
1145 		BUG_ON(!list_empty(&work->entry));
1146 
1147 		timer_stats_timer_set_start_info(&dwork->timer);
1148 
1149 		/*
1150 		 * This stores cwq for the moment, for the timer_fn.
1151 		 * Note that the work's gcwq is preserved to allow
1152 		 * reentrance detection for delayed works.
1153 		 */
1154 		if (!(wq->flags & WQ_UNBOUND)) {
1155 			struct global_cwq *gcwq = get_work_gcwq(work);
1156 
1157 			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1158 				lcpu = gcwq->cpu;
1159 			else
1160 				lcpu = raw_smp_processor_id();
1161 		} else
1162 			lcpu = WORK_CPU_UNBOUND;
1163 
1164 		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1165 
1166 		timer->expires = jiffies + delay;
1167 		timer->data = (unsigned long)dwork;
1168 		timer->function = delayed_work_timer_fn;
1169 
1170 		if (unlikely(cpu >= 0))
1171 			add_timer_on(timer, cpu);
1172 		else
1173 			add_timer(timer);
1174 		ret = 1;
1175 	}
1176 	return ret;
1177 }
1178 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1179 
1180 /**
1181  * worker_enter_idle - enter idle state
1182  * @worker: worker which is entering idle state
1183  *
1184  * @worker is entering idle state.  Update stats and idle timer if
1185  * necessary.
1186  *
1187  * LOCKING:
1188  * spin_lock_irq(gcwq->lock).
1189  */
1190 static void worker_enter_idle(struct worker *worker)
1191 {
1192 	struct global_cwq *gcwq = worker->gcwq;
1193 
1194 	BUG_ON(worker->flags & WORKER_IDLE);
1195 	BUG_ON(!list_empty(&worker->entry) &&
1196 	       (worker->hentry.next || worker->hentry.pprev));
1197 
1198 	/* can't use worker_set_flags(), also called from start_worker() */
1199 	worker->flags |= WORKER_IDLE;
1200 	gcwq->nr_idle++;
1201 	worker->last_active = jiffies;
1202 
1203 	/* idle_list is LIFO */
1204 	list_add(&worker->entry, &gcwq->idle_list);
1205 
1206 	if (likely(!(worker->flags & WORKER_ROGUE))) {
1207 		if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1208 			mod_timer(&gcwq->idle_timer,
1209 				  jiffies + IDLE_WORKER_TIMEOUT);
1210 	} else
1211 		wake_up_all(&gcwq->trustee_wait);
1212 
1213 	/* sanity check nr_running */
1214 	WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1215 		     atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1216 }
1217 
1218 /**
1219  * worker_leave_idle - leave idle state
1220  * @worker: worker which is leaving idle state
1221  *
1222  * @worker is leaving idle state.  Update stats.
1223  *
1224  * LOCKING:
1225  * spin_lock_irq(gcwq->lock).
1226  */
1227 static void worker_leave_idle(struct worker *worker)
1228 {
1229 	struct global_cwq *gcwq = worker->gcwq;
1230 
1231 	BUG_ON(!(worker->flags & WORKER_IDLE));
1232 	worker_clr_flags(worker, WORKER_IDLE);
1233 	gcwq->nr_idle--;
1234 	list_del_init(&worker->entry);
1235 }
1236 
1237 /**
1238  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1239  * @worker: self
1240  *
1241  * Works which are scheduled while the cpu is online must at least be
1242  * scheduled to a worker which is bound to the cpu so that if they are
1243  * flushed from cpu callbacks while cpu is going down, they are
1244  * guaranteed to execute on the cpu.
1245  *
1246  * This function is to be used by rogue workers and rescuers to bind
1247  * themselves to the target cpu and may race with cpu going down or
1248  * coming online.  kthread_bind() can't be used because it may put the
1249  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1250  * verbatim as it's best effort and blocking and gcwq may be
1251  * [dis]associated in the meantime.
1252  *
1253  * This function tries set_cpus_allowed() and locks gcwq and verifies
1254  * the binding against GCWQ_DISASSOCIATED which is set during
1255  * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1256  * idle state or fetches works without dropping lock, it can guarantee
1257  * the scheduling requirement described in the first paragraph.
1258  *
1259  * CONTEXT:
1260  * Might sleep.  Called without any lock but returns with gcwq->lock
1261  * held.
1262  *
1263  * RETURNS:
1264  * %true if the associated gcwq is online (@worker is successfully
1265  * bound), %false if offline.
1266  */
1267 static bool worker_maybe_bind_and_lock(struct worker *worker)
1268 __acquires(&gcwq->lock)
1269 {
1270 	struct global_cwq *gcwq = worker->gcwq;
1271 	struct task_struct *task = worker->task;
1272 
1273 	while (true) {
1274 		/*
1275 		 * The following call may fail, succeed or succeed
1276 		 * without actually migrating the task to the cpu if
1277 		 * it races with cpu hotunplug operation.  Verify
1278 		 * against GCWQ_DISASSOCIATED.
1279 		 */
1280 		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1281 			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1282 
1283 		spin_lock_irq(&gcwq->lock);
1284 		if (gcwq->flags & GCWQ_DISASSOCIATED)
1285 			return false;
1286 		if (task_cpu(task) == gcwq->cpu &&
1287 		    cpumask_equal(&current->cpus_allowed,
1288 				  get_cpu_mask(gcwq->cpu)))
1289 			return true;
1290 		spin_unlock_irq(&gcwq->lock);
1291 
1292 		/*
1293 		 * We've raced with CPU hot[un]plug.  Give it a breather
1294 		 * and retry migration.  cond_resched() is required here;
1295 		 * otherwise, we might deadlock against cpu_stop trying to
1296 		 * bring down the CPU on non-preemptive kernel.
1297 		 */
1298 		cpu_relax();
1299 		cond_resched();
1300 	}
1301 }
1302 
1303 /*
1304  * Function for worker->rebind_work used to rebind rogue busy workers
1305  * to the associated cpu which is coming back online.  This is
1306  * scheduled by cpu up but can race with other cpu hotplug operations
1307  * and may be executed twice without intervening cpu down.
1308  */
1309 static void worker_rebind_fn(struct work_struct *work)
1310 {
1311 	struct worker *worker = container_of(work, struct worker, rebind_work);
1312 	struct global_cwq *gcwq = worker->gcwq;
1313 
1314 	if (worker_maybe_bind_and_lock(worker))
1315 		worker_clr_flags(worker, WORKER_REBIND);
1316 
1317 	spin_unlock_irq(&gcwq->lock);
1318 }
1319 
1320 static struct worker *alloc_worker(void)
1321 {
1322 	struct worker *worker;
1323 
1324 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1325 	if (worker) {
1326 		INIT_LIST_HEAD(&worker->entry);
1327 		INIT_LIST_HEAD(&worker->scheduled);
1328 		INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1329 		/* on creation a worker is in !idle && prep state */
1330 		worker->flags = WORKER_PREP;
1331 	}
1332 	return worker;
1333 }
1334 
1335 /**
1336  * create_worker - create a new workqueue worker
1337  * @gcwq: gcwq the new worker will belong to
1338  * @bind: whether to set affinity to @cpu or not
1339  *
1340  * Create a new worker which is bound to @gcwq.  The returned worker
1341  * can be started by calling start_worker() or destroyed using
1342  * destroy_worker().
1343  *
1344  * CONTEXT:
1345  * Might sleep.  Does GFP_KERNEL allocations.
1346  *
1347  * RETURNS:
1348  * Pointer to the newly created worker.
1349  */
1350 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1351 {
1352 	bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1353 	struct worker *worker = NULL;
1354 	int id = -1;
1355 
1356 	spin_lock_irq(&gcwq->lock);
1357 	while (ida_get_new(&gcwq->worker_ida, &id)) {
1358 		spin_unlock_irq(&gcwq->lock);
1359 		if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1360 			goto fail;
1361 		spin_lock_irq(&gcwq->lock);
1362 	}
1363 	spin_unlock_irq(&gcwq->lock);
1364 
1365 	worker = alloc_worker();
1366 	if (!worker)
1367 		goto fail;
1368 
1369 	worker->gcwq = gcwq;
1370 	worker->id = id;
1371 
1372 	if (!on_unbound_cpu)
1373 		worker->task = kthread_create_on_node(worker_thread,
1374 						      worker,
1375 						      cpu_to_node(gcwq->cpu),
1376 						      "kworker/%u:%d", gcwq->cpu, id);
1377 	else
1378 		worker->task = kthread_create(worker_thread, worker,
1379 					      "kworker/u:%d", id);
1380 	if (IS_ERR(worker->task))
1381 		goto fail;
1382 
1383 	/*
1384 	 * A rogue worker will become a regular one if CPU comes
1385 	 * online later on.  Make sure every worker has
1386 	 * PF_THREAD_BOUND set.
1387 	 */
1388 	if (bind && !on_unbound_cpu)
1389 		kthread_bind(worker->task, gcwq->cpu);
1390 	else {
1391 		worker->task->flags |= PF_THREAD_BOUND;
1392 		if (on_unbound_cpu)
1393 			worker->flags |= WORKER_UNBOUND;
1394 	}
1395 
1396 	return worker;
1397 fail:
1398 	if (id >= 0) {
1399 		spin_lock_irq(&gcwq->lock);
1400 		ida_remove(&gcwq->worker_ida, id);
1401 		spin_unlock_irq(&gcwq->lock);
1402 	}
1403 	kfree(worker);
1404 	return NULL;
1405 }
1406 
1407 /**
1408  * start_worker - start a newly created worker
1409  * @worker: worker to start
1410  *
1411  * Make the gcwq aware of @worker and start it.
1412  *
1413  * CONTEXT:
1414  * spin_lock_irq(gcwq->lock).
1415  */
1416 static void start_worker(struct worker *worker)
1417 {
1418 	worker->flags |= WORKER_STARTED;
1419 	worker->gcwq->nr_workers++;
1420 	worker_enter_idle(worker);
1421 	wake_up_process(worker->task);
1422 }
1423 
1424 /**
1425  * destroy_worker - destroy a workqueue worker
1426  * @worker: worker to be destroyed
1427  *
1428  * Destroy @worker and adjust @gcwq stats accordingly.
