xref: /openbmc/linux/kernel/workqueue.c (revision 5bd8e16d)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * manager_mutex to avoid changing binding state while
69 	 * create_worker() is in progress.
70 	 */
71 	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
72 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73 	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
74 
75 	/* worker flags */
76 	WORKER_STARTED		= 1 << 0,	/* started */
77 	WORKER_DIE		= 1 << 1,	/* die die die */
78 	WORKER_IDLE		= 1 << 2,	/* is idle */
79 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83 
84 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
85 				  WORKER_UNBOUND | WORKER_REBOUND,
86 
87 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88 
89 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
90 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91 
92 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
93 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
94 
95 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
96 						/* call for help after 10ms
97 						   (min two ticks) */
98 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
99 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
100 
101 	/*
102 	 * Rescue workers are used only on emergencies and shared by
103 	 * all cpus.  Give -20.
104 	 */
105 	RESCUER_NICE_LEVEL	= -20,
106 	HIGHPRI_NICE_LEVEL	= -20,
107 
108 	WQ_NAME_LEN		= 24,
109 };
110 
111 /*
112  * Structure fields follow one of the following exclusion rules.
113  *
114  * I: Modifiable by initialization/destruction paths and read-only for
115  *    everyone else.
116  *
117  * P: Preemption protected.  Disabling preemption is enough and should
118  *    only be modified and accessed from the local cpu.
119  *
120  * L: pool->lock protected.  Access with pool->lock held.
121  *
122  * X: During normal operation, modification requires pool->lock and should
123  *    be done only from local cpu.  Either disabling preemption on local
124  *    cpu or grabbing pool->lock is enough for read access.  If
125  *    POOL_DISASSOCIATED is set, it's identical to L.
126  *
127  * MG: pool->manager_mutex and pool->lock protected.  Writes require both
128  *     locks.  Reads can happen under either lock.
129  *
130  * PL: wq_pool_mutex protected.
131  *
132  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
133  *
134  * WQ: wq->mutex protected.
135  *
136  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
137  *
138  * MD: wq_mayday_lock protected.
139  */
140 
141 /* struct worker is defined in workqueue_internal.h */
142 
143 struct worker_pool {
144 	spinlock_t		lock;		/* the pool lock */
145 	int			cpu;		/* I: the associated cpu */
146 	int			node;		/* I: the associated node ID */
147 	int			id;		/* I: pool ID */
148 	unsigned int		flags;		/* X: flags */
149 
150 	struct list_head	worklist;	/* L: list of pending works */
151 	int			nr_workers;	/* L: total number of workers */
152 
153 	/* nr_idle includes the ones off idle_list for rebinding */
154 	int			nr_idle;	/* L: currently idle ones */
155 
156 	struct list_head	idle_list;	/* X: list of idle workers */
157 	struct timer_list	idle_timer;	/* L: worker idle timeout */
158 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
159 
160 	/* a workers is either on busy_hash or idle_list, or the manager */
161 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
162 						/* L: hash of busy workers */
163 
164 	/* see manage_workers() for details on the two manager mutexes */
165 	struct mutex		manager_arb;	/* manager arbitration */
166 	struct mutex		manager_mutex;	/* manager exclusion */
167 	struct idr		worker_idr;	/* MG: worker IDs and iteration */
168 
169 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
171 	int			refcnt;		/* PL: refcnt for unbound pools */
172 
173 	/*
174 	 * The current concurrency level.  As it's likely to be accessed
175 	 * from other CPUs during try_to_wake_up(), put it in a separate
176 	 * cacheline.
177 	 */
178 	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 
180 	/*
181 	 * Destruction of pool is sched-RCU protected to allow dereferences
182 	 * from get_work_pool().
183 	 */
184 	struct rcu_head		rcu;
185 } ____cacheline_aligned_in_smp;
186 
187 /*
188  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
189  * of work_struct->data are used for flags and the remaining high bits
190  * point to the pwq; thus, pwqs need to be aligned at two's power of the
191  * number of flag bits.
192  */
193 struct pool_workqueue {
194 	struct worker_pool	*pool;		/* I: the associated pool */
195 	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 	int			work_color;	/* L: current color */
197 	int			flush_color;	/* L: flushing color */
198 	int			refcnt;		/* L: reference count */
199 	int			nr_in_flight[WORK_NR_COLORS];
200 						/* L: nr of in_flight works */
201 	int			nr_active;	/* L: nr of active works */
202 	int			max_active;	/* L: max active works */
203 	struct list_head	delayed_works;	/* L: delayed works */
204 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
206 
207 	/*
208 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
209 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
210 	 * itself is also sched-RCU protected so that the first pwq can be
211 	 * determined without grabbing wq->mutex.
212 	 */
213 	struct work_struct	unbound_release_work;
214 	struct rcu_head		rcu;
215 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
216 
217 /*
218  * Structure used to wait for workqueue flush.
219  */
220 struct wq_flusher {
221 	struct list_head	list;		/* WQ: list of flushers */
222 	int			flush_color;	/* WQ: flush color waiting for */
223 	struct completion	done;		/* flush completion */
224 };
225 
226 struct wq_device;
227 
228 /*
229  * The externally visible workqueue.  It relays the issued work items to
230  * the appropriate worker_pool through its pool_workqueues.
231  */
232 struct workqueue_struct {
233 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234 	struct list_head	list;		/* PL: list of all workqueues */
235 
236 	struct mutex		mutex;		/* protects this wq */
237 	int			work_color;	/* WQ: current work color */
238 	int			flush_color;	/* WQ: current flush color */
239 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
241 	struct list_head	flusher_queue;	/* WQ: flush waiters */
242 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243 
244 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 	struct worker		*rescuer;	/* I: rescue worker */
246 
247 	int			nr_drainers;	/* WQ: drain in progress */
248 	int			saved_max_active; /* WQ: saved pwq max_active */
249 
250 	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251 	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252 
253 #ifdef CONFIG_SYSFS
254 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
255 #endif
256 #ifdef CONFIG_LOCKDEP
257 	struct lockdep_map	lockdep_map;
258 #endif
259 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260 
261 	/* hot fields used during command issue, aligned to cacheline */
262 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
263 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
265 };
266 
267 static struct kmem_cache *pwq_cache;
268 
269 static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
270 static cpumask_var_t *wq_numa_possible_cpumask;
271 					/* possible CPUs of each node */
272 
273 static bool wq_disable_numa;
274 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
275 
276 /* see the comment above the definition of WQ_POWER_EFFICIENT */
277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278 static bool wq_power_efficient = true;
279 #else
280 static bool wq_power_efficient;
281 #endif
282 
283 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
284 
285 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
286 
287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
289 
290 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
291 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
292 
293 static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
294 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
295 
296 /* the per-cpu worker pools */
297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
298 				     cpu_worker_pools);
299 
300 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
301 
302 /* PL: hash of all unbound pools keyed by pool->attrs */
303 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
304 
305 /* I: attributes used when instantiating standard unbound pools on demand */
306 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
307 
308 struct workqueue_struct *system_wq __read_mostly;
309 EXPORT_SYMBOL(system_wq);
310 struct workqueue_struct *system_highpri_wq __read_mostly;
311 EXPORT_SYMBOL_GPL(system_highpri_wq);
312 struct workqueue_struct *system_long_wq __read_mostly;
313 EXPORT_SYMBOL_GPL(system_long_wq);
314 struct workqueue_struct *system_unbound_wq __read_mostly;
315 EXPORT_SYMBOL_GPL(system_unbound_wq);
316 struct workqueue_struct *system_freezable_wq __read_mostly;
317 EXPORT_SYMBOL_GPL(system_freezable_wq);
318 struct workqueue_struct *system_power_efficient_wq __read_mostly;
319 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
320 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
321 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
322 
323 static int worker_thread(void *__worker);
324 static void copy_workqueue_attrs(struct workqueue_attrs *to,
325 				 const struct workqueue_attrs *from);
326 
327 #define CREATE_TRACE_POINTS
328 #include <trace/events/workqueue.h>
329 
330 #define assert_rcu_or_pool_mutex()					\
331 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
332 			   lockdep_is_held(&wq_pool_mutex),		\
333 			   "sched RCU or wq_pool_mutex should be held")
334 
335 #define assert_rcu_or_wq_mutex(wq)					\
336 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
337 			   lockdep_is_held(&wq->mutex),			\
338 			   "sched RCU or wq->mutex should be held")
339 
340 #ifdef CONFIG_LOCKDEP
341 #define assert_manager_or_pool_lock(pool)				\
342 	WARN_ONCE(debug_locks &&					\
343 		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
344 		  !lockdep_is_held(&(pool)->lock),			\
345 		  "pool->manager_mutex or ->lock should be held")
346 #else
347 #define assert_manager_or_pool_lock(pool)	do { } while (0)
348 #endif
349 
350 #define for_each_cpu_worker_pool(pool, cpu)				\
351 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
352 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
353 	     (pool)++)
354 
355 /**
356  * for_each_pool - iterate through all worker_pools in the system
357  * @pool: iteration cursor
358  * @pi: integer used for iteration
359  *
360  * This must be called either with wq_pool_mutex held or sched RCU read
361  * locked.  If the pool needs to be used beyond the locking in effect, the
362  * caller is responsible for guaranteeing that the pool stays online.
363  *
364  * The if/else clause exists only for the lockdep assertion and can be
365  * ignored.
366  */
367 #define for_each_pool(pool, pi)						\
368 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
369 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
370 		else
371 
372 /**
373  * for_each_pool_worker - iterate through all workers of a worker_pool
374  * @worker: iteration cursor
375  * @wi: integer used for iteration
376  * @pool: worker_pool to iterate workers of
377  *
378  * This must be called with either @pool->manager_mutex or ->lock held.
379  *
380  * The if/else clause exists only for the lockdep assertion and can be
381  * ignored.
382  */
383 #define for_each_pool_worker(worker, wi, pool)				\
384 	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
385 		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
386 		else
387 
388 /**
389  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
390  * @pwq: iteration cursor
391  * @wq: the target workqueue
392  *
393  * This must be called either with wq->mutex held or sched RCU read locked.
394  * If the pwq needs to be used beyond the locking in effect, the caller is
395  * responsible for guaranteeing that the pwq stays online.
396  *
397  * The if/else clause exists only for the lockdep assertion and can be
398  * ignored.
399  */
400 #define for_each_pwq(pwq, wq)						\
401 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
402 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
403 		else
404 
405 #ifdef CONFIG_DEBUG_OBJECTS_WORK
406 
407 static struct debug_obj_descr work_debug_descr;
408 
409 static void *work_debug_hint(void *addr)
410 {
411 	return ((struct work_struct *) addr)->func;
412 }
413 
414 /*
415  * fixup_init is called when:
416  * - an active object is initialized
417  */
418 static int work_fixup_init(void *addr, enum debug_obj_state state)
419 {
420 	struct work_struct *work = addr;
421 
422 	switch (state) {
423 	case ODEBUG_STATE_ACTIVE:
424 		cancel_work_sync(work);
425 		debug_object_init(work, &work_debug_descr);
426 		return 1;
427 	default:
428 		return 0;
429 	}
430 }
431 
432 /*
433  * fixup_activate is called when:
434  * - an active object is activated
435  * - an unknown object is activated (might be a statically initialized object)
436  */
437 static int work_fixup_activate(void *addr, enum debug_obj_state state)
438 {
439 	struct work_struct *work = addr;
440 
441 	switch (state) {
442 
443 	case ODEBUG_STATE_NOTAVAILABLE:
444 		/*
445 		 * This is not really a fixup. The work struct was
446 		 * statically initialized. We just make sure that it
447 		 * is tracked in the object tracker.
448 		 */
449 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
450 			debug_object_init(work, &work_debug_descr);
451 			debug_object_activate(work, &work_debug_descr);
452 			return 0;
453 		}
454 		WARN_ON_ONCE(1);
455 		return 0;
456 
457 	case ODEBUG_STATE_ACTIVE:
458 		WARN_ON(1);
459 
460 	default:
461 		return 0;
462 	}
463 }
464 
465 /*
466  * fixup_free is called when:
467  * - an active object is freed
468  */
469 static int work_fixup_free(void *addr, enum debug_obj_state state)
470 {
471 	struct work_struct *work = addr;
472 
473 	switch (state) {
474 	case ODEBUG_STATE_ACTIVE:
475 		cancel_work_sync(work);
476 		debug_object_free(work, &work_debug_descr);
477 		return 1;
478 	default:
479 		return 0;
480 	}
481 }
482 
483 static struct debug_obj_descr work_debug_descr = {
484 	.name		= "work_struct",
485 	.debug_hint	= work_debug_hint,
486 	.fixup_init	= work_fixup_init,
487 	.fixup_activate	= work_fixup_activate,
488 	.fixup_free	= work_fixup_free,
489 };
490 
491 static inline void debug_work_activate(struct work_struct *work)
492 {
493 	debug_object_activate(work, &work_debug_descr);
494 }
495 
496 static inline void debug_work_deactivate(struct work_struct *work)
497 {
498 	debug_object_deactivate(work, &work_debug_descr);
499 }
500 
501 void __init_work(struct work_struct *work, int onstack)
502 {
503 	if (onstack)
504 		debug_object_init_on_stack(work, &work_debug_descr);
505 	else
506 		debug_object_init(work, &work_debug_descr);
507 }
508 EXPORT_SYMBOL_GPL(__init_work);
509 
510 void destroy_work_on_stack(struct work_struct *work)
511 {
512 	debug_object_free(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515 
516 #else
517 static inline void debug_work_activate(struct work_struct *work) { }
518 static inline void debug_work_deactivate(struct work_struct *work) { }
519 #endif
520 
521 /* allocate ID and assign it to @pool */
522 static int worker_pool_assign_id(struct worker_pool *pool)
523 {
524 	int ret;
525 
526 	lockdep_assert_held(&wq_pool_mutex);
527 
528 	ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
529 	if (ret >= 0) {
530 		pool->id = ret;
531 		return 0;
532 	}
533 	return ret;
534 }
535 
536 /**
537  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
538  * @wq: the target workqueue
539  * @node: the node ID
540  *
541  * This must be called either with pwq_lock held or sched RCU read locked.
542  * If the pwq needs to be used beyond the locking in effect, the caller is
543  * responsible for guaranteeing that the pwq stays online.
544  *
545  * Return: The unbound pool_workqueue for @node.
546  */
547 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
548 						  int node)
549 {
550 	assert_rcu_or_wq_mutex(wq);
551 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
552 }
553 
554 static unsigned int work_color_to_flags(int color)
555 {
556 	return color << WORK_STRUCT_COLOR_SHIFT;
557 }
558 
559 static int get_work_color(struct work_struct *work)
560 {
561 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
562 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
563 }
564 
565 static int work_next_color(int color)
566 {
567 	return (color + 1) % WORK_NR_COLORS;
568 }
569 
570 /*
571  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
572  * contain the pointer to the queued pwq.  Once execution starts, the flag
573  * is cleared and the high bits contain OFFQ flags and pool ID.
574  *
575  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
576  * and clear_work_data() can be used to set the pwq, pool or clear
577  * work->data.  These functions should only be called while the work is
578  * owned - ie. while the PENDING bit is set.
579  *
580  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
581  * corresponding to a work.  Pool is available once the work has been
582  * queued anywhere after initialization until it is sync canceled.  pwq is
583  * available only while the work item is queued.
584  *
585  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
586  * canceled.  While being canceled, a work item may have its PENDING set
587  * but stay off timer and worklist for arbitrarily long and nobody should
588  * try to steal the PENDING bit.
589  */
590 static inline void set_work_data(struct work_struct *work, unsigned long data,
591 				 unsigned long flags)
592 {
593 	WARN_ON_ONCE(!work_pending(work));
594 	atomic_long_set(&work->data, data | flags | work_static(work));
595 }
596 
597 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
598 			 unsigned long extra_flags)
599 {
600 	set_work_data(work, (unsigned long)pwq,
601 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
602 }
603 
604 static void set_work_pool_and_keep_pending(struct work_struct *work,
605 					   int pool_id)
606 {
607 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
608 		      WORK_STRUCT_PENDING);
609 }
610 
611 static void set_work_pool_and_clear_pending(struct work_struct *work,
612 					    int pool_id)
613 {
614 	/*
615 	 * The following wmb is paired with the implied mb in
616 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
617 	 * here are visible to and precede any updates by the next PENDING
618 	 * owner.
619 	 */
620 	smp_wmb();
621 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
622 }
623 
624 static void clear_work_data(struct work_struct *work)
625 {
626 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
627 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
628 }
629 
630 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
631 {
632 	unsigned long data = atomic_long_read(&work->data);
633 
634 	if (data & WORK_STRUCT_PWQ)
635 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
636 	else
637 		return NULL;
638 }
639 
640 /**
641  * get_work_pool - return the worker_pool a given work was associated with
642  * @work: the work item of interest
643  *
644  * Pools are created and destroyed under wq_pool_mutex, and allows read
645  * access under sched-RCU read lock.  As such, this function should be
646  * called under wq_pool_mutex or with preemption disabled.
647  *
648  * All fields of the returned pool are accessible as long as the above
649  * mentioned locking is in effect.  If the returned pool needs to be used
650  * beyond the critical section, the caller is responsible for ensuring the
651  * returned pool is and stays online.
652  *
653  * Return: The worker_pool @work was last associated with.  %NULL if none.
654  */
655 static struct worker_pool *get_work_pool(struct work_struct *work)
656 {
657 	unsigned long data = atomic_long_read(&work->data);
658 	int pool_id;
659 
660 	assert_rcu_or_pool_mutex();
661 
662 	if (data & WORK_STRUCT_PWQ)
663 		return ((struct pool_workqueue *)
664 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
665 
666 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
667 	if (pool_id == WORK_OFFQ_POOL_NONE)
668 		return NULL;
669 
670 	return idr_find(&worker_pool_idr, pool_id);
671 }
672 
673 /**
674  * get_work_pool_id - return the worker pool ID a given work is associated with
675  * @work: the work item of interest
676  *
677  * Return: The worker_pool ID @work was last associated with.
678  * %WORK_OFFQ_POOL_NONE if none.
679  */
680 static int get_work_pool_id(struct work_struct *work)
681 {
682 	unsigned long data = atomic_long_read(&work->data);
683 
684 	if (data & WORK_STRUCT_PWQ)
685 		return ((struct pool_workqueue *)
686 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
687 
688 	return data >> WORK_OFFQ_POOL_SHIFT;
689 }
690 
691 static void mark_work_canceling(struct work_struct *work)
692 {
693 	unsigned long pool_id = get_work_pool_id(work);
694 
695 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
696 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
697 }
698 
699 static bool work_is_canceling(struct work_struct *work)
700 {
701 	unsigned long data = atomic_long_read(&work->data);
702 
703 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
704 }
705 
706 /*
707  * Policy functions.  These define the policies on how the global worker
708  * pools are managed.  Unless noted otherwise, these functions assume that
709  * they're being called with pool->lock held.
710  */
711 
712 static bool __need_more_worker(struct worker_pool *pool)
713 {
714 	return !atomic_read(&pool->nr_running);
715 }
716 
717 /*
718  * Need to wake up a worker?  Called from anything but currently
719  * running workers.
720  *
721  * Note that, because unbound workers never contribute to nr_running, this
722  * function will always return %true for unbound pools as long as the
723  * worklist isn't empty.
