1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * manager_mutex to avoid changing binding state while 69 * create_worker() is in progress. 70 */ 71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 73 POOL_FREEZING = 1 << 3, /* freeze in progress */ 74 75 /* worker flags */ 76 WORKER_STARTED = 1 << 0, /* started */ 77 WORKER_DIE = 1 << 1, /* die die die */ 78 WORKER_IDLE = 1 << 2, /* is idle */ 79 WORKER_PREP = 1 << 3, /* preparing to run works */ 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 83 84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 85 WORKER_UNBOUND | WORKER_REBOUND, 86 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 88 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 91 92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 94 95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 96 /* call for help after 10ms 97 (min two ticks) */ 98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 99 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 100 101 /* 102 * Rescue workers are used only on emergencies and shared by 103 * all cpus. Give -20. 104 */ 105 RESCUER_NICE_LEVEL = -20, 106 HIGHPRI_NICE_LEVEL = -20, 107 108 WQ_NAME_LEN = 24, 109 }; 110 111 /* 112 * Structure fields follow one of the following exclusion rules. 113 * 114 * I: Modifiable by initialization/destruction paths and read-only for 115 * everyone else. 116 * 117 * P: Preemption protected. Disabling preemption is enough and should 118 * only be modified and accessed from the local cpu. 119 * 120 * L: pool->lock protected. Access with pool->lock held. 121 * 122 * X: During normal operation, modification requires pool->lock and should 123 * be done only from local cpu. Either disabling preemption on local 124 * cpu or grabbing pool->lock is enough for read access. If 125 * POOL_DISASSOCIATED is set, it's identical to L. 126 * 127 * MG: pool->manager_mutex and pool->lock protected. Writes require both 128 * locks. Reads can happen under either lock. 129 * 130 * PL: wq_pool_mutex protected. 131 * 132 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 133 * 134 * WQ: wq->mutex protected. 135 * 136 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 137 * 138 * MD: wq_mayday_lock protected. 139 */ 140 141 /* struct worker is defined in workqueue_internal.h */ 142 143 struct worker_pool { 144 spinlock_t lock; /* the pool lock */ 145 int cpu; /* I: the associated cpu */ 146 int node; /* I: the associated node ID */ 147 int id; /* I: pool ID */ 148 unsigned int flags; /* X: flags */ 149 150 struct list_head worklist; /* L: list of pending works */ 151 int nr_workers; /* L: total number of workers */ 152 153 /* nr_idle includes the ones off idle_list for rebinding */ 154 int nr_idle; /* L: currently idle ones */ 155 156 struct list_head idle_list; /* X: list of idle workers */ 157 struct timer_list idle_timer; /* L: worker idle timeout */ 158 struct timer_list mayday_timer; /* L: SOS timer for workers */ 159 160 /* a workers is either on busy_hash or idle_list, or the manager */ 161 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 162 /* L: hash of busy workers */ 163 164 /* see manage_workers() for details on the two manager mutexes */ 165 struct mutex manager_arb; /* manager arbitration */ 166 struct mutex manager_mutex; /* manager exclusion */ 167 struct idr worker_idr; /* MG: worker IDs and iteration */ 168 169 struct workqueue_attrs *attrs; /* I: worker attributes */ 170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 171 int refcnt; /* PL: refcnt for unbound pools */ 172 173 /* 174 * The current concurrency level. As it's likely to be accessed 175 * from other CPUs during try_to_wake_up(), put it in a separate 176 * cacheline. 177 */ 178 atomic_t nr_running ____cacheline_aligned_in_smp; 179 180 /* 181 * Destruction of pool is sched-RCU protected to allow dereferences 182 * from get_work_pool(). 183 */ 184 struct rcu_head rcu; 185 } ____cacheline_aligned_in_smp; 186 187 /* 188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 189 * of work_struct->data are used for flags and the remaining high bits 190 * point to the pwq; thus, pwqs need to be aligned at two's power of the 191 * number of flag bits. 192 */ 193 struct pool_workqueue { 194 struct worker_pool *pool; /* I: the associated pool */ 195 struct workqueue_struct *wq; /* I: the owning workqueue */ 196 int work_color; /* L: current color */ 197 int flush_color; /* L: flushing color */ 198 int refcnt; /* L: reference count */ 199 int nr_in_flight[WORK_NR_COLORS]; 200 /* L: nr of in_flight works */ 201 int nr_active; /* L: nr of active works */ 202 int max_active; /* L: max active works */ 203 struct list_head delayed_works; /* L: delayed works */ 204 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 205 struct list_head mayday_node; /* MD: node on wq->maydays */ 206 207 /* 208 * Release of unbound pwq is punted to system_wq. See put_pwq() 209 * and pwq_unbound_release_workfn() for details. pool_workqueue 210 * itself is also sched-RCU protected so that the first pwq can be 211 * determined without grabbing wq->mutex. 212 */ 213 struct work_struct unbound_release_work; 214 struct rcu_head rcu; 215 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 216 217 /* 218 * Structure used to wait for workqueue flush. 219 */ 220 struct wq_flusher { 221 struct list_head list; /* WQ: list of flushers */ 222 int flush_color; /* WQ: flush color waiting for */ 223 struct completion done; /* flush completion */ 224 }; 225 226 struct wq_device; 227 228 /* 229 * The externally visible workqueue. It relays the issued work items to 230 * the appropriate worker_pool through its pool_workqueues. 231 */ 232 struct workqueue_struct { 233 struct list_head pwqs; /* WR: all pwqs of this wq */ 234 struct list_head list; /* PL: list of all workqueues */ 235 236 struct mutex mutex; /* protects this wq */ 237 int work_color; /* WQ: current work color */ 238 int flush_color; /* WQ: current flush color */ 239 atomic_t nr_pwqs_to_flush; /* flush in progress */ 240 struct wq_flusher *first_flusher; /* WQ: first flusher */ 241 struct list_head flusher_queue; /* WQ: flush waiters */ 242 struct list_head flusher_overflow; /* WQ: flush overflow list */ 243 244 struct list_head maydays; /* MD: pwqs requesting rescue */ 245 struct worker *rescuer; /* I: rescue worker */ 246 247 int nr_drainers; /* WQ: drain in progress */ 248 int saved_max_active; /* WQ: saved pwq max_active */ 249 250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */ 251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */ 252 253 #ifdef CONFIG_SYSFS 254 struct wq_device *wq_dev; /* I: for sysfs interface */ 255 #endif 256 #ifdef CONFIG_LOCKDEP 257 struct lockdep_map lockdep_map; 258 #endif 259 char name[WQ_NAME_LEN]; /* I: workqueue name */ 260 261 /* hot fields used during command issue, aligned to cacheline */ 262 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 263 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 264 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */ 265 }; 266 267 static struct kmem_cache *pwq_cache; 268 269 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */ 270 static cpumask_var_t *wq_numa_possible_cpumask; 271 /* possible CPUs of each node */ 272 273 static bool wq_disable_numa; 274 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 275 276 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT 278 static bool wq_power_efficient = true; 279 #else 280 static bool wq_power_efficient; 281 #endif 282 283 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 284 285 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 286 287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 288 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 289 290 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 291 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 292 293 static LIST_HEAD(workqueues); /* PL: list of all workqueues */ 294 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 295 296 /* the per-cpu worker pools */ 297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 298 cpu_worker_pools); 299 300 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 301 302 /* PL: hash of all unbound pools keyed by pool->attrs */ 303 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 304 305 /* I: attributes used when instantiating standard unbound pools on demand */ 306 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 307 308 struct workqueue_struct *system_wq __read_mostly; 309 EXPORT_SYMBOL(system_wq); 310 struct workqueue_struct *system_highpri_wq __read_mostly; 311 EXPORT_SYMBOL_GPL(system_highpri_wq); 312 struct workqueue_struct *system_long_wq __read_mostly; 313 EXPORT_SYMBOL_GPL(system_long_wq); 314 struct workqueue_struct *system_unbound_wq __read_mostly; 315 EXPORT_SYMBOL_GPL(system_unbound_wq); 316 struct workqueue_struct *system_freezable_wq __read_mostly; 317 EXPORT_SYMBOL_GPL(system_freezable_wq); 318 struct workqueue_struct *system_power_efficient_wq __read_mostly; 319 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 320 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 321 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 322 323 static int worker_thread(void *__worker); 324 static void copy_workqueue_attrs(struct workqueue_attrs *to, 325 const struct workqueue_attrs *from); 326 327 #define CREATE_TRACE_POINTS 328 #include <trace/events/workqueue.h> 329 330 #define assert_rcu_or_pool_mutex() \ 331 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 332 lockdep_is_held(&wq_pool_mutex), \ 333 "sched RCU or wq_pool_mutex should be held") 334 335 #define assert_rcu_or_wq_mutex(wq) \ 336 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 337 lockdep_is_held(&wq->mutex), \ 338 "sched RCU or wq->mutex should be held") 339 340 #ifdef CONFIG_LOCKDEP 341 #define assert_manager_or_pool_lock(pool) \ 342 WARN_ONCE(debug_locks && \ 343 !lockdep_is_held(&(pool)->manager_mutex) && \ 344 !lockdep_is_held(&(pool)->lock), \ 345 "pool->manager_mutex or ->lock should be held") 346 #else 347 #define assert_manager_or_pool_lock(pool) do { } while (0) 348 #endif 349 350 #define for_each_cpu_worker_pool(pool, cpu) \ 351 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 352 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 353 (pool)++) 354 355 /** 356 * for_each_pool - iterate through all worker_pools in the system 357 * @pool: iteration cursor 358 * @pi: integer used for iteration 359 * 360 * This must be called either with wq_pool_mutex held or sched RCU read 361 * locked. If the pool needs to be used beyond the locking in effect, the 362 * caller is responsible for guaranteeing that the pool stays online. 363 * 364 * The if/else clause exists only for the lockdep assertion and can be 365 * ignored. 366 */ 367 #define for_each_pool(pool, pi) \ 368 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 369 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 370 else 371 372 /** 373 * for_each_pool_worker - iterate through all workers of a worker_pool 374 * @worker: iteration cursor 375 * @wi: integer used for iteration 376 * @pool: worker_pool to iterate workers of 377 * 378 * This must be called with either @pool->manager_mutex or ->lock held. 379 * 380 * The if/else clause exists only for the lockdep assertion and can be 381 * ignored. 382 */ 383 #define for_each_pool_worker(worker, wi, pool) \ 384 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \ 385 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \ 386 else 387 388 /** 389 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 390 * @pwq: iteration cursor 391 * @wq: the target workqueue 392 * 393 * This must be called either with wq->mutex held or sched RCU read locked. 394 * If the pwq needs to be used beyond the locking in effect, the caller is 395 * responsible for guaranteeing that the pwq stays online. 396 * 397 * The if/else clause exists only for the lockdep assertion and can be 398 * ignored. 399 */ 400 #define for_each_pwq(pwq, wq) \ 401 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 402 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 403 else 404 405 #ifdef CONFIG_DEBUG_OBJECTS_WORK 406 407 static struct debug_obj_descr work_debug_descr; 408 409 static void *work_debug_hint(void *addr) 410 { 411 return ((struct work_struct *) addr)->func; 412 } 413 414 /* 415 * fixup_init is called when: 416 * - an active object is initialized 417 */ 418 static int work_fixup_init(void *addr, enum debug_obj_state state) 419 { 420 struct work_struct *work = addr; 421 422 switch (state) { 423 case ODEBUG_STATE_ACTIVE: 424 cancel_work_sync(work); 425 debug_object_init(work, &work_debug_descr); 426 return 1; 427 default: 428 return 0; 429 } 430 } 431 432 /* 433 * fixup_activate is called when: 434 * - an active object is activated 435 * - an unknown object is activated (might be a statically initialized object) 436 */ 437 static int work_fixup_activate(void *addr, enum debug_obj_state state) 438 { 439 struct work_struct *work = addr; 440 441 switch (state) { 442 443 case ODEBUG_STATE_NOTAVAILABLE: 444 /* 445 * This is not really a fixup. The work struct was 446 * statically initialized. We just make sure that it 447 * is tracked in the object tracker. 448 */ 449 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 450 debug_object_init(work, &work_debug_descr); 451 debug_object_activate(work, &work_debug_descr); 452 return 0; 453 } 454 WARN_ON_ONCE(1); 455 return 0; 456 457 case ODEBUG_STATE_ACTIVE: 458 WARN_ON(1); 459 460 default: 461 return 0; 462 } 463 } 464 465 /* 466 * fixup_free is called when: 467 * - an active object is freed 468 */ 469 static int work_fixup_free(void *addr, enum debug_obj_state state) 470 { 471 struct work_struct *work = addr; 472 473 switch (state) { 474 case ODEBUG_STATE_ACTIVE: 475 cancel_work_sync(work); 476 debug_object_free(work, &work_debug_descr); 477 return 1; 478 default: 479 return 0; 480 } 481 } 482 483 static struct debug_obj_descr work_debug_descr = { 484 .name = "work_struct", 485 .debug_hint = work_debug_hint, 486 .fixup_init = work_fixup_init, 487 .fixup_activate = work_fixup_activate, 488 .fixup_free = work_fixup_free, 489 }; 490 491 static inline void debug_work_activate(struct work_struct *work) 492 { 493 debug_object_activate(work, &work_debug_descr); 494 } 495 496 static inline void debug_work_deactivate(struct work_struct *work) 497 { 498 debug_object_deactivate(work, &work_debug_descr); 499 } 500 501 void __init_work(struct work_struct *work, int onstack) 502 { 503 if (onstack) 504 debug_object_init_on_stack(work, &work_debug_descr); 505 else 506 debug_object_init(work, &work_debug_descr); 507 } 508 EXPORT_SYMBOL_GPL(__init_work); 509 510 void destroy_work_on_stack(struct work_struct *work) 511 { 512 debug_object_free(work, &work_debug_descr); 513 } 514 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 515 516 #else 517 static inline void debug_work_activate(struct work_struct *work) { } 518 static inline void debug_work_deactivate(struct work_struct *work) { } 519 #endif 520 521 /* allocate ID and assign it to @pool */ 522 static int worker_pool_assign_id(struct worker_pool *pool) 523 { 524 int ret; 525 526 lockdep_assert_held(&wq_pool_mutex); 527 528 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL); 529 if (ret >= 0) { 530 pool->id = ret; 531 return 0; 532 } 533 return ret; 534 } 535 536 /** 537 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 538 * @wq: the target workqueue 539 * @node: the node ID 540 * 541 * This must be called either with pwq_lock held or sched RCU read locked. 542 * If the pwq needs to be used beyond the locking in effect, the caller is 543 * responsible for guaranteeing that the pwq stays online. 544 * 545 * Return: The unbound pool_workqueue for @node. 546 */ 547 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 548 int node) 549 { 550 assert_rcu_or_wq_mutex(wq); 551 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 552 } 553 554 static unsigned int work_color_to_flags(int color) 555 { 556 return color << WORK_STRUCT_COLOR_SHIFT; 557 } 558 559 static int get_work_color(struct work_struct *work) 560 { 561 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 562 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 563 } 564 565 static int work_next_color(int color) 566 { 567 return (color + 1) % WORK_NR_COLORS; 568 } 569 570 /* 571 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 572 * contain the pointer to the queued pwq. Once execution starts, the flag 573 * is cleared and the high bits contain OFFQ flags and pool ID. 574 * 575 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 576 * and clear_work_data() can be used to set the pwq, pool or clear 577 * work->data. These functions should only be called while the work is 578 * owned - ie. while the PENDING bit is set. 579 * 580 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 581 * corresponding to a work. Pool is available once the work has been 582 * queued anywhere after initialization until it is sync canceled. pwq is 583 * available only while the work item is queued. 584 * 585 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 586 * canceled. While being canceled, a work item may have its PENDING set 587 * but stay off timer and worklist for arbitrarily long and nobody should 588 * try to steal the PENDING bit. 589 */ 590 static inline void set_work_data(struct work_struct *work, unsigned long data, 591 unsigned long flags) 592 { 593 WARN_ON_ONCE(!work_pending(work)); 594 atomic_long_set(&work->data, data | flags | work_static(work)); 595 } 596 597 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 598 unsigned long extra_flags) 599 { 600 set_work_data(work, (unsigned long)pwq, 601 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 602 } 603 604 static void set_work_pool_and_keep_pending(struct work_struct *work, 605 int pool_id) 606 { 607 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 608 WORK_STRUCT_PENDING); 609 } 610 611 static void set_work_pool_and_clear_pending(struct work_struct *work, 612 int pool_id) 613 { 614 /* 615 * The following wmb is paired with the implied mb in 616 * test_and_set_bit(PENDING) and ensures all updates to @work made 617 * here are visible to and precede any updates by the next PENDING 618 * owner. 619 */ 620 smp_wmb(); 621 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 622 } 623 624 static void clear_work_data(struct work_struct *work) 625 { 626 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 627 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 628 } 629 630 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 631 { 632 unsigned long data = atomic_long_read(&work->data); 633 634 if (data & WORK_STRUCT_PWQ) 635 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 636 else 637 return NULL; 638 } 639 640 /** 641 * get_work_pool - return the worker_pool a given work was associated with 642 * @work: the work item of interest 643 * 644 * Pools are created and destroyed under wq_pool_mutex, and allows read 645 * access under sched-RCU read lock. As such, this function should be 646 * called under wq_pool_mutex or with preemption disabled. 647 * 648 * All fields of the returned pool are accessible as long as the above 649 * mentioned locking is in effect. If the returned pool needs to be used 650 * beyond the critical section, the caller is responsible for ensuring the 651 * returned pool is and stays online. 