1429  *
1430  * CONTEXT:
1431  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1432  */
1433 static void destroy_worker(struct worker *worker)
1434 {
1435 	struct global_cwq *gcwq = worker->gcwq;
1436 	int id = worker->id;
1437 
1438 	/* sanity check frenzy */
1439 	BUG_ON(worker->current_work);
1440 	BUG_ON(!list_empty(&worker->scheduled));
1441 
1442 	if (worker->flags & WORKER_STARTED)
1443 		gcwq->nr_workers--;
1444 	if (worker->flags & WORKER_IDLE)
1445 		gcwq->nr_idle--;
1446 
1447 	list_del_init(&worker->entry);
1448 	worker->flags |= WORKER_DIE;
1449 
1450 	spin_unlock_irq(&gcwq->lock);
1451 
1452 	kthread_stop(worker->task);
1453 	kfree(worker);
1454 
1455 	spin_lock_irq(&gcwq->lock);
1456 	ida_remove(&gcwq->worker_ida, id);
1457 }
1458 
1459 static void idle_worker_timeout(unsigned long __gcwq)
1460 {
1461 	struct global_cwq *gcwq = (void *)__gcwq;
1462 
1463 	spin_lock_irq(&gcwq->lock);
1464 
1465 	if (too_many_workers(gcwq)) {
1466 		struct worker *worker;
1467 		unsigned long expires;
1468 
1469 		/* idle_list is kept in LIFO order, check the last one */
1470 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1471 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1472 
1473 		if (time_before(jiffies, expires))
1474 			mod_timer(&gcwq->idle_timer, expires);
1475 		else {
1476 			/* it's been idle for too long, wake up manager */
1477 			gcwq->flags |= GCWQ_MANAGE_WORKERS;
1478 			wake_up_worker(gcwq);
1479 		}
1480 	}
1481 
1482 	spin_unlock_irq(&gcwq->lock);
1483 }
1484 
1485 static bool send_mayday(struct work_struct *work)
1486 {
1487 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1488 	struct workqueue_struct *wq = cwq->wq;
1489 	unsigned int cpu;
1490 
1491 	if (!(wq->flags & WQ_RESCUER))
1492 		return false;
1493 
1494 	/* mayday mayday mayday */
1495 	cpu = cwq->gcwq->cpu;
1496 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1497 	if (cpu == WORK_CPU_UNBOUND)
1498 		cpu = 0;
1499 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1500 		wake_up_process(wq->rescuer->task);
1501 	return true;
1502 }
1503 
1504 static void gcwq_mayday_timeout(unsigned long __gcwq)
1505 {
1506 	struct global_cwq *gcwq = (void *)__gcwq;
1507 	struct work_struct *work;
1508 
1509 	spin_lock_irq(&gcwq->lock);
1510 
1511 	if (need_to_create_worker(gcwq)) {
1512 		/*
1513 		 * We've been trying to create a new worker but
1514 		 * haven't been successful.  We might be hitting an
1515 		 * allocation deadlock.  Send distress signals to
1516 		 * rescuers.
1517 		 */
1518 		list_for_each_entry(work, &gcwq->worklist, entry)
1519 			send_mayday(work);
1520 	}
1521 
1522 	spin_unlock_irq(&gcwq->lock);
1523 
1524 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1525 }
1526 
1527 /**
1528  * maybe_create_worker - create a new worker if necessary
1529  * @gcwq: gcwq to create a new worker for
1530  *
1531  * Create a new worker for @gcwq if necessary.  @gcwq is guaranteed to
1532  * have at least one idle worker on return from this function.  If
1533  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1534  * sent to all rescuers with works scheduled on @gcwq to resolve
1535  * possible allocation deadlock.
1536  *
1537  * On return, need_to_create_worker() is guaranteed to be false and
1538  * may_start_working() true.
1539  *
1540  * LOCKING:
1541  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1542  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1543  * manager.
1544  *
1545  * RETURNS:
1546  * false if no action was taken and gcwq->lock stayed locked, true
1547  * otherwise.
1548  */
1549 static bool maybe_create_worker(struct global_cwq *gcwq)
1550 __releases(&gcwq->lock)
1551 __acquires(&gcwq->lock)
1552 {
1553 	if (!need_to_create_worker(gcwq))
1554 		return false;
1555 restart:
1556 	spin_unlock_irq(&gcwq->lock);
1557 
1558 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1559 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1560 
1561 	while (true) {
1562 		struct worker *worker;
1563 
1564 		worker = create_worker(gcwq, true);
1565 		if (worker) {
1566 			del_timer_sync(&gcwq->mayday_timer);
1567 			spin_lock_irq(&gcwq->lock);
1568 			start_worker(worker);
1569 			BUG_ON(need_to_create_worker(gcwq));
1570 			return true;
1571 		}
1572 
1573 		if (!need_to_create_worker(gcwq))
1574 			break;
1575 
1576 		__set_current_state(TASK_INTERRUPTIBLE);
1577 		schedule_timeout(CREATE_COOLDOWN);
1578 
1579 		if (!need_to_create_worker(gcwq))
1580 			break;
1581 	}
1582 
1583 	del_timer_sync(&gcwq->mayday_timer);
1584 	spin_lock_irq(&gcwq->lock);
1585 	if (need_to_create_worker(gcwq))
1586 		goto restart;
1587 	return true;
1588 }
1589 
1590 /**
1591  * maybe_destroy_worker - destroy workers which have been idle for a while
1592  * @gcwq: gcwq to destroy workers for
1593  *
1594  * Destroy @gcwq workers which have been idle for longer than
1595  * IDLE_WORKER_TIMEOUT.
1596  *
1597  * LOCKING:
1598  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1599  * multiple times.  Called only from manager.
1600  *
1601  * RETURNS:
1602  * false if no action was taken and gcwq->lock stayed locked, true
1603  * otherwise.
1604  */
1605 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1606 {
1607 	bool ret = false;
1608 
1609 	while (too_many_workers(gcwq)) {
1610 		struct worker *worker;
1611 		unsigned long expires;
1612 
1613 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1614 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1615 
1616 		if (time_before(jiffies, expires)) {
1617 			mod_timer(&gcwq->idle_timer, expires);
1618 			break;
1619 		}
1620 
1621 		destroy_worker(worker);
1622 		ret = true;
1623 	}
1624 
1625 	return ret;
1626 }
1627 
1628 /**
1629  * manage_workers - manage worker pool
1630  * @worker: self
1631  *
1632  * Assume the manager role and manage gcwq worker pool @worker belongs
1633  * to.  At any given time, there can be only zero or one manager per
1634  * gcwq.  The exclusion is handled automatically by this function.
1635  *
1636  * The caller can safely start processing works on false return.  On
1637  * true return, it's guaranteed that need_to_create_worker() is false
1638  * and may_start_working() is true.
1639  *
1640  * CONTEXT:
1641  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1642  * multiple times.  Does GFP_KERNEL allocations.
1643  *
1644  * RETURNS:
1645  * false if no action was taken and gcwq->lock stayed locked, true if
1646  * some action was taken.
1647  */
1648 static bool manage_workers(struct worker *worker)
1649 {
1650 	struct global_cwq *gcwq = worker->gcwq;
1651 	bool ret = false;
1652 
1653 	if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1654 		return ret;
1655 
1656 	gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1657 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
1658 
1659 	/*
1660 	 * Destroy and then create so that may_start_working() is true
1661 	 * on return.
1662 	 */
1663 	ret |= maybe_destroy_workers(gcwq);
1664 	ret |= maybe_create_worker(gcwq);
1665 
1666 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1667 
1668 	/*
1669 	 * The trustee might be waiting to take over the manager
1670 	 * position, tell it we're done.
1671 	 */
1672 	if (unlikely(gcwq->trustee))
1673 		wake_up_all(&gcwq->trustee_wait);
1674 
1675 	return ret;
1676 }
1677 
1678 /**
1679  * move_linked_works - move linked works to a list
1680  * @work: start of series of works to be scheduled
1681  * @head: target list to append @work to
1682  * @nextp: out paramter for nested worklist walking
1683  *
1684  * Schedule linked works starting from @work to @head.  Work series to
1685  * be scheduled starts at @work and includes any consecutive work with
1686  * WORK_STRUCT_LINKED set in its predecessor.
1687  *
1688  * If @nextp is not NULL, it's updated to point to the next work of
1689  * the last scheduled work.  This allows move_linked_works() to be
1690  * nested inside outer list_for_each_entry_safe().
1691  *
1692  * CONTEXT:
1693  * spin_lock_irq(gcwq->lock).
1694  */
1695 static void move_linked_works(struct work_struct *work, struct list_head *head,
1696 			      struct work_struct **nextp)
1697 {
1698 	struct work_struct *n;
1699 
1700 	/*
1701 	 * Linked worklist will always end before the end of the list,
1702 	 * use NULL for list head.
1703 	 */
1704 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1705 		list_move_tail(&work->entry, head);
1706 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1707 			break;
1708 	}
1709 
1710 	/*
1711 	 * If we're already inside safe list traversal and have moved
1712 	 * multiple works to the scheduled queue, the next position
1713 	 * needs to be updated.
1714 	 */
1715 	if (nextp)
1716 		*nextp = n;
1717 }
1718 
1719 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1720 {
1721 	struct work_struct *work = list_first_entry(&cwq->delayed_works,
1722 						    struct work_struct, entry);
1723 	struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1724 
1725 	trace_workqueue_activate_work(work);
1726 	move_linked_works(work, pos, NULL);
1727 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1728 	cwq->nr_active++;
1729 }
1730 
1731 /**
1732  * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1733  * @cwq: cwq of interest
1734  * @color: color of work which left the queue
1735  * @delayed: for a delayed work
1736  *
1737  * A work either has completed or is removed from pending queue,
1738  * decrement nr_in_flight of its cwq and handle workqueue flushing.
1739  *
1740  * CONTEXT:
1741  * spin_lock_irq(gcwq->lock).
1742  */
1743 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1744 				 bool delayed)
1745 {
1746 	/* ignore uncolored works */
1747 	if (color == WORK_NO_COLOR)
1748 		return;
1749 
1750 	cwq->nr_in_flight[color]--;
1751 
1752 	if (!delayed) {
1753 		cwq->nr_active--;
1754 		if (!list_empty(&cwq->delayed_works)) {
1755 			/* one down, submit a delayed one */
1756 			if (cwq->nr_active < cwq->max_active)
1757 				cwq_activate_first_delayed(cwq);
1758 		}
1759 	}
1760 
1761 	/* is flush in progress and are we at the flushing tip? */
1762 	if (likely(cwq->flush_color != color))
1763 		return;
1764 
1765 	/* are there still in-flight works? */
1766 	if (cwq->nr_in_flight[color])
1767 		return;
1768 
1769 	/* this cwq is done, clear flush_color */
1770 	cwq->flush_color = -1;
1771 
1772 	/*
1773 	 * If this was the last cwq, wake up the first flusher.  It
1774 	 * will handle the rest.
1775 	 */
1776 	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1777 		complete(&cwq->wq->first_flusher->done);
1778 }
1779 
1780 /**
1781  * process_one_work - process single work
1782  * @worker: self
1783  * @work: work to process
1784  *
1785  * Process @work.  This function contains all the logics necessary to
1786  * process a single work including synchronization against and
1787  * interaction with other workers on the same cpu, queueing and
1788  * flushing.  As long as context requirement is met, any worker can
1789  * call this function to process a work.
1790  *
1791  * CONTEXT:
1792  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1793  */
1794 static void process_one_work(struct worker *worker, struct work_struct *work)
1795 __releases(&gcwq->lock)
1796 __acquires(&gcwq->lock)
1797 {
1798 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1799 	struct global_cwq *gcwq = cwq->gcwq;
1800 	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1801 	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1802 	work_func_t f = work->func;
1803 	int work_color;
1804 	struct worker *collision;
1805 #ifdef CONFIG_LOCKDEP
1806 	/*
1807 	 * It is permissible to free the struct work_struct from
1808 	 * inside the function that is called from it, this we need to
1809 	 * take into account for lockdep too.  To avoid bogus "held
1810 	 * lock freed" warnings as well as problems when looking into
1811 	 * work->lockdep_map, make a copy and use that here.
1812 	 */
1813 	struct lockdep_map lockdep_map = work->lockdep_map;
1814 #endif
1815 	/*
1816 	 * A single work shouldn't be executed concurrently by
1817 	 * multiple workers on a single cpu.  Check whether anyone is
1818 	 * already processing the work.  If so, defer the work to the
1819 	 * currently executing one.
