xref: /openbmc/linux/kernel/workqueue.c (revision 5a170e9e)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/core-api/workqueue.rst for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50 #include <linux/sched/isolation.h>
51 #include <linux/nmi.h>
52 
53 #include "workqueue_internal.h"
54 
55 enum {
56 	/*
57 	 * worker_pool flags
58 	 *
59 	 * A bound pool is either associated or disassociated with its CPU.
60 	 * While associated (!DISASSOCIATED), all workers are bound to the
61 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 	 * is in effect.
63 	 *
64 	 * While DISASSOCIATED, the cpu may be offline and all workers have
65 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 	 * be executing on any CPU.  The pool behaves as an unbound one.
67 	 *
68 	 * Note that DISASSOCIATED should be flipped only while holding
69 	 * wq_pool_attach_mutex to avoid changing binding state while
70 	 * worker_attach_to_pool() is in progress.
71 	 */
72 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
73 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
74 
75 	/* worker flags */
76 	WORKER_DIE		= 1 << 1,	/* die die die */
77 	WORKER_IDLE		= 1 << 2,	/* is idle */
78 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82 
83 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
84 				  WORKER_UNBOUND | WORKER_REBOUND,
85 
86 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87 
88 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
89 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90 
91 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
92 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
93 
94 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
95 						/* call for help after 10ms
96 						   (min two ticks) */
97 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
98 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
99 
100 	/*
101 	 * Rescue workers are used only on emergencies and shared by
102 	 * all cpus.  Give MIN_NICE.
103 	 */
104 	RESCUER_NICE_LEVEL	= MIN_NICE,
105 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
106 
107 	WQ_NAME_LEN		= 24,
108 };
109 
110 /*
111  * Structure fields follow one of the following exclusion rules.
112  *
113  * I: Modifiable by initialization/destruction paths and read-only for
114  *    everyone else.
115  *
116  * P: Preemption protected.  Disabling preemption is enough and should
117  *    only be modified and accessed from the local cpu.
118  *
119  * L: pool->lock protected.  Access with pool->lock held.
120  *
121  * X: During normal operation, modification requires pool->lock and should
122  *    be done only from local cpu.  Either disabling preemption on local
123  *    cpu or grabbing pool->lock is enough for read access.  If
124  *    POOL_DISASSOCIATED is set, it's identical to L.
125  *
126  * A: wq_pool_attach_mutex protected.
127  *
128  * PL: wq_pool_mutex protected.
129  *
130  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
131  *
132  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
133  *
134  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
135  *      sched-RCU for reads.
136  *
137  * WQ: wq->mutex protected.
138  *
139  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
140  *
141  * MD: wq_mayday_lock protected.
142  */
143 
144 /* struct worker is defined in workqueue_internal.h */
145 
146 struct worker_pool {
147 	spinlock_t		lock;		/* the pool lock */
148 	int			cpu;		/* I: the associated cpu */
149 	int			node;		/* I: the associated node ID */
150 	int			id;		/* I: pool ID */
151 	unsigned int		flags;		/* X: flags */
152 
153 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
154 
155 	struct list_head	worklist;	/* L: list of pending works */
156 
157 	int			nr_workers;	/* L: total number of workers */
158 	int			nr_idle;	/* L: currently idle workers */
159 
160 	struct list_head	idle_list;	/* X: list of idle workers */
161 	struct timer_list	idle_timer;	/* L: worker idle timeout */
162 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
163 
164 	/* a workers is either on busy_hash or idle_list, or the manager */
165 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 						/* L: hash of busy workers */
167 
168 	struct worker		*manager;	/* L: purely informational */
169 	struct list_head	workers;	/* A: attached workers */
170 	struct completion	*detach_completion; /* all workers detached */
171 
172 	struct ida		worker_ida;	/* worker IDs for task name */
173 
174 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
175 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
176 	int			refcnt;		/* PL: refcnt for unbound pools */
177 
178 	/*
179 	 * The current concurrency level.  As it's likely to be accessed
180 	 * from other CPUs during try_to_wake_up(), put it in a separate
181 	 * cacheline.
182 	 */
183 	atomic_t		nr_running ____cacheline_aligned_in_smp;
184 
185 	/*
186 	 * Destruction of pool is sched-RCU protected to allow dereferences
187 	 * from get_work_pool().
188 	 */
189 	struct rcu_head		rcu;
190 } ____cacheline_aligned_in_smp;
191 
192 /*
193  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
194  * of work_struct->data are used for flags and the remaining high bits
195  * point to the pwq; thus, pwqs need to be aligned at two's power of the
196  * number of flag bits.
197  */
198 struct pool_workqueue {
199 	struct worker_pool	*pool;		/* I: the associated pool */
200 	struct workqueue_struct *wq;		/* I: the owning workqueue */
201 	int			work_color;	/* L: current color */
202 	int			flush_color;	/* L: flushing color */
203 	int			refcnt;		/* L: reference count */
204 	int			nr_in_flight[WORK_NR_COLORS];
205 						/* L: nr of in_flight works */
206 	int			nr_active;	/* L: nr of active works */
207 	int			max_active;	/* L: max active works */
208 	struct list_head	delayed_works;	/* L: delayed works */
209 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
210 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
211 
212 	/*
213 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
214 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
215 	 * itself is also sched-RCU protected so that the first pwq can be
216 	 * determined without grabbing wq->mutex.
217 	 */
218 	struct work_struct	unbound_release_work;
219 	struct rcu_head		rcu;
220 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
221 
222 /*
223  * Structure used to wait for workqueue flush.
224  */
225 struct wq_flusher {
226 	struct list_head	list;		/* WQ: list of flushers */
227 	int			flush_color;	/* WQ: flush color waiting for */
228 	struct completion	done;		/* flush completion */
229 };
230 
231 struct wq_device;
232 
233 /*
234  * The externally visible workqueue.  It relays the issued work items to
235  * the appropriate worker_pool through its pool_workqueues.
236  */
237 struct workqueue_struct {
238 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
239 	struct list_head	list;		/* PR: list of all workqueues */
240 
241 	struct mutex		mutex;		/* protects this wq */
242 	int			work_color;	/* WQ: current work color */
243 	int			flush_color;	/* WQ: current flush color */
244 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
245 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
246 	struct list_head	flusher_queue;	/* WQ: flush waiters */
247 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
248 
249 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
250 	struct worker		*rescuer;	/* I: rescue worker */
251 
252 	int			nr_drainers;	/* WQ: drain in progress */
253 	int			saved_max_active; /* WQ: saved pwq max_active */
254 
255 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
256 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
257 
258 #ifdef CONFIG_SYSFS
259 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
260 #endif
261 #ifdef CONFIG_LOCKDEP
262 	struct lockdep_map	lockdep_map;
263 #endif
264 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
265 
266 	/*
267 	 * Destruction of workqueue_struct is sched-RCU protected to allow
268 	 * walking the workqueues list without grabbing wq_pool_mutex.
269 	 * This is used to dump all workqueues from sysrq.
270 	 */
271 	struct rcu_head		rcu;
272 
273 	/* hot fields used during command issue, aligned to cacheline */
274 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
275 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
276 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
277 };
278 
279 static struct kmem_cache *pwq_cache;
280 
281 static cpumask_var_t *wq_numa_possible_cpumask;
282 					/* possible CPUs of each node */
283 
284 static bool wq_disable_numa;
285 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
286 
287 /* see the comment above the definition of WQ_POWER_EFFICIENT */
288 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
289 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
290 
291 static bool wq_online;			/* can kworkers be created yet? */
292 
293 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
294 
295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297 
298 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
299 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
300 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
301 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
302 
303 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
304 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
305 
306 /* PL: allowable cpus for unbound wqs and work items */
307 static cpumask_var_t wq_unbound_cpumask;
308 
309 /* CPU where unbound work was last round robin scheduled from this CPU */
310 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
311 
312 /*
313  * Local execution of unbound work items is no longer guaranteed.  The
314  * following always forces round-robin CPU selection on unbound work items
315  * to uncover usages which depend on it.
316  */
317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
318 static bool wq_debug_force_rr_cpu = true;
319 #else
320 static bool wq_debug_force_rr_cpu = false;
321 #endif
322 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
323 
324 /* the per-cpu worker pools */
325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
326 
327 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
328 
329 /* PL: hash of all unbound pools keyed by pool->attrs */
330 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
331 
332 /* I: attributes used when instantiating standard unbound pools on demand */
333 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
334 
335 /* I: attributes used when instantiating ordered pools on demand */
336 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
337 
338 struct workqueue_struct *system_wq __read_mostly;
339 EXPORT_SYMBOL(system_wq);
340 struct workqueue_struct *system_highpri_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_highpri_wq);
342 struct workqueue_struct *system_long_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_long_wq);
344 struct workqueue_struct *system_unbound_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_unbound_wq);
346 struct workqueue_struct *system_freezable_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_freezable_wq);
348 struct workqueue_struct *system_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
350 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
352 
353 static int worker_thread(void *__worker);
354 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
355 
356 #define CREATE_TRACE_POINTS
357 #include <trace/events/workqueue.h>
358 
359 #define assert_rcu_or_pool_mutex()					\
360 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
361 			 !lockdep_is_held(&wq_pool_mutex),		\
362 			 "sched RCU or wq_pool_mutex should be held")
363 
364 #define assert_rcu_or_wq_mutex(wq)					\
365 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
366 			 !lockdep_is_held(&wq->mutex),			\
367 			 "sched RCU or wq->mutex should be held")
368 
369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
370 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
371 			 !lockdep_is_held(&wq->mutex) &&		\
372 			 !lockdep_is_held(&wq_pool_mutex),		\
373 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
374 
375 #define for_each_cpu_worker_pool(pool, cpu)				\
376 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
377 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378 	     (pool)++)
379 
380 /**
381  * for_each_pool - iterate through all worker_pools in the system
382  * @pool: iteration cursor
383  * @pi: integer used for iteration
384  *
385  * This must be called either with wq_pool_mutex held or sched RCU read
386  * locked.  If the pool needs to be used beyond the locking in effect, the
387  * caller is responsible for guaranteeing that the pool stays online.
388  *
389  * The if/else clause exists only for the lockdep assertion and can be
390  * ignored.
391  */
392 #define for_each_pool(pool, pi)						\
393 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
394 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
395 		else
396 
397 /**
398  * for_each_pool_worker - iterate through all workers of a worker_pool
399  * @worker: iteration cursor
400  * @pool: worker_pool to iterate workers of
401  *
402  * This must be called with wq_pool_attach_mutex.
403  *
404  * The if/else clause exists only for the lockdep assertion and can be
405  * ignored.
406  */
407 #define for_each_pool_worker(worker, pool)				\
408 	list_for_each_entry((worker), &(pool)->workers, node)		\
409 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
410 		else
411 
412 /**
413  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414  * @pwq: iteration cursor
415  * @wq: the target workqueue
416  *
417  * This must be called either with wq->mutex held or sched RCU read locked.
418  * If the pwq needs to be used beyond the locking in effect, the caller is
419  * responsible for guaranteeing that the pwq stays online.
420  *
421  * The if/else clause exists only for the lockdep assertion and can be
422  * ignored.
423  */
424 #define for_each_pwq(pwq, wq)						\
425 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
426 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
427 		else
428 
429 #ifdef CONFIG_DEBUG_OBJECTS_WORK
430 
431 static struct debug_obj_descr work_debug_descr;
432 
433 static void *work_debug_hint(void *addr)
434 {
435 	return ((struct work_struct *) addr)->func;
436 }
437 
438 static bool work_is_static_object(void *addr)
439 {
440 	struct work_struct *work = addr;
441 
442 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443 }
444 
445 /*
446  * fixup_init is called when:
447  * - an active object is initialized
448  */
449 static bool work_fixup_init(void *addr, enum debug_obj_state state)
450 {
451 	struct work_struct *work = addr;
452 
453 	switch (state) {
454 	case ODEBUG_STATE_ACTIVE:
455 		cancel_work_sync(work);
456 		debug_object_init(work, &work_debug_descr);
457 		return true;
458 	default:
459 		return false;
460 	}
461 }
462 
463 /*
464  * fixup_free is called when:
465  * - an active object is freed
466  */
467 static bool work_fixup_free(void *addr, enum debug_obj_state state)
468 {
469 	struct work_struct *work = addr;
470 
471 	switch (state) {
472 	case ODEBUG_STATE_ACTIVE:
473 		cancel_work_sync(work);
474 		debug_object_free(work, &work_debug_descr);
475 		return true;
476 	default:
477 		return false;
478 	}
479 }
480 
481 static struct debug_obj_descr work_debug_descr = {
482 	.name		= "work_struct",
483 	.debug_hint	= work_debug_hint,
484 	.is_static_object = work_is_static_object,
485 	.fixup_init	= work_fixup_init,
486 	.fixup_free	= work_fixup_free,
487 };
488 
489 static inline void debug_work_activate(struct work_struct *work)
490 {
491 	debug_object_activate(work, &work_debug_descr);
492 }
493 
494 static inline void debug_work_deactivate(struct work_struct *work)
495 {
496 	debug_object_deactivate(work, &work_debug_descr);
497 }
498 
499 void __init_work(struct work_struct *work, int onstack)
500 {
501 	if (onstack)
502 		debug_object_init_on_stack(work, &work_debug_descr);
503 	else
504 		debug_object_init(work, &work_debug_descr);
505 }
506 EXPORT_SYMBOL_GPL(__init_work);
507 
508 void destroy_work_on_stack(struct work_struct *work)
509 {
510 	debug_object_free(work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513 
514 void destroy_delayed_work_on_stack(struct delayed_work *work)
515 {
516 	destroy_timer_on_stack(&work->timer);
517 	debug_object_free(&work->work, &work_debug_descr);
518 }
519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520 
521 #else
522 static inline void debug_work_activate(struct work_struct *work) { }
523 static inline void debug_work_deactivate(struct work_struct *work) { }
524 #endif
525 
526 /**
527  * worker_pool_assign_id - allocate ID and assing it to @pool
528  * @pool: the pool pointer of interest
529  *
530  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531  * successfully, -errno on failure.
532  */
533 static int worker_pool_assign_id(struct worker_pool *pool)
534 {
535 	int ret;
536 
537 	lockdep_assert_held(&wq_pool_mutex);
538 
539 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 			GFP_KERNEL);
541 	if (ret >= 0) {
542 		pool->id = ret;
543 		return 0;
544 	}
545 	return ret;
546 }
547 
548 /**
549  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550  * @wq: the target workqueue
551  * @node: the node ID
552  *
553  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
554  * read locked.
555  * If the pwq needs to be used beyond the locking in effect, the caller is
556  * responsible for guaranteeing that the pwq stays online.
557  *
558  * Return: The unbound pool_workqueue for @node.
559  */
560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 						  int node)
562 {
563 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
564 
565 	/*
566 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 	 * delayed item is pending.  The plan is to keep CPU -> NODE
568 	 * mapping valid and stable across CPU on/offlines.  Once that
569 	 * happens, this workaround can be removed.
570 	 */
571 	if (unlikely(node == NUMA_NO_NODE))
572 		return wq->dfl_pwq;
573 
574 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575 }
576 
577 static unsigned int work_color_to_flags(int color)
578 {
579 	return color << WORK_STRUCT_COLOR_SHIFT;
580 }
581 
582 static int get_work_color(struct work_struct *work)
583 {
584 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
586 }
587 
588 static int work_next_color(int color)
589 {
590 	return (color + 1) % WORK_NR_COLORS;
591 }
592 
593 /*
594  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595  * contain the pointer to the queued pwq.  Once execution starts, the flag
596  * is cleared and the high bits contain OFFQ flags and pool ID.
597  *
598  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599  * and clear_work_data() can be used to set the pwq, pool or clear
600  * work->data.  These functions should only be called while the work is
601  * owned - ie. while the PENDING bit is set.
602  *
603  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604  * corresponding to a work.  Pool is available once the work has been
605  * queued anywhere after initialization until it is sync canceled.  pwq is
606  * available only while the work item is queued.
607  *
608  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609  * canceled.  While being canceled, a work item may have its PENDING set
610  * but stay off timer and worklist for arbitrarily long and nobody should
611  * try to steal the PENDING bit.
612  */
613 static inline void set_work_data(struct work_struct *work, unsigned long data,
614 				 unsigned long flags)
615 {
616 	WARN_ON_ONCE(!work_pending(work));
617 	atomic_long_set(&work->data, data | flags | work_static(work));
618 }
619 
620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 			 unsigned long extra_flags)
622 {
623 	set_work_data(work, (unsigned long)pwq,
624 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
625 }
626 
627 static void set_work_pool_and_keep_pending(struct work_struct *work,
628 					   int pool_id)
629 {
630 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 		      WORK_STRUCT_PENDING);
632 }
633 
634 static void set_work_pool_and_clear_pending(struct work_struct *work,
635 					    int pool_id)
636 {
637 	/*
638 	 * The following wmb is paired with the implied mb in
639 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 	 * here are visible to and precede any updates by the next PENDING
641 	 * owner.
642 	 */
643 	smp_wmb();
644 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
645 	/*
646 	 * The following mb guarantees that previous clear of a PENDING bit
647 	 * will not be reordered with any speculative LOADS or STORES from
648 	 * work->current_func, which is executed afterwards.  This possible
649 	 * reordering can lead to a missed execution on attempt to qeueue
650 	 * the same @work.  E.g. consider this case:
651 	 *
652 	 *   CPU#0                         CPU#1
653 	 *   ----------------------------  --------------------------------
654 	 *
655 	 * 1  STORE event_indicated
656 	 * 2  queue_work_on() {
657 	 * 3    test_and_set_bit(PENDING)
658 	 * 4 }                             set_..._and_clear_pending() {
659 	 * 5                                 set_work_data() # clear bit
660 	 * 6                                 smp_mb()
661 	 * 7                               work->current_func() {
662 	 * 8				      LOAD event_indicated
663 	 *				   }
664 	 *
665 	 * Without an explicit full barrier speculative LOAD on line 8 can
666 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
667 	 * CPU#0 observes the PENDING bit is still set and new execution of
668 	 * a @work is not queued in a hope, that CPU#1 will eventually
669 	 * finish the queued @work.  Meanwhile CPU#1 does not see
670 	 * event_indicated is set, because speculative LOAD was executed
671 	 * before actual STORE.
672 	 */
673 	smp_mb();
674 }
675 
676 static void clear_work_data(struct work_struct *work)
677 {
678 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
679 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
680 }
681 
682 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
683 {
684 	unsigned long data = atomic_long_read(&work->data);
685 
686 	if (data & WORK_STRUCT_PWQ)
687 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 	else
689 		return NULL;
690 }
691 
692 /**
693  * get_work_pool - return the worker_pool a given work was associated with
694  * @work: the work item of interest
695  *
696  * Pools are created and destroyed under wq_pool_mutex, and allows read
697  * access under sched-RCU read lock.  As such, this function should be
698  * called under wq_pool_mutex or with preemption disabled.
699  *
700  * All fields of the returned pool are accessible as long as the above
701  * mentioned locking is in effect.  If the returned pool needs to be used
702  * beyond the critical section, the caller is responsible for ensuring the
703  * returned pool is and stays online.
704  *
705  * Return: The worker_pool @work was last associated with.  %NULL if none.
706  */
707 static struct worker_pool *get_work_pool(struct work_struct *work)
708 {
709 	unsigned long data = atomic_long_read(&work->data);
710 	int pool_id;
711 
712 	assert_rcu_or_pool_mutex();
713 
714 	if (data & WORK_STRUCT_PWQ)
715 		return ((struct pool_workqueue *)
716 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
717 
718 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 	if (pool_id == WORK_OFFQ_POOL_NONE)
720 		return NULL;
721 
722 	return idr_find(&worker_pool_idr, pool_id);
723 }
724 
725 /**
726  * get_work_pool_id - return the worker pool ID a given work is associated with
727  * @work: the work item of interest
728  *
729  * Return: The worker_pool ID @work was last associated with.
730  * %WORK_OFFQ_POOL_NONE if none.
731  */
732 static int get_work_pool_id(struct work_struct *work)
733 {
734 	unsigned long data = atomic_long_read(&work->data);
735 
736 	if (data & WORK_STRUCT_PWQ)
737 		return ((struct pool_workqueue *)
738 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
739 
740 	return data >> WORK_OFFQ_POOL_SHIFT;
741 }
742 
743 static void mark_work_canceling(struct work_struct *work)
744 {
745 	unsigned long pool_id = get_work_pool_id(work);
746 
747 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
749 }
750 
751 static bool work_is_canceling(struct work_struct *work)
752 {
753 	unsigned long data = atomic_long_read(&work->data);
754 
755 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
756 }
757 
758 /*
759  * Policy functions.  These define the policies on how the global worker
760  * pools are managed.  Unless noted otherwise, these functions assume that
761  * they're being called with pool->lock held.
762  */
763 
764 static bool __need_more_worker(struct worker_pool *pool)
765 {
766 	return !atomic_read(&pool->nr_running);
767 }
768 
769 /*
770  * Need to wake up a worker?  Called from anything but currently
771  * running workers.
772  *
773  * Note that, because unbound workers never contribute to nr_running, this
774  * function will always return %true for unbound pools as long as the
775  * worklist isn't empty.
776  */
777 static bool need_more_worker(struct worker_pool *pool)
778 {
779 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
780 }
781 
782 /* Can I start working?  Called from busy but !running workers. */
783 static bool may_start_working(struct worker_pool *pool)
784 {
785 	return pool->nr_idle;
786 }
787 
788 /* Do I need to keep working?  Called from currently running workers. */
789 static bool keep_working(struct worker_pool *pool)
790 {
791 	return !list_empty(&pool->worklist) &&
792 		atomic_read(&pool->nr_running) <= 1;
793 }
794 
795 /* Do we need a new worker?  Called from manager. */
796 static bool need_to_create_worker(struct worker_pool *pool)
797 {
798 	return need_more_worker(pool) && !may_start_working(pool);
799 }
800 
801 /* Do we have too many workers and should some go away? */
802 static bool too_many_workers(struct worker_pool *pool)
803 {
804 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
805 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 	int nr_busy = pool->nr_workers - nr_idle;
807 
808 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
809 }
810 
811 /*
812  * Wake up functions.
813  */
814 
815 /* Return the first idle worker.  Safe with preemption disabled */
816 static struct worker *first_idle_worker(struct worker_pool *pool)
817 {
818 	if (unlikely(list_empty(&pool->idle_list)))
819 		return NULL;
820 
821 	return list_first_entry(&pool->idle_list, struct worker, entry);
822 }
823 
824 /**
825  * wake_up_worker - wake up an idle worker
826  * @pool: worker pool to wake worker from
827  *
828  * Wake up the first idle worker of @pool.
