xref: /openbmc/linux/kernel/workqueue.c (revision 5695f51d055057b9db069f0a060fc7c397278c2e)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/core-api/workqueue.rst for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50 #include <linux/sched/isolation.h>
51 #include <linux/nmi.h>
52 
53 #include "workqueue_internal.h"
54 
55 enum {
56 	/*
57 	 * worker_pool flags
58 	 *
59 	 * A bound pool is either associated or disassociated with its CPU.
60 	 * While associated (!DISASSOCIATED), all workers are bound to the
61 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 	 * is in effect.
63 	 *
64 	 * While DISASSOCIATED, the cpu may be offline and all workers have
65 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 	 * be executing on any CPU.  The pool behaves as an unbound one.
67 	 *
68 	 * Note that DISASSOCIATED should be flipped only while holding
69 	 * wq_pool_attach_mutex to avoid changing binding state while
70 	 * worker_attach_to_pool() is in progress.
71 	 */
72 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
73 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
74 
75 	/* worker flags */
76 	WORKER_DIE		= 1 << 1,	/* die die die */
77 	WORKER_IDLE		= 1 << 2,	/* is idle */
78 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82 
83 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
84 				  WORKER_UNBOUND | WORKER_REBOUND,
85 
86 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87 
88 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
89 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90 
91 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
92 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
93 
94 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
95 						/* call for help after 10ms
96 						   (min two ticks) */
97 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
98 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
99 
100 	/*
101 	 * Rescue workers are used only on emergencies and shared by
102 	 * all cpus.  Give MIN_NICE.
103 	 */
104 	RESCUER_NICE_LEVEL	= MIN_NICE,
105 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
106 
107 	WQ_NAME_LEN		= 24,
108 };
109 
110 /*
111  * Structure fields follow one of the following exclusion rules.
112  *
113  * I: Modifiable by initialization/destruction paths and read-only for
114  *    everyone else.
115  *
116  * P: Preemption protected.  Disabling preemption is enough and should
117  *    only be modified and accessed from the local cpu.
118  *
119  * L: pool->lock protected.  Access with pool->lock held.
120  *
121  * X: During normal operation, modification requires pool->lock and should
122  *    be done only from local cpu.  Either disabling preemption on local
123  *    cpu or grabbing pool->lock is enough for read access.  If
124  *    POOL_DISASSOCIATED is set, it's identical to L.
125  *
126  * A: wq_pool_attach_mutex protected.
127  *
128  * PL: wq_pool_mutex protected.
129  *
130  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
131  *
132  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
133  *
134  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
135  *      sched-RCU for reads.
136  *
137  * WQ: wq->mutex protected.
138  *
139  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
140  *
141  * MD: wq_mayday_lock protected.
142  */
143 
144 /* struct worker is defined in workqueue_internal.h */
145 
146 struct worker_pool {
147 	spinlock_t		lock;		/* the pool lock */
148 	int			cpu;		/* I: the associated cpu */
149 	int			node;		/* I: the associated node ID */
150 	int			id;		/* I: pool ID */
151 	unsigned int		flags;		/* X: flags */
152 
153 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
154 
155 	struct list_head	worklist;	/* L: list of pending works */
156 
157 	int			nr_workers;	/* L: total number of workers */
158 	int			nr_idle;	/* L: currently idle workers */
159 
160 	struct list_head	idle_list;	/* X: list of idle workers */
161 	struct timer_list	idle_timer;	/* L: worker idle timeout */
162 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
163 
164 	/* a workers is either on busy_hash or idle_list, or the manager */
165 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 						/* L: hash of busy workers */
167 
168 	struct worker		*manager;	/* L: purely informational */
169 	struct list_head	workers;	/* A: attached workers */
170 	struct completion	*detach_completion; /* all workers detached */
171 
172 	struct ida		worker_ida;	/* worker IDs for task name */
173 
174 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
175 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
176 	int			refcnt;		/* PL: refcnt for unbound pools */
177 
178 	/*
179 	 * The current concurrency level.  As it's likely to be accessed
180 	 * from other CPUs during try_to_wake_up(), put it in a separate
181 	 * cacheline.