1820 	 */
1821 	collision = __find_worker_executing_work(gcwq, bwh, work);
1822 	if (unlikely(collision)) {
1823 		move_linked_works(work, &collision->scheduled, NULL);
1824 		return;
1825 	}
1826 
1827 	/* claim and process */
1828 	debug_work_deactivate(work);
1829 	hlist_add_head(&worker->hentry, bwh);
1830 	worker->current_work = work;
1831 	worker->current_cwq = cwq;
1832 	work_color = get_work_color(work);
1833 
1834 	/* record the current cpu number in the work data and dequeue */
1835 	set_work_cpu(work, gcwq->cpu);
1836 	list_del_init(&work->entry);
1837 
1838 	/*
1839 	 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1840 	 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1841 	 */
1842 	if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1843 		struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1844 						struct work_struct, entry);
1845 
1846 		if (!list_empty(&gcwq->worklist) &&
1847 		    get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1848 			wake_up_worker(gcwq);
1849 		else
1850 			gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1851 	}
1852 
1853 	/*
1854 	 * CPU intensive works don't participate in concurrency
1855 	 * management.  They're the scheduler's responsibility.
1856 	 */
1857 	if (unlikely(cpu_intensive))
1858 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1859 
1860 	spin_unlock_irq(&gcwq->lock);
1861 
1862 	work_clear_pending(work);
1863 	lock_map_acquire_read(&cwq->wq->lockdep_map);
1864 	lock_map_acquire(&lockdep_map);
1865 	trace_workqueue_execute_start(work);
1866 	f(work);
1867 	/*
1868 	 * While we must be careful to not use "work" after this, the trace
1869 	 * point will only record its address.
1870 	 */
1871 	trace_workqueue_execute_end(work);
1872 	lock_map_release(&lockdep_map);
1873 	lock_map_release(&cwq->wq->lockdep_map);
1874 
1875 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1876 		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1877 		       "%s/0x%08x/%d\n",
1878 		       current->comm, preempt_count(), task_pid_nr(current));
1879 		printk(KERN_ERR "    last function: ");
1880 		print_symbol("%s\n", (unsigned long)f);
1881 		debug_show_held_locks(current);
1882 		dump_stack();
1883 	}
1884 
1885 	spin_lock_irq(&gcwq->lock);
1886 
1887 	/* clear cpu intensive status */
1888 	if (unlikely(cpu_intensive))
1889 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1890 
1891 	/* we're done with it, release */
1892 	hlist_del_init(&worker->hentry);
1893 	worker->current_work = NULL;
1894 	worker->current_cwq = NULL;
1895 	cwq_dec_nr_in_flight(cwq, work_color, false);
1896 }
1897 
1898 /**
1899  * process_scheduled_works - process scheduled works
1900  * @worker: self
1901  *
1902  * Process all scheduled works.  Please note that the scheduled list
1903  * may change while processing a work, so this function repeatedly
1904  * fetches a work from the top and executes it.
1905  *
1906  * CONTEXT:
1907  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1908  * multiple times.
1909  */
1910 static void process_scheduled_works(struct worker *worker)
1911 {
1912 	while (!list_empty(&worker->scheduled)) {
1913 		struct work_struct *work = list_first_entry(&worker->scheduled,
1914 						struct work_struct, entry);
1915 		process_one_work(worker, work);
1916 	}
1917 }
1918 
1919 /**
1920  * worker_thread - the worker thread function
1921  * @__worker: self
1922  *
1923  * The gcwq worker thread function.  There's a single dynamic pool of
1924  * these per each cpu.  These workers process all works regardless of
1925  * their specific target workqueue.  The only exception is works which
1926  * belong to workqueues with a rescuer which will be explained in
1927  * rescuer_thread().
1928  */
1929 static int worker_thread(void *__worker)
1930 {
1931 	struct worker *worker = __worker;
1932 	struct global_cwq *gcwq = worker->gcwq;
1933 
1934 	/* tell the scheduler that this is a workqueue worker */
1935 	worker->task->flags |= PF_WQ_WORKER;
1936 woke_up:
1937 	spin_lock_irq(&gcwq->lock);
1938 
1939 	/* DIE can be set only while we're idle, checking here is enough */
1940 	if (worker->flags & WORKER_DIE) {
1941 		spin_unlock_irq(&gcwq->lock);
1942 		worker->task->flags &= ~PF_WQ_WORKER;
1943 		return 0;
1944 	}
1945 
1946 	worker_leave_idle(worker);
1947 recheck:
1948 	/* no more worker necessary? */
1949 	if (!need_more_worker(gcwq))
1950 		goto sleep;
1951 
1952 	/* do we need to manage? */
1953 	if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1954 		goto recheck;
1955 
1956 	/*
1957 	 * ->scheduled list can only be filled while a worker is
1958 	 * preparing to process a work or actually processing it.
1959 	 * Make sure nobody diddled with it while I was sleeping.
1960 	 */
1961 	BUG_ON(!list_empty(&worker->scheduled));
1962 
1963 	/*
1964 	 * When control reaches this point, we're guaranteed to have
1965 	 * at least one idle worker or that someone else has already
1966 	 * assumed the manager role.
1967 	 */
1968 	worker_clr_flags(worker, WORKER_PREP);
1969 
1970 	do {
1971 		struct work_struct *work =
1972 			list_first_entry(&gcwq->worklist,
1973 					 struct work_struct, entry);
1974 
1975 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1976 			/* optimization path, not strictly necessary */
1977 			process_one_work(worker, work);
1978 			if (unlikely(!list_empty(&worker->scheduled)))
1979 				process_scheduled_works(worker);
1980 		} else {
1981 			move_linked_works(work, &worker->scheduled, NULL);
1982 			process_scheduled_works(worker);
1983 		}
1984 	} while (keep_working(gcwq));
1985 
1986 	worker_set_flags(worker, WORKER_PREP, false);
1987 sleep:
1988 	if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1989 		goto recheck;
1990 
1991 	/*
1992 	 * gcwq->lock is held and there's no work to process and no
1993 	 * need to manage, sleep.  Workers are woken up only while
1994 	 * holding gcwq->lock or from local cpu, so setting the
1995 	 * current state before releasing gcwq->lock is enough to
1996 	 * prevent losing any event.
1997 	 */
1998 	worker_enter_idle(worker);
1999 	__set_current_state(TASK_INTERRUPTIBLE);
2000 	spin_unlock_irq(&gcwq->lock);
2001 	schedule();
2002 	goto woke_up;
2003 }
2004 
2005 /**
2006  * rescuer_thread - the rescuer thread function
2007  * @__wq: the associated workqueue
2008  *
2009  * Workqueue rescuer thread function.  There's one rescuer for each
2010  * workqueue which has WQ_RESCUER set.
2011  *
2012  * Regular work processing on a gcwq may block trying to create a new
2013  * worker which uses GFP_KERNEL allocation which has slight chance of
2014  * developing into deadlock if some works currently on the same queue
2015  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2016  * the problem rescuer solves.
2017  *
2018  * When such condition is possible, the gcwq summons rescuers of all
2019  * workqueues which have works queued on the gcwq and let them process
2020  * those works so that forward progress can be guaranteed.
2021  *
2022  * This should happen rarely.
2023  */
2024 static int rescuer_thread(void *__wq)
2025 {
2026 	struct workqueue_struct *wq = __wq;
2027 	struct worker *rescuer = wq->rescuer;
2028 	struct list_head *scheduled = &rescuer->scheduled;
2029 	bool is_unbound = wq->flags & WQ_UNBOUND;
2030 	unsigned int cpu;
2031 
2032 	set_user_nice(current, RESCUER_NICE_LEVEL);
2033 repeat:
2034 	set_current_state(TASK_INTERRUPTIBLE);
2035 
2036 	if (kthread_should_stop())
2037 		return 0;
2038 
2039 	/*
2040 	 * See whether any cpu is asking for help.  Unbounded
2041 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2042 	 */
2043 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2044 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2045 		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2046 		struct global_cwq *gcwq = cwq->gcwq;
2047 		struct work_struct *work, *n;
2048 
2049 		__set_current_state(TASK_RUNNING);
2050 		mayday_clear_cpu(cpu, wq->mayday_mask);
2051 
2052 		/* migrate to the target cpu if possible */
2053 		rescuer->gcwq = gcwq;
2054 		worker_maybe_bind_and_lock(rescuer);
2055 
2056 		/*
2057 		 * Slurp in all works issued via this workqueue and
2058 		 * process'em.
2059 		 */
2060 		BUG_ON(!list_empty(&rescuer->scheduled));
2061 		list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2062 			if (get_work_cwq(work) == cwq)
2063 				move_linked_works(work, scheduled, &n);
2064 
2065 		process_scheduled_works(rescuer);
2066 
2067 		/*
2068 		 * Leave this gcwq.  If keep_working() is %true, notify a
2069 		 * regular worker; otherwise, we end up with 0 concurrency
2070 		 * and stalling the execution.
2071 		 */
2072 		if (keep_working(gcwq))
2073 			wake_up_worker(gcwq);
2074 
2075 		spin_unlock_irq(&gcwq->lock);
2076 	}
2077 
2078 	schedule();
2079 	goto repeat;
2080 }
2081 
2082 struct wq_barrier {
2083 	struct work_struct	work;
2084 	struct completion	done;
2085 };
2086 
2087 static void wq_barrier_func(struct work_struct *work)
2088 {
2089 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2090 	complete(&barr->done);
2091 }
2092 
2093 /**
2094  * insert_wq_barrier - insert a barrier work
2095  * @cwq: cwq to insert barrier into
2096  * @barr: wq_barrier to insert
2097  * @target: target work to attach @barr to
2098  * @worker: worker currently executing @target, NULL if @target is not executing
2099  *
2100  * @barr is linked to @target such that @barr is completed only after
2101  * @target finishes execution.  Please note that the ordering
2102  * guarantee is observed only with respect to @target and on the local
2103  * cpu.
2104  *
2105  * Currently, a queued barrier can't be canceled.  This is because
2106  * try_to_grab_pending() can't determine whether the work to be
2107  * grabbed is at the head of the queue and thus can't clear LINKED
2108  * flag of the previous work while there must be a valid next work
2109  * after a work with LINKED flag set.
2110  *
2111  * Note that when @worker is non-NULL, @target may be modified
2112  * underneath us, so we can't reliably determine cwq from @target.
2113  *
2114  * CONTEXT:
2115  * spin_lock_irq(gcwq->lock).
2116  */
2117 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2118 			      struct wq_barrier *barr,
2119 			      struct work_struct *target, struct worker *worker)
2120 {
2121 	struct list_head *head;
2122 	unsigned int linked = 0;
2123 
2124 	/*
2125 	 * debugobject calls are safe here even with gcwq->lock locked
2126 	 * as we know for sure that this will not trigger any of the
2127 	 * checks and call back into the fixup functions where we
2128 	 * might deadlock.
2129 	 */
2130 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2131 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2132 	init_completion(&barr->done);
2133 
2134 	/*
2135 	 * If @target is currently being executed, schedule the
2136 	 * barrier to the worker; otherwise, put it after @target.
2137 	 */
2138 	if (worker)
2139 		head = worker->scheduled.next;
2140 	else {
2141 		unsigned long *bits = work_data_bits(target);
2142 
2143 		head = target->entry.next;
2144 		/* there can already be other linked works, inherit and set */
2145 		linked = *bits & WORK_STRUCT_LINKED;
2146 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2147 	}
2148 
2149 	debug_work_activate(&barr->work);
2150 	insert_work(cwq, &barr->work, head,
2151 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2152 }
2153 
2154 /**
2155  * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2156  * @wq: workqueue being flushed
2157  * @flush_color: new flush color, < 0 for no-op
2158  * @work_color: new work color, < 0 for no-op
2159  *
2160  * Prepare cwqs for workqueue flushing.
