xref: /openbmc/linux/kernel/workqueue.c (revision 59f216cf04d973b4316761cbf3e7cb9556715b7a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54 
55 #include "workqueue_internal.h"
56 
57 enum {
58 	/*
59 	 * worker_pool flags
60 	 *
61 	 * A bound pool is either associated or disassociated with its CPU.
62 	 * While associated (!DISASSOCIATED), all workers are bound to the
63 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 	 * is in effect.
65 	 *
66 	 * While DISASSOCIATED, the cpu may be offline and all workers have
67 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 	 * be executing on any CPU.  The pool behaves as an unbound one.
69 	 *
70 	 * Note that DISASSOCIATED should be flipped only while holding
71 	 * wq_pool_attach_mutex to avoid changing binding state while
72 	 * worker_attach_to_pool() is in progress.
73 	 */
74 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
75 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
76 
77 	/* worker flags */
78 	WORKER_DIE		= 1 << 1,	/* die die die */
79 	WORKER_IDLE		= 1 << 2,	/* is idle */
80 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
81 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
82 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
83 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
84 
85 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
86 				  WORKER_UNBOUND | WORKER_REBOUND,
87 
88 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
89 
90 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
91 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
92 
93 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
94 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
95 
96 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
97 						/* call for help after 10ms
98 						   (min two ticks) */
99 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
100 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
101 
102 	/*
103 	 * Rescue workers are used only on emergencies and shared by
104 	 * all cpus.  Give MIN_NICE.
105 	 */
106 	RESCUER_NICE_LEVEL	= MIN_NICE,
107 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
108 
109 	WQ_NAME_LEN		= 24,
110 };
111 
112 /*
113  * Structure fields follow one of the following exclusion rules.
114  *
115  * I: Modifiable by initialization/destruction paths and read-only for
116  *    everyone else.
117  *
118  * P: Preemption protected.  Disabling preemption is enough and should
119  *    only be modified and accessed from the local cpu.
120  *
121  * L: pool->lock protected.  Access with pool->lock held.
122  *
123  * X: During normal operation, modification requires pool->lock and should
124  *    be done only from local cpu.  Either disabling preemption on local
125  *    cpu or grabbing pool->lock is enough for read access.  If
126  *    POOL_DISASSOCIATED is set, it's identical to L.
127  *
128  * A: wq_pool_attach_mutex protected.
129  *
130  * PL: wq_pool_mutex protected.
131  *
132  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
133  *
134  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
135  *
136  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
137  *      RCU for reads.
138  *
139  * WQ: wq->mutex protected.
140  *
141  * WR: wq->mutex protected for writes.  RCU protected for reads.
142  *
143  * MD: wq_mayday_lock protected.
144  */
145 
146 /* struct worker is defined in workqueue_internal.h */
147 
148 struct worker_pool {
149 	raw_spinlock_t		lock;		/* the pool lock */
150 	int			cpu;		/* I: the associated cpu */
151 	int			node;		/* I: the associated node ID */
152 	int			id;		/* I: pool ID */
153 	unsigned int		flags;		/* X: flags */
154 
155 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
156 
157 	struct list_head	worklist;	/* L: list of pending works */
158 
159 	int			nr_workers;	/* L: total number of workers */
160 	int			nr_idle;	/* L: currently idle workers */
161 
162 	struct list_head	idle_list;	/* X: list of idle workers */
163 	struct timer_list	idle_timer;	/* L: worker idle timeout */
164 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
165 
166 	/* a workers is either on busy_hash or idle_list, or the manager */
167 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 						/* L: hash of busy workers */
169 
170 	struct worker		*manager;	/* L: purely informational */
171 	struct list_head	workers;	/* A: attached workers */
172 	struct completion	*detach_completion; /* all workers detached */
173 
174 	struct ida		worker_ida;	/* worker IDs for task name */
175 
176 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
178 	int			refcnt;		/* PL: refcnt for unbound pools */
179 
180 	/*
181 	 * The current concurrency level.  As it's likely to be accessed
182 	 * from other CPUs during try_to_wake_up(), put it in a separate
183 	 * cacheline.
184 	 */
185 	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 
187 	/*
188 	 * Destruction of pool is RCU protected to allow dereferences
189 	 * from get_work_pool().
190 	 */
191 	struct rcu_head		rcu;
192 } ____cacheline_aligned_in_smp;
193 
194 /*
195  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
196  * of work_struct->data are used for flags and the remaining high bits
197  * point to the pwq; thus, pwqs need to be aligned at two's power of the
198  * number of flag bits.
199  */
200 struct pool_workqueue {
201 	struct worker_pool	*pool;		/* I: the associated pool */
202 	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 	int			work_color;	/* L: current color */
204 	int			flush_color;	/* L: flushing color */
205 	int			refcnt;		/* L: reference count */
206 	int			nr_in_flight[WORK_NR_COLORS];
207 						/* L: nr of in_flight works */
208 	int			nr_active;	/* L: nr of active works */
209 	int			max_active;	/* L: max active works */
210 	struct list_head	delayed_works;	/* L: delayed works */
211 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
213 
214 	/*
215 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
216 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
217 	 * itself is also RCU protected so that the first pwq can be
218 	 * determined without grabbing wq->mutex.
219 	 */
220 	struct work_struct	unbound_release_work;
221 	struct rcu_head		rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223 
224 /*
225  * Structure used to wait for workqueue flush.
226  */
227 struct wq_flusher {
228 	struct list_head	list;		/* WQ: list of flushers */
229 	int			flush_color;	/* WQ: flush color waiting for */
230 	struct completion	done;		/* flush completion */
231 };
232 
233 struct wq_device;
234 
235 /*
236  * The externally visible workqueue.  It relays the issued work items to
237  * the appropriate worker_pool through its pool_workqueues.
238  */
239 struct workqueue_struct {
240 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241 	struct list_head	list;		/* PR: list of all workqueues */
242 
243 	struct mutex		mutex;		/* protects this wq */
244 	int			work_color;	/* WQ: current work color */
245 	int			flush_color;	/* WQ: current flush color */
246 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
248 	struct list_head	flusher_queue;	/* WQ: flush waiters */
249 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250 
251 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 	struct worker		*rescuer;	/* MD: rescue worker */
253 
254 	int			nr_drainers;	/* WQ: drain in progress */
255 	int			saved_max_active; /* WQ: saved pwq max_active */
256 
257 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
258 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259 
260 #ifdef CONFIG_SYSFS
261 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 	char			*lock_name;
265 	struct lock_class_key	key;
266 	struct lockdep_map	lockdep_map;
267 #endif
268 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
269 
270 	/*
271 	 * Destruction of workqueue_struct is RCU protected to allow walking
272 	 * the workqueues list without grabbing wq_pool_mutex.
273 	 * This is used to dump all workqueues from sysrq.
274 	 */
275 	struct rcu_head		rcu;
276 
277 	/* hot fields used during command issue, aligned to cacheline */
278 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
279 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
280 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
281 };
282 
283 static struct kmem_cache *pwq_cache;
284 
285 static cpumask_var_t *wq_numa_possible_cpumask;
286 					/* possible CPUs of each node */
287 
288 static bool wq_disable_numa;
289 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
290 
291 /* see the comment above the definition of WQ_POWER_EFFICIENT */
292 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
293 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
294 
295 static bool wq_online;			/* can kworkers be created yet? */
296 
297 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
298 
299 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
300 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
301 
302 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
303 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
304 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
305 /* wait for manager to go away */
306 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
307 
308 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
309 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
310 
311 /* PL: allowable cpus for unbound wqs and work items */
312 static cpumask_var_t wq_unbound_cpumask;
313 
314 /* CPU where unbound work was last round robin scheduled from this CPU */
315 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
316 
317 /*
318  * Local execution of unbound work items is no longer guaranteed.  The
319  * following always forces round-robin CPU selection on unbound work items
320  * to uncover usages which depend on it.
321  */
322 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
323 static bool wq_debug_force_rr_cpu = true;
324 #else
325 static bool wq_debug_force_rr_cpu = false;
326 #endif
327 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
328 
329 /* the per-cpu worker pools */
330 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
331 
332 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
333 
334 /* PL: hash of all unbound pools keyed by pool->attrs */
335 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
336 
337 /* I: attributes used when instantiating standard unbound pools on demand */
338 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
339 
340 /* I: attributes used when instantiating ordered pools on demand */
341 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
342 
343 struct workqueue_struct *system_wq __read_mostly;
344 EXPORT_SYMBOL(system_wq);
345 struct workqueue_struct *system_highpri_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_highpri_wq);
347 struct workqueue_struct *system_long_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_long_wq);
349 struct workqueue_struct *system_unbound_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_unbound_wq);
351 struct workqueue_struct *system_freezable_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_freezable_wq);
353 struct workqueue_struct *system_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
355 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
356 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
357 
358 static int worker_thread(void *__worker);
359 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
360 static void show_pwq(struct pool_workqueue *pwq);
361 
362 #define CREATE_TRACE_POINTS
363 #include <trace/events/workqueue.h>
364 
365 #define assert_rcu_or_pool_mutex()					\
366 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
367 			 !lockdep_is_held(&wq_pool_mutex),		\
368 			 "RCU or wq_pool_mutex should be held")
369 
370 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
371 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
372 			 !lockdep_is_held(&wq->mutex) &&		\
373 			 !lockdep_is_held(&wq_pool_mutex),		\
374 			 "RCU, wq->mutex or wq_pool_mutex should be held")
375 
376 #define for_each_cpu_worker_pool(pool, cpu)				\
377 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
378 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
379 	     (pool)++)
380 
381 /**
382  * for_each_pool - iterate through all worker_pools in the system
383  * @pool: iteration cursor
384  * @pi: integer used for iteration
385  *
386  * This must be called either with wq_pool_mutex held or RCU read
387  * locked.  If the pool needs to be used beyond the locking in effect, the
388  * caller is responsible for guaranteeing that the pool stays online.
389  *
390  * The if/else clause exists only for the lockdep assertion and can be
391  * ignored.
392  */
393 #define for_each_pool(pool, pi)						\
394 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
395 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
396 		else
397 
398 /**
399  * for_each_pool_worker - iterate through all workers of a worker_pool
400  * @worker: iteration cursor
401  * @pool: worker_pool to iterate workers of
402  *
403  * This must be called with wq_pool_attach_mutex.
404  *
405  * The if/else clause exists only for the lockdep assertion and can be
406  * ignored.
407  */
408 #define for_each_pool_worker(worker, pool)				\
409 	list_for_each_entry((worker), &(pool)->workers, node)		\
410 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
411 		else
412 
413 /**
414  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
415  * @pwq: iteration cursor
416  * @wq: the target workqueue
417  *
418  * This must be called either with wq->mutex held or RCU read locked.
419  * If the pwq needs to be used beyond the locking in effect, the caller is
420  * responsible for guaranteeing that the pwq stays online.
421  *
422  * The if/else clause exists only for the lockdep assertion and can be
423  * ignored.
424  */
425 #define for_each_pwq(pwq, wq)						\
426 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
427 				 lockdep_is_held(&(wq->mutex)))
428 
429 #ifdef CONFIG_DEBUG_OBJECTS_WORK
430 
431 static const struct debug_obj_descr work_debug_descr;
432 
433 static void *work_debug_hint(void *addr)
434 {
435 	return ((struct work_struct *) addr)->func;
436 }
437 
438 static bool work_is_static_object(void *addr)
439 {
440 	struct work_struct *work = addr;
441 
442 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443 }
444 
445 /*
446  * fixup_init is called when:
447  * - an active object is initialized
448  */
449 static bool work_fixup_init(void *addr, enum debug_obj_state state)
450 {
451 	struct work_struct *work = addr;
452 
453 	switch (state) {
454 	case ODEBUG_STATE_ACTIVE:
455 		cancel_work_sync(work);
456 		debug_object_init(work, &work_debug_descr);
457 		return true;
458 	default:
459 		return false;
460 	}
461 }
462 
463 /*
464  * fixup_free is called when:
465  * - an active object is freed
466  */
467 static bool work_fixup_free(void *addr, enum debug_obj_state state)
468 {
469 	struct work_struct *work = addr;
470 
471 	switch (state) {
472 	case ODEBUG_STATE_ACTIVE:
473 		cancel_work_sync(work);
474 		debug_object_free(work, &work_debug_descr);
475 		return true;
476 	default:
477 		return false;
478 	}
479 }
480 
481 static const struct debug_obj_descr work_debug_descr = {
482 	.name		= "work_struct",
483 	.debug_hint	= work_debug_hint,
484 	.is_static_object = work_is_static_object,
485 	.fixup_init	= work_fixup_init,
486 	.fixup_free	= work_fixup_free,
487 };
488 
489 static inline void debug_work_activate(struct work_struct *work)
490 {
491 	debug_object_activate(work, &work_debug_descr);
492 }
493 
494 static inline void debug_work_deactivate(struct work_struct *work)
495 {
496 	debug_object_deactivate(work, &work_debug_descr);
497 }
498 
499 void __init_work(struct work_struct *work, int onstack)
500 {
501 	if (onstack)
502 		debug_object_init_on_stack(work, &work_debug_descr);
503 	else
504 		debug_object_init(work, &work_debug_descr);
505 }
506 EXPORT_SYMBOL_GPL(__init_work);
507 
508 void destroy_work_on_stack(struct work_struct *work)
509 {
510 	debug_object_free(work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513 
514 void destroy_delayed_work_on_stack(struct delayed_work *work)
515 {
516 	destroy_timer_on_stack(&work->timer);
517 	debug_object_free(&work->work, &work_debug_descr);
518 }
519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520 
521 #else
522 static inline void debug_work_activate(struct work_struct *work) { }
523 static inline void debug_work_deactivate(struct work_struct *work) { }
524 #endif
525 
526 /**
527  * worker_pool_assign_id - allocate ID and assing it to @pool
528  * @pool: the pool pointer of interest
529  *
530  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531  * successfully, -errno on failure.
532  */
533 static int worker_pool_assign_id(struct worker_pool *pool)
534 {
535 	int ret;
536 
537 	lockdep_assert_held(&wq_pool_mutex);
538 
539 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 			GFP_KERNEL);
541 	if (ret >= 0) {
542 		pool->id = ret;
543 		return 0;
544 	}
545 	return ret;
546 }
547 
548 /**
549  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550  * @wq: the target workqueue
551  * @node: the node ID
552  *
553  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
554  * read locked.
555  * If the pwq needs to be used beyond the locking in effect, the caller is
556  * responsible for guaranteeing that the pwq stays online.
557  *
558  * Return: The unbound pool_workqueue for @node.
559  */
560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 						  int node)
562 {
563 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
564 
565 	/*
566 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 	 * delayed item is pending.  The plan is to keep CPU -> NODE
568 	 * mapping valid and stable across CPU on/offlines.  Once that
569 	 * happens, this workaround can be removed.
570 	 */
571 	if (unlikely(node == NUMA_NO_NODE))
572 		return wq->dfl_pwq;
573 
574 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575 }
576 
577 static unsigned int work_color_to_flags(int color)
578 {
579 	return color << WORK_STRUCT_COLOR_SHIFT;
580 }
581 
582 static int get_work_color(struct work_struct *work)
583 {
584 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
586 }
587 
588 static int work_next_color(int color)
589 {
590 	return (color + 1) % WORK_NR_COLORS;
591 }
592 
593 /*
594  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595  * contain the pointer to the queued pwq.  Once execution starts, the flag
596  * is cleared and the high bits contain OFFQ flags and pool ID.
597  *
598  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599  * and clear_work_data() can be used to set the pwq, pool or clear
600  * work->data.  These functions should only be called while the work is
601  * owned - ie. while the PENDING bit is set.
602  *
603  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604  * corresponding to a work.  Pool is available once the work has been
605  * queued anywhere after initialization until it is sync canceled.  pwq is
606  * available only while the work item is queued.
607  *
608  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609  * canceled.  While being canceled, a work item may have its PENDING set
610  * but stay off timer and worklist for arbitrarily long and nobody should
611  * try to steal the PENDING bit.
612  */
613 static inline void set_work_data(struct work_struct *work, unsigned long data,
614 				 unsigned long flags)
615 {
616 	WARN_ON_ONCE(!work_pending(work));
617 	atomic_long_set(&work->data, data | flags | work_static(work));
618 }
619 
620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 			 unsigned long extra_flags)
622 {
623 	set_work_data(work, (unsigned long)pwq,
624 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
625 }
626 
627 static void set_work_pool_and_keep_pending(struct work_struct *work,
628 					   int pool_id)
629 {
630 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 		      WORK_STRUCT_PENDING);
632 }
633 
634 static void set_work_pool_and_clear_pending(struct work_struct *work,
635 					    int pool_id)
636 {
637 	/*
638 	 * The following wmb is paired with the implied mb in
639 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 	 * here are visible to and precede any updates by the next PENDING
641 	 * owner.
642 	 */
643 	smp_wmb();
644 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
645 	/*
646 	 * The following mb guarantees that previous clear of a PENDING bit
647 	 * will not be reordered with any speculative LOADS or STORES from
648 	 * work->current_func, which is executed afterwards.  This possible
649 	 * reordering can lead to a missed execution on attempt to queue
650 	 * the same @work.  E.g. consider this case:
651 	 *
652 	 *   CPU#0                         CPU#1
653 	 *   ----------------------------  --------------------------------
654 	 *
655 	 * 1  STORE event_indicated
656 	 * 2  queue_work_on() {
657 	 * 3    test_and_set_bit(PENDING)
658 	 * 4 }                             set_..._and_clear_pending() {
659 	 * 5                                 set_work_data() # clear bit
660 	 * 6                                 smp_mb()
661 	 * 7                               work->current_func() {
662 	 * 8				      LOAD event_indicated
663 	 *				   }
664 	 *
665 	 * Without an explicit full barrier speculative LOAD on line 8 can
666 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
667 	 * CPU#0 observes the PENDING bit is still set and new execution of
668 	 * a @work is not queued in a hope, that CPU#1 will eventually
669 	 * finish the queued @work.  Meanwhile CPU#1 does not see
670 	 * event_indicated is set, because speculative LOAD was executed
671 	 * before actual STORE.
672 	 */
673 	smp_mb();
674 }
675 
676 static void clear_work_data(struct work_struct *work)
677 {
678 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
679 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
680 }
681 
682 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
683 {
684 	unsigned long data = atomic_long_read(&work->data);
685 
686 	if (data & WORK_STRUCT_PWQ)
687 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 	else
689 		return NULL;
690 }
691 
692 /**
693  * get_work_pool - return the worker_pool a given work was associated with
694  * @work: the work item of interest
695  *
696  * Pools are created and destroyed under wq_pool_mutex, and allows read
697  * access under RCU read lock.  As such, this function should be
698  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
699  *
700  * All fields of the returned pool are accessible as long as the above
701  * mentioned locking is in effect.  If the returned pool needs to be used
702  * beyond the critical section, the caller is responsible for ensuring the
703  * returned pool is and stays online.
704  *
705  * Return: The worker_pool @work was last associated with.  %NULL if none.
706  */
707 static struct worker_pool *get_work_pool(struct work_struct *work)
708 {
709 	unsigned long data = atomic_long_read(&work->data);
710 	int pool_id;
711 
712 	assert_rcu_or_pool_mutex();
713 
714 	if (data & WORK_STRUCT_PWQ)
715 		return ((struct pool_workqueue *)
716 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
717 
718 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 	if (pool_id == WORK_OFFQ_POOL_NONE)
720 		return NULL;
721 
722 	return idr_find(&worker_pool_idr, pool_id);
723 }
724 
725 /**
726  * get_work_pool_id - return the worker pool ID a given work is associated with
727  * @work: the work item of interest
728  *
729  * Return: The worker_pool ID @work was last associated with.
730  * %WORK_OFFQ_POOL_NONE if none.
731  */
732 static int get_work_pool_id(struct work_struct *work)
733 {
734 	unsigned long data = atomic_long_read(&work->data);
735 
736 	if (data & WORK_STRUCT_PWQ)
737 		return ((struct pool_workqueue *)
738 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
739 
740 	return data >> WORK_OFFQ_POOL_SHIFT;
741 }
742 
743 static void mark_work_canceling(struct work_struct *work)
744 {
745 	unsigned long pool_id = get_work_pool_id(work);
746 
747 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
749 }
750 
751 static bool work_is_canceling(struct work_struct *work)
752 {
753 	unsigned long data = atomic_long_read(&work->data);
754 
755 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
756 }
757 
758 /*
759  * Policy functions.  These define the policies on how the global worker
760  * pools are managed.  Unless noted otherwise, these functions assume that
761  * they're being called with pool->lock held.
762  */
763 
764 static bool __need_more_worker(struct worker_pool *pool)
765 {
766 	return !atomic_read(&pool->nr_running);
767 }
768 
769 /*
770  * Need to wake up a worker?  Called from anything but currently
771  * running workers.
772  *
773  * Note that, because unbound workers never contribute to nr_running, this
774  * function will always return %true for unbound pools as long as the
775  * worklist isn't empty.
776  */
777 static bool need_more_worker(struct worker_pool *pool)
778 {
779 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
780 }
781 
782 /* Can I start working?  Called from busy but !running workers. */
783 static bool may_start_working(struct worker_pool *pool)
784 {
785 	return pool->nr_idle;
786 }
787 
788 /* Do I need to keep working?  Called from currently running workers. */
789 static bool keep_working(struct worker_pool *pool)
790 {
791 	return !list_empty(&pool->worklist) &&
792 		atomic_read(&pool->nr_running) <= 1;
793 }
794 
795 /* Do we need a new worker?  Called from manager. */
796 static bool need_to_create_worker(struct worker_pool *pool)
797 {
798 	return need_more_worker(pool) && !may_start_working(pool);
799 }
800 
801 /* Do we have too many workers and should some go away? */
802 static bool too_many_workers(struct worker_pool *pool)
803 {
804 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
805 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 	int nr_busy = pool->nr_workers - nr_idle;
807 
808 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
809 }
810 
811 /*
812  * Wake up functions.
813  */
814 
815 /* Return the first idle worker.  Safe with preemption disabled */
816 static struct worker *first_idle_worker(struct worker_pool *pool)
817 {
818 	if (unlikely(list_empty(&pool->idle_list)))
819 		return NULL;
820 
821 	return list_first_entry(&pool->idle_list, struct worker, entry);
822 }
823 
824 /**
825  * wake_up_worker - wake up an idle worker
826  * @pool: worker pool to wake worker from
827  *
828  * Wake up the first idle worker of @pool.
829  *
830  * CONTEXT:
831  * raw_spin_lock_irq(pool->lock).
832  */
833 static void wake_up_worker(struct worker_pool *pool)
834 {
835 	struct worker *worker = first_idle_worker(pool);
836 
837 	if (likely(worker))
838 		wake_up_process(worker->task);
839 }
840 
841 /**
842  * wq_worker_running - a worker is running again
843  * @task: task waking up
844  *
845  * This function is called when a worker returns from schedule()
846  */
847 void wq_worker_running(struct task_struct *task)
848 {
849 	struct worker *worker = kthread_data(task);
850 
851 	if (!worker->sleeping)
852 		return;
853 	if (!(worker->flags & WORKER_NOT_RUNNING))
854 		atomic_inc(&worker->pool->nr_running);
855 	worker->sleeping = 0;
856 }
857 
858 /**
859  * wq_worker_sleeping - a worker is going to sleep
860  * @task: task going to sleep
861  *
862  * This function is called from schedule() when a busy worker is
863  * going to sleep. Preemption needs to be disabled to protect ->sleeping
864  * assignment.