182 	 */
183 	atomic_t		nr_running ____cacheline_aligned_in_smp;
184 
185 	/*
186 	 * Destruction of pool is sched-RCU protected to allow dereferences
187 	 * from get_work_pool().
188 	 */
189 	struct rcu_head		rcu;
190 } ____cacheline_aligned_in_smp;
191 
192 /*
193  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
194  * of work_struct->data are used for flags and the remaining high bits
195  * point to the pwq; thus, pwqs need to be aligned at two's power of the
196  * number of flag bits.
197  */
198 struct pool_workqueue {
199 	struct worker_pool	*pool;		/* I: the associated pool */
200 	struct workqueue_struct *wq;		/* I: the owning workqueue */
201 	int			work_color;	/* L: current color */
202 	int			flush_color;	/* L: flushing color */
203 	int			refcnt;		/* L: reference count */
204 	int			nr_in_flight[WORK_NR_COLORS];
205 						/* L: nr of in_flight works */
206 	int			nr_active;	/* L: nr of active works */
207 	int			max_active;	/* L: max active works */
208 	struct list_head	delayed_works;	/* L: delayed works */
209 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
210 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
211 
212 	/*
213 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
214 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
215 	 * itself is also sched-RCU protected so that the first pwq can be
216 	 * determined without grabbing wq->mutex.
217 	 */
218 	struct work_struct	unbound_release_work;
219 	struct rcu_head		rcu;
220 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
221 
222 /*
223  * Structure used to wait for workqueue flush.
224  */
225 struct wq_flusher {
226 	struct list_head	list;		/* WQ: list of flushers */
227 	int			flush_color;	/* WQ: flush color waiting for */
228 	struct completion	done;		/* flush completion */
229 };
230 
231 struct wq_device;
232 
233 /*
234  * The externally visible workqueue.  It relays the issued work items to
235  * the appropriate worker_pool through its pool_workqueues.
236  */
237 struct workqueue_struct {
238 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
239 	struct list_head	list;		/* PR: list of all workqueues */
240 
241 	struct mutex		mutex;		/* protects this wq */
242 	int			work_color;	/* WQ: current work color */
243 	int			flush_color;	/* WQ: current flush color */
244 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
245 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
246 	struct list_head	flusher_queue;	/* WQ: flush waiters */
247 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
248 
249 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
250 	struct worker		*rescuer;	/* I: rescue worker */
251 
252 	int			nr_drainers;	/* WQ: drain in progress */
253 	int			saved_max_active; /* WQ: saved pwq max_active */
254 
255 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
256 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
257 
258 #ifdef CONFIG_SYSFS
259 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
260 #endif
261 #ifdef CONFIG_LOCKDEP
262 	char			*lock_name;
263 	struct lock_class_key	key;
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267 
268 	/*
269 	 * Destruction of workqueue_struct is sched-RCU protected to allow
270 	 * walking the workqueues list without grabbing wq_pool_mutex.
271 	 * This is used to dump all workqueues from sysrq.
272 	 */
273 	struct rcu_head		rcu;
274 
275 	/* hot fields used during command issue, aligned to cacheline */
276 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280 
281 static struct kmem_cache *pwq_cache;
282 
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 					/* possible CPUs of each node */
285 
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288 
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292 
293 static bool wq_online;			/* can kworkers be created yet? */
294 
295 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
296 
297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299 
300 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
301 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
302 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
303 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
304 
305 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
306 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
307 
308 /* PL: allowable cpus for unbound wqs and work items */
309 static cpumask_var_t wq_unbound_cpumask;
310 
311 /* CPU where unbound work was last round robin scheduled from this CPU */
312 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
313 
314 /*
315  * Local execution of unbound work items is no longer guaranteed.  The
316  * following always forces round-robin CPU selection on unbound work items
317  * to uncover usages which depend on it.