652 * 653 * Return: The worker_pool @work was last associated with. %NULL if none. 654 */ 655 static struct worker_pool *get_work_pool(struct work_struct *work) 656 { 657 unsigned long data = atomic_long_read(&work->data); 658 int pool_id; 659 660 assert_rcu_or_pool_mutex(); 661 662 if (data & WORK_STRUCT_PWQ) 663 return ((struct pool_workqueue *) 664 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 665 666 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 667 if (pool_id == WORK_OFFQ_POOL_NONE) 668 return NULL; 669 670 return idr_find(&worker_pool_idr, pool_id); 671 } 672 673 /** 674 * get_work_pool_id - return the worker pool ID a given work is associated with 675 * @work: the work item of interest 676 * 677 * Return: The worker_pool ID @work was last associated with. 678 * %WORK_OFFQ_POOL_NONE if none. 679 */ 680 static int get_work_pool_id(struct work_struct *work) 681 { 682 unsigned long data = atomic_long_read(&work->data); 683 684 if (data & WORK_STRUCT_PWQ) 685 return ((struct pool_workqueue *) 686 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 687 688 return data >> WORK_OFFQ_POOL_SHIFT; 689 } 690 691 static void mark_work_canceling(struct work_struct *work) 692 { 693 unsigned long pool_id = get_work_pool_id(work); 694 695 pool_id <<= WORK_OFFQ_POOL_SHIFT; 696 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 697 } 698 699 static bool work_is_canceling(struct work_struct *work) 700 { 701 unsigned long data = atomic_long_read(&work->data); 702 703 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 704 } 705 706 /* 707 * Policy functions. These define the policies on how the global worker 708 * pools are managed. Unless noted otherwise, these functions assume that 709 * they're being called with pool->lock held. 710 */ 711 712 static bool __need_more_worker(struct worker_pool *pool) 713 { 714 return !atomic_read(&pool->nr_running); 715 } 716 717 /* 718 * Need to wake up a worker? Called from anything but currently 719 * running workers. 720 * 721 * Note that, because unbound workers never contribute to nr_running, this 722 * function will always return %true for unbound pools as long as the 723 * worklist isn't empty. 724 */ 725 static bool need_more_worker(struct worker_pool *pool) 726 { 727 return !list_empty(&pool->worklist) && __need_more_worker(pool); 728 } 729 730 /* Can I start working? Called from busy but !running workers. */ 731 static bool may_start_working(struct worker_pool *pool) 732 { 733 return pool->nr_idle; 734 } 735 736 /* Do I need to keep working? Called from currently running workers. */ 737 static bool keep_working(struct worker_pool *pool) 738 { 739 return !list_empty(&pool->worklist) && 740 atomic_read(&pool->nr_running) <= 1; 741 } 742 743 /* Do we need a new worker? Called from manager. */ 744 static bool need_to_create_worker(struct worker_pool *pool) 745 { 746 return need_more_worker(pool) && !may_start_working(pool); 747 } 748 749 /* Do I need to be the manager? */ 750 static bool need_to_manage_workers(struct worker_pool *pool) 751 { 752 return need_to_create_worker(pool) || 753 (pool->flags & POOL_MANAGE_WORKERS); 754 } 755 756 /* Do we have too many workers and should some go away? */ 757 static bool too_many_workers(struct worker_pool *pool) 758 { 759 bool managing = mutex_is_locked(&pool->manager_arb); 760 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 761 int nr_busy = pool->nr_workers - nr_idle; 762 763 /* 764 * nr_idle and idle_list may disagree if idle rebinding is in 765 * progress. Never return %true if idle_list is empty. 766 */ 767 if (list_empty(&pool->idle_list)) 768 return false; 769 770 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 771 } 772 773 /* 774 * Wake up functions. 775 */ 776 777 /* Return the first worker. Safe with preemption disabled */ 778 static struct worker *first_worker(struct worker_pool *pool) 779 { 780 if (unlikely(list_empty(&pool->idle_list))) 781 return NULL; 782 783 return list_first_entry(&pool->idle_list, struct worker, entry); 784 } 785 786 /** 787 * wake_up_worker - wake up an idle worker 788 * @pool: worker pool to wake worker from 789 * 790 * Wake up the first idle worker of @pool. 791 * 792 * CONTEXT: 793 * spin_lock_irq(pool->lock). 794 */ 795 static void wake_up_worker(struct worker_pool *pool) 796 { 797 struct worker *worker = first_worker(pool); 798 799 if (likely(worker)) 800 wake_up_process(worker->task); 801 } 802 803 /** 804 * wq_worker_waking_up - a worker is waking up 805 * @task: task waking up 806 * @cpu: CPU @task is waking up to 807 * 808 * This function is called during try_to_wake_up() when a worker is 809 * being awoken. 810 * 811 * CONTEXT: 812 * spin_lock_irq(rq->lock) 813 */ 814 void wq_worker_waking_up(struct task_struct *task, int cpu) 815 { 816 struct worker *worker = kthread_data(task); 817 818 if (!(worker->flags & WORKER_NOT_RUNNING)) { 819 WARN_ON_ONCE(worker->pool->cpu != cpu); 820 atomic_inc(&worker->pool->nr_running); 821 } 822 } 823 824 /** 825 * wq_worker_sleeping - a worker is going to sleep 826 * @task: task going to sleep 827 * @cpu: CPU in question, must be the current CPU number 828 * 829 * This function is called during schedule() when a busy worker is 830 * going to sleep. Worker on the same cpu can be woken up by 831 * returning pointer to its task. 832 * 833 * CONTEXT: 834 * spin_lock_irq(rq->lock) 835 * 836 * Return: 837 * Worker task on @cpu to wake up, %NULL if none. 838 */ 839 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 840 { 841 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 842 struct worker_pool *pool; 843 844 /* 845 * Rescuers, which may not have all the fields set up like normal 846 * workers, also reach here, let's not access anything before 847 * checking NOT_RUNNING. 848 */ 849 if (worker->flags & WORKER_NOT_RUNNING) 850 return NULL; 851 852 pool = worker->pool; 853 854 /* this can only happen on the local cpu */ 855 if (WARN_ON_ONCE(cpu != raw_smp_processor_id())) 856 return NULL; 857 858 /* 859 * The counterpart of the following dec_and_test, implied mb, 860 * worklist not empty test sequence is in insert_work(). 861 * Please read comment there. 862 * 863 * NOT_RUNNING is clear. This means that we're bound to and 864 * running on the local cpu w/ rq lock held and preemption 865 * disabled, which in turn means that none else could be 866 * manipulating idle_list, so dereferencing idle_list without pool 867 * lock is safe. 868 */ 869 if (atomic_dec_and_test(&pool->nr_running) && 870 !list_empty(&pool->worklist)) 871 to_wakeup = first_worker(pool); 872 return to_wakeup ? to_wakeup->task : NULL; 873 } 874 875 /** 876 * worker_set_flags - set worker flags and adjust nr_running accordingly 877 * @worker: self 878 * @flags: flags to set 879 * @wakeup: wakeup an idle worker if necessary 880 * 881 * Set @flags in @worker->flags and adjust nr_running accordingly. If 882 * nr_running becomes zero and @wakeup is %true, an idle worker is 883 * woken up. 884 * 885 * CONTEXT: 886 * spin_lock_irq(pool->lock) 887 */ 888 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 889 bool wakeup) 890 { 891 struct worker_pool *pool = worker->pool; 892 893 WARN_ON_ONCE(worker->task != current); 894 895 /* 896 * If transitioning into NOT_RUNNING, adjust nr_running and 897 * wake up an idle worker as necessary if requested by 898 * @wakeup. 899 */ 900 if ((flags & WORKER_NOT_RUNNING) && 901 !(worker->flags & WORKER_NOT_RUNNING)) { 902 if (wakeup) { 903 if (atomic_dec_and_test(&pool->nr_running) && 904 !list_empty(&pool->worklist)) 905 wake_up_worker(pool); 906 } else 907 atomic_dec(&pool->nr_running); 908 } 909 910 worker->flags |= flags; 911 } 912 913 /** 914 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 915 * @worker: self 916 * @flags: flags to clear 917 * 918 * Clear @flags in @worker->flags and adjust nr_running accordingly. 919 * 920 * CONTEXT: 921 * spin_lock_irq(pool->lock) 922 */ 923 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 924 { 925 struct worker_pool *pool = worker->pool; 926 unsigned int oflags = worker->flags; 927 928 WARN_ON_ONCE(worker->task != current); 929 930 worker->flags &= ~flags; 931 932 /* 933 * If transitioning out of NOT_RUNNING, increment nr_running. Note 934 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 935 * of multiple flags, not a single flag. 936 */ 937 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 938 if (!(worker->flags & WORKER_NOT_RUNNING)) 939 atomic_inc(&pool->nr_running); 940 } 941 942 /** 943 * find_worker_executing_work - find worker which is executing a work 944 * @pool: pool of interest 945 * @work: work to find worker for 946 * 947 * Find a worker which is executing @work on @pool by searching 948 * @pool->busy_hash which is keyed by the address of @work. For a worker 949 * to match, its current execution should match the address of @work and 950 * its work function. This is to avoid unwanted dependency between 951 * unrelated work executions through a work item being recycled while still 952 * being executed. 953 * 954 * This is a bit tricky. A work item may be freed once its execution 955 * starts and nothing prevents the freed area from being recycled for 956 * another work item. If the same work item address ends up being reused 957 * before the original execution finishes, workqueue will identify the 958 * recycled work item as currently executing and make it wait until the 959 * current execution finishes, introducing an unwanted dependency. 960 * 961 * This function checks the work item address and work function to avoid 962 * false positives. Note that this isn't complete as one may construct a 963 * work function which can introduce dependency onto itself through a 964 * recycled work item. Well, if somebody wants to shoot oneself in the 965 * foot that badly, there's only so much we can do, and if such deadlock 966 * actually occurs, it should be easy to locate the culprit work function. 967 * 968 * CONTEXT: 969 * spin_lock_irq(pool->lock). 970 * 971 * Return: 972 * Pointer to worker which is executing @work if found, %NULL 973 * otherwise. 974 */ 975 static struct worker *find_worker_executing_work(struct worker_pool *pool, 976 struct work_struct *work) 977 { 978 struct worker *worker; 979 980 hash_for_each_possible(pool->busy_hash, worker, hentry, 981 (unsigned long)work) 982 if (worker->current_work == work && 983 worker->current_func == work->func) 984 return worker; 985 986 return NULL; 987 } 988 989 /** 990 * move_linked_works - move linked works to a list 991 * @work: start of series of works to be scheduled 992 * @head: target list to append @work to 993 * @nextp: out paramter for nested worklist walking 994 * 995 * Schedule linked works starting from @work to @head. Work series to 996 * be scheduled starts at @work and includes any consecutive work with 997 * WORK_STRUCT_LINKED set in its predecessor. 998 * 999 * If @nextp is not NULL, it's updated to point to the next work of 1000 * the last scheduled work. This allows move_linked_works() to be 1001 * nested inside outer list_for_each_entry_safe(). 1002 * 1003 * CONTEXT: 1004 * spin_lock_irq(pool->lock). 1005 */ 1006 static void move_linked_works(struct work_struct *work, struct list_head *head, 1007 struct work_struct **nextp) 1008 { 1009 struct work_struct *n; 1010 1011 /* 1012 * Linked worklist will always end before the end of the list, 1013 * use NULL for list head. 1014 */ 1015 list_for_each_entry_safe_from(work, n, NULL, entry) { 1016 list_move_tail(&work->entry, head); 1017 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1018 break; 1019 } 1020 1021 /* 1022 * If we're already inside safe list traversal and have moved 1023 * multiple works to the scheduled queue, the next position 1024 * needs to be updated. 1025 */ 1026 if (nextp) 1027 *nextp = n; 1028 } 1029 1030 /** 1031 * get_pwq - get an extra reference on the specified pool_workqueue 1032 * @pwq: pool_workqueue to get 1033 * 1034 * Obtain an extra reference on @pwq. The caller should guarantee that 1035 * @pwq has positive refcnt and be holding the matching pool->lock. 1036 */ 1037 static void get_pwq(struct pool_workqueue *pwq) 1038 { 1039 lockdep_assert_held(&pwq->pool->lock); 1040 WARN_ON_ONCE(pwq->refcnt <= 0); 1041 pwq->refcnt++; 1042 } 1043 1044 /** 1045 * put_pwq - put a pool_workqueue reference 1046 * @pwq: pool_workqueue to put 1047 * 1048 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1049 * destruction. The caller should be holding the matching pool->lock. 1050 */ 1051 static void put_pwq(struct pool_workqueue *pwq) 1052 { 1053 lockdep_assert_held(&pwq->pool->lock); 1054 if (likely(--pwq->refcnt)) 1055 return; 1056 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1057 return; 1058 /* 1059 * @pwq can't be released under pool->lock, bounce to 1060 * pwq_unbound_release_workfn(). This never recurses on the same 1061 * pool->lock as this path is taken only for unbound workqueues and 1062 * the release work item is scheduled on a per-cpu workqueue. To 1063 * avoid lockdep warning, unbound pool->locks are given lockdep 1064 * subclass of 1 in get_unbound_pool(). 1065 */ 1066 schedule_work(&pwq->unbound_release_work); 1067 } 1068 1069 /** 1070 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1071 * @pwq: pool_workqueue to put (can be %NULL) 1072 * 1073 * put_pwq() with locking. This function also allows %NULL @pwq. 1074 */ 1075 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1076 { 1077 if (pwq) { 1078 /* 1079 * As both pwqs and pools are sched-RCU protected, the 1080 * following lock operations are safe. 1081 */ 1082 spin_lock_irq(&pwq->pool->lock); 1083 put_pwq(pwq); 1084 spin_unlock_irq(&pwq->pool->lock); 1085 } 1086 } 1087 1088 static void pwq_activate_delayed_work(struct work_struct *work) 1089 { 1090 struct pool_workqueue *pwq = get_work_pwq(work); 1091 1092 trace_workqueue_activate_work(work); 1093 move_linked_works(work, &pwq->pool->worklist, NULL); 1094 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1095 pwq->nr_active++; 1096 } 1097 1098 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1099 { 1100 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1101 struct work_struct, entry); 1102 1103 pwq_activate_delayed_work(work); 1104 } 1105 1106 /** 1107 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1108 * @pwq: pwq of interest 1109 * @color: color of work which left the queue 1110 * 1111 * A work either has completed or is removed from pending queue, 1112 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1113 * 1114 * CONTEXT: 1115 * spin_lock_irq(pool->lock). 1116 */ 1117 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1118 { 1119 /* uncolored work items don't participate in flushing or nr_active */ 1120 if (color == WORK_NO_COLOR) 1121 goto out_put; 1122 1123 pwq->nr_in_flight[color]--; 1124 1125 pwq->nr_active--; 1126 if (!list_empty(&pwq->delayed_works)) { 1127 /* one down, submit a delayed one */ 1128 if (pwq->nr_active < pwq->max_active) 1129 pwq_activate_first_delayed(pwq); 1130 } 1131 1132 /* is flush in progress and are we at the flushing tip? */ 1133 if (likely(pwq->flush_color != color)) 1134 goto out_put; 1135 1136 /* are there still in-flight works? */ 1137 if (pwq->nr_in_flight[color]) 1138 goto out_put; 1139 1140 /* this pwq is done, clear flush_color */ 1141 pwq->flush_color = -1; 1142 1143 /* 1144 * If this was the last pwq, wake up the first flusher. It 1145 * will handle the rest. 1146 */ 1147 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1148 complete(&pwq->wq->first_flusher->done); 1149 out_put: 1150 put_pwq(pwq); 1151 } 1152 1153 /** 1154 * try_to_grab_pending - steal work item from worklist and disable irq 1155 * @work: work item to steal 1156 * @is_dwork: @work is a delayed_work 1157 * @flags: place to store irq state 1158 * 1159 * Try to grab PENDING bit of @work. This function can handle @work in any 1160 * stable state - idle, on timer or on worklist. 1161 * 1162 * Return: 1163 * 1 if @work was pending and we successfully stole PENDING 1164 * 0 if @work was idle and we claimed PENDING 1165 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1166 * -ENOENT if someone else is canceling @work, this state may persist 1167 * for arbitrarily long 1168 * 1169 * Note: 1170 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1171 * interrupted while holding PENDING and @work off queue, irq must be 1172 * disabled on entry. This, combined with delayed_work->timer being 1173 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1174 * 1175 * On successful return, >= 0, irq is disabled and the caller is 1176 * responsible for releasing it using local_irq_restore(*@flags). 1177 * 1178 * This function is safe to call from any context including IRQ handler. 1179 */ 1180 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1181 unsigned long *flags) 1182 { 1183 struct worker_pool *pool; 1184 struct pool_workqueue *pwq; 1185 1186 local_irq_save(*flags); 1187 1188 /* try to steal the timer if it exists */ 1189 if (is_dwork) { 1190 struct delayed_work *dwork = to_delayed_work(work); 1191 1192 /* 1193 * dwork->timer is irqsafe. If del_timer() fails, it's 1194 * guaranteed that the timer is not queued anywhere and not 1195 * running on the local CPU. 1196 */ 1197 if (likely(del_timer(&dwork->timer))) 1198 return 1; 1199 } 1200 1201 /* try to claim PENDING the normal way */ 1202 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1203 return 0; 1204 1205 /* 1206 * The queueing is in progress, or it is already queued. Try to 1207 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1208 */ 1209 pool = get_work_pool(work); 1210 if (!pool) 1211 goto fail; 1212 1213 spin_lock(&pool->lock); 1214 /* 1215 * work->data is guaranteed to point to pwq only while the work 1216 * item is queued on pwq->wq, and both updating work->data to point 1217 * to pwq on queueing and to pool on dequeueing are done under 1218 * pwq->pool->lock. This in turn guarantees that, if work->data 1219 * points to pwq which is associated with a locked pool, the work 1220 * item is currently queued on that pool. 1221 */ 1222 pwq = get_work_pwq(work); 1223 if (pwq && pwq->pool == pool) { 1224 debug_work_deactivate(work); 1225 1226 /* 1227 * A delayed work item cannot be grabbed directly because 1228 * it might have linked NO_COLOR work items which, if left 1229 * on the delayed_list, will confuse pwq->nr_active 1230 * management later on and cause stall. Make sure the work 1231 * item is activated before grabbing. 1232 */ 1233 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1234 pwq_activate_delayed_work(work); 1235 1236 list_del_init(&work->entry); 1237 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work)); 1238 1239 /* work->data points to pwq iff queued, point to pool */ 1240 set_work_pool_and_keep_pending(work, pool->id); 1241 1242 spin_unlock(&pool->lock); 1243 return 1; 1244 } 1245 spin_unlock(&pool->lock); 1246 fail: 1247 local_irq_restore(*flags); 1248 if (work_is_canceling(work)) 1249 return -ENOENT; 1250 cpu_relax(); 1251 return -EAGAIN; 1252 } 1253 1254 /** 1255 * insert_work - insert a work into a pool 1256 * @pwq: pwq @work belongs to 1257 * @work: work to insert 1258 * @head: insertion point 1259 * @extra_flags: extra WORK_STRUCT_* flags to set 1260 * 1261 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1262 * work_struct flags. 