724  */
725 static bool need_more_worker(struct worker_pool *pool)
726 {
727 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
728 }
729 
730 /* Can I start working?  Called from busy but !running workers. */
731 static bool may_start_working(struct worker_pool *pool)
732 {
733 	return pool->nr_idle;
734 }
735 
736 /* Do I need to keep working?  Called from currently running workers. */
737 static bool keep_working(struct worker_pool *pool)
738 {
739 	return !list_empty(&pool->worklist) &&
740 		atomic_read(&pool->nr_running) <= 1;
741 }
742 
743 /* Do we need a new worker?  Called from manager. */
744 static bool need_to_create_worker(struct worker_pool *pool)
745 {
746 	return need_more_worker(pool) && !may_start_working(pool);
747 }
748 
749 /* Do I need to be the manager? */
750 static bool need_to_manage_workers(struct worker_pool *pool)
751 {
752 	return need_to_create_worker(pool) ||
753 		(pool->flags & POOL_MANAGE_WORKERS);
754 }
755 
756 /* Do we have too many workers and should some go away? */
757 static bool too_many_workers(struct worker_pool *pool)
758 {
759 	bool managing = mutex_is_locked(&pool->manager_arb);
760 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
761 	int nr_busy = pool->nr_workers - nr_idle;
762 
763 	/*
764 	 * nr_idle and idle_list may disagree if idle rebinding is in
765 	 * progress.  Never return %true if idle_list is empty.
766 	 */
767 	if (list_empty(&pool->idle_list))
768 		return false;
769 
770 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
771 }
772 
773 /*
774  * Wake up functions.
775  */
776 
777 /* Return the first worker.  Safe with preemption disabled */
778 static struct worker *first_worker(struct worker_pool *pool)
779 {
780 	if (unlikely(list_empty(&pool->idle_list)))
781 		return NULL;
782 
783 	return list_first_entry(&pool->idle_list, struct worker, entry);
784 }
785 
786 /**
787  * wake_up_worker - wake up an idle worker
788  * @pool: worker pool to wake worker from
789  *
790  * Wake up the first idle worker of @pool.
791  *
792  * CONTEXT:
793  * spin_lock_irq(pool->lock).
794  */
795 static void wake_up_worker(struct worker_pool *pool)
796 {
797 	struct worker *worker = first_worker(pool);
798 
799 	if (likely(worker))
800 		wake_up_process(worker->task);
801 }
802 
803 /**
804  * wq_worker_waking_up - a worker is waking up
805  * @task: task waking up
806  * @cpu: CPU @task is waking up to
807  *
808  * This function is called during try_to_wake_up() when a worker is
809  * being awoken.
810  *
811  * CONTEXT:
812  * spin_lock_irq(rq->lock)
813  */
814 void wq_worker_waking_up(struct task_struct *task, int cpu)
815 {
816 	struct worker *worker = kthread_data(task);
817 
818 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
819 		WARN_ON_ONCE(worker->pool->cpu != cpu);
820 		atomic_inc(&worker->pool->nr_running);
821 	}
822 }
823 
824 /**
825  * wq_worker_sleeping - a worker is going to sleep
826  * @task: task going to sleep
827  * @cpu: CPU in question, must be the current CPU number
828  *
829  * This function is called during schedule() when a busy worker is
830  * going to sleep.  Worker on the same cpu can be woken up by
831  * returning pointer to its task.
832  *
833  * CONTEXT:
834  * spin_lock_irq(rq->lock)
835  *
836  * Return:
837  * Worker task on @cpu to wake up, %NULL if none.
838  */
839 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
840 {
841 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
842 	struct worker_pool *pool;
843 
844 	/*
845 	 * Rescuers, which may not have all the fields set up like normal
846 	 * workers, also reach here, let's not access anything before
847 	 * checking NOT_RUNNING.
848 	 */
849 	if (worker->flags & WORKER_NOT_RUNNING)
850 		return NULL;
851 
852 	pool = worker->pool;
853 
854 	/* this can only happen on the local cpu */
855 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
856 		return NULL;
857 
858 	/*
859 	 * The counterpart of the following dec_and_test, implied mb,
860 	 * worklist not empty test sequence is in insert_work().
861 	 * Please read comment there.
862 	 *
863 	 * NOT_RUNNING is clear.  This means that we're bound to and
864 	 * running on the local cpu w/ rq lock held and preemption
865 	 * disabled, which in turn means that none else could be
866 	 * manipulating idle_list, so dereferencing idle_list without pool
867 	 * lock is safe.
868 	 */
869 	if (atomic_dec_and_test(&pool->nr_running) &&
870 	    !list_empty(&pool->worklist))
871 		to_wakeup = first_worker(pool);
872 	return to_wakeup ? to_wakeup->task : NULL;
873 }
874 
875 /**
876  * worker_set_flags - set worker flags and adjust nr_running accordingly
877  * @worker: self
878  * @flags: flags to set
879  * @wakeup: wakeup an idle worker if necessary
880  *
881  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
882  * nr_running becomes zero and @wakeup is %true, an idle worker is
883  * woken up.
884  *
885  * CONTEXT:
886  * spin_lock_irq(pool->lock)
887  */
888 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
889 				    bool wakeup)
890 {
891 	struct worker_pool *pool = worker->pool;
892 
893 	WARN_ON_ONCE(worker->task != current);
894 
895 	/*
896 	 * If transitioning into NOT_RUNNING, adjust nr_running and
897 	 * wake up an idle worker as necessary if requested by
898 	 * @wakeup.
899 	 */
900 	if ((flags & WORKER_NOT_RUNNING) &&
901 	    !(worker->flags & WORKER_NOT_RUNNING)) {
902 		if (wakeup) {
903 			if (atomic_dec_and_test(&pool->nr_running) &&
904 			    !list_empty(&pool->worklist))
905 				wake_up_worker(pool);
906 		} else
907 			atomic_dec(&pool->nr_running);
908 	}
909 
910 	worker->flags |= flags;
911 }
912 
913 /**
914  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
915  * @worker: self
916  * @flags: flags to clear
917  *
918  * Clear @flags in @worker->flags and adjust nr_running accordingly.
919  *
920  * CONTEXT:
921  * spin_lock_irq(pool->lock)
922  */
923 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
924 {
925 	struct worker_pool *pool = worker->pool;
926 	unsigned int oflags = worker->flags;
927 
928 	WARN_ON_ONCE(worker->task != current);
929 
930 	worker->flags &= ~flags;
931 
932 	/*
933 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
934 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
935 	 * of multiple flags, not a single flag.
936 	 */
937 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
938 		if (!(worker->flags & WORKER_NOT_RUNNING))
939 			atomic_inc(&pool->nr_running);
940 }
941 
942 /**
943  * find_worker_executing_work - find worker which is executing a work
944  * @pool: pool of interest
945  * @work: work to find worker for
946  *
947  * Find a worker which is executing @work on @pool by searching
948  * @pool->busy_hash which is keyed by the address of @work.  For a worker
949  * to match, its current execution should match the address of @work and
950  * its work function.  This is to avoid unwanted dependency between
951  * unrelated work executions through a work item being recycled while still
952  * being executed.
953  *
954  * This is a bit tricky.  A work item may be freed once its execution
955  * starts and nothing prevents the freed area from being recycled for
956  * another work item.  If the same work item address ends up being reused
957  * before the original execution finishes, workqueue will identify the
958  * recycled work item as currently executing and make it wait until the
959  * current execution finishes, introducing an unwanted dependency.
960  *
961  * This function checks the work item address and work function to avoid
962  * false positives.  Note that this isn't complete as one may construct a
963  * work function which can introduce dependency onto itself through a
964  * recycled work item.  Well, if somebody wants to shoot oneself in the
965  * foot that badly, there's only so much we can do, and if such deadlock
966  * actually occurs, it should be easy to locate the culprit work function.
967  *
968  * CONTEXT:
969  * spin_lock_irq(pool->lock).
970  *
971  * Return:
972  * Pointer to worker which is executing @work if found, %NULL
973  * otherwise.
974  */
975 static struct worker *find_worker_executing_work(struct worker_pool *pool,
976 						 struct work_struct *work)
977 {
978 	struct worker *worker;
979 
980 	hash_for_each_possible(pool->busy_hash, worker, hentry,
981 			       (unsigned long)work)
982 		if (worker->current_work == work &&
983 		    worker->current_func == work->func)
984 			return worker;
985 
986 	return NULL;
987 }
988 
989 /**
990  * move_linked_works - move linked works to a list
991  * @work: start of series of works to be scheduled
992  * @head: target list to append @work to
993  * @nextp: out paramter for nested worklist walking
994  *
995  * Schedule linked works starting from @work to @head.  Work series to
996  * be scheduled starts at @work and includes any consecutive work with
997  * WORK_STRUCT_LINKED set in its predecessor.
998  *
999  * If @nextp is not NULL, it's updated to point to the next work of
1000  * the last scheduled work.  This allows move_linked_works() to be
1001  * nested inside outer list_for_each_entry_safe().
1002  *
1003  * CONTEXT:
1004  * spin_lock_irq(pool->lock).
1005  */
1006 static void move_linked_works(struct work_struct *work, struct list_head *head,
1007 			      struct work_struct **nextp)
1008 {
1009 	struct work_struct *n;
1010 
1011 	/*
1012 	 * Linked worklist will always end before the end of the list,
1013 	 * use NULL for list head.
1014 	 */
1015 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1016 		list_move_tail(&work->entry, head);
1017 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1018 			break;
1019 	}
1020 
1021 	/*
1022 	 * If we're already inside safe list traversal and have moved
1023 	 * multiple works to the scheduled queue, the next position
1024 	 * needs to be updated.
1025 	 */
1026 	if (nextp)
1027 		*nextp = n;
1028 }
1029 
1030 /**
1031  * get_pwq - get an extra reference on the specified pool_workqueue
1032  * @pwq: pool_workqueue to get
1033  *
1034  * Obtain an extra reference on @pwq.  The caller should guarantee that
1035  * @pwq has positive refcnt and be holding the matching pool->lock.
1036  */
1037 static void get_pwq(struct pool_workqueue *pwq)
1038 {
1039 	lockdep_assert_held(&pwq->pool->lock);
1040 	WARN_ON_ONCE(pwq->refcnt <= 0);
1041 	pwq->refcnt++;
1042 }
1043 
1044 /**
1045  * put_pwq - put a pool_workqueue reference
1046  * @pwq: pool_workqueue to put
1047  *
1048  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1049  * destruction.  The caller should be holding the matching pool->lock.
1050  */
1051 static void put_pwq(struct pool_workqueue *pwq)
1052 {
1053 	lockdep_assert_held(&pwq->pool->lock);
1054 	if (likely(--pwq->refcnt))
1055 		return;
1056 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1057 		return;
1058 	/*
1059 	 * @pwq can't be released under pool->lock, bounce to
1060 	 * pwq_unbound_release_workfn().  This never recurses on the same
1061 	 * pool->lock as this path is taken only for unbound workqueues and
1062 	 * the release work item is scheduled on a per-cpu workqueue.  To
1063 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1064 	 * subclass of 1 in get_unbound_pool().
1065 	 */
1066 	schedule_work(&pwq->unbound_release_work);
1067 }
1068 
1069 /**
1070  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1071  * @pwq: pool_workqueue to put (can be %NULL)
1072  *
1073  * put_pwq() with locking.  This function also allows %NULL @pwq.
1074  */
1075 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1076 {
1077 	if (pwq) {
1078 		/*
1079 		 * As both pwqs and pools are sched-RCU protected, the
1080 		 * following lock operations are safe.
1081 		 */
1082 		spin_lock_irq(&pwq->pool->lock);
1083 		put_pwq(pwq);
1084 		spin_unlock_irq(&pwq->pool->lock);
1085 	}
1086 }
1087 
1088 static void pwq_activate_delayed_work(struct work_struct *work)
1089 {
1090 	struct pool_workqueue *pwq = get_work_pwq(work);
1091 
1092 	trace_workqueue_activate_work(work);
1093 	move_linked_works(work, &pwq->pool->worklist, NULL);
1094 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1095 	pwq->nr_active++;
1096 }
1097 
1098 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1099 {
1100 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1101 						    struct work_struct, entry);
1102 
1103 	pwq_activate_delayed_work(work);
1104 }
1105 
1106 /**
1107  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1108  * @pwq: pwq of interest
1109  * @color: color of work which left the queue
1110  *
1111  * A work either has completed or is removed from pending queue,
1112  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1113  *
1114  * CONTEXT:
1115  * spin_lock_irq(pool->lock).
1116  */
1117 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1118 {
1119 	/* uncolored work items don't participate in flushing or nr_active */
1120 	if (color == WORK_NO_COLOR)
1121 		goto out_put;
1122 
1123 	pwq->nr_in_flight[color]--;
1124 
1125 	pwq->nr_active--;
1126 	if (!list_empty(&pwq->delayed_works)) {
1127 		/* one down, submit a delayed one */
1128 		if (pwq->nr_active < pwq->max_active)
1129 			pwq_activate_first_delayed(pwq);
1130 	}
1131 
1132 	/* is flush in progress and are we at the flushing tip? */
1133 	if (likely(pwq->flush_color != color))
1134 		goto out_put;
1135 
1136 	/* are there still in-flight works? */
1137 	if (pwq->nr_in_flight[color])
1138 		goto out_put;
1139 
1140 	/* this pwq is done, clear flush_color */
1141 	pwq->flush_color = -1;
1142 
1143 	/*
1144 	 * If this was the last pwq, wake up the first flusher.  It
1145 	 * will handle the rest.
1146 	 */
1147 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1148 		complete(&pwq->wq->first_flusher->done);
1149 out_put:
1150 	put_pwq(pwq);
1151 }
1152 
1153 /**
1154  * try_to_grab_pending - steal work item from worklist and disable irq
1155  * @work: work item to steal
1156  * @is_dwork: @work is a delayed_work
1157  * @flags: place to store irq state
1158  *
1159  * Try to grab PENDING bit of @work.  This function can handle @work in any
1160  * stable state - idle, on timer or on worklist.
1161  *
1162  * Return:
1163  *  1		if @work was pending and we successfully stole PENDING
1164  *  0		if @work was idle and we claimed PENDING
1165  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1166  *  -ENOENT	if someone else is canceling @work, this state may persist
1167  *		for arbitrarily long
1168  *
1169  * Note:
1170  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1171  * interrupted while holding PENDING and @work off queue, irq must be
1172  * disabled on entry.  This, combined with delayed_work->timer being
1173  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1174  *
1175  * On successful return, >= 0, irq is disabled and the caller is
1176  * responsible for releasing it using local_irq_restore(*@flags).
1177  *
1178  * This function is safe to call from any context including IRQ handler.
1179  */
1180 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1181 			       unsigned long *flags)
1182 {
1183 	struct worker_pool *pool;
1184 	struct pool_workqueue *pwq;
1185 
1186 	local_irq_save(*flags);
1187 
1188 	/* try to steal the timer if it exists */
1189 	if (is_dwork) {
1190 		struct delayed_work *dwork = to_delayed_work(work);
1191 
1192 		/*
1193 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1194 		 * guaranteed that the timer is not queued anywhere and not
1195 		 * running on the local CPU.
1196 		 */
1197 		if (likely(del_timer(&dwork->timer)))
1198 			return 1;
1199 	}
1200 
1201 	/* try to claim PENDING the normal way */
1202 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1203 		return 0;
1204 
1205 	/*
1206 	 * The queueing is in progress, or it is already queued. Try to
1207 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1208 	 */
1209 	pool = get_work_pool(work);
1210 	if (!pool)
1211 		goto fail;
1212 
1213 	spin_lock(&pool->lock);
1214 	/*
1215 	 * work->data is guaranteed to point to pwq only while the work
1216 	 * item is queued on pwq->wq, and both updating work->data to point
1217 	 * to pwq on queueing and to pool on dequeueing are done under
1218 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1219 	 * points to pwq which is associated with a locked pool, the work
1220 	 * item is currently queued on that pool.
1221 	 */
1222 	pwq = get_work_pwq(work);
1223 	if (pwq && pwq->pool == pool) {
1224 		debug_work_deactivate(work);
1225 
1226 		/*
1227 		 * A delayed work item cannot be grabbed directly because
1228 		 * it might have linked NO_COLOR work items which, if left
1229 		 * on the delayed_list, will confuse pwq->nr_active
1230 		 * management later on and cause stall.  Make sure the work
1231 		 * item is activated before grabbing.
1232 		 */
1233 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1234 			pwq_activate_delayed_work(work);
1235 
1236 		list_del_init(&work->entry);
1237 		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1238 
1239 		/* work->data points to pwq iff queued, point to pool */
1240 		set_work_pool_and_keep_pending(work, pool->id);
1241 
1242 		spin_unlock(&pool->lock);
1243 		return 1;
1244 	}
1245 	spin_unlock(&pool->lock);
1246 fail:
1247 	local_irq_restore(*flags);
1248 	if (work_is_canceling(work))
1249 		return -ENOENT;
1250 	cpu_relax();
1251 	return -EAGAIN;
1252 }
1253 
1254 /**
1255  * insert_work - insert a work into a pool
1256  * @pwq: pwq @work belongs to
1257  * @work: work to insert
1258  * @head: insertion point
1259  * @extra_flags: extra WORK_STRUCT_* flags to set
1260  *
1261  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1262  * work_struct flags.
1263  *
1264  * CONTEXT:
1265  * spin_lock_irq(pool->lock).
1266  */
1267 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1268 			struct list_head *head, unsigned int extra_flags)
1269 {
1270 	struct worker_pool *pool = pwq->pool;
1271 
1272 	/* we own @work, set data and link */
1273 	set_work_pwq(work, pwq, extra_flags);
1274 	list_add_tail(&work->entry, head);
1275 	get_pwq(pwq);
1276 
1277 	/*
1278 	 * Ensure either wq_worker_sleeping() sees the above
1279 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1280 	 * around lazily while there are works to be processed.
1281 	 */
1282 	smp_mb();
1283 
1284 	if (__need_more_worker(pool))
1285 		wake_up_worker(pool);
1286 }
1287 
1288 /*
1289  * Test whether @work is being queued from another work executing on the
1290  * same workqueue.
1291  */
1292 static bool is_chained_work(struct workqueue_struct *wq)
1293 {
1294 	struct worker *worker;
1295 
1296 	worker = current_wq_worker();
1297 	/*
1298 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1299 	 * I'm @worker, it's safe to dereference it without locking.
1300 	 */
1301 	return worker && worker->current_pwq->wq == wq;
1302 }
1303 
1304 static void __queue_work(int cpu, struct workqueue_struct *wq,
1305 			 struct work_struct *work)
1306 {
1307 	struct pool_workqueue *pwq;
1308 	struct worker_pool *last_pool;
1309 	struct list_head *worklist;
1310 	unsigned int work_flags;
1311 	unsigned int req_cpu = cpu;
1312 
1313 	/*
1314 	 * While a work item is PENDING && off queue, a task trying to
1315 	 * steal the PENDING will busy-loop waiting for it to either get
1316 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1317 	 * happen with IRQ disabled.
1318 	 */
1319 	WARN_ON_ONCE(!irqs_disabled());
1320 
1321 	debug_work_activate(work);
1322 
1323 	/* if dying, only works from the same workqueue are allowed */
1324 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1325 	    WARN_ON_ONCE(!is_chained_work(wq)))
1326 		return;
1327 retry:
1328 	if (req_cpu == WORK_CPU_UNBOUND)
1329 		cpu = raw_smp_processor_id();
1330 
1331 	/* pwq which will be used unless @work is executing elsewhere */
1332 	if (!(wq->flags & WQ_UNBOUND))
1333 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1334 	else
1335 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1336 
1337 	/*
1338 	 * If @work was previously on a different pool, it might still be
1339 	 * running there, in which case the work needs to be queued on that
1340 	 * pool to guarantee non-reentrancy.
1341 	 */
1342 	last_pool = get_work_pool(work);
1343 	if (last_pool && last_pool != pwq->pool) {
1344 		struct worker *worker;
1345 
1346 		spin_lock(&last_pool->lock);
1347 
1348 		worker = find_worker_executing_work(last_pool, work);
1349 
1350 		if (worker && worker->current_pwq->wq == wq) {
1351 			pwq = worker->current_pwq;
1352 		} else {
1353 			/* meh... not running there, queue here */
1354 			spin_unlock(&last_pool->lock);
1355 			spin_lock(&pwq->pool->lock);
1356 		}
1357 	} else {
1358 		spin_lock(&pwq->pool->lock);
1359 	}
1360 
1361 	/*
1362 	 * pwq is determined and locked.  For unbound pools, we could have
1363 	 * raced with pwq release and it could already be dead.  If its
1364 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1365 	 * without another pwq replacing it in the numa_pwq_tbl or while
1366 	 * work items are executing on it, so the retrying is guaranteed to
1367 	 * make forward-progress.