829  *
830  * CONTEXT:
831  * spin_lock_irq(pool->lock).
832  */
833 static void wake_up_worker(struct worker_pool *pool)
834 {
835 	struct worker *worker = first_idle_worker(pool);
836 
837 	if (likely(worker))
838 		wake_up_process(worker->task);
839 }
840 
841 /**
842  * wq_worker_waking_up - a worker is waking up
843  * @task: task waking up
844  * @cpu: CPU @task is waking up to
845  *
846  * This function is called during try_to_wake_up() when a worker is
847  * being awoken.
848  *
849  * CONTEXT:
850  * spin_lock_irq(rq->lock)
851  */
852 void wq_worker_waking_up(struct task_struct *task, int cpu)
853 {
854 	struct worker *worker = kthread_data(task);
855 
856 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
857 		WARN_ON_ONCE(worker->pool->cpu != cpu);
858 		atomic_inc(&worker->pool->nr_running);
859 	}
860 }
861 
862 /**
863  * wq_worker_sleeping - a worker is going to sleep
864  * @task: task going to sleep
865  *
866  * This function is called during schedule() when a busy worker is
867  * going to sleep.  Worker on the same cpu can be woken up by
868  * returning pointer to its task.
869  *
870  * CONTEXT:
871  * spin_lock_irq(rq->lock)
872  *
873  * Return:
874  * Worker task on @cpu to wake up, %NULL if none.
875  */
876 struct task_struct *wq_worker_sleeping(struct task_struct *task)
877 {
878 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
879 	struct worker_pool *pool;
880 
881 	/*
882 	 * Rescuers, which may not have all the fields set up like normal
883 	 * workers, also reach here, let's not access anything before
884 	 * checking NOT_RUNNING.
885 	 */
886 	if (worker->flags & WORKER_NOT_RUNNING)
887 		return NULL;
888 
889 	pool = worker->pool;
890 
891 	/* this can only happen on the local cpu */
892 	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
893 		return NULL;
894 
895 	/*
896 	 * The counterpart of the following dec_and_test, implied mb,
897 	 * worklist not empty test sequence is in insert_work().
898 	 * Please read comment there.
899 	 *
900 	 * NOT_RUNNING is clear.  This means that we're bound to and
901 	 * running on the local cpu w/ rq lock held and preemption
902 	 * disabled, which in turn means that none else could be
903 	 * manipulating idle_list, so dereferencing idle_list without pool
904 	 * lock is safe.
905 	 */
906 	if (atomic_dec_and_test(&pool->nr_running) &&
907 	    !list_empty(&pool->worklist))
908 		to_wakeup = first_idle_worker(pool);
909 	return to_wakeup ? to_wakeup->task : NULL;
910 }
911 
912 /**
913  * worker_set_flags - set worker flags and adjust nr_running accordingly
914  * @worker: self
915  * @flags: flags to set
916  *
917  * Set @flags in @worker->flags and adjust nr_running accordingly.
918  *
919  * CONTEXT:
920  * spin_lock_irq(pool->lock)
921  */
922 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
923 {
924 	struct worker_pool *pool = worker->pool;
925 
926 	WARN_ON_ONCE(worker->task != current);
927 
928 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
929 	if ((flags & WORKER_NOT_RUNNING) &&
930 	    !(worker->flags & WORKER_NOT_RUNNING)) {
931 		atomic_dec(&pool->nr_running);
932 	}
933 
934 	worker->flags |= flags;
935 }
936 
937 /**
938  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
939  * @worker: self
940  * @flags: flags to clear
941  *
942  * Clear @flags in @worker->flags and adjust nr_running accordingly.
943  *
944  * CONTEXT:
945  * spin_lock_irq(pool->lock)
946  */
947 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
948 {
949 	struct worker_pool *pool = worker->pool;
950 	unsigned int oflags = worker->flags;
951 
952 	WARN_ON_ONCE(worker->task != current);
953 
954 	worker->flags &= ~flags;
955 
956 	/*
957 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
958 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
959 	 * of multiple flags, not a single flag.
960 	 */
961 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
962 		if (!(worker->flags & WORKER_NOT_RUNNING))
963 			atomic_inc(&pool->nr_running);
964 }
965 
966 /**
967  * find_worker_executing_work - find worker which is executing a work
968  * @pool: pool of interest
969  * @work: work to find worker for
970  *
971  * Find a worker which is executing @work on @pool by searching
972  * @pool->busy_hash which is keyed by the address of @work.  For a worker
973  * to match, its current execution should match the address of @work and
974  * its work function.  This is to avoid unwanted dependency between
975  * unrelated work executions through a work item being recycled while still
976  * being executed.
977  *
978  * This is a bit tricky.  A work item may be freed once its execution
979  * starts and nothing prevents the freed area from being recycled for
980  * another work item.  If the same work item address ends up being reused
981  * before the original execution finishes, workqueue will identify the
982  * recycled work item as currently executing and make it wait until the
983  * current execution finishes, introducing an unwanted dependency.
984  *
985  * This function checks the work item address and work function to avoid
986  * false positives.  Note that this isn't complete as one may construct a
987  * work function which can introduce dependency onto itself through a
988  * recycled work item.  Well, if somebody wants to shoot oneself in the
989  * foot that badly, there's only so much we can do, and if such deadlock
990  * actually occurs, it should be easy to locate the culprit work function.
991  *
992  * CONTEXT:
993  * spin_lock_irq(pool->lock).
994  *
995  * Return:
996  * Pointer to worker which is executing @work if found, %NULL
997  * otherwise.
998  */
999 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000 						 struct work_struct *work)
1001 {
1002 	struct worker *worker;
1003 
1004 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1005 			       (unsigned long)work)
1006 		if (worker->current_work == work &&
1007 		    worker->current_func == work->func)
1008 			return worker;
1009 
1010 	return NULL;
1011 }
1012 
1013 /**
1014  * move_linked_works - move linked works to a list
1015  * @work: start of series of works to be scheduled
1016  * @head: target list to append @work to
1017  * @nextp: out parameter for nested worklist walking
1018  *
1019  * Schedule linked works starting from @work to @head.  Work series to
1020  * be scheduled starts at @work and includes any consecutive work with
1021  * WORK_STRUCT_LINKED set in its predecessor.
1022  *
1023  * If @nextp is not NULL, it's updated to point to the next work of
1024  * the last scheduled work.  This allows move_linked_works() to be
1025  * nested inside outer list_for_each_entry_safe().
1026  *
1027  * CONTEXT:
1028  * spin_lock_irq(pool->lock).
1029  */
1030 static void move_linked_works(struct work_struct *work, struct list_head *head,
1031 			      struct work_struct **nextp)
1032 {
1033 	struct work_struct *n;
1034 
1035 	/*
1036 	 * Linked worklist will always end before the end of the list,
1037 	 * use NULL for list head.
1038 	 */
1039 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1040 		list_move_tail(&work->entry, head);
1041 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042 			break;
1043 	}
1044 
1045 	/*
1046 	 * If we're already inside safe list traversal and have moved
1047 	 * multiple works to the scheduled queue, the next position
1048 	 * needs to be updated.
1049 	 */
1050 	if (nextp)
1051 		*nextp = n;
1052 }
1053 
1054 /**
1055  * get_pwq - get an extra reference on the specified pool_workqueue
1056  * @pwq: pool_workqueue to get
1057  *
1058  * Obtain an extra reference on @pwq.  The caller should guarantee that
1059  * @pwq has positive refcnt and be holding the matching pool->lock.
1060  */
1061 static void get_pwq(struct pool_workqueue *pwq)
1062 {
1063 	lockdep_assert_held(&pwq->pool->lock);
1064 	WARN_ON_ONCE(pwq->refcnt <= 0);
1065 	pwq->refcnt++;
1066 }
1067 
1068 /**
1069  * put_pwq - put a pool_workqueue reference
1070  * @pwq: pool_workqueue to put
1071  *
1072  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1073  * destruction.  The caller should be holding the matching pool->lock.
1074  */
1075 static void put_pwq(struct pool_workqueue *pwq)
1076 {
1077 	lockdep_assert_held(&pwq->pool->lock);
1078 	if (likely(--pwq->refcnt))
1079 		return;
1080 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081 		return;
1082 	/*
1083 	 * @pwq can't be released under pool->lock, bounce to
1084 	 * pwq_unbound_release_workfn().  This never recurses on the same
1085 	 * pool->lock as this path is taken only for unbound workqueues and
1086 	 * the release work item is scheduled on a per-cpu workqueue.  To
1087 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1088 	 * subclass of 1 in get_unbound_pool().
1089 	 */
1090 	schedule_work(&pwq->unbound_release_work);
1091 }
1092 
1093 /**
1094  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095  * @pwq: pool_workqueue to put (can be %NULL)
1096  *
1097  * put_pwq() with locking.  This function also allows %NULL @pwq.
1098  */
1099 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1100 {
1101 	if (pwq) {
1102 		/*
1103 		 * As both pwqs and pools are sched-RCU protected, the
1104 		 * following lock operations are safe.
1105 		 */
1106 		spin_lock_irq(&pwq->pool->lock);
1107 		put_pwq(pwq);
1108 		spin_unlock_irq(&pwq->pool->lock);
1109 	}
1110 }
1111 
1112 static void pwq_activate_delayed_work(struct work_struct *work)
1113 {
1114 	struct pool_workqueue *pwq = get_work_pwq(work);
1115 
1116 	trace_workqueue_activate_work(work);
1117 	if (list_empty(&pwq->pool->worklist))
1118 		pwq->pool->watchdog_ts = jiffies;
1119 	move_linked_works(work, &pwq->pool->worklist, NULL);
1120 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1121 	pwq->nr_active++;
1122 }
1123 
1124 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1125 {
1126 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1127 						    struct work_struct, entry);
1128 
1129 	pwq_activate_delayed_work(work);
1130 }
1131 
1132 /**
1133  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134  * @pwq: pwq of interest
1135  * @color: color of work which left the queue
1136  *
1137  * A work either has completed or is removed from pending queue,
1138  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1139  *
1140  * CONTEXT:
1141  * spin_lock_irq(pool->lock).
1142  */
1143 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1144 {
1145 	/* uncolored work items don't participate in flushing or nr_active */
1146 	if (color == WORK_NO_COLOR)
1147 		goto out_put;
1148 
1149 	pwq->nr_in_flight[color]--;
1150 
1151 	pwq->nr_active--;
1152 	if (!list_empty(&pwq->delayed_works)) {
1153 		/* one down, submit a delayed one */
1154 		if (pwq->nr_active < pwq->max_active)
1155 			pwq_activate_first_delayed(pwq);
1156 	}
1157 
1158 	/* is flush in progress and are we at the flushing tip? */
1159 	if (likely(pwq->flush_color != color))
1160 		goto out_put;
1161 
1162 	/* are there still in-flight works? */
1163 	if (pwq->nr_in_flight[color])
1164 		goto out_put;
1165 
1166 	/* this pwq is done, clear flush_color */
1167 	pwq->flush_color = -1;
1168 
1169 	/*
1170 	 * If this was the last pwq, wake up the first flusher.  It
1171 	 * will handle the rest.
1172 	 */
1173 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174 		complete(&pwq->wq->first_flusher->done);
1175 out_put:
1176 	put_pwq(pwq);
1177 }
1178 
1179 /**
1180  * try_to_grab_pending - steal work item from worklist and disable irq
1181  * @work: work item to steal
1182  * @is_dwork: @work is a delayed_work
1183  * @flags: place to store irq state
1184  *
1185  * Try to grab PENDING bit of @work.  This function can handle @work in any
1186  * stable state - idle, on timer or on worklist.
1187  *
1188  * Return:
1189  *  1		if @work was pending and we successfully stole PENDING
1190  *  0		if @work was idle and we claimed PENDING
1191  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1192  *  -ENOENT	if someone else is canceling @work, this state may persist
1193  *		for arbitrarily long
1194  *
1195  * Note:
1196  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1197  * interrupted while holding PENDING and @work off queue, irq must be
1198  * disabled on entry.  This, combined with delayed_work->timer being
1199  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1200  *
1201  * On successful return, >= 0, irq is disabled and the caller is
1202  * responsible for releasing it using local_irq_restore(*@flags).
1203  *
1204  * This function is safe to call from any context including IRQ handler.
1205  */
1206 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207 			       unsigned long *flags)
1208 {
1209 	struct worker_pool *pool;
1210 	struct pool_workqueue *pwq;
1211 
1212 	local_irq_save(*flags);
1213 
1214 	/* try to steal the timer if it exists */
1215 	if (is_dwork) {
1216 		struct delayed_work *dwork = to_delayed_work(work);
1217 
1218 		/*
1219 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1220 		 * guaranteed that the timer is not queued anywhere and not
1221 		 * running on the local CPU.
1222 		 */
1223 		if (likely(del_timer(&dwork->timer)))
1224 			return 1;
1225 	}
1226 
1227 	/* try to claim PENDING the normal way */
1228 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229 		return 0;
1230 
1231 	/*
1232 	 * The queueing is in progress, or it is already queued. Try to
1233 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1234 	 */
1235 	pool = get_work_pool(work);
1236 	if (!pool)
1237 		goto fail;
1238 
1239 	spin_lock(&pool->lock);
1240 	/*
1241 	 * work->data is guaranteed to point to pwq only while the work
1242 	 * item is queued on pwq->wq, and both updating work->data to point
1243 	 * to pwq on queueing and to pool on dequeueing are done under
1244 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1245 	 * points to pwq which is associated with a locked pool, the work
1246 	 * item is currently queued on that pool.
1247 	 */
1248 	pwq = get_work_pwq(work);
1249 	if (pwq && pwq->pool == pool) {
1250 		debug_work_deactivate(work);
1251 
1252 		/*
1253 		 * A delayed work item cannot be grabbed directly because
1254 		 * it might have linked NO_COLOR work items which, if left
1255 		 * on the delayed_list, will confuse pwq->nr_active
1256 		 * management later on and cause stall.  Make sure the work
1257 		 * item is activated before grabbing.
1258 		 */
1259 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1260 			pwq_activate_delayed_work(work);
1261 
1262 		list_del_init(&work->entry);
1263 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1264 
1265 		/* work->data points to pwq iff queued, point to pool */
1266 		set_work_pool_and_keep_pending(work, pool->id);
1267 
1268 		spin_unlock(&pool->lock);
1269 		return 1;
1270 	}
1271 	spin_unlock(&pool->lock);
1272 fail:
1273 	local_irq_restore(*flags);
1274 	if (work_is_canceling(work))
1275 		return -ENOENT;
1276 	cpu_relax();
1277 	return -EAGAIN;
1278 }
1279 
1280 /**
1281  * insert_work - insert a work into a pool
1282  * @pwq: pwq @work belongs to
1283  * @work: work to insert
1284  * @head: insertion point
1285  * @extra_flags: extra WORK_STRUCT_* flags to set
1286  *
1287  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1288  * work_struct flags.
1289  *
1290  * CONTEXT:
1291  * spin_lock_irq(pool->lock).
1292  */
1293 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294 			struct list_head *head, unsigned int extra_flags)
1295 {
1296 	struct worker_pool *pool = pwq->pool;
1297 
1298 	/* we own @work, set data and link */
1299 	set_work_pwq(work, pwq, extra_flags);
1300 	list_add_tail(&work->entry, head);
1301 	get_pwq(pwq);
1302 
1303 	/*
1304 	 * Ensure either wq_worker_sleeping() sees the above
1305 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1306 	 * around lazily while there are works to be processed.
1307 	 */
1308 	smp_mb();
1309 
1310 	if (__need_more_worker(pool))
1311 		wake_up_worker(pool);
1312 }
1313 
1314 /*
1315  * Test whether @work is being queued from another work executing on the
1316  * same workqueue.
1317  */
1318 static bool is_chained_work(struct workqueue_struct *wq)
1319 {
1320 	struct worker *worker;
1321 
1322 	worker = current_wq_worker();
1323 	/*
1324 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1325 	 * I'm @worker, it's safe to dereference it without locking.
1326 	 */
1327 	return worker && worker->current_pwq->wq == wq;
1328 }
1329 
1330 /*
1331  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1333  * avoid perturbing sensitive tasks.
1334  */
1335 static int wq_select_unbound_cpu(int cpu)
1336 {
1337 	static bool printed_dbg_warning;
1338 	int new_cpu;
1339 
1340 	if (likely(!wq_debug_force_rr_cpu)) {
1341 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342 			return cpu;
1343 	} else if (!printed_dbg_warning) {
1344 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345 		printed_dbg_warning = true;
1346 	}
1347 
1348 	if (cpumask_empty(wq_unbound_cpumask))
1349 		return cpu;
1350 
1351 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1354 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355 		if (unlikely(new_cpu >= nr_cpu_ids))
1356 			return cpu;
1357 	}
1358 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1359 
1360 	return new_cpu;
1361 }
1362 
1363 static void __queue_work(int cpu, struct workqueue_struct *wq,
1364 			 struct work_struct *work)
1365 {
1366 	struct pool_workqueue *pwq;
1367 	struct worker_pool *last_pool;
1368 	struct list_head *worklist;
1369 	unsigned int work_flags;
1370 	unsigned int req_cpu = cpu;
1371 
1372 	/*
1373 	 * While a work item is PENDING && off queue, a task trying to
1374 	 * steal the PENDING will busy-loop waiting for it to either get
1375 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1376 	 * happen with IRQ disabled.
1377 	 */
1378 	lockdep_assert_irqs_disabled();
1379 
1380 	debug_work_activate(work);
1381 
1382 	/* if draining, only works from the same workqueue are allowed */
1383 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1384 	    WARN_ON_ONCE(!is_chained_work(wq)))
1385 		return;
1386 retry:
1387 	if (req_cpu == WORK_CPU_UNBOUND)
1388 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1389 
1390 	/* pwq which will be used unless @work is executing elsewhere */
1391 	if (!(wq->flags & WQ_UNBOUND))
1392 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1393 	else
1394 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1395 
1396 	/*
1397 	 * If @work was previously on a different pool, it might still be
1398 	 * running there, in which case the work needs to be queued on that
1399 	 * pool to guarantee non-reentrancy.
1400 	 */
1401 	last_pool = get_work_pool(work);
1402 	if (last_pool && last_pool != pwq->pool) {
1403 		struct worker *worker;
1404 
1405 		spin_lock(&last_pool->lock);
1406 
1407 		worker = find_worker_executing_work(last_pool, work);
1408 
1409 		if (worker && worker->current_pwq->wq == wq) {
1410 			pwq = worker->current_pwq;
1411 		} else {
1412 			/* meh... not running there, queue here */
1413 			spin_unlock(&last_pool->lock);
1414 			spin_lock(&pwq->pool->lock);
1415 		}
1416 	} else {
1417 		spin_lock(&pwq->pool->lock);
1418 	}
1419 
1420 	/*
1421 	 * pwq is determined and locked.  For unbound pools, we could have
1422 	 * raced with pwq release and it could already be dead.  If its
1423 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1424 	 * without another pwq replacing it in the numa_pwq_tbl or while
1425 	 * work items are executing on it, so the retrying is guaranteed to
1426 	 * make forward-progress.
1427 	 */
1428 	if (unlikely(!pwq->refcnt)) {
1429 		if (wq->flags & WQ_UNBOUND) {
1430 			spin_unlock(&pwq->pool->lock);
1431 			cpu_relax();
1432 			goto retry;
1433 		}
1434 		/* oops */
1435 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436 			  wq->name, cpu);
1437 	}
1438 
1439 	/* pwq determined, queue */
1440 	trace_workqueue_queue_work(req_cpu, pwq, work);
1441 
1442 	if (WARN_ON(!list_empty(&work->entry))) {
1443 		spin_unlock(&pwq->pool->lock);
1444 		return;
1445 	}
1446 
1447 	pwq->nr_in_flight[pwq->work_color]++;
1448 	work_flags = work_color_to_flags(pwq->work_color);
1449 
1450 	if (likely(pwq->nr_active < pwq->max_active)) {
1451 		trace_workqueue_activate_work(work);
1452 		pwq->nr_active++;
1453 		worklist = &pwq->pool->worklist;
1454 		if (list_empty(worklist))
1455 			pwq->pool->watchdog_ts = jiffies;
1456 	} else {
1457 		work_flags |= WORK_STRUCT_DELAYED;
1458 		worklist = &pwq->delayed_works;
1459 	}
1460 
1461 	insert_work(pwq, work, worklist, work_flags);
1462 
1463 	spin_unlock(&pwq->pool->lock);
1464 }
1465 
1466 /**
1467  * queue_work_on - queue work on specific cpu
1468  * @cpu: CPU number to execute work on
1469  * @wq: workqueue to use
1470  * @work: work to queue
1471  *
1472  * We queue the work to a specific CPU, the caller must ensure it
1473  * can't go away.
1474  *
1475  * Return: %false if @work was already on a queue, %true otherwise.
1476  */
1477 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478 		   struct work_struct *work)
1479 {
1480 	bool ret = false;
1481 	unsigned long flags;
1482 
1483 	local_irq_save(flags);
1484 
1485 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1486 		__queue_work(cpu, wq, work);
1487 		ret = true;
1488 	}
1489 
1490 	local_irq_restore(flags);
1491 	return ret;
1492 }
1493 EXPORT_SYMBOL(queue_work_on);
1494 
1495 void delayed_work_timer_fn(struct timer_list *t)
1496 {
1497 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1498 
1499 	/* should have been called from irqsafe timer with irq already off */
1500 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1501 }
1502 EXPORT_SYMBOL(delayed_work_timer_fn);
1503 
1504 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505 				struct delayed_work *dwork, unsigned long delay)
1506 {
1507 	struct timer_list *timer = &dwork->timer;
1508 	struct work_struct *work = &dwork->work;
1509 
1510 	WARN_ON_ONCE(!wq);
1511 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1512 	WARN_ON_ONCE(timer_pending(timer));
1513 	WARN_ON_ONCE(!list_empty(&work->entry));
1514 
1515 	/*
1516 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1517 	 * both optimization and correctness.  The earliest @timer can
1518 	 * expire is on the closest next tick and delayed_work users depend
1519 	 * on that there's no such delay when @delay is 0.