865  */
866 void wq_worker_sleeping(struct task_struct *task)
867 {
868 	struct worker *next, *worker = kthread_data(task);
869 	struct worker_pool *pool;
870 
871 	/*
872 	 * Rescuers, which may not have all the fields set up like normal
873 	 * workers, also reach here, let's not access anything before
874 	 * checking NOT_RUNNING.
875 	 */
876 	if (worker->flags & WORKER_NOT_RUNNING)
877 		return;
878 
879 	pool = worker->pool;
880 
881 	/* Return if preempted before wq_worker_running() was reached */
882 	if (worker->sleeping)
883 		return;
884 
885 	worker->sleeping = 1;
886 	raw_spin_lock_irq(&pool->lock);
887 
888 	/*
889 	 * The counterpart of the following dec_and_test, implied mb,
890 	 * worklist not empty test sequence is in insert_work().
891 	 * Please read comment there.
892 	 *
893 	 * NOT_RUNNING is clear.  This means that we're bound to and
894 	 * running on the local cpu w/ rq lock held and preemption
895 	 * disabled, which in turn means that none else could be
896 	 * manipulating idle_list, so dereferencing idle_list without pool
897 	 * lock is safe.
898 	 */
899 	if (atomic_dec_and_test(&pool->nr_running) &&
900 	    !list_empty(&pool->worklist)) {
901 		next = first_idle_worker(pool);
902 		if (next)
903 			wake_up_process(next->task);
904 	}
905 	raw_spin_unlock_irq(&pool->lock);
906 }
907 
908 /**
909  * wq_worker_last_func - retrieve worker's last work function
910  * @task: Task to retrieve last work function of.
911  *
912  * Determine the last function a worker executed. This is called from
913  * the scheduler to get a worker's last known identity.
914  *
915  * CONTEXT:
916  * raw_spin_lock_irq(rq->lock)
917  *
918  * This function is called during schedule() when a kworker is going
919  * to sleep. It's used by psi to identify aggregation workers during
920  * dequeuing, to allow periodic aggregation to shut-off when that
921  * worker is the last task in the system or cgroup to go to sleep.
922  *
923  * As this function doesn't involve any workqueue-related locking, it
924  * only returns stable values when called from inside the scheduler's
925  * queuing and dequeuing paths, when @task, which must be a kworker,
926  * is guaranteed to not be processing any works.
927  *
928  * Return:
929  * The last work function %current executed as a worker, NULL if it
930  * hasn't executed any work yet.
931  */
932 work_func_t wq_worker_last_func(struct task_struct *task)
933 {
934 	struct worker *worker = kthread_data(task);
935 
936 	return worker->last_func;
937 }
938 
939 /**
940  * worker_set_flags - set worker flags and adjust nr_running accordingly
941  * @worker: self
942  * @flags: flags to set
943  *
944  * Set @flags in @worker->flags and adjust nr_running accordingly.
945  *
946  * CONTEXT:
947  * raw_spin_lock_irq(pool->lock)
948  */
949 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
950 {
951 	struct worker_pool *pool = worker->pool;
952 
953 	WARN_ON_ONCE(worker->task != current);
954 
955 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
956 	if ((flags & WORKER_NOT_RUNNING) &&
957 	    !(worker->flags & WORKER_NOT_RUNNING)) {
958 		atomic_dec(&pool->nr_running);
959 	}
960 
961 	worker->flags |= flags;
962 }
963 
964 /**
965  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
966  * @worker: self
967  * @flags: flags to clear
968  *
969  * Clear @flags in @worker->flags and adjust nr_running accordingly.
970  *
971  * CONTEXT:
972  * raw_spin_lock_irq(pool->lock)
973  */
974 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
975 {
976 	struct worker_pool *pool = worker->pool;
977 	unsigned int oflags = worker->flags;
978 
979 	WARN_ON_ONCE(worker->task != current);
980 
981 	worker->flags &= ~flags;
982 
983 	/*
984 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
985 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
986 	 * of multiple flags, not a single flag.
987 	 */
988 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
989 		if (!(worker->flags & WORKER_NOT_RUNNING))
990 			atomic_inc(&pool->nr_running);
991 }
992 
993 /**
994  * find_worker_executing_work - find worker which is executing a work
995  * @pool: pool of interest
996  * @work: work to find worker for
997  *
998  * Find a worker which is executing @work on @pool by searching
999  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1000  * to match, its current execution should match the address of @work and
1001  * its work function.  This is to avoid unwanted dependency between
1002  * unrelated work executions through a work item being recycled while still
1003  * being executed.
1004  *
1005  * This is a bit tricky.  A work item may be freed once its execution
1006  * starts and nothing prevents the freed area from being recycled for
1007  * another work item.  If the same work item address ends up being reused
1008  * before the original execution finishes, workqueue will identify the
1009  * recycled work item as currently executing and make it wait until the
1010  * current execution finishes, introducing an unwanted dependency.
1011  *
1012  * This function checks the work item address and work function to avoid
1013  * false positives.  Note that this isn't complete as one may construct a
1014  * work function which can introduce dependency onto itself through a
1015  * recycled work item.  Well, if somebody wants to shoot oneself in the
1016  * foot that badly, there's only so much we can do, and if such deadlock
1017  * actually occurs, it should be easy to locate the culprit work function.
1018  *
1019  * CONTEXT:
1020  * raw_spin_lock_irq(pool->lock).
1021  *
1022  * Return:
1023  * Pointer to worker which is executing @work if found, %NULL
1024  * otherwise.
1025  */
1026 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1027 						 struct work_struct *work)
1028 {
1029 	struct worker *worker;
1030 
1031 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1032 			       (unsigned long)work)
1033 		if (worker->current_work == work &&
1034 		    worker->current_func == work->func)
1035 			return worker;
1036 
1037 	return NULL;
1038 }
1039 
1040 /**
1041  * move_linked_works - move linked works to a list
1042  * @work: start of series of works to be scheduled
1043  * @head: target list to append @work to
1044  * @nextp: out parameter for nested worklist walking
1045  *
1046  * Schedule linked works starting from @work to @head.  Work series to
1047  * be scheduled starts at @work and includes any consecutive work with
1048  * WORK_STRUCT_LINKED set in its predecessor.
1049  *
1050  * If @nextp is not NULL, it's updated to point to the next work of
1051  * the last scheduled work.  This allows move_linked_works() to be
1052  * nested inside outer list_for_each_entry_safe().
1053  *
1054  * CONTEXT:
1055  * raw_spin_lock_irq(pool->lock).
1056  */
1057 static void move_linked_works(struct work_struct *work, struct list_head *head,
1058 			      struct work_struct **nextp)
1059 {
1060 	struct work_struct *n;
1061 
1062 	/*
1063 	 * Linked worklist will always end before the end of the list,
1064 	 * use NULL for list head.
1065 	 */
1066 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1067 		list_move_tail(&work->entry, head);
1068 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1069 			break;
1070 	}
1071 
1072 	/*
1073 	 * If we're already inside safe list traversal and have moved
1074 	 * multiple works to the scheduled queue, the next position
1075 	 * needs to be updated.
1076 	 */
1077 	if (nextp)
1078 		*nextp = n;
1079 }
1080 
1081 /**
1082  * get_pwq - get an extra reference on the specified pool_workqueue
1083  * @pwq: pool_workqueue to get
1084  *
1085  * Obtain an extra reference on @pwq.  The caller should guarantee that
1086  * @pwq has positive refcnt and be holding the matching pool->lock.
1087  */
1088 static void get_pwq(struct pool_workqueue *pwq)
1089 {
1090 	lockdep_assert_held(&pwq->pool->lock);
1091 	WARN_ON_ONCE(pwq->refcnt <= 0);
1092 	pwq->refcnt++;
1093 }
1094 
1095 /**
1096  * put_pwq - put a pool_workqueue reference
1097  * @pwq: pool_workqueue to put
1098  *
1099  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1100  * destruction.  The caller should be holding the matching pool->lock.
1101  */
1102 static void put_pwq(struct pool_workqueue *pwq)
1103 {
1104 	lockdep_assert_held(&pwq->pool->lock);
1105 	if (likely(--pwq->refcnt))
1106 		return;
1107 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1108 		return;
1109 	/*
1110 	 * @pwq can't be released under pool->lock, bounce to
1111 	 * pwq_unbound_release_workfn().  This never recurses on the same
1112 	 * pool->lock as this path is taken only for unbound workqueues and
1113 	 * the release work item is scheduled on a per-cpu workqueue.  To
1114 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1115 	 * subclass of 1 in get_unbound_pool().
1116 	 */
1117 	schedule_work(&pwq->unbound_release_work);
1118 }
1119 
1120 /**
1121  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1122  * @pwq: pool_workqueue to put (can be %NULL)
1123  *
1124  * put_pwq() with locking.  This function also allows %NULL @pwq.
1125  */
1126 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1127 {
1128 	if (pwq) {
1129 		/*
1130 		 * As both pwqs and pools are RCU protected, the
1131 		 * following lock operations are safe.
1132 		 */
1133 		raw_spin_lock_irq(&pwq->pool->lock);
1134 		put_pwq(pwq);
1135 		raw_spin_unlock_irq(&pwq->pool->lock);
1136 	}
1137 }
1138 
1139 static void pwq_activate_delayed_work(struct work_struct *work)
1140 {
1141 	struct pool_workqueue *pwq = get_work_pwq(work);
1142 
1143 	trace_workqueue_activate_work(work);
1144 	if (list_empty(&pwq->pool->worklist))
1145 		pwq->pool->watchdog_ts = jiffies;
1146 	move_linked_works(work, &pwq->pool->worklist, NULL);
1147 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1148 	pwq->nr_active++;
1149 }
1150 
1151 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1152 {
1153 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1154 						    struct work_struct, entry);
1155 
1156 	pwq_activate_delayed_work(work);
1157 }
1158 
1159 /**
1160  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1161  * @pwq: pwq of interest
1162  * @color: color of work which left the queue
1163  *
1164  * A work either has completed or is removed from pending queue,
1165  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1166  *
1167  * CONTEXT:
1168  * raw_spin_lock_irq(pool->lock).
1169  */
1170 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1171 {
1172 	/* uncolored work items don't participate in flushing or nr_active */
1173 	if (color == WORK_NO_COLOR)
1174 		goto out_put;
1175 
1176 	pwq->nr_in_flight[color]--;
1177 
1178 	pwq->nr_active--;
1179 	if (!list_empty(&pwq->delayed_works)) {
1180 		/* one down, submit a delayed one */
1181 		if (pwq->nr_active < pwq->max_active)
1182 			pwq_activate_first_delayed(pwq);
1183 	}
1184 
1185 	/* is flush in progress and are we at the flushing tip? */
1186 	if (likely(pwq->flush_color != color))
1187 		goto out_put;
1188 
1189 	/* are there still in-flight works? */
1190 	if (pwq->nr_in_flight[color])
1191 		goto out_put;
1192 
1193 	/* this pwq is done, clear flush_color */
1194 	pwq->flush_color = -1;
1195 
1196 	/*
1197 	 * If this was the last pwq, wake up the first flusher.  It
1198 	 * will handle the rest.
1199 	 */
1200 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1201 		complete(&pwq->wq->first_flusher->done);
1202 out_put:
1203 	put_pwq(pwq);
1204 }
1205 
1206 /**
1207  * try_to_grab_pending - steal work item from worklist and disable irq
1208  * @work: work item to steal
1209  * @is_dwork: @work is a delayed_work
1210  * @flags: place to store irq state
1211  *
1212  * Try to grab PENDING bit of @work.  This function can handle @work in any
1213  * stable state - idle, on timer or on worklist.
1214  *
1215  * Return:
1216  *
1217  *  ========	================================================================
1218  *  1		if @work was pending and we successfully stole PENDING
1219  *  0		if @work was idle and we claimed PENDING
1220  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1221  *  -ENOENT	if someone else is canceling @work, this state may persist
1222  *		for arbitrarily long
1223  *  ========	================================================================
1224  *
1225  * Note:
1226  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1227  * interrupted while holding PENDING and @work off queue, irq must be
1228  * disabled on entry.  This, combined with delayed_work->timer being
1229  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1230  *
1231  * On successful return, >= 0, irq is disabled and the caller is
1232  * responsible for releasing it using local_irq_restore(*@flags).
1233  *
1234  * This function is safe to call from any context including IRQ handler.
1235  */
1236 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1237 			       unsigned long *flags)
1238 {
1239 	struct worker_pool *pool;
1240 	struct pool_workqueue *pwq;
1241 
1242 	local_irq_save(*flags);
1243 
1244 	/* try to steal the timer if it exists */
1245 	if (is_dwork) {
1246 		struct delayed_work *dwork = to_delayed_work(work);
1247 
1248 		/*
1249 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1250 		 * guaranteed that the timer is not queued anywhere and not
1251 		 * running on the local CPU.
1252 		 */
1253 		if (likely(del_timer(&dwork->timer)))
1254 			return 1;
1255 	}
1256 
1257 	/* try to claim PENDING the normal way */
1258 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1259 		return 0;
1260 
1261 	rcu_read_lock();
1262 	/*
1263 	 * The queueing is in progress, or it is already queued. Try to
1264 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1265 	 */
1266 	pool = get_work_pool(work);
1267 	if (!pool)
1268 		goto fail;
1269 
1270 	raw_spin_lock(&pool->lock);
1271 	/*
1272 	 * work->data is guaranteed to point to pwq only while the work
1273 	 * item is queued on pwq->wq, and both updating work->data to point
1274 	 * to pwq on queueing and to pool on dequeueing are done under
1275 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1276 	 * points to pwq which is associated with a locked pool, the work
1277 	 * item is currently queued on that pool.
1278 	 */
1279 	pwq = get_work_pwq(work);
1280 	if (pwq && pwq->pool == pool) {
1281 		debug_work_deactivate(work);
1282 
1283 		/*
1284 		 * A delayed work item cannot be grabbed directly because
1285 		 * it might have linked NO_COLOR work items which, if left
1286 		 * on the delayed_list, will confuse pwq->nr_active
1287 		 * management later on and cause stall.  Make sure the work
1288 		 * item is activated before grabbing.
1289 		 */
1290 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1291 			pwq_activate_delayed_work(work);
1292 
1293 		list_del_init(&work->entry);
1294 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1295 
1296 		/* work->data points to pwq iff queued, point to pool */
1297 		set_work_pool_and_keep_pending(work, pool->id);
1298 
1299 		raw_spin_unlock(&pool->lock);
1300 		rcu_read_unlock();
1301 		return 1;
1302 	}
1303 	raw_spin_unlock(&pool->lock);
1304 fail:
1305 	rcu_read_unlock();
1306 	local_irq_restore(*flags);
1307 	if (work_is_canceling(work))
1308 		return -ENOENT;
1309 	cpu_relax();
1310 	return -EAGAIN;
1311 }
1312 
1313 /**
1314  * insert_work - insert a work into a pool
1315  * @pwq: pwq @work belongs to
1316  * @work: work to insert
1317  * @head: insertion point
1318  * @extra_flags: extra WORK_STRUCT_* flags to set
1319  *
1320  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1321  * work_struct flags.
1322  *
1323  * CONTEXT:
1324  * raw_spin_lock_irq(pool->lock).
1325  */
1326 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1327 			struct list_head *head, unsigned int extra_flags)
1328 {
1329 	struct worker_pool *pool = pwq->pool;
1330 
1331 	/* record the work call stack in order to print it in KASAN reports */
1332 	kasan_record_aux_stack(work);
1333 
1334 	/* we own @work, set data and link */
1335 	set_work_pwq(work, pwq, extra_flags);
1336 	list_add_tail(&work->entry, head);
1337 	get_pwq(pwq);
1338 
1339 	/*
1340 	 * Ensure either wq_worker_sleeping() sees the above
1341 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1342 	 * around lazily while there are works to be processed.
1343 	 */
1344 	smp_mb();
1345 
1346 	if (__need_more_worker(pool))
1347 		wake_up_worker(pool);
1348 }
1349 
1350 /*
1351  * Test whether @work is being queued from another work executing on the
1352  * same workqueue.
1353  */
1354 static bool is_chained_work(struct workqueue_struct *wq)
1355 {
1356 	struct worker *worker;
1357 
1358 	worker = current_wq_worker();
1359 	/*
1360 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1361 	 * I'm @worker, it's safe to dereference it without locking.
1362 	 */
1363 	return worker && worker->current_pwq->wq == wq;
1364 }
1365 
1366 /*
1367  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1368  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1369  * avoid perturbing sensitive tasks.
1370  */
1371 static int wq_select_unbound_cpu(int cpu)
1372 {
1373 	static bool printed_dbg_warning;
1374 	int new_cpu;
1375 
1376 	if (likely(!wq_debug_force_rr_cpu)) {
1377 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1378 			return cpu;
1379 	} else if (!printed_dbg_warning) {
1380 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1381 		printed_dbg_warning = true;
1382 	}
1383 
1384 	if (cpumask_empty(wq_unbound_cpumask))
1385 		return cpu;
1386 
1387 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1388 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1389 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1390 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1391 		if (unlikely(new_cpu >= nr_cpu_ids))
1392 			return cpu;
1393 	}
1394 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1395 
1396 	return new_cpu;
1397 }
1398 
1399 static void __queue_work(int cpu, struct workqueue_struct *wq,
1400 			 struct work_struct *work)
1401 {
1402 	struct pool_workqueue *pwq;
1403 	struct worker_pool *last_pool;
1404 	struct list_head *worklist;
1405 	unsigned int work_flags;
1406 	unsigned int req_cpu = cpu;
1407 
1408 	/*
1409 	 * While a work item is PENDING && off queue, a task trying to
1410 	 * steal the PENDING will busy-loop waiting for it to either get
1411 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1412 	 * happen with IRQ disabled.
1413 	 */
1414 	lockdep_assert_irqs_disabled();
1415 
1416 
1417 	/* if draining, only works from the same workqueue are allowed */
1418 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1419 	    WARN_ON_ONCE(!is_chained_work(wq)))
1420 		return;
1421 	rcu_read_lock();
1422 retry:
1423 	/* pwq which will be used unless @work is executing elsewhere */
1424 	if (wq->flags & WQ_UNBOUND) {
1425 		if (req_cpu == WORK_CPU_UNBOUND)
1426 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1427 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1428 	} else {
1429 		if (req_cpu == WORK_CPU_UNBOUND)
1430 			cpu = raw_smp_processor_id();
1431 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1432 	}
1433 
1434 	/*
1435 	 * If @work was previously on a different pool, it might still be
1436 	 * running there, in which case the work needs to be queued on that
1437 	 * pool to guarantee non-reentrancy.
1438 	 */
1439 	last_pool = get_work_pool(work);
1440 	if (last_pool && last_pool != pwq->pool) {
1441 		struct worker *worker;
1442 
1443 		raw_spin_lock(&last_pool->lock);
1444 
1445 		worker = find_worker_executing_work(last_pool, work);
1446 
1447 		if (worker && worker->current_pwq->wq == wq) {
1448 			pwq = worker->current_pwq;
1449 		} else {
1450 			/* meh... not running there, queue here */
1451 			raw_spin_unlock(&last_pool->lock);
1452 			raw_spin_lock(&pwq->pool->lock);
1453 		}
1454 	} else {
1455 		raw_spin_lock(&pwq->pool->lock);
1456 	}
1457 
1458 	/*
1459 	 * pwq is determined and locked.  For unbound pools, we could have
1460 	 * raced with pwq release and it could already be dead.  If its
1461 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1462 	 * without another pwq replacing it in the numa_pwq_tbl or while
1463 	 * work items are executing on it, so the retrying is guaranteed to
1464 	 * make forward-progress.
1465 	 */
1466 	if (unlikely(!pwq->refcnt)) {
1467 		if (wq->flags & WQ_UNBOUND) {
1468 			raw_spin_unlock(&pwq->pool->lock);
1469 			cpu_relax();
1470 			goto retry;
1471 		}
1472 		/* oops */
1473 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1474 			  wq->name, cpu);
1475 	}
1476 
1477 	/* pwq determined, queue */
1478 	trace_workqueue_queue_work(req_cpu, pwq, work);
1479 
1480 	if (WARN_ON(!list_empty(&work->entry)))
1481 		goto out;
1482 
1483 	pwq->nr_in_flight[pwq->work_color]++;
1484 	work_flags = work_color_to_flags(pwq->work_color);
1485 
1486 	if (likely(pwq->nr_active < pwq->max_active)) {
1487 		trace_workqueue_activate_work(work);
1488 		pwq->nr_active++;
1489 		worklist = &pwq->pool->worklist;
1490 		if (list_empty(worklist))
1491 			pwq->pool->watchdog_ts = jiffies;
1492 	} else {
1493 		work_flags |= WORK_STRUCT_DELAYED;
1494 		worklist = &pwq->delayed_works;
1495 	}
1496 
1497 	debug_work_activate(work);
1498 	insert_work(pwq, work, worklist, work_flags);
1499 
1500 out:
1501 	raw_spin_unlock(&pwq->pool->lock);
1502 	rcu_read_unlock();
1503 }
1504 
1505 /**
1506  * queue_work_on - queue work on specific cpu
1507  * @cpu: CPU number to execute work on
1508  * @wq: workqueue to use
1509  * @work: work to queue
1510  *
1511  * We queue the work to a specific CPU, the caller must ensure it
1512  * can't go away.
1513  *
1514  * Return: %false if @work was already on a queue, %true otherwise.
1515  */
1516 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1517 		   struct work_struct *work)
1518 {
1519 	bool ret = false;
1520 	unsigned long flags;
1521 
1522 	local_irq_save(flags);
1523 
1524 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1525 		__queue_work(cpu, wq, work);
1526 		ret = true;
1527 	}
1528 
1529 	local_irq_restore(flags);
1530 	return ret;
1531 }
1532 EXPORT_SYMBOL(queue_work_on);
1533 
1534 /**
1535  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1536  * @node: NUMA node ID that we want to select a CPU from
1537  *
1538  * This function will attempt to find a "random" cpu available on a given
1539  * node. If there are no CPUs available on the given node it will return
1540  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1541  * available CPU if we need to schedule this work.
1542  */
1543 static int workqueue_select_cpu_near(int node)
1544 {
1545 	int cpu;
1546 
1547 	/* No point in doing this if NUMA isn't enabled for workqueues */
1548 	if (!wq_numa_enabled)
1549 		return WORK_CPU_UNBOUND;
1550 
1551 	/* Delay binding to CPU if node is not valid or online */
1552 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1553 		return WORK_CPU_UNBOUND;
1554 
1555 	/* Use local node/cpu if we are already there */
1556 	cpu = raw_smp_processor_id();
1557 	if (node == cpu_to_node(cpu))
1558 		return cpu;
1559 
1560 	/* Use "random" otherwise know as "first" online CPU of node */
1561 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1562 
1563 	/* If CPU is valid return that, otherwise just defer */
1564 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1565 }
1566 
1567 /**
1568  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1569  * @node: NUMA node that we are targeting the work for
1570  * @wq: workqueue to use
1571  * @work: work to queue
1572  *
1573  * We queue the work to a "random" CPU within a given NUMA node. The basic
1574  * idea here is to provide a way to somehow associate work with a given
1575  * NUMA node.
1576  *
1577  * This function will only make a best effort attempt at getting this onto
1578  * the right NUMA node. If no node is requested or the requested node is
1579  * offline then we just fall back to standard queue_work behavior.
1580  *
1581  * Currently the "random" CPU ends up being the first available CPU in the
1582  * intersection of cpu_online_mask and the cpumask of the node, unless we
1583  * are running on the node. In that case we just use the current CPU.
1584  *
1585  * Return: %false if @work was already on a queue, %true otherwise.