2161  *
2162  * If @flush_color is non-negative, flush_color on all cwqs should be
2163  * -1.  If no cwq has in-flight commands at the specified color, all
2164  * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2165  * has in flight commands, its cwq->flush_color is set to
2166  * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2167  * wakeup logic is armed and %true is returned.
2168  *
2169  * The caller should have initialized @wq->first_flusher prior to
2170  * calling this function with non-negative @flush_color.  If
2171  * @flush_color is negative, no flush color update is done and %false
2172  * is returned.
2173  *
2174  * If @work_color is non-negative, all cwqs should have the same
2175  * work_color which is previous to @work_color and all will be
2176  * advanced to @work_color.
2177  *
2178  * CONTEXT:
2179  * mutex_lock(wq->flush_mutex).
2180  *
2181  * RETURNS:
2182  * %true if @flush_color >= 0 and there's something to flush.  %false
2183  * otherwise.
2184  */
2185 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2186 				      int flush_color, int work_color)
2187 {
2188 	bool wait = false;
2189 	unsigned int cpu;
2190 
2191 	if (flush_color >= 0) {
2192 		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2193 		atomic_set(&wq->nr_cwqs_to_flush, 1);
2194 	}
2195 
2196 	for_each_cwq_cpu(cpu, wq) {
2197 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2198 		struct global_cwq *gcwq = cwq->gcwq;
2199 
2200 		spin_lock_irq(&gcwq->lock);
2201 
2202 		if (flush_color >= 0) {
2203 			BUG_ON(cwq->flush_color != -1);
2204 
2205 			if (cwq->nr_in_flight[flush_color]) {
2206 				cwq->flush_color = flush_color;
2207 				atomic_inc(&wq->nr_cwqs_to_flush);
2208 				wait = true;
2209 			}
2210 		}
2211 
2212 		if (work_color >= 0) {
2213 			BUG_ON(work_color != work_next_color(cwq->work_color));
2214 			cwq->work_color = work_color;
2215 		}
2216 
2217 		spin_unlock_irq(&gcwq->lock);
2218 	}
2219 
2220 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2221 		complete(&wq->first_flusher->done);
2222 
2223 	return wait;
2224 }
2225 
2226 /**
2227  * flush_workqueue - ensure that any scheduled work has run to completion.
2228  * @wq: workqueue to flush
2229  *
2230  * Forces execution of the workqueue and blocks until its completion.
2231  * This is typically used in driver shutdown handlers.
2232  *
2233  * We sleep until all works which were queued on entry have been handled,
2234  * but we are not livelocked by new incoming ones.
2235  */
2236 void flush_workqueue(struct workqueue_struct *wq)
2237 {
2238 	struct wq_flusher this_flusher = {
2239 		.list = LIST_HEAD_INIT(this_flusher.list),
2240 		.flush_color = -1,
2241 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2242 	};
2243 	int next_color;
2244 
2245 	lock_map_acquire(&wq->lockdep_map);
2246 	lock_map_release(&wq->lockdep_map);
2247 
2248 	mutex_lock(&wq->flush_mutex);
2249 
2250 	/*
2251 	 * Start-to-wait phase
2252 	 */
2253 	next_color = work_next_color(wq->work_color);
2254 
2255 	if (next_color != wq->flush_color) {
2256 		/*
2257 		 * Color space is not full.  The current work_color
2258 		 * becomes our flush_color and work_color is advanced
2259 		 * by one.
2260 		 */
2261 		BUG_ON(!list_empty(&wq->flusher_overflow));
2262 		this_flusher.flush_color = wq->work_color;
2263 		wq->work_color = next_color;
2264 
2265 		if (!wq->first_flusher) {
2266 			/* no flush in progress, become the first flusher */
2267 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2268 
2269 			wq->first_flusher = &this_flusher;
2270 
2271 			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2272 						       wq->work_color)) {
2273 				/* nothing to flush, done */
2274 				wq->flush_color = next_color;
2275 				wq->first_flusher = NULL;
2276 				goto out_unlock;
2277 			}
2278 		} else {
2279 			/* wait in queue */
2280 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2281 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2282 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2283 		}
2284 	} else {
2285 		/*
2286 		 * Oops, color space is full, wait on overflow queue.
2287 		 * The next flush completion will assign us
2288 		 * flush_color and transfer to flusher_queue.
2289 		 */
2290 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2291 	}
2292 
2293 	mutex_unlock(&wq->flush_mutex);
2294 
2295 	wait_for_completion(&this_flusher.done);
2296 
2297 	/*
2298 	 * Wake-up-and-cascade phase
2299 	 *
2300 	 * First flushers are responsible for cascading flushes and
2301 	 * handling overflow.  Non-first flushers can simply return.
2302 	 */
2303 	if (wq->first_flusher != &this_flusher)
2304 		return;
2305 
2306 	mutex_lock(&wq->flush_mutex);
2307 
2308 	/* we might have raced, check again with mutex held */
2309 	if (wq->first_flusher != &this_flusher)
2310 		goto out_unlock;
2311 
2312 	wq->first_flusher = NULL;
2313 
2314 	BUG_ON(!list_empty(&this_flusher.list));
2315 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2316 
2317 	while (true) {
2318 		struct wq_flusher *next, *tmp;
2319 
2320 		/* complete all the flushers sharing the current flush color */
2321 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2322 			if (next->flush_color != wq->flush_color)
2323 				break;
2324 			list_del_init(&next->list);
2325 			complete(&next->done);
2326 		}
2327 
2328 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2329 		       wq->flush_color != work_next_color(wq->work_color));
2330 
2331 		/* this flush_color is finished, advance by one */
2332 		wq->flush_color = work_next_color(wq->flush_color);
2333 
2334 		/* one color has been freed, handle overflow queue */
2335 		if (!list_empty(&wq->flusher_overflow)) {
2336 			/*
2337 			 * Assign the same color to all overflowed
2338 			 * flushers, advance work_color and append to
2339 			 * flusher_queue.  This is the start-to-wait
2340 			 * phase for these overflowed flushers.
2341 			 */
2342 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2343 				tmp->flush_color = wq->work_color;
2344 
2345 			wq->work_color = work_next_color(wq->work_color);
2346 
2347 			list_splice_tail_init(&wq->flusher_overflow,
2348 					      &wq->flusher_queue);
2349 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2350 		}
2351 
2352 		if (list_empty(&wq->flusher_queue)) {
2353 			BUG_ON(wq->flush_color != wq->work_color);
2354 			break;
2355 		}
2356 
2357 		/*
2358 		 * Need to flush more colors.  Make the next flusher
2359 		 * the new first flusher and arm cwqs.
2360 		 */
2361 		BUG_ON(wq->flush_color == wq->work_color);
2362 		BUG_ON(wq->flush_color != next->flush_color);
2363 
2364 		list_del_init(&next->list);
2365 		wq->first_flusher = next;
2366 
2367 		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2368 			break;
2369 
2370 		/*
2371 		 * Meh... this color is already done, clear first
2372 		 * flusher and repeat cascading.
2373 		 */
2374 		wq->first_flusher = NULL;
2375 	}
2376 
2377 out_unlock:
2378 	mutex_unlock(&wq->flush_mutex);
2379 }
2380 EXPORT_SYMBOL_GPL(flush_workqueue);
2381 
2382 /**
2383  * drain_workqueue - drain a workqueue
2384  * @wq: workqueue to drain
2385  *
2386  * Wait until the workqueue becomes empty.  While draining is in progress,
2387  * only chain queueing is allowed.  IOW, only currently pending or running
2388  * work items on @wq can queue further work items on it.  @wq is flushed
2389  * repeatedly until it becomes empty.  The number of flushing is detemined
2390  * by the depth of chaining and should be relatively short.  Whine if it
2391  * takes too long.
2392  */
2393 void drain_workqueue(struct workqueue_struct *wq)
2394 {
2395 	unsigned int flush_cnt = 0;
2396 	unsigned int cpu;
2397 
2398 	/*
2399 	 * __queue_work() needs to test whether there are drainers, is much
2400 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2401 	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2402 	 */
2403 	spin_lock(&workqueue_lock);
2404 	if (!wq->nr_drainers++)
2405 		wq->flags |= WQ_DRAINING;
2406 	spin_unlock(&workqueue_lock);
2407 reflush:
2408 	flush_workqueue(wq);
2409 
2410 	for_each_cwq_cpu(cpu, wq) {
2411 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2412 		bool drained;
2413 
2414 		spin_lock_irq(&cwq->gcwq->lock);
2415 		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2416 		spin_unlock_irq(&cwq->gcwq->lock);
2417 
2418 		if (drained)
2419 			continue;
2420 
2421 		if (++flush_cnt == 10 ||
2422 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2423 			pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2424 				   wq->name, flush_cnt);
2425 		goto reflush;
2426 	}
2427 
2428 	spin_lock(&workqueue_lock);
2429 	if (!--wq->nr_drainers)
2430 		wq->flags &= ~WQ_DRAINING;
2431 	spin_unlock(&workqueue_lock);
2432 }
2433 EXPORT_SYMBOL_GPL(drain_workqueue);
2434 
2435 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2436 			     bool wait_executing)
2437 {
2438 	struct worker *worker = NULL;
2439 	struct global_cwq *gcwq;
2440 	struct cpu_workqueue_struct *cwq;
2441 
2442 	might_sleep();
2443 	gcwq = get_work_gcwq(work);
2444 	if (!gcwq)
2445 		return false;
2446 
2447 	spin_lock_irq(&gcwq->lock);
2448 	if (!list_empty(&work->entry)) {
2449 		/*
2450 		 * See the comment near try_to_grab_pending()->smp_rmb().
2451 		 * If it was re-queued to a different gcwq under us, we
2452 		 * are not going to wait.
2453 		 */
2454 		smp_rmb();
2455 		cwq = get_work_cwq(work);
2456 		if (unlikely(!cwq || gcwq != cwq->gcwq))
2457 			goto already_gone;
2458 	} else if (wait_executing) {
2459 		worker = find_worker_executing_work(gcwq, work);
2460 		if (!worker)
2461 			goto already_gone;
2462 		cwq = worker->current_cwq;
2463 	} else
2464 		goto already_gone;
2465 
2466 	insert_wq_barrier(cwq, barr, work, worker);
2467 	spin_unlock_irq(&gcwq->lock);
2468 
2469 	/*
2470 	 * If @max_active is 1 or rescuer is in use, flushing another work
2471 	 * item on the same workqueue may lead to deadlock.  Make sure the
2472 	 * flusher is not running on the same workqueue by verifying write
2473 	 * access.
2474 	 */
2475 	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2476 		lock_map_acquire(&cwq->wq->lockdep_map);
2477 	else
2478 		lock_map_acquire_read(&cwq->wq->lockdep_map);
2479 	lock_map_release(&cwq->wq->lockdep_map);
2480 
2481 	return true;
2482 already_gone:
2483 	spin_unlock_irq(&gcwq->lock);
2484 	return false;
2485 }
2486 
2487 /**
2488  * flush_work - wait for a work to finish executing the last queueing instance
2489  * @work: the work to flush
2490  *
2491  * Wait until @work has finished execution.  This function considers
2492  * only the last queueing instance of @work.  If @work has been
2493  * enqueued across different CPUs on a non-reentrant workqueue or on
2494  * multiple workqueues, @work might still be executing on return on
2495  * some of the CPUs from earlier queueing.