1368 	 */
1369 	if (unlikely(!pwq->refcnt)) {
1370 		if (wq->flags & WQ_UNBOUND) {
1371 			spin_unlock(&pwq->pool->lock);
1372 			cpu_relax();
1373 			goto retry;
1374 		}
1375 		/* oops */
1376 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1377 			  wq->name, cpu);
1378 	}
1379 
1380 	/* pwq determined, queue */
1381 	trace_workqueue_queue_work(req_cpu, pwq, work);
1382 
1383 	if (WARN_ON(!list_empty(&work->entry))) {
1384 		spin_unlock(&pwq->pool->lock);
1385 		return;
1386 	}
1387 
1388 	pwq->nr_in_flight[pwq->work_color]++;
1389 	work_flags = work_color_to_flags(pwq->work_color);
1390 
1391 	if (likely(pwq->nr_active < pwq->max_active)) {
1392 		trace_workqueue_activate_work(work);
1393 		pwq->nr_active++;
1394 		worklist = &pwq->pool->worklist;
1395 	} else {
1396 		work_flags |= WORK_STRUCT_DELAYED;
1397 		worklist = &pwq->delayed_works;
1398 	}
1399 
1400 	insert_work(pwq, work, worklist, work_flags);
1401 
1402 	spin_unlock(&pwq->pool->lock);
1403 }
1404 
1405 /**
1406  * queue_work_on - queue work on specific cpu
1407  * @cpu: CPU number to execute work on
1408  * @wq: workqueue to use
1409  * @work: work to queue
1410  *
1411  * We queue the work to a specific CPU, the caller must ensure it
1412  * can't go away.
1413  *
1414  * Return: %false if @work was already on a queue, %true otherwise.
1415  */
1416 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1417 		   struct work_struct *work)
1418 {
1419 	bool ret = false;
1420 	unsigned long flags;
1421 
1422 	local_irq_save(flags);
1423 
1424 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1425 		__queue_work(cpu, wq, work);
1426 		ret = true;
1427 	}
1428 
1429 	local_irq_restore(flags);
1430 	return ret;
1431 }
1432 EXPORT_SYMBOL(queue_work_on);
1433 
1434 void delayed_work_timer_fn(unsigned long __data)
1435 {
1436 	struct delayed_work *dwork = (struct delayed_work *)__data;
1437 
1438 	/* should have been called from irqsafe timer with irq already off */
1439 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1440 }
1441 EXPORT_SYMBOL(delayed_work_timer_fn);
1442 
1443 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1444 				struct delayed_work *dwork, unsigned long delay)
1445 {
1446 	struct timer_list *timer = &dwork->timer;
1447 	struct work_struct *work = &dwork->work;
1448 
1449 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1450 		     timer->data != (unsigned long)dwork);
1451 	WARN_ON_ONCE(timer_pending(timer));
1452 	WARN_ON_ONCE(!list_empty(&work->entry));
1453 
1454 	/*
1455 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1456 	 * both optimization and correctness.  The earliest @timer can
1457 	 * expire is on the closest next tick and delayed_work users depend
1458 	 * on that there's no such delay when @delay is 0.
1459 	 */
1460 	if (!delay) {
1461 		__queue_work(cpu, wq, &dwork->work);
1462 		return;
1463 	}
1464 
1465 	timer_stats_timer_set_start_info(&dwork->timer);
1466 
1467 	dwork->wq = wq;
1468 	dwork->cpu = cpu;
1469 	timer->expires = jiffies + delay;
1470 
1471 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1472 		add_timer_on(timer, cpu);
1473 	else
1474 		add_timer(timer);
1475 }
1476 
1477 /**
1478  * queue_delayed_work_on - queue work on specific CPU after delay
1479  * @cpu: CPU number to execute work on
1480  * @wq: workqueue to use
1481  * @dwork: work to queue
1482  * @delay: number of jiffies to wait before queueing
1483  *
1484  * Return: %false if @work was already on a queue, %true otherwise.  If
1485  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1486  * execution.
1487  */
1488 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1489 			   struct delayed_work *dwork, unsigned long delay)
1490 {
1491 	struct work_struct *work = &dwork->work;
1492 	bool ret = false;
1493 	unsigned long flags;
1494 
1495 	/* read the comment in __queue_work() */
1496 	local_irq_save(flags);
1497 
1498 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1499 		__queue_delayed_work(cpu, wq, dwork, delay);
1500 		ret = true;
1501 	}
1502 
1503 	local_irq_restore(flags);
1504 	return ret;
1505 }
1506 EXPORT_SYMBOL(queue_delayed_work_on);
1507 
1508 /**
1509  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1510  * @cpu: CPU number to execute work on
1511  * @wq: workqueue to use
1512  * @dwork: work to queue
1513  * @delay: number of jiffies to wait before queueing
1514  *
1515  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1516  * modify @dwork's timer so that it expires after @delay.  If @delay is
1517  * zero, @work is guaranteed to be scheduled immediately regardless of its
1518  * current state.
1519  *
1520  * Return: %false if @dwork was idle and queued, %true if @dwork was
1521  * pending and its timer was modified.
1522  *
1523  * This function is safe to call from any context including IRQ handler.
1524  * See try_to_grab_pending() for details.
1525  */
1526 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1527 			 struct delayed_work *dwork, unsigned long delay)
1528 {
1529 	unsigned long flags;
1530 	int ret;
1531 
1532 	do {
1533 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1534 	} while (unlikely(ret == -EAGAIN));
1535 
1536 	if (likely(ret >= 0)) {
1537 		__queue_delayed_work(cpu, wq, dwork, delay);
1538 		local_irq_restore(flags);
1539 	}
1540 
1541 	/* -ENOENT from try_to_grab_pending() becomes %true */
1542 	return ret;
1543 }
1544 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1545 
1546 /**
1547  * worker_enter_idle - enter idle state
1548  * @worker: worker which is entering idle state
1549  *
1550  * @worker is entering idle state.  Update stats and idle timer if
1551  * necessary.
1552  *
1553  * LOCKING:
1554  * spin_lock_irq(pool->lock).
1555  */
1556 static void worker_enter_idle(struct worker *worker)
1557 {
1558 	struct worker_pool *pool = worker->pool;
1559 
1560 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1561 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1562 			 (worker->hentry.next || worker->hentry.pprev)))
1563 		return;
1564 
1565 	/* can't use worker_set_flags(), also called from start_worker() */
1566 	worker->flags |= WORKER_IDLE;
1567 	pool->nr_idle++;
1568 	worker->last_active = jiffies;
1569 
1570 	/* idle_list is LIFO */
1571 	list_add(&worker->entry, &pool->idle_list);
1572 
1573 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1574 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1575 
1576 	/*
1577 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1578 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1579 	 * nr_running, the warning may trigger spuriously.  Check iff
1580 	 * unbind is not in progress.
1581 	 */
1582 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1583 		     pool->nr_workers == pool->nr_idle &&
1584 		     atomic_read(&pool->nr_running));
1585 }
1586 
1587 /**
1588  * worker_leave_idle - leave idle state
1589  * @worker: worker which is leaving idle state
1590  *
1591  * @worker is leaving idle state.  Update stats.
1592  *
1593  * LOCKING:
1594  * spin_lock_irq(pool->lock).
1595  */
1596 static void worker_leave_idle(struct worker *worker)
1597 {
1598 	struct worker_pool *pool = worker->pool;
1599 
1600 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1601 		return;
1602 	worker_clr_flags(worker, WORKER_IDLE);
1603 	pool->nr_idle--;
1604 	list_del_init(&worker->entry);
1605 }
1606 
1607 /**
1608  * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1609  * @pool: target worker_pool
1610  *
1611  * Bind %current to the cpu of @pool if it is associated and lock @pool.
1612  *
1613  * Works which are scheduled while the cpu is online must at least be
1614  * scheduled to a worker which is bound to the cpu so that if they are
1615  * flushed from cpu callbacks while cpu is going down, they are
1616  * guaranteed to execute on the cpu.
1617  *
1618  * This function is to be used by unbound workers and rescuers to bind
1619  * themselves to the target cpu and may race with cpu going down or
1620  * coming online.  kthread_bind() can't be used because it may put the
1621  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1622  * verbatim as it's best effort and blocking and pool may be
1623  * [dis]associated in the meantime.
1624  *
1625  * This function tries set_cpus_allowed() and locks pool and verifies the
1626  * binding against %POOL_DISASSOCIATED which is set during
1627  * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1628  * enters idle state or fetches works without dropping lock, it can
1629  * guarantee the scheduling requirement described in the first paragraph.
1630  *
1631  * CONTEXT:
1632  * Might sleep.  Called without any lock but returns with pool->lock
1633  * held.
1634  *
1635  * Return:
1636  * %true if the associated pool is online (@worker is successfully
1637  * bound), %false if offline.
1638  */
1639 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1640 __acquires(&pool->lock)
1641 {
1642 	while (true) {
1643 		/*
1644 		 * The following call may fail, succeed or succeed
1645 		 * without actually migrating the task to the cpu if
1646 		 * it races with cpu hotunplug operation.  Verify
1647 		 * against POOL_DISASSOCIATED.
1648 		 */
1649 		if (!(pool->flags & POOL_DISASSOCIATED))
1650 			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1651 
1652 		spin_lock_irq(&pool->lock);
1653 		if (pool->flags & POOL_DISASSOCIATED)
1654 			return false;
1655 		if (task_cpu(current) == pool->cpu &&
1656 		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1657 			return true;
1658 		spin_unlock_irq(&pool->lock);
1659 
1660 		/*
1661 		 * We've raced with CPU hot[un]plug.  Give it a breather
1662 		 * and retry migration.  cond_resched() is required here;
1663 		 * otherwise, we might deadlock against cpu_stop trying to
1664 		 * bring down the CPU on non-preemptive kernel.
1665 		 */
1666 		cpu_relax();
1667 		cond_resched();
1668 	}
1669 }
1670 
1671 static struct worker *alloc_worker(void)
1672 {
1673 	struct worker *worker;
1674 
1675 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1676 	if (worker) {
1677 		INIT_LIST_HEAD(&worker->entry);
1678 		INIT_LIST_HEAD(&worker->scheduled);
1679 		/* on creation a worker is in !idle && prep state */
1680 		worker->flags = WORKER_PREP;
1681 	}
1682 	return worker;
1683 }
1684 
1685 /**
1686  * create_worker - create a new workqueue worker
1687  * @pool: pool the new worker will belong to
1688  *
1689  * Create a new worker which is bound to @pool.  The returned worker
1690  * can be started by calling start_worker() or destroyed using
1691  * destroy_worker().
1692  *
1693  * CONTEXT:
1694  * Might sleep.  Does GFP_KERNEL allocations.
1695  *
1696  * Return:
1697  * Pointer to the newly created worker.
1698  */
1699 static struct worker *create_worker(struct worker_pool *pool)
1700 {
1701 	struct worker *worker = NULL;
1702 	int id = -1;
1703 	char id_buf[16];
1704 
1705 	lockdep_assert_held(&pool->manager_mutex);
1706 
1707 	/*
1708 	 * ID is needed to determine kthread name.  Allocate ID first
1709 	 * without installing the pointer.
1710 	 */
1711 	idr_preload(GFP_KERNEL);
1712 	spin_lock_irq(&pool->lock);
1713 
1714 	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1715 
1716 	spin_unlock_irq(&pool->lock);
1717 	idr_preload_end();
1718 	if (id < 0)
1719 		goto fail;
1720 
1721 	worker = alloc_worker();
1722 	if (!worker)
1723 		goto fail;
1724 
1725 	worker->pool = pool;
1726 	worker->id = id;
1727 
1728 	if (pool->cpu >= 0)
1729 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1730 			 pool->attrs->nice < 0  ? "H" : "");
1731 	else
1732 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1733 
1734 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1735 					      "kworker/%s", id_buf);
1736 	if (IS_ERR(worker->task))
1737 		goto fail;
1738 
1739 	/*
1740 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1741 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1742 	 */
1743 	set_user_nice(worker->task, pool->attrs->nice);
1744 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1745 
1746 	/* prevent userland from meddling with cpumask of workqueue workers */
1747 	worker->task->flags |= PF_NO_SETAFFINITY;
1748 
1749 	/*
1750 	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1751 	 * remains stable across this function.  See the comments above the
1752 	 * flag definition for details.
1753 	 */
1754 	if (pool->flags & POOL_DISASSOCIATED)
1755 		worker->flags |= WORKER_UNBOUND;
1756 
1757 	/* successful, commit the pointer to idr */
1758 	spin_lock_irq(&pool->lock);
1759 	idr_replace(&pool->worker_idr, worker, worker->id);
1760 	spin_unlock_irq(&pool->lock);
1761 
1762 	return worker;
1763 
1764 fail:
1765 	if (id >= 0) {
1766 		spin_lock_irq(&pool->lock);
1767 		idr_remove(&pool->worker_idr, id);
1768 		spin_unlock_irq(&pool->lock);
1769 	}
1770 	kfree(worker);
1771 	return NULL;
1772 }
1773 
1774 /**
1775  * start_worker - start a newly created worker
1776  * @worker: worker to start
1777  *
1778  * Make the pool aware of @worker and start it.
1779  *
1780  * CONTEXT:
1781  * spin_lock_irq(pool->lock).
1782  */
1783 static void start_worker(struct worker *worker)
1784 {
1785 	worker->flags |= WORKER_STARTED;
1786 	worker->pool->nr_workers++;
1787 	worker_enter_idle(worker);
1788 	wake_up_process(worker->task);
1789 }
1790 
1791 /**
1792  * create_and_start_worker - create and start a worker for a pool
1793  * @pool: the target pool
1794  *
1795  * Grab the managership of @pool and create and start a new worker for it.
1796  *
1797  * Return: 0 on success. A negative error code otherwise.
1798  */
1799 static int create_and_start_worker(struct worker_pool *pool)
1800 {
1801 	struct worker *worker;
1802 
1803 	mutex_lock(&pool->manager_mutex);
1804 
1805 	worker = create_worker(pool);
1806 	if (worker) {
1807 		spin_lock_irq(&pool->lock);
1808 		start_worker(worker);
1809 		spin_unlock_irq(&pool->lock);
1810 	}
1811 
1812 	mutex_unlock(&pool->manager_mutex);
1813 
1814 	return worker ? 0 : -ENOMEM;
1815 }
1816 
1817 /**
1818  * destroy_worker - destroy a workqueue worker
1819  * @worker: worker to be destroyed
1820  *
1821  * Destroy @worker and adjust @pool stats accordingly.
1822  *
1823  * CONTEXT:
1824  * spin_lock_irq(pool->lock) which is released and regrabbed.
1825  */
1826 static void destroy_worker(struct worker *worker)
1827 {
1828 	struct worker_pool *pool = worker->pool;
1829 
1830 	lockdep_assert_held(&pool->manager_mutex);
1831 	lockdep_assert_held(&pool->lock);
1832 
1833 	/* sanity check frenzy */
1834 	if (WARN_ON(worker->current_work) ||
1835 	    WARN_ON(!list_empty(&worker->scheduled)))
1836 		return;
1837 
1838 	if (worker->flags & WORKER_STARTED)
1839 		pool->nr_workers--;
1840 	if (worker->flags & WORKER_IDLE)
1841 		pool->nr_idle--;
1842 
1843 	list_del_init(&worker->entry);
1844 	worker->flags |= WORKER_DIE;
1845 
1846 	idr_remove(&pool->worker_idr, worker->id);
1847 
1848 	spin_unlock_irq(&pool->lock);
1849 
1850 	kthread_stop(worker->task);
1851 	kfree(worker);
1852 
1853 	spin_lock_irq(&pool->lock);
1854 }
1855 
1856 static void idle_worker_timeout(unsigned long __pool)
1857 {
1858 	struct worker_pool *pool = (void *)__pool;
1859 
1860 	spin_lock_irq(&pool->lock);
1861 
1862 	if (too_many_workers(pool)) {
1863 		struct worker *worker;
1864 		unsigned long expires;
1865 
1866 		/* idle_list is kept in LIFO order, check the last one */
1867 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1868 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1869 
1870 		if (time_before(jiffies, expires))
1871 			mod_timer(&pool->idle_timer, expires);
1872 		else {
1873 			/* it's been idle for too long, wake up manager */
1874 			pool->flags |= POOL_MANAGE_WORKERS;
1875 			wake_up_worker(pool);
1876 		}
1877 	}
1878 
1879 	spin_unlock_irq(&pool->lock);
1880 }
1881 
1882 static void send_mayday(struct work_struct *work)
1883 {
1884 	struct pool_workqueue *pwq = get_work_pwq(work);
1885 	struct workqueue_struct *wq = pwq->wq;
1886 
1887 	lockdep_assert_held(&wq_mayday_lock);
1888 
1889 	if (!wq->rescuer)
1890 		return;
1891 
1892 	/* mayday mayday mayday */
1893 	if (list_empty(&pwq->mayday_node)) {
1894 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1895 		wake_up_process(wq->rescuer->task);
1896 	}
1897 }
1898 
1899 static void pool_mayday_timeout(unsigned long __pool)
1900 {
1901 	struct worker_pool *pool = (void *)__pool;
1902 	struct work_struct *work;
1903 
1904 	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1905 	spin_lock(&pool->lock);
1906 
1907 	if (need_to_create_worker(pool)) {
1908 		/*
1909 		 * We've been trying to create a new worker but
1910 		 * haven't been successful.  We might be hitting an
1911 		 * allocation deadlock.  Send distress signals to
1912 		 * rescuers.
1913 		 */
1914 		list_for_each_entry(work, &pool->worklist, entry)
1915 			send_mayday(work);
1916 	}
1917 
1918 	spin_unlock(&pool->lock);
1919 	spin_unlock_irq(&wq_mayday_lock);
1920 
1921 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1922 }
1923 
1924 /**
1925  * maybe_create_worker - create a new worker if necessary
1926  * @pool: pool to create a new worker for
1927  *
1928  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1929  * have at least one idle worker on return from this function.  If
1930  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1931  * sent to all rescuers with works scheduled on @pool to resolve
1932  * possible allocation deadlock.
1933  *
1934  * On return, need_to_create_worker() is guaranteed to be %false and
1935  * may_start_working() %true.
1936  *
1937  * LOCKING:
1938  * spin_lock_irq(pool->lock) which may be released and regrabbed
1939  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1940  * manager.
1941  *
1942  * Return:
1943  * %false if no action was taken and pool->lock stayed locked, %true
1944  * otherwise.
1945  */
1946 static bool maybe_create_worker(struct worker_pool *pool)
1947 __releases(&pool->lock)
1948 __acquires(&pool->lock)
1949 {
1950 	if (!need_to_create_worker(pool))
1951 		return false;
1952 restart:
1953 	spin_unlock_irq(&pool->lock);
1954 
1955 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1956 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1957 
1958 	while (true) {
1959 		struct worker *worker;
1960 
1961 		worker = create_worker(pool);
1962 		if (worker) {
1963 			del_timer_sync(&pool->mayday_timer);
1964 			spin_lock_irq(&pool->lock);
1965 			start_worker(worker);
1966 			if (WARN_ON_ONCE(need_to_create_worker(pool)))
1967 				goto restart;
1968 			return true;
1969 		}
1970 
1971 		if (!need_to_create_worker(pool))
1972 			break;
1973 
1974 		__set_current_state(TASK_INTERRUPTIBLE);
1975 		schedule_timeout(CREATE_COOLDOWN);
1976 
1977 		if (!need_to_create_worker(pool))
1978 			break;
1979 	}
1980 
1981 	del_timer_sync(&pool->mayday_timer);
1982 	spin_lock_irq(&pool->lock);
1983 	if (need_to_create_worker(pool))
1984 		goto restart;
1985 	return true;
1986 }
1987 
1988 /**
1989  * maybe_destroy_worker - destroy workers which have been idle for a while
1990  * @pool: pool to destroy workers for
1991  *
1992  * Destroy @pool workers which have been idle for longer than
1993  * IDLE_WORKER_TIMEOUT.