318  */
319 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
320 static bool wq_debug_force_rr_cpu = true;
321 #else
322 static bool wq_debug_force_rr_cpu = false;
323 #endif
324 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
325 
326 /* the per-cpu worker pools */
327 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
328 
329 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
330 
331 /* PL: hash of all unbound pools keyed by pool->attrs */
332 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
333 
334 /* I: attributes used when instantiating standard unbound pools on demand */
335 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
336 
337 /* I: attributes used when instantiating ordered pools on demand */
338 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
339 
340 struct workqueue_struct *system_wq __read_mostly;
341 EXPORT_SYMBOL(system_wq);
342 struct workqueue_struct *system_highpri_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_highpri_wq);
344 struct workqueue_struct *system_long_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_long_wq);
346 struct workqueue_struct *system_unbound_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_unbound_wq);
348 struct workqueue_struct *system_freezable_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_wq);
350 struct workqueue_struct *system_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
352 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
354 
355 static int worker_thread(void *__worker);
356 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
357 
358 #define CREATE_TRACE_POINTS
359 #include <trace/events/workqueue.h>
360 
361 #define assert_rcu_or_pool_mutex()					\
362 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
363 			 !lockdep_is_held(&wq_pool_mutex),		\
364 			 "sched RCU or wq_pool_mutex should be held")
365 
366 #define assert_rcu_or_wq_mutex(wq)					\
367 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
368 			 !lockdep_is_held(&wq->mutex),			\
369 			 "sched RCU or wq->mutex should be held")
370 
371 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
372 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
373 			 !lockdep_is_held(&wq->mutex) &&		\
374 			 !lockdep_is_held(&wq_pool_mutex),		\
375 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
376 
377 #define for_each_cpu_worker_pool(pool, cpu)				\
378 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
379 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
380 	     (pool)++)
381 
382 /**
383  * for_each_pool - iterate through all worker_pools in the system
384  * @pool: iteration cursor
385  * @pi: integer used for iteration
386  *
387  * This must be called either with wq_pool_mutex held or sched RCU read
388  * locked.  If the pool needs to be used beyond the locking in effect, the
389  * caller is responsible for guaranteeing that the pool stays online.
390  *
391  * The if/else clause exists only for the lockdep assertion and can be
392  * ignored.
393  */
394 #define for_each_pool(pool, pi)						\
395 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
396 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
397 		else
398 
399 /**
400  * for_each_pool_worker - iterate through all workers of a worker_pool
401  * @worker: iteration cursor
402  * @pool: worker_pool to iterate workers of
403  *
404  * This must be called with wq_pool_attach_mutex.
405  *
406  * The if/else clause exists only for the lockdep assertion and can be
407  * ignored.
408  */
409 #define for_each_pool_worker(worker, pool)				\
410 	list_for_each_entry((worker), &(pool)->workers, node)		\
411 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
412 		else
413 
414 /**
415  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
416  * @pwq: iteration cursor
417  * @wq: the target workqueue
418  *
419  * This must be called either with wq->mutex held or sched RCU read locked.
420  * If the pwq needs to be used beyond the locking in effect, the caller is
421  * responsible for guaranteeing that the pwq stays online.
422  *
423  * The if/else clause exists only for the lockdep assertion and can be
424  * ignored.