2496  *
2497  * If @work was queued only on a non-reentrant, ordered or unbound
2498  * workqueue, @work is guaranteed to be idle on return if it hasn't
2499  * been requeued since flush started.
2500  *
2501  * RETURNS:
2502  * %true if flush_work() waited for the work to finish execution,
2503  * %false if it was already idle.
2504  */
2505 bool flush_work(struct work_struct *work)
2506 {
2507 	struct wq_barrier barr;
2508 
2509 	if (start_flush_work(work, &barr, true)) {
2510 		wait_for_completion(&barr.done);
2511 		destroy_work_on_stack(&barr.work);
2512 		return true;
2513 	} else
2514 		return false;
2515 }
2516 EXPORT_SYMBOL_GPL(flush_work);
2517 
2518 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2519 {
2520 	struct wq_barrier barr;
2521 	struct worker *worker;
2522 
2523 	spin_lock_irq(&gcwq->lock);
2524 
2525 	worker = find_worker_executing_work(gcwq, work);
2526 	if (unlikely(worker))
2527 		insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2528 
2529 	spin_unlock_irq(&gcwq->lock);
2530 
2531 	if (unlikely(worker)) {
2532 		wait_for_completion(&barr.done);
2533 		destroy_work_on_stack(&barr.work);
2534 		return true;
2535 	} else
2536 		return false;
2537 }
2538 
2539 static bool wait_on_work(struct work_struct *work)
2540 {
2541 	bool ret = false;
2542 	int cpu;
2543 
2544 	might_sleep();
2545 
2546 	lock_map_acquire(&work->lockdep_map);
2547 	lock_map_release(&work->lockdep_map);
2548 
2549 	for_each_gcwq_cpu(cpu)
2550 		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2551 	return ret;
2552 }
2553 
2554 /**
2555  * flush_work_sync - wait until a work has finished execution
2556  * @work: the work to flush
2557  *
2558  * Wait until @work has finished execution.  On return, it's
2559  * guaranteed that all queueing instances of @work which happened
2560  * before this function is called are finished.  In other words, if
2561  * @work hasn't been requeued since this function was called, @work is
2562  * guaranteed to be idle on return.
2563  *
2564  * RETURNS:
2565  * %true if flush_work_sync() waited for the work to finish execution,
2566  * %false if it was already idle.
2567  */
2568 bool flush_work_sync(struct work_struct *work)
2569 {
2570 	struct wq_barrier barr;
2571 	bool pending, waited;
2572 
2573 	/* we'll wait for executions separately, queue barr only if pending */
2574 	pending = start_flush_work(work, &barr, false);
2575 
2576 	/* wait for executions to finish */
2577 	waited = wait_on_work(work);
2578 
2579 	/* wait for the pending one */
2580 	if (pending) {
2581 		wait_for_completion(&barr.done);
2582 		destroy_work_on_stack(&barr.work);
2583 	}
2584 
2585 	return pending || waited;
2586 }
2587 EXPORT_SYMBOL_GPL(flush_work_sync);
2588 
2589 /*
2590  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2591  * so this work can't be re-armed in any way.
2592  */
2593 static int try_to_grab_pending(struct work_struct *work)
2594 {
2595 	struct global_cwq *gcwq;
2596 	int ret = -1;
2597 
2598 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2599 		return 0;
2600 
2601 	/*
2602 	 * The queueing is in progress, or it is already queued. Try to
2603 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2604 	 */
2605 	gcwq = get_work_gcwq(work);
2606 	if (!gcwq)
2607 		return ret;
2608 
2609 	spin_lock_irq(&gcwq->lock);
2610 	if (!list_empty(&work->entry)) {
2611 		/*
2612 		 * This work is queued, but perhaps we locked the wrong gcwq.
2613 		 * In that case we must see the new value after rmb(), see
2614 		 * insert_work()->wmb().
2615 		 */
2616 		smp_rmb();
2617 		if (gcwq == get_work_gcwq(work)) {
2618 			debug_work_deactivate(work);
2619 			list_del_init(&work->entry);
2620 			cwq_dec_nr_in_flight(get_work_cwq(work),
2621 				get_work_color(work),
2622 				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2623 			ret = 1;
2624 		}
2625 	}
2626 	spin_unlock_irq(&gcwq->lock);
2627 
2628 	return ret;
2629 }
2630 
2631 static bool __cancel_work_timer(struct work_struct *work,
2632 				struct timer_list* timer)
2633 {
2634 	int ret;
2635 
2636 	do {
2637 		ret = (timer && likely(del_timer(timer)));
2638 		if (!ret)
2639 			ret = try_to_grab_pending(work);
2640 		wait_on_work(work);
2641 	} while (unlikely(ret < 0));
2642 
2643 	clear_work_data(work);
2644 	return ret;
2645 }
2646 
2647 /**
2648  * cancel_work_sync - cancel a work and wait for it to finish
2649  * @work: the work to cancel
2650  *
2651  * Cancel @work and wait for its execution to finish.  This function
2652  * can be used even if the work re-queues itself or migrates to
2653  * another workqueue.  On return from this function, @work is
2654  * guaranteed to be not pending or executing on any CPU.
2655  *
2656  * cancel_work_sync(&delayed_work->work) must not be used for
2657  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2658  *
2659  * The caller must ensure that the workqueue on which @work was last
2660  * queued can't be destroyed before this function returns.
2661  *
2662  * RETURNS:
2663  * %true if @work was pending, %false otherwise.
2664  */
2665 bool cancel_work_sync(struct work_struct *work)
2666 {
2667 	return __cancel_work_timer(work, NULL);
2668 }
2669 EXPORT_SYMBOL_GPL(cancel_work_sync);
2670 
2671 /**
2672  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2673  * @dwork: the delayed work to flush
2674  *
2675  * Delayed timer is cancelled and the pending work is queued for
2676  * immediate execution.  Like flush_work(), this function only
2677  * considers the last queueing instance of @dwork.
2678  *
2679  * RETURNS:
2680  * %true if flush_work() waited for the work to finish execution,
2681  * %false if it was already idle.
2682  */
2683 bool flush_delayed_work(struct delayed_work *dwork)
2684 {
2685 	if (del_timer_sync(&dwork->timer))
2686 		__queue_work(raw_smp_processor_id(),
2687 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2688 	return flush_work(&dwork->work);
2689 }
2690 EXPORT_SYMBOL(flush_delayed_work);
2691 
2692 /**
2693  * flush_delayed_work_sync - wait for a dwork to finish
2694  * @dwork: the delayed work to flush
2695  *
2696  * Delayed timer is cancelled and the pending work is queued for
2697  * execution immediately.  Other than timer handling, its behavior
2698  * is identical to flush_work_sync().
2699  *
2700  * RETURNS:
2701  * %true if flush_work_sync() waited for the work to finish execution,
2702  * %false if it was already idle.
2703  */
2704 bool flush_delayed_work_sync(struct delayed_work *dwork)
2705 {
2706 	if (del_timer_sync(&dwork->timer))
2707 		__queue_work(raw_smp_processor_id(),
2708 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2709 	return flush_work_sync(&dwork->work);
2710 }
2711 EXPORT_SYMBOL(flush_delayed_work_sync);
2712 
2713 /**
2714  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2715  * @dwork: the delayed work cancel
2716  *
2717  * This is cancel_work_sync() for delayed works.
2718  *
2719  * RETURNS:
2720  * %true if @dwork was pending, %false otherwise.
2721  */
2722 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2723 {
2724 	return __cancel_work_timer(&dwork->work, &dwork->timer);
2725 }
2726 EXPORT_SYMBOL(cancel_delayed_work_sync);
2727 
2728 /**
2729  * schedule_work - put work task in global workqueue
2730  * @work: job to be done
2731  *
2732  * Returns zero if @work was already on the kernel-global workqueue and
2733  * non-zero otherwise.
2734  *
2735  * This puts a job in the kernel-global workqueue if it was not already
2736  * queued and leaves it in the same position on the kernel-global
2737  * workqueue otherwise.
2738  */
2739 int schedule_work(struct work_struct *work)
2740 {
2741 	return queue_work(system_wq, work);
2742 }
2743 EXPORT_SYMBOL(schedule_work);
2744 
2745 /*
2746  * schedule_work_on - put work task on a specific cpu
2747  * @cpu: cpu to put the work task on
2748  * @work: job to be done
2749  *
2750  * This puts a job on a specific cpu
2751  */
2752 int schedule_work_on(int cpu, struct work_struct *work)
2753 {
2754 	return queue_work_on(cpu, system_wq, work);
2755 }
2756 EXPORT_SYMBOL(schedule_work_on);
2757 
2758 /**
2759  * schedule_delayed_work - put work task in global workqueue after delay
2760  * @dwork: job to be done
2761  * @delay: number of jiffies to wait or 0 for immediate execution
2762  *
2763  * After waiting for a given time this puts a job in the kernel-global
2764  * workqueue.
2765  */
2766 int schedule_delayed_work(struct delayed_work *dwork,
2767 					unsigned long delay)
2768 {
2769 	return queue_delayed_work(system_wq, dwork, delay);
2770 }
2771 EXPORT_SYMBOL(schedule_delayed_work);
2772 
2773 /**
2774  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2775  * @cpu: cpu to use
2776  * @dwork: job to be done
2777  * @delay: number of jiffies to wait
2778  *
2779  * After waiting for a given time this puts a job in the kernel-global
2780  * workqueue on the specified CPU.
2781  */
2782 int schedule_delayed_work_on(int cpu,
2783 			struct delayed_work *dwork, unsigned long delay)
2784 {
2785 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2786 }
2787 EXPORT_SYMBOL(schedule_delayed_work_on);
2788 
2789 /**
2790  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2791  * @func: the function to call
2792  *
2793  * schedule_on_each_cpu() executes @func on each online CPU using the
2794  * system workqueue and blocks until all CPUs have completed.
2795  * schedule_on_each_cpu() is very slow.
2796  *
2797  * RETURNS:
2798  * 0 on success, -errno on failure.
2799  */
2800 int schedule_on_each_cpu(work_func_t func)
2801 {
2802 	int cpu;
2803 	struct work_struct __percpu *works;
2804 
2805 	works = alloc_percpu(struct work_struct);
2806 	if (!works)
2807 		return -ENOMEM;
2808 
2809 	get_online_cpus();
2810 
2811 	for_each_online_cpu(cpu) {
2812 		struct work_struct *work = per_cpu_ptr(works, cpu);
2813 
2814 		INIT_WORK(work, func);
2815 		schedule_work_on(cpu, work);
2816 	}
2817 
2818 	for_each_online_cpu(cpu)
2819 		flush_work(per_cpu_ptr(works, cpu));
2820 
2821 	put_online_cpus();
2822 	free_percpu(works);
2823 	return 0;
2824 }
2825 
2826 /**
2827  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2828  *
2829  * Forces execution of the kernel-global workqueue and blocks until its
2830  * completion.
2831  *
2832  * Think twice before calling this function!  It's very easy to get into
2833  * trouble if you don't take great care.  Either of the following situations
2834  * will lead to deadlock:
2835  *
2836  *	One of the work items currently on the workqueue needs to acquire
2837  *	a lock held by your code or its caller.
2838  *
2839  *	Your code is running in the context of a work routine.
2840  *
2841  * They will be detected by lockdep when they occur, but the first might not
2842  * occur very often.  It depends on what work items are on the workqueue and
2843  * what locks they need, which you have no control over.
2844  *
2845  * In most situations flushing the entire workqueue is overkill; you merely
2846  * need to know that a particular work item isn't queued and isn't running.