1994  *
1995  * LOCKING:
1996  * spin_lock_irq(pool->lock) which may be released and regrabbed
1997  * multiple times.  Called only from manager.
1998  *
1999  * Return:
2000  * %false if no action was taken and pool->lock stayed locked, %true
2001  * otherwise.
2002  */
2003 static bool maybe_destroy_workers(struct worker_pool *pool)
2004 {
2005 	bool ret = false;
2006 
2007 	while (too_many_workers(pool)) {
2008 		struct worker *worker;
2009 		unsigned long expires;
2010 
2011 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2012 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2013 
2014 		if (time_before(jiffies, expires)) {
2015 			mod_timer(&pool->idle_timer, expires);
2016 			break;
2017 		}
2018 
2019 		destroy_worker(worker);
2020 		ret = true;
2021 	}
2022 
2023 	return ret;
2024 }
2025 
2026 /**
2027  * manage_workers - manage worker pool
2028  * @worker: self
2029  *
2030  * Assume the manager role and manage the worker pool @worker belongs
2031  * to.  At any given time, there can be only zero or one manager per
2032  * pool.  The exclusion is handled automatically by this function.
2033  *
2034  * The caller can safely start processing works on false return.  On
2035  * true return, it's guaranteed that need_to_create_worker() is false
2036  * and may_start_working() is true.
2037  *
2038  * CONTEXT:
2039  * spin_lock_irq(pool->lock) which may be released and regrabbed
2040  * multiple times.  Does GFP_KERNEL allocations.
2041  *
2042  * Return:
2043  * %false if the pool don't need management and the caller can safely start
2044  * processing works, %true indicates that the function released pool->lock
2045  * and reacquired it to perform some management function and that the
2046  * conditions that the caller verified while holding the lock before
2047  * calling the function might no longer be true.
2048  */
2049 static bool manage_workers(struct worker *worker)
2050 {
2051 	struct worker_pool *pool = worker->pool;
2052 	bool ret = false;
2053 
2054 	/*
2055 	 * Managership is governed by two mutexes - manager_arb and
2056 	 * manager_mutex.  manager_arb handles arbitration of manager role.
2057 	 * Anyone who successfully grabs manager_arb wins the arbitration
2058 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
2059 	 * failure while holding pool->lock reliably indicates that someone
2060 	 * else is managing the pool and the worker which failed trylock
2061 	 * can proceed to executing work items.  This means that anyone
2062 	 * grabbing manager_arb is responsible for actually performing
2063 	 * manager duties.  If manager_arb is grabbed and released without
2064 	 * actual management, the pool may stall indefinitely.
2065 	 *
2066 	 * manager_mutex is used for exclusion of actual management
2067 	 * operations.  The holder of manager_mutex can be sure that none
2068 	 * of management operations, including creation and destruction of
2069 	 * workers, won't take place until the mutex is released.  Because
2070 	 * manager_mutex doesn't interfere with manager role arbitration,
2071 	 * it is guaranteed that the pool's management, while may be
2072 	 * delayed, won't be disturbed by someone else grabbing
2073 	 * manager_mutex.
2074 	 */
2075 	if (!mutex_trylock(&pool->manager_arb))
2076 		return ret;
2077 
2078 	/*
2079 	 * With manager arbitration won, manager_mutex would be free in
2080 	 * most cases.  trylock first without dropping @pool->lock.
2081 	 */
2082 	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2083 		spin_unlock_irq(&pool->lock);
2084 		mutex_lock(&pool->manager_mutex);
2085 		spin_lock_irq(&pool->lock);
2086 		ret = true;
2087 	}
2088 
2089 	pool->flags &= ~POOL_MANAGE_WORKERS;
2090 
2091 	/*
2092 	 * Destroy and then create so that may_start_working() is true
2093 	 * on return.
2094 	 */
2095 	ret |= maybe_destroy_workers(pool);
2096 	ret |= maybe_create_worker(pool);
2097 
2098 	mutex_unlock(&pool->manager_mutex);
2099 	mutex_unlock(&pool->manager_arb);
2100 	return ret;
2101 }
2102 
2103 /**
2104  * process_one_work - process single work
2105  * @worker: self
2106  * @work: work to process
2107  *
2108  * Process @work.  This function contains all the logics necessary to
2109  * process a single work including synchronization against and
2110  * interaction with other workers on the same cpu, queueing and
2111  * flushing.  As long as context requirement is met, any worker can
2112  * call this function to process a work.
2113  *
2114  * CONTEXT:
2115  * spin_lock_irq(pool->lock) which is released and regrabbed.
2116  */
2117 static void process_one_work(struct worker *worker, struct work_struct *work)
2118 __releases(&pool->lock)
2119 __acquires(&pool->lock)
2120 {
2121 	struct pool_workqueue *pwq = get_work_pwq(work);
2122 	struct worker_pool *pool = worker->pool;
2123 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2124 	int work_color;
2125 	struct worker *collision;
2126 #ifdef CONFIG_LOCKDEP
2127 	/*
2128 	 * It is permissible to free the struct work_struct from
2129 	 * inside the function that is called from it, this we need to
2130 	 * take into account for lockdep too.  To avoid bogus "held
2131 	 * lock freed" warnings as well as problems when looking into
2132 	 * work->lockdep_map, make a copy and use that here.
2133 	 */
2134 	struct lockdep_map lockdep_map;
2135 
2136 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2137 #endif
2138 	/*
2139 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2140 	 * necessary to avoid spurious warnings from rescuers servicing the
2141 	 * unbound or a disassociated pool.
2142 	 */
2143 	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2144 		     !(pool->flags & POOL_DISASSOCIATED) &&
2145 		     raw_smp_processor_id() != pool->cpu);
2146 
2147 	/*
2148 	 * A single work shouldn't be executed concurrently by
2149 	 * multiple workers on a single cpu.  Check whether anyone is
2150 	 * already processing the work.  If so, defer the work to the
2151 	 * currently executing one.
2152 	 */
2153 	collision = find_worker_executing_work(pool, work);
2154 	if (unlikely(collision)) {
2155 		move_linked_works(work, &collision->scheduled, NULL);
2156 		return;
2157 	}
2158 
2159 	/* claim and dequeue */
2160 	debug_work_deactivate(work);
2161 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2162 	worker->current_work = work;
2163 	worker->current_func = work->func;
2164 	worker->current_pwq = pwq;
2165 	work_color = get_work_color(work);
2166 
2167 	list_del_init(&work->entry);
2168 
2169 	/*
2170 	 * CPU intensive works don't participate in concurrency
2171 	 * management.  They're the scheduler's responsibility.
2172 	 */
2173 	if (unlikely(cpu_intensive))
2174 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2175 
2176 	/*
2177 	 * Unbound pool isn't concurrency managed and work items should be
2178 	 * executed ASAP.  Wake up another worker if necessary.
2179 	 */
2180 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2181 		wake_up_worker(pool);
2182 
2183 	/*
2184 	 * Record the last pool and clear PENDING which should be the last
2185 	 * update to @work.  Also, do this inside @pool->lock so that
2186 	 * PENDING and queued state changes happen together while IRQ is
2187 	 * disabled.
2188 	 */
2189 	set_work_pool_and_clear_pending(work, pool->id);
2190 
2191 	spin_unlock_irq(&pool->lock);
2192 
2193 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2194 	lock_map_acquire(&lockdep_map);
2195 	trace_workqueue_execute_start(work);
2196 	worker->current_func(work);
2197 	/*
2198 	 * While we must be careful to not use "work" after this, the trace
2199 	 * point will only record its address.
2200 	 */
2201 	trace_workqueue_execute_end(work);
2202 	lock_map_release(&lockdep_map);
2203 	lock_map_release(&pwq->wq->lockdep_map);
2204 
2205 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2206 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2207 		       "     last function: %pf\n",
2208 		       current->comm, preempt_count(), task_pid_nr(current),
2209 		       worker->current_func);
2210 		debug_show_held_locks(current);
2211 		dump_stack();
2212 	}
2213 
2214 	/*
2215 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2216 	 * kernels, where a requeueing work item waiting for something to
2217 	 * happen could deadlock with stop_machine as such work item could
2218 	 * indefinitely requeue itself while all other CPUs are trapped in
2219 	 * stop_machine.
2220 	 */
2221 	cond_resched();
2222 
2223 	spin_lock_irq(&pool->lock);
2224 
2225 	/* clear cpu intensive status */
2226 	if (unlikely(cpu_intensive))
2227 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2228 
2229 	/* we're done with it, release */
2230 	hash_del(&worker->hentry);
2231 	worker->current_work = NULL;
2232 	worker->current_func = NULL;
2233 	worker->current_pwq = NULL;
2234 	worker->desc_valid = false;
2235 	pwq_dec_nr_in_flight(pwq, work_color);
2236 }
2237 
2238 /**
2239  * process_scheduled_works - process scheduled works
2240  * @worker: self
2241  *
2242  * Process all scheduled works.  Please note that the scheduled list
2243  * may change while processing a work, so this function repeatedly
2244  * fetches a work from the top and executes it.
2245  *
2246  * CONTEXT:
2247  * spin_lock_irq(pool->lock) which may be released and regrabbed
2248  * multiple times.
2249  */
2250 static void process_scheduled_works(struct worker *worker)
2251 {
2252 	while (!list_empty(&worker->scheduled)) {
2253 		struct work_struct *work = list_first_entry(&worker->scheduled,
2254 						struct work_struct, entry);
2255 		process_one_work(worker, work);
2256 	}
2257 }
2258 
2259 /**
2260  * worker_thread - the worker thread function
2261  * @__worker: self
2262  *
2263  * The worker thread function.  All workers belong to a worker_pool -
2264  * either a per-cpu one or dynamic unbound one.  These workers process all
2265  * work items regardless of their specific target workqueue.  The only
2266  * exception is work items which belong to workqueues with a rescuer which
2267  * will be explained in rescuer_thread().
2268  *
2269  * Return: 0
2270  */
2271 static int worker_thread(void *__worker)
2272 {
2273 	struct worker *worker = __worker;
2274 	struct worker_pool *pool = worker->pool;
2275 
2276 	/* tell the scheduler that this is a workqueue worker */
2277 	worker->task->flags |= PF_WQ_WORKER;
2278 woke_up:
2279 	spin_lock_irq(&pool->lock);
2280 
2281 	/* am I supposed to die? */
2282 	if (unlikely(worker->flags & WORKER_DIE)) {
2283 		spin_unlock_irq(&pool->lock);
2284 		WARN_ON_ONCE(!list_empty(&worker->entry));
2285 		worker->task->flags &= ~PF_WQ_WORKER;
2286 		return 0;
2287 	}
2288 
2289 	worker_leave_idle(worker);
2290 recheck:
2291 	/* no more worker necessary? */
2292 	if (!need_more_worker(pool))
2293 		goto sleep;
2294 
2295 	/* do we need to manage? */
2296 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2297 		goto recheck;
2298 
2299 	/*
2300 	 * ->scheduled list can only be filled while a worker is
2301 	 * preparing to process a work or actually processing it.
2302 	 * Make sure nobody diddled with it while I was sleeping.
2303 	 */
2304 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2305 
2306 	/*
2307 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2308 	 * worker or that someone else has already assumed the manager
2309 	 * role.  This is where @worker starts participating in concurrency
2310 	 * management if applicable and concurrency management is restored
2311 	 * after being rebound.  See rebind_workers() for details.
2312 	 */
2313 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2314 
2315 	do {
2316 		struct work_struct *work =
2317 			list_first_entry(&pool->worklist,
2318 					 struct work_struct, entry);
2319 
2320 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2321 			/* optimization path, not strictly necessary */
2322 			process_one_work(worker, work);
2323 			if (unlikely(!list_empty(&worker->scheduled)))
2324 				process_scheduled_works(worker);
2325 		} else {
2326 			move_linked_works(work, &worker->scheduled, NULL);
2327 			process_scheduled_works(worker);
2328 		}
2329 	} while (keep_working(pool));
2330 
2331 	worker_set_flags(worker, WORKER_PREP, false);
2332 sleep:
2333 	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2334 		goto recheck;
2335 
2336 	/*
2337 	 * pool->lock is held and there's no work to process and no need to
2338 	 * manage, sleep.  Workers are woken up only while holding
2339 	 * pool->lock or from local cpu, so setting the current state
2340 	 * before releasing pool->lock is enough to prevent losing any
2341 	 * event.
2342 	 */
2343 	worker_enter_idle(worker);
2344 	__set_current_state(TASK_INTERRUPTIBLE);
2345 	spin_unlock_irq(&pool->lock);
2346 	schedule();
2347 	goto woke_up;
2348 }
2349 
2350 /**
2351  * rescuer_thread - the rescuer thread function
2352  * @__rescuer: self
2353  *
2354  * Workqueue rescuer thread function.  There's one rescuer for each
2355  * workqueue which has WQ_MEM_RECLAIM set.
2356  *
2357  * Regular work processing on a pool may block trying to create a new
2358  * worker which uses GFP_KERNEL allocation which has slight chance of
2359  * developing into deadlock if some works currently on the same queue
2360  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2361  * the problem rescuer solves.
2362  *
2363  * When such condition is possible, the pool summons rescuers of all
2364  * workqueues which have works queued on the pool and let them process
2365  * those works so that forward progress can be guaranteed.
2366  *
2367  * This should happen rarely.
2368  *
2369  * Return: 0
2370  */
2371 static int rescuer_thread(void *__rescuer)
2372 {
2373 	struct worker *rescuer = __rescuer;
2374 	struct workqueue_struct *wq = rescuer->rescue_wq;
2375 	struct list_head *scheduled = &rescuer->scheduled;
2376 
2377 	set_user_nice(current, RESCUER_NICE_LEVEL);
2378 
2379 	/*
2380 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2381 	 * doesn't participate in concurrency management.
2382 	 */
2383 	rescuer->task->flags |= PF_WQ_WORKER;
2384 repeat:
2385 	set_current_state(TASK_INTERRUPTIBLE);
2386 
2387 	if (kthread_should_stop()) {
2388 		__set_current_state(TASK_RUNNING);
2389 		rescuer->task->flags &= ~PF_WQ_WORKER;
2390 		return 0;
2391 	}
2392 
2393 	/* see whether any pwq is asking for help */
2394 	spin_lock_irq(&wq_mayday_lock);
2395 
2396 	while (!list_empty(&wq->maydays)) {
2397 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2398 					struct pool_workqueue, mayday_node);
2399 		struct worker_pool *pool = pwq->pool;
2400 		struct work_struct *work, *n;
2401 
2402 		__set_current_state(TASK_RUNNING);
2403 		list_del_init(&pwq->mayday_node);
2404 
2405 		spin_unlock_irq(&wq_mayday_lock);
2406 
2407 		/* migrate to the target cpu if possible */
2408 		worker_maybe_bind_and_lock(pool);
2409 		rescuer->pool = pool;
2410 
2411 		/*
2412 		 * Slurp in all works issued via this workqueue and
2413 		 * process'em.
2414 		 */
2415 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2416 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2417 			if (get_work_pwq(work) == pwq)
2418 				move_linked_works(work, scheduled, &n);
2419 
2420 		process_scheduled_works(rescuer);
2421 
2422 		/*
2423 		 * Leave this pool.  If keep_working() is %true, notify a
2424 		 * regular worker; otherwise, we end up with 0 concurrency
2425 		 * and stalling the execution.
2426 		 */
2427 		if (keep_working(pool))
2428 			wake_up_worker(pool);
2429 
2430 		rescuer->pool = NULL;
2431 		spin_unlock(&pool->lock);
2432 		spin_lock(&wq_mayday_lock);
2433 	}
2434 
2435 	spin_unlock_irq(&wq_mayday_lock);
2436 
2437 	/* rescuers should never participate in concurrency management */
2438 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2439 	schedule();
2440 	goto repeat;
2441 }
2442 
2443 struct wq_barrier {
2444 	struct work_struct	work;
2445 	struct completion	done;
2446 };
2447 
2448 static void wq_barrier_func(struct work_struct *work)
2449 {
2450 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2451 	complete(&barr->done);
2452 }
2453 
2454 /**
2455  * insert_wq_barrier - insert a barrier work
2456  * @pwq: pwq to insert barrier into
2457  * @barr: wq_barrier to insert
2458  * @target: target work to attach @barr to
2459  * @worker: worker currently executing @target, NULL if @target is not executing
2460  *
2461  * @barr is linked to @target such that @barr is completed only after
2462  * @target finishes execution.  Please note that the ordering
2463  * guarantee is observed only with respect to @target and on the local
2464  * cpu.
2465  *
2466  * Currently, a queued barrier can't be canceled.  This is because
2467  * try_to_grab_pending() can't determine whether the work to be
2468  * grabbed is at the head of the queue and thus can't clear LINKED
2469  * flag of the previous work while there must be a valid next work
2470  * after a work with LINKED flag set.
2471  *
2472  * Note that when @worker is non-NULL, @target may be modified
2473  * underneath us, so we can't reliably determine pwq from @target.
2474  *
2475  * CONTEXT:
2476  * spin_lock_irq(pool->lock).
2477  */
2478 static void insert_wq_barrier(struct pool_workqueue *pwq,
2479 			      struct wq_barrier *barr,
2480 			      struct work_struct *target, struct worker *worker)
2481 {
2482 	struct list_head *head;
2483 	unsigned int linked = 0;
2484 
2485 	/*
2486 	 * debugobject calls are safe here even with pool->lock locked
2487 	 * as we know for sure that this will not trigger any of the
2488 	 * checks and call back into the fixup functions where we
2489 	 * might deadlock.
2490 	 */
2491 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2492 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2493 	init_completion(&barr->done);
2494 
2495 	/*
2496 	 * If @target is currently being executed, schedule the
2497 	 * barrier to the worker; otherwise, put it after @target.
2498 	 */
2499 	if (worker)
2500 		head = worker->scheduled.next;
2501 	else {
2502 		unsigned long *bits = work_data_bits(target);
2503 
2504 		head = target->entry.next;
2505 		/* there can already be other linked works, inherit and set */
2506 		linked = *bits & WORK_STRUCT_LINKED;
2507 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2508 	}
2509 
2510 	debug_work_activate(&barr->work);
2511 	insert_work(pwq, &barr->work, head,
2512 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2513 }
2514 
2515 /**
2516  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2517  * @wq: workqueue being flushed
2518  * @flush_color: new flush color, < 0 for no-op
2519  * @work_color: new work color, < 0 for no-op
2520  *
2521  * Prepare pwqs for workqueue flushing.
2522  *
2523  * If @flush_color is non-negative, flush_color on all pwqs should be
2524  * -1.  If no pwq has in-flight commands at the specified color, all
2525  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2526  * has in flight commands, its pwq->flush_color is set to
2527  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2528  * wakeup logic is armed and %true is returned.
2529  *
2530  * The caller should have initialized @wq->first_flusher prior to
2531  * calling this function with non-negative @flush_color.  If
2532  * @flush_color is negative, no flush color update is done and %false
2533  * is returned.
2534  *
2535  * If @work_color is non-negative, all pwqs should have the same
2536  * work_color which is previous to @work_color and all will be
2537  * advanced to @work_color.
2538  *
2539  * CONTEXT:
2540  * mutex_lock(wq->mutex).
2541  *
2542  * Return:
2543  * %true if @flush_color >= 0 and there's something to flush.  %false
2544  * otherwise.