1263 * 1264 * CONTEXT: 1265 * spin_lock_irq(pool->lock). 1266 */ 1267 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1268 struct list_head *head, unsigned int extra_flags) 1269 { 1270 struct worker_pool *pool = pwq->pool; 1271 1272 /* we own @work, set data and link */ 1273 set_work_pwq(work, pwq, extra_flags); 1274 list_add_tail(&work->entry, head); 1275 get_pwq(pwq); 1276 1277 /* 1278 * Ensure either wq_worker_sleeping() sees the above 1279 * list_add_tail() or we see zero nr_running to avoid workers lying 1280 * around lazily while there are works to be processed. 1281 */ 1282 smp_mb(); 1283 1284 if (__need_more_worker(pool)) 1285 wake_up_worker(pool); 1286 } 1287 1288 /* 1289 * Test whether @work is being queued from another work executing on the 1290 * same workqueue. 1291 */ 1292 static bool is_chained_work(struct workqueue_struct *wq) 1293 { 1294 struct worker *worker; 1295 1296 worker = current_wq_worker(); 1297 /* 1298 * Return %true iff I'm a worker execuing a work item on @wq. If 1299 * I'm @worker, it's safe to dereference it without locking. 1300 */ 1301 return worker && worker->current_pwq->wq == wq; 1302 } 1303 1304 static void __queue_work(int cpu, struct workqueue_struct *wq, 1305 struct work_struct *work) 1306 { 1307 struct pool_workqueue *pwq; 1308 struct worker_pool *last_pool; 1309 struct list_head *worklist; 1310 unsigned int work_flags; 1311 unsigned int req_cpu = cpu; 1312 1313 /* 1314 * While a work item is PENDING && off queue, a task trying to 1315 * steal the PENDING will busy-loop waiting for it to either get 1316 * queued or lose PENDING. Grabbing PENDING and queueing should 1317 * happen with IRQ disabled. 1318 */ 1319 WARN_ON_ONCE(!irqs_disabled()); 1320 1321 debug_work_activate(work); 1322 1323 /* if dying, only works from the same workqueue are allowed */ 1324 if (unlikely(wq->flags & __WQ_DRAINING) && 1325 WARN_ON_ONCE(!is_chained_work(wq))) 1326 return; 1327 retry: 1328 if (req_cpu == WORK_CPU_UNBOUND) 1329 cpu = raw_smp_processor_id(); 1330 1331 /* pwq which will be used unless @work is executing elsewhere */ 1332 if (!(wq->flags & WQ_UNBOUND)) 1333 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1334 else 1335 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1336 1337 /* 1338 * If @work was previously on a different pool, it might still be 1339 * running there, in which case the work needs to be queued on that 1340 * pool to guarantee non-reentrancy. 1341 */ 1342 last_pool = get_work_pool(work); 1343 if (last_pool && last_pool != pwq->pool) { 1344 struct worker *worker; 1345 1346 spin_lock(&last_pool->lock); 1347 1348 worker = find_worker_executing_work(last_pool, work); 1349 1350 if (worker && worker->current_pwq->wq == wq) { 1351 pwq = worker->current_pwq; 1352 } else { 1353 /* meh... not running there, queue here */ 1354 spin_unlock(&last_pool->lock); 1355 spin_lock(&pwq->pool->lock); 1356 } 1357 } else { 1358 spin_lock(&pwq->pool->lock); 1359 } 1360 1361 /* 1362 * pwq is determined and locked. For unbound pools, we could have 1363 * raced with pwq release and it could already be dead. If its 1364 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1365 * without another pwq replacing it in the numa_pwq_tbl or while 1366 * work items are executing on it, so the retrying is guaranteed to 1367 * make forward-progress. 1368 */ 1369 if (unlikely(!pwq->refcnt)) { 1370 if (wq->flags & WQ_UNBOUND) { 1371 spin_unlock(&pwq->pool->lock); 1372 cpu_relax(); 1373 goto retry; 1374 } 1375 /* oops */ 1376 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1377 wq->name, cpu); 1378 } 1379 1380 /* pwq determined, queue */ 1381 trace_workqueue_queue_work(req_cpu, pwq, work); 1382 1383 if (WARN_ON(!list_empty(&work->entry))) { 1384 spin_unlock(&pwq->pool->lock); 1385 return; 1386 } 1387 1388 pwq->nr_in_flight[pwq->work_color]++; 1389 work_flags = work_color_to_flags(pwq->work_color); 1390 1391 if (likely(pwq->nr_active < pwq->max_active)) { 1392 trace_workqueue_activate_work(work); 1393 pwq->nr_active++; 1394 worklist = &pwq->pool->worklist; 1395 } else { 1396 work_flags |= WORK_STRUCT_DELAYED; 1397 worklist = &pwq->delayed_works; 1398 } 1399 1400 insert_work(pwq, work, worklist, work_flags); 1401 1402 spin_unlock(&pwq->pool->lock); 1403 } 1404 1405 /** 1406 * queue_work_on - queue work on specific cpu 1407 * @cpu: CPU number to execute work on 1408 * @wq: workqueue to use 1409 * @work: work to queue 1410 * 1411 * We queue the work to a specific CPU, the caller must ensure it 1412 * can't go away. 1413 * 1414 * Return: %false if @work was already on a queue, %true otherwise. 1415 */ 1416 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1417 struct work_struct *work) 1418 { 1419 bool ret = false; 1420 unsigned long flags; 1421 1422 local_irq_save(flags); 1423 1424 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1425 __queue_work(cpu, wq, work); 1426 ret = true; 1427 } 1428 1429 local_irq_restore(flags); 1430 return ret; 1431 } 1432 EXPORT_SYMBOL(queue_work_on); 1433 1434 void delayed_work_timer_fn(unsigned long __data) 1435 { 1436 struct delayed_work *dwork = (struct delayed_work *)__data; 1437 1438 /* should have been called from irqsafe timer with irq already off */ 1439 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1440 } 1441 EXPORT_SYMBOL(delayed_work_timer_fn); 1442 1443 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1444 struct delayed_work *dwork, unsigned long delay) 1445 { 1446 struct timer_list *timer = &dwork->timer; 1447 struct work_struct *work = &dwork->work; 1448 1449 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1450 timer->data != (unsigned long)dwork); 1451 WARN_ON_ONCE(timer_pending(timer)); 1452 WARN_ON_ONCE(!list_empty(&work->entry)); 1453 1454 /* 1455 * If @delay is 0, queue @dwork->work immediately. This is for 1456 * both optimization and correctness. The earliest @timer can 1457 * expire is on the closest next tick and delayed_work users depend 1458 * on that there's no such delay when @delay is 0. 1459 */ 1460 if (!delay) { 1461 __queue_work(cpu, wq, &dwork->work); 1462 return; 1463 } 1464 1465 timer_stats_timer_set_start_info(&dwork->timer); 1466 1467 dwork->wq = wq; 1468 dwork->cpu = cpu; 1469 timer->expires = jiffies + delay; 1470 1471 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1472 add_timer_on(timer, cpu); 1473 else 1474 add_timer(timer); 1475 } 1476 1477 /** 1478 * queue_delayed_work_on - queue work on specific CPU after delay 1479 * @cpu: CPU number to execute work on 1480 * @wq: workqueue to use 1481 * @dwork: work to queue 1482 * @delay: number of jiffies to wait before queueing 1483 * 1484 * Return: %false if @work was already on a queue, %true otherwise. If 1485 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1486 * execution. 1487 */ 1488 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1489 struct delayed_work *dwork, unsigned long delay) 1490 { 1491 struct work_struct *work = &dwork->work; 1492 bool ret = false; 1493 unsigned long flags; 1494 1495 /* read the comment in __queue_work() */ 1496 local_irq_save(flags); 1497 1498 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1499 __queue_delayed_work(cpu, wq, dwork, delay); 1500 ret = true; 1501 } 1502 1503 local_irq_restore(flags); 1504 return ret; 1505 } 1506 EXPORT_SYMBOL(queue_delayed_work_on); 1507 1508 /** 1509 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1510 * @cpu: CPU number to execute work on 1511 * @wq: workqueue to use 1512 * @dwork: work to queue 1513 * @delay: number of jiffies to wait before queueing 1514 * 1515 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1516 * modify @dwork's timer so that it expires after @delay. If @delay is 1517 * zero, @work is guaranteed to be scheduled immediately regardless of its 1518 * current state. 1519 * 1520 * Return: %false if @dwork was idle and queued, %true if @dwork was 1521 * pending and its timer was modified. 1522 * 1523 * This function is safe to call from any context including IRQ handler. 1524 * See try_to_grab_pending() for details. 1525 */ 1526 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1527 struct delayed_work *dwork, unsigned long delay) 1528 { 1529 unsigned long flags; 1530 int ret; 1531 1532 do { 1533 ret = try_to_grab_pending(&dwork->work, true, &flags); 1534 } while (unlikely(ret == -EAGAIN)); 1535 1536 if (likely(ret >= 0)) { 1537 __queue_delayed_work(cpu, wq, dwork, delay); 1538 local_irq_restore(flags); 1539 } 1540 1541 /* -ENOENT from try_to_grab_pending() becomes %true */ 1542 return ret; 1543 } 1544 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1545 1546 /** 1547 * worker_enter_idle - enter idle state 1548 * @worker: worker which is entering idle state 1549 * 1550 * @worker is entering idle state. Update stats and idle timer if 1551 * necessary. 1552 * 1553 * LOCKING: 1554 * spin_lock_irq(pool->lock). 1555 */ 1556 static void worker_enter_idle(struct worker *worker) 1557 { 1558 struct worker_pool *pool = worker->pool; 1559 1560 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1561 WARN_ON_ONCE(!list_empty(&worker->entry) && 1562 (worker->hentry.next || worker->hentry.pprev))) 1563 return; 1564 1565 /* can't use worker_set_flags(), also called from start_worker() */ 1566 worker->flags |= WORKER_IDLE; 1567 pool->nr_idle++; 1568 worker->last_active = jiffies; 1569 1570 /* idle_list is LIFO */ 1571 list_add(&worker->entry, &pool->idle_list); 1572 1573 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1574 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1575 1576 /* 1577 * Sanity check nr_running. Because wq_unbind_fn() releases 1578 * pool->lock between setting %WORKER_UNBOUND and zapping 1579 * nr_running, the warning may trigger spuriously. Check iff 1580 * unbind is not in progress. 1581 */ 1582 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1583 pool->nr_workers == pool->nr_idle && 1584 atomic_read(&pool->nr_running)); 1585 } 1586 1587 /** 1588 * worker_leave_idle - leave idle state 1589 * @worker: worker which is leaving idle state 1590 * 1591 * @worker is leaving idle state. Update stats. 1592 * 1593 * LOCKING: 1594 * spin_lock_irq(pool->lock). 1595 */ 1596 static void worker_leave_idle(struct worker *worker) 1597 { 1598 struct worker_pool *pool = worker->pool; 1599 1600 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1601 return; 1602 worker_clr_flags(worker, WORKER_IDLE); 1603 pool->nr_idle--; 1604 list_del_init(&worker->entry); 1605 } 1606 1607 /** 1608 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it 1609 * @pool: target worker_pool 1610 * 1611 * Bind %current to the cpu of @pool if it is associated and lock @pool. 1612 * 1613 * Works which are scheduled while the cpu is online must at least be 1614 * scheduled to a worker which is bound to the cpu so that if they are 1615 * flushed from cpu callbacks while cpu is going down, they are 1616 * guaranteed to execute on the cpu. 1617 * 1618 * This function is to be used by unbound workers and rescuers to bind 1619 * themselves to the target cpu and may race with cpu going down or 1620 * coming online. kthread_bind() can't be used because it may put the 1621 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1622 * verbatim as it's best effort and blocking and pool may be 1623 * [dis]associated in the meantime. 1624 * 1625 * This function tries set_cpus_allowed() and locks pool and verifies the 1626 * binding against %POOL_DISASSOCIATED which is set during 1627 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker 1628 * enters idle state or fetches works without dropping lock, it can 1629 * guarantee the scheduling requirement described in the first paragraph. 1630 * 1631 * CONTEXT: 1632 * Might sleep. Called without any lock but returns with pool->lock 1633 * held. 1634 * 1635 * Return: 1636 * %true if the associated pool is online (@worker is successfully 1637 * bound), %false if offline. 1638 */ 1639 static bool worker_maybe_bind_and_lock(struct worker_pool *pool) 1640 __acquires(&pool->lock) 1641 { 1642 while (true) { 1643 /* 1644 * The following call may fail, succeed or succeed 1645 * without actually migrating the task to the cpu if 1646 * it races with cpu hotunplug operation. Verify 1647 * against POOL_DISASSOCIATED. 1648 */ 1649 if (!(pool->flags & POOL_DISASSOCIATED)) 1650 set_cpus_allowed_ptr(current, pool->attrs->cpumask); 1651 1652 spin_lock_irq(&pool->lock); 1653 if (pool->flags & POOL_DISASSOCIATED) 1654 return false; 1655 if (task_cpu(current) == pool->cpu && 1656 cpumask_equal(¤t->cpus_allowed, pool->attrs->cpumask)) 1657 return true; 1658 spin_unlock_irq(&pool->lock); 1659 1660 /* 1661 * We've raced with CPU hot[un]plug. Give it a breather 1662 * and retry migration. cond_resched() is required here; 1663 * otherwise, we might deadlock against cpu_stop trying to 1664 * bring down the CPU on non-preemptive kernel. 1665 */ 1666 cpu_relax(); 1667 cond_resched(); 1668 } 1669 } 1670 1671 static struct worker *alloc_worker(void) 1672 { 1673 struct worker *worker; 1674 1675 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1676 if (worker) { 1677 INIT_LIST_HEAD(&worker->entry); 1678 INIT_LIST_HEAD(&worker->scheduled); 1679 /* on creation a worker is in !idle && prep state */ 1680 worker->flags = WORKER_PREP; 1681 } 1682 return worker; 1683 } 1684 1685 /** 1686 * create_worker - create a new workqueue worker 1687 * @pool: pool the new worker will belong to 1688 * 1689 * Create a new worker which is bound to @pool. The returned worker 1690 * can be started by calling start_worker() or destroyed using 1691 * destroy_worker(). 1692 * 1693 * CONTEXT: 1694 * Might sleep. Does GFP_KERNEL allocations. 1695 * 1696 * Return: 1697 * Pointer to the newly created worker. 1698 */ 1699 static struct worker *create_worker(struct worker_pool *pool) 1700 { 1701 struct worker *worker = NULL; 1702 int id = -1; 1703 char id_buf[16]; 1704 1705 lockdep_assert_held(&pool->manager_mutex); 1706 1707 /* 1708 * ID is needed to determine kthread name. Allocate ID first 1709 * without installing the pointer. 1710 */ 1711 idr_preload(GFP_KERNEL); 1712 spin_lock_irq(&pool->lock); 1713 1714 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT); 1715 1716 spin_unlock_irq(&pool->lock); 1717 idr_preload_end(); 1718 if (id < 0) 1719 goto fail; 1720 1721 worker = alloc_worker(); 1722 if (!worker) 1723 goto fail; 1724 1725 worker->pool = pool; 1726 worker->id = id; 1727 1728 if (pool->cpu >= 0) 1729 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1730 pool->attrs->nice < 0 ? "H" : ""); 1731 else 1732 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1733 1734 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1735 "kworker/%s", id_buf); 1736 if (IS_ERR(worker->task)) 1737 goto fail; 1738 1739 /* 1740 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1741 * online CPUs. It'll be re-applied when any of the CPUs come up. 1742 */ 1743 set_user_nice(worker->task, pool->attrs->nice); 1744 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1745 1746 /* prevent userland from meddling with cpumask of workqueue workers */ 1747 worker->task->flags |= PF_NO_SETAFFINITY; 1748 1749 /* 1750 * The caller is responsible for ensuring %POOL_DISASSOCIATED 1751 * remains stable across this function. See the comments above the 1752 * flag definition for details. 1753 */ 1754 if (pool->flags & POOL_DISASSOCIATED) 1755 worker->flags |= WORKER_UNBOUND; 1756 1757 /* successful, commit the pointer to idr */ 1758 spin_lock_irq(&pool->lock); 1759 idr_replace(&pool->worker_idr, worker, worker->id); 1760 spin_unlock_irq(&pool->lock); 1761 1762 return worker; 1763 1764 fail: 1765 if (id >= 0) { 1766 spin_lock_irq(&pool->lock); 1767 idr_remove(&pool->worker_idr, id); 1768 spin_unlock_irq(&pool->lock); 1769 } 1770 kfree(worker); 1771 return NULL; 1772 } 1773 1774 /** 1775 * start_worker - start a newly created worker 1776 * @worker: worker to start 1777 * 1778 * Make the pool aware of @worker and start it. 1779 * 1780 * CONTEXT: 1781 * spin_lock_irq(pool->lock). 1782 */ 1783 static void start_worker(struct worker *worker) 1784 { 1785 worker->flags |= WORKER_STARTED; 1786 worker->pool->nr_workers++; 1787 worker_enter_idle(worker); 1788 wake_up_process(worker->task); 1789 } 1790 1791 /** 1792 * create_and_start_worker - create and start a worker for a pool 1793 * @pool: the target pool 1794 * 1795 * Grab the managership of @pool and create and start a new worker for it. 1796 * 1797 * Return: 0 on success. A negative error code otherwise. 1798 */ 1799 static int create_and_start_worker(struct worker_pool *pool) 1800 { 1801 struct worker *worker; 1802 1803 mutex_lock(&pool->manager_mutex); 1804 1805 worker = create_worker(pool); 1806 if (worker) { 1807 spin_lock_irq(&pool->lock); 1808 start_worker(worker); 1809 spin_unlock_irq(&pool->lock); 1810 } 1811 1812 mutex_unlock(&pool->manager_mutex); 1813 1814 return worker ? 0 : -ENOMEM; 1815 } 1816 1817 /** 1818 * destroy_worker - destroy a workqueue worker 1819 * @worker: worker to be destroyed 1820 * 1821 * Destroy @worker and adjust @pool stats accordingly. 1822 * 1823 * CONTEXT: 1824 * spin_lock_irq(pool->lock) which is released and regrabbed. 1825 */ 1826 static void destroy_worker(struct worker *worker) 1827 { 1828 struct worker_pool *pool = worker->pool; 1829 1830 lockdep_assert_held(&pool->manager_mutex); 1831 lockdep_assert_held(&pool->lock); 1832 1833 /* sanity check frenzy */ 1834 if (WARN_ON(worker->current_work) || 1835 WARN_ON(!list_empty(&worker->scheduled))) 1836 return; 1837 1838 if (worker->flags & WORKER_STARTED) 1839 pool->nr_workers--; 1840 if (worker->flags & WORKER_IDLE) 1841 pool->nr_idle--; 1842 1843 list_del_init(&worker->entry); 1844 worker->flags |= WORKER_DIE; 1845 1846 idr_remove(&pool->worker_idr, worker->id); 1847 1848 spin_unlock_irq(&pool->lock); 1849 1850 kthread_stop(worker->task); 1851 kfree(worker); 1852 1853 spin_lock_irq(&pool->lock); 1854 } 1855 1856 static void idle_worker_timeout(unsigned long __pool) 1857 { 1858 struct worker_pool *pool = (void *)__pool; 1859 1860 spin_lock_irq(&pool->lock); 1861 1862 if (too_many_workers(pool)) { 1863 struct worker *worker; 1864 unsigned long expires; 1865 1866 /* idle_list is kept in LIFO order, check the last one */ 1867 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1868 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1869 1870 if (time_before(jiffies, expires)) 1871 mod_timer(&pool->idle_timer, expires); 1872 else { 1873 /* it's been idle for too long, wake up manager */ 1874 pool->flags |= POOL_MANAGE_WORKERS; 1875 wake_up_worker(pool); 1876 } 1877 } 1878 1879 spin_unlock_irq(&pool->lock); 1880 } 1881 1882 static void send_mayday(struct work_struct *work) 1883 { 1884 struct pool_workqueue *pwq = get_work_pwq(work); 1885 struct workqueue_struct *wq = pwq->wq; 1886 1887 lockdep_assert_held(&wq_mayday_lock); 1888 1889 if (!wq->rescuer) 1890 return; 1891 1892 /* mayday mayday mayday */ 1893 if (list_empty(&pwq->mayday_node)) { 1894 list_add_tail(&pwq->mayday_node, &wq->maydays); 1895 wake_up_process(wq->rescuer->task); 1896 } 1897 } 1898 1899 static void pool_mayday_timeout(unsigned long __pool) 1900 { 1901 struct worker_pool *pool = (void *)__pool; 1902 struct work_struct *work; 1903 1904 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */ 1905 spin_lock(&pool->lock); 1906 1907 if (need_to_create_worker(pool)) { 1908 /* 1909 * We've been trying to create a new worker but 1910 * haven't been successful. We might be hitting an 1911 * allocation deadlock. Send distress signals to 1912 * rescuers. 