425  */
426 #define for_each_pwq(pwq, wq)						\
427 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
428 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
429 		else
430 
431 #ifdef CONFIG_DEBUG_OBJECTS_WORK
432 
433 static struct debug_obj_descr work_debug_descr;
434 
435 static void *work_debug_hint(void *addr)
436 {
437 	return ((struct work_struct *) addr)->func;
438 }
439 
440 static bool work_is_static_object(void *addr)
441 {
442 	struct work_struct *work = addr;
443 
444 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445 }
446 
447 /*
448  * fixup_init is called when:
449  * - an active object is initialized
450  */
451 static bool work_fixup_init(void *addr, enum debug_obj_state state)
452 {
453 	struct work_struct *work = addr;
454 
455 	switch (state) {
456 	case ODEBUG_STATE_ACTIVE:
457 		cancel_work_sync(work);
458 		debug_object_init(work, &work_debug_descr);
459 		return true;
460 	default:
461 		return false;
462 	}
463 }
464 
465 /*
466  * fixup_free is called when:
467  * - an active object is freed
468  */
469 static bool work_fixup_free(void *addr, enum debug_obj_state state)
470 {
471 	struct work_struct *work = addr;
472 
473 	switch (state) {
474 	case ODEBUG_STATE_ACTIVE:
475 		cancel_work_sync(work);
476 		debug_object_free(work, &work_debug_descr);
477 		return true;
478 	default:
479 		return false;
480 	}
481 }
482 
483 static struct debug_obj_descr work_debug_descr = {
484 	.name		= "work_struct",
485 	.debug_hint	= work_debug_hint,
486 	.is_static_object = work_is_static_object,
487 	.fixup_init	= work_fixup_init,
488 	.fixup_free	= work_fixup_free,
489 };
490 
491 static inline void debug_work_activate(struct work_struct *work)
492 {
493 	debug_object_activate(work, &work_debug_descr);
494 }
495 
496 static inline void debug_work_deactivate(struct work_struct *work)
497 {
498 	debug_object_deactivate(work, &work_debug_descr);
499 }
500 
501 void __init_work(struct work_struct *work, int onstack)
502 {
503 	if (onstack)
504 		debug_object_init_on_stack(work, &work_debug_descr);
505 	else
506 		debug_object_init(work, &work_debug_descr);
507 }
508 EXPORT_SYMBOL_GPL(__init_work);
509 
510 void destroy_work_on_stack(struct work_struct *work)
511 {
512 	debug_object_free(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515 
516 void destroy_delayed_work_on_stack(struct delayed_work *work)
517 {
518 	destroy_timer_on_stack(&work->timer);
519 	debug_object_free(&work->work, &work_debug_descr);
520 }
521 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
522 
523 #else
524 static inline void debug_work_activate(struct work_struct *work) { }
525 static inline void debug_work_deactivate(struct work_struct *work) { }
526 #endif
527 
528 /**
529  * worker_pool_assign_id - allocate ID and assing it to @pool
530  * @pool: the pool pointer of interest
531  *
532  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
533  * successfully, -errno on failure.
534  */
535 static int worker_pool_assign_id(struct worker_pool *pool)
536 {
537 	int ret;
538 
539 	lockdep_assert_held(&wq_pool_mutex);
540 
541 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
542 			GFP_KERNEL);
543 	if (ret >= 0) {
544 		pool->id = ret;
545 		return 0;
546 	}
547 	return ret;
548 }
549 
550 /**
551  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
552  * @wq: the target workqueue
553  * @node: the node ID
554  *
555  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
556  * read locked.
557  * If the pwq needs to be used beyond the locking in effect, the caller is
558  * responsible for guaranteeing that the pwq stays online.
559  *
560  * Return: The unbound pool_workqueue for @node.
561  */
562 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 						  int node)
564 {
565 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
566 
567 	/*
568 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
569 	 * delayed item is pending.  The plan is to keep CPU -> NODE
570 	 * mapping valid and stable across CPU on/offlines.  Once that
571 	 * happens, this workaround can be removed.
572 	 */
573 	if (unlikely(node == NUMA_NO_NODE))
574 		return wq->dfl_pwq;
575 
576 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577 }
578 
579 static unsigned int work_color_to_flags(int color)
580 {
581 	return color << WORK_STRUCT_COLOR_SHIFT;
582 }
583 
584 static int get_work_color(struct work_struct *work)
585 {
586 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
588 }
589 
590 static int work_next_color(int color)
591 {
592 	return (color + 1) % WORK_NR_COLORS;
593 }
594 
595 /*
596  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597  * contain the pointer to the queued pwq.  Once execution starts, the flag
598  * is cleared and the high bits contain OFFQ flags and pool ID.