1520 	 */
1521 	if (!delay) {
1522 		__queue_work(cpu, wq, &dwork->work);
1523 		return;
1524 	}
1525 
1526 	dwork->wq = wq;
1527 	dwork->cpu = cpu;
1528 	timer->expires = jiffies + delay;
1529 
1530 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1531 		add_timer_on(timer, cpu);
1532 	else
1533 		add_timer(timer);
1534 }
1535 
1536 /**
1537  * queue_delayed_work_on - queue work on specific CPU after delay
1538  * @cpu: CPU number to execute work on
1539  * @wq: workqueue to use
1540  * @dwork: work to queue
1541  * @delay: number of jiffies to wait before queueing
1542  *
1543  * Return: %false if @work was already on a queue, %true otherwise.  If
1544  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1545  * execution.
1546  */
1547 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1548 			   struct delayed_work *dwork, unsigned long delay)
1549 {
1550 	struct work_struct *work = &dwork->work;
1551 	bool ret = false;
1552 	unsigned long flags;
1553 
1554 	/* read the comment in __queue_work() */
1555 	local_irq_save(flags);
1556 
1557 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1558 		__queue_delayed_work(cpu, wq, dwork, delay);
1559 		ret = true;
1560 	}
1561 
1562 	local_irq_restore(flags);
1563 	return ret;
1564 }
1565 EXPORT_SYMBOL(queue_delayed_work_on);
1566 
1567 /**
1568  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1569  * @cpu: CPU number to execute work on
1570  * @wq: workqueue to use
1571  * @dwork: work to queue
1572  * @delay: number of jiffies to wait before queueing
1573  *
1574  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1575  * modify @dwork's timer so that it expires after @delay.  If @delay is
1576  * zero, @work is guaranteed to be scheduled immediately regardless of its
1577  * current state.
1578  *
1579  * Return: %false if @dwork was idle and queued, %true if @dwork was
1580  * pending and its timer was modified.
1581  *
1582  * This function is safe to call from any context including IRQ handler.
1583  * See try_to_grab_pending() for details.
1584  */
1585 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1586 			 struct delayed_work *dwork, unsigned long delay)
1587 {
1588 	unsigned long flags;
1589 	int ret;
1590 
1591 	do {
1592 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1593 	} while (unlikely(ret == -EAGAIN));
1594 
1595 	if (likely(ret >= 0)) {
1596 		__queue_delayed_work(cpu, wq, dwork, delay);
1597 		local_irq_restore(flags);
1598 	}
1599 
1600 	/* -ENOENT from try_to_grab_pending() becomes %true */
1601 	return ret;
1602 }
1603 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1604 
1605 static void rcu_work_rcufn(struct rcu_head *rcu)
1606 {
1607 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1608 
1609 	/* read the comment in __queue_work() */
1610 	local_irq_disable();
1611 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1612 	local_irq_enable();
1613 }
1614 
1615 /**
1616  * queue_rcu_work - queue work after a RCU grace period
1617  * @wq: workqueue to use
1618  * @rwork: work to queue
1619  *
1620  * Return: %false if @rwork was already pending, %true otherwise.  Note
1621  * that a full RCU grace period is guaranteed only after a %true return.
1622  * While @rwork is guarnateed to be executed after a %false return, the
1623  * execution may happen before a full RCU grace period has passed.
1624  */
1625 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1626 {
1627 	struct work_struct *work = &rwork->work;
1628 
1629 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1630 		rwork->wq = wq;
1631 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1632 		return true;
1633 	}
1634 
1635 	return false;
1636 }
1637 EXPORT_SYMBOL(queue_rcu_work);
1638 
1639 /**
1640  * worker_enter_idle - enter idle state
1641  * @worker: worker which is entering idle state
1642  *
1643  * @worker is entering idle state.  Update stats and idle timer if
1644  * necessary.
1645  *
1646  * LOCKING:
1647  * spin_lock_irq(pool->lock).
1648  */
1649 static void worker_enter_idle(struct worker *worker)
1650 {
1651 	struct worker_pool *pool = worker->pool;
1652 
1653 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1654 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1655 			 (worker->hentry.next || worker->hentry.pprev)))
1656 		return;
1657 
1658 	/* can't use worker_set_flags(), also called from create_worker() */
1659 	worker->flags |= WORKER_IDLE;
1660 	pool->nr_idle++;
1661 	worker->last_active = jiffies;
1662 
1663 	/* idle_list is LIFO */
1664 	list_add(&worker->entry, &pool->idle_list);
1665 
1666 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1667 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1668 
1669 	/*
1670 	 * Sanity check nr_running.  Because unbind_workers() releases
1671 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1672 	 * nr_running, the warning may trigger spuriously.  Check iff
1673 	 * unbind is not in progress.
1674 	 */
1675 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1676 		     pool->nr_workers == pool->nr_idle &&
1677 		     atomic_read(&pool->nr_running));
1678 }
1679 
1680 /**
1681  * worker_leave_idle - leave idle state
1682  * @worker: worker which is leaving idle state
1683  *
1684  * @worker is leaving idle state.  Update stats.
1685  *
1686  * LOCKING:
1687  * spin_lock_irq(pool->lock).
1688  */
1689 static void worker_leave_idle(struct worker *worker)
1690 {
1691 	struct worker_pool *pool = worker->pool;
1692 
1693 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1694 		return;
1695 	worker_clr_flags(worker, WORKER_IDLE);
1696 	pool->nr_idle--;
1697 	list_del_init(&worker->entry);
1698 }
1699 
1700 static struct worker *alloc_worker(int node)
1701 {
1702 	struct worker *worker;
1703 
1704 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1705 	if (worker) {
1706 		INIT_LIST_HEAD(&worker->entry);
1707 		INIT_LIST_HEAD(&worker->scheduled);
1708 		INIT_LIST_HEAD(&worker->node);
1709 		/* on creation a worker is in !idle && prep state */
1710 		worker->flags = WORKER_PREP;
1711 	}
1712 	return worker;
1713 }
1714 
1715 /**
1716  * worker_attach_to_pool() - attach a worker to a pool
1717  * @worker: worker to be attached
1718  * @pool: the target pool
1719  *
1720  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1721  * cpu-binding of @worker are kept coordinated with the pool across
1722  * cpu-[un]hotplugs.
1723  */
1724 static void worker_attach_to_pool(struct worker *worker,
1725 				   struct worker_pool *pool)
1726 {
1727 	mutex_lock(&wq_pool_attach_mutex);
1728 
1729 	/*
1730 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1731 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1732 	 */
1733 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1734 
1735 	/*
1736 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1737 	 * stable across this function.  See the comments above the flag
1738 	 * definition for details.
1739 	 */
1740 	if (pool->flags & POOL_DISASSOCIATED)
1741 		worker->flags |= WORKER_UNBOUND;
1742 
1743 	list_add_tail(&worker->node, &pool->workers);
1744 	worker->pool = pool;
1745 
1746 	mutex_unlock(&wq_pool_attach_mutex);
1747 }
1748 
1749 /**
1750  * worker_detach_from_pool() - detach a worker from its pool
1751  * @worker: worker which is attached to its pool
1752  *
1753  * Undo the attaching which had been done in worker_attach_to_pool().  The
1754  * caller worker shouldn't access to the pool after detached except it has
1755  * other reference to the pool.
1756  */
1757 static void worker_detach_from_pool(struct worker *worker)
1758 {
1759 	struct worker_pool *pool = worker->pool;
1760 	struct completion *detach_completion = NULL;
1761 
1762 	mutex_lock(&wq_pool_attach_mutex);
1763 
1764 	list_del(&worker->node);
1765 	worker->pool = NULL;
1766 
1767 	if (list_empty(&pool->workers))
1768 		detach_completion = pool->detach_completion;
1769 	mutex_unlock(&wq_pool_attach_mutex);
1770 
1771 	/* clear leftover flags without pool->lock after it is detached */
1772 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1773 
1774 	if (detach_completion)
1775 		complete(detach_completion);
1776 }
1777 
1778 /**
1779  * create_worker - create a new workqueue worker
1780  * @pool: pool the new worker will belong to
1781  *
1782  * Create and start a new worker which is attached to @pool.
1783  *
1784  * CONTEXT:
1785  * Might sleep.  Does GFP_KERNEL allocations.
1786  *
1787  * Return:
1788  * Pointer to the newly created worker.
1789  */
1790 static struct worker *create_worker(struct worker_pool *pool)
1791 {
1792 	struct worker *worker = NULL;
1793 	int id = -1;
1794 	char id_buf[16];
1795 
1796 	/* ID is needed to determine kthread name */
1797 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1798 	if (id < 0)
1799 		goto fail;
1800 
1801 	worker = alloc_worker(pool->node);
1802 	if (!worker)
1803 		goto fail;
1804 
1805 	worker->id = id;
1806 
1807 	if (pool->cpu >= 0)
1808 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1809 			 pool->attrs->nice < 0  ? "H" : "");
1810 	else
1811 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1812 
1813 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1814 					      "kworker/%s", id_buf);
1815 	if (IS_ERR(worker->task))
1816 		goto fail;
1817 
1818 	set_user_nice(worker->task, pool->attrs->nice);
1819 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1820 
1821 	/* successful, attach the worker to the pool */
1822 	worker_attach_to_pool(worker, pool);
1823 
1824 	/* start the newly created worker */
1825 	spin_lock_irq(&pool->lock);
1826 	worker->pool->nr_workers++;
1827 	worker_enter_idle(worker);
1828 	wake_up_process(worker->task);
1829 	spin_unlock_irq(&pool->lock);
1830 
1831 	return worker;
1832 
1833 fail:
1834 	if (id >= 0)
1835 		ida_simple_remove(&pool->worker_ida, id);
1836 	kfree(worker);
1837 	return NULL;
1838 }
1839 
1840 /**
1841  * destroy_worker - destroy a workqueue worker
1842  * @worker: worker to be destroyed
1843  *
1844  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1845  * be idle.
1846  *
1847  * CONTEXT:
1848  * spin_lock_irq(pool->lock).
1849  */
1850 static void destroy_worker(struct worker *worker)
1851 {
1852 	struct worker_pool *pool = worker->pool;
1853 
1854 	lockdep_assert_held(&pool->lock);
1855 
1856 	/* sanity check frenzy */
1857 	if (WARN_ON(worker->current_work) ||
1858 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1859 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1860 		return;
1861 
1862 	pool->nr_workers--;
1863 	pool->nr_idle--;
1864 
1865 	list_del_init(&worker->entry);
1866 	worker->flags |= WORKER_DIE;
1867 	wake_up_process(worker->task);
1868 }
1869 
1870 static void idle_worker_timeout(struct timer_list *t)
1871 {
1872 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1873 
1874 	spin_lock_irq(&pool->lock);
1875 
1876 	while (too_many_workers(pool)) {
1877 		struct worker *worker;
1878 		unsigned long expires;
1879 
1880 		/* idle_list is kept in LIFO order, check the last one */
1881 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1882 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1883 
1884 		if (time_before(jiffies, expires)) {
1885 			mod_timer(&pool->idle_timer, expires);
1886 			break;
1887 		}
1888 
1889 		destroy_worker(worker);
1890 	}
1891 
1892 	spin_unlock_irq(&pool->lock);
1893 }
1894 
1895 static void send_mayday(struct work_struct *work)
1896 {
1897 	struct pool_workqueue *pwq = get_work_pwq(work);
1898 	struct workqueue_struct *wq = pwq->wq;
1899 
1900 	lockdep_assert_held(&wq_mayday_lock);
1901 
1902 	if (!wq->rescuer)
1903 		return;
1904 
1905 	/* mayday mayday mayday */
1906 	if (list_empty(&pwq->mayday_node)) {
1907 		/*
1908 		 * If @pwq is for an unbound wq, its base ref may be put at
1909 		 * any time due to an attribute change.  Pin @pwq until the
1910 		 * rescuer is done with it.
1911 		 */
1912 		get_pwq(pwq);
1913 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1914 		wake_up_process(wq->rescuer->task);
1915 	}
1916 }
1917 
1918 static void pool_mayday_timeout(struct timer_list *t)
1919 {
1920 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1921 	struct work_struct *work;
1922 
1923 	spin_lock_irq(&pool->lock);
1924 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1925 
1926 	if (need_to_create_worker(pool)) {
1927 		/*
1928 		 * We've been trying to create a new worker but
1929 		 * haven't been successful.  We might be hitting an
1930 		 * allocation deadlock.  Send distress signals to
1931 		 * rescuers.
1932 		 */
1933 		list_for_each_entry(work, &pool->worklist, entry)
1934 			send_mayday(work);
1935 	}
1936 
1937 	spin_unlock(&wq_mayday_lock);
1938 	spin_unlock_irq(&pool->lock);
1939 
1940 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1941 }
1942 
1943 /**
1944  * maybe_create_worker - create a new worker if necessary
1945  * @pool: pool to create a new worker for
1946  *
1947  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1948  * have at least one idle worker on return from this function.  If
1949  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1950  * sent to all rescuers with works scheduled on @pool to resolve
1951  * possible allocation deadlock.
1952  *
1953  * On return, need_to_create_worker() is guaranteed to be %false and
1954  * may_start_working() %true.
1955  *
1956  * LOCKING:
1957  * spin_lock_irq(pool->lock) which may be released and regrabbed
1958  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1959  * manager.
1960  */
1961 static void maybe_create_worker(struct worker_pool *pool)
1962 __releases(&pool->lock)
1963 __acquires(&pool->lock)
1964 {
1965 restart:
1966 	spin_unlock_irq(&pool->lock);
1967 
1968 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1969 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1970 
1971 	while (true) {
1972 		if (create_worker(pool) || !need_to_create_worker(pool))
1973 			break;
1974 
1975 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1976 
1977 		if (!need_to_create_worker(pool))
1978 			break;
1979 	}
1980 
1981 	del_timer_sync(&pool->mayday_timer);
1982 	spin_lock_irq(&pool->lock);
1983 	/*
1984 	 * This is necessary even after a new worker was just successfully
1985 	 * created as @pool->lock was dropped and the new worker might have
1986 	 * already become busy.
1987 	 */
1988 	if (need_to_create_worker(pool))
1989 		goto restart;
1990 }
1991 
1992 /**
1993  * manage_workers - manage worker pool
1994  * @worker: self
1995  *
1996  * Assume the manager role and manage the worker pool @worker belongs
1997  * to.  At any given time, there can be only zero or one manager per
1998  * pool.  The exclusion is handled automatically by this function.
1999  *
2000  * The caller can safely start processing works on false return.  On
2001  * true return, it's guaranteed that need_to_create_worker() is false
2002  * and may_start_working() is true.
2003  *
2004  * CONTEXT:
2005  * spin_lock_irq(pool->lock) which may be released and regrabbed
2006  * multiple times.  Does GFP_KERNEL allocations.
2007  *
2008  * Return:
2009  * %false if the pool doesn't need management and the caller can safely
2010  * start processing works, %true if management function was performed and
2011  * the conditions that the caller verified before calling the function may
2012  * no longer be true.
2013  */
2014 static bool manage_workers(struct worker *worker)
2015 {
2016 	struct worker_pool *pool = worker->pool;
2017 
2018 	if (pool->flags & POOL_MANAGER_ACTIVE)
2019 		return false;
2020 
2021 	pool->flags |= POOL_MANAGER_ACTIVE;
2022 	pool->manager = worker;
2023 
2024 	maybe_create_worker(pool);
2025 
2026 	pool->manager = NULL;
2027 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2028 	wake_up(&wq_manager_wait);
2029 	return true;
2030 }
2031 
2032 /**
2033  * process_one_work - process single work
2034  * @worker: self
2035  * @work: work to process
2036  *
2037  * Process @work.  This function contains all the logics necessary to
2038  * process a single work including synchronization against and
2039  * interaction with other workers on the same cpu, queueing and
2040  * flushing.  As long as context requirement is met, any worker can
2041  * call this function to process a work.
2042  *
2043  * CONTEXT:
2044  * spin_lock_irq(pool->lock) which is released and regrabbed.
2045  */
2046 static void process_one_work(struct worker *worker, struct work_struct *work)
2047 __releases(&pool->lock)
2048 __acquires(&pool->lock)
2049 {
2050 	struct pool_workqueue *pwq = get_work_pwq(work);
2051 	struct worker_pool *pool = worker->pool;
2052 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2053 	int work_color;
2054 	struct worker *collision;
2055 #ifdef CONFIG_LOCKDEP
2056 	/*
2057 	 * It is permissible to free the struct work_struct from
2058 	 * inside the function that is called from it, this we need to
2059 	 * take into account for lockdep too.  To avoid bogus "held
2060 	 * lock freed" warnings as well as problems when looking into
2061 	 * work->lockdep_map, make a copy and use that here.
2062 	 */
2063 	struct lockdep_map lockdep_map;
2064 
2065 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2066 #endif
2067 	/* ensure we're on the correct CPU */
2068 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2069 		     raw_smp_processor_id() != pool->cpu);
2070 
2071 	/*
2072 	 * A single work shouldn't be executed concurrently by
2073 	 * multiple workers on a single cpu.  Check whether anyone is
2074 	 * already processing the work.  If so, defer the work to the
2075 	 * currently executing one.
2076 	 */
2077 	collision = find_worker_executing_work(pool, work);
2078 	if (unlikely(collision)) {
2079 		move_linked_works(work, &collision->scheduled, NULL);
2080 		return;
2081 	}
2082 
2083 	/* claim and dequeue */
2084 	debug_work_deactivate(work);
2085 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2086 	worker->current_work = work;
2087 	worker->current_func = work->func;
2088 	worker->current_pwq = pwq;
2089 	work_color = get_work_color(work);
2090 
2091 	/*
2092 	 * Record wq name for cmdline and debug reporting, may get
2093 	 * overridden through set_worker_desc().
2094 	 */
2095 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2096 
2097 	list_del_init(&work->entry);
2098 
2099 	/*
2100 	 * CPU intensive works don't participate in concurrency management.
2101 	 * They're the scheduler's responsibility.  This takes @worker out
2102 	 * of concurrency management and the next code block will chain
2103 	 * execution of the pending work items.
2104 	 */
2105 	if (unlikely(cpu_intensive))
2106 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2107 
2108 	/*
2109 	 * Wake up another worker if necessary.  The condition is always
2110 	 * false for normal per-cpu workers since nr_running would always
2111 	 * be >= 1 at this point.  This is used to chain execution of the
2112 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2113 	 * UNBOUND and CPU_INTENSIVE ones.
2114 	 */
2115 	if (need_more_worker(pool))
2116 		wake_up_worker(pool);
2117 
2118 	/*
2119 	 * Record the last pool and clear PENDING which should be the last
2120 	 * update to @work.  Also, do this inside @pool->lock so that
2121 	 * PENDING and queued state changes happen together while IRQ is
2122 	 * disabled.
2123 	 */
2124 	set_work_pool_and_clear_pending(work, pool->id);
2125 
2126 	spin_unlock_irq(&pool->lock);
2127 
2128 	lock_map_acquire(&pwq->wq->lockdep_map);
2129 	lock_map_acquire(&lockdep_map);
2130 	/*
2131 	 * Strictly speaking we should mark the invariant state without holding
2132 	 * any locks, that is, before these two lock_map_acquire()'s.
2133 	 *
2134 	 * However, that would result in:
2135 	 *
2136 	 *   A(W1)
2137 	 *   WFC(C)
2138 	 *		A(W1)
2139 	 *		C(C)
2140 	 *
2141 	 * Which would create W1->C->W1 dependencies, even though there is no
2142 	 * actual deadlock possible. There are two solutions, using a
2143 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2144 	 * hit the lockdep limitation on recursive locks, or simply discard
2145 	 * these locks.
2146 	 *
2147 	 * AFAICT there is no possible deadlock scenario between the
2148 	 * flush_work() and complete() primitives (except for single-threaded
2149 	 * workqueues), so hiding them isn't a problem.
2150 	 */
2151 	lockdep_invariant_state(true);
2152 	trace_workqueue_execute_start(work);
2153 	worker->current_func(work);
2154 	/*
2155 	 * While we must be careful to not use "work" after this, the trace
2156 	 * point will only record its address.
2157 	 */
2158 	trace_workqueue_execute_end(work);
2159 	lock_map_release(&lockdep_map);
2160 	lock_map_release(&pwq->wq->lockdep_map);
2161 
2162 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2163 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2164 		       "     last function: %pf\n",
2165 		       current->comm, preempt_count(), task_pid_nr(current),
2166 		       worker->current_func);
2167 		debug_show_held_locks(current);
2168 		dump_stack();
2169 	}
2170 
2171 	/*
2172 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2173 	 * kernels, where a requeueing work item waiting for something to
2174 	 * happen could deadlock with stop_machine as such work item could
2175 	 * indefinitely requeue itself while all other CPUs are trapped in
2176 	 * stop_machine. At the same time, report a quiescent RCU state so
2177 	 * the same condition doesn't freeze RCU.
2178 	 */
2179 	cond_resched();
2180 
2181 	spin_lock_irq(&pool->lock);
2182 
2183 	/* clear cpu intensive status */
2184 	if (unlikely(cpu_intensive))
2185 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2186 
2187 	/* we're done with it, release */
2188 	hash_del(&worker->hentry);
2189 	worker->current_work = NULL;
2190 	worker->current_func = NULL;
2191 	worker->current_pwq = NULL;
2192 	pwq_dec_nr_in_flight(pwq, work_color);
2193 }
2194 
2195 /**
2196  * process_scheduled_works - process scheduled works
2197  * @worker: self
2198  *
2199  * Process all scheduled works.  Please note that the scheduled list
2200  * may change while processing a work, so this function repeatedly
2201  * fetches a work from the top and executes it.
2202  *
2203  * CONTEXT:
2204  * spin_lock_irq(pool->lock) which may be released and regrabbed
2205  * multiple times.
2206  */
2207 static void process_scheduled_works(struct worker *worker)
2208 {
2209 	while (!list_empty(&worker->scheduled)) {
2210 		struct work_struct *work = list_first_entry(&worker->scheduled,
2211 						struct work_struct, entry);
2212 		process_one_work(worker, work);
2213 	}
2214 }
2215 
2216 static void set_pf_worker(bool val)
2217 {
2218 	mutex_lock(&wq_pool_attach_mutex);
2219 	if (val)
2220 		current->flags |= PF_WQ_WORKER;
2221 	else
2222 		current->flags &= ~PF_WQ_WORKER;
2223 	mutex_unlock(&wq_pool_attach_mutex);
2224 }
2225 
2226 /**
2227  * worker_thread - the worker thread function
2228  * @__worker: self
2229  *
2230  * The worker thread function.  All workers belong to a worker_pool -
2231  * either a per-cpu one or dynamic unbound one.  These workers process all
2232  * work items regardless of their specific target workqueue.  The only
2233  * exception is work items which belong to workqueues with a rescuer which
2234  * will be explained in rescuer_thread().