2545  */
2546 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2547 				      int flush_color, int work_color)
2548 {
2549 	bool wait = false;
2550 	struct pool_workqueue *pwq;
2551 
2552 	if (flush_color >= 0) {
2553 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2554 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2555 	}
2556 
2557 	for_each_pwq(pwq, wq) {
2558 		struct worker_pool *pool = pwq->pool;
2559 
2560 		spin_lock_irq(&pool->lock);
2561 
2562 		if (flush_color >= 0) {
2563 			WARN_ON_ONCE(pwq->flush_color != -1);
2564 
2565 			if (pwq->nr_in_flight[flush_color]) {
2566 				pwq->flush_color = flush_color;
2567 				atomic_inc(&wq->nr_pwqs_to_flush);
2568 				wait = true;
2569 			}
2570 		}
2571 
2572 		if (work_color >= 0) {
2573 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2574 			pwq->work_color = work_color;
2575 		}
2576 
2577 		spin_unlock_irq(&pool->lock);
2578 	}
2579 
2580 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2581 		complete(&wq->first_flusher->done);
2582 
2583 	return wait;
2584 }
2585 
2586 /**
2587  * flush_workqueue - ensure that any scheduled work has run to completion.
2588  * @wq: workqueue to flush
2589  *
2590  * This function sleeps until all work items which were queued on entry
2591  * have finished execution, but it is not livelocked by new incoming ones.
2592  */
2593 void flush_workqueue(struct workqueue_struct *wq)
2594 {
2595 	struct wq_flusher this_flusher = {
2596 		.list = LIST_HEAD_INIT(this_flusher.list),
2597 		.flush_color = -1,
2598 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2599 	};
2600 	int next_color;
2601 
2602 	lock_map_acquire(&wq->lockdep_map);
2603 	lock_map_release(&wq->lockdep_map);
2604 
2605 	mutex_lock(&wq->mutex);
2606 
2607 	/*
2608 	 * Start-to-wait phase
2609 	 */
2610 	next_color = work_next_color(wq->work_color);
2611 
2612 	if (next_color != wq->flush_color) {
2613 		/*
2614 		 * Color space is not full.  The current work_color
2615 		 * becomes our flush_color and work_color is advanced
2616 		 * by one.
2617 		 */
2618 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2619 		this_flusher.flush_color = wq->work_color;
2620 		wq->work_color = next_color;
2621 
2622 		if (!wq->first_flusher) {
2623 			/* no flush in progress, become the first flusher */
2624 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2625 
2626 			wq->first_flusher = &this_flusher;
2627 
2628 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2629 						       wq->work_color)) {
2630 				/* nothing to flush, done */
2631 				wq->flush_color = next_color;
2632 				wq->first_flusher = NULL;
2633 				goto out_unlock;
2634 			}
2635 		} else {
2636 			/* wait in queue */
2637 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2638 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2639 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2640 		}
2641 	} else {
2642 		/*
2643 		 * Oops, color space is full, wait on overflow queue.
2644 		 * The next flush completion will assign us
2645 		 * flush_color and transfer to flusher_queue.
2646 		 */
2647 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2648 	}
2649 
2650 	mutex_unlock(&wq->mutex);
2651 
2652 	wait_for_completion(&this_flusher.done);
2653 
2654 	/*
2655 	 * Wake-up-and-cascade phase
2656 	 *
2657 	 * First flushers are responsible for cascading flushes and
2658 	 * handling overflow.  Non-first flushers can simply return.
2659 	 */
2660 	if (wq->first_flusher != &this_flusher)
2661 		return;
2662 
2663 	mutex_lock(&wq->mutex);
2664 
2665 	/* we might have raced, check again with mutex held */
2666 	if (wq->first_flusher != &this_flusher)
2667 		goto out_unlock;
2668 
2669 	wq->first_flusher = NULL;
2670 
2671 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2672 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2673 
2674 	while (true) {
2675 		struct wq_flusher *next, *tmp;
2676 
2677 		/* complete all the flushers sharing the current flush color */
2678 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2679 			if (next->flush_color != wq->flush_color)
2680 				break;
2681 			list_del_init(&next->list);
2682 			complete(&next->done);
2683 		}
2684 
2685 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2686 			     wq->flush_color != work_next_color(wq->work_color));
2687 
2688 		/* this flush_color is finished, advance by one */
2689 		wq->flush_color = work_next_color(wq->flush_color);
2690 
2691 		/* one color has been freed, handle overflow queue */
2692 		if (!list_empty(&wq->flusher_overflow)) {
2693 			/*
2694 			 * Assign the same color to all overflowed
2695 			 * flushers, advance work_color and append to
2696 			 * flusher_queue.  This is the start-to-wait
2697 			 * phase for these overflowed flushers.
2698 			 */
2699 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2700 				tmp->flush_color = wq->work_color;
2701 
2702 			wq->work_color = work_next_color(wq->work_color);
2703 
2704 			list_splice_tail_init(&wq->flusher_overflow,
2705 					      &wq->flusher_queue);
2706 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2707 		}
2708 
2709 		if (list_empty(&wq->flusher_queue)) {
2710 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2711 			break;
2712 		}
2713 
2714 		/*
2715 		 * Need to flush more colors.  Make the next flusher
2716 		 * the new first flusher and arm pwqs.
2717 		 */
2718 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2719 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2720 
2721 		list_del_init(&next->list);
2722 		wq->first_flusher = next;
2723 
2724 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2725 			break;
2726 
2727 		/*
2728 		 * Meh... this color is already done, clear first
2729 		 * flusher and repeat cascading.
2730 		 */
2731 		wq->first_flusher = NULL;
2732 	}
2733 
2734 out_unlock:
2735 	mutex_unlock(&wq->mutex);
2736 }
2737 EXPORT_SYMBOL_GPL(flush_workqueue);
2738 
2739 /**
2740  * drain_workqueue - drain a workqueue
2741  * @wq: workqueue to drain
2742  *
2743  * Wait until the workqueue becomes empty.  While draining is in progress,
2744  * only chain queueing is allowed.  IOW, only currently pending or running
2745  * work items on @wq can queue further work items on it.  @wq is flushed
2746  * repeatedly until it becomes empty.  The number of flushing is detemined
2747  * by the depth of chaining and should be relatively short.  Whine if it
2748  * takes too long.
2749  */
2750 void drain_workqueue(struct workqueue_struct *wq)
2751 {
2752 	unsigned int flush_cnt = 0;
2753 	struct pool_workqueue *pwq;
2754 
2755 	/*
2756 	 * __queue_work() needs to test whether there are drainers, is much
2757 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2758 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2759 	 */
2760 	mutex_lock(&wq->mutex);
2761 	if (!wq->nr_drainers++)
2762 		wq->flags |= __WQ_DRAINING;
2763 	mutex_unlock(&wq->mutex);
2764 reflush:
2765 	flush_workqueue(wq);
2766 
2767 	mutex_lock(&wq->mutex);
2768 
2769 	for_each_pwq(pwq, wq) {
2770 		bool drained;
2771 
2772 		spin_lock_irq(&pwq->pool->lock);
2773 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2774 		spin_unlock_irq(&pwq->pool->lock);
2775 
2776 		if (drained)
2777 			continue;
2778 
2779 		if (++flush_cnt == 10 ||
2780 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2781 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2782 				wq->name, flush_cnt);
2783 
2784 		mutex_unlock(&wq->mutex);
2785 		goto reflush;
2786 	}
2787 
2788 	if (!--wq->nr_drainers)
2789 		wq->flags &= ~__WQ_DRAINING;
2790 	mutex_unlock(&wq->mutex);
2791 }
2792 EXPORT_SYMBOL_GPL(drain_workqueue);
2793 
2794 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2795 {
2796 	struct worker *worker = NULL;
2797 	struct worker_pool *pool;
2798 	struct pool_workqueue *pwq;
2799 
2800 	might_sleep();
2801 
2802 	local_irq_disable();
2803 	pool = get_work_pool(work);
2804 	if (!pool) {
2805 		local_irq_enable();
2806 		return false;
2807 	}
2808 
2809 	spin_lock(&pool->lock);
2810 	/* see the comment in try_to_grab_pending() with the same code */
2811 	pwq = get_work_pwq(work);
2812 	if (pwq) {
2813 		if (unlikely(pwq->pool != pool))
2814 			goto already_gone;
2815 	} else {
2816 		worker = find_worker_executing_work(pool, work);
2817 		if (!worker)
2818 			goto already_gone;
2819 		pwq = worker->current_pwq;
2820 	}
2821 
2822 	insert_wq_barrier(pwq, barr, work, worker);
2823 	spin_unlock_irq(&pool->lock);
2824 
2825 	/*
2826 	 * If @max_active is 1 or rescuer is in use, flushing another work
2827 	 * item on the same workqueue may lead to deadlock.  Make sure the
2828 	 * flusher is not running on the same workqueue by verifying write
2829 	 * access.
2830 	 */
2831 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2832 		lock_map_acquire(&pwq->wq->lockdep_map);
2833 	else
2834 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2835 	lock_map_release(&pwq->wq->lockdep_map);
2836 
2837 	return true;
2838 already_gone:
2839 	spin_unlock_irq(&pool->lock);
2840 	return false;
2841 }
2842 
2843 static bool __flush_work(struct work_struct *work)
2844 {
2845 	struct wq_barrier barr;
2846 
2847 	if (start_flush_work(work, &barr)) {
2848 		wait_for_completion(&barr.done);
2849 		destroy_work_on_stack(&barr.work);
2850 		return true;
2851 	} else {
2852 		return false;
2853 	}
2854 }
2855 
2856 /**
2857  * flush_work - wait for a work to finish executing the last queueing instance
2858  * @work: the work to flush
2859  *
2860  * Wait until @work has finished execution.  @work is guaranteed to be idle
2861  * on return if it hasn't been requeued since flush started.
2862  *
2863  * Return:
2864  * %true if flush_work() waited for the work to finish execution,
2865  * %false if it was already idle.
2866  */
2867 bool flush_work(struct work_struct *work)
2868 {
2869 	lock_map_acquire(&work->lockdep_map);
2870 	lock_map_release(&work->lockdep_map);
2871 
2872 	return __flush_work(work);
2873 }
2874 EXPORT_SYMBOL_GPL(flush_work);
2875 
2876 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2877 {
2878 	unsigned long flags;
2879 	int ret;
2880 
2881 	do {
2882 		ret = try_to_grab_pending(work, is_dwork, &flags);
2883 		/*
2884 		 * If someone else is canceling, wait for the same event it
2885 		 * would be waiting for before retrying.
2886 		 */
2887 		if (unlikely(ret == -ENOENT))
2888 			flush_work(work);
2889 	} while (unlikely(ret < 0));
2890 
2891 	/* tell other tasks trying to grab @work to back off */
2892 	mark_work_canceling(work);
2893 	local_irq_restore(flags);
2894 
2895 	flush_work(work);
2896 	clear_work_data(work);
2897 	return ret;
2898 }
2899 
2900 /**
2901  * cancel_work_sync - cancel a work and wait for it to finish
2902  * @work: the work to cancel
2903  *
2904  * Cancel @work and wait for its execution to finish.  This function
2905  * can be used even if the work re-queues itself or migrates to
2906  * another workqueue.  On return from this function, @work is
2907  * guaranteed to be not pending or executing on any CPU.
2908  *
2909  * cancel_work_sync(&delayed_work->work) must not be used for
2910  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2911  *
2912  * The caller must ensure that the workqueue on which @work was last
2913  * queued can't be destroyed before this function returns.
2914  *
2915  * Return:
2916  * %true if @work was pending, %false otherwise.
2917  */
2918 bool cancel_work_sync(struct work_struct *work)
2919 {
2920 	return __cancel_work_timer(work, false);
2921 }
2922 EXPORT_SYMBOL_GPL(cancel_work_sync);
2923 
2924 /**
2925  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2926  * @dwork: the delayed work to flush
2927  *
2928  * Delayed timer is cancelled and the pending work is queued for
2929  * immediate execution.  Like flush_work(), this function only
2930  * considers the last queueing instance of @dwork.
2931  *
2932  * Return:
2933  * %true if flush_work() waited for the work to finish execution,
2934  * %false if it was already idle.
2935  */
2936 bool flush_delayed_work(struct delayed_work *dwork)
2937 {
2938 	local_irq_disable();
2939 	if (del_timer_sync(&dwork->timer))
2940 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2941 	local_irq_enable();
2942 	return flush_work(&dwork->work);
2943 }
2944 EXPORT_SYMBOL(flush_delayed_work);
2945 
2946 /**
2947  * cancel_delayed_work - cancel a delayed work
2948  * @dwork: delayed_work to cancel
2949  *
2950  * Kill off a pending delayed_work.
2951  *
2952  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2953  * pending.
2954  *
2955  * Note:
2956  * The work callback function may still be running on return, unless
2957  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2958  * use cancel_delayed_work_sync() to wait on it.
2959  *
2960  * This function is safe to call from any context including IRQ handler.
2961  */
2962 bool cancel_delayed_work(struct delayed_work *dwork)
2963 {
2964 	unsigned long flags;
2965 	int ret;
2966 
2967 	do {
2968 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2969 	} while (unlikely(ret == -EAGAIN));
2970 
2971 	if (unlikely(ret < 0))
2972 		return false;
2973 
2974 	set_work_pool_and_clear_pending(&dwork->work,
2975 					get_work_pool_id(&dwork->work));
2976 	local_irq_restore(flags);
2977 	return ret;
2978 }
2979 EXPORT_SYMBOL(cancel_delayed_work);
2980 
2981 /**
2982  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2983  * @dwork: the delayed work cancel
2984  *
2985  * This is cancel_work_sync() for delayed works.
2986  *
2987  * Return:
2988  * %true if @dwork was pending, %false otherwise.
2989  */
2990 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2991 {
2992 	return __cancel_work_timer(&dwork->work, true);
2993 }
2994 EXPORT_SYMBOL(cancel_delayed_work_sync);
2995 
2996 /**
2997  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2998  * @func: the function to call
2999  *
3000  * schedule_on_each_cpu() executes @func on each online CPU using the
3001  * system workqueue and blocks until all CPUs have completed.
3002  * schedule_on_each_cpu() is very slow.
3003  *
3004  * Return:
3005  * 0 on success, -errno on failure.
3006  */
3007 int schedule_on_each_cpu(work_func_t func)
3008 {
3009 	int cpu;
3010 	struct work_struct __percpu *works;
3011 
3012 	works = alloc_percpu(struct work_struct);
3013 	if (!works)
3014 		return -ENOMEM;
3015 
3016 	get_online_cpus();
3017 
3018 	for_each_online_cpu(cpu) {
3019 		struct work_struct *work = per_cpu_ptr(works, cpu);
3020 
3021 		INIT_WORK(work, func);
3022 		schedule_work_on(cpu, work);
3023 	}
3024 
3025 	for_each_online_cpu(cpu)
3026 		flush_work(per_cpu_ptr(works, cpu));
3027 
3028 	put_online_cpus();
3029 	free_percpu(works);
3030 	return 0;
3031 }
3032 
3033 /**
3034  * flush_scheduled_work - ensure that any scheduled work has run to completion.
3035  *
3036  * Forces execution of the kernel-global workqueue and blocks until its
3037  * completion.
3038  *
3039  * Think twice before calling this function!  It's very easy to get into
3040  * trouble if you don't take great care.  Either of the following situations
3041  * will lead to deadlock:
3042  *
3043  *	One of the work items currently on the workqueue needs to acquire
3044  *	a lock held by your code or its caller.
3045  *
3046  *	Your code is running in the context of a work routine.
3047  *
3048  * They will be detected by lockdep when they occur, but the first might not
3049  * occur very often.  It depends on what work items are on the workqueue and
3050  * what locks they need, which you have no control over.
3051  *
3052  * In most situations flushing the entire workqueue is overkill; you merely
3053  * need to know that a particular work item isn't queued and isn't running.
3054  * In such cases you should use cancel_delayed_work_sync() or
3055  * cancel_work_sync() instead.
3056  */
3057 void flush_scheduled_work(void)
3058 {
3059 	flush_workqueue(system_wq);
3060 }
3061 EXPORT_SYMBOL(flush_scheduled_work);
3062 
3063 /**
3064  * execute_in_process_context - reliably execute the routine with user context
3065  * @fn:		the function to execute
3066  * @ew:		guaranteed storage for the execute work structure (must
3067  *		be available when the work executes)
3068  *
3069  * Executes the function immediately if process context is available,
3070  * otherwise schedules the function for delayed execution.
3071  *
3072  * Return:	0 - function was executed
3073  *		1 - function was scheduled for execution
3074  */
3075 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3076 {
3077 	if (!in_interrupt()) {
3078 		fn(&ew->work);
3079 		return 0;
3080 	}
3081 
3082 	INIT_WORK(&ew->work, fn);
3083 	schedule_work(&ew->work);
3084 
3085 	return 1;
3086 }
3087 EXPORT_SYMBOL_GPL(execute_in_process_context);
3088 
3089 #ifdef CONFIG_SYSFS
3090 /*
3091  * Workqueues with WQ_SYSFS flag set is visible to userland via
3092  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
3093  * following attributes.
3094  *
3095  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
3096  *  max_active	RW int	: maximum number of in-flight work items
3097  *
3098  * Unbound workqueues have the following extra attributes.