599  *
600  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601  * and clear_work_data() can be used to set the pwq, pool or clear
602  * work->data.  These functions should only be called while the work is
603  * owned - ie. while the PENDING bit is set.
604  *
605  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
606  * corresponding to a work.  Pool is available once the work has been
607  * queued anywhere after initialization until it is sync canceled.  pwq is
608  * available only while the work item is queued.
609  *
610  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611  * canceled.  While being canceled, a work item may have its PENDING set
612  * but stay off timer and worklist for arbitrarily long and nobody should
613  * try to steal the PENDING bit.
614  */
615 static inline void set_work_data(struct work_struct *work, unsigned long data,
616 				 unsigned long flags)
617 {
618 	WARN_ON_ONCE(!work_pending(work));
619 	atomic_long_set(&work->data, data | flags | work_static(work));
620 }
621 
622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
623 			 unsigned long extra_flags)
624 {
625 	set_work_data(work, (unsigned long)pwq,
626 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627 }
628 
629 static void set_work_pool_and_keep_pending(struct work_struct *work,
630 					   int pool_id)
631 {
632 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 		      WORK_STRUCT_PENDING);
634 }
635 
636 static void set_work_pool_and_clear_pending(struct work_struct *work,
637 					    int pool_id)
638 {
639 	/*
640 	 * The following wmb is paired with the implied mb in
641 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 	 * here are visible to and precede any updates by the next PENDING
643 	 * owner.
644 	 */
645 	smp_wmb();
646 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
647 	/*
648 	 * The following mb guarantees that previous clear of a PENDING bit
649 	 * will not be reordered with any speculative LOADS or STORES from
650 	 * work->current_func, which is executed afterwards.  This possible
651 	 * reordering can lead to a missed execution on attempt to queue
652 	 * the same @work.  E.g. consider this case:
653 	 *
654 	 *   CPU#0                         CPU#1
655 	 *   ----------------------------  --------------------------------
656 	 *
657 	 * 1  STORE event_indicated
658 	 * 2  queue_work_on() {
659 	 * 3    test_and_set_bit(PENDING)
660 	 * 4 }                             set_..._and_clear_pending() {
661 	 * 5                                 set_work_data() # clear bit
662 	 * 6                                 smp_mb()
663 	 * 7                               work->current_func() {
664 	 * 8				      LOAD event_indicated
665 	 *				   }
666 	 *
667 	 * Without an explicit full barrier speculative LOAD on line 8 can
668 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
669 	 * CPU#0 observes the PENDING bit is still set and new execution of
670 	 * a @work is not queued in a hope, that CPU#1 will eventually
671 	 * finish the queued @work.  Meanwhile CPU#1 does not see
672 	 * event_indicated is set, because speculative LOAD was executed
673 	 * before actual STORE.
674 	 */
675 	smp_mb();
676 }
677 
678 static void clear_work_data(struct work_struct *work)
679 {
680 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
681 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
682 }
683 
684 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
685 {
686 	unsigned long data = atomic_long_read(&work->data);
687 
688 	if (data & WORK_STRUCT_PWQ)
689 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
690 	else
691 		return NULL;
692 }
693 
694 /**
695  * get_work_pool - return the worker_pool a given work was associated with
696  * @work: the work item of interest
697  *
698  * Pools are created and destroyed under wq_pool_mutex, and allows read
699  * access under sched-RCU read lock.  As such, this function should be
700  * called under wq_pool_mutex or with preemption disabled.
701  *
702  * All fields of the returned pool are accessible as long as the above
703  * mentioned locking is in effect.  If the returned pool needs to be used
704  * beyond the critical section, the caller is responsible for ensuring the
705  * returned pool is and stays online.
706  *
707  * Return: The worker_pool @work was last associated with.  %NULL if none.