1586  */
1587 bool queue_work_node(int node, struct workqueue_struct *wq,
1588 		     struct work_struct *work)
1589 {
1590 	unsigned long flags;
1591 	bool ret = false;
1592 
1593 	/*
1594 	 * This current implementation is specific to unbound workqueues.
1595 	 * Specifically we only return the first available CPU for a given
1596 	 * node instead of cycling through individual CPUs within the node.
1597 	 *
1598 	 * If this is used with a per-cpu workqueue then the logic in
1599 	 * workqueue_select_cpu_near would need to be updated to allow for
1600 	 * some round robin type logic.
1601 	 */
1602 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1603 
1604 	local_irq_save(flags);
1605 
1606 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1607 		int cpu = workqueue_select_cpu_near(node);
1608 
1609 		__queue_work(cpu, wq, work);
1610 		ret = true;
1611 	}
1612 
1613 	local_irq_restore(flags);
1614 	return ret;
1615 }
1616 EXPORT_SYMBOL_GPL(queue_work_node);
1617 
1618 void delayed_work_timer_fn(struct timer_list *t)
1619 {
1620 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1621 
1622 	/* should have been called from irqsafe timer with irq already off */
1623 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1624 }
1625 EXPORT_SYMBOL(delayed_work_timer_fn);
1626 
1627 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1628 				struct delayed_work *dwork, unsigned long delay)
1629 {
1630 	struct timer_list *timer = &dwork->timer;
1631 	struct work_struct *work = &dwork->work;
1632 
1633 	WARN_ON_ONCE(!wq);
1634 	WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1635 	WARN_ON_ONCE(timer_pending(timer));
1636 	WARN_ON_ONCE(!list_empty(&work->entry));
1637 
1638 	/*
1639 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1640 	 * both optimization and correctness.  The earliest @timer can
1641 	 * expire is on the closest next tick and delayed_work users depend
1642 	 * on that there's no such delay when @delay is 0.
1643 	 */
1644 	if (!delay) {
1645 		__queue_work(cpu, wq, &dwork->work);
1646 		return;
1647 	}
1648 
1649 	dwork->wq = wq;
1650 	dwork->cpu = cpu;
1651 	timer->expires = jiffies + delay;
1652 
1653 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1654 		add_timer_on(timer, cpu);
1655 	else
1656 		add_timer(timer);
1657 }
1658 
1659 /**
1660  * queue_delayed_work_on - queue work on specific CPU after delay
1661  * @cpu: CPU number to execute work on
1662  * @wq: workqueue to use
1663  * @dwork: work to queue
1664  * @delay: number of jiffies to wait before queueing
1665  *
1666  * Return: %false if @work was already on a queue, %true otherwise.  If
1667  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1668  * execution.
1669  */
1670 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1671 			   struct delayed_work *dwork, unsigned long delay)
1672 {
1673 	struct work_struct *work = &dwork->work;
1674 	bool ret = false;
1675 	unsigned long flags;
1676 
1677 	/* read the comment in __queue_work() */
1678 	local_irq_save(flags);
1679 
1680 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1681 		__queue_delayed_work(cpu, wq, dwork, delay);
1682 		ret = true;
1683 	}
1684 
1685 	local_irq_restore(flags);
1686 	return ret;
1687 }
1688 EXPORT_SYMBOL(queue_delayed_work_on);
1689 
1690 /**
1691  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1692  * @cpu: CPU number to execute work on
1693  * @wq: workqueue to use
1694  * @dwork: work to queue
1695  * @delay: number of jiffies to wait before queueing
1696  *
1697  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1698  * modify @dwork's timer so that it expires after @delay.  If @delay is
1699  * zero, @work is guaranteed to be scheduled immediately regardless of its
1700  * current state.
1701  *
1702  * Return: %false if @dwork was idle and queued, %true if @dwork was
1703  * pending and its timer was modified.
1704  *
1705  * This function is safe to call from any context including IRQ handler.
1706  * See try_to_grab_pending() for details.
1707  */
1708 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1709 			 struct delayed_work *dwork, unsigned long delay)
1710 {
1711 	unsigned long flags;
1712 	int ret;
1713 
1714 	do {
1715 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1716 	} while (unlikely(ret == -EAGAIN));
1717 
1718 	if (likely(ret >= 0)) {
1719 		__queue_delayed_work(cpu, wq, dwork, delay);
1720 		local_irq_restore(flags);
1721 	}
1722 
1723 	/* -ENOENT from try_to_grab_pending() becomes %true */
1724 	return ret;
1725 }
1726 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1727 
1728 static void rcu_work_rcufn(struct rcu_head *rcu)
1729 {
1730 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1731 
1732 	/* read the comment in __queue_work() */
1733 	local_irq_disable();
1734 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1735 	local_irq_enable();
1736 }
1737 
1738 /**
1739  * queue_rcu_work - queue work after a RCU grace period
1740  * @wq: workqueue to use
1741  * @rwork: work to queue
1742  *
1743  * Return: %false if @rwork was already pending, %true otherwise.  Note
1744  * that a full RCU grace period is guaranteed only after a %true return.
1745  * While @rwork is guaranteed to be executed after a %false return, the
1746  * execution may happen before a full RCU grace period has passed.
1747  */
1748 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1749 {
1750 	struct work_struct *work = &rwork->work;
1751 
1752 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1753 		rwork->wq = wq;
1754 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1755 		return true;
1756 	}
1757 
1758 	return false;
1759 }
1760 EXPORT_SYMBOL(queue_rcu_work);
1761 
1762 /**
1763  * worker_enter_idle - enter idle state
1764  * @worker: worker which is entering idle state
1765  *
1766  * @worker is entering idle state.  Update stats and idle timer if
1767  * necessary.
1768  *
1769  * LOCKING:
1770  * raw_spin_lock_irq(pool->lock).
1771  */
1772 static void worker_enter_idle(struct worker *worker)
1773 {
1774 	struct worker_pool *pool = worker->pool;
1775 
1776 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1777 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1778 			 (worker->hentry.next || worker->hentry.pprev)))
1779 		return;
1780 
1781 	/* can't use worker_set_flags(), also called from create_worker() */
1782 	worker->flags |= WORKER_IDLE;
1783 	pool->nr_idle++;
1784 	worker->last_active = jiffies;
1785 
1786 	/* idle_list is LIFO */
1787 	list_add(&worker->entry, &pool->idle_list);
1788 
1789 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1790 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1791 
1792 	/*
1793 	 * Sanity check nr_running.  Because unbind_workers() releases
1794 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1795 	 * nr_running, the warning may trigger spuriously.  Check iff
1796 	 * unbind is not in progress.
1797 	 */
1798 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1799 		     pool->nr_workers == pool->nr_idle &&
1800 		     atomic_read(&pool->nr_running));
1801 }
1802 
1803 /**
1804  * worker_leave_idle - leave idle state
1805  * @worker: worker which is leaving idle state
1806  *
1807  * @worker is leaving idle state.  Update stats.
1808  *
1809  * LOCKING:
1810  * raw_spin_lock_irq(pool->lock).
1811  */
1812 static void worker_leave_idle(struct worker *worker)
1813 {
1814 	struct worker_pool *pool = worker->pool;
1815 
1816 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1817 		return;
1818 	worker_clr_flags(worker, WORKER_IDLE);
1819 	pool->nr_idle--;
1820 	list_del_init(&worker->entry);
1821 }
1822 
1823 static struct worker *alloc_worker(int node)
1824 {
1825 	struct worker *worker;
1826 
1827 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1828 	if (worker) {
1829 		INIT_LIST_HEAD(&worker->entry);
1830 		INIT_LIST_HEAD(&worker->scheduled);
1831 		INIT_LIST_HEAD(&worker->node);
1832 		/* on creation a worker is in !idle && prep state */
1833 		worker->flags = WORKER_PREP;
1834 	}
1835 	return worker;
1836 }
1837 
1838 /**
1839  * worker_attach_to_pool() - attach a worker to a pool
1840  * @worker: worker to be attached
1841  * @pool: the target pool
1842  *
1843  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1844  * cpu-binding of @worker are kept coordinated with the pool across
1845  * cpu-[un]hotplugs.
1846  */
1847 static void worker_attach_to_pool(struct worker *worker,
1848 				   struct worker_pool *pool)
1849 {
1850 	mutex_lock(&wq_pool_attach_mutex);
1851 
1852 	/*
1853 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1854 	 * stable across this function.  See the comments above the flag
1855 	 * definition for details.
1856 	 */
1857 	if (pool->flags & POOL_DISASSOCIATED)
1858 		worker->flags |= WORKER_UNBOUND;
1859 	else
1860 		kthread_set_per_cpu(worker->task, pool->cpu);
1861 
1862 	if (worker->rescue_wq)
1863 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1864 
1865 	list_add_tail(&worker->node, &pool->workers);
1866 	worker->pool = pool;
1867 
1868 	mutex_unlock(&wq_pool_attach_mutex);
1869 }
1870 
1871 /**
1872  * worker_detach_from_pool() - detach a worker from its pool
1873  * @worker: worker which is attached to its pool
1874  *
1875  * Undo the attaching which had been done in worker_attach_to_pool().  The
1876  * caller worker shouldn't access to the pool after detached except it has
1877  * other reference to the pool.
1878  */
1879 static void worker_detach_from_pool(struct worker *worker)
1880 {
1881 	struct worker_pool *pool = worker->pool;
1882 	struct completion *detach_completion = NULL;
1883 
1884 	mutex_lock(&wq_pool_attach_mutex);
1885 
1886 	kthread_set_per_cpu(worker->task, -1);
1887 	list_del(&worker->node);
1888 	worker->pool = NULL;
1889 
1890 	if (list_empty(&pool->workers))
1891 		detach_completion = pool->detach_completion;
1892 	mutex_unlock(&wq_pool_attach_mutex);
1893 
1894 	/* clear leftover flags without pool->lock after it is detached */
1895 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1896 
1897 	if (detach_completion)
1898 		complete(detach_completion);
1899 }
1900 
1901 /**
1902  * create_worker - create a new workqueue worker
1903  * @pool: pool the new worker will belong to
1904  *
1905  * Create and start a new worker which is attached to @pool.
1906  *
1907  * CONTEXT:
1908  * Might sleep.  Does GFP_KERNEL allocations.
1909  *
1910  * Return:
1911  * Pointer to the newly created worker.
1912  */
1913 static struct worker *create_worker(struct worker_pool *pool)
1914 {
1915 	struct worker *worker = NULL;
1916 	int id = -1;
1917 	char id_buf[16];
1918 
1919 	/* ID is needed to determine kthread name */
1920 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1921 	if (id < 0)
1922 		goto fail;
1923 
1924 	worker = alloc_worker(pool->node);
1925 	if (!worker)
1926 		goto fail;
1927 
1928 	worker->id = id;
1929 
1930 	if (pool->cpu >= 0)
1931 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1932 			 pool->attrs->nice < 0  ? "H" : "");
1933 	else
1934 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1935 
1936 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1937 					      "kworker/%s", id_buf);
1938 	if (IS_ERR(worker->task))
1939 		goto fail;
1940 
1941 	set_user_nice(worker->task, pool->attrs->nice);
1942 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1943 
1944 	/* successful, attach the worker to the pool */
1945 	worker_attach_to_pool(worker, pool);
1946 
1947 	/* start the newly created worker */
1948 	raw_spin_lock_irq(&pool->lock);
1949 	worker->pool->nr_workers++;
1950 	worker_enter_idle(worker);
1951 	wake_up_process(worker->task);
1952 	raw_spin_unlock_irq(&pool->lock);
1953 
1954 	return worker;
1955 
1956 fail:
1957 	if (id >= 0)
1958 		ida_simple_remove(&pool->worker_ida, id);
1959 	kfree(worker);
1960 	return NULL;
1961 }
1962 
1963 /**
1964  * destroy_worker - destroy a workqueue worker
1965  * @worker: worker to be destroyed
1966  *
1967  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1968  * be idle.
1969  *
1970  * CONTEXT:
1971  * raw_spin_lock_irq(pool->lock).
1972  */
1973 static void destroy_worker(struct worker *worker)
1974 {
1975 	struct worker_pool *pool = worker->pool;
1976 
1977 	lockdep_assert_held(&pool->lock);
1978 
1979 	/* sanity check frenzy */
1980 	if (WARN_ON(worker->current_work) ||
1981 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1982 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1983 		return;
1984 
1985 	pool->nr_workers--;
1986 	pool->nr_idle--;
1987 
1988 	list_del_init(&worker->entry);
1989 	worker->flags |= WORKER_DIE;
1990 	wake_up_process(worker->task);
1991 }
1992 
1993 static void idle_worker_timeout(struct timer_list *t)
1994 {
1995 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1996 
1997 	raw_spin_lock_irq(&pool->lock);
1998 
1999 	while (too_many_workers(pool)) {
2000 		struct worker *worker;
2001 		unsigned long expires;
2002 
2003 		/* idle_list is kept in LIFO order, check the last one */
2004 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2005 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2006 
2007 		if (time_before(jiffies, expires)) {
2008 			mod_timer(&pool->idle_timer, expires);
2009 			break;
2010 		}
2011 
2012 		destroy_worker(worker);
2013 	}
2014 
2015 	raw_spin_unlock_irq(&pool->lock);
2016 }
2017 
2018 static void send_mayday(struct work_struct *work)
2019 {
2020 	struct pool_workqueue *pwq = get_work_pwq(work);
2021 	struct workqueue_struct *wq = pwq->wq;
2022 
2023 	lockdep_assert_held(&wq_mayday_lock);
2024 
2025 	if (!wq->rescuer)
2026 		return;
2027 
2028 	/* mayday mayday mayday */
2029 	if (list_empty(&pwq->mayday_node)) {
2030 		/*
2031 		 * If @pwq is for an unbound wq, its base ref may be put at
2032 		 * any time due to an attribute change.  Pin @pwq until the
2033 		 * rescuer is done with it.
2034 		 */
2035 		get_pwq(pwq);
2036 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2037 		wake_up_process(wq->rescuer->task);
2038 	}
2039 }
2040 
2041 static void pool_mayday_timeout(struct timer_list *t)
2042 {
2043 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2044 	struct work_struct *work;
2045 
2046 	raw_spin_lock_irq(&pool->lock);
2047 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2048 
2049 	if (need_to_create_worker(pool)) {
2050 		/*
2051 		 * We've been trying to create a new worker but
2052 		 * haven't been successful.  We might be hitting an
2053 		 * allocation deadlock.  Send distress signals to
2054 		 * rescuers.
2055 		 */
2056 		list_for_each_entry(work, &pool->worklist, entry)
2057 			send_mayday(work);
2058 	}
2059 
2060 	raw_spin_unlock(&wq_mayday_lock);
2061 	raw_spin_unlock_irq(&pool->lock);
2062 
2063 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2064 }
2065 
2066 /**
2067  * maybe_create_worker - create a new worker if necessary
2068  * @pool: pool to create a new worker for
2069  *
2070  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2071  * have at least one idle worker on return from this function.  If
2072  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2073  * sent to all rescuers with works scheduled on @pool to resolve
2074  * possible allocation deadlock.
2075  *
2076  * On return, need_to_create_worker() is guaranteed to be %false and
2077  * may_start_working() %true.
2078  *
2079  * LOCKING:
2080  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2081  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2082  * manager.
2083  */
2084 static void maybe_create_worker(struct worker_pool *pool)
2085 __releases(&pool->lock)
2086 __acquires(&pool->lock)
2087 {
2088 restart:
2089 	raw_spin_unlock_irq(&pool->lock);
2090 
2091 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2092 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2093 
2094 	while (true) {
2095 		if (create_worker(pool) || !need_to_create_worker(pool))
2096 			break;
2097 
2098 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2099 
2100 		if (!need_to_create_worker(pool))
2101 			break;
2102 	}
2103 
2104 	del_timer_sync(&pool->mayday_timer);
2105 	raw_spin_lock_irq(&pool->lock);
2106 	/*
2107 	 * This is necessary even after a new worker was just successfully
2108 	 * created as @pool->lock was dropped and the new worker might have
2109 	 * already become busy.
2110 	 */
2111 	if (need_to_create_worker(pool))
2112 		goto restart;
2113 }
2114 
2115 /**
2116  * manage_workers - manage worker pool
2117  * @worker: self
2118  *
2119  * Assume the manager role and manage the worker pool @worker belongs
2120  * to.  At any given time, there can be only zero or one manager per
2121  * pool.  The exclusion is handled automatically by this function.
2122  *
2123  * The caller can safely start processing works on false return.  On
2124  * true return, it's guaranteed that need_to_create_worker() is false
2125  * and may_start_working() is true.
2126  *
2127  * CONTEXT:
2128  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2129  * multiple times.  Does GFP_KERNEL allocations.
2130  *
2131  * Return:
2132  * %false if the pool doesn't need management and the caller can safely
2133  * start processing works, %true if management function was performed and
2134  * the conditions that the caller verified before calling the function may
2135  * no longer be true.
2136  */
2137 static bool manage_workers(struct worker *worker)
2138 {
2139 	struct worker_pool *pool = worker->pool;
2140 
2141 	if (pool->flags & POOL_MANAGER_ACTIVE)
2142 		return false;
2143 
2144 	pool->flags |= POOL_MANAGER_ACTIVE;
2145 	pool->manager = worker;
2146 
2147 	maybe_create_worker(pool);
2148 
2149 	pool->manager = NULL;
2150 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2151 	rcuwait_wake_up(&manager_wait);
2152 	return true;
2153 }
2154 
2155 /**
2156  * process_one_work - process single work
2157  * @worker: self
2158  * @work: work to process
2159  *
2160  * Process @work.  This function contains all the logics necessary to
2161  * process a single work including synchronization against and
2162  * interaction with other workers on the same cpu, queueing and
2163  * flushing.  As long as context requirement is met, any worker can
2164  * call this function to process a work.
2165  *
2166  * CONTEXT:
2167  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2168  */
2169 static void process_one_work(struct worker *worker, struct work_struct *work)
2170 __releases(&pool->lock)
2171 __acquires(&pool->lock)
2172 {
2173 	struct pool_workqueue *pwq = get_work_pwq(work);
2174 	struct worker_pool *pool = worker->pool;
2175 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2176 	int work_color;
2177 	struct worker *collision;
2178 #ifdef CONFIG_LOCKDEP
2179 	/*
2180 	 * It is permissible to free the struct work_struct from
2181 	 * inside the function that is called from it, this we need to
2182 	 * take into account for lockdep too.  To avoid bogus "held
2183 	 * lock freed" warnings as well as problems when looking into
2184 	 * work->lockdep_map, make a copy and use that here.
2185 	 */
2186 	struct lockdep_map lockdep_map;
2187 
2188 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2189 #endif
2190 	/* ensure we're on the correct CPU */
2191 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2192 		     raw_smp_processor_id() != pool->cpu);
2193 
2194 	/*
2195 	 * A single work shouldn't be executed concurrently by
2196 	 * multiple workers on a single cpu.  Check whether anyone is
2197 	 * already processing the work.  If so, defer the work to the
2198 	 * currently executing one.
2199 	 */
2200 	collision = find_worker_executing_work(pool, work);
2201 	if (unlikely(collision)) {
2202 		move_linked_works(work, &collision->scheduled, NULL);
2203 		return;
2204 	}
2205 
2206 	/* claim and dequeue */
2207 	debug_work_deactivate(work);
2208 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2209 	worker->current_work = work;
2210 	worker->current_func = work->func;
2211 	worker->current_pwq = pwq;
2212 	work_color = get_work_color(work);
2213 
2214 	/*
2215 	 * Record wq name for cmdline and debug reporting, may get
2216 	 * overridden through set_worker_desc().
2217 	 */
2218 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2219 
2220 	list_del_init(&work->entry);
2221 
2222 	/*
2223 	 * CPU intensive works don't participate in concurrency management.
2224 	 * They're the scheduler's responsibility.  This takes @worker out
2225 	 * of concurrency management and the next code block will chain
2226 	 * execution of the pending work items.
2227 	 */
2228 	if (unlikely(cpu_intensive))
2229 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2230 
2231 	/*
2232 	 * Wake up another worker if necessary.  The condition is always
2233 	 * false for normal per-cpu workers since nr_running would always
2234 	 * be >= 1 at this point.  This is used to chain execution of the
2235 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2236 	 * UNBOUND and CPU_INTENSIVE ones.
2237 	 */
2238 	if (need_more_worker(pool))
2239 		wake_up_worker(pool);
2240 
2241 	/*
2242 	 * Record the last pool and clear PENDING which should be the last
2243 	 * update to @work.  Also, do this inside @pool->lock so that
2244 	 * PENDING and queued state changes happen together while IRQ is
2245 	 * disabled.
2246 	 */
2247 	set_work_pool_and_clear_pending(work, pool->id);
2248 
2249 	raw_spin_unlock_irq(&pool->lock);
2250 
2251 	lock_map_acquire(&pwq->wq->lockdep_map);
2252 	lock_map_acquire(&lockdep_map);
2253 	/*
2254 	 * Strictly speaking we should mark the invariant state without holding
2255 	 * any locks, that is, before these two lock_map_acquire()'s.
2256 	 *
2257 	 * However, that would result in:
2258 	 *
2259 	 *   A(W1)
2260 	 *   WFC(C)
2261 	 *		A(W1)
2262 	 *		C(C)
2263 	 *
2264 	 * Which would create W1->C->W1 dependencies, even though there is no
2265 	 * actual deadlock possible. There are two solutions, using a
2266 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2267 	 * hit the lockdep limitation on recursive locks, or simply discard
2268 	 * these locks.
2269 	 *
2270 	 * AFAICT there is no possible deadlock scenario between the
2271 	 * flush_work() and complete() primitives (except for single-threaded
2272 	 * workqueues), so hiding them isn't a problem.
2273 	 */
2274 	lockdep_invariant_state(true);
2275 	trace_workqueue_execute_start(work);
2276 	worker->current_func(work);
2277 	/*
2278 	 * While we must be careful to not use "work" after this, the trace
2279 	 * point will only record its address.
2280 	 */
2281 	trace_workqueue_execute_end(work, worker->current_func);
2282 	lock_map_release(&lockdep_map);
2283 	lock_map_release(&pwq->wq->lockdep_map);
2284 
2285 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2286 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2287 		       "     last function: %ps\n",
2288 		       current->comm, preempt_count(), task_pid_nr(current),
2289 		       worker->current_func);
2290 		debug_show_held_locks(current);
2291 		dump_stack();
2292 	}
2293 
2294 	/*
2295 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2296 	 * kernels, where a requeueing work item waiting for something to
2297 	 * happen could deadlock with stop_machine as such work item could
2298 	 * indefinitely requeue itself while all other CPUs are trapped in
2299 	 * stop_machine. At the same time, report a quiescent RCU state so
2300 	 * the same condition doesn't freeze RCU.
2301 	 */
2302 	cond_resched();
2303 
2304 	raw_spin_lock_irq(&pool->lock);
2305 
2306 	/* clear cpu intensive status */
2307 	if (unlikely(cpu_intensive))
2308 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2309 
2310 	/* tag the worker for identification in schedule() */
2311 	worker->last_func = worker->current_func;
2312 
2313 	/* we're done with it, release */
2314 	hash_del(&worker->hentry);
2315 	worker->current_work = NULL;
2316 	worker->current_func = NULL;
2317 	worker->current_pwq = NULL;
2318 	pwq_dec_nr_in_flight(pwq, work_color);
2319 }
2320 
2321 /**
2322  * process_scheduled_works - process scheduled works
2323  * @worker: self
2324  *
2325  * Process all scheduled works.  Please note that the scheduled list
2326  * may change while processing a work, so this function repeatedly
2327  * fetches a work from the top and executes it.