1913 */ 1914 list_for_each_entry(work, &pool->worklist, entry) 1915 send_mayday(work); 1916 } 1917 1918 spin_unlock(&pool->lock); 1919 spin_unlock_irq(&wq_mayday_lock); 1920 1921 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1922 } 1923 1924 /** 1925 * maybe_create_worker - create a new worker if necessary 1926 * @pool: pool to create a new worker for 1927 * 1928 * Create a new worker for @pool if necessary. @pool is guaranteed to 1929 * have at least one idle worker on return from this function. If 1930 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1931 * sent to all rescuers with works scheduled on @pool to resolve 1932 * possible allocation deadlock. 1933 * 1934 * On return, need_to_create_worker() is guaranteed to be %false and 1935 * may_start_working() %true. 1936 * 1937 * LOCKING: 1938 * spin_lock_irq(pool->lock) which may be released and regrabbed 1939 * multiple times. Does GFP_KERNEL allocations. Called only from 1940 * manager. 1941 * 1942 * Return: 1943 * %false if no action was taken and pool->lock stayed locked, %true 1944 * otherwise. 1945 */ 1946 static bool maybe_create_worker(struct worker_pool *pool) 1947 __releases(&pool->lock) 1948 __acquires(&pool->lock) 1949 { 1950 if (!need_to_create_worker(pool)) 1951 return false; 1952 restart: 1953 spin_unlock_irq(&pool->lock); 1954 1955 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1956 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1957 1958 while (true) { 1959 struct worker *worker; 1960 1961 worker = create_worker(pool); 1962 if (worker) { 1963 del_timer_sync(&pool->mayday_timer); 1964 spin_lock_irq(&pool->lock); 1965 start_worker(worker); 1966 if (WARN_ON_ONCE(need_to_create_worker(pool))) 1967 goto restart; 1968 return true; 1969 } 1970 1971 if (!need_to_create_worker(pool)) 1972 break; 1973 1974 __set_current_state(TASK_INTERRUPTIBLE); 1975 schedule_timeout(CREATE_COOLDOWN); 1976 1977 if (!need_to_create_worker(pool)) 1978 break; 1979 } 1980 1981 del_timer_sync(&pool->mayday_timer); 1982 spin_lock_irq(&pool->lock); 1983 if (need_to_create_worker(pool)) 1984 goto restart; 1985 return true; 1986 } 1987 1988 /** 1989 * maybe_destroy_worker - destroy workers which have been idle for a while 1990 * @pool: pool to destroy workers for 1991 * 1992 * Destroy @pool workers which have been idle for longer than 1993 * IDLE_WORKER_TIMEOUT. 1994 * 1995 * LOCKING: 1996 * spin_lock_irq(pool->lock) which may be released and regrabbed 1997 * multiple times. Called only from manager. 1998 * 1999 * Return: 2000 * %false if no action was taken and pool->lock stayed locked, %true 2001 * otherwise. 2002 */ 2003 static bool maybe_destroy_workers(struct worker_pool *pool) 2004 { 2005 bool ret = false; 2006 2007 while (too_many_workers(pool)) { 2008 struct worker *worker; 2009 unsigned long expires; 2010 2011 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2012 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2013 2014 if (time_before(jiffies, expires)) { 2015 mod_timer(&pool->idle_timer, expires); 2016 break; 2017 } 2018 2019 destroy_worker(worker); 2020 ret = true; 2021 } 2022 2023 return ret; 2024 } 2025 2026 /** 2027 * manage_workers - manage worker pool 2028 * @worker: self 2029 * 2030 * Assume the manager role and manage the worker pool @worker belongs 2031 * to. At any given time, there can be only zero or one manager per 2032 * pool. The exclusion is handled automatically by this function. 2033 * 2034 * The caller can safely start processing works on false return. On 2035 * true return, it's guaranteed that need_to_create_worker() is false 2036 * and may_start_working() is true. 2037 * 2038 * CONTEXT: 2039 * spin_lock_irq(pool->lock) which may be released and regrabbed 2040 * multiple times. Does GFP_KERNEL allocations. 2041 * 2042 * Return: 2043 * %false if the pool don't need management and the caller can safely start 2044 * processing works, %true indicates that the function released pool->lock 2045 * and reacquired it to perform some management function and that the 2046 * conditions that the caller verified while holding the lock before 2047 * calling the function might no longer be true. 2048 */ 2049 static bool manage_workers(struct worker *worker) 2050 { 2051 struct worker_pool *pool = worker->pool; 2052 bool ret = false; 2053 2054 /* 2055 * Managership is governed by two mutexes - manager_arb and 2056 * manager_mutex. manager_arb handles arbitration of manager role. 2057 * Anyone who successfully grabs manager_arb wins the arbitration 2058 * and becomes the manager. mutex_trylock() on pool->manager_arb 2059 * failure while holding pool->lock reliably indicates that someone 2060 * else is managing the pool and the worker which failed trylock 2061 * can proceed to executing work items. This means that anyone 2062 * grabbing manager_arb is responsible for actually performing 2063 * manager duties. If manager_arb is grabbed and released without 2064 * actual management, the pool may stall indefinitely. 2065 * 2066 * manager_mutex is used for exclusion of actual management 2067 * operations. The holder of manager_mutex can be sure that none 2068 * of management operations, including creation and destruction of 2069 * workers, won't take place until the mutex is released. Because 2070 * manager_mutex doesn't interfere with manager role arbitration, 2071 * it is guaranteed that the pool's management, while may be 2072 * delayed, won't be disturbed by someone else grabbing 2073 * manager_mutex. 2074 */ 2075 if (!mutex_trylock(&pool->manager_arb)) 2076 return ret; 2077 2078 /* 2079 * With manager arbitration won, manager_mutex would be free in 2080 * most cases. trylock first without dropping @pool->lock. 2081 */ 2082 if (unlikely(!mutex_trylock(&pool->manager_mutex))) { 2083 spin_unlock_irq(&pool->lock); 2084 mutex_lock(&pool->manager_mutex); 2085 spin_lock_irq(&pool->lock); 2086 ret = true; 2087 } 2088 2089 pool->flags &= ~POOL_MANAGE_WORKERS; 2090 2091 /* 2092 * Destroy and then create so that may_start_working() is true 2093 * on return. 2094 */ 2095 ret |= maybe_destroy_workers(pool); 2096 ret |= maybe_create_worker(pool); 2097 2098 mutex_unlock(&pool->manager_mutex); 2099 mutex_unlock(&pool->manager_arb); 2100 return ret; 2101 } 2102 2103 /** 2104 * process_one_work - process single work 2105 * @worker: self 2106 * @work: work to process 2107 * 2108 * Process @work. This function contains all the logics necessary to 2109 * process a single work including synchronization against and 2110 * interaction with other workers on the same cpu, queueing and 2111 * flushing. As long as context requirement is met, any worker can 2112 * call this function to process a work. 2113 * 2114 * CONTEXT: 2115 * spin_lock_irq(pool->lock) which is released and regrabbed. 2116 */ 2117 static void process_one_work(struct worker *worker, struct work_struct *work) 2118 __releases(&pool->lock) 2119 __acquires(&pool->lock) 2120 { 2121 struct pool_workqueue *pwq = get_work_pwq(work); 2122 struct worker_pool *pool = worker->pool; 2123 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2124 int work_color; 2125 struct worker *collision; 2126 #ifdef CONFIG_LOCKDEP 2127 /* 2128 * It is permissible to free the struct work_struct from 2129 * inside the function that is called from it, this we need to 2130 * take into account for lockdep too. To avoid bogus "held 2131 * lock freed" warnings as well as problems when looking into 2132 * work->lockdep_map, make a copy and use that here. 2133 */ 2134 struct lockdep_map lockdep_map; 2135 2136 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2137 #endif 2138 /* 2139 * Ensure we're on the correct CPU. DISASSOCIATED test is 2140 * necessary to avoid spurious warnings from rescuers servicing the 2141 * unbound or a disassociated pool. 2142 */ 2143 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) && 2144 !(pool->flags & POOL_DISASSOCIATED) && 2145 raw_smp_processor_id() != pool->cpu); 2146 2147 /* 2148 * A single work shouldn't be executed concurrently by 2149 * multiple workers on a single cpu. Check whether anyone is 2150 * already processing the work. If so, defer the work to the 2151 * currently executing one. 2152 */ 2153 collision = find_worker_executing_work(pool, work); 2154 if (unlikely(collision)) { 2155 move_linked_works(work, &collision->scheduled, NULL); 2156 return; 2157 } 2158 2159 /* claim and dequeue */ 2160 debug_work_deactivate(work); 2161 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2162 worker->current_work = work; 2163 worker->current_func = work->func; 2164 worker->current_pwq = pwq; 2165 work_color = get_work_color(work); 2166 2167 list_del_init(&work->entry); 2168 2169 /* 2170 * CPU intensive works don't participate in concurrency 2171 * management. They're the scheduler's responsibility. 2172 */ 2173 if (unlikely(cpu_intensive)) 2174 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 2175 2176 /* 2177 * Unbound pool isn't concurrency managed and work items should be 2178 * executed ASAP. Wake up another worker if necessary. 2179 */ 2180 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool)) 2181 wake_up_worker(pool); 2182 2183 /* 2184 * Record the last pool and clear PENDING which should be the last 2185 * update to @work. Also, do this inside @pool->lock so that 2186 * PENDING and queued state changes happen together while IRQ is 2187 * disabled. 2188 */ 2189 set_work_pool_and_clear_pending(work, pool->id); 2190 2191 spin_unlock_irq(&pool->lock); 2192 2193 lock_map_acquire_read(&pwq->wq->lockdep_map); 2194 lock_map_acquire(&lockdep_map); 2195 trace_workqueue_execute_start(work); 2196 worker->current_func(work); 2197 /* 2198 * While we must be careful to not use "work" after this, the trace 2199 * point will only record its address. 2200 */ 2201 trace_workqueue_execute_end(work); 2202 lock_map_release(&lockdep_map); 2203 lock_map_release(&pwq->wq->lockdep_map); 2204 2205 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2206 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2207 " last function: %pf\n", 2208 current->comm, preempt_count(), task_pid_nr(current), 2209 worker->current_func); 2210 debug_show_held_locks(current); 2211 dump_stack(); 2212 } 2213 2214 /* 2215 * The following prevents a kworker from hogging CPU on !PREEMPT 2216 * kernels, where a requeueing work item waiting for something to 2217 * happen could deadlock with stop_machine as such work item could 2218 * indefinitely requeue itself while all other CPUs are trapped in 2219 * stop_machine. 2220 */ 2221 cond_resched(); 2222 2223 spin_lock_irq(&pool->lock); 2224 2225 /* clear cpu intensive status */ 2226 if (unlikely(cpu_intensive)) 2227 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2228 2229 /* we're done with it, release */ 2230 hash_del(&worker->hentry); 2231 worker->current_work = NULL; 2232 worker->current_func = NULL; 2233 worker->current_pwq = NULL; 2234 worker->desc_valid = false; 2235 pwq_dec_nr_in_flight(pwq, work_color); 2236 } 2237 2238 /** 2239 * process_scheduled_works - process scheduled works 2240 * @worker: self 2241 * 2242 * Process all scheduled works. Please note that the scheduled list 2243 * may change while processing a work, so this function repeatedly 2244 * fetches a work from the top and executes it. 2245 * 2246 * CONTEXT: 2247 * spin_lock_irq(pool->lock) which may be released and regrabbed 2248 * multiple times. 2249 */ 2250 static void process_scheduled_works(struct worker *worker) 2251 { 2252 while (!list_empty(&worker->scheduled)) { 2253 struct work_struct *work = list_first_entry(&worker->scheduled, 2254 struct work_struct, entry); 2255 process_one_work(worker, work); 2256 } 2257 } 2258 2259 /** 2260 * worker_thread - the worker thread function 2261 * @__worker: self 2262 * 2263 * The worker thread function. All workers belong to a worker_pool - 2264 * either a per-cpu one or dynamic unbound one. These workers process all 2265 * work items regardless of their specific target workqueue. The only 2266 * exception is work items which belong to workqueues with a rescuer which 2267 * will be explained in rescuer_thread(). 2268 * 2269 * Return: 0 2270 */ 2271 static int worker_thread(void *__worker) 2272 { 2273 struct worker *worker = __worker; 2274 struct worker_pool *pool = worker->pool; 2275 2276 /* tell the scheduler that this is a workqueue worker */ 2277 worker->task->flags |= PF_WQ_WORKER; 2278 woke_up: 2279 spin_lock_irq(&pool->lock); 2280 2281 /* am I supposed to die? */ 2282 if (unlikely(worker->flags & WORKER_DIE)) { 2283 spin_unlock_irq(&pool->lock); 2284 WARN_ON_ONCE(!list_empty(&worker->entry)); 2285 worker->task->flags &= ~PF_WQ_WORKER; 2286 return 0; 2287 } 2288 2289 worker_leave_idle(worker); 2290 recheck: 2291 /* no more worker necessary? */ 2292 if (!need_more_worker(pool)) 2293 goto sleep; 2294 2295 /* do we need to manage? */ 2296 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2297 goto recheck; 2298 2299 /* 2300 * ->scheduled list can only be filled while a worker is 2301 * preparing to process a work or actually processing it. 2302 * Make sure nobody diddled with it while I was sleeping. 2303 */ 2304 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2305 2306 /* 2307 * Finish PREP stage. We're guaranteed to have at least one idle 2308 * worker or that someone else has already assumed the manager 2309 * role. This is where @worker starts participating in concurrency 2310 * management if applicable and concurrency management is restored 2311 * after being rebound. See rebind_workers() for details. 2312 */ 2313 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2314 2315 do { 2316 struct work_struct *work = 2317 list_first_entry(&pool->worklist, 2318 struct work_struct, entry); 2319 2320 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2321 /* optimization path, not strictly necessary */ 2322 process_one_work(worker, work); 2323 if (unlikely(!list_empty(&worker->scheduled))) 2324 process_scheduled_works(worker); 2325 } else { 2326 move_linked_works(work, &worker->scheduled, NULL); 2327 process_scheduled_works(worker); 2328 } 2329 } while (keep_working(pool)); 2330 2331 worker_set_flags(worker, WORKER_PREP, false); 2332 sleep: 2333 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker)) 2334 goto recheck; 2335 2336 /* 2337 * pool->lock is held and there's no work to process and no need to 2338 * manage, sleep. Workers are woken up only while holding 2339 * pool->lock or from local cpu, so setting the current state 2340 * before releasing pool->lock is enough to prevent losing any 2341 * event. 2342 */ 2343 worker_enter_idle(worker); 2344 __set_current_state(TASK_INTERRUPTIBLE); 2345 spin_unlock_irq(&pool->lock); 2346 schedule(); 2347 goto woke_up; 2348 } 2349 2350 /** 2351 * rescuer_thread - the rescuer thread function 2352 * @__rescuer: self 2353 * 2354 * Workqueue rescuer thread function. There's one rescuer for each 2355 * workqueue which has WQ_MEM_RECLAIM set. 2356 * 2357 * Regular work processing on a pool may block trying to create a new 2358 * worker which uses GFP_KERNEL allocation which has slight chance of 2359 * developing into deadlock if some works currently on the same queue 2360 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2361 * the problem rescuer solves. 2362 * 2363 * When such condition is possible, the pool summons rescuers of all 2364 * workqueues which have works queued on the pool and let them process 2365 * those works so that forward progress can be guaranteed. 2366 * 2367 * This should happen rarely. 2368 * 2369 * Return: 0 2370 */ 2371 static int rescuer_thread(void *__rescuer) 2372 { 2373 struct worker *rescuer = __rescuer; 2374 struct workqueue_struct *wq = rescuer->rescue_wq; 2375 struct list_head *scheduled = &rescuer->scheduled; 2376 2377 set_user_nice(current, RESCUER_NICE_LEVEL); 2378 2379 /* 2380 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2381 * doesn't participate in concurrency management. 2382 */ 2383 rescuer->task->flags |= PF_WQ_WORKER; 2384 repeat: 2385 set_current_state(TASK_INTERRUPTIBLE); 2386 2387 if (kthread_should_stop()) { 2388 __set_current_state(TASK_RUNNING); 2389 rescuer->task->flags &= ~PF_WQ_WORKER; 2390 return 0; 2391 } 2392 2393 /* see whether any pwq is asking for help */ 2394 spin_lock_irq(&wq_mayday_lock); 2395 2396 while (!list_empty(&wq->maydays)) { 2397 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2398 struct pool_workqueue, mayday_node); 2399 struct worker_pool *pool = pwq->pool; 2400 struct work_struct *work, *n; 2401 2402 __set_current_state(TASK_RUNNING); 2403 list_del_init(&pwq->mayday_node); 2404 2405 spin_unlock_irq(&wq_mayday_lock); 2406 2407 /* migrate to the target cpu if possible */ 2408 worker_maybe_bind_and_lock(pool); 2409 rescuer->pool = pool; 2410 2411 /* 2412 * Slurp in all works issued via this workqueue and 2413 * process'em. 2414 */ 2415 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 2416 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2417 if (get_work_pwq(work) == pwq) 2418 move_linked_works(work, scheduled, &n); 2419 2420 process_scheduled_works(rescuer); 2421 2422 /* 2423 * Leave this pool. If keep_working() is %true, notify a 2424 * regular worker; otherwise, we end up with 0 concurrency 2425 * and stalling the execution. 2426 */ 2427 if (keep_working(pool)) 2428 wake_up_worker(pool); 2429 2430 rescuer->pool = NULL; 2431 spin_unlock(&pool->lock); 2432 spin_lock(&wq_mayday_lock); 2433 } 2434 2435 spin_unlock_irq(&wq_mayday_lock); 2436 2437 /* rescuers should never participate in concurrency management */ 2438 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2439 schedule(); 2440 goto repeat; 2441 } 2442 2443 struct wq_barrier { 2444 struct work_struct work; 2445 struct completion done; 2446 }; 2447 2448 static void wq_barrier_func(struct work_struct *work) 2449 { 2450 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2451 complete(&barr->done); 2452 } 2453 2454 /** 2455 * insert_wq_barrier - insert a barrier work 2456 * @pwq: pwq to insert barrier into 2457 * @barr: wq_barrier to insert 2458 * @target: target work to attach @barr to 2459 * @worker: worker currently executing @target, NULL if @target is not executing 2460 * 2461 * @barr is linked to @target such that @barr is completed only after 2462 * @target finishes execution. Please note that the ordering 2463 * guarantee is observed only with respect to @target and on the local 2464 * cpu. 2465 * 2466 * Currently, a queued barrier can't be canceled. This is because 2467 * try_to_grab_pending() can't determine whether the work to be 2468 * grabbed is at the head of the queue and thus can't clear LINKED 2469 * flag of the previous work while there must be a valid next work 2470 * after a work with LINKED flag set. 2471 * 2472 * Note that when @worker is non-NULL, @target may be modified 2473 * underneath us, so we can't reliably determine pwq from @target. 2474 * 2475 * CONTEXT: 2476 * spin_lock_irq(pool->lock). 