708  */
709 static struct worker_pool *get_work_pool(struct work_struct *work)
710 {
711 	unsigned long data = atomic_long_read(&work->data);
712 	int pool_id;
713 
714 	assert_rcu_or_pool_mutex();
715 
716 	if (data & WORK_STRUCT_PWQ)
717 		return ((struct pool_workqueue *)
718 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
719 
720 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
721 	if (pool_id == WORK_OFFQ_POOL_NONE)
722 		return NULL;
723 
724 	return idr_find(&worker_pool_idr, pool_id);
725 }
726 
727 /**
728  * get_work_pool_id - return the worker pool ID a given work is associated with
729  * @work: the work item of interest
730  *
731  * Return: The worker_pool ID @work was last associated with.
732  * %WORK_OFFQ_POOL_NONE if none.
733  */
734 static int get_work_pool_id(struct work_struct *work)
735 {
736 	unsigned long data = atomic_long_read(&work->data);
737 
738 	if (data & WORK_STRUCT_PWQ)
739 		return ((struct pool_workqueue *)
740 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
741 
742 	return data >> WORK_OFFQ_POOL_SHIFT;
743 }
744 
745 static void mark_work_canceling(struct work_struct *work)
746 {
747 	unsigned long pool_id = get_work_pool_id(work);
748 
749 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
750 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
751 }
752 
753 static bool work_is_canceling(struct work_struct *work)
754 {
755 	unsigned long data = atomic_long_read(&work->data);
756 
757 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
758 }
759 
760 /*
761  * Policy functions.  These define the policies on how the global worker
762  * pools are managed.  Unless noted otherwise, these functions assume that
763  * they're being called with pool->lock held.
764  */
765 
766 static bool __need_more_worker(struct worker_pool *pool)
767 {
768 	return !atomic_read(&pool->nr_running);
769 }
770 
771 /*
772  * Need to wake up a worker?  Called from anything but currently
773  * running workers.
774  *
775  * Note that, because unbound workers never contribute to nr_running, this
776  * function will always return %true for unbound pools as long as the
777  * worklist isn't empty.
778  */
779 static bool need_more_worker(struct worker_pool *pool)
780 {
781 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
782 }
783 
784 /* Can I start working?  Called from busy but !running workers. */
785 static bool may_start_working(struct worker_pool *pool)
786 {
787 	return pool->nr_idle;
788 }
789 
790 /* Do I need to keep working?  Called from currently running workers. */
791 static bool keep_working(struct worker_pool *pool)
792 {
793 	return !list_empty(&pool->worklist) &&
794 		atomic_read(&pool->nr_running) <= 1;
795 }
796 
797 /* Do we need a new worker?  Called from manager. */
798 static bool need_to_create_worker(struct worker_pool *pool)
799 {
800 	return need_more_worker(pool) && !may_start_working(pool);
801 }
802 
803 /* Do we have too many workers and should some go away? */
804 static bool too_many_workers(struct worker_pool *pool)
805 {
806 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
807 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
808 	int nr_busy = pool->nr_workers - nr_idle;
809 
810 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
811 }
812 
813 /*
814  * Wake up functions.
815  */
816 
817 /* Return the first idle worker.  Safe with preemption disabled */
818 static struct worker *first_idle_worker(struct worker_pool *pool)
819 {
820 	if (unlikely(list_empty(&pool->idle_list)))
821 		return NULL;
822 
823 	return list_first_entry(&pool->idle_list, struct worker, entry);
824 }
825 
826 /**
827  * wake_up_worker - wake up an idle worker
828  * @pool: worker pool to wake worker from
829  *
830  * Wake up the first idle worker of @pool.
831  *
832  * CONTEXT:
833  * spin_lock_irq(pool->lock).