2328  *
2329  * CONTEXT:
2330  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2331  * multiple times.
2332  */
2333 static void process_scheduled_works(struct worker *worker)
2334 {
2335 	while (!list_empty(&worker->scheduled)) {
2336 		struct work_struct *work = list_first_entry(&worker->scheduled,
2337 						struct work_struct, entry);
2338 		process_one_work(worker, work);
2339 	}
2340 }
2341 
2342 static void set_pf_worker(bool val)
2343 {
2344 	mutex_lock(&wq_pool_attach_mutex);
2345 	if (val)
2346 		current->flags |= PF_WQ_WORKER;
2347 	else
2348 		current->flags &= ~PF_WQ_WORKER;
2349 	mutex_unlock(&wq_pool_attach_mutex);
2350 }
2351 
2352 /**
2353  * worker_thread - the worker thread function
2354  * @__worker: self
2355  *
2356  * The worker thread function.  All workers belong to a worker_pool -
2357  * either a per-cpu one or dynamic unbound one.  These workers process all
2358  * work items regardless of their specific target workqueue.  The only
2359  * exception is work items which belong to workqueues with a rescuer which
2360  * will be explained in rescuer_thread().
2361  *
2362  * Return: 0
2363  */
2364 static int worker_thread(void *__worker)
2365 {
2366 	struct worker *worker = __worker;
2367 	struct worker_pool *pool = worker->pool;
2368 
2369 	/* tell the scheduler that this is a workqueue worker */
2370 	set_pf_worker(true);
2371 woke_up:
2372 	raw_spin_lock_irq(&pool->lock);
2373 
2374 	/* am I supposed to die? */
2375 	if (unlikely(worker->flags & WORKER_DIE)) {
2376 		raw_spin_unlock_irq(&pool->lock);
2377 		WARN_ON_ONCE(!list_empty(&worker->entry));
2378 		set_pf_worker(false);
2379 
2380 		set_task_comm(worker->task, "kworker/dying");
2381 		ida_simple_remove(&pool->worker_ida, worker->id);
2382 		worker_detach_from_pool(worker);
2383 		kfree(worker);
2384 		return 0;
2385 	}
2386 
2387 	worker_leave_idle(worker);
2388 recheck:
2389 	/* no more worker necessary? */
2390 	if (!need_more_worker(pool))
2391 		goto sleep;
2392 
2393 	/* do we need to manage? */
2394 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2395 		goto recheck;
2396 
2397 	/*
2398 	 * ->scheduled list can only be filled while a worker is
2399 	 * preparing to process a work or actually processing it.
2400 	 * Make sure nobody diddled with it while I was sleeping.
2401 	 */
2402 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2403 
2404 	/*
2405 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2406 	 * worker or that someone else has already assumed the manager
2407 	 * role.  This is where @worker starts participating in concurrency
2408 	 * management if applicable and concurrency management is restored
2409 	 * after being rebound.  See rebind_workers() for details.
2410 	 */
2411 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2412 
2413 	do {
2414 		struct work_struct *work =
2415 			list_first_entry(&pool->worklist,
2416 					 struct work_struct, entry);
2417 
2418 		pool->watchdog_ts = jiffies;
2419 
2420 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2421 			/* optimization path, not strictly necessary */
2422 			process_one_work(worker, work);
2423 			if (unlikely(!list_empty(&worker->scheduled)))
2424 				process_scheduled_works(worker);
2425 		} else {
2426 			move_linked_works(work, &worker->scheduled, NULL);
2427 			process_scheduled_works(worker);
2428 		}
2429 	} while (keep_working(pool));
2430 
2431 	worker_set_flags(worker, WORKER_PREP);
2432 sleep:
2433 	/*
2434 	 * pool->lock is held and there's no work to process and no need to
2435 	 * manage, sleep.  Workers are woken up only while holding
2436 	 * pool->lock or from local cpu, so setting the current state
2437 	 * before releasing pool->lock is enough to prevent losing any
2438 	 * event.
2439 	 */
2440 	worker_enter_idle(worker);
2441 	__set_current_state(TASK_IDLE);
2442 	raw_spin_unlock_irq(&pool->lock);
2443 	schedule();
2444 	goto woke_up;
2445 }
2446 
2447 /**
2448  * rescuer_thread - the rescuer thread function
2449  * @__rescuer: self
2450  *
2451  * Workqueue rescuer thread function.  There's one rescuer for each
2452  * workqueue which has WQ_MEM_RECLAIM set.
2453  *
2454  * Regular work processing on a pool may block trying to create a new
2455  * worker which uses GFP_KERNEL allocation which has slight chance of
2456  * developing into deadlock if some works currently on the same queue
2457  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2458  * the problem rescuer solves.
2459  *
2460  * When such condition is possible, the pool summons rescuers of all
2461  * workqueues which have works queued on the pool and let them process
2462  * those works so that forward progress can be guaranteed.
2463  *
2464  * This should happen rarely.
2465  *
2466  * Return: 0
2467  */
2468 static int rescuer_thread(void *__rescuer)
2469 {
2470 	struct worker *rescuer = __rescuer;
2471 	struct workqueue_struct *wq = rescuer->rescue_wq;
2472 	struct list_head *scheduled = &rescuer->scheduled;
2473 	bool should_stop;
2474 
2475 	set_user_nice(current, RESCUER_NICE_LEVEL);
2476 
2477 	/*
2478 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2479 	 * doesn't participate in concurrency management.
2480 	 */
2481 	set_pf_worker(true);
2482 repeat:
2483 	set_current_state(TASK_IDLE);
2484 
2485 	/*
2486 	 * By the time the rescuer is requested to stop, the workqueue
2487 	 * shouldn't have any work pending, but @wq->maydays may still have
2488 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2489 	 * all the work items before the rescuer got to them.  Go through
2490 	 * @wq->maydays processing before acting on should_stop so that the
2491 	 * list is always empty on exit.
2492 	 */
2493 	should_stop = kthread_should_stop();
2494 
2495 	/* see whether any pwq is asking for help */
2496 	raw_spin_lock_irq(&wq_mayday_lock);
2497 
2498 	while (!list_empty(&wq->maydays)) {
2499 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2500 					struct pool_workqueue, mayday_node);
2501 		struct worker_pool *pool = pwq->pool;
2502 		struct work_struct *work, *n;
2503 		bool first = true;
2504 
2505 		__set_current_state(TASK_RUNNING);
2506 		list_del_init(&pwq->mayday_node);
2507 
2508 		raw_spin_unlock_irq(&wq_mayday_lock);
2509 
2510 		worker_attach_to_pool(rescuer, pool);
2511 
2512 		raw_spin_lock_irq(&pool->lock);
2513 
2514 		/*
2515 		 * Slurp in all works issued via this workqueue and
2516 		 * process'em.
2517 		 */
2518 		WARN_ON_ONCE(!list_empty(scheduled));
2519 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2520 			if (get_work_pwq(work) == pwq) {
2521 				if (first)
2522 					pool->watchdog_ts = jiffies;
2523 				move_linked_works(work, scheduled, &n);
2524 			}
2525 			first = false;
2526 		}
2527 
2528 		if (!list_empty(scheduled)) {
2529 			process_scheduled_works(rescuer);
2530 
2531 			/*
2532 			 * The above execution of rescued work items could
2533 			 * have created more to rescue through
2534 			 * pwq_activate_first_delayed() or chained
2535 			 * queueing.  Let's put @pwq back on mayday list so
2536 			 * that such back-to-back work items, which may be
2537 			 * being used to relieve memory pressure, don't
2538 			 * incur MAYDAY_INTERVAL delay inbetween.
2539 			 */
2540 			if (pwq->nr_active && need_to_create_worker(pool)) {
2541 				raw_spin_lock(&wq_mayday_lock);
2542 				/*
2543 				 * Queue iff we aren't racing destruction
2544 				 * and somebody else hasn't queued it already.
2545 				 */
2546 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2547 					get_pwq(pwq);
2548 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2549 				}
2550 				raw_spin_unlock(&wq_mayday_lock);
2551 			}
2552 		}
2553 
2554 		/*
2555 		 * Put the reference grabbed by send_mayday().  @pool won't
2556 		 * go away while we're still attached to it.
2557 		 */
2558 		put_pwq(pwq);
2559 
2560 		/*
2561 		 * Leave this pool.  If need_more_worker() is %true, notify a
2562 		 * regular worker; otherwise, we end up with 0 concurrency
2563 		 * and stalling the execution.
2564 		 */
2565 		if (need_more_worker(pool))
2566 			wake_up_worker(pool);
2567 
2568 		raw_spin_unlock_irq(&pool->lock);
2569 
2570 		worker_detach_from_pool(rescuer);
2571 
2572 		raw_spin_lock_irq(&wq_mayday_lock);
2573 	}
2574 
2575 	raw_spin_unlock_irq(&wq_mayday_lock);
2576 
2577 	if (should_stop) {
2578 		__set_current_state(TASK_RUNNING);
2579 		set_pf_worker(false);
2580 		return 0;
2581 	}
2582 
2583 	/* rescuers should never participate in concurrency management */
2584 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2585 	schedule();
2586 	goto repeat;
2587 }
2588 
2589 /**
2590  * check_flush_dependency - check for flush dependency sanity
2591  * @target_wq: workqueue being flushed
2592  * @target_work: work item being flushed (NULL for workqueue flushes)
2593  *
2594  * %current is trying to flush the whole @target_wq or @target_work on it.
2595  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2596  * reclaiming memory or running on a workqueue which doesn't have
2597  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2598  * a deadlock.
2599  */
2600 static void check_flush_dependency(struct workqueue_struct *target_wq,
2601 				   struct work_struct *target_work)
2602 {
2603 	work_func_t target_func = target_work ? target_work->func : NULL;
2604 	struct worker *worker;
2605 
2606 	if (target_wq->flags & WQ_MEM_RECLAIM)
2607 		return;
2608 
2609 	worker = current_wq_worker();
2610 
2611 	WARN_ONCE(current->flags & PF_MEMALLOC,
2612 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2613 		  current->pid, current->comm, target_wq->name, target_func);
2614 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2615 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2616 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2617 		  worker->current_pwq->wq->name, worker->current_func,
2618 		  target_wq->name, target_func);
2619 }
2620 
2621 struct wq_barrier {
2622 	struct work_struct	work;
2623 	struct completion	done;
2624 	struct task_struct	*task;	/* purely informational */
2625 };
2626 
2627 static void wq_barrier_func(struct work_struct *work)
2628 {
2629 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2630 	complete(&barr->done);
2631 }
2632 
2633 /**
2634  * insert_wq_barrier - insert a barrier work
2635  * @pwq: pwq to insert barrier into
2636  * @barr: wq_barrier to insert
2637  * @target: target work to attach @barr to
2638  * @worker: worker currently executing @target, NULL if @target is not executing
2639  *
2640  * @barr is linked to @target such that @barr is completed only after
2641  * @target finishes execution.  Please note that the ordering
2642  * guarantee is observed only with respect to @target and on the local
2643  * cpu.
2644  *
2645  * Currently, a queued barrier can't be canceled.  This is because
2646  * try_to_grab_pending() can't determine whether the work to be
2647  * grabbed is at the head of the queue and thus can't clear LINKED
2648  * flag of the previous work while there must be a valid next work
2649  * after a work with LINKED flag set.
2650  *
2651  * Note that when @worker is non-NULL, @target may be modified
2652  * underneath us, so we can't reliably determine pwq from @target.
2653  *
2654  * CONTEXT:
2655  * raw_spin_lock_irq(pool->lock).
2656  */
2657 static void insert_wq_barrier(struct pool_workqueue *pwq,
2658 			      struct wq_barrier *barr,
2659 			      struct work_struct *target, struct worker *worker)
2660 {
2661 	struct list_head *head;
2662 	unsigned int linked = 0;
2663 
2664 	/*
2665 	 * debugobject calls are safe here even with pool->lock locked
2666 	 * as we know for sure that this will not trigger any of the
2667 	 * checks and call back into the fixup functions where we
2668 	 * might deadlock.
2669 	 */
2670 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2671 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2672 
2673 	init_completion_map(&barr->done, &target->lockdep_map);
2674 
2675 	barr->task = current;
2676 
2677 	/*
2678 	 * If @target is currently being executed, schedule the
2679 	 * barrier to the worker; otherwise, put it after @target.
2680 	 */
2681 	if (worker)
2682 		head = worker->scheduled.next;
2683 	else {
2684 		unsigned long *bits = work_data_bits(target);
2685 
2686 		head = target->entry.next;
2687 		/* there can already be other linked works, inherit and set */
2688 		linked = *bits & WORK_STRUCT_LINKED;
2689 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2690 	}
2691 
2692 	debug_work_activate(&barr->work);
2693 	insert_work(pwq, &barr->work, head,
2694 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2695 }
2696 
2697 /**
2698  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2699  * @wq: workqueue being flushed
2700  * @flush_color: new flush color, < 0 for no-op
2701  * @work_color: new work color, < 0 for no-op
2702  *
2703  * Prepare pwqs for workqueue flushing.
2704  *
2705  * If @flush_color is non-negative, flush_color on all pwqs should be
2706  * -1.  If no pwq has in-flight commands at the specified color, all
2707  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2708  * has in flight commands, its pwq->flush_color is set to
2709  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2710  * wakeup logic is armed and %true is returned.
2711  *
2712  * The caller should have initialized @wq->first_flusher prior to
2713  * calling this function with non-negative @flush_color.  If
2714  * @flush_color is negative, no flush color update is done and %false
2715  * is returned.
2716  *
2717  * If @work_color is non-negative, all pwqs should have the same
2718  * work_color which is previous to @work_color and all will be
2719  * advanced to @work_color.
2720  *
2721  * CONTEXT:
2722  * mutex_lock(wq->mutex).
2723  *
2724  * Return:
2725  * %true if @flush_color >= 0 and there's something to flush.  %false
2726  * otherwise.
2727  */
2728 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2729 				      int flush_color, int work_color)
2730 {
2731 	bool wait = false;
2732 	struct pool_workqueue *pwq;
2733 
2734 	if (flush_color >= 0) {
2735 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2736 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2737 	}
2738 
2739 	for_each_pwq(pwq, wq) {
2740 		struct worker_pool *pool = pwq->pool;
2741 
2742 		raw_spin_lock_irq(&pool->lock);
2743 
2744 		if (flush_color >= 0) {
2745 			WARN_ON_ONCE(pwq->flush_color != -1);
2746 
2747 			if (pwq->nr_in_flight[flush_color]) {
2748 				pwq->flush_color = flush_color;
2749 				atomic_inc(&wq->nr_pwqs_to_flush);
2750 				wait = true;
2751 			}
2752 		}
2753 
2754 		if (work_color >= 0) {
2755 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2756 			pwq->work_color = work_color;
2757 		}
2758 
2759 		raw_spin_unlock_irq(&pool->lock);
2760 	}
2761 
2762 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2763 		complete(&wq->first_flusher->done);
2764 
2765 	return wait;
2766 }
2767 
2768 /**
2769  * flush_workqueue - ensure that any scheduled work has run to completion.
2770  * @wq: workqueue to flush
2771  *
2772  * This function sleeps until all work items which were queued on entry
2773  * have finished execution, but it is not livelocked by new incoming ones.
2774  */
2775 void flush_workqueue(struct workqueue_struct *wq)
2776 {
2777 	struct wq_flusher this_flusher = {
2778 		.list = LIST_HEAD_INIT(this_flusher.list),
2779 		.flush_color = -1,
2780 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2781 	};
2782 	int next_color;
2783 
2784 	if (WARN_ON(!wq_online))
2785 		return;
2786 
2787 	lock_map_acquire(&wq->lockdep_map);
2788 	lock_map_release(&wq->lockdep_map);
2789 
2790 	mutex_lock(&wq->mutex);
2791 
2792 	/*
2793 	 * Start-to-wait phase
2794 	 */
2795 	next_color = work_next_color(wq->work_color);
2796 
2797 	if (next_color != wq->flush_color) {
2798 		/*
2799 		 * Color space is not full.  The current work_color
2800 		 * becomes our flush_color and work_color is advanced
2801 		 * by one.
2802 		 */
2803 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2804 		this_flusher.flush_color = wq->work_color;
2805 		wq->work_color = next_color;
2806 
2807 		if (!wq->first_flusher) {
2808 			/* no flush in progress, become the first flusher */
2809 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2810 
2811 			wq->first_flusher = &this_flusher;
2812 
2813 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2814 						       wq->work_color)) {
2815 				/* nothing to flush, done */
2816 				wq->flush_color = next_color;
2817 				wq->first_flusher = NULL;
2818 				goto out_unlock;
2819 			}
2820 		} else {
2821 			/* wait in queue */
2822 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2823 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2824 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2825 		}
2826 	} else {
2827 		/*
2828 		 * Oops, color space is full, wait on overflow queue.
2829 		 * The next flush completion will assign us
2830 		 * flush_color and transfer to flusher_queue.
2831 		 */
2832 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2833 	}
2834 
2835 	check_flush_dependency(wq, NULL);
2836 
2837 	mutex_unlock(&wq->mutex);
2838 
2839 	wait_for_completion(&this_flusher.done);
2840 
2841 	/*
2842 	 * Wake-up-and-cascade phase
2843 	 *
2844 	 * First flushers are responsible for cascading flushes and
2845 	 * handling overflow.  Non-first flushers can simply return.
2846 	 */
2847 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2848 		return;
2849 
2850 	mutex_lock(&wq->mutex);
2851 
2852 	/* we might have raced, check again with mutex held */
2853 	if (wq->first_flusher != &this_flusher)
2854 		goto out_unlock;
2855 
2856 	WRITE_ONCE(wq->first_flusher, NULL);
2857 
2858 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2859 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2860 
2861 	while (true) {
2862 		struct wq_flusher *next, *tmp;
2863 
2864 		/* complete all the flushers sharing the current flush color */
2865 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2866 			if (next->flush_color != wq->flush_color)
2867 				break;
2868 			list_del_init(&next->list);
2869 			complete(&next->done);
2870 		}
2871 
2872 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2873 			     wq->flush_color != work_next_color(wq->work_color));
2874 
2875 		/* this flush_color is finished, advance by one */
2876 		wq->flush_color = work_next_color(wq->flush_color);
2877 
2878 		/* one color has been freed, handle overflow queue */
2879 		if (!list_empty(&wq->flusher_overflow)) {
2880 			/*
2881 			 * Assign the same color to all overflowed
2882 			 * flushers, advance work_color and append to
2883 			 * flusher_queue.  This is the start-to-wait
2884 			 * phase for these overflowed flushers.
2885 			 */
2886 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2887 				tmp->flush_color = wq->work_color;
2888 
2889 			wq->work_color = work_next_color(wq->work_color);
2890 
2891 			list_splice_tail_init(&wq->flusher_overflow,
2892 					      &wq->flusher_queue);
2893 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2894 		}
2895 
2896 		if (list_empty(&wq->flusher_queue)) {
2897 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2898 			break;
2899 		}
2900 
2901 		/*
2902 		 * Need to flush more colors.  Make the next flusher
2903 		 * the new first flusher and arm pwqs.
2904 		 */
2905 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2906 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2907 
2908 		list_del_init(&next->list);
2909 		wq->first_flusher = next;
2910 
2911 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2912 			break;
2913 
2914 		/*
2915 		 * Meh... this color is already done, clear first
2916 		 * flusher and repeat cascading.
2917 		 */
2918 		wq->first_flusher = NULL;
2919 	}
2920 
2921 out_unlock:
2922 	mutex_unlock(&wq->mutex);
2923 }
2924 EXPORT_SYMBOL(flush_workqueue);
2925 
2926 /**
2927  * drain_workqueue - drain a workqueue
2928  * @wq: workqueue to drain
2929  *
2930  * Wait until the workqueue becomes empty.  While draining is in progress,
2931  * only chain queueing is allowed.  IOW, only currently pending or running
2932  * work items on @wq can queue further work items on it.  @wq is flushed
2933  * repeatedly until it becomes empty.  The number of flushing is determined
2934  * by the depth of chaining and should be relatively short.  Whine if it
2935  * takes too long.
2936  */
2937 void drain_workqueue(struct workqueue_struct *wq)
2938 {
2939 	unsigned int flush_cnt = 0;
2940 	struct pool_workqueue *pwq;
2941 
2942 	/*
2943 	 * __queue_work() needs to test whether there are drainers, is much
2944 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2945 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2946 	 */
2947 	mutex_lock(&wq->mutex);
2948 	if (!wq->nr_drainers++)
2949 		wq->flags |= __WQ_DRAINING;
2950 	mutex_unlock(&wq->mutex);
2951 reflush:
2952 	flush_workqueue(wq);
2953 
2954 	mutex_lock(&wq->mutex);
2955 
2956 	for_each_pwq(pwq, wq) {
2957 		bool drained;
2958 
2959 		raw_spin_lock_irq(&pwq->pool->lock);
2960 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2961 		raw_spin_unlock_irq(&pwq->pool->lock);
2962 
2963 		if (drained)
2964 			continue;
2965 
2966 		if (++flush_cnt == 10 ||
2967 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2968 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
2969 				wq->name, __func__, flush_cnt);
2970 
2971 		mutex_unlock(&wq->mutex);
2972 		goto reflush;
2973 	}
2974 
2975 	if (!--wq->nr_drainers)
2976 		wq->flags &= ~__WQ_DRAINING;
2977 	mutex_unlock(&wq->mutex);
2978 }
2979 EXPORT_SYMBOL_GPL(drain_workqueue);
2980 
2981 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2982 			     bool from_cancel)
2983 {
2984 	struct worker *worker = NULL;
2985 	struct worker_pool *pool;
2986 	struct pool_workqueue *pwq;
2987 
2988 	might_sleep();
2989 
2990 	rcu_read_lock();
2991 	pool = get_work_pool(work);
2992 	if (!pool) {
2993 		rcu_read_unlock();
2994 		return false;
2995 	}
2996 
2997 	raw_spin_lock_irq(&pool->lock);
2998 	/* see the comment in try_to_grab_pending() with the same code */
2999 	pwq = get_work_pwq(work);
3000 	if (pwq) {
3001 		if (unlikely(pwq->pool != pool))
3002 			goto already_gone;
3003 	} else {
3004 		worker = find_worker_executing_work(pool, work);
3005 		if (!worker)
3006 			goto already_gone;
3007 		pwq = worker->current_pwq;
3008 	}
3009 
3010 	check_flush_dependency(pwq->wq, work);
3011 
3012 	insert_wq_barrier(pwq, barr, work, worker);
3013 	raw_spin_unlock_irq(&pool->lock);
3014 
3015 	/*
3016 	 * Force a lock recursion deadlock when using flush_work() inside a
3017 	 * single-threaded or rescuer equipped workqueue.
3018 	 *
3019 	 * For single threaded workqueues the deadlock happens when the work
3020 	 * is after the work issuing the flush_work(). For rescuer equipped
3021 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3022 	 * forward progress.