2235  *
2236  * Return: 0
2237  */
2238 static int worker_thread(void *__worker)
2239 {
2240 	struct worker *worker = __worker;
2241 	struct worker_pool *pool = worker->pool;
2242 
2243 	/* tell the scheduler that this is a workqueue worker */
2244 	set_pf_worker(true);
2245 woke_up:
2246 	spin_lock_irq(&pool->lock);
2247 
2248 	/* am I supposed to die? */
2249 	if (unlikely(worker->flags & WORKER_DIE)) {
2250 		spin_unlock_irq(&pool->lock);
2251 		WARN_ON_ONCE(!list_empty(&worker->entry));
2252 		set_pf_worker(false);
2253 
2254 		set_task_comm(worker->task, "kworker/dying");
2255 		ida_simple_remove(&pool->worker_ida, worker->id);
2256 		worker_detach_from_pool(worker);
2257 		kfree(worker);
2258 		return 0;
2259 	}
2260 
2261 	worker_leave_idle(worker);
2262 recheck:
2263 	/* no more worker necessary? */
2264 	if (!need_more_worker(pool))
2265 		goto sleep;
2266 
2267 	/* do we need to manage? */
2268 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2269 		goto recheck;
2270 
2271 	/*
2272 	 * ->scheduled list can only be filled while a worker is
2273 	 * preparing to process a work or actually processing it.
2274 	 * Make sure nobody diddled with it while I was sleeping.
2275 	 */
2276 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2277 
2278 	/*
2279 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2280 	 * worker or that someone else has already assumed the manager
2281 	 * role.  This is where @worker starts participating in concurrency
2282 	 * management if applicable and concurrency management is restored
2283 	 * after being rebound.  See rebind_workers() for details.
2284 	 */
2285 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2286 
2287 	do {
2288 		struct work_struct *work =
2289 			list_first_entry(&pool->worklist,
2290 					 struct work_struct, entry);
2291 
2292 		pool->watchdog_ts = jiffies;
2293 
2294 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2295 			/* optimization path, not strictly necessary */
2296 			process_one_work(worker, work);
2297 			if (unlikely(!list_empty(&worker->scheduled)))
2298 				process_scheduled_works(worker);
2299 		} else {
2300 			move_linked_works(work, &worker->scheduled, NULL);
2301 			process_scheduled_works(worker);
2302 		}
2303 	} while (keep_working(pool));
2304 
2305 	worker_set_flags(worker, WORKER_PREP);
2306 sleep:
2307 	/*
2308 	 * pool->lock is held and there's no work to process and no need to
2309 	 * manage, sleep.  Workers are woken up only while holding
2310 	 * pool->lock or from local cpu, so setting the current state
2311 	 * before releasing pool->lock is enough to prevent losing any
2312 	 * event.
2313 	 */
2314 	worker_enter_idle(worker);
2315 	__set_current_state(TASK_IDLE);
2316 	spin_unlock_irq(&pool->lock);
2317 	schedule();
2318 	goto woke_up;
2319 }
2320 
2321 /**
2322  * rescuer_thread - the rescuer thread function
2323  * @__rescuer: self
2324  *
2325  * Workqueue rescuer thread function.  There's one rescuer for each
2326  * workqueue which has WQ_MEM_RECLAIM set.
2327  *
2328  * Regular work processing on a pool may block trying to create a new
2329  * worker which uses GFP_KERNEL allocation which has slight chance of
2330  * developing into deadlock if some works currently on the same queue
2331  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2332  * the problem rescuer solves.
2333  *
2334  * When such condition is possible, the pool summons rescuers of all
2335  * workqueues which have works queued on the pool and let them process
2336  * those works so that forward progress can be guaranteed.
2337  *
2338  * This should happen rarely.
2339  *
2340  * Return: 0
2341  */
2342 static int rescuer_thread(void *__rescuer)
2343 {
2344 	struct worker *rescuer = __rescuer;
2345 	struct workqueue_struct *wq = rescuer->rescue_wq;
2346 	struct list_head *scheduled = &rescuer->scheduled;
2347 	bool should_stop;
2348 
2349 	set_user_nice(current, RESCUER_NICE_LEVEL);
2350 
2351 	/*
2352 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2353 	 * doesn't participate in concurrency management.
2354 	 */
2355 	set_pf_worker(true);
2356 repeat:
2357 	set_current_state(TASK_IDLE);
2358 
2359 	/*
2360 	 * By the time the rescuer is requested to stop, the workqueue
2361 	 * shouldn't have any work pending, but @wq->maydays may still have
2362 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2363 	 * all the work items before the rescuer got to them.  Go through
2364 	 * @wq->maydays processing before acting on should_stop so that the
2365 	 * list is always empty on exit.
2366 	 */
2367 	should_stop = kthread_should_stop();
2368 
2369 	/* see whether any pwq is asking for help */
2370 	spin_lock_irq(&wq_mayday_lock);
2371 
2372 	while (!list_empty(&wq->maydays)) {
2373 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2374 					struct pool_workqueue, mayday_node);
2375 		struct worker_pool *pool = pwq->pool;
2376 		struct work_struct *work, *n;
2377 		bool first = true;
2378 
2379 		__set_current_state(TASK_RUNNING);
2380 		list_del_init(&pwq->mayday_node);
2381 
2382 		spin_unlock_irq(&wq_mayday_lock);
2383 
2384 		worker_attach_to_pool(rescuer, pool);
2385 
2386 		spin_lock_irq(&pool->lock);
2387 
2388 		/*
2389 		 * Slurp in all works issued via this workqueue and
2390 		 * process'em.
2391 		 */
2392 		WARN_ON_ONCE(!list_empty(scheduled));
2393 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2394 			if (get_work_pwq(work) == pwq) {
2395 				if (first)
2396 					pool->watchdog_ts = jiffies;
2397 				move_linked_works(work, scheduled, &n);
2398 			}
2399 			first = false;
2400 		}
2401 
2402 		if (!list_empty(scheduled)) {
2403 			process_scheduled_works(rescuer);
2404 
2405 			/*
2406 			 * The above execution of rescued work items could
2407 			 * have created more to rescue through
2408 			 * pwq_activate_first_delayed() or chained
2409 			 * queueing.  Let's put @pwq back on mayday list so
2410 			 * that such back-to-back work items, which may be
2411 			 * being used to relieve memory pressure, don't
2412 			 * incur MAYDAY_INTERVAL delay inbetween.
2413 			 */
2414 			if (need_to_create_worker(pool)) {
2415 				spin_lock(&wq_mayday_lock);
2416 				get_pwq(pwq);
2417 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2418 				spin_unlock(&wq_mayday_lock);
2419 			}
2420 		}
2421 
2422 		/*
2423 		 * Put the reference grabbed by send_mayday().  @pool won't
2424 		 * go away while we're still attached to it.
2425 		 */
2426 		put_pwq(pwq);
2427 
2428 		/*
2429 		 * Leave this pool.  If need_more_worker() is %true, notify a
2430 		 * regular worker; otherwise, we end up with 0 concurrency
2431 		 * and stalling the execution.
2432 		 */
2433 		if (need_more_worker(pool))
2434 			wake_up_worker(pool);
2435 
2436 		spin_unlock_irq(&pool->lock);
2437 
2438 		worker_detach_from_pool(rescuer);
2439 
2440 		spin_lock_irq(&wq_mayday_lock);
2441 	}
2442 
2443 	spin_unlock_irq(&wq_mayday_lock);
2444 
2445 	if (should_stop) {
2446 		__set_current_state(TASK_RUNNING);
2447 		set_pf_worker(false);
2448 		return 0;
2449 	}
2450 
2451 	/* rescuers should never participate in concurrency management */
2452 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2453 	schedule();
2454 	goto repeat;
2455 }
2456 
2457 /**
2458  * check_flush_dependency - check for flush dependency sanity
2459  * @target_wq: workqueue being flushed
2460  * @target_work: work item being flushed (NULL for workqueue flushes)
2461  *
2462  * %current is trying to flush the whole @target_wq or @target_work on it.
2463  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2464  * reclaiming memory or running on a workqueue which doesn't have
2465  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2466  * a deadlock.
2467  */
2468 static void check_flush_dependency(struct workqueue_struct *target_wq,
2469 				   struct work_struct *target_work)
2470 {
2471 	work_func_t target_func = target_work ? target_work->func : NULL;
2472 	struct worker *worker;
2473 
2474 	if (target_wq->flags & WQ_MEM_RECLAIM)
2475 		return;
2476 
2477 	worker = current_wq_worker();
2478 
2479 	WARN_ONCE(current->flags & PF_MEMALLOC,
2480 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2481 		  current->pid, current->comm, target_wq->name, target_func);
2482 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2483 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2484 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2485 		  worker->current_pwq->wq->name, worker->current_func,
2486 		  target_wq->name, target_func);
2487 }
2488 
2489 struct wq_barrier {
2490 	struct work_struct	work;
2491 	struct completion	done;
2492 	struct task_struct	*task;	/* purely informational */
2493 };
2494 
2495 static void wq_barrier_func(struct work_struct *work)
2496 {
2497 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2498 	complete(&barr->done);
2499 }
2500 
2501 /**
2502  * insert_wq_barrier - insert a barrier work
2503  * @pwq: pwq to insert barrier into
2504  * @barr: wq_barrier to insert
2505  * @target: target work to attach @barr to
2506  * @worker: worker currently executing @target, NULL if @target is not executing
2507  *
2508  * @barr is linked to @target such that @barr is completed only after
2509  * @target finishes execution.  Please note that the ordering
2510  * guarantee is observed only with respect to @target and on the local
2511  * cpu.
2512  *
2513  * Currently, a queued barrier can't be canceled.  This is because
2514  * try_to_grab_pending() can't determine whether the work to be
2515  * grabbed is at the head of the queue and thus can't clear LINKED
2516  * flag of the previous work while there must be a valid next work
2517  * after a work with LINKED flag set.
2518  *
2519  * Note that when @worker is non-NULL, @target may be modified
2520  * underneath us, so we can't reliably determine pwq from @target.
2521  *
2522  * CONTEXT:
2523  * spin_lock_irq(pool->lock).
2524  */
2525 static void insert_wq_barrier(struct pool_workqueue *pwq,
2526 			      struct wq_barrier *barr,
2527 			      struct work_struct *target, struct worker *worker)
2528 {
2529 	struct list_head *head;
2530 	unsigned int linked = 0;
2531 
2532 	/*
2533 	 * debugobject calls are safe here even with pool->lock locked
2534 	 * as we know for sure that this will not trigger any of the
2535 	 * checks and call back into the fixup functions where we
2536 	 * might deadlock.
2537 	 */
2538 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2539 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2540 
2541 	init_completion_map(&barr->done, &target->lockdep_map);
2542 
2543 	barr->task = current;
2544 
2545 	/*
2546 	 * If @target is currently being executed, schedule the
2547 	 * barrier to the worker; otherwise, put it after @target.
2548 	 */
2549 	if (worker)
2550 		head = worker->scheduled.next;
2551 	else {
2552 		unsigned long *bits = work_data_bits(target);
2553 
2554 		head = target->entry.next;
2555 		/* there can already be other linked works, inherit and set */
2556 		linked = *bits & WORK_STRUCT_LINKED;
2557 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2558 	}
2559 
2560 	debug_work_activate(&barr->work);
2561 	insert_work(pwq, &barr->work, head,
2562 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2563 }
2564 
2565 /**
2566  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2567  * @wq: workqueue being flushed
2568  * @flush_color: new flush color, < 0 for no-op
2569  * @work_color: new work color, < 0 for no-op
2570  *
2571  * Prepare pwqs for workqueue flushing.
2572  *
2573  * If @flush_color is non-negative, flush_color on all pwqs should be
2574  * -1.  If no pwq has in-flight commands at the specified color, all
2575  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2576  * has in flight commands, its pwq->flush_color is set to
2577  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2578  * wakeup logic is armed and %true is returned.
2579  *
2580  * The caller should have initialized @wq->first_flusher prior to
2581  * calling this function with non-negative @flush_color.  If
2582  * @flush_color is negative, no flush color update is done and %false
2583  * is returned.
2584  *
2585  * If @work_color is non-negative, all pwqs should have the same
2586  * work_color which is previous to @work_color and all will be
2587  * advanced to @work_color.
2588  *
2589  * CONTEXT:
2590  * mutex_lock(wq->mutex).
2591  *
2592  * Return:
2593  * %true if @flush_color >= 0 and there's something to flush.  %false
2594  * otherwise.
2595  */
2596 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2597 				      int flush_color, int work_color)
2598 {
2599 	bool wait = false;
2600 	struct pool_workqueue *pwq;
2601 
2602 	if (flush_color >= 0) {
2603 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2604 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2605 	}
2606 
2607 	for_each_pwq(pwq, wq) {
2608 		struct worker_pool *pool = pwq->pool;
2609 
2610 		spin_lock_irq(&pool->lock);
2611 
2612 		if (flush_color >= 0) {
2613 			WARN_ON_ONCE(pwq->flush_color != -1);
2614 
2615 			if (pwq->nr_in_flight[flush_color]) {
2616 				pwq->flush_color = flush_color;
2617 				atomic_inc(&wq->nr_pwqs_to_flush);
2618 				wait = true;
2619 			}
2620 		}
2621 
2622 		if (work_color >= 0) {
2623 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2624 			pwq->work_color = work_color;
2625 		}
2626 
2627 		spin_unlock_irq(&pool->lock);
2628 	}
2629 
2630 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2631 		complete(&wq->first_flusher->done);
2632 
2633 	return wait;
2634 }
2635 
2636 /**
2637  * flush_workqueue - ensure that any scheduled work has run to completion.
2638  * @wq: workqueue to flush
2639  *
2640  * This function sleeps until all work items which were queued on entry
2641  * have finished execution, but it is not livelocked by new incoming ones.
2642  */
2643 void flush_workqueue(struct workqueue_struct *wq)
2644 {
2645 	struct wq_flusher this_flusher = {
2646 		.list = LIST_HEAD_INIT(this_flusher.list),
2647 		.flush_color = -1,
2648 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2649 	};
2650 	int next_color;
2651 
2652 	if (WARN_ON(!wq_online))
2653 		return;
2654 
2655 	lock_map_acquire(&wq->lockdep_map);
2656 	lock_map_release(&wq->lockdep_map);
2657 
2658 	mutex_lock(&wq->mutex);
2659 
2660 	/*
2661 	 * Start-to-wait phase
2662 	 */
2663 	next_color = work_next_color(wq->work_color);
2664 
2665 	if (next_color != wq->flush_color) {
2666 		/*
2667 		 * Color space is not full.  The current work_color
2668 		 * becomes our flush_color and work_color is advanced
2669 		 * by one.
2670 		 */
2671 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2672 		this_flusher.flush_color = wq->work_color;
2673 		wq->work_color = next_color;
2674 
2675 		if (!wq->first_flusher) {
2676 			/* no flush in progress, become the first flusher */
2677 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2678 
2679 			wq->first_flusher = &this_flusher;
2680 
2681 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2682 						       wq->work_color)) {
2683 				/* nothing to flush, done */
2684 				wq->flush_color = next_color;
2685 				wq->first_flusher = NULL;
2686 				goto out_unlock;
2687 			}
2688 		} else {
2689 			/* wait in queue */
2690 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2691 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2692 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2693 		}
2694 	} else {
2695 		/*
2696 		 * Oops, color space is full, wait on overflow queue.
2697 		 * The next flush completion will assign us
2698 		 * flush_color and transfer to flusher_queue.
2699 		 */
2700 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2701 	}
2702 
2703 	check_flush_dependency(wq, NULL);
2704 
2705 	mutex_unlock(&wq->mutex);
2706 
2707 	wait_for_completion(&this_flusher.done);
2708 
2709 	/*
2710 	 * Wake-up-and-cascade phase
2711 	 *
2712 	 * First flushers are responsible for cascading flushes and
2713 	 * handling overflow.  Non-first flushers can simply return.
2714 	 */
2715 	if (wq->first_flusher != &this_flusher)
2716 		return;
2717 
2718 	mutex_lock(&wq->mutex);
2719 
2720 	/* we might have raced, check again with mutex held */
2721 	if (wq->first_flusher != &this_flusher)
2722 		goto out_unlock;
2723 
2724 	wq->first_flusher = NULL;
2725 
2726 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2727 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2728 
2729 	while (true) {
2730 		struct wq_flusher *next, *tmp;
2731 
2732 		/* complete all the flushers sharing the current flush color */
2733 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2734 			if (next->flush_color != wq->flush_color)
2735 				break;
2736 			list_del_init(&next->list);
2737 			complete(&next->done);
2738 		}
2739 
2740 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2741 			     wq->flush_color != work_next_color(wq->work_color));
2742 
2743 		/* this flush_color is finished, advance by one */
2744 		wq->flush_color = work_next_color(wq->flush_color);
2745 
2746 		/* one color has been freed, handle overflow queue */
2747 		if (!list_empty(&wq->flusher_overflow)) {
2748 			/*
2749 			 * Assign the same color to all overflowed
2750 			 * flushers, advance work_color and append to
2751 			 * flusher_queue.  This is the start-to-wait
2752 			 * phase for these overflowed flushers.
2753 			 */
2754 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2755 				tmp->flush_color = wq->work_color;
2756 
2757 			wq->work_color = work_next_color(wq->work_color);
2758 
2759 			list_splice_tail_init(&wq->flusher_overflow,
2760 					      &wq->flusher_queue);
2761 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2762 		}
2763 
2764 		if (list_empty(&wq->flusher_queue)) {
2765 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2766 			break;
2767 		}
2768 
2769 		/*
2770 		 * Need to flush more colors.  Make the next flusher
2771 		 * the new first flusher and arm pwqs.
2772 		 */
2773 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2774 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2775 
2776 		list_del_init(&next->list);
2777 		wq->first_flusher = next;
2778 
2779 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2780 			break;
2781 
2782 		/*
2783 		 * Meh... this color is already done, clear first
2784 		 * flusher and repeat cascading.
2785 		 */
2786 		wq->first_flusher = NULL;
2787 	}
2788 
2789 out_unlock:
2790 	mutex_unlock(&wq->mutex);
2791 }
2792 EXPORT_SYMBOL(flush_workqueue);
2793 
2794 /**
2795  * drain_workqueue - drain a workqueue
2796  * @wq: workqueue to drain
2797  *
2798  * Wait until the workqueue becomes empty.  While draining is in progress,
2799  * only chain queueing is allowed.  IOW, only currently pending or running
2800  * work items on @wq can queue further work items on it.  @wq is flushed
2801  * repeatedly until it becomes empty.  The number of flushing is determined
2802  * by the depth of chaining and should be relatively short.  Whine if it
2803  * takes too long.
2804  */
2805 void drain_workqueue(struct workqueue_struct *wq)
2806 {
2807 	unsigned int flush_cnt = 0;
2808 	struct pool_workqueue *pwq;
2809 
2810 	/*
2811 	 * __queue_work() needs to test whether there are drainers, is much
2812 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2813 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2814 	 */
2815 	mutex_lock(&wq->mutex);
2816 	if (!wq->nr_drainers++)
2817 		wq->flags |= __WQ_DRAINING;
2818 	mutex_unlock(&wq->mutex);
2819 reflush:
2820 	flush_workqueue(wq);
2821 
2822 	mutex_lock(&wq->mutex);
2823 
2824 	for_each_pwq(pwq, wq) {
2825 		bool drained;
2826 
2827 		spin_lock_irq(&pwq->pool->lock);
2828 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2829 		spin_unlock_irq(&pwq->pool->lock);
2830 
2831 		if (drained)
2832 			continue;
2833 
2834 		if (++flush_cnt == 10 ||
2835 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2836 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2837 				wq->name, flush_cnt);
2838 
2839 		mutex_unlock(&wq->mutex);
2840 		goto reflush;
2841 	}
2842 
2843 	if (!--wq->nr_drainers)
2844 		wq->flags &= ~__WQ_DRAINING;
2845 	mutex_unlock(&wq->mutex);
2846 }
2847 EXPORT_SYMBOL_GPL(drain_workqueue);
2848 
2849 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2850 			     bool from_cancel)
2851 {
2852 	struct worker *worker = NULL;
2853 	struct worker_pool *pool;
2854 	struct pool_workqueue *pwq;
2855 
2856 	might_sleep();
2857 
2858 	local_irq_disable();
2859 	pool = get_work_pool(work);
2860 	if (!pool) {
2861 		local_irq_enable();
2862 		return false;
2863 	}
2864 
2865 	spin_lock(&pool->lock);
2866 	/* see the comment in try_to_grab_pending() with the same code */
2867 	pwq = get_work_pwq(work);
2868 	if (pwq) {
2869 		if (unlikely(pwq->pool != pool))
2870 			goto already_gone;
2871 	} else {
2872 		worker = find_worker_executing_work(pool, work);
2873 		if (!worker)
2874 			goto already_gone;
2875 		pwq = worker->current_pwq;
2876 	}
2877 
2878 	check_flush_dependency(pwq->wq, work);
2879 
2880 	insert_wq_barrier(pwq, barr, work, worker);
2881 	spin_unlock_irq(&pool->lock);
2882 
2883 	/*
2884 	 * Force a lock recursion deadlock when using flush_work() inside a
2885 	 * single-threaded or rescuer equipped workqueue.
2886 	 *
2887 	 * For single threaded workqueues the deadlock happens when the work
2888 	 * is after the work issuing the flush_work(). For rescuer equipped
2889 	 * workqueues the deadlock happens when the rescuer stalls, blocking
2890 	 * forward progress.
2891 	 */
2892 	if (!from_cancel &&
2893 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
2894 		lock_map_acquire(&pwq->wq->lockdep_map);
2895 		lock_map_release(&pwq->wq->lockdep_map);
2896 	}
2897 
2898 	return true;
2899 already_gone:
2900 	spin_unlock_irq(&pool->lock);
2901 	return false;
2902 }
2903 
2904 static bool __flush_work(struct work_struct *work, bool from_cancel)
2905 {
2906 	struct wq_barrier barr;
2907 
2908 	if (WARN_ON(!wq_online))
2909 		return false;
2910 
2911 	if (!from_cancel) {
2912 		lock_map_acquire(&work->lockdep_map);
2913 		lock_map_release(&work->lockdep_map);
2914 	}
2915 
2916 	if (start_flush_work(work, &barr, from_cancel)) {
2917 		wait_for_completion(&barr.done);
2918 		destroy_work_on_stack(&barr.work);
2919 		return true;
2920 	} else {
2921 		return false;
2922 	}
2923 }
2924 
2925 /**
2926  * flush_work - wait for a work to finish executing the last queueing instance
2927  * @work: the work to flush
2928  *
2929  * Wait until @work has finished execution.  @work is guaranteed to be idle
2930  * on return if it hasn't been requeued since flush started.