2477 */ 2478 static void insert_wq_barrier(struct pool_workqueue *pwq, 2479 struct wq_barrier *barr, 2480 struct work_struct *target, struct worker *worker) 2481 { 2482 struct list_head *head; 2483 unsigned int linked = 0; 2484 2485 /* 2486 * debugobject calls are safe here even with pool->lock locked 2487 * as we know for sure that this will not trigger any of the 2488 * checks and call back into the fixup functions where we 2489 * might deadlock. 2490 */ 2491 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2492 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2493 init_completion(&barr->done); 2494 2495 /* 2496 * If @target is currently being executed, schedule the 2497 * barrier to the worker; otherwise, put it after @target. 2498 */ 2499 if (worker) 2500 head = worker->scheduled.next; 2501 else { 2502 unsigned long *bits = work_data_bits(target); 2503 2504 head = target->entry.next; 2505 /* there can already be other linked works, inherit and set */ 2506 linked = *bits & WORK_STRUCT_LINKED; 2507 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2508 } 2509 2510 debug_work_activate(&barr->work); 2511 insert_work(pwq, &barr->work, head, 2512 work_color_to_flags(WORK_NO_COLOR) | linked); 2513 } 2514 2515 /** 2516 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2517 * @wq: workqueue being flushed 2518 * @flush_color: new flush color, < 0 for no-op 2519 * @work_color: new work color, < 0 for no-op 2520 * 2521 * Prepare pwqs for workqueue flushing. 2522 * 2523 * If @flush_color is non-negative, flush_color on all pwqs should be 2524 * -1. If no pwq has in-flight commands at the specified color, all 2525 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2526 * has in flight commands, its pwq->flush_color is set to 2527 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2528 * wakeup logic is armed and %true is returned. 2529 * 2530 * The caller should have initialized @wq->first_flusher prior to 2531 * calling this function with non-negative @flush_color. If 2532 * @flush_color is negative, no flush color update is done and %false 2533 * is returned. 2534 * 2535 * If @work_color is non-negative, all pwqs should have the same 2536 * work_color which is previous to @work_color and all will be 2537 * advanced to @work_color. 2538 * 2539 * CONTEXT: 2540 * mutex_lock(wq->mutex). 2541 * 2542 * Return: 2543 * %true if @flush_color >= 0 and there's something to flush. %false 2544 * otherwise. 2545 */ 2546 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2547 int flush_color, int work_color) 2548 { 2549 bool wait = false; 2550 struct pool_workqueue *pwq; 2551 2552 if (flush_color >= 0) { 2553 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2554 atomic_set(&wq->nr_pwqs_to_flush, 1); 2555 } 2556 2557 for_each_pwq(pwq, wq) { 2558 struct worker_pool *pool = pwq->pool; 2559 2560 spin_lock_irq(&pool->lock); 2561 2562 if (flush_color >= 0) { 2563 WARN_ON_ONCE(pwq->flush_color != -1); 2564 2565 if (pwq->nr_in_flight[flush_color]) { 2566 pwq->flush_color = flush_color; 2567 atomic_inc(&wq->nr_pwqs_to_flush); 2568 wait = true; 2569 } 2570 } 2571 2572 if (work_color >= 0) { 2573 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2574 pwq->work_color = work_color; 2575 } 2576 2577 spin_unlock_irq(&pool->lock); 2578 } 2579 2580 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2581 complete(&wq->first_flusher->done); 2582 2583 return wait; 2584 } 2585 2586 /** 2587 * flush_workqueue - ensure that any scheduled work has run to completion. 2588 * @wq: workqueue to flush 2589 * 2590 * This function sleeps until all work items which were queued on entry 2591 * have finished execution, but it is not livelocked by new incoming ones. 2592 */ 2593 void flush_workqueue(struct workqueue_struct *wq) 2594 { 2595 struct wq_flusher this_flusher = { 2596 .list = LIST_HEAD_INIT(this_flusher.list), 2597 .flush_color = -1, 2598 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2599 }; 2600 int next_color; 2601 2602 lock_map_acquire(&wq->lockdep_map); 2603 lock_map_release(&wq->lockdep_map); 2604 2605 mutex_lock(&wq->mutex); 2606 2607 /* 2608 * Start-to-wait phase 2609 */ 2610 next_color = work_next_color(wq->work_color); 2611 2612 if (next_color != wq->flush_color) { 2613 /* 2614 * Color space is not full. The current work_color 2615 * becomes our flush_color and work_color is advanced 2616 * by one. 2617 */ 2618 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2619 this_flusher.flush_color = wq->work_color; 2620 wq->work_color = next_color; 2621 2622 if (!wq->first_flusher) { 2623 /* no flush in progress, become the first flusher */ 2624 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2625 2626 wq->first_flusher = &this_flusher; 2627 2628 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2629 wq->work_color)) { 2630 /* nothing to flush, done */ 2631 wq->flush_color = next_color; 2632 wq->first_flusher = NULL; 2633 goto out_unlock; 2634 } 2635 } else { 2636 /* wait in queue */ 2637 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2638 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2639 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2640 } 2641 } else { 2642 /* 2643 * Oops, color space is full, wait on overflow queue. 2644 * The next flush completion will assign us 2645 * flush_color and transfer to flusher_queue. 2646 */ 2647 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2648 } 2649 2650 mutex_unlock(&wq->mutex); 2651 2652 wait_for_completion(&this_flusher.done); 2653 2654 /* 2655 * Wake-up-and-cascade phase 2656 * 2657 * First flushers are responsible for cascading flushes and 2658 * handling overflow. Non-first flushers can simply return. 2659 */ 2660 if (wq->first_flusher != &this_flusher) 2661 return; 2662 2663 mutex_lock(&wq->mutex); 2664 2665 /* we might have raced, check again with mutex held */ 2666 if (wq->first_flusher != &this_flusher) 2667 goto out_unlock; 2668 2669 wq->first_flusher = NULL; 2670 2671 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2672 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2673 2674 while (true) { 2675 struct wq_flusher *next, *tmp; 2676 2677 /* complete all the flushers sharing the current flush color */ 2678 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2679 if (next->flush_color != wq->flush_color) 2680 break; 2681 list_del_init(&next->list); 2682 complete(&next->done); 2683 } 2684 2685 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2686 wq->flush_color != work_next_color(wq->work_color)); 2687 2688 /* this flush_color is finished, advance by one */ 2689 wq->flush_color = work_next_color(wq->flush_color); 2690 2691 /* one color has been freed, handle overflow queue */ 2692 if (!list_empty(&wq->flusher_overflow)) { 2693 /* 2694 * Assign the same color to all overflowed 2695 * flushers, advance work_color and append to 2696 * flusher_queue. This is the start-to-wait 2697 * phase for these overflowed flushers. 2698 */ 2699 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2700 tmp->flush_color = wq->work_color; 2701 2702 wq->work_color = work_next_color(wq->work_color); 2703 2704 list_splice_tail_init(&wq->flusher_overflow, 2705 &wq->flusher_queue); 2706 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2707 } 2708 2709 if (list_empty(&wq->flusher_queue)) { 2710 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2711 break; 2712 } 2713 2714 /* 2715 * Need to flush more colors. Make the next flusher 2716 * the new first flusher and arm pwqs. 2717 */ 2718 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2719 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2720 2721 list_del_init(&next->list); 2722 wq->first_flusher = next; 2723 2724 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2725 break; 2726 2727 /* 2728 * Meh... this color is already done, clear first 2729 * flusher and repeat cascading. 2730 */ 2731 wq->first_flusher = NULL; 2732 } 2733 2734 out_unlock: 2735 mutex_unlock(&wq->mutex); 2736 } 2737 EXPORT_SYMBOL_GPL(flush_workqueue); 2738 2739 /** 2740 * drain_workqueue - drain a workqueue 2741 * @wq: workqueue to drain 2742 * 2743 * Wait until the workqueue becomes empty. While draining is in progress, 2744 * only chain queueing is allowed. IOW, only currently pending or running 2745 * work items on @wq can queue further work items on it. @wq is flushed 2746 * repeatedly until it becomes empty. The number of flushing is detemined 2747 * by the depth of chaining and should be relatively short. Whine if it 2748 * takes too long. 2749 */ 2750 void drain_workqueue(struct workqueue_struct *wq) 2751 { 2752 unsigned int flush_cnt = 0; 2753 struct pool_workqueue *pwq; 2754 2755 /* 2756 * __queue_work() needs to test whether there are drainers, is much 2757 * hotter than drain_workqueue() and already looks at @wq->flags. 2758 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2759 */ 2760 mutex_lock(&wq->mutex); 2761 if (!wq->nr_drainers++) 2762 wq->flags |= __WQ_DRAINING; 2763 mutex_unlock(&wq->mutex); 2764 reflush: 2765 flush_workqueue(wq); 2766 2767 mutex_lock(&wq->mutex); 2768 2769 for_each_pwq(pwq, wq) { 2770 bool drained; 2771 2772 spin_lock_irq(&pwq->pool->lock); 2773 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2774 spin_unlock_irq(&pwq->pool->lock); 2775 2776 if (drained) 2777 continue; 2778 2779 if (++flush_cnt == 10 || 2780 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2781 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2782 wq->name, flush_cnt); 2783 2784 mutex_unlock(&wq->mutex); 2785 goto reflush; 2786 } 2787 2788 if (!--wq->nr_drainers) 2789 wq->flags &= ~__WQ_DRAINING; 2790 mutex_unlock(&wq->mutex); 2791 } 2792 EXPORT_SYMBOL_GPL(drain_workqueue); 2793 2794 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2795 { 2796 struct worker *worker = NULL; 2797 struct worker_pool *pool; 2798 struct pool_workqueue *pwq; 2799 2800 might_sleep(); 2801 2802 local_irq_disable(); 2803 pool = get_work_pool(work); 2804 if (!pool) { 2805 local_irq_enable(); 2806 return false; 2807 } 2808 2809 spin_lock(&pool->lock); 2810 /* see the comment in try_to_grab_pending() with the same code */ 2811 pwq = get_work_pwq(work); 2812 if (pwq) { 2813 if (unlikely(pwq->pool != pool)) 2814 goto already_gone; 2815 } else { 2816 worker = find_worker_executing_work(pool, work); 2817 if (!worker) 2818 goto already_gone; 2819 pwq = worker->current_pwq; 2820 } 2821 2822 insert_wq_barrier(pwq, barr, work, worker); 2823 spin_unlock_irq(&pool->lock); 2824 2825 /* 2826 * If @max_active is 1 or rescuer is in use, flushing another work 2827 * item on the same workqueue may lead to deadlock. Make sure the 2828 * flusher is not running on the same workqueue by verifying write 2829 * access. 2830 */ 2831 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2832 lock_map_acquire(&pwq->wq->lockdep_map); 2833 else 2834 lock_map_acquire_read(&pwq->wq->lockdep_map); 2835 lock_map_release(&pwq->wq->lockdep_map); 2836 2837 return true; 2838 already_gone: 2839 spin_unlock_irq(&pool->lock); 2840 return false; 2841 } 2842 2843 static bool __flush_work(struct work_struct *work) 2844 { 2845 struct wq_barrier barr; 2846 2847 if (start_flush_work(work, &barr)) { 2848 wait_for_completion(&barr.done); 2849 destroy_work_on_stack(&barr.work); 2850 return true; 2851 } else { 2852 return false; 2853 } 2854 } 2855 2856 /** 2857 * flush_work - wait for a work to finish executing the last queueing instance 2858 * @work: the work to flush 2859 * 2860 * Wait until @work has finished execution. @work is guaranteed to be idle 2861 * on return if it hasn't been requeued since flush started. 2862 * 2863 * Return: 2864 * %true if flush_work() waited for the work to finish execution, 2865 * %false if it was already idle. 2866 */ 2867 bool flush_work(struct work_struct *work) 2868 { 2869 lock_map_acquire(&work->lockdep_map); 2870 lock_map_release(&work->lockdep_map); 2871 2872 return __flush_work(work); 2873 } 2874 EXPORT_SYMBOL_GPL(flush_work); 2875 2876 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2877 { 2878 unsigned long flags; 2879 int ret; 2880 2881 do { 2882 ret = try_to_grab_pending(work, is_dwork, &flags); 2883 /* 2884 * If someone else is canceling, wait for the same event it 2885 * would be waiting for before retrying. 2886 */ 2887 if (unlikely(ret == -ENOENT)) 2888 flush_work(work); 2889 } while (unlikely(ret < 0)); 2890 2891 /* tell other tasks trying to grab @work to back off */ 2892 mark_work_canceling(work); 2893 local_irq_restore(flags); 2894 2895 flush_work(work); 2896 clear_work_data(work); 2897 return ret; 2898 } 2899 2900 /** 2901 * cancel_work_sync - cancel a work and wait for it to finish 2902 * @work: the work to cancel 2903 * 2904 * Cancel @work and wait for its execution to finish. This function 2905 * can be used even if the work re-queues itself or migrates to 2906 * another workqueue. On return from this function, @work is 2907 * guaranteed to be not pending or executing on any CPU. 2908 * 2909 * cancel_work_sync(&delayed_work->work) must not be used for 2910 * delayed_work's. Use cancel_delayed_work_sync() instead. 2911 * 2912 * The caller must ensure that the workqueue on which @work was last 2913 * queued can't be destroyed before this function returns. 2914 * 2915 * Return: 2916 * %true if @work was pending, %false otherwise. 2917 */ 2918 bool cancel_work_sync(struct work_struct *work) 2919 { 2920 return __cancel_work_timer(work, false); 2921 } 2922 EXPORT_SYMBOL_GPL(cancel_work_sync); 2923 2924 /** 2925 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2926 * @dwork: the delayed work to flush 2927 * 2928 * Delayed timer is cancelled and the pending work is queued for 2929 * immediate execution. Like flush_work(), this function only 2930 * considers the last queueing instance of @dwork. 2931 * 2932 * Return: 2933 * %true if flush_work() waited for the work to finish execution, 2934 * %false if it was already idle. 2935 */ 2936 bool flush_delayed_work(struct delayed_work *dwork) 2937 { 2938 local_irq_disable(); 2939 if (del_timer_sync(&dwork->timer)) 2940 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2941 local_irq_enable(); 2942 return flush_work(&dwork->work); 2943 } 2944 EXPORT_SYMBOL(flush_delayed_work); 2945 2946 /** 2947 * cancel_delayed_work - cancel a delayed work 2948 * @dwork: delayed_work to cancel 2949 * 2950 * Kill off a pending delayed_work. 2951 * 2952 * Return: %true if @dwork was pending and canceled; %false if it wasn't 2953 * pending. 2954 * 2955 * Note: 2956 * The work callback function may still be running on return, unless 2957 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 2958 * use cancel_delayed_work_sync() to wait on it. 2959 * 2960 * This function is safe to call from any context including IRQ handler. 2961 */ 2962 bool cancel_delayed_work(struct delayed_work *dwork) 2963 { 2964 unsigned long flags; 2965 int ret; 2966 2967 do { 2968 ret = try_to_grab_pending(&dwork->work, true, &flags); 2969 } while (unlikely(ret == -EAGAIN)); 2970 2971 if (unlikely(ret < 0)) 2972 return false; 2973 2974 set_work_pool_and_clear_pending(&dwork->work, 2975 get_work_pool_id(&dwork->work)); 2976 local_irq_restore(flags); 2977 return ret; 2978 } 2979 EXPORT_SYMBOL(cancel_delayed_work); 2980 2981 /** 2982 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2983 * @dwork: the delayed work cancel 2984 * 2985 * This is cancel_work_sync() for delayed works. 2986 * 2987 * Return: 2988 * %true if @dwork was pending, %false otherwise. 2989 */ 2990 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2991 { 2992 return __cancel_work_timer(&dwork->work, true); 2993 } 2994 EXPORT_SYMBOL(cancel_delayed_work_sync); 2995 2996 /** 2997 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2998 * @func: the function to call 2999 * 3000 * schedule_on_each_cpu() executes @func on each online CPU using the 3001 * system workqueue and blocks until all CPUs have completed. 3002 * schedule_on_each_cpu() is very slow. 3003 * 3004 * Return: 3005 * 0 on success, -errno on failure. 3006 */ 3007 int schedule_on_each_cpu(work_func_t func) 3008 { 3009 int cpu; 3010 struct work_struct __percpu *works; 3011 3012 works = alloc_percpu(struct work_struct); 3013 if (!works) 3014 return -ENOMEM; 3015 3016 get_online_cpus(); 3017 3018 for_each_online_cpu(cpu) { 3019 struct work_struct *work = per_cpu_ptr(works, cpu); 3020 3021 INIT_WORK(work, func); 3022 schedule_work_on(cpu, work); 3023 } 3024 3025 for_each_online_cpu(cpu) 3026 flush_work(per_cpu_ptr(works, cpu)); 3027 3028 put_online_cpus(); 3029 free_percpu(works); 3030 return 0; 3031 } 3032 3033 /** 3034 * flush_scheduled_work - ensure that any scheduled work has run to completion. 3035 * 3036 * Forces execution of the kernel-global workqueue and blocks until its 3037 * completion. 3038 * 3039 * Think twice before calling this function! It's very easy to get into 3040 * trouble if you don't take great care. Either of the following situations 3041 * will lead to deadlock: 3042 * 3043 * One of the work items currently on the workqueue needs to acquire 3044 * a lock held by your code or its caller. 3045 * 3046 * Your code is running in the context of a work routine. 3047 * 3048 * They will be detected by lockdep when they occur, but the first might not 3049 * occur very often. It depends on what work items are on the workqueue and 3050 * what locks they need, which you have no control over. 3051 * 3052 * In most situations flushing the entire workqueue is overkill; you merely 3053 * need to know that a particular work item isn't queued and isn't running. 3054 * In such cases you should use cancel_delayed_work_sync() or 3055 * cancel_work_sync() instead. 3056 */ 3057 void flush_scheduled_work(void) 3058 { 3059 flush_workqueue(system_wq); 3060 } 3061 EXPORT_SYMBOL(flush_scheduled_work); 3062 3063 /** 3064 * execute_in_process_context - reliably execute the routine with user context 3065 * @fn: the function to execute 3066 * @ew: guaranteed storage for the execute work structure (must 3067 * be available when the work executes) 3068 * 3069 * Executes the function immediately if process context is available, 3070 * otherwise schedules the function for delayed execution. 3071 * 3072 * Return: 0 - function was executed 3073 * 1 - function was scheduled for execution 3074 */ 3075 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3076 { 3077 if (!in_interrupt()) { 3078 fn(&ew->work); 3079 return 0; 3080 } 3081 3082 INIT_WORK(&ew->work, fn); 3083 schedule_work(&ew->work); 3084 3085 return 1; 3086 } 3087 EXPORT_SYMBOL_GPL(execute_in_process_context); 3088 3089 #ifdef CONFIG_SYSFS 3090 /* 3091 * Workqueues with WQ_SYSFS flag set is visible to userland via 3092 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 3093 * following attributes. 3094 * 3095 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 3096 * max_active RW int : maximum number of in-flight work items 3097 * 3098 * Unbound workqueues have the following extra attributes. 