3023 	 */
3024 	if (!from_cancel &&
3025 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3026 		lock_map_acquire(&pwq->wq->lockdep_map);
3027 		lock_map_release(&pwq->wq->lockdep_map);
3028 	}
3029 	rcu_read_unlock();
3030 	return true;
3031 already_gone:
3032 	raw_spin_unlock_irq(&pool->lock);
3033 	rcu_read_unlock();
3034 	return false;
3035 }
3036 
3037 static bool __flush_work(struct work_struct *work, bool from_cancel)
3038 {
3039 	struct wq_barrier barr;
3040 
3041 	if (WARN_ON(!wq_online))
3042 		return false;
3043 
3044 	if (WARN_ON(!work->func))
3045 		return false;
3046 
3047 	if (!from_cancel) {
3048 		lock_map_acquire(&work->lockdep_map);
3049 		lock_map_release(&work->lockdep_map);
3050 	}
3051 
3052 	if (start_flush_work(work, &barr, from_cancel)) {
3053 		wait_for_completion(&barr.done);
3054 		destroy_work_on_stack(&barr.work);
3055 		return true;
3056 	} else {
3057 		return false;
3058 	}
3059 }
3060 
3061 /**
3062  * flush_work - wait for a work to finish executing the last queueing instance
3063  * @work: the work to flush
3064  *
3065  * Wait until @work has finished execution.  @work is guaranteed to be idle
3066  * on return if it hasn't been requeued since flush started.
3067  *
3068  * Return:
3069  * %true if flush_work() waited for the work to finish execution,
3070  * %false if it was already idle.
3071  */
3072 bool flush_work(struct work_struct *work)
3073 {
3074 	return __flush_work(work, false);
3075 }
3076 EXPORT_SYMBOL_GPL(flush_work);
3077 
3078 struct cwt_wait {
3079 	wait_queue_entry_t		wait;
3080 	struct work_struct	*work;
3081 };
3082 
3083 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3084 {
3085 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3086 
3087 	if (cwait->work != key)
3088 		return 0;
3089 	return autoremove_wake_function(wait, mode, sync, key);
3090 }
3091 
3092 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3093 {
3094 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3095 	unsigned long flags;
3096 	int ret;
3097 
3098 	do {
3099 		ret = try_to_grab_pending(work, is_dwork, &flags);
3100 		/*
3101 		 * If someone else is already canceling, wait for it to
3102 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3103 		 * because we may get scheduled between @work's completion
3104 		 * and the other canceling task resuming and clearing
3105 		 * CANCELING - flush_work() will return false immediately
3106 		 * as @work is no longer busy, try_to_grab_pending() will
3107 		 * return -ENOENT as @work is still being canceled and the
3108 		 * other canceling task won't be able to clear CANCELING as
3109 		 * we're hogging the CPU.
3110 		 *
3111 		 * Let's wait for completion using a waitqueue.  As this
3112 		 * may lead to the thundering herd problem, use a custom
3113 		 * wake function which matches @work along with exclusive
3114 		 * wait and wakeup.
3115 		 */
3116 		if (unlikely(ret == -ENOENT)) {
3117 			struct cwt_wait cwait;
3118 
3119 			init_wait(&cwait.wait);
3120 			cwait.wait.func = cwt_wakefn;
3121 			cwait.work = work;
3122 
3123 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3124 						  TASK_UNINTERRUPTIBLE);
3125 			if (work_is_canceling(work))
3126 				schedule();
3127 			finish_wait(&cancel_waitq, &cwait.wait);
3128 		}
3129 	} while (unlikely(ret < 0));
3130 
3131 	/* tell other tasks trying to grab @work to back off */
3132 	mark_work_canceling(work);
3133 	local_irq_restore(flags);
3134 
3135 	/*
3136 	 * This allows canceling during early boot.  We know that @work
3137 	 * isn't executing.
3138 	 */
3139 	if (wq_online)
3140 		__flush_work(work, true);
3141 
3142 	clear_work_data(work);
3143 
3144 	/*
3145 	 * Paired with prepare_to_wait() above so that either
3146 	 * waitqueue_active() is visible here or !work_is_canceling() is
3147 	 * visible there.
3148 	 */
3149 	smp_mb();
3150 	if (waitqueue_active(&cancel_waitq))
3151 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3152 
3153 	return ret;
3154 }
3155 
3156 /**
3157  * cancel_work_sync - cancel a work and wait for it to finish
3158  * @work: the work to cancel
3159  *
3160  * Cancel @work and wait for its execution to finish.  This function
3161  * can be used even if the work re-queues itself or migrates to
3162  * another workqueue.  On return from this function, @work is
3163  * guaranteed to be not pending or executing on any CPU.
3164  *
3165  * cancel_work_sync(&delayed_work->work) must not be used for
3166  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3167  *
3168  * The caller must ensure that the workqueue on which @work was last
3169  * queued can't be destroyed before this function returns.
3170  *
3171  * Return:
3172  * %true if @work was pending, %false otherwise.
3173  */
3174 bool cancel_work_sync(struct work_struct *work)
3175 {
3176 	return __cancel_work_timer(work, false);
3177 }
3178 EXPORT_SYMBOL_GPL(cancel_work_sync);
3179 
3180 /**
3181  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3182  * @dwork: the delayed work to flush
3183  *
3184  * Delayed timer is cancelled and the pending work is queued for
3185  * immediate execution.  Like flush_work(), this function only
3186  * considers the last queueing instance of @dwork.
3187  *
3188  * Return:
3189  * %true if flush_work() waited for the work to finish execution,
3190  * %false if it was already idle.
3191  */
3192 bool flush_delayed_work(struct delayed_work *dwork)
3193 {
3194 	local_irq_disable();
3195 	if (del_timer_sync(&dwork->timer))
3196 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3197 	local_irq_enable();
3198 	return flush_work(&dwork->work);
3199 }
3200 EXPORT_SYMBOL(flush_delayed_work);
3201 
3202 /**
3203  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3204  * @rwork: the rcu work to flush
3205  *
3206  * Return:
3207  * %true if flush_rcu_work() waited for the work to finish execution,
3208  * %false if it was already idle.
3209  */
3210 bool flush_rcu_work(struct rcu_work *rwork)
3211 {
3212 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3213 		rcu_barrier();
3214 		flush_work(&rwork->work);
3215 		return true;
3216 	} else {
3217 		return flush_work(&rwork->work);
3218 	}
3219 }
3220 EXPORT_SYMBOL(flush_rcu_work);
3221 
3222 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3223 {
3224 	unsigned long flags;
3225 	int ret;
3226 
3227 	do {
3228 		ret = try_to_grab_pending(work, is_dwork, &flags);
3229 	} while (unlikely(ret == -EAGAIN));
3230 
3231 	if (unlikely(ret < 0))
3232 		return false;
3233 
3234 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3235 	local_irq_restore(flags);
3236 	return ret;
3237 }
3238 
3239 /**
3240  * cancel_delayed_work - cancel a delayed work
3241  * @dwork: delayed_work to cancel
3242  *
3243  * Kill off a pending delayed_work.
3244  *
3245  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3246  * pending.
3247  *
3248  * Note:
3249  * The work callback function may still be running on return, unless
3250  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3251  * use cancel_delayed_work_sync() to wait on it.
3252  *
3253  * This function is safe to call from any context including IRQ handler.
3254  */
3255 bool cancel_delayed_work(struct delayed_work *dwork)
3256 {
3257 	return __cancel_work(&dwork->work, true);
3258 }
3259 EXPORT_SYMBOL(cancel_delayed_work);
3260 
3261 /**
3262  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3263  * @dwork: the delayed work cancel
3264  *
3265  * This is cancel_work_sync() for delayed works.
3266  *
3267  * Return:
3268  * %true if @dwork was pending, %false otherwise.
3269  */
3270 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3271 {
3272 	return __cancel_work_timer(&dwork->work, true);
3273 }
3274 EXPORT_SYMBOL(cancel_delayed_work_sync);
3275 
3276 /**
3277  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3278  * @func: the function to call
3279  *
3280  * schedule_on_each_cpu() executes @func on each online CPU using the
3281  * system workqueue and blocks until all CPUs have completed.
3282  * schedule_on_each_cpu() is very slow.
3283  *
3284  * Return:
3285  * 0 on success, -errno on failure.
3286  */
3287 int schedule_on_each_cpu(work_func_t func)
3288 {
3289 	int cpu;
3290 	struct work_struct __percpu *works;
3291 
3292 	works = alloc_percpu(struct work_struct);
3293 	if (!works)
3294 		return -ENOMEM;
3295 
3296 	get_online_cpus();
3297 
3298 	for_each_online_cpu(cpu) {
3299 		struct work_struct *work = per_cpu_ptr(works, cpu);
3300 
3301 		INIT_WORK(work, func);
3302 		schedule_work_on(cpu, work);
3303 	}
3304 
3305 	for_each_online_cpu(cpu)
3306 		flush_work(per_cpu_ptr(works, cpu));
3307 
3308 	put_online_cpus();
3309 	free_percpu(works);
3310 	return 0;
3311 }
3312 
3313 /**
3314  * execute_in_process_context - reliably execute the routine with user context
3315  * @fn:		the function to execute
3316  * @ew:		guaranteed storage for the execute work structure (must
3317  *		be available when the work executes)
3318  *
3319  * Executes the function immediately if process context is available,
3320  * otherwise schedules the function for delayed execution.
3321  *
3322  * Return:	0 - function was executed
3323  *		1 - function was scheduled for execution
3324  */
3325 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3326 {
3327 	if (!in_interrupt()) {
3328 		fn(&ew->work);
3329 		return 0;
3330 	}
3331 
3332 	INIT_WORK(&ew->work, fn);
3333 	schedule_work(&ew->work);
3334 
3335 	return 1;
3336 }
3337 EXPORT_SYMBOL_GPL(execute_in_process_context);
3338 
3339 /**
3340  * free_workqueue_attrs - free a workqueue_attrs
3341  * @attrs: workqueue_attrs to free
3342  *
3343  * Undo alloc_workqueue_attrs().
3344  */
3345 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3346 {
3347 	if (attrs) {
3348 		free_cpumask_var(attrs->cpumask);
3349 		kfree(attrs);
3350 	}
3351 }
3352 
3353 /**
3354  * alloc_workqueue_attrs - allocate a workqueue_attrs
3355  *
3356  * Allocate a new workqueue_attrs, initialize with default settings and
3357  * return it.
3358  *
3359  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3360  */
3361 struct workqueue_attrs *alloc_workqueue_attrs(void)
3362 {
3363 	struct workqueue_attrs *attrs;
3364 
3365 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3366 	if (!attrs)
3367 		goto fail;
3368 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3369 		goto fail;
3370 
3371 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3372 	return attrs;
3373 fail:
3374 	free_workqueue_attrs(attrs);
3375 	return NULL;
3376 }
3377 
3378 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3379 				 const struct workqueue_attrs *from)
3380 {
3381 	to->nice = from->nice;
3382 	cpumask_copy(to->cpumask, from->cpumask);
3383 	/*
3384 	 * Unlike hash and equality test, this function doesn't ignore
3385 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3386 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3387 	 */
3388 	to->no_numa = from->no_numa;
3389 }
3390 
3391 /* hash value of the content of @attr */
3392 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3393 {
3394 	u32 hash = 0;
3395 
3396 	hash = jhash_1word(attrs->nice, hash);
3397 	hash = jhash(cpumask_bits(attrs->cpumask),
3398 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3399 	return hash;
3400 }
3401 
3402 /* content equality test */
3403 static bool wqattrs_equal(const struct workqueue_attrs *a,
3404 			  const struct workqueue_attrs *b)
3405 {
3406 	if (a->nice != b->nice)
3407 		return false;
3408 	if (!cpumask_equal(a->cpumask, b->cpumask))
3409 		return false;
3410 	return true;
3411 }
3412 
3413 /**
3414  * init_worker_pool - initialize a newly zalloc'd worker_pool
3415  * @pool: worker_pool to initialize
3416  *
3417  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3418  *
3419  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3420  * inside @pool proper are initialized and put_unbound_pool() can be called
3421  * on @pool safely to release it.
3422  */
3423 static int init_worker_pool(struct worker_pool *pool)
3424 {
3425 	raw_spin_lock_init(&pool->lock);
3426 	pool->id = -1;
3427 	pool->cpu = -1;
3428 	pool->node = NUMA_NO_NODE;
3429 	pool->flags |= POOL_DISASSOCIATED;
3430 	pool->watchdog_ts = jiffies;
3431 	INIT_LIST_HEAD(&pool->worklist);
3432 	INIT_LIST_HEAD(&pool->idle_list);
3433 	hash_init(pool->busy_hash);
3434 
3435 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3436 
3437 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3438 
3439 	INIT_LIST_HEAD(&pool->workers);
3440 
3441 	ida_init(&pool->worker_ida);
3442 	INIT_HLIST_NODE(&pool->hash_node);
3443 	pool->refcnt = 1;
3444 
3445 	/* shouldn't fail above this point */
3446 	pool->attrs = alloc_workqueue_attrs();
3447 	if (!pool->attrs)
3448 		return -ENOMEM;
3449 	return 0;
3450 }
3451 
3452 #ifdef CONFIG_LOCKDEP
3453 static void wq_init_lockdep(struct workqueue_struct *wq)
3454 {
3455 	char *lock_name;
3456 
3457 	lockdep_register_key(&wq->key);
3458 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3459 	if (!lock_name)
3460 		lock_name = wq->name;
3461 
3462 	wq->lock_name = lock_name;
3463 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3464 }
3465 
3466 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3467 {
3468 	lockdep_unregister_key(&wq->key);
3469 }
3470 
3471 static void wq_free_lockdep(struct workqueue_struct *wq)
3472 {
3473 	if (wq->lock_name != wq->name)
3474 		kfree(wq->lock_name);
3475 }
3476 #else
3477 static void wq_init_lockdep(struct workqueue_struct *wq)
3478 {
3479 }
3480 
3481 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3482 {
3483 }
3484 
3485 static void wq_free_lockdep(struct workqueue_struct *wq)
3486 {
3487 }
3488 #endif
3489 
3490 static void rcu_free_wq(struct rcu_head *rcu)
3491 {
3492 	struct workqueue_struct *wq =
3493 		container_of(rcu, struct workqueue_struct, rcu);
3494 
3495 	wq_free_lockdep(wq);
3496 
3497 	if (!(wq->flags & WQ_UNBOUND))
3498 		free_percpu(wq->cpu_pwqs);
3499 	else
3500 		free_workqueue_attrs(wq->unbound_attrs);
3501 
3502 	kfree(wq);
3503 }
3504 
3505 static void rcu_free_pool(struct rcu_head *rcu)
3506 {
3507 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3508 
3509 	ida_destroy(&pool->worker_ida);
3510 	free_workqueue_attrs(pool->attrs);
3511 	kfree(pool);
3512 }
3513 
3514 /* This returns with the lock held on success (pool manager is inactive). */
3515 static bool wq_manager_inactive(struct worker_pool *pool)
3516 {
3517 	raw_spin_lock_irq(&pool->lock);
3518 
3519 	if (pool->flags & POOL_MANAGER_ACTIVE) {
3520 		raw_spin_unlock_irq(&pool->lock);
3521 		return false;
3522 	}
3523 	return true;
3524 }
3525 
3526 /**
3527  * put_unbound_pool - put a worker_pool
3528  * @pool: worker_pool to put
3529  *
3530  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3531  * safe manner.  get_unbound_pool() calls this function on its failure path
3532  * and this function should be able to release pools which went through,
3533  * successfully or not, init_worker_pool().
3534  *
3535  * Should be called with wq_pool_mutex held.
3536  */
3537 static void put_unbound_pool(struct worker_pool *pool)
3538 {
3539 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3540 	struct worker *worker;
3541 
3542 	lockdep_assert_held(&wq_pool_mutex);
3543 
3544 	if (--pool->refcnt)
3545 		return;
3546 
3547 	/* sanity checks */
3548 	if (WARN_ON(!(pool->cpu < 0)) ||
3549 	    WARN_ON(!list_empty(&pool->worklist)))
3550 		return;
3551 
3552 	/* release id and unhash */
3553 	if (pool->id >= 0)
3554 		idr_remove(&worker_pool_idr, pool->id);
3555 	hash_del(&pool->hash_node);
3556 
3557 	/*
3558 	 * Become the manager and destroy all workers.  This prevents
3559 	 * @pool's workers from blocking on attach_mutex.  We're the last
3560 	 * manager and @pool gets freed with the flag set.
3561 	 * Because of how wq_manager_inactive() works, we will hold the
3562 	 * spinlock after a successful wait.
3563 	 */
3564 	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3565 			   TASK_UNINTERRUPTIBLE);
3566 	pool->flags |= POOL_MANAGER_ACTIVE;
3567 
3568 	while ((worker = first_idle_worker(pool)))
3569 		destroy_worker(worker);
3570 	WARN_ON(pool->nr_workers || pool->nr_idle);
3571 	raw_spin_unlock_irq(&pool->lock);
3572 
3573 	mutex_lock(&wq_pool_attach_mutex);
3574 	if (!list_empty(&pool->workers))
3575 		pool->detach_completion = &detach_completion;
3576 	mutex_unlock(&wq_pool_attach_mutex);
3577 
3578 	if (pool->detach_completion)
3579 		wait_for_completion(pool->detach_completion);
3580 
3581 	/* shut down the timers */
3582 	del_timer_sync(&pool->idle_timer);
3583 	del_timer_sync(&pool->mayday_timer);
3584 
3585 	/* RCU protected to allow dereferences from get_work_pool() */
3586 	call_rcu(&pool->rcu, rcu_free_pool);
3587 }
3588 
3589 /**
3590  * get_unbound_pool - get a worker_pool with the specified attributes
3591  * @attrs: the attributes of the worker_pool to get
3592  *
3593  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3594  * reference count and return it.  If there already is a matching
3595  * worker_pool, it will be used; otherwise, this function attempts to
3596  * create a new one.
3597  *
3598  * Should be called with wq_pool_mutex held.
3599  *
3600  * Return: On success, a worker_pool with the same attributes as @attrs.
3601  * On failure, %NULL.
3602  */
3603 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3604 {
3605 	u32 hash = wqattrs_hash(attrs);
3606 	struct worker_pool *pool;
3607 	int node;
3608 	int target_node = NUMA_NO_NODE;
3609 
3610 	lockdep_assert_held(&wq_pool_mutex);
3611 
3612 	/* do we already have a matching pool? */
3613 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3614 		if (wqattrs_equal(pool->attrs, attrs)) {
3615 			pool->refcnt++;
3616 			return pool;
3617 		}
3618 	}
3619 
3620 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3621 	if (wq_numa_enabled) {
3622 		for_each_node(node) {
3623 			if (cpumask_subset(attrs->cpumask,
3624 					   wq_numa_possible_cpumask[node])) {
3625 				target_node = node;
3626 				break;
3627 			}
3628 		}
3629 	}
3630 
3631 	/* nope, create a new one */
3632 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3633 	if (!pool || init_worker_pool(pool) < 0)
3634 		goto fail;
3635 
3636 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3637 	copy_workqueue_attrs(pool->attrs, attrs);
3638 	pool->node = target_node;
3639 
3640 	/*
3641 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3642 	 * 'struct workqueue_attrs' comments for detail.
3643 	 */
3644 	pool->attrs->no_numa = false;
3645 
3646 	if (worker_pool_assign_id(pool) < 0)
3647 		goto fail;
3648 
3649 	/* create and start the initial worker */
3650 	if (wq_online && !create_worker(pool))
3651 		goto fail;
3652 
3653 	/* install */
3654 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3655 
3656 	return pool;
3657 fail:
3658 	if (pool)
3659 		put_unbound_pool(pool);
3660 	return NULL;
3661 }
3662 
3663 static void rcu_free_pwq(struct rcu_head *rcu)
3664 {
3665 	kmem_cache_free(pwq_cache,
3666 			container_of(rcu, struct pool_workqueue, rcu));
3667 }
3668 
3669 /*
3670  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3671  * and needs to be destroyed.
3672  */
3673 static void pwq_unbound_release_workfn(struct work_struct *work)
3674 {
3675 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3676 						  unbound_release_work);
3677 	struct workqueue_struct *wq = pwq->wq;
3678 	struct worker_pool *pool = pwq->pool;
3679 	bool is_last = false;
3680 
3681 	/*
3682 	 * when @pwq is not linked, it doesn't hold any reference to the
3683 	 * @wq, and @wq is invalid to access.
3684 	 */
3685 	if (!list_empty(&pwq->pwqs_node)) {
3686 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3687 			return;
3688 
3689 		mutex_lock(&wq->mutex);
3690 		list_del_rcu(&pwq->pwqs_node);
3691 		is_last = list_empty(&wq->pwqs);
3692 		mutex_unlock(&wq->mutex);
3693 	}
3694 
3695 	mutex_lock(&wq_pool_mutex);
3696 	put_unbound_pool(pool);
3697 	mutex_unlock(&wq_pool_mutex);
3698 
3699 	call_rcu(&pwq->rcu, rcu_free_pwq);
3700 
3701 	/*
3702 	 * If we're the last pwq going away, @wq is already dead and no one
3703 	 * is gonna access it anymore.  Schedule RCU free.
3704 	 */
3705 	if (is_last) {
3706 		wq_unregister_lockdep(wq);
3707 		call_rcu(&wq->rcu, rcu_free_wq);
3708 	}
3709 }
3710 
3711 /**
3712  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3713  * @pwq: target pool_workqueue
3714  *
3715  * If @pwq isn't freezing, set @pwq->max_active to the associated
3716  * workqueue's saved_max_active and activate delayed work items
3717  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3718  */
3719 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3720 {
3721 	struct workqueue_struct *wq = pwq->wq;
3722 	bool freezable = wq->flags & WQ_FREEZABLE;
3723 	unsigned long flags;
3724 
3725 	/* for @wq->saved_max_active */
3726 	lockdep_assert_held(&wq->mutex);
3727 
3728 	/* fast exit for non-freezable wqs */
3729 	if (!freezable && pwq->max_active == wq->saved_max_active)
3730 		return;
3731 
3732 	/* this function can be called during early boot w/ irq disabled */
3733 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3734 
3735 	/*
3736 	 * During [un]freezing, the caller is responsible for ensuring that
3737 	 * this function is called at least once after @workqueue_freezing
3738 	 * is updated and visible.
3739 	 */
3740 	if (!freezable || !workqueue_freezing) {
3741 		bool kick = false;
3742 
3743 		pwq->max_active = wq->saved_max_active;
3744 
3745 		while (!list_empty(&pwq->delayed_works) &&
3746 		       pwq->nr_active < pwq->max_active) {
3747 			pwq_activate_first_delayed(pwq);
3748 			kick = true;
3749 		}
3750 
3751 		/*
3752 		 * Need to kick a worker after thawed or an unbound wq's
3753 		 * max_active is bumped. In realtime scenarios, always kicking a
3754 		 * worker will cause interference on the isolated cpu cores, so
3755 		 * let's kick iff work items were activated.