2931  *
2932  * Return:
2933  * %true if flush_work() waited for the work to finish execution,
2934  * %false if it was already idle.
2935  */
2936 bool flush_work(struct work_struct *work)
2937 {
2938 	return __flush_work(work, false);
2939 }
2940 EXPORT_SYMBOL_GPL(flush_work);
2941 
2942 struct cwt_wait {
2943 	wait_queue_entry_t		wait;
2944 	struct work_struct	*work;
2945 };
2946 
2947 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2948 {
2949 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2950 
2951 	if (cwait->work != key)
2952 		return 0;
2953 	return autoremove_wake_function(wait, mode, sync, key);
2954 }
2955 
2956 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2957 {
2958 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2959 	unsigned long flags;
2960 	int ret;
2961 
2962 	do {
2963 		ret = try_to_grab_pending(work, is_dwork, &flags);
2964 		/*
2965 		 * If someone else is already canceling, wait for it to
2966 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2967 		 * because we may get scheduled between @work's completion
2968 		 * and the other canceling task resuming and clearing
2969 		 * CANCELING - flush_work() will return false immediately
2970 		 * as @work is no longer busy, try_to_grab_pending() will
2971 		 * return -ENOENT as @work is still being canceled and the
2972 		 * other canceling task won't be able to clear CANCELING as
2973 		 * we're hogging the CPU.
2974 		 *
2975 		 * Let's wait for completion using a waitqueue.  As this
2976 		 * may lead to the thundering herd problem, use a custom
2977 		 * wake function which matches @work along with exclusive
2978 		 * wait and wakeup.
2979 		 */
2980 		if (unlikely(ret == -ENOENT)) {
2981 			struct cwt_wait cwait;
2982 
2983 			init_wait(&cwait.wait);
2984 			cwait.wait.func = cwt_wakefn;
2985 			cwait.work = work;
2986 
2987 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2988 						  TASK_UNINTERRUPTIBLE);
2989 			if (work_is_canceling(work))
2990 				schedule();
2991 			finish_wait(&cancel_waitq, &cwait.wait);
2992 		}
2993 	} while (unlikely(ret < 0));
2994 
2995 	/* tell other tasks trying to grab @work to back off */
2996 	mark_work_canceling(work);
2997 	local_irq_restore(flags);
2998 
2999 	/*
3000 	 * This allows canceling during early boot.  We know that @work
3001 	 * isn't executing.
3002 	 */
3003 	if (wq_online)
3004 		__flush_work(work, true);
3005 
3006 	clear_work_data(work);
3007 
3008 	/*
3009 	 * Paired with prepare_to_wait() above so that either
3010 	 * waitqueue_active() is visible here or !work_is_canceling() is
3011 	 * visible there.
3012 	 */
3013 	smp_mb();
3014 	if (waitqueue_active(&cancel_waitq))
3015 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3016 
3017 	return ret;
3018 }
3019 
3020 /**
3021  * cancel_work_sync - cancel a work and wait for it to finish
3022  * @work: the work to cancel
3023  *
3024  * Cancel @work and wait for its execution to finish.  This function
3025  * can be used even if the work re-queues itself or migrates to
3026  * another workqueue.  On return from this function, @work is
3027  * guaranteed to be not pending or executing on any CPU.
3028  *
3029  * cancel_work_sync(&delayed_work->work) must not be used for
3030  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3031  *
3032  * The caller must ensure that the workqueue on which @work was last
3033  * queued can't be destroyed before this function returns.
3034  *
3035  * Return:
3036  * %true if @work was pending, %false otherwise.
3037  */
3038 bool cancel_work_sync(struct work_struct *work)
3039 {
3040 	return __cancel_work_timer(work, false);
3041 }
3042 EXPORT_SYMBOL_GPL(cancel_work_sync);
3043 
3044 /**
3045  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3046  * @dwork: the delayed work to flush
3047  *
3048  * Delayed timer is cancelled and the pending work is queued for
3049  * immediate execution.  Like flush_work(), this function only
3050  * considers the last queueing instance of @dwork.
3051  *
3052  * Return:
3053  * %true if flush_work() waited for the work to finish execution,
3054  * %false if it was already idle.
3055  */
3056 bool flush_delayed_work(struct delayed_work *dwork)
3057 {
3058 	local_irq_disable();
3059 	if (del_timer_sync(&dwork->timer))
3060 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3061 	local_irq_enable();
3062 	return flush_work(&dwork->work);
3063 }
3064 EXPORT_SYMBOL(flush_delayed_work);
3065 
3066 /**
3067  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3068  * @rwork: the rcu work to flush
3069  *
3070  * Return:
3071  * %true if flush_rcu_work() waited for the work to finish execution,
3072  * %false if it was already idle.
3073  */
3074 bool flush_rcu_work(struct rcu_work *rwork)
3075 {
3076 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3077 		rcu_barrier();
3078 		flush_work(&rwork->work);
3079 		return true;
3080 	} else {
3081 		return flush_work(&rwork->work);
3082 	}
3083 }
3084 EXPORT_SYMBOL(flush_rcu_work);
3085 
3086 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3087 {
3088 	unsigned long flags;
3089 	int ret;
3090 
3091 	do {
3092 		ret = try_to_grab_pending(work, is_dwork, &flags);
3093 	} while (unlikely(ret == -EAGAIN));
3094 
3095 	if (unlikely(ret < 0))
3096 		return false;
3097 
3098 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3099 	local_irq_restore(flags);
3100 	return ret;
3101 }
3102 
3103 /**
3104  * cancel_delayed_work - cancel a delayed work
3105  * @dwork: delayed_work to cancel
3106  *
3107  * Kill off a pending delayed_work.
3108  *
3109  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3110  * pending.
3111  *
3112  * Note:
3113  * The work callback function may still be running on return, unless
3114  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3115  * use cancel_delayed_work_sync() to wait on it.
3116  *
3117  * This function is safe to call from any context including IRQ handler.
3118  */
3119 bool cancel_delayed_work(struct delayed_work *dwork)
3120 {
3121 	return __cancel_work(&dwork->work, true);
3122 }
3123 EXPORT_SYMBOL(cancel_delayed_work);
3124 
3125 /**
3126  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3127  * @dwork: the delayed work cancel
3128  *
3129  * This is cancel_work_sync() for delayed works.
3130  *
3131  * Return:
3132  * %true if @dwork was pending, %false otherwise.
3133  */
3134 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3135 {
3136 	return __cancel_work_timer(&dwork->work, true);
3137 }
3138 EXPORT_SYMBOL(cancel_delayed_work_sync);
3139 
3140 /**
3141  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3142  * @func: the function to call
3143  *
3144  * schedule_on_each_cpu() executes @func on each online CPU using the
3145  * system workqueue and blocks until all CPUs have completed.
3146  * schedule_on_each_cpu() is very slow.
3147  *
3148  * Return:
3149  * 0 on success, -errno on failure.
3150  */
3151 int schedule_on_each_cpu(work_func_t func)
3152 {
3153 	int cpu;
3154 	struct work_struct __percpu *works;
3155 
3156 	works = alloc_percpu(struct work_struct);
3157 	if (!works)
3158 		return -ENOMEM;
3159 
3160 	get_online_cpus();
3161 
3162 	for_each_online_cpu(cpu) {
3163 		struct work_struct *work = per_cpu_ptr(works, cpu);
3164 
3165 		INIT_WORK(work, func);
3166 		schedule_work_on(cpu, work);
3167 	}
3168 
3169 	for_each_online_cpu(cpu)
3170 		flush_work(per_cpu_ptr(works, cpu));
3171 
3172 	put_online_cpus();
3173 	free_percpu(works);
3174 	return 0;
3175 }
3176 
3177 /**
3178  * execute_in_process_context - reliably execute the routine with user context
3179  * @fn:		the function to execute
3180  * @ew:		guaranteed storage for the execute work structure (must
3181  *		be available when the work executes)
3182  *
3183  * Executes the function immediately if process context is available,
3184  * otherwise schedules the function for delayed execution.
3185  *
3186  * Return:	0 - function was executed
3187  *		1 - function was scheduled for execution
3188  */
3189 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3190 {
3191 	if (!in_interrupt()) {
3192 		fn(&ew->work);
3193 		return 0;
3194 	}
3195 
3196 	INIT_WORK(&ew->work, fn);
3197 	schedule_work(&ew->work);
3198 
3199 	return 1;
3200 }
3201 EXPORT_SYMBOL_GPL(execute_in_process_context);
3202 
3203 /**
3204  * free_workqueue_attrs - free a workqueue_attrs
3205  * @attrs: workqueue_attrs to free
3206  *
3207  * Undo alloc_workqueue_attrs().
3208  */
3209 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3210 {
3211 	if (attrs) {
3212 		free_cpumask_var(attrs->cpumask);
3213 		kfree(attrs);
3214 	}
3215 }
3216 
3217 /**
3218  * alloc_workqueue_attrs - allocate a workqueue_attrs
3219  * @gfp_mask: allocation mask to use
3220  *
3221  * Allocate a new workqueue_attrs, initialize with default settings and
3222  * return it.
3223  *
3224  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3225  */
3226 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3227 {
3228 	struct workqueue_attrs *attrs;
3229 
3230 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3231 	if (!attrs)
3232 		goto fail;
3233 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3234 		goto fail;
3235 
3236 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3237 	return attrs;
3238 fail:
3239 	free_workqueue_attrs(attrs);
3240 	return NULL;
3241 }
3242 
3243 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3244 				 const struct workqueue_attrs *from)
3245 {
3246 	to->nice = from->nice;
3247 	cpumask_copy(to->cpumask, from->cpumask);
3248 	/*
3249 	 * Unlike hash and equality test, this function doesn't ignore
3250 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3251 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3252 	 */
3253 	to->no_numa = from->no_numa;
3254 }
3255 
3256 /* hash value of the content of @attr */
3257 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3258 {
3259 	u32 hash = 0;
3260 
3261 	hash = jhash_1word(attrs->nice, hash);
3262 	hash = jhash(cpumask_bits(attrs->cpumask),
3263 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3264 	return hash;
3265 }
3266 
3267 /* content equality test */
3268 static bool wqattrs_equal(const struct workqueue_attrs *a,
3269 			  const struct workqueue_attrs *b)
3270 {
3271 	if (a->nice != b->nice)
3272 		return false;
3273 	if (!cpumask_equal(a->cpumask, b->cpumask))
3274 		return false;
3275 	return true;
3276 }
3277 
3278 /**
3279  * init_worker_pool - initialize a newly zalloc'd worker_pool
3280  * @pool: worker_pool to initialize
3281  *
3282  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3283  *
3284  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3285  * inside @pool proper are initialized and put_unbound_pool() can be called
3286  * on @pool safely to release it.
3287  */
3288 static int init_worker_pool(struct worker_pool *pool)
3289 {
3290 	spin_lock_init(&pool->lock);
3291 	pool->id = -1;
3292 	pool->cpu = -1;
3293 	pool->node = NUMA_NO_NODE;
3294 	pool->flags |= POOL_DISASSOCIATED;
3295 	pool->watchdog_ts = jiffies;
3296 	INIT_LIST_HEAD(&pool->worklist);
3297 	INIT_LIST_HEAD(&pool->idle_list);
3298 	hash_init(pool->busy_hash);
3299 
3300 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3301 
3302 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3303 
3304 	INIT_LIST_HEAD(&pool->workers);
3305 
3306 	ida_init(&pool->worker_ida);
3307 	INIT_HLIST_NODE(&pool->hash_node);
3308 	pool->refcnt = 1;
3309 
3310 	/* shouldn't fail above this point */
3311 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3312 	if (!pool->attrs)
3313 		return -ENOMEM;
3314 	return 0;
3315 }
3316 
3317 static void rcu_free_wq(struct rcu_head *rcu)
3318 {
3319 	struct workqueue_struct *wq =
3320 		container_of(rcu, struct workqueue_struct, rcu);
3321 
3322 	if (!(wq->flags & WQ_UNBOUND))
3323 		free_percpu(wq->cpu_pwqs);
3324 	else
3325 		free_workqueue_attrs(wq->unbound_attrs);
3326 
3327 	kfree(wq->rescuer);
3328 	kfree(wq);
3329 }
3330 
3331 static void rcu_free_pool(struct rcu_head *rcu)
3332 {
3333 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3334 
3335 	ida_destroy(&pool->worker_ida);
3336 	free_workqueue_attrs(pool->attrs);
3337 	kfree(pool);
3338 }
3339 
3340 /**
3341  * put_unbound_pool - put a worker_pool
3342  * @pool: worker_pool to put
3343  *
3344  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3345  * safe manner.  get_unbound_pool() calls this function on its failure path
3346  * and this function should be able to release pools which went through,
3347  * successfully or not, init_worker_pool().
3348  *
3349  * Should be called with wq_pool_mutex held.
3350  */
3351 static void put_unbound_pool(struct worker_pool *pool)
3352 {
3353 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3354 	struct worker *worker;
3355 
3356 	lockdep_assert_held(&wq_pool_mutex);
3357 
3358 	if (--pool->refcnt)
3359 		return;
3360 
3361 	/* sanity checks */
3362 	if (WARN_ON(!(pool->cpu < 0)) ||
3363 	    WARN_ON(!list_empty(&pool->worklist)))
3364 		return;
3365 
3366 	/* release id and unhash */
3367 	if (pool->id >= 0)
3368 		idr_remove(&worker_pool_idr, pool->id);
3369 	hash_del(&pool->hash_node);
3370 
3371 	/*
3372 	 * Become the manager and destroy all workers.  This prevents
3373 	 * @pool's workers from blocking on attach_mutex.  We're the last
3374 	 * manager and @pool gets freed with the flag set.
3375 	 */
3376 	spin_lock_irq(&pool->lock);
3377 	wait_event_lock_irq(wq_manager_wait,
3378 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3379 	pool->flags |= POOL_MANAGER_ACTIVE;
3380 
3381 	while ((worker = first_idle_worker(pool)))
3382 		destroy_worker(worker);
3383 	WARN_ON(pool->nr_workers || pool->nr_idle);
3384 	spin_unlock_irq(&pool->lock);
3385 
3386 	mutex_lock(&wq_pool_attach_mutex);
3387 	if (!list_empty(&pool->workers))
3388 		pool->detach_completion = &detach_completion;
3389 	mutex_unlock(&wq_pool_attach_mutex);
3390 
3391 	if (pool->detach_completion)
3392 		wait_for_completion(pool->detach_completion);
3393 
3394 	/* shut down the timers */
3395 	del_timer_sync(&pool->idle_timer);
3396 	del_timer_sync(&pool->mayday_timer);
3397 
3398 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3399 	call_rcu(&pool->rcu, rcu_free_pool);
3400 }
3401 
3402 /**
3403  * get_unbound_pool - get a worker_pool with the specified attributes
3404  * @attrs: the attributes of the worker_pool to get
3405  *
3406  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3407  * reference count and return it.  If there already is a matching
3408  * worker_pool, it will be used; otherwise, this function attempts to
3409  * create a new one.
3410  *
3411  * Should be called with wq_pool_mutex held.
3412  *
3413  * Return: On success, a worker_pool with the same attributes as @attrs.
3414  * On failure, %NULL.
3415  */
3416 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3417 {
3418 	u32 hash = wqattrs_hash(attrs);
3419 	struct worker_pool *pool;
3420 	int node;
3421 	int target_node = NUMA_NO_NODE;
3422 
3423 	lockdep_assert_held(&wq_pool_mutex);
3424 
3425 	/* do we already have a matching pool? */
3426 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3427 		if (wqattrs_equal(pool->attrs, attrs)) {
3428 			pool->refcnt++;
3429 			return pool;
3430 		}
3431 	}
3432 
3433 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3434 	if (wq_numa_enabled) {
3435 		for_each_node(node) {
3436 			if (cpumask_subset(attrs->cpumask,
3437 					   wq_numa_possible_cpumask[node])) {
3438 				target_node = node;
3439 				break;
3440 			}
3441 		}
3442 	}
3443 
3444 	/* nope, create a new one */
3445 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3446 	if (!pool || init_worker_pool(pool) < 0)
3447 		goto fail;
3448 
3449 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3450 	copy_workqueue_attrs(pool->attrs, attrs);
3451 	pool->node = target_node;
3452 
3453 	/*
3454 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3455 	 * 'struct workqueue_attrs' comments for detail.
3456 	 */
3457 	pool->attrs->no_numa = false;
3458 
3459 	if (worker_pool_assign_id(pool) < 0)
3460 		goto fail;
3461 
3462 	/* create and start the initial worker */
3463 	if (wq_online && !create_worker(pool))
3464 		goto fail;
3465 
3466 	/* install */
3467 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3468 
3469 	return pool;
3470 fail:
3471 	if (pool)
3472 		put_unbound_pool(pool);
3473 	return NULL;
3474 }
3475 
3476 static void rcu_free_pwq(struct rcu_head *rcu)
3477 {
3478 	kmem_cache_free(pwq_cache,
3479 			container_of(rcu, struct pool_workqueue, rcu));
3480 }
3481 
3482 /*
3483  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3484  * and needs to be destroyed.
3485  */
3486 static void pwq_unbound_release_workfn(struct work_struct *work)
3487 {
3488 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3489 						  unbound_release_work);
3490 	struct workqueue_struct *wq = pwq->wq;
3491 	struct worker_pool *pool = pwq->pool;
3492 	bool is_last;
3493 
3494 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3495 		return;
3496 
3497 	mutex_lock(&wq->mutex);
3498 	list_del_rcu(&pwq->pwqs_node);
3499 	is_last = list_empty(&wq->pwqs);
3500 	mutex_unlock(&wq->mutex);
3501 
3502 	mutex_lock(&wq_pool_mutex);
3503 	put_unbound_pool(pool);
3504 	mutex_unlock(&wq_pool_mutex);
3505 
3506 	call_rcu(&pwq->rcu, rcu_free_pwq);
3507 
3508 	/*
3509 	 * If we're the last pwq going away, @wq is already dead and no one
3510 	 * is gonna access it anymore.  Schedule RCU free.
3511 	 */
3512 	if (is_last)
3513 		call_rcu(&wq->rcu, rcu_free_wq);
3514 }
3515 
3516 /**
3517  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3518  * @pwq: target pool_workqueue
3519  *
3520  * If @pwq isn't freezing, set @pwq->max_active to the associated
3521  * workqueue's saved_max_active and activate delayed work items
3522  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3523  */
3524 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3525 {
3526 	struct workqueue_struct *wq = pwq->wq;
3527 	bool freezable = wq->flags & WQ_FREEZABLE;
3528 	unsigned long flags;
3529 
3530 	/* for @wq->saved_max_active */
3531 	lockdep_assert_held(&wq->mutex);
3532 
3533 	/* fast exit for non-freezable wqs */
3534 	if (!freezable && pwq->max_active == wq->saved_max_active)
3535 		return;
3536 
3537 	/* this function can be called during early boot w/ irq disabled */
3538 	spin_lock_irqsave(&pwq->pool->lock, flags);
3539 
3540 	/*
3541 	 * During [un]freezing, the caller is responsible for ensuring that
3542 	 * this function is called at least once after @workqueue_freezing
3543 	 * is updated and visible.
3544 	 */
3545 	if (!freezable || !workqueue_freezing) {
3546 		pwq->max_active = wq->saved_max_active;
3547 
3548 		while (!list_empty(&pwq->delayed_works) &&
3549 		       pwq->nr_active < pwq->max_active)
3550 			pwq_activate_first_delayed(pwq);
3551 
3552 		/*
3553 		 * Need to kick a worker after thawed or an unbound wq's
3554 		 * max_active is bumped.  It's a slow path.  Do it always.
3555 		 */
3556 		wake_up_worker(pwq->pool);
3557 	} else {
3558 		pwq->max_active = 0;
3559 	}
3560 
3561 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3562 }
3563 
3564 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3565 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3566 		     struct worker_pool *pool)
3567 {
3568 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3569 
3570 	memset(pwq, 0, sizeof(*pwq));
3571 
3572 	pwq->pool = pool;
3573 	pwq->wq = wq;
3574 	pwq->flush_color = -1;
3575 	pwq->refcnt = 1;
3576 	INIT_LIST_HEAD(&pwq->delayed_works);
3577 	INIT_LIST_HEAD(&pwq->pwqs_node);
3578 	INIT_LIST_HEAD(&pwq->mayday_node);
3579 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3580 }
3581 
3582 /* sync @pwq with the current state of its associated wq and link it */
3583 static void link_pwq(struct pool_workqueue *pwq)
3584 {
3585 	struct workqueue_struct *wq = pwq->wq;
3586 
3587 	lockdep_assert_held(&wq->mutex);
3588 
3589 	/* may be called multiple times, ignore if already linked */
3590 	if (!list_empty(&pwq->pwqs_node))
3591 		return;
3592 
3593 	/* set the matching work_color */
3594 	pwq->work_color = wq->work_color;
3595 
3596 	/* sync max_active to the current setting */
3597 	pwq_adjust_max_active(pwq);
3598 
3599 	/* link in @pwq */
3600 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3601 }
3602 
3603 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3604 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3605 					const struct workqueue_attrs *attrs)
3606 {
3607 	struct worker_pool *pool;
3608 	struct pool_workqueue *pwq;
3609 
3610 	lockdep_assert_held(&wq_pool_mutex);
3611 
3612 	pool = get_unbound_pool(attrs);
3613 	if (!pool)
3614 		return NULL;
3615 
3616 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3617 	if (!pwq) {
3618 		put_unbound_pool(pool);
3619 		return NULL;
3620 	}
3621 
3622 	init_pwq(pwq, wq, pool);
3623 	return pwq;
3624 }
3625 
3626 /**
3627  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3628  * @attrs: the wq_attrs of the default pwq of the target workqueue
3629  * @node: the target NUMA node
3630  * @cpu_going_down: if >= 0, the CPU to consider as offline
3631  * @cpumask: outarg, the resulting cpumask
3632  *
3633  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3634  * @cpu_going_down is >= 0, that cpu is considered offline during
3635  * calculation.  The result is stored in @cpumask.