2847  * In such cases you should use cancel_delayed_work_sync() or
2848  * cancel_work_sync() instead.
2849  */
2850 void flush_scheduled_work(void)
2851 {
2852 	flush_workqueue(system_wq);
2853 }
2854 EXPORT_SYMBOL(flush_scheduled_work);
2855 
2856 /**
2857  * execute_in_process_context - reliably execute the routine with user context
2858  * @fn:		the function to execute
2859  * @ew:		guaranteed storage for the execute work structure (must
2860  *		be available when the work executes)
2861  *
2862  * Executes the function immediately if process context is available,
2863  * otherwise schedules the function for delayed execution.
2864  *
2865  * Returns:	0 - function was executed
2866  *		1 - function was scheduled for execution
2867  */
2868 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2869 {
2870 	if (!in_interrupt()) {
2871 		fn(&ew->work);
2872 		return 0;
2873 	}
2874 
2875 	INIT_WORK(&ew->work, fn);
2876 	schedule_work(&ew->work);
2877 
2878 	return 1;
2879 }
2880 EXPORT_SYMBOL_GPL(execute_in_process_context);
2881 
2882 int keventd_up(void)
2883 {
2884 	return system_wq != NULL;
2885 }
2886 
2887 static int alloc_cwqs(struct workqueue_struct *wq)
2888 {
2889 	/*
2890 	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2891 	 * Make sure that the alignment isn't lower than that of
2892 	 * unsigned long long.
2893 	 */
2894 	const size_t size = sizeof(struct cpu_workqueue_struct);
2895 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2896 				   __alignof__(unsigned long long));
2897 
2898 	if (!(wq->flags & WQ_UNBOUND))
2899 		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2900 	else {
2901 		void *ptr;
2902 
2903 		/*
2904 		 * Allocate enough room to align cwq and put an extra
2905 		 * pointer at the end pointing back to the originally
2906 		 * allocated pointer which will be used for free.
2907 		 */
2908 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2909 		if (ptr) {
2910 			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2911 			*(void **)(wq->cpu_wq.single + 1) = ptr;
2912 		}
2913 	}
2914 
2915 	/* just in case, make sure it's actually aligned */
2916 	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2917 	return wq->cpu_wq.v ? 0 : -ENOMEM;
2918 }
2919 
2920 static void free_cwqs(struct workqueue_struct *wq)
2921 {
2922 	if (!(wq->flags & WQ_UNBOUND))
2923 		free_percpu(wq->cpu_wq.pcpu);
2924 	else if (wq->cpu_wq.single) {
2925 		/* the pointer to free is stored right after the cwq */
2926 		kfree(*(void **)(wq->cpu_wq.single + 1));
2927 	}
2928 }
2929 
2930 static int wq_clamp_max_active(int max_active, unsigned int flags,
2931 			       const char *name)
2932 {
2933 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2934 
2935 	if (max_active < 1 || max_active > lim)
2936 		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2937 		       "is out of range, clamping between %d and %d\n",
2938 		       max_active, name, 1, lim);
2939 
2940 	return clamp_val(max_active, 1, lim);
2941 }
2942 
2943 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
2944 					       unsigned int flags,
2945 					       int max_active,
2946 					       struct lock_class_key *key,
2947 					       const char *lock_name, ...)
2948 {
2949 	va_list args, args1;
2950 	struct workqueue_struct *wq;
2951 	unsigned int cpu;
2952 	size_t namelen;
2953 
2954 	/* determine namelen, allocate wq and format name */
2955 	va_start(args, lock_name);
2956 	va_copy(args1, args);
2957 	namelen = vsnprintf(NULL, 0, fmt, args) + 1;
2958 
2959 	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
2960 	if (!wq)
2961 		goto err;
2962 
2963 	vsnprintf(wq->name, namelen, fmt, args1);
2964 	va_end(args);
2965 	va_end(args1);
2966 
2967 	/*
2968 	 * Workqueues which may be used during memory reclaim should
2969 	 * have a rescuer to guarantee forward progress.
2970 	 */
2971 	if (flags & WQ_MEM_RECLAIM)
2972 		flags |= WQ_RESCUER;
2973 
2974 	/*
2975 	 * Unbound workqueues aren't concurrency managed and should be
2976 	 * dispatched to workers immediately.
2977 	 */
2978 	if (flags & WQ_UNBOUND)
2979 		flags |= WQ_HIGHPRI;
2980 
2981 	max_active = max_active ?: WQ_DFL_ACTIVE;
2982 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
2983 
2984 	/* init wq */
2985 	wq->flags = flags;
2986 	wq->saved_max_active = max_active;
2987 	mutex_init(&wq->flush_mutex);
2988 	atomic_set(&wq->nr_cwqs_to_flush, 0);
2989 	INIT_LIST_HEAD(&wq->flusher_queue);
2990 	INIT_LIST_HEAD(&wq->flusher_overflow);
2991 
2992 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2993 	INIT_LIST_HEAD(&wq->list);
2994 
2995 	if (alloc_cwqs(wq) < 0)
2996 		goto err;
2997 
2998 	for_each_cwq_cpu(cpu, wq) {
2999 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3000 		struct global_cwq *gcwq = get_gcwq(cpu);
3001 
3002 		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3003 		cwq->gcwq = gcwq;
3004 		cwq->wq = wq;
3005 		cwq->flush_color = -1;
3006 		cwq->max_active = max_active;
3007 		INIT_LIST_HEAD(&cwq->delayed_works);
3008 	}
3009 
3010 	if (flags & WQ_RESCUER) {
3011 		struct worker *rescuer;
3012 
3013 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3014 			goto err;
3015 
3016 		wq->rescuer = rescuer = alloc_worker();
3017 		if (!rescuer)
3018 			goto err;
3019 
3020 		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3021 					       wq->name);
3022 		if (IS_ERR(rescuer->task))
3023 			goto err;
3024 
3025 		rescuer->task->flags |= PF_THREAD_BOUND;
3026 		wake_up_process(rescuer->task);
3027 	}
3028 
3029 	/*
3030 	 * workqueue_lock protects global freeze state and workqueues
3031 	 * list.  Grab it, set max_active accordingly and add the new
3032 	 * workqueue to workqueues list.
3033 	 */
3034 	spin_lock(&workqueue_lock);
3035 
3036 	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3037 		for_each_cwq_cpu(cpu, wq)
3038 			get_cwq(cpu, wq)->max_active = 0;
3039 
3040 	list_add(&wq->list, &workqueues);
3041 
3042 	spin_unlock(&workqueue_lock);
3043 
3044 	return wq;
3045 err:
3046 	if (wq) {
3047 		free_cwqs(wq);
3048 		free_mayday_mask(wq->mayday_mask);
3049 		kfree(wq->rescuer);
3050 		kfree(wq);
3051 	}
3052 	return NULL;
3053 }
3054 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3055 
3056 /**
3057  * destroy_workqueue - safely terminate a workqueue
3058  * @wq: target workqueue
3059  *
3060  * Safely destroy a workqueue. All work currently pending will be done first.
3061  */
3062 void destroy_workqueue(struct workqueue_struct *wq)
3063 {
3064 	unsigned int cpu;
3065 
3066 	/* drain it before proceeding with destruction */
3067 	drain_workqueue(wq);
3068 
3069 	/*
3070 	 * wq list is used to freeze wq, remove from list after
3071 	 * flushing is complete in case freeze races us.
3072 	 */
3073 	spin_lock(&workqueue_lock);
3074 	list_del(&wq->list);
3075 	spin_unlock(&workqueue_lock);
3076 
3077 	/* sanity check */
3078 	for_each_cwq_cpu(cpu, wq) {
3079 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3080 		int i;
3081 
3082 		for (i = 0; i < WORK_NR_COLORS; i++)
3083 			BUG_ON(cwq->nr_in_flight[i]);
3084 		BUG_ON(cwq->nr_active);
3085 		BUG_ON(!list_empty(&cwq->delayed_works));
3086 	}
3087 
3088 	if (wq->flags & WQ_RESCUER) {
3089 		kthread_stop(wq->rescuer->task);
3090 		free_mayday_mask(wq->mayday_mask);
3091 		kfree(wq->rescuer);
3092 	}
3093 
3094 	free_cwqs(wq);
3095 	kfree(wq);
3096 }
3097 EXPORT_SYMBOL_GPL(destroy_workqueue);
3098 
3099 /**
3100  * workqueue_set_max_active - adjust max_active of a workqueue
3101  * @wq: target workqueue
3102  * @max_active: new max_active value.
3103  *
3104  * Set max_active of @wq to @max_active.
3105  *
3106  * CONTEXT:
3107  * Don't call from IRQ context.
3108  */
3109 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3110 {
3111 	unsigned int cpu;
3112 
3113 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3114 
3115 	spin_lock(&workqueue_lock);
3116 
3117 	wq->saved_max_active = max_active;
3118 
3119 	for_each_cwq_cpu(cpu, wq) {
3120 		struct global_cwq *gcwq = get_gcwq(cpu);
3121 
3122 		spin_lock_irq(&gcwq->lock);
3123 
3124 		if (!(wq->flags & WQ_FREEZABLE) ||
3125 		    !(gcwq->flags & GCWQ_FREEZING))
3126 			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3127 
3128 		spin_unlock_irq(&gcwq->lock);
3129 	}
3130 
3131 	spin_unlock(&workqueue_lock);
3132 }
3133 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3134 
3135 /**
3136  * workqueue_congested - test whether a workqueue is congested
3137  * @cpu: CPU in question
3138  * @wq: target workqueue
3139  *
3140  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3141  * no synchronization around this function and the test result is
3142  * unreliable and only useful as advisory hints or for debugging.
3143  *
3144  * RETURNS:
3145  * %true if congested, %false otherwise.
3146  */
3147 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3148 {
3149 	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3150 
3151 	return !list_empty(&cwq->delayed_works);
3152 }
3153 EXPORT_SYMBOL_GPL(workqueue_congested);
3154 
3155 /**
3156  * work_cpu - return the last known associated cpu for @work
3157  * @work: the work of interest
3158  *
3159  * RETURNS:
3160  * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3161  */
3162 unsigned int work_cpu(struct work_struct *work)
3163 {
3164 	struct global_cwq *gcwq = get_work_gcwq(work);
3165 
3166 	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3167 }
3168 EXPORT_SYMBOL_GPL(work_cpu);
3169 
3170 /**
3171  * work_busy - test whether a work is currently pending or running
3172  * @work: the work to be tested
3173  *
3174  * Test whether @work is currently pending or running.  There is no
3175  * synchronization around this function and the test result is
3176  * unreliable and only useful as advisory hints or for debugging.
3177  * Especially for reentrant wqs, the pending state might hide the
3178  * running state.
3179  *
3180  * RETURNS:
3181  * OR'd bitmask of WORK_BUSY_* bits.
3182  */
3183 unsigned int work_busy(struct work_struct *work)
3184 {
3185 	struct global_cwq *gcwq = get_work_gcwq(work);
3186 	unsigned long flags;
3187 	unsigned int ret = 0;
3188 
3189 	if (!gcwq)
3190 		return false;
3191 
3192 	spin_lock_irqsave(&gcwq->lock, flags);
3193 
3194 	if (work_pending(work))
3195 		ret |= WORK_BUSY_PENDING;
3196 	if (find_worker_executing_work(gcwq, work))
3197 		ret |= WORK_BUSY_RUNNING;
3198 
3199 	spin_unlock_irqrestore(&gcwq->lock, flags);
3200 
3201 	return ret;
3202 }
3203 EXPORT_SYMBOL_GPL(work_busy);
3204 
3205 /*
3206  * CPU hotplug.