3756 		 */
3757 		if (kick)
3758 			wake_up_worker(pwq->pool);
3759 	} else {
3760 		pwq->max_active = 0;
3761 	}
3762 
3763 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3764 }
3765 
3766 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3767 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3768 		     struct worker_pool *pool)
3769 {
3770 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3771 
3772 	memset(pwq, 0, sizeof(*pwq));
3773 
3774 	pwq->pool = pool;
3775 	pwq->wq = wq;
3776 	pwq->flush_color = -1;
3777 	pwq->refcnt = 1;
3778 	INIT_LIST_HEAD(&pwq->delayed_works);
3779 	INIT_LIST_HEAD(&pwq->pwqs_node);
3780 	INIT_LIST_HEAD(&pwq->mayday_node);
3781 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3782 }
3783 
3784 /* sync @pwq with the current state of its associated wq and link it */
3785 static void link_pwq(struct pool_workqueue *pwq)
3786 {
3787 	struct workqueue_struct *wq = pwq->wq;
3788 
3789 	lockdep_assert_held(&wq->mutex);
3790 
3791 	/* may be called multiple times, ignore if already linked */
3792 	if (!list_empty(&pwq->pwqs_node))
3793 		return;
3794 
3795 	/* set the matching work_color */
3796 	pwq->work_color = wq->work_color;
3797 
3798 	/* sync max_active to the current setting */
3799 	pwq_adjust_max_active(pwq);
3800 
3801 	/* link in @pwq */
3802 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3803 }
3804 
3805 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3806 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3807 					const struct workqueue_attrs *attrs)
3808 {
3809 	struct worker_pool *pool;
3810 	struct pool_workqueue *pwq;
3811 
3812 	lockdep_assert_held(&wq_pool_mutex);
3813 
3814 	pool = get_unbound_pool(attrs);
3815 	if (!pool)
3816 		return NULL;
3817 
3818 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3819 	if (!pwq) {
3820 		put_unbound_pool(pool);
3821 		return NULL;
3822 	}
3823 
3824 	init_pwq(pwq, wq, pool);
3825 	return pwq;
3826 }
3827 
3828 /**
3829  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3830  * @attrs: the wq_attrs of the default pwq of the target workqueue
3831  * @node: the target NUMA node
3832  * @cpu_going_down: if >= 0, the CPU to consider as offline
3833  * @cpumask: outarg, the resulting cpumask
3834  *
3835  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3836  * @cpu_going_down is >= 0, that cpu is considered offline during
3837  * calculation.  The result is stored in @cpumask.
3838  *
3839  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3840  * enabled and @node has online CPUs requested by @attrs, the returned
3841  * cpumask is the intersection of the possible CPUs of @node and
3842  * @attrs->cpumask.
3843  *
3844  * The caller is responsible for ensuring that the cpumask of @node stays
3845  * stable.
3846  *
3847  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3848  * %false if equal.
3849  */
3850 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3851 				 int cpu_going_down, cpumask_t *cpumask)
3852 {
3853 	if (!wq_numa_enabled || attrs->no_numa)
3854 		goto use_dfl;
3855 
3856 	/* does @node have any online CPUs @attrs wants? */
3857 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3858 	if (cpu_going_down >= 0)
3859 		cpumask_clear_cpu(cpu_going_down, cpumask);
3860 
3861 	if (cpumask_empty(cpumask))
3862 		goto use_dfl;
3863 
3864 	/* yeap, return possible CPUs in @node that @attrs wants */
3865 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3866 
3867 	if (cpumask_empty(cpumask)) {
3868 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3869 				"possible intersect\n");
3870 		return false;
3871 	}
3872 
3873 	return !cpumask_equal(cpumask, attrs->cpumask);
3874 
3875 use_dfl:
3876 	cpumask_copy(cpumask, attrs->cpumask);
3877 	return false;
3878 }
3879 
3880 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3881 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3882 						   int node,
3883 						   struct pool_workqueue *pwq)
3884 {
3885 	struct pool_workqueue *old_pwq;
3886 
3887 	lockdep_assert_held(&wq_pool_mutex);
3888 	lockdep_assert_held(&wq->mutex);
3889 
3890 	/* link_pwq() can handle duplicate calls */
3891 	link_pwq(pwq);
3892 
3893 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3894 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3895 	return old_pwq;
3896 }
3897 
3898 /* context to store the prepared attrs & pwqs before applying */
3899 struct apply_wqattrs_ctx {
3900 	struct workqueue_struct	*wq;		/* target workqueue */
3901 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3902 	struct list_head	list;		/* queued for batching commit */
3903 	struct pool_workqueue	*dfl_pwq;
3904 	struct pool_workqueue	*pwq_tbl[];
3905 };
3906 
3907 /* free the resources after success or abort */
3908 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3909 {
3910 	if (ctx) {
3911 		int node;
3912 
3913 		for_each_node(node)
3914 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3915 		put_pwq_unlocked(ctx->dfl_pwq);
3916 
3917 		free_workqueue_attrs(ctx->attrs);
3918 
3919 		kfree(ctx);
3920 	}
3921 }
3922 
3923 /* allocate the attrs and pwqs for later installation */
3924 static struct apply_wqattrs_ctx *
3925 apply_wqattrs_prepare(struct workqueue_struct *wq,
3926 		      const struct workqueue_attrs *attrs)
3927 {
3928 	struct apply_wqattrs_ctx *ctx;
3929 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3930 	int node;
3931 
3932 	lockdep_assert_held(&wq_pool_mutex);
3933 
3934 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3935 
3936 	new_attrs = alloc_workqueue_attrs();
3937 	tmp_attrs = alloc_workqueue_attrs();
3938 	if (!ctx || !new_attrs || !tmp_attrs)
3939 		goto out_free;
3940 
3941 	/*
3942 	 * Calculate the attrs of the default pwq.
3943 	 * If the user configured cpumask doesn't overlap with the
3944 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3945 	 */
3946 	copy_workqueue_attrs(new_attrs, attrs);
3947 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3948 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3949 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3950 
3951 	/*
3952 	 * We may create multiple pwqs with differing cpumasks.  Make a
3953 	 * copy of @new_attrs which will be modified and used to obtain
3954 	 * pools.
3955 	 */
3956 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3957 
3958 	/*
3959 	 * If something goes wrong during CPU up/down, we'll fall back to
3960 	 * the default pwq covering whole @attrs->cpumask.  Always create
3961 	 * it even if we don't use it immediately.
3962 	 */
3963 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3964 	if (!ctx->dfl_pwq)
3965 		goto out_free;
3966 
3967 	for_each_node(node) {
3968 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3969 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3970 			if (!ctx->pwq_tbl[node])
3971 				goto out_free;
3972 		} else {
3973 			ctx->dfl_pwq->refcnt++;
3974 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3975 		}
3976 	}
3977 
3978 	/* save the user configured attrs and sanitize it. */
3979 	copy_workqueue_attrs(new_attrs, attrs);
3980 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3981 	ctx->attrs = new_attrs;
3982 
3983 	ctx->wq = wq;
3984 	free_workqueue_attrs(tmp_attrs);
3985 	return ctx;
3986 
3987 out_free:
3988 	free_workqueue_attrs(tmp_attrs);
3989 	free_workqueue_attrs(new_attrs);
3990 	apply_wqattrs_cleanup(ctx);
3991 	return NULL;
3992 }
3993 
3994 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3995 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3996 {
3997 	int node;
3998 
3999 	/* all pwqs have been created successfully, let's install'em */
4000 	mutex_lock(&ctx->wq->mutex);
4001 
4002 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4003 
4004 	/* save the previous pwq and install the new one */
4005 	for_each_node(node)
4006 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4007 							  ctx->pwq_tbl[node]);
4008 
4009 	/* @dfl_pwq might not have been used, ensure it's linked */
4010 	link_pwq(ctx->dfl_pwq);
4011 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4012 
4013 	mutex_unlock(&ctx->wq->mutex);
4014 }
4015 
4016 static void apply_wqattrs_lock(void)
4017 {
4018 	/* CPUs should stay stable across pwq creations and installations */
4019 	get_online_cpus();
4020 	mutex_lock(&wq_pool_mutex);
4021 }
4022 
4023 static void apply_wqattrs_unlock(void)
4024 {
4025 	mutex_unlock(&wq_pool_mutex);
4026 	put_online_cpus();
4027 }
4028 
4029 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4030 					const struct workqueue_attrs *attrs)
4031 {
4032 	struct apply_wqattrs_ctx *ctx;
4033 
4034 	/* only unbound workqueues can change attributes */
4035 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4036 		return -EINVAL;
4037 
4038 	/* creating multiple pwqs breaks ordering guarantee */
4039 	if (!list_empty(&wq->pwqs)) {
4040 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4041 			return -EINVAL;
4042 
4043 		wq->flags &= ~__WQ_ORDERED;
4044 	}
4045 
4046 	ctx = apply_wqattrs_prepare(wq, attrs);
4047 	if (!ctx)
4048 		return -ENOMEM;
4049 
4050 	/* the ctx has been prepared successfully, let's commit it */
4051 	apply_wqattrs_commit(ctx);
4052 	apply_wqattrs_cleanup(ctx);
4053 
4054 	return 0;
4055 }
4056 
4057 /**
4058  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4059  * @wq: the target workqueue
4060  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4061  *
4062  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4063  * machines, this function maps a separate pwq to each NUMA node with
4064  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4065  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4066  * items finish.  Note that a work item which repeatedly requeues itself
4067  * back-to-back will stay on its current pwq.
4068  *
4069  * Performs GFP_KERNEL allocations.
4070  *
4071  * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4072  *
4073  * Return: 0 on success and -errno on failure.
4074  */
4075 int apply_workqueue_attrs(struct workqueue_struct *wq,
4076 			  const struct workqueue_attrs *attrs)
4077 {
4078 	int ret;
4079 
4080 	lockdep_assert_cpus_held();
4081 
4082 	mutex_lock(&wq_pool_mutex);
4083 	ret = apply_workqueue_attrs_locked(wq, attrs);
4084 	mutex_unlock(&wq_pool_mutex);
4085 
4086 	return ret;
4087 }
4088 
4089 /**
4090  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4091  * @wq: the target workqueue
4092  * @cpu: the CPU coming up or going down
4093  * @online: whether @cpu is coming up or going down
4094  *
4095  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4096  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4097  * @wq accordingly.
4098  *
4099  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4100  * falls back to @wq->dfl_pwq which may not be optimal but is always
4101  * correct.
4102  *
4103  * Note that when the last allowed CPU of a NUMA node goes offline for a
4104  * workqueue with a cpumask spanning multiple nodes, the workers which were
4105  * already executing the work items for the workqueue will lose their CPU
4106  * affinity and may execute on any CPU.  This is similar to how per-cpu
4107  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4108  * affinity, it's the user's responsibility to flush the work item from
4109  * CPU_DOWN_PREPARE.
4110  */
4111 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4112 				   bool online)
4113 {
4114 	int node = cpu_to_node(cpu);
4115 	int cpu_off = online ? -1 : cpu;
4116 	struct pool_workqueue *old_pwq = NULL, *pwq;
4117 	struct workqueue_attrs *target_attrs;
4118 	cpumask_t *cpumask;
4119 
4120 	lockdep_assert_held(&wq_pool_mutex);
4121 
4122 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4123 	    wq->unbound_attrs->no_numa)
4124 		return;
4125 
4126 	/*
4127 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4128 	 * Let's use a preallocated one.  The following buf is protected by
4129 	 * CPU hotplug exclusion.
4130 	 */
4131 	target_attrs = wq_update_unbound_numa_attrs_buf;
4132 	cpumask = target_attrs->cpumask;
4133 
4134 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4135 	pwq = unbound_pwq_by_node(wq, node);
4136 
4137 	/*
4138 	 * Let's determine what needs to be done.  If the target cpumask is
4139 	 * different from the default pwq's, we need to compare it to @pwq's
4140 	 * and create a new one if they don't match.  If the target cpumask
4141 	 * equals the default pwq's, the default pwq should be used.
4142 	 */
4143 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4144 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4145 			return;
4146 	} else {
4147 		goto use_dfl_pwq;
4148 	}
4149 
4150 	/* create a new pwq */
4151 	pwq = alloc_unbound_pwq(wq, target_attrs);
4152 	if (!pwq) {
4153 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4154 			wq->name);
4155 		goto use_dfl_pwq;
4156 	}
4157 
4158 	/* Install the new pwq. */
4159 	mutex_lock(&wq->mutex);
4160 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4161 	goto out_unlock;
4162 
4163 use_dfl_pwq:
4164 	mutex_lock(&wq->mutex);
4165 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4166 	get_pwq(wq->dfl_pwq);
4167 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4168 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4169 out_unlock:
4170 	mutex_unlock(&wq->mutex);
4171 	put_pwq_unlocked(old_pwq);
4172 }
4173 
4174 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4175 {
4176 	bool highpri = wq->flags & WQ_HIGHPRI;
4177 	int cpu, ret;
4178 
4179 	if (!(wq->flags & WQ_UNBOUND)) {
4180 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4181 		if (!wq->cpu_pwqs)
4182 			return -ENOMEM;
4183 
4184 		for_each_possible_cpu(cpu) {
4185 			struct pool_workqueue *pwq =
4186 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4187 			struct worker_pool *cpu_pools =
4188 				per_cpu(cpu_worker_pools, cpu);
4189 
4190 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4191 
4192 			mutex_lock(&wq->mutex);
4193 			link_pwq(pwq);
4194 			mutex_unlock(&wq->mutex);
4195 		}
4196 		return 0;
4197 	}
4198 
4199 	get_online_cpus();
4200 	if (wq->flags & __WQ_ORDERED) {
4201 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4202 		/* there should only be single pwq for ordering guarantee */
4203 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4204 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4205 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4206 	} else {
4207 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4208 	}
4209 	put_online_cpus();
4210 
4211 	return ret;
4212 }
4213 
4214 static int wq_clamp_max_active(int max_active, unsigned int flags,
4215 			       const char *name)
4216 {
4217 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4218 
4219 	if (max_active < 1 || max_active > lim)
4220 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4221 			max_active, name, 1, lim);
4222 
4223 	return clamp_val(max_active, 1, lim);
4224 }
4225 
4226 /*
4227  * Workqueues which may be used during memory reclaim should have a rescuer
4228  * to guarantee forward progress.
4229  */
4230 static int init_rescuer(struct workqueue_struct *wq)
4231 {
4232 	struct worker *rescuer;
4233 	int ret;
4234 
4235 	if (!(wq->flags & WQ_MEM_RECLAIM))
4236 		return 0;
4237 
4238 	rescuer = alloc_worker(NUMA_NO_NODE);
4239 	if (!rescuer)
4240 		return -ENOMEM;
4241 
4242 	rescuer->rescue_wq = wq;
4243 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4244 	if (IS_ERR(rescuer->task)) {
4245 		ret = PTR_ERR(rescuer->task);
4246 		kfree(rescuer);
4247 		return ret;
4248 	}
4249 
4250 	wq->rescuer = rescuer;
4251 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4252 	wake_up_process(rescuer->task);
4253 
4254 	return 0;
4255 }
4256 
4257 __printf(1, 4)
4258 struct workqueue_struct *alloc_workqueue(const char *fmt,
4259 					 unsigned int flags,
4260 					 int max_active, ...)
4261 {
4262 	size_t tbl_size = 0;
4263 	va_list args;
4264 	struct workqueue_struct *wq;
4265 	struct pool_workqueue *pwq;
4266 
4267 	/*
4268 	 * Unbound && max_active == 1 used to imply ordered, which is no
4269 	 * longer the case on NUMA machines due to per-node pools.  While
4270 	 * alloc_ordered_workqueue() is the right way to create an ordered
4271 	 * workqueue, keep the previous behavior to avoid subtle breakages
4272 	 * on NUMA.
4273 	 */
4274 	if ((flags & WQ_UNBOUND) && max_active == 1)
4275 		flags |= __WQ_ORDERED;
4276 
4277 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4278 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4279 		flags |= WQ_UNBOUND;
4280 
4281 	/* allocate wq and format name */
4282 	if (flags & WQ_UNBOUND)
4283 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4284 
4285 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4286 	if (!wq)
4287 		return NULL;
4288 
4289 	if (flags & WQ_UNBOUND) {
4290 		wq->unbound_attrs = alloc_workqueue_attrs();
4291 		if (!wq->unbound_attrs)
4292 			goto err_free_wq;
4293 	}
4294 
4295 	va_start(args, max_active);
4296 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4297 	va_end(args);
4298 
4299 	max_active = max_active ?: WQ_DFL_ACTIVE;
4300 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4301 
4302 	/* init wq */
4303 	wq->flags = flags;
4304 	wq->saved_max_active = max_active;
4305 	mutex_init(&wq->mutex);
4306 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4307 	INIT_LIST_HEAD(&wq->pwqs);
4308 	INIT_LIST_HEAD(&wq->flusher_queue);
4309 	INIT_LIST_HEAD(&wq->flusher_overflow);
4310 	INIT_LIST_HEAD(&wq->maydays);
4311 
4312 	wq_init_lockdep(wq);
4313 	INIT_LIST_HEAD(&wq->list);
4314 
4315 	if (alloc_and_link_pwqs(wq) < 0)
4316 		goto err_unreg_lockdep;
4317 
4318 	if (wq_online && init_rescuer(wq) < 0)
4319 		goto err_destroy;
4320 
4321 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4322 		goto err_destroy;
4323 
4324 	/*
4325 	 * wq_pool_mutex protects global freeze state and workqueues list.
4326 	 * Grab it, adjust max_active and add the new @wq to workqueues
4327 	 * list.
4328 	 */
4329 	mutex_lock(&wq_pool_mutex);
4330 
4331 	mutex_lock(&wq->mutex);
4332 	for_each_pwq(pwq, wq)
4333 		pwq_adjust_max_active(pwq);
4334 	mutex_unlock(&wq->mutex);
4335 
4336 	list_add_tail_rcu(&wq->list, &workqueues);
4337 
4338 	mutex_unlock(&wq_pool_mutex);
4339 
4340 	return wq;
4341 
4342 err_unreg_lockdep:
4343 	wq_unregister_lockdep(wq);
4344 	wq_free_lockdep(wq);
4345 err_free_wq:
4346 	free_workqueue_attrs(wq->unbound_attrs);
4347 	kfree(wq);
4348 	return NULL;
4349 err_destroy:
4350 	destroy_workqueue(wq);
4351 	return NULL;
4352 }
4353 EXPORT_SYMBOL_GPL(alloc_workqueue);
4354 
4355 static bool pwq_busy(struct pool_workqueue *pwq)
4356 {
4357 	int i;
4358 
4359 	for (i = 0; i < WORK_NR_COLORS; i++)
4360 		if (pwq->nr_in_flight[i])
4361 			return true;
4362 
4363 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4364 		return true;
4365 	if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4366 		return true;
4367 
4368 	return false;
4369 }
4370 
4371 /**
4372  * destroy_workqueue - safely terminate a workqueue
4373  * @wq: target workqueue
4374  *
4375  * Safely destroy a workqueue. All work currently pending will be done first.
4376  */
4377 void destroy_workqueue(struct workqueue_struct *wq)
4378 {
4379 	struct pool_workqueue *pwq;
4380 	int node;
4381 
4382 	/*
4383 	 * Remove it from sysfs first so that sanity check failure doesn't
4384 	 * lead to sysfs name conflicts.
4385 	 */
4386 	workqueue_sysfs_unregister(wq);
4387 
4388 	/* drain it before proceeding with destruction */
4389 	drain_workqueue(wq);
4390 
4391 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4392 	if (wq->rescuer) {
4393 		struct worker *rescuer = wq->rescuer;
4394 
4395 		/* this prevents new queueing */
4396 		raw_spin_lock_irq(&wq_mayday_lock);
4397 		wq->rescuer = NULL;
4398 		raw_spin_unlock_irq(&wq_mayday_lock);
4399 
4400 		/* rescuer will empty maydays list before exiting */
4401 		kthread_stop(rescuer->task);
4402 		kfree(rescuer);
4403 	}
4404 
4405 	/*
4406 	 * Sanity checks - grab all the locks so that we wait for all
4407 	 * in-flight operations which may do put_pwq().
4408 	 */
4409 	mutex_lock(&wq_pool_mutex);
4410 	mutex_lock(&wq->mutex);
4411 	for_each_pwq(pwq, wq) {
4412 		raw_spin_lock_irq(&pwq->pool->lock);
4413 		if (WARN_ON(pwq_busy(pwq))) {
4414 			pr_warn("%s: %s has the following busy pwq\n",
4415 				__func__, wq->name);
4416 			show_pwq(pwq);
4417 			raw_spin_unlock_irq(&pwq->pool->lock);
4418 			mutex_unlock(&wq->mutex);
4419 			mutex_unlock(&wq_pool_mutex);
4420 			show_workqueue_state();
4421 			return;
4422 		}
4423 		raw_spin_unlock_irq(&pwq->pool->lock);
4424 	}
4425 	mutex_unlock(&wq->mutex);
4426 
4427 	/*
4428 	 * wq list is used to freeze wq, remove from list after
4429 	 * flushing is complete in case freeze races us.
4430 	 */
4431 	list_del_rcu(&wq->list);
4432 	mutex_unlock(&wq_pool_mutex);
4433 
4434 	if (!(wq->flags & WQ_UNBOUND)) {
4435 		wq_unregister_lockdep(wq);
4436 		/*
4437 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4438 		 * schedule RCU free.
4439 		 */
4440 		call_rcu(&wq->rcu, rcu_free_wq);
4441 	} else {
4442 		/*
4443 		 * We're the sole accessor of @wq at this point.  Directly
4444 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4445 		 * @wq will be freed when the last pwq is released.
4446 		 */
4447 		for_each_node(node) {
4448 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4449 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4450 			put_pwq_unlocked(pwq);
4451 		}
4452 
4453 		/*
4454 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4455 		 * put.  Don't access it afterwards.
4456 		 */
4457 		pwq = wq->dfl_pwq;
4458 		wq->dfl_pwq = NULL;
4459 		put_pwq_unlocked(pwq);
4460 	}
4461 }
4462 EXPORT_SYMBOL_GPL(destroy_workqueue);
4463 
4464 /**
4465  * workqueue_set_max_active - adjust max_active of a workqueue
4466  * @wq: target workqueue
4467  * @max_active: new max_active value.
4468  *
4469  * Set max_active of @wq to @max_active.
4470  *
4471  * CONTEXT:
4472  * Don't call from IRQ context.
4473  */
4474 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4475 {
4476 	struct pool_workqueue *pwq;
4477 
4478 	/* disallow meddling with max_active for ordered workqueues */
4479 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4480 		return;
4481 
4482 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4483 
4484 	mutex_lock(&wq->mutex);
4485 
4486 	wq->flags &= ~__WQ_ORDERED;
4487 	wq->saved_max_active = max_active;
4488 
4489 	for_each_pwq(pwq, wq)
4490 		pwq_adjust_max_active(pwq);
4491 
4492 	mutex_unlock(&wq->mutex);
4493 }
4494 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4495 
4496 /**
4497  * current_work - retrieve %current task's work struct
4498  *
4499  * Determine if %current task is a workqueue worker and what it's working on.
4500  * Useful to find out the context that the %current task is running in.
4501  *
4502  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4503  */
4504 struct work_struct *current_work(void)
4505 {
4506 	struct worker *worker = current_wq_worker();
4507 
4508 	return worker ? worker->current_work : NULL;
4509 }
4510 EXPORT_SYMBOL(current_work);
4511 
4512 /**
4513  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4514  *
4515  * Determine whether %current is a workqueue rescuer.  Can be used from
4516  * work functions to determine whether it's being run off the rescuer task.
4517  *
4518  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4519  */
4520 bool current_is_workqueue_rescuer(void)
4521 {
4522 	struct worker *worker = current_wq_worker();
4523 
4524 	return worker && worker->rescue_wq;
4525 }
4526 
4527 /**
4528  * workqueue_congested - test whether a workqueue is congested
4529  * @cpu: CPU in question
4530  * @wq: target workqueue
4531  *
4532  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4533  * no synchronization around this function and the test result is
4534  * unreliable and only useful as advisory hints or for debugging.
4535  *
4536  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4537  * Note that both per-cpu and unbound workqueues may be associated with
4538  * multiple pool_workqueues which have separate congested states.  A
4539  * workqueue being congested on one CPU doesn't mean the workqueue is also
4540  * contested on other CPUs / NUMA nodes.
4541  *
4542  * Return:
4543  * %true if congested, %false otherwise.