3636  *
3637  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3638  * enabled and @node has online CPUs requested by @attrs, the returned
3639  * cpumask is the intersection of the possible CPUs of @node and
3640  * @attrs->cpumask.
3641  *
3642  * The caller is responsible for ensuring that the cpumask of @node stays
3643  * stable.
3644  *
3645  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3646  * %false if equal.
3647  */
3648 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3649 				 int cpu_going_down, cpumask_t *cpumask)
3650 {
3651 	if (!wq_numa_enabled || attrs->no_numa)
3652 		goto use_dfl;
3653 
3654 	/* does @node have any online CPUs @attrs wants? */
3655 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3656 	if (cpu_going_down >= 0)
3657 		cpumask_clear_cpu(cpu_going_down, cpumask);
3658 
3659 	if (cpumask_empty(cpumask))
3660 		goto use_dfl;
3661 
3662 	/* yeap, return possible CPUs in @node that @attrs wants */
3663 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3664 
3665 	if (cpumask_empty(cpumask)) {
3666 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3667 				"possible intersect\n");
3668 		return false;
3669 	}
3670 
3671 	return !cpumask_equal(cpumask, attrs->cpumask);
3672 
3673 use_dfl:
3674 	cpumask_copy(cpumask, attrs->cpumask);
3675 	return false;
3676 }
3677 
3678 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3679 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3680 						   int node,
3681 						   struct pool_workqueue *pwq)
3682 {
3683 	struct pool_workqueue *old_pwq;
3684 
3685 	lockdep_assert_held(&wq_pool_mutex);
3686 	lockdep_assert_held(&wq->mutex);
3687 
3688 	/* link_pwq() can handle duplicate calls */
3689 	link_pwq(pwq);
3690 
3691 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3692 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3693 	return old_pwq;
3694 }
3695 
3696 /* context to store the prepared attrs & pwqs before applying */
3697 struct apply_wqattrs_ctx {
3698 	struct workqueue_struct	*wq;		/* target workqueue */
3699 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3700 	struct list_head	list;		/* queued for batching commit */
3701 	struct pool_workqueue	*dfl_pwq;
3702 	struct pool_workqueue	*pwq_tbl[];
3703 };
3704 
3705 /* free the resources after success or abort */
3706 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3707 {
3708 	if (ctx) {
3709 		int node;
3710 
3711 		for_each_node(node)
3712 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3713 		put_pwq_unlocked(ctx->dfl_pwq);
3714 
3715 		free_workqueue_attrs(ctx->attrs);
3716 
3717 		kfree(ctx);
3718 	}
3719 }
3720 
3721 /* allocate the attrs and pwqs for later installation */
3722 static struct apply_wqattrs_ctx *
3723 apply_wqattrs_prepare(struct workqueue_struct *wq,
3724 		      const struct workqueue_attrs *attrs)
3725 {
3726 	struct apply_wqattrs_ctx *ctx;
3727 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3728 	int node;
3729 
3730 	lockdep_assert_held(&wq_pool_mutex);
3731 
3732 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3733 
3734 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3735 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3736 	if (!ctx || !new_attrs || !tmp_attrs)
3737 		goto out_free;
3738 
3739 	/*
3740 	 * Calculate the attrs of the default pwq.
3741 	 * If the user configured cpumask doesn't overlap with the
3742 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3743 	 */
3744 	copy_workqueue_attrs(new_attrs, attrs);
3745 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3746 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3747 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3748 
3749 	/*
3750 	 * We may create multiple pwqs with differing cpumasks.  Make a
3751 	 * copy of @new_attrs which will be modified and used to obtain
3752 	 * pools.
3753 	 */
3754 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3755 
3756 	/*
3757 	 * If something goes wrong during CPU up/down, we'll fall back to
3758 	 * the default pwq covering whole @attrs->cpumask.  Always create
3759 	 * it even if we don't use it immediately.
3760 	 */
3761 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3762 	if (!ctx->dfl_pwq)
3763 		goto out_free;
3764 
3765 	for_each_node(node) {
3766 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3767 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3768 			if (!ctx->pwq_tbl[node])
3769 				goto out_free;
3770 		} else {
3771 			ctx->dfl_pwq->refcnt++;
3772 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3773 		}
3774 	}
3775 
3776 	/* save the user configured attrs and sanitize it. */
3777 	copy_workqueue_attrs(new_attrs, attrs);
3778 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3779 	ctx->attrs = new_attrs;
3780 
3781 	ctx->wq = wq;
3782 	free_workqueue_attrs(tmp_attrs);
3783 	return ctx;
3784 
3785 out_free:
3786 	free_workqueue_attrs(tmp_attrs);
3787 	free_workqueue_attrs(new_attrs);
3788 	apply_wqattrs_cleanup(ctx);
3789 	return NULL;
3790 }
3791 
3792 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3793 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3794 {
3795 	int node;
3796 
3797 	/* all pwqs have been created successfully, let's install'em */
3798 	mutex_lock(&ctx->wq->mutex);
3799 
3800 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3801 
3802 	/* save the previous pwq and install the new one */
3803 	for_each_node(node)
3804 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3805 							  ctx->pwq_tbl[node]);
3806 
3807 	/* @dfl_pwq might not have been used, ensure it's linked */
3808 	link_pwq(ctx->dfl_pwq);
3809 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3810 
3811 	mutex_unlock(&ctx->wq->mutex);
3812 }
3813 
3814 static void apply_wqattrs_lock(void)
3815 {
3816 	/* CPUs should stay stable across pwq creations and installations */
3817 	get_online_cpus();
3818 	mutex_lock(&wq_pool_mutex);
3819 }
3820 
3821 static void apply_wqattrs_unlock(void)
3822 {
3823 	mutex_unlock(&wq_pool_mutex);
3824 	put_online_cpus();
3825 }
3826 
3827 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3828 					const struct workqueue_attrs *attrs)
3829 {
3830 	struct apply_wqattrs_ctx *ctx;
3831 
3832 	/* only unbound workqueues can change attributes */
3833 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3834 		return -EINVAL;
3835 
3836 	/* creating multiple pwqs breaks ordering guarantee */
3837 	if (!list_empty(&wq->pwqs)) {
3838 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3839 			return -EINVAL;
3840 
3841 		wq->flags &= ~__WQ_ORDERED;
3842 	}
3843 
3844 	ctx = apply_wqattrs_prepare(wq, attrs);
3845 	if (!ctx)
3846 		return -ENOMEM;
3847 
3848 	/* the ctx has been prepared successfully, let's commit it */
3849 	apply_wqattrs_commit(ctx);
3850 	apply_wqattrs_cleanup(ctx);
3851 
3852 	return 0;
3853 }
3854 
3855 /**
3856  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3857  * @wq: the target workqueue
3858  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3859  *
3860  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3861  * machines, this function maps a separate pwq to each NUMA node with
3862  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3863  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3864  * items finish.  Note that a work item which repeatedly requeues itself
3865  * back-to-back will stay on its current pwq.
3866  *
3867  * Performs GFP_KERNEL allocations.
3868  *
3869  * Return: 0 on success and -errno on failure.
3870  */
3871 int apply_workqueue_attrs(struct workqueue_struct *wq,
3872 			  const struct workqueue_attrs *attrs)
3873 {
3874 	int ret;
3875 
3876 	apply_wqattrs_lock();
3877 	ret = apply_workqueue_attrs_locked(wq, attrs);
3878 	apply_wqattrs_unlock();
3879 
3880 	return ret;
3881 }
3882 EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
3883 
3884 /**
3885  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3886  * @wq: the target workqueue
3887  * @cpu: the CPU coming up or going down
3888  * @online: whether @cpu is coming up or going down
3889  *
3890  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3891  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3892  * @wq accordingly.
3893  *
3894  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3895  * falls back to @wq->dfl_pwq which may not be optimal but is always
3896  * correct.
3897  *
3898  * Note that when the last allowed CPU of a NUMA node goes offline for a
3899  * workqueue with a cpumask spanning multiple nodes, the workers which were
3900  * already executing the work items for the workqueue will lose their CPU
3901  * affinity and may execute on any CPU.  This is similar to how per-cpu
3902  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3903  * affinity, it's the user's responsibility to flush the work item from
3904  * CPU_DOWN_PREPARE.
3905  */
3906 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3907 				   bool online)
3908 {
3909 	int node = cpu_to_node(cpu);
3910 	int cpu_off = online ? -1 : cpu;
3911 	struct pool_workqueue *old_pwq = NULL, *pwq;
3912 	struct workqueue_attrs *target_attrs;
3913 	cpumask_t *cpumask;
3914 
3915 	lockdep_assert_held(&wq_pool_mutex);
3916 
3917 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3918 	    wq->unbound_attrs->no_numa)
3919 		return;
3920 
3921 	/*
3922 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3923 	 * Let's use a preallocated one.  The following buf is protected by
3924 	 * CPU hotplug exclusion.
3925 	 */
3926 	target_attrs = wq_update_unbound_numa_attrs_buf;
3927 	cpumask = target_attrs->cpumask;
3928 
3929 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3930 	pwq = unbound_pwq_by_node(wq, node);
3931 
3932 	/*
3933 	 * Let's determine what needs to be done.  If the target cpumask is
3934 	 * different from the default pwq's, we need to compare it to @pwq's
3935 	 * and create a new one if they don't match.  If the target cpumask
3936 	 * equals the default pwq's, the default pwq should be used.
3937 	 */
3938 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3939 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3940 			return;
3941 	} else {
3942 		goto use_dfl_pwq;
3943 	}
3944 
3945 	/* create a new pwq */
3946 	pwq = alloc_unbound_pwq(wq, target_attrs);
3947 	if (!pwq) {
3948 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3949 			wq->name);
3950 		goto use_dfl_pwq;
3951 	}
3952 
3953 	/* Install the new pwq. */
3954 	mutex_lock(&wq->mutex);
3955 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3956 	goto out_unlock;
3957 
3958 use_dfl_pwq:
3959 	mutex_lock(&wq->mutex);
3960 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3961 	get_pwq(wq->dfl_pwq);
3962 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3963 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3964 out_unlock:
3965 	mutex_unlock(&wq->mutex);
3966 	put_pwq_unlocked(old_pwq);
3967 }
3968 
3969 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3970 {
3971 	bool highpri = wq->flags & WQ_HIGHPRI;
3972 	int cpu, ret;
3973 
3974 	if (!(wq->flags & WQ_UNBOUND)) {
3975 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3976 		if (!wq->cpu_pwqs)
3977 			return -ENOMEM;
3978 
3979 		for_each_possible_cpu(cpu) {
3980 			struct pool_workqueue *pwq =
3981 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3982 			struct worker_pool *cpu_pools =
3983 				per_cpu(cpu_worker_pools, cpu);
3984 
3985 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3986 
3987 			mutex_lock(&wq->mutex);
3988 			link_pwq(pwq);
3989 			mutex_unlock(&wq->mutex);
3990 		}
3991 		return 0;
3992 	} else if (wq->flags & __WQ_ORDERED) {
3993 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3994 		/* there should only be single pwq for ordering guarantee */
3995 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3996 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3997 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3998 		return ret;
3999 	} else {
4000 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4001 	}
4002 }
4003 
4004 static int wq_clamp_max_active(int max_active, unsigned int flags,
4005 			       const char *name)
4006 {
4007 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4008 
4009 	if (max_active < 1 || max_active > lim)
4010 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4011 			max_active, name, 1, lim);
4012 
4013 	return clamp_val(max_active, 1, lim);
4014 }
4015 
4016 /*
4017  * Workqueues which may be used during memory reclaim should have a rescuer
4018  * to guarantee forward progress.
4019  */
4020 static int init_rescuer(struct workqueue_struct *wq)
4021 {
4022 	struct worker *rescuer;
4023 	int ret;
4024 
4025 	if (!(wq->flags & WQ_MEM_RECLAIM))
4026 		return 0;
4027 
4028 	rescuer = alloc_worker(NUMA_NO_NODE);
4029 	if (!rescuer)
4030 		return -ENOMEM;
4031 
4032 	rescuer->rescue_wq = wq;
4033 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4034 	ret = PTR_ERR_OR_ZERO(rescuer->task);
4035 	if (ret) {
4036 		kfree(rescuer);
4037 		return ret;
4038 	}
4039 
4040 	wq->rescuer = rescuer;
4041 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4042 	wake_up_process(rescuer->task);
4043 
4044 	return 0;
4045 }
4046 
4047 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4048 					       unsigned int flags,
4049 					       int max_active,
4050 					       struct lock_class_key *key,
4051 					       const char *lock_name, ...)
4052 {
4053 	size_t tbl_size = 0;
4054 	va_list args;
4055 	struct workqueue_struct *wq;
4056 	struct pool_workqueue *pwq;
4057 
4058 	/*
4059 	 * Unbound && max_active == 1 used to imply ordered, which is no
4060 	 * longer the case on NUMA machines due to per-node pools.  While
4061 	 * alloc_ordered_workqueue() is the right way to create an ordered
4062 	 * workqueue, keep the previous behavior to avoid subtle breakages
4063 	 * on NUMA.
4064 	 */
4065 	if ((flags & WQ_UNBOUND) && max_active == 1)
4066 		flags |= __WQ_ORDERED;
4067 
4068 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4069 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4070 		flags |= WQ_UNBOUND;
4071 
4072 	/* allocate wq and format name */
4073 	if (flags & WQ_UNBOUND)
4074 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4075 
4076 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4077 	if (!wq)
4078 		return NULL;
4079 
4080 	if (flags & WQ_UNBOUND) {
4081 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4082 		if (!wq->unbound_attrs)
4083 			goto err_free_wq;
4084 	}
4085 
4086 	va_start(args, lock_name);
4087 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4088 	va_end(args);
4089 
4090 	max_active = max_active ?: WQ_DFL_ACTIVE;
4091 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4092 
4093 	/* init wq */
4094 	wq->flags = flags;
4095 	wq->saved_max_active = max_active;
4096 	mutex_init(&wq->mutex);
4097 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4098 	INIT_LIST_HEAD(&wq->pwqs);
4099 	INIT_LIST_HEAD(&wq->flusher_queue);
4100 	INIT_LIST_HEAD(&wq->flusher_overflow);
4101 	INIT_LIST_HEAD(&wq->maydays);
4102 
4103 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4104 	INIT_LIST_HEAD(&wq->list);
4105 
4106 	if (alloc_and_link_pwqs(wq) < 0)
4107 		goto err_free_wq;
4108 
4109 	if (wq_online && init_rescuer(wq) < 0)
4110 		goto err_destroy;
4111 
4112 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4113 		goto err_destroy;
4114 
4115 	/*
4116 	 * wq_pool_mutex protects global freeze state and workqueues list.
4117 	 * Grab it, adjust max_active and add the new @wq to workqueues
4118 	 * list.
4119 	 */
4120 	mutex_lock(&wq_pool_mutex);
4121 
4122 	mutex_lock(&wq->mutex);
4123 	for_each_pwq(pwq, wq)
4124 		pwq_adjust_max_active(pwq);
4125 	mutex_unlock(&wq->mutex);
4126 
4127 	list_add_tail_rcu(&wq->list, &workqueues);
4128 
4129 	mutex_unlock(&wq_pool_mutex);
4130 
4131 	return wq;
4132 
4133 err_free_wq:
4134 	free_workqueue_attrs(wq->unbound_attrs);
4135 	kfree(wq);
4136 	return NULL;
4137 err_destroy:
4138 	destroy_workqueue(wq);
4139 	return NULL;
4140 }
4141 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4142 
4143 /**
4144  * destroy_workqueue - safely terminate a workqueue
4145  * @wq: target workqueue
4146  *
4147  * Safely destroy a workqueue. All work currently pending will be done first.
4148  */
4149 void destroy_workqueue(struct workqueue_struct *wq)
4150 {
4151 	struct pool_workqueue *pwq;
4152 	int node;
4153 
4154 	/* drain it before proceeding with destruction */
4155 	drain_workqueue(wq);
4156 
4157 	/* sanity checks */
4158 	mutex_lock(&wq->mutex);
4159 	for_each_pwq(pwq, wq) {
4160 		int i;
4161 
4162 		for (i = 0; i < WORK_NR_COLORS; i++) {
4163 			if (WARN_ON(pwq->nr_in_flight[i])) {
4164 				mutex_unlock(&wq->mutex);
4165 				show_workqueue_state();
4166 				return;
4167 			}
4168 		}
4169 
4170 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4171 		    WARN_ON(pwq->nr_active) ||
4172 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4173 			mutex_unlock(&wq->mutex);
4174 			show_workqueue_state();
4175 			return;
4176 		}
4177 	}
4178 	mutex_unlock(&wq->mutex);
4179 
4180 	/*
4181 	 * wq list is used to freeze wq, remove from list after
4182 	 * flushing is complete in case freeze races us.
4183 	 */
4184 	mutex_lock(&wq_pool_mutex);
4185 	list_del_rcu(&wq->list);
4186 	mutex_unlock(&wq_pool_mutex);
4187 
4188 	workqueue_sysfs_unregister(wq);
4189 
4190 	if (wq->rescuer)
4191 		kthread_stop(wq->rescuer->task);
4192 
4193 	if (!(wq->flags & WQ_UNBOUND)) {
4194 		/*
4195 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4196 		 * schedule RCU free.
4197 		 */
4198 		call_rcu(&wq->rcu, rcu_free_wq);
4199 	} else {
4200 		/*
4201 		 * We're the sole accessor of @wq at this point.  Directly
4202 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4203 		 * @wq will be freed when the last pwq is released.
4204 		 */
4205 		for_each_node(node) {
4206 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4207 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4208 			put_pwq_unlocked(pwq);
4209 		}
4210 
4211 		/*
4212 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4213 		 * put.  Don't access it afterwards.
4214 		 */
4215 		pwq = wq->dfl_pwq;
4216 		wq->dfl_pwq = NULL;
4217 		put_pwq_unlocked(pwq);
4218 	}
4219 }
4220 EXPORT_SYMBOL_GPL(destroy_workqueue);
4221 
4222 /**
4223  * workqueue_set_max_active - adjust max_active of a workqueue
4224  * @wq: target workqueue
4225  * @max_active: new max_active value.
4226  *
4227  * Set max_active of @wq to @max_active.
4228  *
4229  * CONTEXT:
4230  * Don't call from IRQ context.
4231  */
4232 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4233 {
4234 	struct pool_workqueue *pwq;
4235 
4236 	/* disallow meddling with max_active for ordered workqueues */
4237 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4238 		return;
4239 
4240 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4241 
4242 	mutex_lock(&wq->mutex);
4243 
4244 	wq->flags &= ~__WQ_ORDERED;
4245 	wq->saved_max_active = max_active;
4246 
4247 	for_each_pwq(pwq, wq)
4248 		pwq_adjust_max_active(pwq);
4249 
4250 	mutex_unlock(&wq->mutex);
4251 }
4252 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4253 
4254 /**
4255  * current_work - retrieve %current task's work struct
4256  *
4257  * Determine if %current task is a workqueue worker and what it's working on.
4258  * Useful to find out the context that the %current task is running in.
4259  *
4260  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4261  */
4262 struct work_struct *current_work(void)
4263 {
4264 	struct worker *worker = current_wq_worker();
4265 
4266 	return worker ? worker->current_work : NULL;
4267 }
4268 EXPORT_SYMBOL(current_work);
4269 
4270 /**
4271  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4272  *
4273  * Determine whether %current is a workqueue rescuer.  Can be used from
4274  * work functions to determine whether it's being run off the rescuer task.
4275  *
4276  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4277  */
4278 bool current_is_workqueue_rescuer(void)
4279 {
4280 	struct worker *worker = current_wq_worker();
4281 
4282 	return worker && worker->rescue_wq;
4283 }
4284 
4285 /**
4286  * workqueue_congested - test whether a workqueue is congested
4287  * @cpu: CPU in question
4288  * @wq: target workqueue
4289  *
4290  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4291  * no synchronization around this function and the test result is
4292  * unreliable and only useful as advisory hints or for debugging.
4293  *
4294  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4295  * Note that both per-cpu and unbound workqueues may be associated with
4296  * multiple pool_workqueues which have separate congested states.  A
4297  * workqueue being congested on one CPU doesn't mean the workqueue is also
4298  * contested on other CPUs / NUMA nodes.
4299  *
4300  * Return:
4301  * %true if congested, %false otherwise.
4302  */
4303 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4304 {
4305 	struct pool_workqueue *pwq;
4306 	bool ret;
4307 
4308 	rcu_read_lock_sched();
4309 
4310 	if (cpu == WORK_CPU_UNBOUND)
4311 		cpu = smp_processor_id();
4312 
4313 	if (!(wq->flags & WQ_UNBOUND))
4314 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4315 	else
4316 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4317 
4318 	ret = !list_empty(&pwq->delayed_works);
4319 	rcu_read_unlock_sched();
4320 
4321 	return ret;
4322 }
4323 EXPORT_SYMBOL_GPL(workqueue_congested);
4324 
4325 /**
4326  * work_busy - test whether a work is currently pending or running
4327  * @work: the work to be tested
4328  *
4329  * Test whether @work is currently pending or running.  There is no
4330  * synchronization around this function and the test result is
4331  * unreliable and only useful as advisory hints or for debugging.
4332  *
4333  * Return:
4334  * OR'd bitmask of WORK_BUSY_* bits.
4335  */
4336 unsigned int work_busy(struct work_struct *work)
4337 {
4338 	struct worker_pool *pool;
4339 	unsigned long flags;
4340 	unsigned int ret = 0;
4341 
4342 	if (work_pending(work))
4343 		ret |= WORK_BUSY_PENDING;
4344 
4345 	local_irq_save(flags);
4346 	pool = get_work_pool(work);
4347 	if (pool) {
4348 		spin_lock(&pool->lock);
4349 		if (find_worker_executing_work(pool, work))
4350 			ret |= WORK_BUSY_RUNNING;
4351 		spin_unlock(&pool->lock);
4352 	}
4353 	local_irq_restore(flags);
4354 
4355 	return ret;
4356 }
4357 EXPORT_SYMBOL_GPL(work_busy);
4358 
4359 /**
4360  * set_worker_desc - set description for the current work item
4361  * @fmt: printf-style format string
4362  * @...: arguments for the format string
4363  *
4364  * This function can be called by a running work function to describe what
4365  * the work item is about.  If the worker task gets dumped, this
4366  * information will be printed out together to help debugging.  The
4367  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4368  */
4369 void set_worker_desc(const char *fmt, ...)