3099  *
3100  *  id		RO int	: the associated pool ID
3101  *  nice	RW int	: nice value of the workers
3102  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
3103  */
3104 struct wq_device {
3105 	struct workqueue_struct		*wq;
3106 	struct device			dev;
3107 };
3108 
3109 static struct workqueue_struct *dev_to_wq(struct device *dev)
3110 {
3111 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3112 
3113 	return wq_dev->wq;
3114 }
3115 
3116 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3117 			    char *buf)
3118 {
3119 	struct workqueue_struct *wq = dev_to_wq(dev);
3120 
3121 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3122 }
3123 static DEVICE_ATTR_RO(per_cpu);
3124 
3125 static ssize_t max_active_show(struct device *dev,
3126 			       struct device_attribute *attr, char *buf)
3127 {
3128 	struct workqueue_struct *wq = dev_to_wq(dev);
3129 
3130 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3131 }
3132 
3133 static ssize_t max_active_store(struct device *dev,
3134 				struct device_attribute *attr, const char *buf,
3135 				size_t count)
3136 {
3137 	struct workqueue_struct *wq = dev_to_wq(dev);
3138 	int val;
3139 
3140 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3141 		return -EINVAL;
3142 
3143 	workqueue_set_max_active(wq, val);
3144 	return count;
3145 }
3146 static DEVICE_ATTR_RW(max_active);
3147 
3148 static struct attribute *wq_sysfs_attrs[] = {
3149 	&dev_attr_per_cpu.attr,
3150 	&dev_attr_max_active.attr,
3151 	NULL,
3152 };
3153 ATTRIBUTE_GROUPS(wq_sysfs);
3154 
3155 static ssize_t wq_pool_ids_show(struct device *dev,
3156 				struct device_attribute *attr, char *buf)
3157 {
3158 	struct workqueue_struct *wq = dev_to_wq(dev);
3159 	const char *delim = "";
3160 	int node, written = 0;
3161 
3162 	rcu_read_lock_sched();
3163 	for_each_node(node) {
3164 		written += scnprintf(buf + written, PAGE_SIZE - written,
3165 				     "%s%d:%d", delim, node,
3166 				     unbound_pwq_by_node(wq, node)->pool->id);
3167 		delim = " ";
3168 	}
3169 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3170 	rcu_read_unlock_sched();
3171 
3172 	return written;
3173 }
3174 
3175 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3176 			    char *buf)
3177 {
3178 	struct workqueue_struct *wq = dev_to_wq(dev);
3179 	int written;
3180 
3181 	mutex_lock(&wq->mutex);
3182 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3183 	mutex_unlock(&wq->mutex);
3184 
3185 	return written;
3186 }
3187 
3188 /* prepare workqueue_attrs for sysfs store operations */
3189 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3190 {
3191 	struct workqueue_attrs *attrs;
3192 
3193 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
3194 	if (!attrs)
3195 		return NULL;
3196 
3197 	mutex_lock(&wq->mutex);
3198 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
3199 	mutex_unlock(&wq->mutex);
3200 	return attrs;
3201 }
3202 
3203 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3204 			     const char *buf, size_t count)
3205 {
3206 	struct workqueue_struct *wq = dev_to_wq(dev);
3207 	struct workqueue_attrs *attrs;
3208 	int ret;
3209 
3210 	attrs = wq_sysfs_prep_attrs(wq);
3211 	if (!attrs)
3212 		return -ENOMEM;
3213 
3214 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3215 	    attrs->nice >= -20 && attrs->nice <= 19)
3216 		ret = apply_workqueue_attrs(wq, attrs);
3217 	else
3218 		ret = -EINVAL;
3219 
3220 	free_workqueue_attrs(attrs);
3221 	return ret ?: count;
3222 }
3223 
3224 static ssize_t wq_cpumask_show(struct device *dev,
3225 			       struct device_attribute *attr, char *buf)
3226 {
3227 	struct workqueue_struct *wq = dev_to_wq(dev);
3228 	int written;
3229 
3230 	mutex_lock(&wq->mutex);
3231 	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3232 	mutex_unlock(&wq->mutex);
3233 
3234 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3235 	return written;
3236 }
3237 
3238 static ssize_t wq_cpumask_store(struct device *dev,
3239 				struct device_attribute *attr,
3240 				const char *buf, size_t count)
3241 {
3242 	struct workqueue_struct *wq = dev_to_wq(dev);
3243 	struct workqueue_attrs *attrs;
3244 	int ret;
3245 
3246 	attrs = wq_sysfs_prep_attrs(wq);
3247 	if (!attrs)
3248 		return -ENOMEM;
3249 
3250 	ret = cpumask_parse(buf, attrs->cpumask);
3251 	if (!ret)
3252 		ret = apply_workqueue_attrs(wq, attrs);
3253 
3254 	free_workqueue_attrs(attrs);
3255 	return ret ?: count;
3256 }
3257 
3258 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3259 			    char *buf)
3260 {
3261 	struct workqueue_struct *wq = dev_to_wq(dev);
3262 	int written;
3263 
3264 	mutex_lock(&wq->mutex);
3265 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
3266 			    !wq->unbound_attrs->no_numa);
3267 	mutex_unlock(&wq->mutex);
3268 
3269 	return written;
3270 }
3271 
3272 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3273 			     const char *buf, size_t count)
3274 {
3275 	struct workqueue_struct *wq = dev_to_wq(dev);
3276 	struct workqueue_attrs *attrs;
3277 	int v, ret;
3278 
3279 	attrs = wq_sysfs_prep_attrs(wq);
3280 	if (!attrs)
3281 		return -ENOMEM;
3282 
3283 	ret = -EINVAL;
3284 	if (sscanf(buf, "%d", &v) == 1) {
3285 		attrs->no_numa = !v;
3286 		ret = apply_workqueue_attrs(wq, attrs);
3287 	}
3288 
3289 	free_workqueue_attrs(attrs);
3290 	return ret ?: count;
3291 }
3292 
3293 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3294 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3295 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3296 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3297 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3298 	__ATTR_NULL,
3299 };
3300 
3301 static struct bus_type wq_subsys = {
3302 	.name				= "workqueue",
3303 	.dev_groups			= wq_sysfs_groups,
3304 };
3305 
3306 static int __init wq_sysfs_init(void)
3307 {
3308 	return subsys_virtual_register(&wq_subsys, NULL);
3309 }
3310 core_initcall(wq_sysfs_init);
3311 
3312 static void wq_device_release(struct device *dev)
3313 {
3314 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3315 
3316 	kfree(wq_dev);
3317 }
3318 
3319 /**
3320  * workqueue_sysfs_register - make a workqueue visible in sysfs
3321  * @wq: the workqueue to register
3322  *
3323  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3324  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3325  * which is the preferred method.
3326  *
3327  * Workqueue user should use this function directly iff it wants to apply
3328  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3329  * apply_workqueue_attrs() may race against userland updating the
3330  * attributes.
3331  *
3332  * Return: 0 on success, -errno on failure.
3333  */
3334 int workqueue_sysfs_register(struct workqueue_struct *wq)
3335 {
3336 	struct wq_device *wq_dev;
3337 	int ret;
3338 
3339 	/*
3340 	 * Adjusting max_active or creating new pwqs by applyting
3341 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
3342 	 * workqueues.
3343 	 */
3344 	if (WARN_ON(wq->flags & __WQ_ORDERED))
3345 		return -EINVAL;
3346 
3347 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3348 	if (!wq_dev)
3349 		return -ENOMEM;
3350 
3351 	wq_dev->wq = wq;
3352 	wq_dev->dev.bus = &wq_subsys;
3353 	wq_dev->dev.init_name = wq->name;
3354 	wq_dev->dev.release = wq_device_release;
3355 
3356 	/*
3357 	 * unbound_attrs are created separately.  Suppress uevent until
3358 	 * everything is ready.
3359 	 */
3360 	dev_set_uevent_suppress(&wq_dev->dev, true);
3361 
3362 	ret = device_register(&wq_dev->dev);
3363 	if (ret) {
3364 		kfree(wq_dev);
3365 		wq->wq_dev = NULL;
3366 		return ret;
3367 	}
3368 
3369 	if (wq->flags & WQ_UNBOUND) {
3370 		struct device_attribute *attr;
3371 
3372 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3373 			ret = device_create_file(&wq_dev->dev, attr);
3374 			if (ret) {
3375 				device_unregister(&wq_dev->dev);
3376 				wq->wq_dev = NULL;
3377 				return ret;
3378 			}
3379 		}
3380 	}
3381 
3382 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3383 	return 0;
3384 }
3385 
3386 /**
3387  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3388  * @wq: the workqueue to unregister
3389  *
3390  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3391  */
3392 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3393 {
3394 	struct wq_device *wq_dev = wq->wq_dev;
3395 
3396 	if (!wq->wq_dev)
3397 		return;
3398 
3399 	wq->wq_dev = NULL;
3400 	device_unregister(&wq_dev->dev);
3401 }
3402 #else	/* CONFIG_SYSFS */
3403 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
3404 #endif	/* CONFIG_SYSFS */
3405 
3406 /**
3407  * free_workqueue_attrs - free a workqueue_attrs
3408  * @attrs: workqueue_attrs to free
3409  *
3410  * Undo alloc_workqueue_attrs().
3411  */
3412 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3413 {
3414 	if (attrs) {
3415 		free_cpumask_var(attrs->cpumask);
3416 		kfree(attrs);
3417 	}
3418 }
3419 
3420 /**
3421  * alloc_workqueue_attrs - allocate a workqueue_attrs
3422  * @gfp_mask: allocation mask to use
3423  *
3424  * Allocate a new workqueue_attrs, initialize with default settings and
3425  * return it.
3426  *
3427  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3428  */
3429 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3430 {
3431 	struct workqueue_attrs *attrs;
3432 
3433 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3434 	if (!attrs)
3435 		goto fail;
3436 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3437 		goto fail;
3438 
3439 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3440 	return attrs;
3441 fail:
3442 	free_workqueue_attrs(attrs);
3443 	return NULL;
3444 }
3445 
3446 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3447 				 const struct workqueue_attrs *from)
3448 {
3449 	to->nice = from->nice;
3450 	cpumask_copy(to->cpumask, from->cpumask);
3451 	/*
3452 	 * Unlike hash and equality test, this function doesn't ignore
3453 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3454 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3455 	 */
3456 	to->no_numa = from->no_numa;
3457 }
3458 
3459 /* hash value of the content of @attr */
3460 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3461 {
3462 	u32 hash = 0;
3463 
3464 	hash = jhash_1word(attrs->nice, hash);
3465 	hash = jhash(cpumask_bits(attrs->cpumask),
3466 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3467 	return hash;
3468 }
3469 
3470 /* content equality test */
3471 static bool wqattrs_equal(const struct workqueue_attrs *a,
3472 			  const struct workqueue_attrs *b)
3473 {
3474 	if (a->nice != b->nice)
3475 		return false;
3476 	if (!cpumask_equal(a->cpumask, b->cpumask))
3477 		return false;
3478 	return true;
3479 }
3480 
3481 /**
3482  * init_worker_pool - initialize a newly zalloc'd worker_pool
3483  * @pool: worker_pool to initialize
3484  *
3485  * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3486  *
3487  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3488  * inside @pool proper are initialized and put_unbound_pool() can be called
3489  * on @pool safely to release it.
3490  */
3491 static int init_worker_pool(struct worker_pool *pool)
3492 {
3493 	spin_lock_init(&pool->lock);
3494 	pool->id = -1;
3495 	pool->cpu = -1;
3496 	pool->node = NUMA_NO_NODE;
3497 	pool->flags |= POOL_DISASSOCIATED;
3498 	INIT_LIST_HEAD(&pool->worklist);
3499 	INIT_LIST_HEAD(&pool->idle_list);
3500 	hash_init(pool->busy_hash);
3501 
3502 	init_timer_deferrable(&pool->idle_timer);
3503 	pool->idle_timer.function = idle_worker_timeout;
3504 	pool->idle_timer.data = (unsigned long)pool;
3505 
3506 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3507 		    (unsigned long)pool);
3508 
3509 	mutex_init(&pool->manager_arb);
3510 	mutex_init(&pool->manager_mutex);
3511 	idr_init(&pool->worker_idr);
3512 
3513 	INIT_HLIST_NODE(&pool->hash_node);
3514 	pool->refcnt = 1;
3515 
3516 	/* shouldn't fail above this point */
3517 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3518 	if (!pool->attrs)
3519 		return -ENOMEM;
3520 	return 0;
3521 }
3522 
3523 static void rcu_free_pool(struct rcu_head *rcu)
3524 {
3525 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3526 
3527 	idr_destroy(&pool->worker_idr);
3528 	free_workqueue_attrs(pool->attrs);
3529 	kfree(pool);
3530 }
3531 
3532 /**
3533  * put_unbound_pool - put a worker_pool
3534  * @pool: worker_pool to put
3535  *
3536  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3537  * safe manner.  get_unbound_pool() calls this function on its failure path
3538  * and this function should be able to release pools which went through,
3539  * successfully or not, init_worker_pool().
3540  *
3541  * Should be called with wq_pool_mutex held.
3542  */
3543 static void put_unbound_pool(struct worker_pool *pool)
3544 {
3545 	struct worker *worker;
3546 
3547 	lockdep_assert_held(&wq_pool_mutex);
3548 
3549 	if (--pool->refcnt)
3550 		return;
3551 
3552 	/* sanity checks */
3553 	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3554 	    WARN_ON(!list_empty(&pool->worklist)))
3555 		return;
3556 
3557 	/* release id and unhash */
3558 	if (pool->id >= 0)
3559 		idr_remove(&worker_pool_idr, pool->id);
3560 	hash_del(&pool->hash_node);
3561 
3562 	/*
3563 	 * Become the manager and destroy all workers.  Grabbing
3564 	 * manager_arb prevents @pool's workers from blocking on
3565 	 * manager_mutex.
3566 	 */
3567 	mutex_lock(&pool->manager_arb);
3568 	mutex_lock(&pool->manager_mutex);
3569 	spin_lock_irq(&pool->lock);
3570 
3571 	while ((worker = first_worker(pool)))
3572 		destroy_worker(worker);
3573 	WARN_ON(pool->nr_workers || pool->nr_idle);
3574 
3575 	spin_unlock_irq(&pool->lock);
3576 	mutex_unlock(&pool->manager_mutex);
3577 	mutex_unlock(&pool->manager_arb);
3578 
3579 	/* shut down the timers */
3580 	del_timer_sync(&pool->idle_timer);
3581 	del_timer_sync(&pool->mayday_timer);
3582 
3583 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3584 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3585 }
3586 
3587 /**
3588  * get_unbound_pool - get a worker_pool with the specified attributes
3589  * @attrs: the attributes of the worker_pool to get
3590  *
3591  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3592  * reference count and return it.  If there already is a matching
3593  * worker_pool, it will be used; otherwise, this function attempts to
3594  * create a new one.
3595  *
3596  * Should be called with wq_pool_mutex held.
3597  *
3598  * Return: On success, a worker_pool with the same attributes as @attrs.
3599  * On failure, %NULL.
3600  */
3601 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3602 {
3603 	u32 hash = wqattrs_hash(attrs);
3604 	struct worker_pool *pool;
3605 	int node;
3606 
3607 	lockdep_assert_held(&wq_pool_mutex);
3608 
3609 	/* do we already have a matching pool? */
3610 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3611 		if (wqattrs_equal(pool->attrs, attrs)) {
3612 			pool->refcnt++;
3613 			goto out_unlock;
3614 		}
3615 	}
3616 
3617 	/* nope, create a new one */
3618 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3619 	if (!pool || init_worker_pool(pool) < 0)
3620 		goto fail;
3621 
3622 	if (workqueue_freezing)
3623 		pool->flags |= POOL_FREEZING;
3624 
3625 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3626 	copy_workqueue_attrs(pool->attrs, attrs);
3627 
3628 	/*
3629 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3630 	 * 'struct workqueue_attrs' comments for detail.
3631 	 */
3632 	pool->attrs->no_numa = false;
3633 
3634 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3635 	if (wq_numa_enabled) {
3636 		for_each_node(node) {
3637 			if (cpumask_subset(pool->attrs->cpumask,
3638 					   wq_numa_possible_cpumask[node])) {
3639 				pool->node = node;
3640 				break;
3641 			}
3642 		}
3643 	}
3644 
3645 	if (worker_pool_assign_id(pool) < 0)
3646 		goto fail;
3647 
3648 	/* create and start the initial worker */
3649 	if (create_and_start_worker(pool) < 0)
3650 		goto fail;
3651 
3652 	/* install */
3653 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3654 out_unlock:
3655 	return pool;
3656 fail:
3657 	if (pool)
3658 		put_unbound_pool(pool);
3659 	return NULL;
3660 }
3661 
3662 static void rcu_free_pwq(struct rcu_head *rcu)
3663 {
3664 	kmem_cache_free(pwq_cache,
3665 			container_of(rcu, struct pool_workqueue, rcu));
3666 }
3667 
3668 /*
3669  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3670  * and needs to be destroyed.
3671  */
3672 static void pwq_unbound_release_workfn(struct work_struct *work)
3673 {
3674 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3675 						  unbound_release_work);
3676 	struct workqueue_struct *wq = pwq->wq;
3677 	struct worker_pool *pool = pwq->pool;
3678 	bool is_last;
3679 
3680 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3681 		return;
3682 
3683 	/*
3684 	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3685 	 * necessary on release but do it anyway.  It's easier to verify
3686 	 * and consistent with the linking path.
3687 	 */
3688 	mutex_lock(&wq->mutex);
3689 	list_del_rcu(&pwq->pwqs_node);
3690 	is_last = list_empty(&wq->pwqs);
3691 	mutex_unlock(&wq->mutex);
3692 
3693 	mutex_lock(&wq_pool_mutex);
3694 	put_unbound_pool(pool);
3695 	mutex_unlock(&wq_pool_mutex);
3696 
3697 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3698 
3699 	/*
3700 	 * If we're the last pwq going away, @wq is already dead and no one
3701 	 * is gonna access it anymore.  Free it.
3702 	 */
3703 	if (is_last) {
3704 		free_workqueue_attrs(wq->unbound_attrs);
3705 		kfree(wq);
3706 	}
3707 }
3708 
3709 /**
3710  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3711  * @pwq: target pool_workqueue
3712  *
3713  * If @pwq isn't freezing, set @pwq->max_active to the associated
3714  * workqueue's saved_max_active and activate delayed work items
3715  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3716  */
3717 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3718 {
3719 	struct workqueue_struct *wq = pwq->wq;
3720 	bool freezable = wq->flags & WQ_FREEZABLE;
3721 
3722 	/* for @wq->saved_max_active */
3723 	lockdep_assert_held(&wq->mutex);
3724 
3725 	/* fast exit for non-freezable wqs */
3726 	if (!freezable && pwq->max_active == wq->saved_max_active)
3727 		return;
3728 
3729 	spin_lock_irq(&pwq->pool->lock);
3730 
3731 	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3732 		pwq->max_active = wq->saved_max_active;
3733 
3734 		while (!list_empty(&pwq->delayed_works) &&
3735 		       pwq->nr_active < pwq->max_active)
3736 			pwq_activate_first_delayed(pwq);
3737 
3738 		/*
3739 		 * Need to kick a worker after thawed or an unbound wq's
3740 		 * max_active is bumped.  It's a slow path.  Do it always.
3741 		 */
3742 		wake_up_worker(pwq->pool);
3743 	} else {
3744 		pwq->max_active = 0;
3745 	}
3746 
3747 	spin_unlock_irq(&pwq->pool->lock);
3748 }
3749 
3750 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3751 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3752 		     struct worker_pool *pool)
3753 {
3754 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3755 
3756 	memset(pwq, 0, sizeof(*pwq));
3757 
3758 	pwq->pool = pool;
3759 	pwq->wq = wq;
3760 	pwq->flush_color = -1;
3761 	pwq->refcnt = 1;
3762 	INIT_LIST_HEAD(&pwq->delayed_works);
3763 	INIT_LIST_HEAD(&pwq->pwqs_node);
3764 	INIT_LIST_HEAD(&pwq->mayday_node);
3765 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3766 }
3767 
3768 /* sync @pwq with the current state of its associated wq and link it */
3769 static void link_pwq(struct pool_workqueue *pwq)
3770 {
3771 	struct workqueue_struct *wq = pwq->wq;
3772 
3773 	lockdep_assert_held(&wq->mutex);
3774 
3775 	/* may be called multiple times, ignore if already linked */
3776 	if (!list_empty(&pwq->pwqs_node))
3777 		return;
3778 
3779 	/*
3780 	 * Set the matching work_color.  This is synchronized with
3781 	 * wq->mutex to avoid confusing flush_workqueue().
3782 	 */
3783 	pwq->work_color = wq->work_color;
3784 
3785 	/* sync max_active to the current setting */
3786 	pwq_adjust_max_active(pwq);
3787 
3788 	/* link in @pwq */
3789 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3790 }
3791 
3792 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3793 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3794 					const struct workqueue_attrs *attrs)
3795 {
3796 	struct worker_pool *pool;
3797 	struct pool_workqueue *pwq;
3798 
3799 	lockdep_assert_held(&wq_pool_mutex);
3800 
3801 	pool = get_unbound_pool(attrs);
3802 	if (!pool)
3803 		return NULL;
3804 
3805 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3806 	if (!pwq) {
3807 		put_unbound_pool(pool);
3808 		return NULL;
3809 	}
3810 
3811 	init_pwq(pwq, wq, pool);
3812 	return pwq;
3813 }
3814 
3815 /* undo alloc_unbound_pwq(), used only in the error path */
3816 static void free_unbound_pwq(struct pool_workqueue *pwq)
3817 {
3818 	lockdep_assert_held(&wq_pool_mutex);
3819 
3820 	if (pwq) {
3821 		put_unbound_pool(pwq->pool);
3822 		kmem_cache_free(pwq_cache, pwq);
3823 	}
3824 }
3825 
3826 /**
3827  * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3828  * @attrs: the wq_attrs of interest
3829  * @node: the target NUMA node
3830  * @cpu_going_down: if >= 0, the CPU to consider as offline
3831  * @cpumask: outarg, the resulting cpumask
3832  *
3833  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3834  * @cpu_going_down is >= 0, that cpu is considered offline during
3835  * calculation.  The result is stored in @cpumask.
3836  *
3837  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3838  * enabled and @node has online CPUs requested by @attrs, the returned
3839  * cpumask is the intersection of the possible CPUs of @node and
3840  * @attrs->cpumask.