4544  */
4545 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4546 {
4547 	struct pool_workqueue *pwq;
4548 	bool ret;
4549 
4550 	rcu_read_lock();
4551 	preempt_disable();
4552 
4553 	if (cpu == WORK_CPU_UNBOUND)
4554 		cpu = smp_processor_id();
4555 
4556 	if (!(wq->flags & WQ_UNBOUND))
4557 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4558 	else
4559 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4560 
4561 	ret = !list_empty(&pwq->delayed_works);
4562 	preempt_enable();
4563 	rcu_read_unlock();
4564 
4565 	return ret;
4566 }
4567 EXPORT_SYMBOL_GPL(workqueue_congested);
4568 
4569 /**
4570  * work_busy - test whether a work is currently pending or running
4571  * @work: the work to be tested
4572  *
4573  * Test whether @work is currently pending or running.  There is no
4574  * synchronization around this function and the test result is
4575  * unreliable and only useful as advisory hints or for debugging.
4576  *
4577  * Return:
4578  * OR'd bitmask of WORK_BUSY_* bits.
4579  */
4580 unsigned int work_busy(struct work_struct *work)
4581 {
4582 	struct worker_pool *pool;
4583 	unsigned long flags;
4584 	unsigned int ret = 0;
4585 
4586 	if (work_pending(work))
4587 		ret |= WORK_BUSY_PENDING;
4588 
4589 	rcu_read_lock();
4590 	pool = get_work_pool(work);
4591 	if (pool) {
4592 		raw_spin_lock_irqsave(&pool->lock, flags);
4593 		if (find_worker_executing_work(pool, work))
4594 			ret |= WORK_BUSY_RUNNING;
4595 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4596 	}
4597 	rcu_read_unlock();
4598 
4599 	return ret;
4600 }
4601 EXPORT_SYMBOL_GPL(work_busy);
4602 
4603 /**
4604  * set_worker_desc - set description for the current work item
4605  * @fmt: printf-style format string
4606  * @...: arguments for the format string
4607  *
4608  * This function can be called by a running work function to describe what
4609  * the work item is about.  If the worker task gets dumped, this
4610  * information will be printed out together to help debugging.  The
4611  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4612  */
4613 void set_worker_desc(const char *fmt, ...)
4614 {
4615 	struct worker *worker = current_wq_worker();
4616 	va_list args;
4617 
4618 	if (worker) {
4619 		va_start(args, fmt);
4620 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4621 		va_end(args);
4622 	}
4623 }
4624 EXPORT_SYMBOL_GPL(set_worker_desc);
4625 
4626 /**
4627  * print_worker_info - print out worker information and description
4628  * @log_lvl: the log level to use when printing
4629  * @task: target task
4630  *
4631  * If @task is a worker and currently executing a work item, print out the
4632  * name of the workqueue being serviced and worker description set with
4633  * set_worker_desc() by the currently executing work item.
4634  *
4635  * This function can be safely called on any task as long as the
4636  * task_struct itself is accessible.  While safe, this function isn't
4637  * synchronized and may print out mixups or garbages of limited length.
4638  */
4639 void print_worker_info(const char *log_lvl, struct task_struct *task)
4640 {
4641 	work_func_t *fn = NULL;
4642 	char name[WQ_NAME_LEN] = { };
4643 	char desc[WORKER_DESC_LEN] = { };
4644 	struct pool_workqueue *pwq = NULL;
4645 	struct workqueue_struct *wq = NULL;
4646 	struct worker *worker;
4647 
4648 	if (!(task->flags & PF_WQ_WORKER))
4649 		return;
4650 
4651 	/*
4652 	 * This function is called without any synchronization and @task
4653 	 * could be in any state.  Be careful with dereferences.
4654 	 */
4655 	worker = kthread_probe_data(task);
4656 
4657 	/*
4658 	 * Carefully copy the associated workqueue's workfn, name and desc.
4659 	 * Keep the original last '\0' in case the original is garbage.
4660 	 */
4661 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4662 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4663 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4664 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4665 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4666 
4667 	if (fn || name[0] || desc[0]) {
4668 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4669 		if (strcmp(name, desc))
4670 			pr_cont(" (%s)", desc);
4671 		pr_cont("\n");
4672 	}
4673 }
4674 
4675 static void pr_cont_pool_info(struct worker_pool *pool)
4676 {
4677 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4678 	if (pool->node != NUMA_NO_NODE)
4679 		pr_cont(" node=%d", pool->node);
4680 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4681 }
4682 
4683 static void pr_cont_work(bool comma, struct work_struct *work)
4684 {
4685 	if (work->func == wq_barrier_func) {
4686 		struct wq_barrier *barr;
4687 
4688 		barr = container_of(work, struct wq_barrier, work);
4689 
4690 		pr_cont("%s BAR(%d)", comma ? "," : "",
4691 			task_pid_nr(barr->task));
4692 	} else {
4693 		pr_cont("%s %ps", comma ? "," : "", work->func);
4694 	}
4695 }
4696 
4697 static void show_pwq(struct pool_workqueue *pwq)
4698 {
4699 	struct worker_pool *pool = pwq->pool;
4700 	struct work_struct *work;
4701 	struct worker *worker;
4702 	bool has_in_flight = false, has_pending = false;
4703 	int bkt;
4704 
4705 	pr_info("  pwq %d:", pool->id);
4706 	pr_cont_pool_info(pool);
4707 
4708 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4709 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4710 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4711 
4712 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4713 		if (worker->current_pwq == pwq) {
4714 			has_in_flight = true;
4715 			break;
4716 		}
4717 	}
4718 	if (has_in_flight) {
4719 		bool comma = false;
4720 
4721 		pr_info("    in-flight:");
4722 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4723 			if (worker->current_pwq != pwq)
4724 				continue;
4725 
4726 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4727 				task_pid_nr(worker->task),
4728 				worker->rescue_wq ? "(RESCUER)" : "",
4729 				worker->current_func);
4730 			list_for_each_entry(work, &worker->scheduled, entry)
4731 				pr_cont_work(false, work);
4732 			comma = true;
4733 		}
4734 		pr_cont("\n");
4735 	}
4736 
4737 	list_for_each_entry(work, &pool->worklist, entry) {
4738 		if (get_work_pwq(work) == pwq) {
4739 			has_pending = true;
4740 			break;
4741 		}
4742 	}
4743 	if (has_pending) {
4744 		bool comma = false;
4745 
4746 		pr_info("    pending:");
4747 		list_for_each_entry(work, &pool->worklist, entry) {
4748 			if (get_work_pwq(work) != pwq)
4749 				continue;
4750 
4751 			pr_cont_work(comma, work);
4752 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4753 		}
4754 		pr_cont("\n");
4755 	}
4756 
4757 	if (!list_empty(&pwq->delayed_works)) {
4758 		bool comma = false;
4759 
4760 		pr_info("    delayed:");
4761 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4762 			pr_cont_work(comma, work);
4763 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4764 		}
4765 		pr_cont("\n");
4766 	}
4767 }
4768 
4769 /**
4770  * show_workqueue_state - dump workqueue state
4771  *
4772  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4773  * all busy workqueues and pools.
4774  */
4775 void show_workqueue_state(void)
4776 {
4777 	struct workqueue_struct *wq;
4778 	struct worker_pool *pool;
4779 	unsigned long flags;
4780 	int pi;
4781 
4782 	rcu_read_lock();
4783 
4784 	pr_info("Showing busy workqueues and worker pools:\n");
4785 
4786 	list_for_each_entry_rcu(wq, &workqueues, list) {
4787 		struct pool_workqueue *pwq;
4788 		bool idle = true;
4789 
4790 		for_each_pwq(pwq, wq) {
4791 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4792 				idle = false;
4793 				break;
4794 			}
4795 		}
4796 		if (idle)
4797 			continue;
4798 
4799 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4800 
4801 		for_each_pwq(pwq, wq) {
4802 			raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4803 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4804 				show_pwq(pwq);
4805 			raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4806 			/*
4807 			 * We could be printing a lot from atomic context, e.g.
4808 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4809 			 * hard lockup.
4810 			 */
4811 			touch_nmi_watchdog();
4812 		}
4813 	}
4814 
4815 	for_each_pool(pool, pi) {
4816 		struct worker *worker;
4817 		bool first = true;
4818 
4819 		raw_spin_lock_irqsave(&pool->lock, flags);
4820 		if (pool->nr_workers == pool->nr_idle)
4821 			goto next_pool;
4822 
4823 		pr_info("pool %d:", pool->id);
4824 		pr_cont_pool_info(pool);
4825 		pr_cont(" hung=%us workers=%d",
4826 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4827 			pool->nr_workers);
4828 		if (pool->manager)
4829 			pr_cont(" manager: %d",
4830 				task_pid_nr(pool->manager->task));
4831 		list_for_each_entry(worker, &pool->idle_list, entry) {
4832 			pr_cont(" %s%d", first ? "idle: " : "",
4833 				task_pid_nr(worker->task));
4834 			first = false;
4835 		}
4836 		pr_cont("\n");
4837 	next_pool:
4838 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4839 		/*
4840 		 * We could be printing a lot from atomic context, e.g.
4841 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4842 		 * hard lockup.
4843 		 */
4844 		touch_nmi_watchdog();
4845 	}
4846 
4847 	rcu_read_unlock();
4848 }
4849 
4850 /* used to show worker information through /proc/PID/{comm,stat,status} */
4851 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4852 {
4853 	int off;
4854 
4855 	/* always show the actual comm */
4856 	off = strscpy(buf, task->comm, size);
4857 	if (off < 0)
4858 		return;
4859 
4860 	/* stabilize PF_WQ_WORKER and worker pool association */
4861 	mutex_lock(&wq_pool_attach_mutex);
4862 
4863 	if (task->flags & PF_WQ_WORKER) {
4864 		struct worker *worker = kthread_data(task);
4865 		struct worker_pool *pool = worker->pool;
4866 
4867 		if (pool) {
4868 			raw_spin_lock_irq(&pool->lock);
4869 			/*
4870 			 * ->desc tracks information (wq name or
4871 			 * set_worker_desc()) for the latest execution.  If
4872 			 * current, prepend '+', otherwise '-'.
4873 			 */
4874 			if (worker->desc[0] != '\0') {
4875 				if (worker->current_work)
4876 					scnprintf(buf + off, size - off, "+%s",
4877 						  worker->desc);
4878 				else
4879 					scnprintf(buf + off, size - off, "-%s",
4880 						  worker->desc);
4881 			}
4882 			raw_spin_unlock_irq(&pool->lock);
4883 		}
4884 	}
4885 
4886 	mutex_unlock(&wq_pool_attach_mutex);
4887 }
4888 
4889 #ifdef CONFIG_SMP
4890 
4891 /*
4892  * CPU hotplug.
4893  *
4894  * There are two challenges in supporting CPU hotplug.  Firstly, there
4895  * are a lot of assumptions on strong associations among work, pwq and
4896  * pool which make migrating pending and scheduled works very
4897  * difficult to implement without impacting hot paths.  Secondly,
4898  * worker pools serve mix of short, long and very long running works making
4899  * blocked draining impractical.
4900  *
4901  * This is solved by allowing the pools to be disassociated from the CPU
4902  * running as an unbound one and allowing it to be reattached later if the
4903  * cpu comes back online.
4904  */
4905 
4906 static void unbind_workers(int cpu)
4907 {
4908 	struct worker_pool *pool;
4909 	struct worker *worker;
4910 
4911 	for_each_cpu_worker_pool(pool, cpu) {
4912 		mutex_lock(&wq_pool_attach_mutex);
4913 		raw_spin_lock_irq(&pool->lock);
4914 
4915 		/*
4916 		 * We've blocked all attach/detach operations. Make all workers
4917 		 * unbound and set DISASSOCIATED.  Before this, all workers
4918 		 * except for the ones which are still executing works from
4919 		 * before the last CPU down must be on the cpu.  After
4920 		 * this, they may become diasporas.
4921 		 */
4922 		for_each_pool_worker(worker, pool)
4923 			worker->flags |= WORKER_UNBOUND;
4924 
4925 		pool->flags |= POOL_DISASSOCIATED;
4926 
4927 		raw_spin_unlock_irq(&pool->lock);
4928 
4929 		for_each_pool_worker(worker, pool) {
4930 			kthread_set_per_cpu(worker->task, -1);
4931 			WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
4932 		}
4933 
4934 		mutex_unlock(&wq_pool_attach_mutex);
4935 
4936 		/*
4937 		 * Call schedule() so that we cross rq->lock and thus can
4938 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4939 		 * This is necessary as scheduler callbacks may be invoked
4940 		 * from other cpus.
4941 		 */
4942 		schedule();
4943 
4944 		/*
4945 		 * Sched callbacks are disabled now.  Zap nr_running.
4946 		 * After this, nr_running stays zero and need_more_worker()
4947 		 * and keep_working() are always true as long as the
4948 		 * worklist is not empty.  This pool now behaves as an
4949 		 * unbound (in terms of concurrency management) pool which
4950 		 * are served by workers tied to the pool.
4951 		 */
4952 		atomic_set(&pool->nr_running, 0);
4953 
4954 		/*
4955 		 * With concurrency management just turned off, a busy
4956 		 * worker blocking could lead to lengthy stalls.  Kick off
4957 		 * unbound chain execution of currently pending work items.
4958 		 */
4959 		raw_spin_lock_irq(&pool->lock);
4960 		wake_up_worker(pool);
4961 		raw_spin_unlock_irq(&pool->lock);
4962 	}
4963 }
4964 
4965 /**
4966  * rebind_workers - rebind all workers of a pool to the associated CPU
4967  * @pool: pool of interest
4968  *
4969  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4970  */
4971 static void rebind_workers(struct worker_pool *pool)
4972 {
4973 	struct worker *worker;
4974 
4975 	lockdep_assert_held(&wq_pool_attach_mutex);
4976 
4977 	/*
4978 	 * Restore CPU affinity of all workers.  As all idle workers should
4979 	 * be on the run-queue of the associated CPU before any local
4980 	 * wake-ups for concurrency management happen, restore CPU affinity
4981 	 * of all workers first and then clear UNBOUND.  As we're called
4982 	 * from CPU_ONLINE, the following shouldn't fail.
4983 	 */
4984 	for_each_pool_worker(worker, pool) {
4985 		kthread_set_per_cpu(worker->task, pool->cpu);
4986 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4987 						  pool->attrs->cpumask) < 0);
4988 	}
4989 
4990 	raw_spin_lock_irq(&pool->lock);
4991 
4992 	pool->flags &= ~POOL_DISASSOCIATED;
4993 
4994 	for_each_pool_worker(worker, pool) {
4995 		unsigned int worker_flags = worker->flags;
4996 
4997 		/*
4998 		 * A bound idle worker should actually be on the runqueue
4999 		 * of the associated CPU for local wake-ups targeting it to
5000 		 * work.  Kick all idle workers so that they migrate to the
5001 		 * associated CPU.  Doing this in the same loop as
5002 		 * replacing UNBOUND with REBOUND is safe as no worker will
5003 		 * be bound before @pool->lock is released.
5004 		 */
5005 		if (worker_flags & WORKER_IDLE)
5006 			wake_up_process(worker->task);
5007 
5008 		/*
5009 		 * We want to clear UNBOUND but can't directly call
5010 		 * worker_clr_flags() or adjust nr_running.  Atomically
5011 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5012 		 * @worker will clear REBOUND using worker_clr_flags() when
5013 		 * it initiates the next execution cycle thus restoring
5014 		 * concurrency management.  Note that when or whether
5015 		 * @worker clears REBOUND doesn't affect correctness.
5016 		 *
5017 		 * WRITE_ONCE() is necessary because @worker->flags may be
5018 		 * tested without holding any lock in
5019 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5020 		 * fail incorrectly leading to premature concurrency
5021 		 * management operations.
5022 		 */
5023 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5024 		worker_flags |= WORKER_REBOUND;
5025 		worker_flags &= ~WORKER_UNBOUND;
5026 		WRITE_ONCE(worker->flags, worker_flags);
5027 	}
5028 
5029 	raw_spin_unlock_irq(&pool->lock);
5030 }
5031 
5032 /**
5033  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5034  * @pool: unbound pool of interest
5035  * @cpu: the CPU which is coming up
5036  *
5037  * An unbound pool may end up with a cpumask which doesn't have any online
5038  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5039  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5040  * online CPU before, cpus_allowed of all its workers should be restored.
5041  */
5042 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5043 {
5044 	static cpumask_t cpumask;
5045 	struct worker *worker;
5046 
5047 	lockdep_assert_held(&wq_pool_attach_mutex);
5048 
5049 	/* is @cpu allowed for @pool? */
5050 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5051 		return;
5052 
5053 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5054 
5055 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5056 	for_each_pool_worker(worker, pool)
5057 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5058 }
5059 
5060 int workqueue_prepare_cpu(unsigned int cpu)
5061 {
5062 	struct worker_pool *pool;
5063 
5064 	for_each_cpu_worker_pool(pool, cpu) {
5065 		if (pool->nr_workers)
5066 			continue;
5067 		if (!create_worker(pool))
5068 			return -ENOMEM;
5069 	}
5070 	return 0;
5071 }
5072 
5073 int workqueue_online_cpu(unsigned int cpu)
5074 {
5075 	struct worker_pool *pool;
5076 	struct workqueue_struct *wq;
5077 	int pi;
5078 
5079 	mutex_lock(&wq_pool_mutex);
5080 
5081 	for_each_pool(pool, pi) {
5082 		mutex_lock(&wq_pool_attach_mutex);
5083 
5084 		if (pool->cpu == cpu)
5085 			rebind_workers(pool);
5086 		else if (pool->cpu < 0)
5087 			restore_unbound_workers_cpumask(pool, cpu);
5088 
5089 		mutex_unlock(&wq_pool_attach_mutex);
5090 	}
5091 
5092 	/* update NUMA affinity of unbound workqueues */
5093 	list_for_each_entry(wq, &workqueues, list)
5094 		wq_update_unbound_numa(wq, cpu, true);
5095 
5096 	mutex_unlock(&wq_pool_mutex);
5097 	return 0;
5098 }
5099 
5100 int workqueue_offline_cpu(unsigned int cpu)
5101 {
5102 	struct workqueue_struct *wq;
5103 
5104 	/* unbinding per-cpu workers should happen on the local CPU */
5105 	if (WARN_ON(cpu != smp_processor_id()))
5106 		return -1;
5107 
5108 	unbind_workers(cpu);
5109 
5110 	/* update NUMA affinity of unbound workqueues */
5111 	mutex_lock(&wq_pool_mutex);
5112 	list_for_each_entry(wq, &workqueues, list)
5113 		wq_update_unbound_numa(wq, cpu, false);
5114 	mutex_unlock(&wq_pool_mutex);
5115 
5116 	return 0;
5117 }
5118 
5119 struct work_for_cpu {
5120 	struct work_struct work;
5121 	long (*fn)(void *);
5122 	void *arg;
5123 	long ret;
5124 };
5125 
5126 static void work_for_cpu_fn(struct work_struct *work)
5127 {
5128 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5129 
5130 	wfc->ret = wfc->fn(wfc->arg);
5131 }
5132 
5133 /**
5134  * work_on_cpu - run a function in thread context on a particular cpu
5135  * @cpu: the cpu to run on
5136  * @fn: the function to run
5137  * @arg: the function arg
5138  *
5139  * It is up to the caller to ensure that the cpu doesn't go offline.
5140  * The caller must not hold any locks which would prevent @fn from completing.
5141  *
5142  * Return: The value @fn returns.
5143  */
5144 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5145 {
5146 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5147 
5148 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5149 	schedule_work_on(cpu, &wfc.work);
5150 	flush_work(&wfc.work);
5151 	destroy_work_on_stack(&wfc.work);
5152 	return wfc.ret;
5153 }
5154 EXPORT_SYMBOL_GPL(work_on_cpu);
5155 
5156 /**
5157  * work_on_cpu_safe - run a function in thread context on a particular cpu
5158  * @cpu: the cpu to run on
5159  * @fn:  the function to run
5160  * @arg: the function argument
5161  *
5162  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5163  * any locks which would prevent @fn from completing.
5164  *
5165  * Return: The value @fn returns.
5166  */
5167 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5168 {
5169 	long ret = -ENODEV;
5170 
5171 	get_online_cpus();
5172 	if (cpu_online(cpu))
5173 		ret = work_on_cpu(cpu, fn, arg);
5174 	put_online_cpus();
5175 	return ret;
5176 }
5177 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5178 #endif /* CONFIG_SMP */
5179 
5180 #ifdef CONFIG_FREEZER
5181 
5182 /**
5183  * freeze_workqueues_begin - begin freezing workqueues
5184  *
5185  * Start freezing workqueues.  After this function returns, all freezable
5186  * workqueues will queue new works to their delayed_works list instead of
5187  * pool->worklist.
5188  *
5189  * CONTEXT:
5190  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5191  */
5192 void freeze_workqueues_begin(void)
5193 {
5194 	struct workqueue_struct *wq;
5195 	struct pool_workqueue *pwq;
5196 
5197 	mutex_lock(&wq_pool_mutex);
5198 
5199 	WARN_ON_ONCE(workqueue_freezing);
5200 	workqueue_freezing = true;
5201 
5202 	list_for_each_entry(wq, &workqueues, list) {
5203 		mutex_lock(&wq->mutex);
5204 		for_each_pwq(pwq, wq)
5205 			pwq_adjust_max_active(pwq);
5206 		mutex_unlock(&wq->mutex);
5207 	}
5208 
5209 	mutex_unlock(&wq_pool_mutex);
5210 }
5211 
5212 /**
5213  * freeze_workqueues_busy - are freezable workqueues still busy?
5214  *
5215  * Check whether freezing is complete.  This function must be called
5216  * between freeze_workqueues_begin() and thaw_workqueues().
5217  *
5218  * CONTEXT:
5219  * Grabs and releases wq_pool_mutex.
5220  *
5221  * Return:
5222  * %true if some freezable workqueues are still busy.  %false if freezing
5223  * is complete.
5224  */
5225 bool freeze_workqueues_busy(void)
5226 {
5227 	bool busy = false;
5228 	struct workqueue_struct *wq;
5229 	struct pool_workqueue *pwq;
5230 
5231 	mutex_lock(&wq_pool_mutex);
5232 
5233 	WARN_ON_ONCE(!workqueue_freezing);
5234 
5235 	list_for_each_entry(wq, &workqueues, list) {
5236 		if (!(wq->flags & WQ_FREEZABLE))
5237 			continue;
5238 		/*
5239 		 * nr_active is monotonically decreasing.  It's safe
5240 		 * to peek without lock.
5241 		 */
5242 		rcu_read_lock();
5243 		for_each_pwq(pwq, wq) {
5244 			WARN_ON_ONCE(pwq->nr_active < 0);
5245 			if (pwq->nr_active) {
5246 				busy = true;
5247 				rcu_read_unlock();
5248 				goto out_unlock;
5249 			}
5250 		}
5251 		rcu_read_unlock();
5252 	}
5253 out_unlock:
5254 	mutex_unlock(&wq_pool_mutex);
5255 	return busy;
5256 }
5257 
5258 /**
5259  * thaw_workqueues - thaw workqueues
5260  *
5261  * Thaw workqueues.  Normal queueing is restored and all collected
5262  * frozen works are transferred to their respective pool worklists.