3207  *
3208  * There are two challenges in supporting CPU hotplug.  Firstly, there
3209  * are a lot of assumptions on strong associations among work, cwq and
3210  * gcwq which make migrating pending and scheduled works very
3211  * difficult to implement without impacting hot paths.  Secondly,
3212  * gcwqs serve mix of short, long and very long running works making
3213  * blocked draining impractical.
3214  *
3215  * This is solved by allowing a gcwq to be detached from CPU, running
3216  * it with unbound (rogue) workers and allowing it to be reattached
3217  * later if the cpu comes back online.  A separate thread is created
3218  * to govern a gcwq in such state and is called the trustee of the
3219  * gcwq.
3220  *
3221  * Trustee states and their descriptions.
3222  *
3223  * START	Command state used on startup.  On CPU_DOWN_PREPARE, a
3224  *		new trustee is started with this state.
3225  *
3226  * IN_CHARGE	Once started, trustee will enter this state after
3227  *		assuming the manager role and making all existing
3228  *		workers rogue.  DOWN_PREPARE waits for trustee to
3229  *		enter this state.  After reaching IN_CHARGE, trustee
3230  *		tries to execute the pending worklist until it's empty
3231  *		and the state is set to BUTCHER, or the state is set
3232  *		to RELEASE.
3233  *
3234  * BUTCHER	Command state which is set by the cpu callback after
3235  *		the cpu has went down.  Once this state is set trustee
3236  *		knows that there will be no new works on the worklist
3237  *		and once the worklist is empty it can proceed to
3238  *		killing idle workers.
3239  *
3240  * RELEASE	Command state which is set by the cpu callback if the
3241  *		cpu down has been canceled or it has come online
3242  *		again.  After recognizing this state, trustee stops
3243  *		trying to drain or butcher and clears ROGUE, rebinds
3244  *		all remaining workers back to the cpu and releases
3245  *		manager role.
3246  *
3247  * DONE		Trustee will enter this state after BUTCHER or RELEASE
3248  *		is complete.
3249  *
3250  *          trustee                 CPU                draining
3251  *         took over                down               complete
3252  * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3253  *                        |                     |                  ^
3254  *                        | CPU is back online  v   return workers |
3255  *                         ----------------> RELEASE --------------
3256  */
3257 
3258 /**
3259  * trustee_wait_event_timeout - timed event wait for trustee
3260  * @cond: condition to wait for
3261  * @timeout: timeout in jiffies
3262  *
3263  * wait_event_timeout() for trustee to use.  Handles locking and
3264  * checks for RELEASE request.
3265  *
3266  * CONTEXT:
3267  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3268  * multiple times.  To be used by trustee.
3269  *
3270  * RETURNS:
3271  * Positive indicating left time if @cond is satisfied, 0 if timed
3272  * out, -1 if canceled.
3273  */
3274 #define trustee_wait_event_timeout(cond, timeout) ({			\
3275 	long __ret = (timeout);						\
3276 	while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) &&	\
3277 	       __ret) {							\
3278 		spin_unlock_irq(&gcwq->lock);				\
3279 		__wait_event_timeout(gcwq->trustee_wait, (cond) ||	\
3280 			(gcwq->trustee_state == TRUSTEE_RELEASE),	\
3281 			__ret);						\
3282 		spin_lock_irq(&gcwq->lock);				\
3283 	}								\
3284 	gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret);		\
3285 })
3286 
3287 /**
3288  * trustee_wait_event - event wait for trustee
3289  * @cond: condition to wait for
3290  *
3291  * wait_event() for trustee to use.  Automatically handles locking and
3292  * checks for CANCEL request.
3293  *
3294  * CONTEXT:
3295  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3296  * multiple times.  To be used by trustee.
3297  *
3298  * RETURNS:
3299  * 0 if @cond is satisfied, -1 if canceled.
3300  */
3301 #define trustee_wait_event(cond) ({					\
3302 	long __ret1;							\
3303 	__ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3304 	__ret1 < 0 ? -1 : 0;						\
3305 })
3306 
3307 static int __cpuinit trustee_thread(void *__gcwq)
3308 {
3309 	struct global_cwq *gcwq = __gcwq;
3310 	struct worker *worker;
3311 	struct work_struct *work;
3312 	struct hlist_node *pos;
3313 	long rc;
3314 	int i;
3315 
3316 	BUG_ON(gcwq->cpu != smp_processor_id());
3317 
3318 	spin_lock_irq(&gcwq->lock);
3319 	/*
3320 	 * Claim the manager position and make all workers rogue.
3321 	 * Trustee must be bound to the target cpu and can't be
3322 	 * cancelled.
3323 	 */
3324 	BUG_ON(gcwq->cpu != smp_processor_id());
3325 	rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3326 	BUG_ON(rc < 0);
3327 
3328 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
3329 
3330 	list_for_each_entry(worker, &gcwq->idle_list, entry)
3331 		worker->flags |= WORKER_ROGUE;
3332 
3333 	for_each_busy_worker(worker, i, pos, gcwq)
3334 		worker->flags |= WORKER_ROGUE;
3335 
3336 	/*
3337 	 * Call schedule() so that we cross rq->lock and thus can
3338 	 * guarantee sched callbacks see the rogue flag.  This is
3339 	 * necessary as scheduler callbacks may be invoked from other
3340 	 * cpus.
3341 	 */
3342 	spin_unlock_irq(&gcwq->lock);
3343 	schedule();
3344 	spin_lock_irq(&gcwq->lock);
3345 
3346 	/*
3347 	 * Sched callbacks are disabled now.  Zap nr_running.  After
3348 	 * this, nr_running stays zero and need_more_worker() and
3349 	 * keep_working() are always true as long as the worklist is
3350 	 * not empty.
3351 	 */
3352 	atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3353 
3354 	spin_unlock_irq(&gcwq->lock);
3355 	del_timer_sync(&gcwq->idle_timer);
3356 	spin_lock_irq(&gcwq->lock);
3357 
3358 	/*
3359 	 * We're now in charge.  Notify and proceed to drain.  We need
3360 	 * to keep the gcwq running during the whole CPU down
3361 	 * procedure as other cpu hotunplug callbacks may need to
3362 	 * flush currently running tasks.
3363 	 */
3364 	gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3365 	wake_up_all(&gcwq->trustee_wait);
3366 
3367 	/*
3368 	 * The original cpu is in the process of dying and may go away
3369 	 * anytime now.  When that happens, we and all workers would
3370 	 * be migrated to other cpus.  Try draining any left work.  We
3371 	 * want to get it over with ASAP - spam rescuers, wake up as
3372 	 * many idlers as necessary and create new ones till the
3373 	 * worklist is empty.  Note that if the gcwq is frozen, there
3374 	 * may be frozen works in freezable cwqs.  Don't declare
3375 	 * completion while frozen.
3376 	 */
3377 	while (gcwq->nr_workers != gcwq->nr_idle ||
3378 	       gcwq->flags & GCWQ_FREEZING ||
3379 	       gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3380 		int nr_works = 0;
3381 
3382 		list_for_each_entry(work, &gcwq->worklist, entry) {
3383 			send_mayday(work);
3384 			nr_works++;
3385 		}
3386 
3387 		list_for_each_entry(worker, &gcwq->idle_list, entry) {
3388 			if (!nr_works--)
3389 				break;
3390 			wake_up_process(worker->task);
3391 		}
3392 
3393 		if (need_to_create_worker(gcwq)) {
3394 			spin_unlock_irq(&gcwq->lock);
3395 			worker = create_worker(gcwq, false);
3396 			spin_lock_irq(&gcwq->lock);
3397 			if (worker) {
3398 				worker->flags |= WORKER_ROGUE;
3399 				start_worker(worker);
3400 			}
3401 		}
3402 
3403 		/* give a breather */
3404 		if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3405 			break;
3406 	}
3407 
3408 	/*
3409 	 * Either all works have been scheduled and cpu is down, or
3410 	 * cpu down has already been canceled.  Wait for and butcher
3411 	 * all workers till we're canceled.
3412 	 */
3413 	do {
3414 		rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3415 		while (!list_empty(&gcwq->idle_list))
3416 			destroy_worker(list_first_entry(&gcwq->idle_list,
3417 							struct worker, entry));
3418 	} while (gcwq->nr_workers && rc >= 0);
3419 
3420 	/*
3421 	 * At this point, either draining has completed and no worker
3422 	 * is left, or cpu down has been canceled or the cpu is being
3423 	 * brought back up.  There shouldn't be any idle one left.
3424 	 * Tell the remaining busy ones to rebind once it finishes the
3425 	 * currently scheduled works by scheduling the rebind_work.
3426 	 */
3427 	WARN_ON(!list_empty(&gcwq->idle_list));
3428 
3429 	for_each_busy_worker(worker, i, pos, gcwq) {
3430 		struct work_struct *rebind_work = &worker->rebind_work;
3431 
3432 		/*
3433 		 * Rebind_work may race with future cpu hotplug
3434 		 * operations.  Use a separate flag to mark that
3435 		 * rebinding is scheduled.
3436 		 */
3437 		worker->flags |= WORKER_REBIND;
3438 		worker->flags &= ~WORKER_ROGUE;
3439 
3440 		/* queue rebind_work, wq doesn't matter, use the default one */
3441 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3442 				     work_data_bits(rebind_work)))
3443 			continue;
3444 
3445 		debug_work_activate(rebind_work);
3446 		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3447 			    worker->scheduled.next,
3448 			    work_color_to_flags(WORK_NO_COLOR));
3449 	}
3450 
3451 	/* relinquish manager role */
3452 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3453 
3454 	/* notify completion */
3455 	gcwq->trustee = NULL;
3456 	gcwq->trustee_state = TRUSTEE_DONE;
3457 	wake_up_all(&gcwq->trustee_wait);
3458 	spin_unlock_irq(&gcwq->lock);
3459 	return 0;
3460 }
3461 
3462 /**
3463  * wait_trustee_state - wait for trustee to enter the specified state
3464  * @gcwq: gcwq the trustee of interest belongs to
3465  * @state: target state to wait for
3466  *
3467  * Wait for the trustee to reach @state.  DONE is already matched.
3468  *
3469  * CONTEXT:
3470  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3471  * multiple times.  To be used by cpu_callback.