4370 {
4371 	struct worker *worker = current_wq_worker();
4372 	va_list args;
4373 
4374 	if (worker) {
4375 		va_start(args, fmt);
4376 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4377 		va_end(args);
4378 	}
4379 }
4380 EXPORT_SYMBOL_GPL(set_worker_desc);
4381 
4382 /**
4383  * print_worker_info - print out worker information and description
4384  * @log_lvl: the log level to use when printing
4385  * @task: target task
4386  *
4387  * If @task is a worker and currently executing a work item, print out the
4388  * name of the workqueue being serviced and worker description set with
4389  * set_worker_desc() by the currently executing work item.
4390  *
4391  * This function can be safely called on any task as long as the
4392  * task_struct itself is accessible.  While safe, this function isn't
4393  * synchronized and may print out mixups or garbages of limited length.
4394  */
4395 void print_worker_info(const char *log_lvl, struct task_struct *task)
4396 {
4397 	work_func_t *fn = NULL;
4398 	char name[WQ_NAME_LEN] = { };
4399 	char desc[WORKER_DESC_LEN] = { };
4400 	struct pool_workqueue *pwq = NULL;
4401 	struct workqueue_struct *wq = NULL;
4402 	struct worker *worker;
4403 
4404 	if (!(task->flags & PF_WQ_WORKER))
4405 		return;
4406 
4407 	/*
4408 	 * This function is called without any synchronization and @task
4409 	 * could be in any state.  Be careful with dereferences.
4410 	 */
4411 	worker = kthread_probe_data(task);
4412 
4413 	/*
4414 	 * Carefully copy the associated workqueue's workfn, name and desc.
4415 	 * Keep the original last '\0' in case the original is garbage.
4416 	 */
4417 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4418 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4419 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4420 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4421 	probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4422 
4423 	if (fn || name[0] || desc[0]) {
4424 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4425 		if (strcmp(name, desc))
4426 			pr_cont(" (%s)", desc);
4427 		pr_cont("\n");
4428 	}
4429 }
4430 
4431 static void pr_cont_pool_info(struct worker_pool *pool)
4432 {
4433 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4434 	if (pool->node != NUMA_NO_NODE)
4435 		pr_cont(" node=%d", pool->node);
4436 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4437 }
4438 
4439 static void pr_cont_work(bool comma, struct work_struct *work)
4440 {
4441 	if (work->func == wq_barrier_func) {
4442 		struct wq_barrier *barr;
4443 
4444 		barr = container_of(work, struct wq_barrier, work);
4445 
4446 		pr_cont("%s BAR(%d)", comma ? "," : "",
4447 			task_pid_nr(barr->task));
4448 	} else {
4449 		pr_cont("%s %pf", comma ? "," : "", work->func);
4450 	}
4451 }
4452 
4453 static void show_pwq(struct pool_workqueue *pwq)
4454 {
4455 	struct worker_pool *pool = pwq->pool;
4456 	struct work_struct *work;
4457 	struct worker *worker;
4458 	bool has_in_flight = false, has_pending = false;
4459 	int bkt;
4460 
4461 	pr_info("  pwq %d:", pool->id);
4462 	pr_cont_pool_info(pool);
4463 
4464 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4465 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4466 
4467 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4468 		if (worker->current_pwq == pwq) {
4469 			has_in_flight = true;
4470 			break;
4471 		}
4472 	}
4473 	if (has_in_flight) {
4474 		bool comma = false;
4475 
4476 		pr_info("    in-flight:");
4477 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4478 			if (worker->current_pwq != pwq)
4479 				continue;
4480 
4481 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4482 				task_pid_nr(worker->task),
4483 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4484 				worker->current_func);
4485 			list_for_each_entry(work, &worker->scheduled, entry)
4486 				pr_cont_work(false, work);
4487 			comma = true;
4488 		}
4489 		pr_cont("\n");
4490 	}
4491 
4492 	list_for_each_entry(work, &pool->worklist, entry) {
4493 		if (get_work_pwq(work) == pwq) {
4494 			has_pending = true;
4495 			break;
4496 		}
4497 	}
4498 	if (has_pending) {
4499 		bool comma = false;
4500 
4501 		pr_info("    pending:");
4502 		list_for_each_entry(work, &pool->worklist, entry) {
4503 			if (get_work_pwq(work) != pwq)
4504 				continue;
4505 
4506 			pr_cont_work(comma, work);
4507 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4508 		}
4509 		pr_cont("\n");
4510 	}
4511 
4512 	if (!list_empty(&pwq->delayed_works)) {
4513 		bool comma = false;
4514 
4515 		pr_info("    delayed:");
4516 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4517 			pr_cont_work(comma, work);
4518 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4519 		}
4520 		pr_cont("\n");
4521 	}
4522 }
4523 
4524 /**
4525  * show_workqueue_state - dump workqueue state
4526  *
4527  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4528  * all busy workqueues and pools.
4529  */
4530 void show_workqueue_state(void)
4531 {
4532 	struct workqueue_struct *wq;
4533 	struct worker_pool *pool;
4534 	unsigned long flags;
4535 	int pi;
4536 
4537 	rcu_read_lock_sched();
4538 
4539 	pr_info("Showing busy workqueues and worker pools:\n");
4540 
4541 	list_for_each_entry_rcu(wq, &workqueues, list) {
4542 		struct pool_workqueue *pwq;
4543 		bool idle = true;
4544 
4545 		for_each_pwq(pwq, wq) {
4546 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4547 				idle = false;
4548 				break;
4549 			}
4550 		}
4551 		if (idle)
4552 			continue;
4553 
4554 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4555 
4556 		for_each_pwq(pwq, wq) {
4557 			spin_lock_irqsave(&pwq->pool->lock, flags);
4558 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4559 				show_pwq(pwq);
4560 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4561 			/*
4562 			 * We could be printing a lot from atomic context, e.g.
4563 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4564 			 * hard lockup.
4565 			 */
4566 			touch_nmi_watchdog();
4567 		}
4568 	}
4569 
4570 	for_each_pool(pool, pi) {
4571 		struct worker *worker;
4572 		bool first = true;
4573 
4574 		spin_lock_irqsave(&pool->lock, flags);
4575 		if (pool->nr_workers == pool->nr_idle)
4576 			goto next_pool;
4577 
4578 		pr_info("pool %d:", pool->id);
4579 		pr_cont_pool_info(pool);
4580 		pr_cont(" hung=%us workers=%d",
4581 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4582 			pool->nr_workers);
4583 		if (pool->manager)
4584 			pr_cont(" manager: %d",
4585 				task_pid_nr(pool->manager->task));
4586 		list_for_each_entry(worker, &pool->idle_list, entry) {
4587 			pr_cont(" %s%d", first ? "idle: " : "",
4588 				task_pid_nr(worker->task));
4589 			first = false;
4590 		}
4591 		pr_cont("\n");
4592 	next_pool:
4593 		spin_unlock_irqrestore(&pool->lock, flags);
4594 		/*
4595 		 * We could be printing a lot from atomic context, e.g.
4596 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4597 		 * hard lockup.
4598 		 */
4599 		touch_nmi_watchdog();
4600 	}
4601 
4602 	rcu_read_unlock_sched();
4603 }
4604 
4605 /* used to show worker information through /proc/PID/{comm,stat,status} */
4606 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4607 {
4608 	int off;
4609 
4610 	/* always show the actual comm */
4611 	off = strscpy(buf, task->comm, size);
4612 	if (off < 0)
4613 		return;
4614 
4615 	/* stabilize PF_WQ_WORKER and worker pool association */
4616 	mutex_lock(&wq_pool_attach_mutex);
4617 
4618 	if (task->flags & PF_WQ_WORKER) {
4619 		struct worker *worker = kthread_data(task);
4620 		struct worker_pool *pool = worker->pool;
4621 
4622 		if (pool) {
4623 			spin_lock_irq(&pool->lock);
4624 			/*
4625 			 * ->desc tracks information (wq name or
4626 			 * set_worker_desc()) for the latest execution.  If
4627 			 * current, prepend '+', otherwise '-'.
4628 			 */
4629 			if (worker->desc[0] != '\0') {
4630 				if (worker->current_work)
4631 					scnprintf(buf + off, size - off, "+%s",
4632 						  worker->desc);
4633 				else
4634 					scnprintf(buf + off, size - off, "-%s",
4635 						  worker->desc);
4636 			}
4637 			spin_unlock_irq(&pool->lock);
4638 		}
4639 	}
4640 
4641 	mutex_unlock(&wq_pool_attach_mutex);
4642 }
4643 
4644 #ifdef CONFIG_SMP
4645 
4646 /*
4647  * CPU hotplug.
4648  *
4649  * There are two challenges in supporting CPU hotplug.  Firstly, there
4650  * are a lot of assumptions on strong associations among work, pwq and
4651  * pool which make migrating pending and scheduled works very
4652  * difficult to implement without impacting hot paths.  Secondly,
4653  * worker pools serve mix of short, long and very long running works making
4654  * blocked draining impractical.
4655  *
4656  * This is solved by allowing the pools to be disassociated from the CPU
4657  * running as an unbound one and allowing it to be reattached later if the
4658  * cpu comes back online.
4659  */
4660 
4661 static void unbind_workers(int cpu)
4662 {
4663 	struct worker_pool *pool;
4664 	struct worker *worker;
4665 
4666 	for_each_cpu_worker_pool(pool, cpu) {
4667 		mutex_lock(&wq_pool_attach_mutex);
4668 		spin_lock_irq(&pool->lock);
4669 
4670 		/*
4671 		 * We've blocked all attach/detach operations. Make all workers
4672 		 * unbound and set DISASSOCIATED.  Before this, all workers
4673 		 * except for the ones which are still executing works from
4674 		 * before the last CPU down must be on the cpu.  After
4675 		 * this, they may become diasporas.
4676 		 */
4677 		for_each_pool_worker(worker, pool)
4678 			worker->flags |= WORKER_UNBOUND;
4679 
4680 		pool->flags |= POOL_DISASSOCIATED;
4681 
4682 		spin_unlock_irq(&pool->lock);
4683 		mutex_unlock(&wq_pool_attach_mutex);
4684 
4685 		/*
4686 		 * Call schedule() so that we cross rq->lock and thus can
4687 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4688 		 * This is necessary as scheduler callbacks may be invoked
4689 		 * from other cpus.
4690 		 */
4691 		schedule();
4692 
4693 		/*
4694 		 * Sched callbacks are disabled now.  Zap nr_running.
4695 		 * After this, nr_running stays zero and need_more_worker()
4696 		 * and keep_working() are always true as long as the
4697 		 * worklist is not empty.  This pool now behaves as an
4698 		 * unbound (in terms of concurrency management) pool which
4699 		 * are served by workers tied to the pool.
4700 		 */
4701 		atomic_set(&pool->nr_running, 0);
4702 
4703 		/*
4704 		 * With concurrency management just turned off, a busy
4705 		 * worker blocking could lead to lengthy stalls.  Kick off
4706 		 * unbound chain execution of currently pending work items.
4707 		 */
4708 		spin_lock_irq(&pool->lock);
4709 		wake_up_worker(pool);
4710 		spin_unlock_irq(&pool->lock);
4711 	}
4712 }
4713 
4714 /**
4715  * rebind_workers - rebind all workers of a pool to the associated CPU
4716  * @pool: pool of interest
4717  *
4718  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4719  */
4720 static void rebind_workers(struct worker_pool *pool)
4721 {
4722 	struct worker *worker;
4723 
4724 	lockdep_assert_held(&wq_pool_attach_mutex);
4725 
4726 	/*
4727 	 * Restore CPU affinity of all workers.  As all idle workers should
4728 	 * be on the run-queue of the associated CPU before any local
4729 	 * wake-ups for concurrency management happen, restore CPU affinity
4730 	 * of all workers first and then clear UNBOUND.  As we're called
4731 	 * from CPU_ONLINE, the following shouldn't fail.
4732 	 */
4733 	for_each_pool_worker(worker, pool)
4734 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4735 						  pool->attrs->cpumask) < 0);
4736 
4737 	spin_lock_irq(&pool->lock);
4738 
4739 	pool->flags &= ~POOL_DISASSOCIATED;
4740 
4741 	for_each_pool_worker(worker, pool) {
4742 		unsigned int worker_flags = worker->flags;
4743 
4744 		/*
4745 		 * A bound idle worker should actually be on the runqueue
4746 		 * of the associated CPU for local wake-ups targeting it to
4747 		 * work.  Kick all idle workers so that they migrate to the
4748 		 * associated CPU.  Doing this in the same loop as
4749 		 * replacing UNBOUND with REBOUND is safe as no worker will
4750 		 * be bound before @pool->lock is released.
4751 		 */
4752 		if (worker_flags & WORKER_IDLE)
4753 			wake_up_process(worker->task);
4754 
4755 		/*
4756 		 * We want to clear UNBOUND but can't directly call
4757 		 * worker_clr_flags() or adjust nr_running.  Atomically
4758 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4759 		 * @worker will clear REBOUND using worker_clr_flags() when
4760 		 * it initiates the next execution cycle thus restoring
4761 		 * concurrency management.  Note that when or whether
4762 		 * @worker clears REBOUND doesn't affect correctness.
4763 		 *
4764 		 * WRITE_ONCE() is necessary because @worker->flags may be
4765 		 * tested without holding any lock in
4766 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4767 		 * fail incorrectly leading to premature concurrency
4768 		 * management operations.
4769 		 */
4770 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4771 		worker_flags |= WORKER_REBOUND;
4772 		worker_flags &= ~WORKER_UNBOUND;
4773 		WRITE_ONCE(worker->flags, worker_flags);
4774 	}
4775 
4776 	spin_unlock_irq(&pool->lock);
4777 }
4778 
4779 /**
4780  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4781  * @pool: unbound pool of interest
4782  * @cpu: the CPU which is coming up
4783  *
4784  * An unbound pool may end up with a cpumask which doesn't have any online
4785  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4786  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4787  * online CPU before, cpus_allowed of all its workers should be restored.
4788  */
4789 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4790 {
4791 	static cpumask_t cpumask;
4792 	struct worker *worker;
4793 
4794 	lockdep_assert_held(&wq_pool_attach_mutex);
4795 
4796 	/* is @cpu allowed for @pool? */
4797 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4798 		return;
4799 
4800 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4801 
4802 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4803 	for_each_pool_worker(worker, pool)
4804 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4805 }
4806 
4807 int workqueue_prepare_cpu(unsigned int cpu)
4808 {
4809 	struct worker_pool *pool;
4810 
4811 	for_each_cpu_worker_pool(pool, cpu) {
4812 		if (pool->nr_workers)
4813 			continue;
4814 		if (!create_worker(pool))
4815 			return -ENOMEM;
4816 	}
4817 	return 0;
4818 }
4819 
4820 int workqueue_online_cpu(unsigned int cpu)
4821 {
4822 	struct worker_pool *pool;
4823 	struct workqueue_struct *wq;
4824 	int pi;
4825 
4826 	mutex_lock(&wq_pool_mutex);
4827 
4828 	for_each_pool(pool, pi) {
4829 		mutex_lock(&wq_pool_attach_mutex);
4830 
4831 		if (pool->cpu == cpu)
4832 			rebind_workers(pool);
4833 		else if (pool->cpu < 0)
4834 			restore_unbound_workers_cpumask(pool, cpu);
4835 
4836 		mutex_unlock(&wq_pool_attach_mutex);
4837 	}
4838 
4839 	/* update NUMA affinity of unbound workqueues */
4840 	list_for_each_entry(wq, &workqueues, list)
4841 		wq_update_unbound_numa(wq, cpu, true);
4842 
4843 	mutex_unlock(&wq_pool_mutex);
4844 	return 0;
4845 }
4846 
4847 int workqueue_offline_cpu(unsigned int cpu)
4848 {
4849 	struct workqueue_struct *wq;
4850 
4851 	/* unbinding per-cpu workers should happen on the local CPU */
4852 	if (WARN_ON(cpu != smp_processor_id()))
4853 		return -1;
4854 
4855 	unbind_workers(cpu);
4856 
4857 	/* update NUMA affinity of unbound workqueues */
4858 	mutex_lock(&wq_pool_mutex);
4859 	list_for_each_entry(wq, &workqueues, list)
4860 		wq_update_unbound_numa(wq, cpu, false);
4861 	mutex_unlock(&wq_pool_mutex);
4862 
4863 	return 0;
4864 }
4865 
4866 struct work_for_cpu {
4867 	struct work_struct work;
4868 	long (*fn)(void *);
4869 	void *arg;
4870 	long ret;
4871 };
4872 
4873 static void work_for_cpu_fn(struct work_struct *work)
4874 {
4875 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4876 
4877 	wfc->ret = wfc->fn(wfc->arg);
4878 }
4879 
4880 /**
4881  * work_on_cpu - run a function in thread context on a particular cpu
4882  * @cpu: the cpu to run on
4883  * @fn: the function to run
4884  * @arg: the function arg
4885  *
4886  * It is up to the caller to ensure that the cpu doesn't go offline.
4887  * The caller must not hold any locks which would prevent @fn from completing.
4888  *
4889  * Return: The value @fn returns.
4890  */
4891 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4892 {
4893 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4894 
4895 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4896 	schedule_work_on(cpu, &wfc.work);
4897 	flush_work(&wfc.work);
4898 	destroy_work_on_stack(&wfc.work);
4899 	return wfc.ret;
4900 }
4901 EXPORT_SYMBOL_GPL(work_on_cpu);
4902 
4903 /**
4904  * work_on_cpu_safe - run a function in thread context on a particular cpu
4905  * @cpu: the cpu to run on
4906  * @fn:  the function to run
4907  * @arg: the function argument
4908  *
4909  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4910  * any locks which would prevent @fn from completing.
4911  *
4912  * Return: The value @fn returns.
4913  */
4914 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4915 {
4916 	long ret = -ENODEV;
4917 
4918 	get_online_cpus();
4919 	if (cpu_online(cpu))
4920 		ret = work_on_cpu(cpu, fn, arg);
4921 	put_online_cpus();
4922 	return ret;
4923 }
4924 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4925 #endif /* CONFIG_SMP */
4926 
4927 #ifdef CONFIG_FREEZER
4928 
4929 /**
4930  * freeze_workqueues_begin - begin freezing workqueues
4931  *
4932  * Start freezing workqueues.  After this function returns, all freezable
4933  * workqueues will queue new works to their delayed_works list instead of
4934  * pool->worklist.
4935  *
4936  * CONTEXT:
4937  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4938  */
4939 void freeze_workqueues_begin(void)
4940 {
4941 	struct workqueue_struct *wq;
4942 	struct pool_workqueue *pwq;
4943 
4944 	mutex_lock(&wq_pool_mutex);
4945 
4946 	WARN_ON_ONCE(workqueue_freezing);
4947 	workqueue_freezing = true;
4948 
4949 	list_for_each_entry(wq, &workqueues, list) {
4950 		mutex_lock(&wq->mutex);
4951 		for_each_pwq(pwq, wq)
4952 			pwq_adjust_max_active(pwq);
4953 		mutex_unlock(&wq->mutex);
4954 	}
4955 
4956 	mutex_unlock(&wq_pool_mutex);
4957 }
4958 
4959 /**
4960  * freeze_workqueues_busy - are freezable workqueues still busy?
4961  *
4962  * Check whether freezing is complete.  This function must be called
4963  * between freeze_workqueues_begin() and thaw_workqueues().
4964  *
4965  * CONTEXT:
4966  * Grabs and releases wq_pool_mutex.
4967  *
4968  * Return:
4969  * %true if some freezable workqueues are still busy.  %false if freezing
4970  * is complete.
4971  */
4972 bool freeze_workqueues_busy(void)
4973 {
4974 	bool busy = false;
4975 	struct workqueue_struct *wq;
4976 	struct pool_workqueue *pwq;
4977 
4978 	mutex_lock(&wq_pool_mutex);
4979 
4980 	WARN_ON_ONCE(!workqueue_freezing);
4981 
4982 	list_for_each_entry(wq, &workqueues, list) {
4983 		if (!(wq->flags & WQ_FREEZABLE))
4984 			continue;
4985 		/*
4986 		 * nr_active is monotonically decreasing.  It's safe
4987 		 * to peek without lock.
4988 		 */
4989 		rcu_read_lock_sched();
4990 		for_each_pwq(pwq, wq) {
4991 			WARN_ON_ONCE(pwq->nr_active < 0);
4992 			if (pwq->nr_active) {
4993 				busy = true;
4994 				rcu_read_unlock_sched();
4995 				goto out_unlock;
4996 			}
4997 		}
4998 		rcu_read_unlock_sched();
4999 	}
5000 out_unlock:
5001 	mutex_unlock(&wq_pool_mutex);
5002 	return busy;
5003 }
5004 
5005 /**
5006  * thaw_workqueues - thaw workqueues
5007  *
5008  * Thaw workqueues.  Normal queueing is restored and all collected
5009  * frozen works are transferred to their respective pool worklists.
5010  *
5011  * CONTEXT:
5012  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5013  */
5014 void thaw_workqueues(void)
5015 {
5016 	struct workqueue_struct *wq;
5017 	struct pool_workqueue *pwq;
5018 
5019 	mutex_lock(&wq_pool_mutex);
5020 
5021 	if (!workqueue_freezing)
5022 		goto out_unlock;
5023 
5024 	workqueue_freezing = false;
5025 
5026 	/* restore max_active and repopulate worklist */
5027 	list_for_each_entry(wq, &workqueues, list) {
5028 		mutex_lock(&wq->mutex);
5029 		for_each_pwq(pwq, wq)
5030 			pwq_adjust_max_active(pwq);
5031 		mutex_unlock(&wq->mutex);
5032 	}
5033 
5034 out_unlock:
5035 	mutex_unlock(&wq_pool_mutex);
5036 }
5037 #endif /* CONFIG_FREEZER */
5038 
5039 static int workqueue_apply_unbound_cpumask(void)
5040 {
5041 	LIST_HEAD(ctxs);
5042 	int ret = 0;
5043 	struct workqueue_struct *wq;
5044 	struct apply_wqattrs_ctx *ctx, *n;
5045 
5046 	lockdep_assert_held(&wq_pool_mutex);
5047 
5048 	list_for_each_entry(wq, &workqueues, list) {
5049 		if (!(wq->flags & WQ_UNBOUND))
5050 			continue;
5051 		/* creating multiple pwqs breaks ordering guarantee */
5052 		if (wq->flags & __WQ_ORDERED)
5053 			continue;
5054 
5055 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5056 		if (!ctx) {
5057 			ret = -ENOMEM;
5058 			break;
5059 		}
5060 
5061 		list_add_tail(&ctx->list, &ctxs);
5062 	}
5063 
5064 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5065 		if (!ret)
5066 			apply_wqattrs_commit(ctx);
5067 		apply_wqattrs_cleanup(ctx);
5068 	}
5069 
5070 	return ret;
5071 }
5072 
5073 /**
5074  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5075  *  @cpumask: the cpumask to set
5076  *
5077  *  The low-level workqueues cpumask is a global cpumask that limits
5078  *  the affinity of all unbound workqueues.  This function check the @cpumask
5079  *  and apply it to all unbound workqueues and updates all pwqs of them.