3099 * 3100 * id RO int : the associated pool ID 3101 * nice RW int : nice value of the workers 3102 * cpumask RW mask : bitmask of allowed CPUs for the workers 3103 */ 3104 struct wq_device { 3105 struct workqueue_struct *wq; 3106 struct device dev; 3107 }; 3108 3109 static struct workqueue_struct *dev_to_wq(struct device *dev) 3110 { 3111 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3112 3113 return wq_dev->wq; 3114 } 3115 3116 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 3117 char *buf) 3118 { 3119 struct workqueue_struct *wq = dev_to_wq(dev); 3120 3121 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 3122 } 3123 static DEVICE_ATTR_RO(per_cpu); 3124 3125 static ssize_t max_active_show(struct device *dev, 3126 struct device_attribute *attr, char *buf) 3127 { 3128 struct workqueue_struct *wq = dev_to_wq(dev); 3129 3130 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 3131 } 3132 3133 static ssize_t max_active_store(struct device *dev, 3134 struct device_attribute *attr, const char *buf, 3135 size_t count) 3136 { 3137 struct workqueue_struct *wq = dev_to_wq(dev); 3138 int val; 3139 3140 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 3141 return -EINVAL; 3142 3143 workqueue_set_max_active(wq, val); 3144 return count; 3145 } 3146 static DEVICE_ATTR_RW(max_active); 3147 3148 static struct attribute *wq_sysfs_attrs[] = { 3149 &dev_attr_per_cpu.attr, 3150 &dev_attr_max_active.attr, 3151 NULL, 3152 }; 3153 ATTRIBUTE_GROUPS(wq_sysfs); 3154 3155 static ssize_t wq_pool_ids_show(struct device *dev, 3156 struct device_attribute *attr, char *buf) 3157 { 3158 struct workqueue_struct *wq = dev_to_wq(dev); 3159 const char *delim = ""; 3160 int node, written = 0; 3161 3162 rcu_read_lock_sched(); 3163 for_each_node(node) { 3164 written += scnprintf(buf + written, PAGE_SIZE - written, 3165 "%s%d:%d", delim, node, 3166 unbound_pwq_by_node(wq, node)->pool->id); 3167 delim = " "; 3168 } 3169 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3170 rcu_read_unlock_sched(); 3171 3172 return written; 3173 } 3174 3175 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 3176 char *buf) 3177 { 3178 struct workqueue_struct *wq = dev_to_wq(dev); 3179 int written; 3180 3181 mutex_lock(&wq->mutex); 3182 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 3183 mutex_unlock(&wq->mutex); 3184 3185 return written; 3186 } 3187 3188 /* prepare workqueue_attrs for sysfs store operations */ 3189 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 3190 { 3191 struct workqueue_attrs *attrs; 3192 3193 attrs = alloc_workqueue_attrs(GFP_KERNEL); 3194 if (!attrs) 3195 return NULL; 3196 3197 mutex_lock(&wq->mutex); 3198 copy_workqueue_attrs(attrs, wq->unbound_attrs); 3199 mutex_unlock(&wq->mutex); 3200 return attrs; 3201 } 3202 3203 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 3204 const char *buf, size_t count) 3205 { 3206 struct workqueue_struct *wq = dev_to_wq(dev); 3207 struct workqueue_attrs *attrs; 3208 int ret; 3209 3210 attrs = wq_sysfs_prep_attrs(wq); 3211 if (!attrs) 3212 return -ENOMEM; 3213 3214 if (sscanf(buf, "%d", &attrs->nice) == 1 && 3215 attrs->nice >= -20 && attrs->nice <= 19) 3216 ret = apply_workqueue_attrs(wq, attrs); 3217 else 3218 ret = -EINVAL; 3219 3220 free_workqueue_attrs(attrs); 3221 return ret ?: count; 3222 } 3223 3224 static ssize_t wq_cpumask_show(struct device *dev, 3225 struct device_attribute *attr, char *buf) 3226 { 3227 struct workqueue_struct *wq = dev_to_wq(dev); 3228 int written; 3229 3230 mutex_lock(&wq->mutex); 3231 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask); 3232 mutex_unlock(&wq->mutex); 3233 3234 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3235 return written; 3236 } 3237 3238 static ssize_t wq_cpumask_store(struct device *dev, 3239 struct device_attribute *attr, 3240 const char *buf, size_t count) 3241 { 3242 struct workqueue_struct *wq = dev_to_wq(dev); 3243 struct workqueue_attrs *attrs; 3244 int ret; 3245 3246 attrs = wq_sysfs_prep_attrs(wq); 3247 if (!attrs) 3248 return -ENOMEM; 3249 3250 ret = cpumask_parse(buf, attrs->cpumask); 3251 if (!ret) 3252 ret = apply_workqueue_attrs(wq, attrs); 3253 3254 free_workqueue_attrs(attrs); 3255 return ret ?: count; 3256 } 3257 3258 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 3259 char *buf) 3260 { 3261 struct workqueue_struct *wq = dev_to_wq(dev); 3262 int written; 3263 3264 mutex_lock(&wq->mutex); 3265 written = scnprintf(buf, PAGE_SIZE, "%d\n", 3266 !wq->unbound_attrs->no_numa); 3267 mutex_unlock(&wq->mutex); 3268 3269 return written; 3270 } 3271 3272 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 3273 const char *buf, size_t count) 3274 { 3275 struct workqueue_struct *wq = dev_to_wq(dev); 3276 struct workqueue_attrs *attrs; 3277 int v, ret; 3278 3279 attrs = wq_sysfs_prep_attrs(wq); 3280 if (!attrs) 3281 return -ENOMEM; 3282 3283 ret = -EINVAL; 3284 if (sscanf(buf, "%d", &v) == 1) { 3285 attrs->no_numa = !v; 3286 ret = apply_workqueue_attrs(wq, attrs); 3287 } 3288 3289 free_workqueue_attrs(attrs); 3290 return ret ?: count; 3291 } 3292 3293 static struct device_attribute wq_sysfs_unbound_attrs[] = { 3294 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 3295 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 3296 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 3297 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 3298 __ATTR_NULL, 3299 }; 3300 3301 static struct bus_type wq_subsys = { 3302 .name = "workqueue", 3303 .dev_groups = wq_sysfs_groups, 3304 }; 3305 3306 static int __init wq_sysfs_init(void) 3307 { 3308 return subsys_virtual_register(&wq_subsys, NULL); 3309 } 3310 core_initcall(wq_sysfs_init); 3311 3312 static void wq_device_release(struct device *dev) 3313 { 3314 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3315 3316 kfree(wq_dev); 3317 } 3318 3319 /** 3320 * workqueue_sysfs_register - make a workqueue visible in sysfs 3321 * @wq: the workqueue to register 3322 * 3323 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 3324 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 3325 * which is the preferred method. 3326 * 3327 * Workqueue user should use this function directly iff it wants to apply 3328 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 3329 * apply_workqueue_attrs() may race against userland updating the 3330 * attributes. 3331 * 3332 * Return: 0 on success, -errno on failure. 3333 */ 3334 int workqueue_sysfs_register(struct workqueue_struct *wq) 3335 { 3336 struct wq_device *wq_dev; 3337 int ret; 3338 3339 /* 3340 * Adjusting max_active or creating new pwqs by applyting 3341 * attributes breaks ordering guarantee. Disallow exposing ordered 3342 * workqueues. 3343 */ 3344 if (WARN_ON(wq->flags & __WQ_ORDERED)) 3345 return -EINVAL; 3346 3347 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 3348 if (!wq_dev) 3349 return -ENOMEM; 3350 3351 wq_dev->wq = wq; 3352 wq_dev->dev.bus = &wq_subsys; 3353 wq_dev->dev.init_name = wq->name; 3354 wq_dev->dev.release = wq_device_release; 3355 3356 /* 3357 * unbound_attrs are created separately. Suppress uevent until 3358 * everything is ready. 3359 */ 3360 dev_set_uevent_suppress(&wq_dev->dev, true); 3361 3362 ret = device_register(&wq_dev->dev); 3363 if (ret) { 3364 kfree(wq_dev); 3365 wq->wq_dev = NULL; 3366 return ret; 3367 } 3368 3369 if (wq->flags & WQ_UNBOUND) { 3370 struct device_attribute *attr; 3371 3372 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 3373 ret = device_create_file(&wq_dev->dev, attr); 3374 if (ret) { 3375 device_unregister(&wq_dev->dev); 3376 wq->wq_dev = NULL; 3377 return ret; 3378 } 3379 } 3380 } 3381 3382 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 3383 return 0; 3384 } 3385 3386 /** 3387 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 3388 * @wq: the workqueue to unregister 3389 * 3390 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 3391 */ 3392 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 3393 { 3394 struct wq_device *wq_dev = wq->wq_dev; 3395 3396 if (!wq->wq_dev) 3397 return; 3398 3399 wq->wq_dev = NULL; 3400 device_unregister(&wq_dev->dev); 3401 } 3402 #else /* CONFIG_SYSFS */ 3403 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 3404 #endif /* CONFIG_SYSFS */ 3405 3406 /** 3407 * free_workqueue_attrs - free a workqueue_attrs 3408 * @attrs: workqueue_attrs to free 3409 * 3410 * Undo alloc_workqueue_attrs(). 3411 */ 3412 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3413 { 3414 if (attrs) { 3415 free_cpumask_var(attrs->cpumask); 3416 kfree(attrs); 3417 } 3418 } 3419 3420 /** 3421 * alloc_workqueue_attrs - allocate a workqueue_attrs 3422 * @gfp_mask: allocation mask to use 3423 * 3424 * Allocate a new workqueue_attrs, initialize with default settings and 3425 * return it. 3426 * 3427 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3428 */ 3429 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3430 { 3431 struct workqueue_attrs *attrs; 3432 3433 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3434 if (!attrs) 3435 goto fail; 3436 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3437 goto fail; 3438 3439 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3440 return attrs; 3441 fail: 3442 free_workqueue_attrs(attrs); 3443 return NULL; 3444 } 3445 3446 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3447 const struct workqueue_attrs *from) 3448 { 3449 to->nice = from->nice; 3450 cpumask_copy(to->cpumask, from->cpumask); 3451 /* 3452 * Unlike hash and equality test, this function doesn't ignore 3453 * ->no_numa as it is used for both pool and wq attrs. Instead, 3454 * get_unbound_pool() explicitly clears ->no_numa after copying. 3455 */ 3456 to->no_numa = from->no_numa; 3457 } 3458 3459 /* hash value of the content of @attr */ 3460 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3461 { 3462 u32 hash = 0; 3463 3464 hash = jhash_1word(attrs->nice, hash); 3465 hash = jhash(cpumask_bits(attrs->cpumask), 3466 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3467 return hash; 3468 } 3469 3470 /* content equality test */ 3471 static bool wqattrs_equal(const struct workqueue_attrs *a, 3472 const struct workqueue_attrs *b) 3473 { 3474 if (a->nice != b->nice) 3475 return false; 3476 if (!cpumask_equal(a->cpumask, b->cpumask)) 3477 return false; 3478 return true; 3479 } 3480 3481 /** 3482 * init_worker_pool - initialize a newly zalloc'd worker_pool 3483 * @pool: worker_pool to initialize 3484 * 3485 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs. 3486 * 3487 * Return: 0 on success, -errno on failure. Even on failure, all fields 3488 * inside @pool proper are initialized and put_unbound_pool() can be called 3489 * on @pool safely to release it. 3490 */ 3491 static int init_worker_pool(struct worker_pool *pool) 3492 { 3493 spin_lock_init(&pool->lock); 3494 pool->id = -1; 3495 pool->cpu = -1; 3496 pool->node = NUMA_NO_NODE; 3497 pool->flags |= POOL_DISASSOCIATED; 3498 INIT_LIST_HEAD(&pool->worklist); 3499 INIT_LIST_HEAD(&pool->idle_list); 3500 hash_init(pool->busy_hash); 3501 3502 init_timer_deferrable(&pool->idle_timer); 3503 pool->idle_timer.function = idle_worker_timeout; 3504 pool->idle_timer.data = (unsigned long)pool; 3505 3506 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3507 (unsigned long)pool); 3508 3509 mutex_init(&pool->manager_arb); 3510 mutex_init(&pool->manager_mutex); 3511 idr_init(&pool->worker_idr); 3512 3513 INIT_HLIST_NODE(&pool->hash_node); 3514 pool->refcnt = 1; 3515 3516 /* shouldn't fail above this point */ 3517 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3518 if (!pool->attrs) 3519 return -ENOMEM; 3520 return 0; 3521 } 3522 3523 static void rcu_free_pool(struct rcu_head *rcu) 3524 { 3525 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3526 3527 idr_destroy(&pool->worker_idr); 3528 free_workqueue_attrs(pool->attrs); 3529 kfree(pool); 3530 } 3531 3532 /** 3533 * put_unbound_pool - put a worker_pool 3534 * @pool: worker_pool to put 3535 * 3536 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3537 * safe manner. get_unbound_pool() calls this function on its failure path 3538 * and this function should be able to release pools which went through, 3539 * successfully or not, init_worker_pool(). 3540 * 3541 * Should be called with wq_pool_mutex held. 3542 */ 3543 static void put_unbound_pool(struct worker_pool *pool) 3544 { 3545 struct worker *worker; 3546 3547 lockdep_assert_held(&wq_pool_mutex); 3548 3549 if (--pool->refcnt) 3550 return; 3551 3552 /* sanity checks */ 3553 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) || 3554 WARN_ON(!list_empty(&pool->worklist))) 3555 return; 3556 3557 /* release id and unhash */ 3558 if (pool->id >= 0) 3559 idr_remove(&worker_pool_idr, pool->id); 3560 hash_del(&pool->hash_node); 3561 3562 /* 3563 * Become the manager and destroy all workers. Grabbing 3564 * manager_arb prevents @pool's workers from blocking on 3565 * manager_mutex. 3566 */ 3567 mutex_lock(&pool->manager_arb); 3568 mutex_lock(&pool->manager_mutex); 3569 spin_lock_irq(&pool->lock); 3570 3571 while ((worker = first_worker(pool))) 3572 destroy_worker(worker); 3573 WARN_ON(pool->nr_workers || pool->nr_idle); 3574 3575 spin_unlock_irq(&pool->lock); 3576 mutex_unlock(&pool->manager_mutex); 3577 mutex_unlock(&pool->manager_arb); 3578 3579 /* shut down the timers */ 3580 del_timer_sync(&pool->idle_timer); 3581 del_timer_sync(&pool->mayday_timer); 3582 3583 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3584 call_rcu_sched(&pool->rcu, rcu_free_pool); 3585 } 3586 3587 /** 3588 * get_unbound_pool - get a worker_pool with the specified attributes 3589 * @attrs: the attributes of the worker_pool to get 3590 * 3591 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3592 * reference count and return it. If there already is a matching 3593 * worker_pool, it will be used; otherwise, this function attempts to 3594 * create a new one. 3595 * 3596 * Should be called with wq_pool_mutex held. 3597 * 3598 * Return: On success, a worker_pool with the same attributes as @attrs. 3599 * On failure, %NULL. 3600 */ 3601 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3602 { 3603 u32 hash = wqattrs_hash(attrs); 3604 struct worker_pool *pool; 3605 int node; 3606 3607 lockdep_assert_held(&wq_pool_mutex); 3608 3609 /* do we already have a matching pool? */ 3610 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3611 if (wqattrs_equal(pool->attrs, attrs)) { 3612 pool->refcnt++; 3613 goto out_unlock; 3614 } 3615 } 3616 3617 /* nope, create a new one */ 3618 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 3619 if (!pool || init_worker_pool(pool) < 0) 3620 goto fail; 3621 3622 if (workqueue_freezing) 3623 pool->flags |= POOL_FREEZING; 3624 3625 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3626 copy_workqueue_attrs(pool->attrs, attrs); 3627 3628 /* 3629 * no_numa isn't a worker_pool attribute, always clear it. See 3630 * 'struct workqueue_attrs' comments for detail. 3631 */ 3632 pool->attrs->no_numa = false; 3633 3634 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3635 if (wq_numa_enabled) { 3636 for_each_node(node) { 3637 if (cpumask_subset(pool->attrs->cpumask, 3638 wq_numa_possible_cpumask[node])) { 3639 pool->node = node; 3640 break; 3641 } 3642 } 3643 } 3644 3645 if (worker_pool_assign_id(pool) < 0) 3646 goto fail; 3647 3648 /* create and start the initial worker */ 3649 if (create_and_start_worker(pool) < 0) 3650 goto fail; 3651 3652 /* install */ 3653 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3654 out_unlock: 3655 return pool; 3656 fail: 3657 if (pool) 3658 put_unbound_pool(pool); 3659 return NULL; 3660 } 3661 3662 static void rcu_free_pwq(struct rcu_head *rcu) 3663 { 3664 kmem_cache_free(pwq_cache, 3665 container_of(rcu, struct pool_workqueue, rcu)); 3666 } 3667 3668 /* 3669 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3670 * and needs to be destroyed. 3671 */ 3672 static void pwq_unbound_release_workfn(struct work_struct *work) 3673 { 3674 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3675 unbound_release_work); 3676 struct workqueue_struct *wq = pwq->wq; 3677 struct worker_pool *pool = pwq->pool; 3678 bool is_last; 3679 3680 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3681 return; 3682 3683 /* 3684 * Unlink @pwq. Synchronization against wq->mutex isn't strictly 3685 * necessary on release but do it anyway. It's easier to verify 3686 * and consistent with the linking path. 3687 */ 3688 mutex_lock(&wq->mutex); 3689 list_del_rcu(&pwq->pwqs_node); 3690 is_last = list_empty(&wq->pwqs); 3691 mutex_unlock(&wq->mutex); 3692 3693 mutex_lock(&wq_pool_mutex); 3694 put_unbound_pool(pool); 3695 mutex_unlock(&wq_pool_mutex); 3696 3697 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3698 3699 /* 3700 * If we're the last pwq going away, @wq is already dead and no one 3701 * is gonna access it anymore. Free it. 3702 */ 3703 if (is_last) { 3704 free_workqueue_attrs(wq->unbound_attrs); 3705 kfree(wq); 3706 } 3707 } 3708 3709 /** 3710 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3711 * @pwq: target pool_workqueue 3712 * 3713 * If @pwq isn't freezing, set @pwq->max_active to the associated 3714 * workqueue's saved_max_active and activate delayed work items 3715 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3716 */ 3717 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3718 { 3719 struct workqueue_struct *wq = pwq->wq; 3720 bool freezable = wq->flags & WQ_FREEZABLE; 3721 3722 /* for @wq->saved_max_active */ 3723 lockdep_assert_held(&wq->mutex); 3724 3725 /* fast exit for non-freezable wqs */ 3726 if (!freezable && pwq->max_active == wq->saved_max_active) 3727 return; 3728 3729 spin_lock_irq(&pwq->pool->lock); 3730 3731 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) { 3732 pwq->max_active = wq->saved_max_active; 3733 3734 while (!list_empty(&pwq->delayed_works) && 3735 pwq->nr_active < pwq->max_active) 3736 pwq_activate_first_delayed(pwq); 3737 3738 /* 3739 * Need to kick a worker after thawed or an unbound wq's 3740 * max_active is bumped. It's a slow path. Do it always. 3741 */ 3742 wake_up_worker(pwq->pool); 3743 } else { 3744 pwq->max_active = 0; 3745 } 3746 3747 spin_unlock_irq(&pwq->pool->lock); 3748 } 3749 3750 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3751 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3752 struct worker_pool *pool) 3753 { 3754 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3755 3756 memset(pwq, 0, sizeof(*pwq)); 3757 3758 pwq->pool = pool; 3759 pwq->wq = wq; 3760 pwq->flush_color = -1; 3761 pwq->refcnt = 1; 3762 INIT_LIST_HEAD(&pwq->delayed_works); 3763 INIT_LIST_HEAD(&pwq->pwqs_node); 3764 INIT_LIST_HEAD(&pwq->mayday_node); 3765 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3766 } 3767 3768 /* sync @pwq with the current state of its associated wq and link it */ 3769 static void link_pwq(struct pool_workqueue *pwq) 3770 { 3771 struct workqueue_struct *wq = pwq->wq; 3772 3773 lockdep_assert_held(&wq->mutex); 3774 3775 /* may be called multiple times, ignore if already linked */ 3776 if (!list_empty(&pwq->pwqs_node)) 3777 return; 3778 3779 /* 3780 * Set the matching work_color. This is synchronized with 3781 * wq->mutex to avoid confusing flush_workqueue(). 