3841  *
3842  * The caller is responsible for ensuring that the cpumask of @node stays
3843  * stable.
3844  *
3845  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3846  * %false if equal.
3847  */
3848 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3849 				 int cpu_going_down, cpumask_t *cpumask)
3850 {
3851 	if (!wq_numa_enabled || attrs->no_numa)
3852 		goto use_dfl;
3853 
3854 	/* does @node have any online CPUs @attrs wants? */
3855 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3856 	if (cpu_going_down >= 0)
3857 		cpumask_clear_cpu(cpu_going_down, cpumask);
3858 
3859 	if (cpumask_empty(cpumask))
3860 		goto use_dfl;
3861 
3862 	/* yeap, return possible CPUs in @node that @attrs wants */
3863 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3864 	return !cpumask_equal(cpumask, attrs->cpumask);
3865 
3866 use_dfl:
3867 	cpumask_copy(cpumask, attrs->cpumask);
3868 	return false;
3869 }
3870 
3871 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3872 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3873 						   int node,
3874 						   struct pool_workqueue *pwq)
3875 {
3876 	struct pool_workqueue *old_pwq;
3877 
3878 	lockdep_assert_held(&wq->mutex);
3879 
3880 	/* link_pwq() can handle duplicate calls */
3881 	link_pwq(pwq);
3882 
3883 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3884 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3885 	return old_pwq;
3886 }
3887 
3888 /**
3889  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3890  * @wq: the target workqueue
3891  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3892  *
3893  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3894  * machines, this function maps a separate pwq to each NUMA node with
3895  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3896  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3897  * items finish.  Note that a work item which repeatedly requeues itself
3898  * back-to-back will stay on its current pwq.
3899  *
3900  * Performs GFP_KERNEL allocations.
3901  *
3902  * Return: 0 on success and -errno on failure.
3903  */
3904 int apply_workqueue_attrs(struct workqueue_struct *wq,
3905 			  const struct workqueue_attrs *attrs)
3906 {
3907 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3908 	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3909 	int node, ret;
3910 
3911 	/* only unbound workqueues can change attributes */
3912 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3913 		return -EINVAL;
3914 
3915 	/* creating multiple pwqs breaks ordering guarantee */
3916 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3917 		return -EINVAL;
3918 
3919 	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3920 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3921 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3922 	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3923 		goto enomem;
3924 
3925 	/* make a copy of @attrs and sanitize it */
3926 	copy_workqueue_attrs(new_attrs, attrs);
3927 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3928 
3929 	/*
3930 	 * We may create multiple pwqs with differing cpumasks.  Make a
3931 	 * copy of @new_attrs which will be modified and used to obtain
3932 	 * pools.
3933 	 */
3934 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3935 
3936 	/*
3937 	 * CPUs should stay stable across pwq creations and installations.
3938 	 * Pin CPUs, determine the target cpumask for each node and create
3939 	 * pwqs accordingly.
3940 	 */
3941 	get_online_cpus();
3942 
3943 	mutex_lock(&wq_pool_mutex);
3944 
3945 	/*
3946 	 * If something goes wrong during CPU up/down, we'll fall back to
3947 	 * the default pwq covering whole @attrs->cpumask.  Always create
3948 	 * it even if we don't use it immediately.
3949 	 */
3950 	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3951 	if (!dfl_pwq)
3952 		goto enomem_pwq;
3953 
3954 	for_each_node(node) {
3955 		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3956 			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3957 			if (!pwq_tbl[node])
3958 				goto enomem_pwq;
3959 		} else {
3960 			dfl_pwq->refcnt++;
3961 			pwq_tbl[node] = dfl_pwq;
3962 		}
3963 	}
3964 
3965 	mutex_unlock(&wq_pool_mutex);
3966 
3967 	/* all pwqs have been created successfully, let's install'em */
3968 	mutex_lock(&wq->mutex);
3969 
3970 	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3971 
3972 	/* save the previous pwq and install the new one */
3973 	for_each_node(node)
3974 		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3975 
3976 	/* @dfl_pwq might not have been used, ensure it's linked */
3977 	link_pwq(dfl_pwq);
3978 	swap(wq->dfl_pwq, dfl_pwq);
3979 
3980 	mutex_unlock(&wq->mutex);
3981 
3982 	/* put the old pwqs */
3983 	for_each_node(node)
3984 		put_pwq_unlocked(pwq_tbl[node]);
3985 	put_pwq_unlocked(dfl_pwq);
3986 
3987 	put_online_cpus();
3988 	ret = 0;
3989 	/* fall through */
3990 out_free:
3991 	free_workqueue_attrs(tmp_attrs);
3992 	free_workqueue_attrs(new_attrs);
3993 	kfree(pwq_tbl);
3994 	return ret;
3995 
3996 enomem_pwq:
3997 	free_unbound_pwq(dfl_pwq);
3998 	for_each_node(node)
3999 		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4000 			free_unbound_pwq(pwq_tbl[node]);
4001 	mutex_unlock(&wq_pool_mutex);
4002 	put_online_cpus();
4003 enomem:
4004 	ret = -ENOMEM;
4005 	goto out_free;
4006 }
4007 
4008 /**
4009  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4010  * @wq: the target workqueue
4011  * @cpu: the CPU coming up or going down
4012  * @online: whether @cpu is coming up or going down
4013  *
4014  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4015  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4016  * @wq accordingly.
4017  *
4018  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4019  * falls back to @wq->dfl_pwq which may not be optimal but is always
4020  * correct.
4021  *
4022  * Note that when the last allowed CPU of a NUMA node goes offline for a
4023  * workqueue with a cpumask spanning multiple nodes, the workers which were
4024  * already executing the work items for the workqueue will lose their CPU
4025  * affinity and may execute on any CPU.  This is similar to how per-cpu
4026  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4027  * affinity, it's the user's responsibility to flush the work item from
4028  * CPU_DOWN_PREPARE.
4029  */
4030 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4031 				   bool online)
4032 {
4033 	int node = cpu_to_node(cpu);
4034 	int cpu_off = online ? -1 : cpu;
4035 	struct pool_workqueue *old_pwq = NULL, *pwq;
4036 	struct workqueue_attrs *target_attrs;
4037 	cpumask_t *cpumask;
4038 
4039 	lockdep_assert_held(&wq_pool_mutex);
4040 
4041 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4042 		return;
4043 
4044 	/*
4045 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4046 	 * Let's use a preallocated one.  The following buf is protected by
4047 	 * CPU hotplug exclusion.
4048 	 */
4049 	target_attrs = wq_update_unbound_numa_attrs_buf;
4050 	cpumask = target_attrs->cpumask;
4051 
4052 	mutex_lock(&wq->mutex);
4053 	if (wq->unbound_attrs->no_numa)
4054 		goto out_unlock;
4055 
4056 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4057 	pwq = unbound_pwq_by_node(wq, node);
4058 
4059 	/*
4060 	 * Let's determine what needs to be done.  If the target cpumask is
4061 	 * different from wq's, we need to compare it to @pwq's and create
4062 	 * a new one if they don't match.  If the target cpumask equals
4063 	 * wq's, the default pwq should be used.  If @pwq is already the
4064 	 * default one, nothing to do; otherwise, install the default one.
4065 	 */
4066 	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4067 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4068 			goto out_unlock;
4069 	} else {
4070 		if (pwq == wq->dfl_pwq)
4071 			goto out_unlock;
4072 		else
4073 			goto use_dfl_pwq;
4074 	}
4075 
4076 	mutex_unlock(&wq->mutex);
4077 
4078 	/* create a new pwq */
4079 	pwq = alloc_unbound_pwq(wq, target_attrs);
4080 	if (!pwq) {
4081 		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4082 			   wq->name);
4083 		goto out_unlock;
4084 	}
4085 
4086 	/*
4087 	 * Install the new pwq.  As this function is called only from CPU
4088 	 * hotplug callbacks and applying a new attrs is wrapped with
4089 	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4090 	 * inbetween.
4091 	 */
4092 	mutex_lock(&wq->mutex);
4093 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4094 	goto out_unlock;
4095 
4096 use_dfl_pwq:
4097 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4098 	get_pwq(wq->dfl_pwq);
4099 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4100 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4101 out_unlock:
4102 	mutex_unlock(&wq->mutex);
4103 	put_pwq_unlocked(old_pwq);
4104 }
4105 
4106 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4107 {
4108 	bool highpri = wq->flags & WQ_HIGHPRI;
4109 	int cpu;
4110 
4111 	if (!(wq->flags & WQ_UNBOUND)) {
4112 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4113 		if (!wq->cpu_pwqs)
4114 			return -ENOMEM;
4115 
4116 		for_each_possible_cpu(cpu) {
4117 			struct pool_workqueue *pwq =
4118 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4119 			struct worker_pool *cpu_pools =
4120 				per_cpu(cpu_worker_pools, cpu);
4121 
4122 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4123 
4124 			mutex_lock(&wq->mutex);
4125 			link_pwq(pwq);
4126 			mutex_unlock(&wq->mutex);
4127 		}
4128 		return 0;
4129 	} else {
4130 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4131 	}
4132 }
4133 
4134 static int wq_clamp_max_active(int max_active, unsigned int flags,
4135 			       const char *name)
4136 {
4137 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4138 
4139 	if (max_active < 1 || max_active > lim)
4140 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4141 			max_active, name, 1, lim);
4142 
4143 	return clamp_val(max_active, 1, lim);
4144 }
4145 
4146 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4147 					       unsigned int flags,
4148 					       int max_active,
4149 					       struct lock_class_key *key,
4150 					       const char *lock_name, ...)
4151 {
4152 	size_t tbl_size = 0;
4153 	va_list args;
4154 	struct workqueue_struct *wq;
4155 	struct pool_workqueue *pwq;
4156 
4157 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4158 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4159 		flags |= WQ_UNBOUND;
4160 
4161 	/* allocate wq and format name */
4162 	if (flags & WQ_UNBOUND)
4163 		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4164 
4165 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4166 	if (!wq)
4167 		return NULL;
4168 
4169 	if (flags & WQ_UNBOUND) {
4170 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4171 		if (!wq->unbound_attrs)
4172 			goto err_free_wq;
4173 	}
4174 
4175 	va_start(args, lock_name);
4176 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4177 	va_end(args);
4178 
4179 	max_active = max_active ?: WQ_DFL_ACTIVE;
4180 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4181 
4182 	/* init wq */
4183 	wq->flags = flags;
4184 	wq->saved_max_active = max_active;
4185 	mutex_init(&wq->mutex);
4186 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4187 	INIT_LIST_HEAD(&wq->pwqs);
4188 	INIT_LIST_HEAD(&wq->flusher_queue);
4189 	INIT_LIST_HEAD(&wq->flusher_overflow);
4190 	INIT_LIST_HEAD(&wq->maydays);
4191 
4192 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4193 	INIT_LIST_HEAD(&wq->list);
4194 
4195 	if (alloc_and_link_pwqs(wq) < 0)
4196 		goto err_free_wq;
4197 
4198 	/*
4199 	 * Workqueues which may be used during memory reclaim should
4200 	 * have a rescuer to guarantee forward progress.
4201 	 */
4202 	if (flags & WQ_MEM_RECLAIM) {
4203 		struct worker *rescuer;
4204 
4205 		rescuer = alloc_worker();
4206 		if (!rescuer)
4207 			goto err_destroy;
4208 
4209 		rescuer->rescue_wq = wq;
4210 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4211 					       wq->name);
4212 		if (IS_ERR(rescuer->task)) {
4213 			kfree(rescuer);
4214 			goto err_destroy;
4215 		}
4216 
4217 		wq->rescuer = rescuer;
4218 		rescuer->task->flags |= PF_NO_SETAFFINITY;
4219 		wake_up_process(rescuer->task);
4220 	}
4221 
4222 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4223 		goto err_destroy;
4224 
4225 	/*
4226 	 * wq_pool_mutex protects global freeze state and workqueues list.
4227 	 * Grab it, adjust max_active and add the new @wq to workqueues
4228 	 * list.
4229 	 */
4230 	mutex_lock(&wq_pool_mutex);
4231 
4232 	mutex_lock(&wq->mutex);
4233 	for_each_pwq(pwq, wq)
4234 		pwq_adjust_max_active(pwq);
4235 	mutex_unlock(&wq->mutex);
4236 
4237 	list_add(&wq->list, &workqueues);
4238 
4239 	mutex_unlock(&wq_pool_mutex);
4240 
4241 	return wq;
4242 
4243 err_free_wq:
4244 	free_workqueue_attrs(wq->unbound_attrs);
4245 	kfree(wq);
4246 	return NULL;
4247 err_destroy:
4248 	destroy_workqueue(wq);
4249 	return NULL;
4250 }
4251 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4252 
4253 /**
4254  * destroy_workqueue - safely terminate a workqueue
4255  * @wq: target workqueue
4256  *
4257  * Safely destroy a workqueue. All work currently pending will be done first.
4258  */
4259 void destroy_workqueue(struct workqueue_struct *wq)
4260 {
4261 	struct pool_workqueue *pwq;
4262 	int node;
4263 
4264 	/* drain it before proceeding with destruction */
4265 	drain_workqueue(wq);
4266 
4267 	/* sanity checks */
4268 	mutex_lock(&wq->mutex);
4269 	for_each_pwq(pwq, wq) {
4270 		int i;
4271 
4272 		for (i = 0; i < WORK_NR_COLORS; i++) {
4273 			if (WARN_ON(pwq->nr_in_flight[i])) {
4274 				mutex_unlock(&wq->mutex);
4275 				return;
4276 			}
4277 		}
4278 
4279 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4280 		    WARN_ON(pwq->nr_active) ||
4281 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4282 			mutex_unlock(&wq->mutex);
4283 			return;
4284 		}
4285 	}
4286 	mutex_unlock(&wq->mutex);
4287 
4288 	/*
4289 	 * wq list is used to freeze wq, remove from list after
4290 	 * flushing is complete in case freeze races us.
4291 	 */
4292 	mutex_lock(&wq_pool_mutex);
4293 	list_del_init(&wq->list);
4294 	mutex_unlock(&wq_pool_mutex);
4295 
4296 	workqueue_sysfs_unregister(wq);
4297 
4298 	if (wq->rescuer) {
4299 		kthread_stop(wq->rescuer->task);
4300 		kfree(wq->rescuer);
4301 		wq->rescuer = NULL;
4302 	}
4303 
4304 	if (!(wq->flags & WQ_UNBOUND)) {
4305 		/*
4306 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4307 		 * free the pwqs and wq.
4308 		 */
4309 		free_percpu(wq->cpu_pwqs);
4310 		kfree(wq);
4311 	} else {
4312 		/*
4313 		 * We're the sole accessor of @wq at this point.  Directly
4314 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4315 		 * @wq will be freed when the last pwq is released.
4316 		 */
4317 		for_each_node(node) {
4318 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4319 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4320 			put_pwq_unlocked(pwq);
4321 		}
4322 
4323 		/*
4324 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4325 		 * put.  Don't access it afterwards.
4326 		 */
4327 		pwq = wq->dfl_pwq;
4328 		wq->dfl_pwq = NULL;
4329 		put_pwq_unlocked(pwq);
4330 	}
4331 }
4332 EXPORT_SYMBOL_GPL(destroy_workqueue);
4333 
4334 /**
4335  * workqueue_set_max_active - adjust max_active of a workqueue
4336  * @wq: target workqueue
4337  * @max_active: new max_active value.
4338  *
4339  * Set max_active of @wq to @max_active.
4340  *
4341  * CONTEXT:
4342  * Don't call from IRQ context.
4343  */
4344 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4345 {
4346 	struct pool_workqueue *pwq;
4347 
4348 	/* disallow meddling with max_active for ordered workqueues */
4349 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4350 		return;
4351 
4352 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4353 
4354 	mutex_lock(&wq->mutex);
4355 
4356 	wq->saved_max_active = max_active;
4357 
4358 	for_each_pwq(pwq, wq)
4359 		pwq_adjust_max_active(pwq);
4360 
4361 	mutex_unlock(&wq->mutex);
4362 }
4363 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4364 
4365 /**
4366  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4367  *
4368  * Determine whether %current is a workqueue rescuer.  Can be used from
4369  * work functions to determine whether it's being run off the rescuer task.
4370  *
4371  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4372  */
4373 bool current_is_workqueue_rescuer(void)
4374 {
4375 	struct worker *worker = current_wq_worker();
4376 
4377 	return worker && worker->rescue_wq;
4378 }
4379 
4380 /**
4381  * workqueue_congested - test whether a workqueue is congested
4382  * @cpu: CPU in question
4383  * @wq: target workqueue
4384  *
4385  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4386  * no synchronization around this function and the test result is
4387  * unreliable and only useful as advisory hints or for debugging.
4388  *
4389  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4390  * Note that both per-cpu and unbound workqueues may be associated with
4391  * multiple pool_workqueues which have separate congested states.  A
4392  * workqueue being congested on one CPU doesn't mean the workqueue is also
4393  * contested on other CPUs / NUMA nodes.
4394  *
4395  * Return:
4396  * %true if congested, %false otherwise.
4397  */
4398 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4399 {
4400 	struct pool_workqueue *pwq;
4401 	bool ret;
4402 
4403 	rcu_read_lock_sched();
4404 
4405 	if (cpu == WORK_CPU_UNBOUND)
4406 		cpu = smp_processor_id();
4407 
4408 	if (!(wq->flags & WQ_UNBOUND))
4409 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4410 	else
4411 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4412 
4413 	ret = !list_empty(&pwq->delayed_works);
4414 	rcu_read_unlock_sched();
4415 
4416 	return ret;
4417 }
4418 EXPORT_SYMBOL_GPL(workqueue_congested);
4419 
4420 /**
4421  * work_busy - test whether a work is currently pending or running
4422  * @work: the work to be tested
4423  *
4424  * Test whether @work is currently pending or running.  There is no
4425  * synchronization around this function and the test result is
4426  * unreliable and only useful as advisory hints or for debugging.
4427  *
4428  * Return:
4429  * OR'd bitmask of WORK_BUSY_* bits.
4430  */
4431 unsigned int work_busy(struct work_struct *work)
4432 {
4433 	struct worker_pool *pool;
4434 	unsigned long flags;
4435 	unsigned int ret = 0;
4436 
4437 	if (work_pending(work))
4438 		ret |= WORK_BUSY_PENDING;
4439 
4440 	local_irq_save(flags);
4441 	pool = get_work_pool(work);
4442 	if (pool) {
4443 		spin_lock(&pool->lock);
4444 		if (find_worker_executing_work(pool, work))
4445 			ret |= WORK_BUSY_RUNNING;
4446 		spin_unlock(&pool->lock);
4447 	}
4448 	local_irq_restore(flags);
4449 
4450 	return ret;
4451 }
4452 EXPORT_SYMBOL_GPL(work_busy);
4453 
4454 /**
4455  * set_worker_desc - set description for the current work item
4456  * @fmt: printf-style format string
4457  * @...: arguments for the format string
4458  *
4459  * This function can be called by a running work function to describe what
4460  * the work item is about.  If the worker task gets dumped, this
4461  * information will be printed out together to help debugging.  The
4462  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4463  */
4464 void set_worker_desc(const char *fmt, ...)
4465 {
4466 	struct worker *worker = current_wq_worker();
4467 	va_list args;
4468 
4469 	if (worker) {
4470 		va_start(args, fmt);
4471 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4472 		va_end(args);
4473 		worker->desc_valid = true;
4474 	}
4475 }
4476 
4477 /**
4478  * print_worker_info - print out worker information and description
4479  * @log_lvl: the log level to use when printing
4480  * @task: target task
4481  *
4482  * If @task is a worker and currently executing a work item, print out the
4483  * name of the workqueue being serviced and worker description set with
4484  * set_worker_desc() by the currently executing work item.
4485  *
4486  * This function can be safely called on any task as long as the
4487  * task_struct itself is accessible.  While safe, this function isn't
4488  * synchronized and may print out mixups or garbages of limited length.