5080  *
5081  *  Retun:	0	- Success
5082  *  		-EINVAL	- Invalid @cpumask
5083  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5084  */
5085 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5086 {
5087 	int ret = -EINVAL;
5088 	cpumask_var_t saved_cpumask;
5089 
5090 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5091 		return -ENOMEM;
5092 
5093 	/*
5094 	 * Not excluding isolated cpus on purpose.
5095 	 * If the user wishes to include them, we allow that.
5096 	 */
5097 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5098 	if (!cpumask_empty(cpumask)) {
5099 		apply_wqattrs_lock();
5100 
5101 		/* save the old wq_unbound_cpumask. */
5102 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5103 
5104 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5105 		cpumask_copy(wq_unbound_cpumask, cpumask);
5106 		ret = workqueue_apply_unbound_cpumask();
5107 
5108 		/* restore the wq_unbound_cpumask when failed. */
5109 		if (ret < 0)
5110 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5111 
5112 		apply_wqattrs_unlock();
5113 	}
5114 
5115 	free_cpumask_var(saved_cpumask);
5116 	return ret;
5117 }
5118 
5119 #ifdef CONFIG_SYSFS
5120 /*
5121  * Workqueues with WQ_SYSFS flag set is visible to userland via
5122  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5123  * following attributes.
5124  *
5125  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5126  *  max_active	RW int	: maximum number of in-flight work items
5127  *
5128  * Unbound workqueues have the following extra attributes.
5129  *
5130  *  pool_ids	RO int	: the associated pool IDs for each node
5131  *  nice	RW int	: nice value of the workers
5132  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5133  *  numa	RW bool	: whether enable NUMA affinity
5134  */
5135 struct wq_device {
5136 	struct workqueue_struct		*wq;
5137 	struct device			dev;
5138 };
5139 
5140 static struct workqueue_struct *dev_to_wq(struct device *dev)
5141 {
5142 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5143 
5144 	return wq_dev->wq;
5145 }
5146 
5147 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5148 			    char *buf)
5149 {
5150 	struct workqueue_struct *wq = dev_to_wq(dev);
5151 
5152 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5153 }
5154 static DEVICE_ATTR_RO(per_cpu);
5155 
5156 static ssize_t max_active_show(struct device *dev,
5157 			       struct device_attribute *attr, char *buf)
5158 {
5159 	struct workqueue_struct *wq = dev_to_wq(dev);
5160 
5161 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5162 }
5163 
5164 static ssize_t max_active_store(struct device *dev,
5165 				struct device_attribute *attr, const char *buf,
5166 				size_t count)
5167 {
5168 	struct workqueue_struct *wq = dev_to_wq(dev);
5169 	int val;
5170 
5171 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5172 		return -EINVAL;
5173 
5174 	workqueue_set_max_active(wq, val);
5175 	return count;
5176 }
5177 static DEVICE_ATTR_RW(max_active);
5178 
5179 static struct attribute *wq_sysfs_attrs[] = {
5180 	&dev_attr_per_cpu.attr,
5181 	&dev_attr_max_active.attr,
5182 	NULL,
5183 };
5184 ATTRIBUTE_GROUPS(wq_sysfs);
5185 
5186 static ssize_t wq_pool_ids_show(struct device *dev,
5187 				struct device_attribute *attr, char *buf)
5188 {
5189 	struct workqueue_struct *wq = dev_to_wq(dev);
5190 	const char *delim = "";
5191 	int node, written = 0;
5192 
5193 	rcu_read_lock_sched();
5194 	for_each_node(node) {
5195 		written += scnprintf(buf + written, PAGE_SIZE - written,
5196 				     "%s%d:%d", delim, node,
5197 				     unbound_pwq_by_node(wq, node)->pool->id);
5198 		delim = " ";
5199 	}
5200 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5201 	rcu_read_unlock_sched();
5202 
5203 	return written;
5204 }
5205 
5206 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5207 			    char *buf)
5208 {
5209 	struct workqueue_struct *wq = dev_to_wq(dev);
5210 	int written;
5211 
5212 	mutex_lock(&wq->mutex);
5213 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5214 	mutex_unlock(&wq->mutex);
5215 
5216 	return written;
5217 }
5218 
5219 /* prepare workqueue_attrs for sysfs store operations */
5220 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5221 {
5222 	struct workqueue_attrs *attrs;
5223 
5224 	lockdep_assert_held(&wq_pool_mutex);
5225 
5226 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5227 	if (!attrs)
5228 		return NULL;
5229 
5230 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5231 	return attrs;
5232 }
5233 
5234 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5235 			     const char *buf, size_t count)
5236 {
5237 	struct workqueue_struct *wq = dev_to_wq(dev);
5238 	struct workqueue_attrs *attrs;
5239 	int ret = -ENOMEM;
5240 
5241 	apply_wqattrs_lock();
5242 
5243 	attrs = wq_sysfs_prep_attrs(wq);
5244 	if (!attrs)
5245 		goto out_unlock;
5246 
5247 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5248 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5249 		ret = apply_workqueue_attrs_locked(wq, attrs);
5250 	else
5251 		ret = -EINVAL;
5252 
5253 out_unlock:
5254 	apply_wqattrs_unlock();
5255 	free_workqueue_attrs(attrs);
5256 	return ret ?: count;
5257 }
5258 
5259 static ssize_t wq_cpumask_show(struct device *dev,
5260 			       struct device_attribute *attr, char *buf)
5261 {
5262 	struct workqueue_struct *wq = dev_to_wq(dev);
5263 	int written;
5264 
5265 	mutex_lock(&wq->mutex);
5266 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5267 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5268 	mutex_unlock(&wq->mutex);
5269 	return written;
5270 }
5271 
5272 static ssize_t wq_cpumask_store(struct device *dev,
5273 				struct device_attribute *attr,
5274 				const char *buf, size_t count)
5275 {
5276 	struct workqueue_struct *wq = dev_to_wq(dev);
5277 	struct workqueue_attrs *attrs;
5278 	int ret = -ENOMEM;
5279 
5280 	apply_wqattrs_lock();
5281 
5282 	attrs = wq_sysfs_prep_attrs(wq);
5283 	if (!attrs)
5284 		goto out_unlock;
5285 
5286 	ret = cpumask_parse(buf, attrs->cpumask);
5287 	if (!ret)
5288 		ret = apply_workqueue_attrs_locked(wq, attrs);
5289 
5290 out_unlock:
5291 	apply_wqattrs_unlock();
5292 	free_workqueue_attrs(attrs);
5293 	return ret ?: count;
5294 }
5295 
5296 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5297 			    char *buf)
5298 {
5299 	struct workqueue_struct *wq = dev_to_wq(dev);
5300 	int written;
5301 
5302 	mutex_lock(&wq->mutex);
5303 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5304 			    !wq->unbound_attrs->no_numa);
5305 	mutex_unlock(&wq->mutex);
5306 
5307 	return written;
5308 }
5309 
5310 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5311 			     const char *buf, size_t count)
5312 {
5313 	struct workqueue_struct *wq = dev_to_wq(dev);
5314 	struct workqueue_attrs *attrs;
5315 	int v, ret = -ENOMEM;
5316 
5317 	apply_wqattrs_lock();
5318 
5319 	attrs = wq_sysfs_prep_attrs(wq);
5320 	if (!attrs)
5321 		goto out_unlock;
5322 
5323 	ret = -EINVAL;
5324 	if (sscanf(buf, "%d", &v) == 1) {
5325 		attrs->no_numa = !v;
5326 		ret = apply_workqueue_attrs_locked(wq, attrs);
5327 	}
5328 
5329 out_unlock:
5330 	apply_wqattrs_unlock();
5331 	free_workqueue_attrs(attrs);
5332 	return ret ?: count;
5333 }
5334 
5335 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5336 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5337 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5338 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5339 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5340 	__ATTR_NULL,
5341 };
5342 
5343 static struct bus_type wq_subsys = {
5344 	.name				= "workqueue",
5345 	.dev_groups			= wq_sysfs_groups,
5346 };
5347 
5348 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5349 		struct device_attribute *attr, char *buf)
5350 {
5351 	int written;
5352 
5353 	mutex_lock(&wq_pool_mutex);
5354 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5355 			    cpumask_pr_args(wq_unbound_cpumask));
5356 	mutex_unlock(&wq_pool_mutex);
5357 
5358 	return written;
5359 }
5360 
5361 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5362 		struct device_attribute *attr, const char *buf, size_t count)
5363 {
5364 	cpumask_var_t cpumask;
5365 	int ret;
5366 
5367 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5368 		return -ENOMEM;
5369 
5370 	ret = cpumask_parse(buf, cpumask);
5371 	if (!ret)
5372 		ret = workqueue_set_unbound_cpumask(cpumask);
5373 
5374 	free_cpumask_var(cpumask);
5375 	return ret ? ret : count;
5376 }
5377 
5378 static struct device_attribute wq_sysfs_cpumask_attr =
5379 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5380 	       wq_unbound_cpumask_store);
5381 
5382 static int __init wq_sysfs_init(void)
5383 {
5384 	int err;
5385 
5386 	err = subsys_virtual_register(&wq_subsys, NULL);
5387 	if (err)
5388 		return err;
5389 
5390 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5391 }
5392 core_initcall(wq_sysfs_init);
5393 
5394 static void wq_device_release(struct device *dev)
5395 {
5396 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5397 
5398 	kfree(wq_dev);
5399 }
5400 
5401 /**
5402  * workqueue_sysfs_register - make a workqueue visible in sysfs
5403  * @wq: the workqueue to register
5404  *
5405  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5406  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5407  * which is the preferred method.
5408  *
5409  * Workqueue user should use this function directly iff it wants to apply
5410  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5411  * apply_workqueue_attrs() may race against userland updating the
5412  * attributes.
5413  *
5414  * Return: 0 on success, -errno on failure.
5415  */
5416 int workqueue_sysfs_register(struct workqueue_struct *wq)
5417 {
5418 	struct wq_device *wq_dev;
5419 	int ret;
5420 
5421 	/*
5422 	 * Adjusting max_active or creating new pwqs by applying
5423 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5424 	 * workqueues.
5425 	 */
5426 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5427 		return -EINVAL;
5428 
5429 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5430 	if (!wq_dev)
5431 		return -ENOMEM;
5432 
5433 	wq_dev->wq = wq;
5434 	wq_dev->dev.bus = &wq_subsys;
5435 	wq_dev->dev.release = wq_device_release;
5436 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5437 
5438 	/*
5439 	 * unbound_attrs are created separately.  Suppress uevent until
5440 	 * everything is ready.
5441 	 */
5442 	dev_set_uevent_suppress(&wq_dev->dev, true);
5443 
5444 	ret = device_register(&wq_dev->dev);
5445 	if (ret) {
5446 		put_device(&wq_dev->dev);
5447 		wq->wq_dev = NULL;
5448 		return ret;
5449 	}
5450 
5451 	if (wq->flags & WQ_UNBOUND) {
5452 		struct device_attribute *attr;
5453 
5454 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5455 			ret = device_create_file(&wq_dev->dev, attr);
5456 			if (ret) {
5457 				device_unregister(&wq_dev->dev);
5458 				wq->wq_dev = NULL;
5459 				return ret;
5460 			}
5461 		}
5462 	}
5463 
5464 	dev_set_uevent_suppress(&wq_dev->dev, false);
5465 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5466 	return 0;
5467 }
5468 
5469 /**
5470  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5471  * @wq: the workqueue to unregister
5472  *
5473  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5474  */
5475 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5476 {
5477 	struct wq_device *wq_dev = wq->wq_dev;
5478 
5479 	if (!wq->wq_dev)
5480 		return;
5481 
5482 	wq->wq_dev = NULL;
5483 	device_unregister(&wq_dev->dev);
5484 }
5485 #else	/* CONFIG_SYSFS */
5486 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5487 #endif	/* CONFIG_SYSFS */
5488 
5489 /*
5490  * Workqueue watchdog.
5491  *
5492  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5493  * flush dependency, a concurrency managed work item which stays RUNNING
5494  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5495  * usual warning mechanisms don't trigger and internal workqueue state is
5496  * largely opaque.
5497  *
5498  * Workqueue watchdog monitors all worker pools periodically and dumps
5499  * state if some pools failed to make forward progress for a while where
5500  * forward progress is defined as the first item on ->worklist changing.
5501  *
5502  * This mechanism is controlled through the kernel parameter
5503  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5504  * corresponding sysfs parameter file.
5505  */
5506 #ifdef CONFIG_WQ_WATCHDOG
5507 
5508 static unsigned long wq_watchdog_thresh = 30;
5509 static struct timer_list wq_watchdog_timer;
5510 
5511 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5512 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5513 
5514 static void wq_watchdog_reset_touched(void)
5515 {
5516 	int cpu;
5517 
5518 	wq_watchdog_touched = jiffies;
5519 	for_each_possible_cpu(cpu)
5520 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5521 }
5522 
5523 static void wq_watchdog_timer_fn(struct timer_list *unused)
5524 {
5525 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5526 	bool lockup_detected = false;
5527 	struct worker_pool *pool;
5528 	int pi;
5529 
5530 	if (!thresh)
5531 		return;
5532 
5533 	rcu_read_lock();
5534 
5535 	for_each_pool(pool, pi) {
5536 		unsigned long pool_ts, touched, ts;
5537 
5538 		if (list_empty(&pool->worklist))
5539 			continue;
5540 
5541 		/* get the latest of pool and touched timestamps */
5542 		pool_ts = READ_ONCE(pool->watchdog_ts);
5543 		touched = READ_ONCE(wq_watchdog_touched);
5544 
5545 		if (time_after(pool_ts, touched))
5546 			ts = pool_ts;
5547 		else
5548 			ts = touched;
5549 
5550 		if (pool->cpu >= 0) {
5551 			unsigned long cpu_touched =
5552 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5553 						  pool->cpu));
5554 			if (time_after(cpu_touched, ts))
5555 				ts = cpu_touched;
5556 		}
5557 
5558 		/* did we stall? */
5559 		if (time_after(jiffies, ts + thresh)) {
5560 			lockup_detected = true;
5561 			pr_emerg("BUG: workqueue lockup - pool");
5562 			pr_cont_pool_info(pool);
5563 			pr_cont(" stuck for %us!\n",
5564 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5565 		}
5566 	}
5567 
5568 	rcu_read_unlock();
5569 
5570 	if (lockup_detected)
5571 		show_workqueue_state();
5572 
5573 	wq_watchdog_reset_touched();
5574 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5575 }
5576 
5577 notrace void wq_watchdog_touch(int cpu)
5578 {
5579 	if (cpu >= 0)
5580 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5581 	else
5582 		wq_watchdog_touched = jiffies;
5583 }
5584 
5585 static void wq_watchdog_set_thresh(unsigned long thresh)
5586 {
5587 	wq_watchdog_thresh = 0;
5588 	del_timer_sync(&wq_watchdog_timer);
5589 
5590 	if (thresh) {
5591 		wq_watchdog_thresh = thresh;
5592 		wq_watchdog_reset_touched();
5593 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5594 	}
5595 }
5596 
5597 static int wq_watchdog_param_set_thresh(const char *val,
5598 					const struct kernel_param *kp)
5599 {
5600 	unsigned long thresh;
5601 	int ret;
5602 
5603 	ret = kstrtoul(val, 0, &thresh);
5604 	if (ret)
5605 		return ret;
5606 
5607 	if (system_wq)
5608 		wq_watchdog_set_thresh(thresh);
5609 	else
5610 		wq_watchdog_thresh = thresh;
5611 
5612 	return 0;
5613 }
5614 
5615 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5616 	.set	= wq_watchdog_param_set_thresh,
5617 	.get	= param_get_ulong,
5618 };
5619 
5620 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5621 		0644);
5622 
5623 static void wq_watchdog_init(void)
5624 {
5625 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5626 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5627 }
5628 
5629 #else	/* CONFIG_WQ_WATCHDOG */
5630 
5631 static inline void wq_watchdog_init(void) { }
5632 
5633 #endif	/* CONFIG_WQ_WATCHDOG */
5634 
5635 static void __init wq_numa_init(void)
5636 {
5637 	cpumask_var_t *tbl;
5638 	int node, cpu;
5639 
5640 	if (num_possible_nodes() <= 1)
5641 		return;
5642 
5643 	if (wq_disable_numa) {
5644 		pr_info("workqueue: NUMA affinity support disabled\n");
5645 		return;
5646 	}
5647 
5648 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5649 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5650 
5651 	/*
5652 	 * We want masks of possible CPUs of each node which isn't readily
5653 	 * available.  Build one from cpu_to_node() which should have been
5654 	 * fully initialized by now.
5655 	 */
5656 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5657 	BUG_ON(!tbl);
5658 
5659 	for_each_node(node)
5660 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5661 				node_online(node) ? node : NUMA_NO_NODE));
5662 
5663 	for_each_possible_cpu(cpu) {
5664 		node = cpu_to_node(cpu);
5665 		if (WARN_ON(node == NUMA_NO_NODE)) {
5666 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5667 			/* happens iff arch is bonkers, let's just proceed */
5668 			return;
5669 		}
5670 		cpumask_set_cpu(cpu, tbl[node]);
5671 	}
5672 
5673 	wq_numa_possible_cpumask = tbl;
5674 	wq_numa_enabled = true;
5675 }
5676 
5677 /**
5678  * workqueue_init_early - early init for workqueue subsystem
5679  *
5680  * This is the first half of two-staged workqueue subsystem initialization
5681  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5682  * idr are up.  It sets up all the data structures and system workqueues
5683  * and allows early boot code to create workqueues and queue/cancel work
5684  * items.  Actual work item execution starts only after kthreads can be
5685  * created and scheduled right before early initcalls.
5686  */
5687 int __init workqueue_init_early(void)
5688 {
5689 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5690 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5691 	int i, cpu;
5692 
5693 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5694 
5695 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5696 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5697 
5698 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5699 
5700 	/* initialize CPU pools */
5701 	for_each_possible_cpu(cpu) {
5702 		struct worker_pool *pool;
5703 
5704 		i = 0;
5705 		for_each_cpu_worker_pool(pool, cpu) {
5706 			BUG_ON(init_worker_pool(pool));
5707 			pool->cpu = cpu;
5708 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5709 			pool->attrs->nice = std_nice[i++];
5710 			pool->node = cpu_to_node(cpu);
5711 
5712 			/* alloc pool ID */
5713 			mutex_lock(&wq_pool_mutex);
5714 			BUG_ON(worker_pool_assign_id(pool));
5715 			mutex_unlock(&wq_pool_mutex);
5716 		}
5717 	}
5718 
5719 	/* create default unbound and ordered wq attrs */
5720 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5721 		struct workqueue_attrs *attrs;
5722 
5723 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5724 		attrs->nice = std_nice[i];
5725 		unbound_std_wq_attrs[i] = attrs;
5726 
5727 		/*
5728 		 * An ordered wq should have only one pwq as ordering is
5729 		 * guaranteed by max_active which is enforced by pwqs.
5730 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5731 		 */
5732 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5733 		attrs->nice = std_nice[i];
5734 		attrs->no_numa = true;
5735 		ordered_wq_attrs[i] = attrs;
5736 	}
5737 
5738 	system_wq = alloc_workqueue("events", 0, 0);
5739 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5740 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5741 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5742 					    WQ_UNBOUND_MAX_ACTIVE);
5743 	system_freezable_wq = alloc_workqueue("events_freezable",
5744 					      WQ_FREEZABLE, 0);
5745 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5746 					      WQ_POWER_EFFICIENT, 0);
5747 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5748 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5749 					      0);
5750 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5751 	       !system_unbound_wq || !system_freezable_wq ||
5752 	       !system_power_efficient_wq ||
5753 	       !system_freezable_power_efficient_wq);
5754 
5755 	return 0;
5756 }
5757 
5758 /**
5759  * workqueue_init - bring workqueue subsystem fully online
5760  *
5761  * This is the latter half of two-staged workqueue subsystem initialization
5762  * and invoked as soon as kthreads can be created and scheduled.
5763  * Workqueues have been created and work items queued on them, but there
5764  * are no kworkers executing the work items yet.  Populate the worker pools
5765  * with the initial workers and enable future kworker creations.
5766  */
5767 int __init workqueue_init(void)
5768 {
5769 	struct workqueue_struct *wq;
5770 	struct worker_pool *pool;
5771 	int cpu, bkt;
5772 
5773 	/*
5774 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5775 	 * CPU to node mapping may not be available that early on some
5776 	 * archs such as power and arm64.  As per-cpu pools created
5777 	 * previously could be missing node hint and unbound pools NUMA
5778 	 * affinity, fix them up.
5779 	 *
5780 	 * Also, while iterating workqueues, create rescuers if requested.
5781 	 */
5782 	wq_numa_init();
5783 
5784 	mutex_lock(&wq_pool_mutex);
5785 
5786 	for_each_possible_cpu(cpu) {
5787 		for_each_cpu_worker_pool(pool, cpu) {
5788 			pool->node = cpu_to_node(cpu);
5789 		}
5790 	}
5791 
5792 	list_for_each_entry(wq, &workqueues, list) {
5793 		wq_update_unbound_numa(wq, smp_processor_id(), true);
5794 		WARN(init_rescuer(wq),
5795 		     "workqueue: failed to create early rescuer for %s",
5796 		     wq->name);
5797 	}
5798 
5799 	mutex_unlock(&wq_pool_mutex);
5800 
5801 	/* create the initial workers */
5802 	for_each_online_cpu(cpu) {
5803 		for_each_cpu_worker_pool(pool, cpu) {
5804 			pool->flags &= ~POOL_DISASSOCIATED;
5805 			BUG_ON(!create_worker(pool));
5806 		}
5807 	}
5808 
5809 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5810 		BUG_ON(!create_worker(pool));
5811 
5812 	wq_online = true;
5813 	wq_watchdog_init();
5814 
5815 	return 0;
5816 }
5817