5263  *
5264  * CONTEXT:
5265  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5266  */
5267 void thaw_workqueues(void)
5268 {
5269 	struct workqueue_struct *wq;
5270 	struct pool_workqueue *pwq;
5271 
5272 	mutex_lock(&wq_pool_mutex);
5273 
5274 	if (!workqueue_freezing)
5275 		goto out_unlock;
5276 
5277 	workqueue_freezing = false;
5278 
5279 	/* restore max_active and repopulate worklist */
5280 	list_for_each_entry(wq, &workqueues, list) {
5281 		mutex_lock(&wq->mutex);
5282 		for_each_pwq(pwq, wq)
5283 			pwq_adjust_max_active(pwq);
5284 		mutex_unlock(&wq->mutex);
5285 	}
5286 
5287 out_unlock:
5288 	mutex_unlock(&wq_pool_mutex);
5289 }
5290 #endif /* CONFIG_FREEZER */
5291 
5292 static int workqueue_apply_unbound_cpumask(void)
5293 {
5294 	LIST_HEAD(ctxs);
5295 	int ret = 0;
5296 	struct workqueue_struct *wq;
5297 	struct apply_wqattrs_ctx *ctx, *n;
5298 
5299 	lockdep_assert_held(&wq_pool_mutex);
5300 
5301 	list_for_each_entry(wq, &workqueues, list) {
5302 		if (!(wq->flags & WQ_UNBOUND))
5303 			continue;
5304 		/* creating multiple pwqs breaks ordering guarantee */
5305 		if (wq->flags & __WQ_ORDERED)
5306 			continue;
5307 
5308 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5309 		if (!ctx) {
5310 			ret = -ENOMEM;
5311 			break;
5312 		}
5313 
5314 		list_add_tail(&ctx->list, &ctxs);
5315 	}
5316 
5317 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5318 		if (!ret)
5319 			apply_wqattrs_commit(ctx);
5320 		apply_wqattrs_cleanup(ctx);
5321 	}
5322 
5323 	return ret;
5324 }
5325 
5326 /**
5327  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5328  *  @cpumask: the cpumask to set
5329  *
5330  *  The low-level workqueues cpumask is a global cpumask that limits
5331  *  the affinity of all unbound workqueues.  This function check the @cpumask
5332  *  and apply it to all unbound workqueues and updates all pwqs of them.
5333  *
5334  *  Retun:	0	- Success
5335  *  		-EINVAL	- Invalid @cpumask
5336  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5337  */
5338 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5339 {
5340 	int ret = -EINVAL;
5341 	cpumask_var_t saved_cpumask;
5342 
5343 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5344 		return -ENOMEM;
5345 
5346 	/*
5347 	 * Not excluding isolated cpus on purpose.
5348 	 * If the user wishes to include them, we allow that.
5349 	 */
5350 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5351 	if (!cpumask_empty(cpumask)) {
5352 		apply_wqattrs_lock();
5353 
5354 		/* save the old wq_unbound_cpumask. */
5355 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5356 
5357 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5358 		cpumask_copy(wq_unbound_cpumask, cpumask);
5359 		ret = workqueue_apply_unbound_cpumask();
5360 
5361 		/* restore the wq_unbound_cpumask when failed. */
5362 		if (ret < 0)
5363 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5364 
5365 		apply_wqattrs_unlock();
5366 	}
5367 
5368 	free_cpumask_var(saved_cpumask);
5369 	return ret;
5370 }
5371 
5372 #ifdef CONFIG_SYSFS
5373 /*
5374  * Workqueues with WQ_SYSFS flag set is visible to userland via
5375  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5376  * following attributes.
5377  *
5378  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5379  *  max_active	RW int	: maximum number of in-flight work items
5380  *
5381  * Unbound workqueues have the following extra attributes.
5382  *
5383  *  pool_ids	RO int	: the associated pool IDs for each node
5384  *  nice	RW int	: nice value of the workers
5385  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5386  *  numa	RW bool	: whether enable NUMA affinity
5387  */
5388 struct wq_device {
5389 	struct workqueue_struct		*wq;
5390 	struct device			dev;
5391 };
5392 
5393 static struct workqueue_struct *dev_to_wq(struct device *dev)
5394 {
5395 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5396 
5397 	return wq_dev->wq;
5398 }
5399 
5400 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5401 			    char *buf)
5402 {
5403 	struct workqueue_struct *wq = dev_to_wq(dev);
5404 
5405 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5406 }
5407 static DEVICE_ATTR_RO(per_cpu);
5408 
5409 static ssize_t max_active_show(struct device *dev,
5410 			       struct device_attribute *attr, char *buf)
5411 {
5412 	struct workqueue_struct *wq = dev_to_wq(dev);
5413 
5414 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5415 }
5416 
5417 static ssize_t max_active_store(struct device *dev,
5418 				struct device_attribute *attr, const char *buf,
5419 				size_t count)
5420 {
5421 	struct workqueue_struct *wq = dev_to_wq(dev);
5422 	int val;
5423 
5424 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5425 		return -EINVAL;
5426 
5427 	workqueue_set_max_active(wq, val);
5428 	return count;
5429 }
5430 static DEVICE_ATTR_RW(max_active);
5431 
5432 static struct attribute *wq_sysfs_attrs[] = {
5433 	&dev_attr_per_cpu.attr,
5434 	&dev_attr_max_active.attr,
5435 	NULL,
5436 };
5437 ATTRIBUTE_GROUPS(wq_sysfs);
5438 
5439 static ssize_t wq_pool_ids_show(struct device *dev,
5440 				struct device_attribute *attr, char *buf)
5441 {
5442 	struct workqueue_struct *wq = dev_to_wq(dev);
5443 	const char *delim = "";
5444 	int node, written = 0;
5445 
5446 	get_online_cpus();
5447 	rcu_read_lock();
5448 	for_each_node(node) {
5449 		written += scnprintf(buf + written, PAGE_SIZE - written,
5450 				     "%s%d:%d", delim, node,
5451 				     unbound_pwq_by_node(wq, node)->pool->id);
5452 		delim = " ";
5453 	}
5454 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5455 	rcu_read_unlock();
5456 	put_online_cpus();
5457 
5458 	return written;
5459 }
5460 
5461 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5462 			    char *buf)
5463 {
5464 	struct workqueue_struct *wq = dev_to_wq(dev);
5465 	int written;
5466 
5467 	mutex_lock(&wq->mutex);
5468 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5469 	mutex_unlock(&wq->mutex);
5470 
5471 	return written;
5472 }
5473 
5474 /* prepare workqueue_attrs for sysfs store operations */
5475 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5476 {
5477 	struct workqueue_attrs *attrs;
5478 
5479 	lockdep_assert_held(&wq_pool_mutex);
5480 
5481 	attrs = alloc_workqueue_attrs();
5482 	if (!attrs)
5483 		return NULL;
5484 
5485 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5486 	return attrs;
5487 }
5488 
5489 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5490 			     const char *buf, size_t count)
5491 {
5492 	struct workqueue_struct *wq = dev_to_wq(dev);
5493 	struct workqueue_attrs *attrs;
5494 	int ret = -ENOMEM;
5495 
5496 	apply_wqattrs_lock();
5497 
5498 	attrs = wq_sysfs_prep_attrs(wq);
5499 	if (!attrs)
5500 		goto out_unlock;
5501 
5502 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5503 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5504 		ret = apply_workqueue_attrs_locked(wq, attrs);
5505 	else
5506 		ret = -EINVAL;
5507 
5508 out_unlock:
5509 	apply_wqattrs_unlock();
5510 	free_workqueue_attrs(attrs);
5511 	return ret ?: count;
5512 }
5513 
5514 static ssize_t wq_cpumask_show(struct device *dev,
5515 			       struct device_attribute *attr, char *buf)
5516 {
5517 	struct workqueue_struct *wq = dev_to_wq(dev);
5518 	int written;
5519 
5520 	mutex_lock(&wq->mutex);
5521 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5522 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5523 	mutex_unlock(&wq->mutex);
5524 	return written;
5525 }
5526 
5527 static ssize_t wq_cpumask_store(struct device *dev,
5528 				struct device_attribute *attr,
5529 				const char *buf, size_t count)
5530 {
5531 	struct workqueue_struct *wq = dev_to_wq(dev);
5532 	struct workqueue_attrs *attrs;
5533 	int ret = -ENOMEM;
5534 
5535 	apply_wqattrs_lock();
5536 
5537 	attrs = wq_sysfs_prep_attrs(wq);
5538 	if (!attrs)
5539 		goto out_unlock;
5540 
5541 	ret = cpumask_parse(buf, attrs->cpumask);
5542 	if (!ret)
5543 		ret = apply_workqueue_attrs_locked(wq, attrs);
5544 
5545 out_unlock:
5546 	apply_wqattrs_unlock();
5547 	free_workqueue_attrs(attrs);
5548 	return ret ?: count;
5549 }
5550 
5551 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5552 			    char *buf)
5553 {
5554 	struct workqueue_struct *wq = dev_to_wq(dev);
5555 	int written;
5556 
5557 	mutex_lock(&wq->mutex);
5558 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5559 			    !wq->unbound_attrs->no_numa);
5560 	mutex_unlock(&wq->mutex);
5561 
5562 	return written;
5563 }
5564 
5565 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5566 			     const char *buf, size_t count)
5567 {
5568 	struct workqueue_struct *wq = dev_to_wq(dev);
5569 	struct workqueue_attrs *attrs;
5570 	int v, ret = -ENOMEM;
5571 
5572 	apply_wqattrs_lock();
5573 
5574 	attrs = wq_sysfs_prep_attrs(wq);
5575 	if (!attrs)
5576 		goto out_unlock;
5577 
5578 	ret = -EINVAL;
5579 	if (sscanf(buf, "%d", &v) == 1) {
5580 		attrs->no_numa = !v;
5581 		ret = apply_workqueue_attrs_locked(wq, attrs);
5582 	}
5583 
5584 out_unlock:
5585 	apply_wqattrs_unlock();
5586 	free_workqueue_attrs(attrs);
5587 	return ret ?: count;
5588 }
5589 
5590 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5591 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5592 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5593 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5594 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5595 	__ATTR_NULL,
5596 };
5597 
5598 static struct bus_type wq_subsys = {
5599 	.name				= "workqueue",
5600 	.dev_groups			= wq_sysfs_groups,
5601 };
5602 
5603 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5604 		struct device_attribute *attr, char *buf)
5605 {
5606 	int written;
5607 
5608 	mutex_lock(&wq_pool_mutex);
5609 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5610 			    cpumask_pr_args(wq_unbound_cpumask));
5611 	mutex_unlock(&wq_pool_mutex);
5612 
5613 	return written;
5614 }
5615 
5616 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5617 		struct device_attribute *attr, const char *buf, size_t count)
5618 {
5619 	cpumask_var_t cpumask;
5620 	int ret;
5621 
5622 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5623 		return -ENOMEM;
5624 
5625 	ret = cpumask_parse(buf, cpumask);
5626 	if (!ret)
5627 		ret = workqueue_set_unbound_cpumask(cpumask);
5628 
5629 	free_cpumask_var(cpumask);
5630 	return ret ? ret : count;
5631 }
5632 
5633 static struct device_attribute wq_sysfs_cpumask_attr =
5634 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5635 	       wq_unbound_cpumask_store);
5636 
5637 static int __init wq_sysfs_init(void)
5638 {
5639 	int err;
5640 
5641 	err = subsys_virtual_register(&wq_subsys, NULL);
5642 	if (err)
5643 		return err;
5644 
5645 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5646 }
5647 core_initcall(wq_sysfs_init);
5648 
5649 static void wq_device_release(struct device *dev)
5650 {
5651 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5652 
5653 	kfree(wq_dev);
5654 }
5655 
5656 /**
5657  * workqueue_sysfs_register - make a workqueue visible in sysfs
5658  * @wq: the workqueue to register
5659  *
5660  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5661  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5662  * which is the preferred method.
5663  *
5664  * Workqueue user should use this function directly iff it wants to apply
5665  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5666  * apply_workqueue_attrs() may race against userland updating the
5667  * attributes.
5668  *
5669  * Return: 0 on success, -errno on failure.
5670  */
5671 int workqueue_sysfs_register(struct workqueue_struct *wq)
5672 {
5673 	struct wq_device *wq_dev;
5674 	int ret;
5675 
5676 	/*
5677 	 * Adjusting max_active or creating new pwqs by applying
5678 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5679 	 * workqueues.
5680 	 */
5681 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5682 		return -EINVAL;
5683 
5684 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5685 	if (!wq_dev)
5686 		return -ENOMEM;
5687 
5688 	wq_dev->wq = wq;
5689 	wq_dev->dev.bus = &wq_subsys;
5690 	wq_dev->dev.release = wq_device_release;
5691 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5692 
5693 	/*
5694 	 * unbound_attrs are created separately.  Suppress uevent until
5695 	 * everything is ready.
5696 	 */
5697 	dev_set_uevent_suppress(&wq_dev->dev, true);
5698 
5699 	ret = device_register(&wq_dev->dev);
5700 	if (ret) {
5701 		put_device(&wq_dev->dev);
5702 		wq->wq_dev = NULL;
5703 		return ret;
5704 	}
5705 
5706 	if (wq->flags & WQ_UNBOUND) {
5707 		struct device_attribute *attr;
5708 
5709 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5710 			ret = device_create_file(&wq_dev->dev, attr);
5711 			if (ret) {
5712 				device_unregister(&wq_dev->dev);
5713 				wq->wq_dev = NULL;
5714 				return ret;
5715 			}
5716 		}
5717 	}
5718 
5719 	dev_set_uevent_suppress(&wq_dev->dev, false);
5720 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5721 	return 0;
5722 }
5723 
5724 /**
5725  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5726  * @wq: the workqueue to unregister
5727  *
5728  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5729  */
5730 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5731 {
5732 	struct wq_device *wq_dev = wq->wq_dev;
5733 
5734 	if (!wq->wq_dev)
5735 		return;
5736 
5737 	wq->wq_dev = NULL;
5738 	device_unregister(&wq_dev->dev);
5739 }
5740 #else	/* CONFIG_SYSFS */
5741 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5742 #endif	/* CONFIG_SYSFS */
5743 
5744 /*
5745  * Workqueue watchdog.
5746  *
5747  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5748  * flush dependency, a concurrency managed work item which stays RUNNING
5749  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5750  * usual warning mechanisms don't trigger and internal workqueue state is
5751  * largely opaque.
5752  *
5753  * Workqueue watchdog monitors all worker pools periodically and dumps
5754  * state if some pools failed to make forward progress for a while where
5755  * forward progress is defined as the first item on ->worklist changing.
5756  *
5757  * This mechanism is controlled through the kernel parameter
5758  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5759  * corresponding sysfs parameter file.
5760  */
5761 #ifdef CONFIG_WQ_WATCHDOG
5762 
5763 static unsigned long wq_watchdog_thresh = 30;
5764 static struct timer_list wq_watchdog_timer;
5765 
5766 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5767 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5768 
5769 static void wq_watchdog_reset_touched(void)
5770 {
5771 	int cpu;
5772 
5773 	wq_watchdog_touched = jiffies;
5774 	for_each_possible_cpu(cpu)
5775 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5776 }
5777 
5778 static void wq_watchdog_timer_fn(struct timer_list *unused)
5779 {
5780 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5781 	bool lockup_detected = false;
5782 	unsigned long now = jiffies;
5783 	struct worker_pool *pool;
5784 	int pi;
5785 
5786 	if (!thresh)
5787 		return;
5788 
5789 	rcu_read_lock();
5790 
5791 	for_each_pool(pool, pi) {
5792 		unsigned long pool_ts, touched, ts;
5793 
5794 		if (list_empty(&pool->worklist))
5795 			continue;
5796 
5797 		/*
5798 		 * If a virtual machine is stopped by the host it can look to
5799 		 * the watchdog like a stall.
5800 		 */
5801 		kvm_check_and_clear_guest_paused();
5802 
5803 		/* get the latest of pool and touched timestamps */
5804 		if (pool->cpu >= 0)
5805 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5806 		else
5807 			touched = READ_ONCE(wq_watchdog_touched);
5808 		pool_ts = READ_ONCE(pool->watchdog_ts);
5809 
5810 		if (time_after(pool_ts, touched))
5811 			ts = pool_ts;
5812 		else
5813 			ts = touched;
5814 
5815 		/* did we stall? */
5816 		if (time_after(now, ts + thresh)) {
5817 			lockup_detected = true;
5818 			pr_emerg("BUG: workqueue lockup - pool");
5819 			pr_cont_pool_info(pool);
5820 			pr_cont(" stuck for %us!\n",
5821 				jiffies_to_msecs(now - pool_ts) / 1000);
5822 		}
5823 	}
5824 
5825 	rcu_read_unlock();
5826 
5827 	if (lockup_detected)
5828 		show_workqueue_state();
5829 
5830 	wq_watchdog_reset_touched();
5831 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5832 }
5833 
5834 notrace void wq_watchdog_touch(int cpu)
5835 {
5836 	if (cpu >= 0)
5837 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5838 
5839 	wq_watchdog_touched = jiffies;
5840 }
5841 
5842 static void wq_watchdog_set_thresh(unsigned long thresh)
5843 {
5844 	wq_watchdog_thresh = 0;
5845 	del_timer_sync(&wq_watchdog_timer);
5846 
5847 	if (thresh) {
5848 		wq_watchdog_thresh = thresh;
5849 		wq_watchdog_reset_touched();
5850 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5851 	}
5852 }
5853 
5854 static int wq_watchdog_param_set_thresh(const char *val,
5855 					const struct kernel_param *kp)
5856 {
5857 	unsigned long thresh;
5858 	int ret;
5859 
5860 	ret = kstrtoul(val, 0, &thresh);
5861 	if (ret)
5862 		return ret;
5863 
5864 	if (system_wq)
5865 		wq_watchdog_set_thresh(thresh);
5866 	else
5867 		wq_watchdog_thresh = thresh;
5868 
5869 	return 0;
5870 }
5871 
5872 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5873 	.set	= wq_watchdog_param_set_thresh,
5874 	.get	= param_get_ulong,
5875 };
5876 
5877 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5878 		0644);
5879 
5880 static void wq_watchdog_init(void)
5881 {
5882 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5883 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5884 }
5885 
5886 #else	/* CONFIG_WQ_WATCHDOG */
5887 
5888 static inline void wq_watchdog_init(void) { }
5889 
5890 #endif	/* CONFIG_WQ_WATCHDOG */
5891 
5892 static void __init wq_numa_init(void)
5893 {
5894 	cpumask_var_t *tbl;
5895 	int node, cpu;
5896 
5897 	if (num_possible_nodes() <= 1)
5898 		return;
5899 
5900 	if (wq_disable_numa) {
5901 		pr_info("workqueue: NUMA affinity support disabled\n");
5902 		return;
5903 	}
5904 
5905 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5906 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5907 
5908 	/*
5909 	 * We want masks of possible CPUs of each node which isn't readily
5910 	 * available.  Build one from cpu_to_node() which should have been
5911 	 * fully initialized by now.
5912 	 */
5913 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5914 	BUG_ON(!tbl);
5915 
5916 	for_each_node(node)
5917 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5918 				node_online(node) ? node : NUMA_NO_NODE));
5919 
5920 	for_each_possible_cpu(cpu) {
5921 		node = cpu_to_node(cpu);
5922 		if (WARN_ON(node == NUMA_NO_NODE)) {
5923 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5924 			/* happens iff arch is bonkers, let's just proceed */
5925 			return;
5926 		}
5927 		cpumask_set_cpu(cpu, tbl[node]);
5928 	}
5929 
5930 	wq_numa_possible_cpumask = tbl;
5931 	wq_numa_enabled = true;
5932 }
5933 
5934 /**
5935  * workqueue_init_early - early init for workqueue subsystem
5936  *
5937  * This is the first half of two-staged workqueue subsystem initialization
5938  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5939  * idr are up.  It sets up all the data structures and system workqueues
5940  * and allows early boot code to create workqueues and queue/cancel work
5941  * items.  Actual work item execution starts only after kthreads can be
5942  * created and scheduled right before early initcalls.
5943  */
5944 void __init workqueue_init_early(void)
5945 {
5946 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5947 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5948 	int i, cpu;
5949 
5950 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5951 
5952 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5953 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5954 
5955 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5956 
5957 	/* initialize CPU pools */
5958 	for_each_possible_cpu(cpu) {
5959 		struct worker_pool *pool;
5960 
5961 		i = 0;
5962 		for_each_cpu_worker_pool(pool, cpu) {
5963 			BUG_ON(init_worker_pool(pool));
5964 			pool->cpu = cpu;
5965 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5966 			pool->attrs->nice = std_nice[i++];
5967 			pool->node = cpu_to_node(cpu);
5968 
5969 			/* alloc pool ID */
5970 			mutex_lock(&wq_pool_mutex);
5971 			BUG_ON(worker_pool_assign_id(pool));
5972 			mutex_unlock(&wq_pool_mutex);
5973 		}
5974 	}
5975 
5976 	/* create default unbound and ordered wq attrs */
5977 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5978 		struct workqueue_attrs *attrs;
5979 
5980 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5981 		attrs->nice = std_nice[i];
5982 		unbound_std_wq_attrs[i] = attrs;
5983 
5984 		/*
5985 		 * An ordered wq should have only one pwq as ordering is
5986 		 * guaranteed by max_active which is enforced by pwqs.
5987 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5988 		 */
5989 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5990 		attrs->nice = std_nice[i];
5991 		attrs->no_numa = true;
5992 		ordered_wq_attrs[i] = attrs;
5993 	}
5994 
5995 	system_wq = alloc_workqueue("events", 0, 0);
5996 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5997 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5998 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5999 					    WQ_UNBOUND_MAX_ACTIVE);
6000 	system_freezable_wq = alloc_workqueue("events_freezable",
6001 					      WQ_FREEZABLE, 0);
6002 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6003 					      WQ_POWER_EFFICIENT, 0);
6004 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6005 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6006 					      0);
6007 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6008 	       !system_unbound_wq || !system_freezable_wq ||
6009 	       !system_power_efficient_wq ||
6010 	       !system_freezable_power_efficient_wq);
6011 }
6012 
6013 /**
6014  * workqueue_init - bring workqueue subsystem fully online
6015  *
6016  * This is the latter half of two-staged workqueue subsystem initialization
6017  * and invoked as soon as kthreads can be created and scheduled.
6018  * Workqueues have been created and work items queued on them, but there
6019  * are no kworkers executing the work items yet.  Populate the worker pools
6020  * with the initial workers and enable future kworker creations.
6021  */
6022 void __init workqueue_init(void)
6023 {
6024 	struct workqueue_struct *wq;
6025 	struct worker_pool *pool;
6026 	int cpu, bkt;
6027 
6028 	/*
6029 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6030 	 * CPU to node mapping may not be available that early on some
6031 	 * archs such as power and arm64.  As per-cpu pools created
6032 	 * previously could be missing node hint and unbound pools NUMA
6033 	 * affinity, fix them up.
6034 	 *
6035 	 * Also, while iterating workqueues, create rescuers if requested.
6036 	 */
6037 	wq_numa_init();
6038 
6039 	mutex_lock(&wq_pool_mutex);
6040 
6041 	for_each_possible_cpu(cpu) {
6042 		for_each_cpu_worker_pool(pool, cpu) {
6043 			pool->node = cpu_to_node(cpu);
6044 		}
6045 	}
6046 
6047 	list_for_each_entry(wq, &workqueues, list) {
6048 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6049 		WARN(init_rescuer(wq),
6050 		     "workqueue: failed to create early rescuer for %s",
6051 		     wq->name);
6052 	}
6053 
6054 	mutex_unlock(&wq_pool_mutex);
6055 
6056 	/* create the initial workers */
6057 	for_each_online_cpu(cpu) {
6058 		for_each_cpu_worker_pool(pool, cpu) {
6059 			pool->flags &= ~POOL_DISASSOCIATED;
6060 			BUG_ON(!create_worker(pool));
6061 		}
6062 	}
6063 
6064 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6065 		BUG_ON(!create_worker(pool));
6066 
6067 	wq_online = true;
6068 	wq_watchdog_init();
6069 }
6070