4489  */
4490 void print_worker_info(const char *log_lvl, struct task_struct *task)
4491 {
4492 	work_func_t *fn = NULL;
4493 	char name[WQ_NAME_LEN] = { };
4494 	char desc[WORKER_DESC_LEN] = { };
4495 	struct pool_workqueue *pwq = NULL;
4496 	struct workqueue_struct *wq = NULL;
4497 	bool desc_valid = false;
4498 	struct worker *worker;
4499 
4500 	if (!(task->flags & PF_WQ_WORKER))
4501 		return;
4502 
4503 	/*
4504 	 * This function is called without any synchronization and @task
4505 	 * could be in any state.  Be careful with dereferences.
4506 	 */
4507 	worker = probe_kthread_data(task);
4508 
4509 	/*
4510 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4511 	 * the original last '\0' in case the original contains garbage.
4512 	 */
4513 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4514 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4515 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4516 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4517 
4518 	/* copy worker description */
4519 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4520 	if (desc_valid)
4521 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4522 
4523 	if (fn || name[0] || desc[0]) {
4524 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4525 		if (desc[0])
4526 			pr_cont(" (%s)", desc);
4527 		pr_cont("\n");
4528 	}
4529 }
4530 
4531 /*
4532  * CPU hotplug.
4533  *
4534  * There are two challenges in supporting CPU hotplug.  Firstly, there
4535  * are a lot of assumptions on strong associations among work, pwq and
4536  * pool which make migrating pending and scheduled works very
4537  * difficult to implement without impacting hot paths.  Secondly,
4538  * worker pools serve mix of short, long and very long running works making
4539  * blocked draining impractical.
4540  *
4541  * This is solved by allowing the pools to be disassociated from the CPU
4542  * running as an unbound one and allowing it to be reattached later if the
4543  * cpu comes back online.
4544  */
4545 
4546 static void wq_unbind_fn(struct work_struct *work)
4547 {
4548 	int cpu = smp_processor_id();
4549 	struct worker_pool *pool;
4550 	struct worker *worker;
4551 	int wi;
4552 
4553 	for_each_cpu_worker_pool(pool, cpu) {
4554 		WARN_ON_ONCE(cpu != smp_processor_id());
4555 
4556 		mutex_lock(&pool->manager_mutex);
4557 		spin_lock_irq(&pool->lock);
4558 
4559 		/*
4560 		 * We've blocked all manager operations.  Make all workers
4561 		 * unbound and set DISASSOCIATED.  Before this, all workers
4562 		 * except for the ones which are still executing works from
4563 		 * before the last CPU down must be on the cpu.  After
4564 		 * this, they may become diasporas.
4565 		 */
4566 		for_each_pool_worker(worker, wi, pool)
4567 			worker->flags |= WORKER_UNBOUND;
4568 
4569 		pool->flags |= POOL_DISASSOCIATED;
4570 
4571 		spin_unlock_irq(&pool->lock);
4572 		mutex_unlock(&pool->manager_mutex);
4573 
4574 		/*
4575 		 * Call schedule() so that we cross rq->lock and thus can
4576 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4577 		 * This is necessary as scheduler callbacks may be invoked
4578 		 * from other cpus.
4579 		 */
4580 		schedule();
4581 
4582 		/*
4583 		 * Sched callbacks are disabled now.  Zap nr_running.
4584 		 * After this, nr_running stays zero and need_more_worker()
4585 		 * and keep_working() are always true as long as the
4586 		 * worklist is not empty.  This pool now behaves as an
4587 		 * unbound (in terms of concurrency management) pool which
4588 		 * are served by workers tied to the pool.
4589 		 */
4590 		atomic_set(&pool->nr_running, 0);
4591 
4592 		/*
4593 		 * With concurrency management just turned off, a busy
4594 		 * worker blocking could lead to lengthy stalls.  Kick off
4595 		 * unbound chain execution of currently pending work items.
4596 		 */
4597 		spin_lock_irq(&pool->lock);
4598 		wake_up_worker(pool);
4599 		spin_unlock_irq(&pool->lock);
4600 	}
4601 }
4602 
4603 /**
4604  * rebind_workers - rebind all workers of a pool to the associated CPU
4605  * @pool: pool of interest
4606  *
4607  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4608  */
4609 static void rebind_workers(struct worker_pool *pool)
4610 {
4611 	struct worker *worker;
4612 	int wi;
4613 
4614 	lockdep_assert_held(&pool->manager_mutex);
4615 
4616 	/*
4617 	 * Restore CPU affinity of all workers.  As all idle workers should
4618 	 * be on the run-queue of the associated CPU before any local
4619 	 * wake-ups for concurrency management happen, restore CPU affinty
4620 	 * of all workers first and then clear UNBOUND.  As we're called
4621 	 * from CPU_ONLINE, the following shouldn't fail.
4622 	 */
4623 	for_each_pool_worker(worker, wi, pool)
4624 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4625 						  pool->attrs->cpumask) < 0);
4626 
4627 	spin_lock_irq(&pool->lock);
4628 
4629 	for_each_pool_worker(worker, wi, pool) {
4630 		unsigned int worker_flags = worker->flags;
4631 
4632 		/*
4633 		 * A bound idle worker should actually be on the runqueue
4634 		 * of the associated CPU for local wake-ups targeting it to
4635 		 * work.  Kick all idle workers so that they migrate to the
4636 		 * associated CPU.  Doing this in the same loop as
4637 		 * replacing UNBOUND with REBOUND is safe as no worker will
4638 		 * be bound before @pool->lock is released.
4639 		 */
4640 		if (worker_flags & WORKER_IDLE)
4641 			wake_up_process(worker->task);
4642 
4643 		/*
4644 		 * We want to clear UNBOUND but can't directly call
4645 		 * worker_clr_flags() or adjust nr_running.  Atomically
4646 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4647 		 * @worker will clear REBOUND using worker_clr_flags() when
4648 		 * it initiates the next execution cycle thus restoring
4649 		 * concurrency management.  Note that when or whether
4650 		 * @worker clears REBOUND doesn't affect correctness.
4651 		 *
4652 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4653 		 * tested without holding any lock in
4654 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4655 		 * fail incorrectly leading to premature concurrency
4656 		 * management operations.
4657 		 */
4658 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4659 		worker_flags |= WORKER_REBOUND;
4660 		worker_flags &= ~WORKER_UNBOUND;
4661 		ACCESS_ONCE(worker->flags) = worker_flags;
4662 	}
4663 
4664 	spin_unlock_irq(&pool->lock);
4665 }
4666 
4667 /**
4668  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4669  * @pool: unbound pool of interest
4670  * @cpu: the CPU which is coming up
4671  *
4672  * An unbound pool may end up with a cpumask which doesn't have any online
4673  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4674  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4675  * online CPU before, cpus_allowed of all its workers should be restored.
4676  */
4677 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4678 {
4679 	static cpumask_t cpumask;
4680 	struct worker *worker;
4681 	int wi;
4682 
4683 	lockdep_assert_held(&pool->manager_mutex);
4684 
4685 	/* is @cpu allowed for @pool? */
4686 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4687 		return;
4688 
4689 	/* is @cpu the only online CPU? */
4690 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4691 	if (cpumask_weight(&cpumask) != 1)
4692 		return;
4693 
4694 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4695 	for_each_pool_worker(worker, wi, pool)
4696 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4697 						  pool->attrs->cpumask) < 0);
4698 }
4699 
4700 /*
4701  * Workqueues should be brought up before normal priority CPU notifiers.
4702  * This will be registered high priority CPU notifier.
4703  */
4704 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4705 					       unsigned long action,
4706 					       void *hcpu)
4707 {
4708 	int cpu = (unsigned long)hcpu;
4709 	struct worker_pool *pool;
4710 	struct workqueue_struct *wq;
4711 	int pi;
4712 
4713 	switch (action & ~CPU_TASKS_FROZEN) {
4714 	case CPU_UP_PREPARE:
4715 		for_each_cpu_worker_pool(pool, cpu) {
4716 			if (pool->nr_workers)
4717 				continue;
4718 			if (create_and_start_worker(pool) < 0)
4719 				return NOTIFY_BAD;
4720 		}
4721 		break;
4722 
4723 	case CPU_DOWN_FAILED:
4724 	case CPU_ONLINE:
4725 		mutex_lock(&wq_pool_mutex);
4726 
4727 		for_each_pool(pool, pi) {
4728 			mutex_lock(&pool->manager_mutex);
4729 
4730 			if (pool->cpu == cpu) {
4731 				spin_lock_irq(&pool->lock);
4732 				pool->flags &= ~POOL_DISASSOCIATED;
4733 				spin_unlock_irq(&pool->lock);
4734 
4735 				rebind_workers(pool);
4736 			} else if (pool->cpu < 0) {
4737 				restore_unbound_workers_cpumask(pool, cpu);
4738 			}
4739 
4740 			mutex_unlock(&pool->manager_mutex);
4741 		}
4742 
4743 		/* update NUMA affinity of unbound workqueues */
4744 		list_for_each_entry(wq, &workqueues, list)
4745 			wq_update_unbound_numa(wq, cpu, true);
4746 
4747 		mutex_unlock(&wq_pool_mutex);
4748 		break;
4749 	}
4750 	return NOTIFY_OK;
4751 }
4752 
4753 /*
4754  * Workqueues should be brought down after normal priority CPU notifiers.
4755  * This will be registered as low priority CPU notifier.
4756  */
4757 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4758 						 unsigned long action,
4759 						 void *hcpu)
4760 {
4761 	int cpu = (unsigned long)hcpu;
4762 	struct work_struct unbind_work;
4763 	struct workqueue_struct *wq;
4764 
4765 	switch (action & ~CPU_TASKS_FROZEN) {
4766 	case CPU_DOWN_PREPARE:
4767 		/* unbinding per-cpu workers should happen on the local CPU */
4768 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4769 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4770 
4771 		/* update NUMA affinity of unbound workqueues */
4772 		mutex_lock(&wq_pool_mutex);
4773 		list_for_each_entry(wq, &workqueues, list)
4774 			wq_update_unbound_numa(wq, cpu, false);
4775 		mutex_unlock(&wq_pool_mutex);
4776 
4777 		/* wait for per-cpu unbinding to finish */
4778 		flush_work(&unbind_work);
4779 		break;
4780 	}
4781 	return NOTIFY_OK;
4782 }
4783 
4784 #ifdef CONFIG_SMP
4785 
4786 struct work_for_cpu {
4787 	struct work_struct work;
4788 	long (*fn)(void *);
4789 	void *arg;
4790 	long ret;
4791 };
4792 
4793 static void work_for_cpu_fn(struct work_struct *work)
4794 {
4795 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4796 
4797 	wfc->ret = wfc->fn(wfc->arg);
4798 }
4799 
4800 /**
4801  * work_on_cpu - run a function in user context on a particular cpu
4802  * @cpu: the cpu to run on
4803  * @fn: the function to run
4804  * @arg: the function arg
4805  *
4806  * It is up to the caller to ensure that the cpu doesn't go offline.
4807  * The caller must not hold any locks which would prevent @fn from completing.
4808  *
4809  * Return: The value @fn returns.
4810  */
4811 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4812 {
4813 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4814 
4815 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4816 	schedule_work_on(cpu, &wfc.work);
4817 
4818 	/*
4819 	 * The work item is on-stack and can't lead to deadlock through
4820 	 * flushing.  Use __flush_work() to avoid spurious lockdep warnings
4821 	 * when work_on_cpu()s are nested.
4822 	 */
4823 	__flush_work(&wfc.work);
4824 
4825 	return wfc.ret;
4826 }
4827 EXPORT_SYMBOL_GPL(work_on_cpu);
4828 #endif /* CONFIG_SMP */
4829 
4830 #ifdef CONFIG_FREEZER
4831 
4832 /**
4833  * freeze_workqueues_begin - begin freezing workqueues
4834  *
4835  * Start freezing workqueues.  After this function returns, all freezable
4836  * workqueues will queue new works to their delayed_works list instead of
4837  * pool->worklist.
4838  *
4839  * CONTEXT:
4840  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4841  */
4842 void freeze_workqueues_begin(void)
4843 {
4844 	struct worker_pool *pool;
4845 	struct workqueue_struct *wq;
4846 	struct pool_workqueue *pwq;
4847 	int pi;
4848 
4849 	mutex_lock(&wq_pool_mutex);
4850 
4851 	WARN_ON_ONCE(workqueue_freezing);
4852 	workqueue_freezing = true;
4853 
4854 	/* set FREEZING */
4855 	for_each_pool(pool, pi) {
4856 		spin_lock_irq(&pool->lock);
4857 		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4858 		pool->flags |= POOL_FREEZING;
4859 		spin_unlock_irq(&pool->lock);
4860 	}
4861 
4862 	list_for_each_entry(wq, &workqueues, list) {
4863 		mutex_lock(&wq->mutex);
4864 		for_each_pwq(pwq, wq)
4865 			pwq_adjust_max_active(pwq);
4866 		mutex_unlock(&wq->mutex);
4867 	}
4868 
4869 	mutex_unlock(&wq_pool_mutex);
4870 }
4871 
4872 /**
4873  * freeze_workqueues_busy - are freezable workqueues still busy?
4874  *
4875  * Check whether freezing is complete.  This function must be called
4876  * between freeze_workqueues_begin() and thaw_workqueues().
4877  *
4878  * CONTEXT:
4879  * Grabs and releases wq_pool_mutex.
4880  *
4881  * Return:
4882  * %true if some freezable workqueues are still busy.  %false if freezing
4883  * is complete.
4884  */
4885 bool freeze_workqueues_busy(void)
4886 {
4887 	bool busy = false;
4888 	struct workqueue_struct *wq;
4889 	struct pool_workqueue *pwq;
4890 
4891 	mutex_lock(&wq_pool_mutex);
4892 
4893 	WARN_ON_ONCE(!workqueue_freezing);
4894 
4895 	list_for_each_entry(wq, &workqueues, list) {
4896 		if (!(wq->flags & WQ_FREEZABLE))
4897 			continue;
4898 		/*
4899 		 * nr_active is monotonically decreasing.  It's safe
4900 		 * to peek without lock.
4901 		 */
4902 		rcu_read_lock_sched();
4903 		for_each_pwq(pwq, wq) {
4904 			WARN_ON_ONCE(pwq->nr_active < 0);
4905 			if (pwq->nr_active) {
4906 				busy = true;
4907 				rcu_read_unlock_sched();
4908 				goto out_unlock;
4909 			}
4910 		}
4911 		rcu_read_unlock_sched();
4912 	}
4913 out_unlock:
4914 	mutex_unlock(&wq_pool_mutex);
4915 	return busy;
4916 }
4917 
4918 /**
4919  * thaw_workqueues - thaw workqueues
4920  *
4921  * Thaw workqueues.  Normal queueing is restored and all collected
4922  * frozen works are transferred to their respective pool worklists.
4923  *
4924  * CONTEXT:
4925  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4926  */
4927 void thaw_workqueues(void)
4928 {
4929 	struct workqueue_struct *wq;
4930 	struct pool_workqueue *pwq;
4931 	struct worker_pool *pool;
4932 	int pi;
4933 
4934 	mutex_lock(&wq_pool_mutex);
4935 
4936 	if (!workqueue_freezing)
4937 		goto out_unlock;
4938 
4939 	/* clear FREEZING */
4940 	for_each_pool(pool, pi) {
4941 		spin_lock_irq(&pool->lock);
4942 		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4943 		pool->flags &= ~POOL_FREEZING;
4944 		spin_unlock_irq(&pool->lock);
4945 	}
4946 
4947 	/* restore max_active and repopulate worklist */
4948 	list_for_each_entry(wq, &workqueues, list) {
4949 		mutex_lock(&wq->mutex);
4950 		for_each_pwq(pwq, wq)
4951 			pwq_adjust_max_active(pwq);
4952 		mutex_unlock(&wq->mutex);
4953 	}
4954 
4955 	workqueue_freezing = false;
4956 out_unlock:
4957 	mutex_unlock(&wq_pool_mutex);
4958 }
4959 #endif /* CONFIG_FREEZER */
4960 
4961 static void __init wq_numa_init(void)
4962 {
4963 	cpumask_var_t *tbl;
4964 	int node, cpu;
4965 
4966 	/* determine NUMA pwq table len - highest node id + 1 */
4967 	for_each_node(node)
4968 		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4969 
4970 	if (num_possible_nodes() <= 1)
4971 		return;
4972 
4973 	if (wq_disable_numa) {
4974 		pr_info("workqueue: NUMA affinity support disabled\n");
4975 		return;
4976 	}
4977 
4978 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4979 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
4980 
4981 	/*
4982 	 * We want masks of possible CPUs of each node which isn't readily
4983 	 * available.  Build one from cpu_to_node() which should have been
4984 	 * fully initialized by now.
4985 	 */
4986 	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4987 	BUG_ON(!tbl);
4988 
4989 	for_each_node(node)
4990 		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4991 				node_online(node) ? node : NUMA_NO_NODE));
4992 
4993 	for_each_possible_cpu(cpu) {
4994 		node = cpu_to_node(cpu);
4995 		if (WARN_ON(node == NUMA_NO_NODE)) {
4996 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4997 			/* happens iff arch is bonkers, let's just proceed */
4998 			return;
4999 		}
5000 		cpumask_set_cpu(cpu, tbl[node]);
5001 	}
5002 
5003 	wq_numa_possible_cpumask = tbl;
5004 	wq_numa_enabled = true;
5005 }
5006 
5007 static int __init init_workqueues(void)
5008 {
5009 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5010 	int i, cpu;
5011 
5012 	/* make sure we have enough bits for OFFQ pool ID */
5013 	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
5014 		     WORK_CPU_END * NR_STD_WORKER_POOLS);
5015 
5016 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5017 
5018 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5019 
5020 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5021 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5022 
5023 	wq_numa_init();
5024 
5025 	/* initialize CPU pools */
5026 	for_each_possible_cpu(cpu) {
5027 		struct worker_pool *pool;
5028 
5029 		i = 0;
5030 		for_each_cpu_worker_pool(pool, cpu) {
5031 			BUG_ON(init_worker_pool(pool));
5032 			pool->cpu = cpu;
5033 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5034 			pool->attrs->nice = std_nice[i++];
5035 			pool->node = cpu_to_node(cpu);
5036 
5037 			/* alloc pool ID */
5038 			mutex_lock(&wq_pool_mutex);
5039 			BUG_ON(worker_pool_assign_id(pool));
5040 			mutex_unlock(&wq_pool_mutex);
5041 		}
5042 	}
5043 
5044 	/* create the initial worker */
5045 	for_each_online_cpu(cpu) {
5046 		struct worker_pool *pool;
5047 
5048 		for_each_cpu_worker_pool(pool, cpu) {
5049 			pool->flags &= ~POOL_DISASSOCIATED;
5050 			BUG_ON(create_and_start_worker(pool) < 0);
5051 		}
5052 	}
5053 
5054 	/* create default unbound wq attrs */
5055 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5056 		struct workqueue_attrs *attrs;
5057 
5058 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5059 		attrs->nice = std_nice[i];
5060 		unbound_std_wq_attrs[i] = attrs;
5061 	}
5062 
5063 	system_wq = alloc_workqueue("events", 0, 0);
5064 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5065 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5066 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5067 					    WQ_UNBOUND_MAX_ACTIVE);
5068 	system_freezable_wq = alloc_workqueue("events_freezable",
5069 					      WQ_FREEZABLE, 0);
5070 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5071 					      WQ_POWER_EFFICIENT, 0);
5072 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5073 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5074 					      0);
5075 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5076 	       !system_unbound_wq || !system_freezable_wq ||
5077 	       !system_power_efficient_wq ||
5078 	       !system_freezable_power_efficient_wq);
5079 	return 0;
5080 }
5081 early_initcall(init_workqueues);
5082