3472  */
3473 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3474 __releases(&gcwq->lock)
3475 __acquires(&gcwq->lock)
3476 {
3477 	if (!(gcwq->trustee_state == state ||
3478 	      gcwq->trustee_state == TRUSTEE_DONE)) {
3479 		spin_unlock_irq(&gcwq->lock);
3480 		__wait_event(gcwq->trustee_wait,
3481 			     gcwq->trustee_state == state ||
3482 			     gcwq->trustee_state == TRUSTEE_DONE);
3483 		spin_lock_irq(&gcwq->lock);
3484 	}
3485 }
3486 
3487 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3488 						unsigned long action,
3489 						void *hcpu)
3490 {
3491 	unsigned int cpu = (unsigned long)hcpu;
3492 	struct global_cwq *gcwq = get_gcwq(cpu);
3493 	struct task_struct *new_trustee = NULL;
3494 	struct worker *uninitialized_var(new_worker);
3495 	unsigned long flags;
3496 
3497 	action &= ~CPU_TASKS_FROZEN;
3498 
3499 	switch (action) {
3500 	case CPU_DOWN_PREPARE:
3501 		new_trustee = kthread_create(trustee_thread, gcwq,
3502 					     "workqueue_trustee/%d\n", cpu);
3503 		if (IS_ERR(new_trustee))
3504 			return notifier_from_errno(PTR_ERR(new_trustee));
3505 		kthread_bind(new_trustee, cpu);
3506 		/* fall through */
3507 	case CPU_UP_PREPARE:
3508 		BUG_ON(gcwq->first_idle);
3509 		new_worker = create_worker(gcwq, false);
3510 		if (!new_worker) {
3511 			if (new_trustee)
3512 				kthread_stop(new_trustee);
3513 			return NOTIFY_BAD;
3514 		}
3515 	}
3516 
3517 	/* some are called w/ irq disabled, don't disturb irq status */
3518 	spin_lock_irqsave(&gcwq->lock, flags);
3519 
3520 	switch (action) {
3521 	case CPU_DOWN_PREPARE:
3522 		/* initialize trustee and tell it to acquire the gcwq */
3523 		BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3524 		gcwq->trustee = new_trustee;
3525 		gcwq->trustee_state = TRUSTEE_START;
3526 		wake_up_process(gcwq->trustee);
3527 		wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3528 		/* fall through */
3529 	case CPU_UP_PREPARE:
3530 		BUG_ON(gcwq->first_idle);
3531 		gcwq->first_idle = new_worker;
3532 		break;
3533 
3534 	case CPU_DYING:
3535 		/*
3536 		 * Before this, the trustee and all workers except for
3537 		 * the ones which are still executing works from
3538 		 * before the last CPU down must be on the cpu.  After
3539 		 * this, they'll all be diasporas.
3540 		 */
3541 		gcwq->flags |= GCWQ_DISASSOCIATED;
3542 		break;
3543 
3544 	case CPU_POST_DEAD:
3545 		gcwq->trustee_state = TRUSTEE_BUTCHER;
3546 		/* fall through */
3547 	case CPU_UP_CANCELED:
3548 		destroy_worker(gcwq->first_idle);
3549 		gcwq->first_idle = NULL;
3550 		break;
3551 
3552 	case CPU_DOWN_FAILED:
3553 	case CPU_ONLINE:
3554 		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3555 		if (gcwq->trustee_state != TRUSTEE_DONE) {
3556 			gcwq->trustee_state = TRUSTEE_RELEASE;
3557 			wake_up_process(gcwq->trustee);
3558 			wait_trustee_state(gcwq, TRUSTEE_DONE);
3559 		}
3560 
3561 		/*
3562 		 * Trustee is done and there might be no worker left.
3563 		 * Put the first_idle in and request a real manager to
3564 		 * take a look.
3565 		 */
3566 		spin_unlock_irq(&gcwq->lock);
3567 		kthread_bind(gcwq->first_idle->task, cpu);
3568 		spin_lock_irq(&gcwq->lock);
3569 		gcwq->flags |= GCWQ_MANAGE_WORKERS;
3570 		start_worker(gcwq->first_idle);
3571 		gcwq->first_idle = NULL;
3572 		break;
3573 	}
3574 
3575 	spin_unlock_irqrestore(&gcwq->lock, flags);
3576 
3577 	return notifier_from_errno(0);
3578 }
3579 
3580 #ifdef CONFIG_SMP
3581 
3582 struct work_for_cpu {
3583 	struct completion completion;
3584 	long (*fn)(void *);
3585 	void *arg;
3586 	long ret;
3587 };
3588 
3589 static int do_work_for_cpu(void *_wfc)
3590 {
3591 	struct work_for_cpu *wfc = _wfc;
3592 	wfc->ret = wfc->fn(wfc->arg);
3593 	complete(&wfc->completion);
3594 	return 0;
3595 }
3596 
3597 /**
3598  * work_on_cpu - run a function in user context on a particular cpu
3599  * @cpu: the cpu to run on
3600  * @fn: the function to run
3601  * @arg: the function arg
3602  *
3603  * This will return the value @fn returns.
3604  * It is up to the caller to ensure that the cpu doesn't go offline.
3605  * The caller must not hold any locks which would prevent @fn from completing.
3606  */
3607 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3608 {
3609 	struct task_struct *sub_thread;
3610 	struct work_for_cpu wfc = {
3611 		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3612 		.fn = fn,
3613 		.arg = arg,
3614 	};
3615 
3616 	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3617 	if (IS_ERR(sub_thread))
3618 		return PTR_ERR(sub_thread);
3619 	kthread_bind(sub_thread, cpu);
3620 	wake_up_process(sub_thread);
3621 	wait_for_completion(&wfc.completion);
3622 	return wfc.ret;
3623 }
3624 EXPORT_SYMBOL_GPL(work_on_cpu);
3625 #endif /* CONFIG_SMP */
3626 
3627 #ifdef CONFIG_FREEZER
3628 
3629 /**
3630  * freeze_workqueues_begin - begin freezing workqueues
3631  *
3632  * Start freezing workqueues.  After this function returns, all freezable
3633  * workqueues will queue new works to their frozen_works list instead of
3634  * gcwq->worklist.
3635  *
3636  * CONTEXT:
3637  * Grabs and releases workqueue_lock and gcwq->lock's.
3638  */
3639 void freeze_workqueues_begin(void)
3640 {
3641 	unsigned int cpu;
3642 
3643 	spin_lock(&workqueue_lock);
3644 
3645 	BUG_ON(workqueue_freezing);
3646 	workqueue_freezing = true;
3647 
3648 	for_each_gcwq_cpu(cpu) {
3649 		struct global_cwq *gcwq = get_gcwq(cpu);
3650 		struct workqueue_struct *wq;
3651 
3652 		spin_lock_irq(&gcwq->lock);
3653 
3654 		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3655 		gcwq->flags |= GCWQ_FREEZING;
3656 
3657 		list_for_each_entry(wq, &workqueues, list) {
3658 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3659 
3660 			if (cwq && wq->flags & WQ_FREEZABLE)
3661 				cwq->max_active = 0;
3662 		}
3663 
3664 		spin_unlock_irq(&gcwq->lock);
3665 	}
3666 
3667 	spin_unlock(&workqueue_lock);
3668 }
3669 
3670 /**
3671  * freeze_workqueues_busy - are freezable workqueues still busy?
3672  *
3673  * Check whether freezing is complete.  This function must be called
3674  * between freeze_workqueues_begin() and thaw_workqueues().
3675  *
3676  * CONTEXT:
3677  * Grabs and releases workqueue_lock.
3678  *
3679  * RETURNS:
3680  * %true if some freezable workqueues are still busy.  %false if freezing
3681  * is complete.
3682  */
3683 bool freeze_workqueues_busy(void)
3684 {
3685 	unsigned int cpu;
3686 	bool busy = false;
3687 
3688 	spin_lock(&workqueue_lock);
3689 
3690 	BUG_ON(!workqueue_freezing);
3691 
3692 	for_each_gcwq_cpu(cpu) {
3693 		struct workqueue_struct *wq;
3694 		/*
3695 		 * nr_active is monotonically decreasing.  It's safe
3696 		 * to peek without lock.
3697 		 */
3698 		list_for_each_entry(wq, &workqueues, list) {
3699 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3700 
3701 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3702 				continue;
3703 
3704 			BUG_ON(cwq->nr_active < 0);
3705 			if (cwq->nr_active) {
3706 				busy = true;
3707 				goto out_unlock;
3708 			}
3709 		}
3710 	}
3711 out_unlock:
3712 	spin_unlock(&workqueue_lock);
3713 	return busy;
3714 }
3715 
3716 /**
3717  * thaw_workqueues - thaw workqueues
3718  *
3719  * Thaw workqueues.  Normal queueing is restored and all collected
3720  * frozen works are transferred to their respective gcwq worklists.
3721  *
3722  * CONTEXT:
3723  * Grabs and releases workqueue_lock and gcwq->lock's.
3724  */
3725 void thaw_workqueues(void)
3726 {
3727 	unsigned int cpu;
3728 
3729 	spin_lock(&workqueue_lock);
3730 
3731 	if (!workqueue_freezing)
3732 		goto out_unlock;
3733 
3734 	for_each_gcwq_cpu(cpu) {
3735 		struct global_cwq *gcwq = get_gcwq(cpu);
3736 		struct workqueue_struct *wq;
3737 
3738 		spin_lock_irq(&gcwq->lock);
3739 
3740 		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3741 		gcwq->flags &= ~GCWQ_FREEZING;
3742 
3743 		list_for_each_entry(wq, &workqueues, list) {
3744 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3745 
3746 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3747 				continue;
3748 
3749 			/* restore max_active and repopulate worklist */
3750 			cwq->max_active = wq->saved_max_active;
3751 
3752 			while (!list_empty(&cwq->delayed_works) &&
3753 			       cwq->nr_active < cwq->max_active)
3754 				cwq_activate_first_delayed(cwq);
3755 		}
3756 
3757 		wake_up_worker(gcwq);
3758 
3759 		spin_unlock_irq(&gcwq->lock);
3760 	}
3761 
3762 	workqueue_freezing = false;
3763 out_unlock:
3764 	spin_unlock(&workqueue_lock);
3765 }
3766 #endif /* CONFIG_FREEZER */
3767 
3768 static int __init init_workqueues(void)
3769 {
3770 	unsigned int cpu;
3771 	int i;
3772 
3773 	cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3774 
3775 	/* initialize gcwqs */
3776 	for_each_gcwq_cpu(cpu) {
3777 		struct global_cwq *gcwq = get_gcwq(cpu);
3778 
3779 		spin_lock_init(&gcwq->lock);
3780 		INIT_LIST_HEAD(&gcwq->worklist);
3781 		gcwq->cpu = cpu;
3782 		gcwq->flags |= GCWQ_DISASSOCIATED;
3783 
3784 		INIT_LIST_HEAD(&gcwq->idle_list);
3785 		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3786 			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3787 
3788 		init_timer_deferrable(&gcwq->idle_timer);
3789 		gcwq->idle_timer.function = idle_worker_timeout;
3790 		gcwq->idle_timer.data = (unsigned long)gcwq;
3791 
3792 		setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3793 			    (unsigned long)gcwq);
3794 
3795 		ida_init(&gcwq->worker_ida);
3796 
3797 		gcwq->trustee_state = TRUSTEE_DONE;
3798 		init_waitqueue_head(&gcwq->trustee_wait);
3799 	}
3800 
3801 	/* create the initial worker */
3802 	for_each_online_gcwq_cpu(cpu) {
3803 		struct global_cwq *gcwq = get_gcwq(cpu);
3804 		struct worker *worker;
3805 
3806 		if (cpu != WORK_CPU_UNBOUND)
3807 			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3808 		worker = create_worker(gcwq, true);
3809 		BUG_ON(!worker);
3810 		spin_lock_irq(&gcwq->lock);
3811 		start_worker(worker);
3812 		spin_unlock_irq(&gcwq->lock);
3813 	}
3814 
3815 	system_wq = alloc_workqueue("events", 0, 0);
3816 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3817 	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3818 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3819 					    WQ_UNBOUND_MAX_ACTIVE);
3820 	system_freezable_wq = alloc_workqueue("events_freezable",
3821 					      WQ_FREEZABLE, 0);
3822 	system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3823 			WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3824 	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3825 	       !system_unbound_wq || !system_freezable_wq ||
3826 		!system_nrt_freezable_wq);
3827 	return 0;
3828 }
3829 early_initcall(init_workqueues);
3830