3782 */ 3783 pwq->work_color = wq->work_color; 3784 3785 /* sync max_active to the current setting */ 3786 pwq_adjust_max_active(pwq); 3787 3788 /* link in @pwq */ 3789 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3790 } 3791 3792 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3793 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3794 const struct workqueue_attrs *attrs) 3795 { 3796 struct worker_pool *pool; 3797 struct pool_workqueue *pwq; 3798 3799 lockdep_assert_held(&wq_pool_mutex); 3800 3801 pool = get_unbound_pool(attrs); 3802 if (!pool) 3803 return NULL; 3804 3805 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3806 if (!pwq) { 3807 put_unbound_pool(pool); 3808 return NULL; 3809 } 3810 3811 init_pwq(pwq, wq, pool); 3812 return pwq; 3813 } 3814 3815 /* undo alloc_unbound_pwq(), used only in the error path */ 3816 static void free_unbound_pwq(struct pool_workqueue *pwq) 3817 { 3818 lockdep_assert_held(&wq_pool_mutex); 3819 3820 if (pwq) { 3821 put_unbound_pool(pwq->pool); 3822 kmem_cache_free(pwq_cache, pwq); 3823 } 3824 } 3825 3826 /** 3827 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node 3828 * @attrs: the wq_attrs of interest 3829 * @node: the target NUMA node 3830 * @cpu_going_down: if >= 0, the CPU to consider as offline 3831 * @cpumask: outarg, the resulting cpumask 3832 * 3833 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3834 * @cpu_going_down is >= 0, that cpu is considered offline during 3835 * calculation. The result is stored in @cpumask. 3836 * 3837 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3838 * enabled and @node has online CPUs requested by @attrs, the returned 3839 * cpumask is the intersection of the possible CPUs of @node and 3840 * @attrs->cpumask. 3841 * 3842 * The caller is responsible for ensuring that the cpumask of @node stays 3843 * stable. 3844 * 3845 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3846 * %false if equal. 3847 */ 3848 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3849 int cpu_going_down, cpumask_t *cpumask) 3850 { 3851 if (!wq_numa_enabled || attrs->no_numa) 3852 goto use_dfl; 3853 3854 /* does @node have any online CPUs @attrs wants? */ 3855 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3856 if (cpu_going_down >= 0) 3857 cpumask_clear_cpu(cpu_going_down, cpumask); 3858 3859 if (cpumask_empty(cpumask)) 3860 goto use_dfl; 3861 3862 /* yeap, return possible CPUs in @node that @attrs wants */ 3863 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3864 return !cpumask_equal(cpumask, attrs->cpumask); 3865 3866 use_dfl: 3867 cpumask_copy(cpumask, attrs->cpumask); 3868 return false; 3869 } 3870 3871 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3872 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3873 int node, 3874 struct pool_workqueue *pwq) 3875 { 3876 struct pool_workqueue *old_pwq; 3877 3878 lockdep_assert_held(&wq->mutex); 3879 3880 /* link_pwq() can handle duplicate calls */ 3881 link_pwq(pwq); 3882 3883 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3884 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3885 return old_pwq; 3886 } 3887 3888 /** 3889 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3890 * @wq: the target workqueue 3891 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3892 * 3893 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3894 * machines, this function maps a separate pwq to each NUMA node with 3895 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3896 * NUMA node it was issued on. Older pwqs are released as in-flight work 3897 * items finish. Note that a work item which repeatedly requeues itself 3898 * back-to-back will stay on its current pwq. 3899 * 3900 * Performs GFP_KERNEL allocations. 3901 * 3902 * Return: 0 on success and -errno on failure. 3903 */ 3904 int apply_workqueue_attrs(struct workqueue_struct *wq, 3905 const struct workqueue_attrs *attrs) 3906 { 3907 struct workqueue_attrs *new_attrs, *tmp_attrs; 3908 struct pool_workqueue **pwq_tbl, *dfl_pwq; 3909 int node, ret; 3910 3911 /* only unbound workqueues can change attributes */ 3912 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3913 return -EINVAL; 3914 3915 /* creating multiple pwqs breaks ordering guarantee */ 3916 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3917 return -EINVAL; 3918 3919 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL); 3920 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3921 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3922 if (!pwq_tbl || !new_attrs || !tmp_attrs) 3923 goto enomem; 3924 3925 /* make a copy of @attrs and sanitize it */ 3926 copy_workqueue_attrs(new_attrs, attrs); 3927 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3928 3929 /* 3930 * We may create multiple pwqs with differing cpumasks. Make a 3931 * copy of @new_attrs which will be modified and used to obtain 3932 * pools. 3933 */ 3934 copy_workqueue_attrs(tmp_attrs, new_attrs); 3935 3936 /* 3937 * CPUs should stay stable across pwq creations and installations. 3938 * Pin CPUs, determine the target cpumask for each node and create 3939 * pwqs accordingly. 3940 */ 3941 get_online_cpus(); 3942 3943 mutex_lock(&wq_pool_mutex); 3944 3945 /* 3946 * If something goes wrong during CPU up/down, we'll fall back to 3947 * the default pwq covering whole @attrs->cpumask. Always create 3948 * it even if we don't use it immediately. 3949 */ 3950 dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3951 if (!dfl_pwq) 3952 goto enomem_pwq; 3953 3954 for_each_node(node) { 3955 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) { 3956 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3957 if (!pwq_tbl[node]) 3958 goto enomem_pwq; 3959 } else { 3960 dfl_pwq->refcnt++; 3961 pwq_tbl[node] = dfl_pwq; 3962 } 3963 } 3964 3965 mutex_unlock(&wq_pool_mutex); 3966 3967 /* all pwqs have been created successfully, let's install'em */ 3968 mutex_lock(&wq->mutex); 3969 3970 copy_workqueue_attrs(wq->unbound_attrs, new_attrs); 3971 3972 /* save the previous pwq and install the new one */ 3973 for_each_node(node) 3974 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]); 3975 3976 /* @dfl_pwq might not have been used, ensure it's linked */ 3977 link_pwq(dfl_pwq); 3978 swap(wq->dfl_pwq, dfl_pwq); 3979 3980 mutex_unlock(&wq->mutex); 3981 3982 /* put the old pwqs */ 3983 for_each_node(node) 3984 put_pwq_unlocked(pwq_tbl[node]); 3985 put_pwq_unlocked(dfl_pwq); 3986 3987 put_online_cpus(); 3988 ret = 0; 3989 /* fall through */ 3990 out_free: 3991 free_workqueue_attrs(tmp_attrs); 3992 free_workqueue_attrs(new_attrs); 3993 kfree(pwq_tbl); 3994 return ret; 3995 3996 enomem_pwq: 3997 free_unbound_pwq(dfl_pwq); 3998 for_each_node(node) 3999 if (pwq_tbl && pwq_tbl[node] != dfl_pwq) 4000 free_unbound_pwq(pwq_tbl[node]); 4001 mutex_unlock(&wq_pool_mutex); 4002 put_online_cpus(); 4003 enomem: 4004 ret = -ENOMEM; 4005 goto out_free; 4006 } 4007 4008 /** 4009 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4010 * @wq: the target workqueue 4011 * @cpu: the CPU coming up or going down 4012 * @online: whether @cpu is coming up or going down 4013 * 4014 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4015 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4016 * @wq accordingly. 4017 * 4018 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4019 * falls back to @wq->dfl_pwq which may not be optimal but is always 4020 * correct. 4021 * 4022 * Note that when the last allowed CPU of a NUMA node goes offline for a 4023 * workqueue with a cpumask spanning multiple nodes, the workers which were 4024 * already executing the work items for the workqueue will lose their CPU 4025 * affinity and may execute on any CPU. This is similar to how per-cpu 4026 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4027 * affinity, it's the user's responsibility to flush the work item from 4028 * CPU_DOWN_PREPARE. 4029 */ 4030 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4031 bool online) 4032 { 4033 int node = cpu_to_node(cpu); 4034 int cpu_off = online ? -1 : cpu; 4035 struct pool_workqueue *old_pwq = NULL, *pwq; 4036 struct workqueue_attrs *target_attrs; 4037 cpumask_t *cpumask; 4038 4039 lockdep_assert_held(&wq_pool_mutex); 4040 4041 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND)) 4042 return; 4043 4044 /* 4045 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4046 * Let's use a preallocated one. The following buf is protected by 4047 * CPU hotplug exclusion. 4048 */ 4049 target_attrs = wq_update_unbound_numa_attrs_buf; 4050 cpumask = target_attrs->cpumask; 4051 4052 mutex_lock(&wq->mutex); 4053 if (wq->unbound_attrs->no_numa) 4054 goto out_unlock; 4055 4056 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4057 pwq = unbound_pwq_by_node(wq, node); 4058 4059 /* 4060 * Let's determine what needs to be done. If the target cpumask is 4061 * different from wq's, we need to compare it to @pwq's and create 4062 * a new one if they don't match. If the target cpumask equals 4063 * wq's, the default pwq should be used. If @pwq is already the 4064 * default one, nothing to do; otherwise, install the default one. 4065 */ 4066 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) { 4067 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4068 goto out_unlock; 4069 } else { 4070 if (pwq == wq->dfl_pwq) 4071 goto out_unlock; 4072 else 4073 goto use_dfl_pwq; 4074 } 4075 4076 mutex_unlock(&wq->mutex); 4077 4078 /* create a new pwq */ 4079 pwq = alloc_unbound_pwq(wq, target_attrs); 4080 if (!pwq) { 4081 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4082 wq->name); 4083 goto out_unlock; 4084 } 4085 4086 /* 4087 * Install the new pwq. As this function is called only from CPU 4088 * hotplug callbacks and applying a new attrs is wrapped with 4089 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed 4090 * inbetween. 4091 */ 4092 mutex_lock(&wq->mutex); 4093 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4094 goto out_unlock; 4095 4096 use_dfl_pwq: 4097 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4098 get_pwq(wq->dfl_pwq); 4099 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4100 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4101 out_unlock: 4102 mutex_unlock(&wq->mutex); 4103 put_pwq_unlocked(old_pwq); 4104 } 4105 4106 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4107 { 4108 bool highpri = wq->flags & WQ_HIGHPRI; 4109 int cpu; 4110 4111 if (!(wq->flags & WQ_UNBOUND)) { 4112 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4113 if (!wq->cpu_pwqs) 4114 return -ENOMEM; 4115 4116 for_each_possible_cpu(cpu) { 4117 struct pool_workqueue *pwq = 4118 per_cpu_ptr(wq->cpu_pwqs, cpu); 4119 struct worker_pool *cpu_pools = 4120 per_cpu(cpu_worker_pools, cpu); 4121 4122 init_pwq(pwq, wq, &cpu_pools[highpri]); 4123 4124 mutex_lock(&wq->mutex); 4125 link_pwq(pwq); 4126 mutex_unlock(&wq->mutex); 4127 } 4128 return 0; 4129 } else { 4130 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4131 } 4132 } 4133 4134 static int wq_clamp_max_active(int max_active, unsigned int flags, 4135 const char *name) 4136 { 4137 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4138 4139 if (max_active < 1 || max_active > lim) 4140 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4141 max_active, name, 1, lim); 4142 4143 return clamp_val(max_active, 1, lim); 4144 } 4145 4146 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4147 unsigned int flags, 4148 int max_active, 4149 struct lock_class_key *key, 4150 const char *lock_name, ...) 4151 { 4152 size_t tbl_size = 0; 4153 va_list args; 4154 struct workqueue_struct *wq; 4155 struct pool_workqueue *pwq; 4156 4157 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4158 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4159 flags |= WQ_UNBOUND; 4160 4161 /* allocate wq and format name */ 4162 if (flags & WQ_UNBOUND) 4163 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]); 4164 4165 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4166 if (!wq) 4167 return NULL; 4168 4169 if (flags & WQ_UNBOUND) { 4170 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4171 if (!wq->unbound_attrs) 4172 goto err_free_wq; 4173 } 4174 4175 va_start(args, lock_name); 4176 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4177 va_end(args); 4178 4179 max_active = max_active ?: WQ_DFL_ACTIVE; 4180 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4181 4182 /* init wq */ 4183 wq->flags = flags; 4184 wq->saved_max_active = max_active; 4185 mutex_init(&wq->mutex); 4186 atomic_set(&wq->nr_pwqs_to_flush, 0); 4187 INIT_LIST_HEAD(&wq->pwqs); 4188 INIT_LIST_HEAD(&wq->flusher_queue); 4189 INIT_LIST_HEAD(&wq->flusher_overflow); 4190 INIT_LIST_HEAD(&wq->maydays); 4191 4192 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4193 INIT_LIST_HEAD(&wq->list); 4194 4195 if (alloc_and_link_pwqs(wq) < 0) 4196 goto err_free_wq; 4197 4198 /* 4199 * Workqueues which may be used during memory reclaim should 4200 * have a rescuer to guarantee forward progress. 4201 */ 4202 if (flags & WQ_MEM_RECLAIM) { 4203 struct worker *rescuer; 4204 4205 rescuer = alloc_worker(); 4206 if (!rescuer) 4207 goto err_destroy; 4208 4209 rescuer->rescue_wq = wq; 4210 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 4211 wq->name); 4212 if (IS_ERR(rescuer->task)) { 4213 kfree(rescuer); 4214 goto err_destroy; 4215 } 4216 4217 wq->rescuer = rescuer; 4218 rescuer->task->flags |= PF_NO_SETAFFINITY; 4219 wake_up_process(rescuer->task); 4220 } 4221 4222 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4223 goto err_destroy; 4224 4225 /* 4226 * wq_pool_mutex protects global freeze state and workqueues list. 4227 * Grab it, adjust max_active and add the new @wq to workqueues 4228 * list. 4229 */ 4230 mutex_lock(&wq_pool_mutex); 4231 4232 mutex_lock(&wq->mutex); 4233 for_each_pwq(pwq, wq) 4234 pwq_adjust_max_active(pwq); 4235 mutex_unlock(&wq->mutex); 4236 4237 list_add(&wq->list, &workqueues); 4238 4239 mutex_unlock(&wq_pool_mutex); 4240 4241 return wq; 4242 4243 err_free_wq: 4244 free_workqueue_attrs(wq->unbound_attrs); 4245 kfree(wq); 4246 return NULL; 4247 err_destroy: 4248 destroy_workqueue(wq); 4249 return NULL; 4250 } 4251 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4252 4253 /** 4254 * destroy_workqueue - safely terminate a workqueue 4255 * @wq: target workqueue 4256 * 4257 * Safely destroy a workqueue. All work currently pending will be done first. 4258 */ 4259 void destroy_workqueue(struct workqueue_struct *wq) 4260 { 4261 struct pool_workqueue *pwq; 4262 int node; 4263 4264 /* drain it before proceeding with destruction */ 4265 drain_workqueue(wq); 4266 4267 /* sanity checks */ 4268 mutex_lock(&wq->mutex); 4269 for_each_pwq(pwq, wq) { 4270 int i; 4271 4272 for (i = 0; i < WORK_NR_COLORS; i++) { 4273 if (WARN_ON(pwq->nr_in_flight[i])) { 4274 mutex_unlock(&wq->mutex); 4275 return; 4276 } 4277 } 4278 4279 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4280 WARN_ON(pwq->nr_active) || 4281 WARN_ON(!list_empty(&pwq->delayed_works))) { 4282 mutex_unlock(&wq->mutex); 4283 return; 4284 } 4285 } 4286 mutex_unlock(&wq->mutex); 4287 4288 /* 4289 * wq list is used to freeze wq, remove from list after 4290 * flushing is complete in case freeze races us. 4291 */ 4292 mutex_lock(&wq_pool_mutex); 4293 list_del_init(&wq->list); 4294 mutex_unlock(&wq_pool_mutex); 4295 4296 workqueue_sysfs_unregister(wq); 4297 4298 if (wq->rescuer) { 4299 kthread_stop(wq->rescuer->task); 4300 kfree(wq->rescuer); 4301 wq->rescuer = NULL; 4302 } 4303 4304 if (!(wq->flags & WQ_UNBOUND)) { 4305 /* 4306 * The base ref is never dropped on per-cpu pwqs. Directly 4307 * free the pwqs and wq. 4308 */ 4309 free_percpu(wq->cpu_pwqs); 4310 kfree(wq); 4311 } else { 4312 /* 4313 * We're the sole accessor of @wq at this point. Directly 4314 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4315 * @wq will be freed when the last pwq is released. 4316 */ 4317 for_each_node(node) { 4318 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4319 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4320 put_pwq_unlocked(pwq); 4321 } 4322 4323 /* 4324 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4325 * put. Don't access it afterwards. 4326 */ 4327 pwq = wq->dfl_pwq; 4328 wq->dfl_pwq = NULL; 4329 put_pwq_unlocked(pwq); 4330 } 4331 } 4332 EXPORT_SYMBOL_GPL(destroy_workqueue); 4333 4334 /** 4335 * workqueue_set_max_active - adjust max_active of a workqueue 4336 * @wq: target workqueue 4337 * @max_active: new max_active value. 4338 * 4339 * Set max_active of @wq to @max_active. 4340 * 4341 * CONTEXT: 4342 * Don't call from IRQ context. 4343 */ 4344 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4345 { 4346 struct pool_workqueue *pwq; 4347 4348 /* disallow meddling with max_active for ordered workqueues */ 4349 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4350 return; 4351 4352 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4353 4354 mutex_lock(&wq->mutex); 4355 4356 wq->saved_max_active = max_active; 4357 4358 for_each_pwq(pwq, wq) 4359 pwq_adjust_max_active(pwq); 4360 4361 mutex_unlock(&wq->mutex); 4362 } 4363 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4364 4365 /** 4366 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4367 * 4368 * Determine whether %current is a workqueue rescuer. Can be used from 4369 * work functions to determine whether it's being run off the rescuer task. 4370 * 4371 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4372 */ 4373 bool current_is_workqueue_rescuer(void) 4374 { 4375 struct worker *worker = current_wq_worker(); 4376 4377 return worker && worker->rescue_wq; 4378 } 4379 4380 /** 4381 * workqueue_congested - test whether a workqueue is congested 4382 * @cpu: CPU in question 4383 * @wq: target workqueue 4384 * 4385 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4386 * no synchronization around this function and the test result is 4387 * unreliable and only useful as advisory hints or for debugging. 4388 * 4389 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4390 * Note that both per-cpu and unbound workqueues may be associated with 4391 * multiple pool_workqueues which have separate congested states. A 4392 * workqueue being congested on one CPU doesn't mean the workqueue is also 4393 * contested on other CPUs / NUMA nodes. 4394 * 4395 * Return: 4396 * %true if congested, %false otherwise. 4397 */ 4398 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4399 { 4400 struct pool_workqueue *pwq; 4401 bool ret; 4402 4403 rcu_read_lock_sched(); 4404 4405 if (cpu == WORK_CPU_UNBOUND) 4406 cpu = smp_processor_id(); 4407 4408 if (!(wq->flags & WQ_UNBOUND)) 4409 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4410 else 4411 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4412 4413 ret = !list_empty(&pwq->delayed_works); 4414 rcu_read_unlock_sched(); 4415 4416 return ret; 4417 } 4418 EXPORT_SYMBOL_GPL(workqueue_congested); 4419 4420 /** 4421 * work_busy - test whether a work is currently pending or running 4422 * @work: the work to be tested 4423 * 4424 * Test whether @work is currently pending or running. There is no 4425 * synchronization around this function and the test result is 4426 * unreliable and only useful as advisory hints or for debugging. 4427 * 4428 * Return: 4429 * OR'd bitmask of WORK_BUSY_* bits. 4430 */ 4431 unsigned int work_busy(struct work_struct *work) 4432 { 4433 struct worker_pool *pool; 4434 unsigned long flags; 4435 unsigned int ret = 0; 4436 4437 if (work_pending(work)) 4438 ret |= WORK_BUSY_PENDING; 4439 4440 local_irq_save(flags); 4441 pool = get_work_pool(work); 4442 if (pool) { 4443 spin_lock(&pool->lock); 4444 if (find_worker_executing_work(pool, work)) 4445 ret |= WORK_BUSY_RUNNING; 4446 spin_unlock(&pool->lock); 4447 } 4448 local_irq_restore(flags); 4449 4450 return ret; 4451 } 4452 EXPORT_SYMBOL_GPL(work_busy); 4453 4454 /** 4455 * set_worker_desc - set description for the current work item 4456 * @fmt: printf-style format string 4457 * @...: arguments for the format string 4458 * 4459 * This function can be called by a running work function to describe what 4460 * the work item is about. If the worker task gets dumped, this 4461 * information will be printed out together to help debugging. The 4462 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4463 */ 4464 void set_worker_desc(const char *fmt, ...) 4465 { 4466 struct worker *worker = current_wq_worker(); 4467 va_list args; 4468 4469 if (worker) { 4470 va_start(args, fmt); 4471 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4472 va_end(args); 4473 worker->desc_valid = true; 4474 } 4475 } 4476 4477 /** 4478 * print_worker_info - print out worker information and description 4479 * @log_lvl: the log level to use when printing 4480 * @task: target task 4481 * 4482 * If @task is a worker and currently executing a work item, print out the 4483 * name of the workqueue being serviced and worker description set with 4484 * set_worker_desc() by the currently executing work item. 4485 * 4486 * This function can be safely called on any task as long as the 4487 * task_struct itself is accessible. While safe, this function isn't 4488 * synchronized and may print out mixups or garbages of limited length. 4489 */ 4490 void print_worker_info(const char *log_lvl, struct task_struct *task) 4491 { 4492 work_func_t *fn = NULL; 4493 char name[WQ_NAME_LEN] = { }; 4494 char desc[WORKER_DESC_LEN] = { }; 4495 struct pool_workqueue *pwq = NULL; 4496 struct workqueue_struct *wq = NULL; 4497 bool desc_valid = false; 4498 struct worker *worker; 4499 4500 if (!(task->flags & PF_WQ_WORKER)) 4501 return; 4502 4503 /* 4504 * This function is called without any synchronization and @task 4505 * could be in any state. Be careful with dereferences. 4506 */ 4507 worker = probe_kthread_data(task); 4508 4509 /* 4510 * Carefully copy the associated workqueue's workfn and name. Keep 4511 * the original last '\0' in case the original contains garbage. 4512 */ 4513 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4514 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4515 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4516 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4517 4518 /* copy worker description */ 4519 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4520 if (desc_valid) 4521 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4522 4523 if (fn || name[0] || desc[0]) { 4524 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4525 if (desc[0]) 4526 pr_cont(" (%s)", desc); 4527 pr_cont("\n"); 4528 } 4529 } 4530 4531 /* 4532 * CPU hotplug. 4533 * 4534 * There are two challenges in supporting CPU hotplug. Firstly, there 4535 * are a lot of assumptions on strong associations among work, pwq and 4536 * pool which make migrating pending and scheduled works very 4537 * difficult to implement without impacting hot paths. Secondly, 4538 * worker pools serve mix of short, long and very long running works making 4539 * blocked draining impractical. 4540 * 4541 * This is solved by allowing the pools to be disassociated from the CPU 4542 * running as an unbound one and allowing it to be reattached later if the 4543 * cpu comes back online. 4544 */ 4545 4546 static void wq_unbind_fn(struct work_struct *work) 4547 { 4548 int cpu = smp_processor_id(); 4549 struct worker_pool *pool; 4550 struct worker *worker; 4551 int wi; 4552 4553 for_each_cpu_worker_pool(pool, cpu) { 4554 WARN_ON_ONCE(cpu != smp_processor_id()); 4555 4556 mutex_lock(&pool->manager_mutex); 4557 spin_lock_irq(&pool->lock); 4558 4559 /* 4560 * We've blocked all manager operations. Make all workers 4561 * unbound and set DISASSOCIATED. Before this, all workers 4562 * except for the ones which are still executing works from 4563 * before the last CPU down must be on the cpu. After 4564 * this, they may become diasporas. 4565 */ 4566 for_each_pool_worker(worker, wi, pool) 4567 worker->flags |= WORKER_UNBOUND; 4568 4569 pool->flags |= POOL_DISASSOCIATED; 4570 4571 spin_unlock_irq(&pool->lock); 4572 mutex_unlock(&pool->manager_mutex); 4573 4574 /* 4575 * Call schedule() so that we cross rq->lock and thus can 4576 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4577 * This is necessary as scheduler callbacks may be invoked 4578 * from other cpus. 4579 */ 4580 schedule(); 4581 4582 /* 4583 * Sched callbacks are disabled now. Zap nr_running. 4584 * After this, nr_running stays zero and need_more_worker() 4585 * and keep_working() are always true as long as the 4586 * worklist is not empty. This pool now behaves as an 4587 * unbound (in terms of concurrency management) pool which 4588 * are served by workers tied to the pool. 4589 */ 4590 atomic_set(&pool->nr_running, 0); 4591 4592 /* 4593 * With concurrency management just turned off, a busy 4594 * worker blocking could lead to lengthy stalls. Kick off 4595 * unbound chain execution of currently pending work items. 4596 */ 4597 spin_lock_irq(&pool->lock); 4598 wake_up_worker(pool); 4599 spin_unlock_irq(&pool->lock); 4600 } 4601 } 4602 4603 /** 4604 * rebind_workers - rebind all workers of a pool to the associated CPU 4605 * @pool: pool of interest 4606 * 4607 * @pool->cpu is coming online. Rebind all workers to the CPU. 4608 */ 4609 static void rebind_workers(struct worker_pool *pool) 4610 { 4611 struct worker *worker; 4612 int wi; 4613 4614 lockdep_assert_held(&pool->manager_mutex); 4615 4616 /* 4617 * Restore CPU affinity of all workers. As all idle workers should 4618 * be on the run-queue of the associated CPU before any local 4619 * wake-ups for concurrency management happen, restore CPU affinty 4620 * of all workers first and then clear UNBOUND. As we're called 4621 * from CPU_ONLINE, the following shouldn't fail. 4622 */ 4623 for_each_pool_worker(worker, wi, pool) 4624 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4625 pool->attrs->cpumask) < 0); 4626 4627 spin_lock_irq(&pool->lock); 4628 4629 for_each_pool_worker(worker, wi, pool) { 4630 unsigned int worker_flags = worker->flags; 4631 4632 /* 4633 * A bound idle worker should actually be on the runqueue 4634 * of the associated CPU for local wake-ups targeting it to 4635 * work. Kick all idle workers so that they migrate to the 4636 * associated CPU. Doing this in the same loop as 4637 * replacing UNBOUND with REBOUND is safe as no worker will 4638 * be bound before @pool->lock is released. 4639 */ 4640 if (worker_flags & WORKER_IDLE) 4641 wake_up_process(worker->task); 4642 4643 /* 4644 * We want to clear UNBOUND but can't directly call 4645 * worker_clr_flags() or adjust nr_running. Atomically 4646 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4647 * @worker will clear REBOUND using worker_clr_flags() when 4648 * it initiates the next execution cycle thus restoring 4649 * concurrency management. Note that when or whether 4650 * @worker clears REBOUND doesn't affect correctness. 4651 * 4652 * ACCESS_ONCE() is necessary because @worker->flags may be 4653 * tested without holding any lock in 4654 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4655 * fail incorrectly leading to premature concurrency 4656 * management operations. 4657 */ 4658 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4659 worker_flags |= WORKER_REBOUND; 4660 worker_flags &= ~WORKER_UNBOUND; 4661 ACCESS_ONCE(worker->flags) = worker_flags; 4662 } 4663 4664 spin_unlock_irq(&pool->lock); 4665 } 4666 4667 /** 4668 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4669 * @pool: unbound pool of interest 4670 * @cpu: the CPU which is coming up 4671 * 4672 * An unbound pool may end up with a cpumask which doesn't have any online 4673 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4674 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4675 * online CPU before, cpus_allowed of all its workers should be restored. 4676 */ 4677 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4678 { 4679 static cpumask_t cpumask; 4680 struct worker *worker; 4681 int wi; 4682 4683 lockdep_assert_held(&pool->manager_mutex); 4684 4685 /* is @cpu allowed for @pool? */ 4686 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4687 return; 4688 4689 /* is @cpu the only online CPU? */ 4690 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4691 if (cpumask_weight(&cpumask) != 1) 4692 return; 4693 4694 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4695 for_each_pool_worker(worker, wi, pool) 4696 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4697 pool->attrs->cpumask) < 0); 4698 } 4699 4700 /* 4701 * Workqueues should be brought up before normal priority CPU notifiers. 4702 * This will be registered high priority CPU notifier. 4703 */ 4704 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4705 unsigned long action, 4706 void *hcpu) 4707 { 4708 int cpu = (unsigned long)hcpu; 4709 struct worker_pool *pool; 4710 struct workqueue_struct *wq; 4711 int pi; 4712 4713 switch (action & ~CPU_TASKS_FROZEN) { 4714 case CPU_UP_PREPARE: 4715 for_each_cpu_worker_pool(pool, cpu) { 4716 if (pool->nr_workers) 4717 continue; 4718 if (create_and_start_worker(pool) < 0) 4719 return NOTIFY_BAD; 4720 } 4721 break; 4722 4723 case CPU_DOWN_FAILED: 4724 case CPU_ONLINE: 4725 mutex_lock(&wq_pool_mutex); 4726 4727 for_each_pool(pool, pi) { 4728 mutex_lock(&pool->manager_mutex); 4729 4730 if (pool->cpu == cpu) { 4731 spin_lock_irq(&pool->lock); 4732 pool->flags &= ~POOL_DISASSOCIATED; 4733 spin_unlock_irq(&pool->lock); 4734 4735 rebind_workers(pool); 4736 } else if (pool->cpu < 0) { 4737 restore_unbound_workers_cpumask(pool, cpu); 4738 } 4739 4740 mutex_unlock(&pool->manager_mutex); 4741 } 4742 4743 /* update NUMA affinity of unbound workqueues */ 4744 list_for_each_entry(wq, &workqueues, list) 4745 wq_update_unbound_numa(wq, cpu, true); 4746 4747 mutex_unlock(&wq_pool_mutex); 4748 break; 4749 } 4750 return NOTIFY_OK; 4751 } 4752 4753 /* 4754 * Workqueues should be brought down after normal priority CPU notifiers. 4755 * This will be registered as low priority CPU notifier. 4756 */ 4757 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4758 unsigned long action, 4759 void *hcpu) 4760 { 4761 int cpu = (unsigned long)hcpu; 4762 struct work_struct unbind_work; 4763 struct workqueue_struct *wq; 4764 4765 switch (action & ~CPU_TASKS_FROZEN) { 4766 case CPU_DOWN_PREPARE: 4767 /* unbinding per-cpu workers should happen on the local CPU */ 4768 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4769 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4770 4771 /* update NUMA affinity of unbound workqueues */ 4772 mutex_lock(&wq_pool_mutex); 4773 list_for_each_entry(wq, &workqueues, list) 4774 wq_update_unbound_numa(wq, cpu, false); 4775 mutex_unlock(&wq_pool_mutex); 4776 4777 /* wait for per-cpu unbinding to finish */ 4778 flush_work(&unbind_work); 4779 break; 4780 } 4781 return NOTIFY_OK; 4782 } 4783 4784 #ifdef CONFIG_SMP 4785 4786 struct work_for_cpu { 4787 struct work_struct work; 4788 long (*fn)(void *); 4789 void *arg; 4790 long ret; 4791 }; 4792 4793 static void work_for_cpu_fn(struct work_struct *work) 4794 { 4795 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4796 4797 wfc->ret = wfc->fn(wfc->arg); 4798 } 4799 4800 /** 4801 * work_on_cpu - run a function in user context on a particular cpu 4802 * @cpu: the cpu to run on 4803 * @fn: the function to run 4804 * @arg: the function arg 4805 * 4806 * It is up to the caller to ensure that the cpu doesn't go offline. 4807 * The caller must not hold any locks which would prevent @fn from completing. 4808 * 4809 * Return: The value @fn returns. 4810 */ 4811 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4812 { 4813 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4814 4815 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4816 schedule_work_on(cpu, &wfc.work); 4817 4818 /* 4819 * The work item is on-stack and can't lead to deadlock through 4820 * flushing. Use __flush_work() to avoid spurious lockdep warnings 4821 * when work_on_cpu()s are nested. 4822 */ 4823 __flush_work(&wfc.work); 4824 4825 return wfc.ret; 4826 } 4827 EXPORT_SYMBOL_GPL(work_on_cpu); 4828 #endif /* CONFIG_SMP */ 4829 4830 #ifdef CONFIG_FREEZER 4831 4832 /** 4833 * freeze_workqueues_begin - begin freezing workqueues 4834 * 4835 * Start freezing workqueues. After this function returns, all freezable 4836 * workqueues will queue new works to their delayed_works list instead of 4837 * pool->worklist. 4838 * 4839 * CONTEXT: 4840 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4841 */ 4842 void freeze_workqueues_begin(void) 4843 { 4844 struct worker_pool *pool; 4845 struct workqueue_struct *wq; 4846 struct pool_workqueue *pwq; 4847 int pi; 4848 4849 mutex_lock(&wq_pool_mutex); 4850 4851 WARN_ON_ONCE(workqueue_freezing); 4852 workqueue_freezing = true; 4853 4854 /* set FREEZING */ 4855 for_each_pool(pool, pi) { 4856 spin_lock_irq(&pool->lock); 4857 WARN_ON_ONCE(pool->flags & POOL_FREEZING); 4858 pool->flags |= POOL_FREEZING; 4859 spin_unlock_irq(&pool->lock); 4860 } 4861 4862 list_for_each_entry(wq, &workqueues, list) { 4863 mutex_lock(&wq->mutex); 4864 for_each_pwq(pwq, wq) 4865 pwq_adjust_max_active(pwq); 4866 mutex_unlock(&wq->mutex); 4867 } 4868 4869 mutex_unlock(&wq_pool_mutex); 4870 } 4871 4872 /** 4873 * freeze_workqueues_busy - are freezable workqueues still busy? 4874 * 4875 * Check whether freezing is complete. This function must be called 4876 * between freeze_workqueues_begin() and thaw_workqueues(). 4877 * 4878 * CONTEXT: 4879 * Grabs and releases wq_pool_mutex. 4880 * 4881 * Return: 4882 * %true if some freezable workqueues are still busy. %false if freezing 4883 * is complete. 4884 */ 4885 bool freeze_workqueues_busy(void) 4886 { 4887 bool busy = false; 4888 struct workqueue_struct *wq; 4889 struct pool_workqueue *pwq; 4890 4891 mutex_lock(&wq_pool_mutex); 4892 4893 WARN_ON_ONCE(!workqueue_freezing); 4894 4895 list_for_each_entry(wq, &workqueues, list) { 4896 if (!(wq->flags & WQ_FREEZABLE)) 4897 continue; 4898 /* 4899 * nr_active is monotonically decreasing. It's safe 4900 * to peek without lock. 4901 */ 4902 rcu_read_lock_sched(); 4903 for_each_pwq(pwq, wq) { 4904 WARN_ON_ONCE(pwq->nr_active < 0); 4905 if (pwq->nr_active) { 4906 busy = true; 4907 rcu_read_unlock_sched(); 4908 goto out_unlock; 4909 } 4910 } 4911 rcu_read_unlock_sched(); 4912 } 4913 out_unlock: 4914 mutex_unlock(&wq_pool_mutex); 4915 return busy; 4916 } 4917 4918 /** 4919 * thaw_workqueues - thaw workqueues 4920 * 4921 * Thaw workqueues. Normal queueing is restored and all collected 4922 * frozen works are transferred to their respective pool worklists. 4923 * 4924 * CONTEXT: 4925 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4926 */ 4927 void thaw_workqueues(void) 4928 { 4929 struct workqueue_struct *wq; 4930 struct pool_workqueue *pwq; 4931 struct worker_pool *pool; 4932 int pi; 4933 4934 mutex_lock(&wq_pool_mutex); 4935 4936 if (!workqueue_freezing) 4937 goto out_unlock; 4938 4939 /* clear FREEZING */ 4940 for_each_pool(pool, pi) { 4941 spin_lock_irq(&pool->lock); 4942 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING)); 4943 pool->flags &= ~POOL_FREEZING; 4944 spin_unlock_irq(&pool->lock); 4945 } 4946 4947 /* restore max_active and repopulate worklist */ 4948 list_for_each_entry(wq, &workqueues, list) { 4949 mutex_lock(&wq->mutex); 4950 for_each_pwq(pwq, wq) 4951 pwq_adjust_max_active(pwq); 4952 mutex_unlock(&wq->mutex); 4953 } 4954 4955 workqueue_freezing = false; 4956 out_unlock: 4957 mutex_unlock(&wq_pool_mutex); 4958 } 4959 #endif /* CONFIG_FREEZER */ 4960 4961 static void __init wq_numa_init(void) 4962 { 4963 cpumask_var_t *tbl; 4964 int node, cpu; 4965 4966 /* determine NUMA pwq table len - highest node id + 1 */ 4967 for_each_node(node) 4968 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1); 4969 4970 if (num_possible_nodes() <= 1) 4971 return; 4972 4973 if (wq_disable_numa) { 4974 pr_info("workqueue: NUMA affinity support disabled\n"); 4975 return; 4976 } 4977 4978 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 4979 BUG_ON(!wq_update_unbound_numa_attrs_buf); 4980 4981 /* 4982 * We want masks of possible CPUs of each node which isn't readily 4983 * available. Build one from cpu_to_node() which should have been 4984 * fully initialized by now. 4985 */ 4986 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL); 4987 BUG_ON(!tbl); 4988 4989 for_each_node(node) 4990 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 4991 node_online(node) ? node : NUMA_NO_NODE)); 4992 4993 for_each_possible_cpu(cpu) { 4994 node = cpu_to_node(cpu); 4995 if (WARN_ON(node == NUMA_NO_NODE)) { 4996 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 4997 /* happens iff arch is bonkers, let's just proceed */ 4998 return; 4999 } 5000 cpumask_set_cpu(cpu, tbl[node]); 5001 } 5002 5003 wq_numa_possible_cpumask = tbl; 5004 wq_numa_enabled = true; 5005 } 5006 5007 static int __init init_workqueues(void) 5008 { 5009 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5010 int i, cpu; 5011 5012 /* make sure we have enough bits for OFFQ pool ID */ 5013 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) < 5014 WORK_CPU_END * NR_STD_WORKER_POOLS); 5015 5016 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5017 5018 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5019 5020 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 5021 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 5022 5023 wq_numa_init(); 5024 5025 /* initialize CPU pools */ 5026 for_each_possible_cpu(cpu) { 5027 struct worker_pool *pool; 5028 5029 i = 0; 5030 for_each_cpu_worker_pool(pool, cpu) { 5031 BUG_ON(init_worker_pool(pool)); 5032 pool->cpu = cpu; 5033 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5034 pool->attrs->nice = std_nice[i++]; 5035 pool->node = cpu_to_node(cpu); 5036 5037 /* alloc pool ID */ 5038 mutex_lock(&wq_pool_mutex); 5039 BUG_ON(worker_pool_assign_id(pool)); 5040 mutex_unlock(&wq_pool_mutex); 5041 } 5042 } 5043 5044 /* create the initial worker */ 5045 for_each_online_cpu(cpu) { 5046 struct worker_pool *pool; 5047 5048 for_each_cpu_worker_pool(pool, cpu) { 5049 pool->flags &= ~POOL_DISASSOCIATED; 5050 BUG_ON(create_and_start_worker(pool) < 0); 5051 } 5052 } 5053 5054 /* create default unbound wq attrs */ 5055 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5056 struct workqueue_attrs *attrs; 5057 5058 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5059 attrs->nice = std_nice[i]; 5060 unbound_std_wq_attrs[i] = attrs; 5061 } 5062 5063 system_wq = alloc_workqueue("events", 0, 0); 5064 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5065 system_long_wq = alloc_workqueue("events_long", 0, 0); 5066 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5067 WQ_UNBOUND_MAX_ACTIVE); 5068 system_freezable_wq = alloc_workqueue("events_freezable", 5069 WQ_FREEZABLE, 0); 5070 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5071 WQ_POWER_EFFICIENT, 0); 5072 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5073 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5074 0); 5075 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5076 !system_unbound_wq || !system_freezable_wq || 5077 !system_power_efficient_wq || 5078 !system_freezable_power_efficient_wq); 5079 return 0; 5080 } 5081 early_initcall(init_workqueues); 5082