834  */
835 static void wake_up_worker(struct worker_pool *pool)
836 {
837 	struct worker *worker = first_idle_worker(pool);
838 
839 	if (likely(worker))
840 		wake_up_process(worker->task);
841 }
842 
843 /**
844  * wq_worker_running - a worker is running again
845  * @task: task waking up
846  *
847  * This function is called when a worker returns from schedule()
848  */
849 void wq_worker_running(struct task_struct *task)
850 {
851 	struct worker *worker = kthread_data(task);
852 
853 	if (!worker->sleeping)
854 		return;
855 	if (!(worker->flags & WORKER_NOT_RUNNING))
856 		atomic_inc(&worker->pool->nr_running);
857 	worker->sleeping = 0;
858 }
859 
860 /**
861  * wq_worker_sleeping - a worker is going to sleep
862  * @task: task going to sleep
863  *
864  * This function is called from schedule() when a busy worker is
865  * going to sleep.
866  */
867 void wq_worker_sleeping(struct task_struct *task)
868 {
869 	struct worker *next, *worker = kthread_data(task);
870 	struct worker_pool *pool;
871 
872 	/*
873 	 * Rescuers, which may not have all the fields set up like normal
874 	 * workers, also reach here, let's not access anything before
875 	 * checking NOT_RUNNING.
876 	 */
877 	if (worker->flags & WORKER_NOT_RUNNING)
878 		return;
879 
880 	pool = worker->pool;
881 
882 	if (WARN_ON_ONCE(worker->sleeping))
883 		return;
884 
885 	worker->sleeping = 1;
886 	spin_lock_irq(&pool->lock);
887 
888 	/*
889 	 * The counterpart of the following dec_and_test, implied mb,
890 	 * worklist not empty test sequence is in insert_work().
891 	 * Please read comment there.
892 	 *
893 	 * NOT_RUNNING is clear.  This means that we're bound to and
894 	 * running on the local cpu w/ rq lock held and preemption
895 	 * disabled, which in turn means that none else could be
896 	 * manipulating idle_list, so dereferencing idle_list without pool
897 	 * lock is safe.
898 	 */
899 	if (atomic_dec_and_test(&pool->nr_running) &&
900 	    !list_empty(&pool->worklist)) {
901 		next = first_idle_worker(pool);
902 		if (next)
903 			wake_up_process(next->task);
904 	}
905 	spin_unlock_irq(&pool->lock);
906 }
907 
908 /**
909  * wq_worker_last_func - retrieve worker's last work function
910  *
911  * Determine the last function a worker executed. This is called from
912  * the scheduler to get a worker's last known identity.
913  *
914  * CONTEXT:
915  * spin_lock_irq(rq->lock)
916  *
917  * This function is called during schedule() when a kworker is going
918  * to sleep. It's used by psi to identify aggregation workers during
919  * dequeuing, to allow periodic aggregation to shut-off when that
920  * worker is the last task in the system or cgroup to go to sleep.
921  *
922  * As this function doesn't involve any workqueue-related locking, it
923  * only returns stable values when called from inside the scheduler's
924  * queuing and dequeuing paths, when @task, which must be a kworker,
925  * is guaranteed to not be processing any works.
926  *
927  * Return:
928  * The last work function %current executed as a worker, NULL if it
929  * hasn't executed any work yet.
930  */
931 work_func_t wq_worker_last_func(struct task_struct *task)
932 {
933 	struct worker *worker = kthread_data(task);
934 
935 	return worker->last_func;
936 }
937 
938 /**
939  * worker_set_flags - set worker flags and adjust nr_running accordingly
940  * @worker: self
941  * @flags: flags to set
942  *
943  * Set @flags in @worker->flags and adjust nr_running accordingly.
944  *
945  * CONTEXT:
946  * spin_lock_irq(pool->lock)
947  */
948 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
949 {
950 	struct worker_pool *pool = worker->pool;
951 
952 	WARN_ON_ONCE(worker->task != current);
953 
954 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
955 	if ((flags & WORKER_NOT_RUNNING) &&
956 	    !(worker->flags & WORKER_NOT_RUNNING)) {
957 		atomic_dec(&pool->nr_running);
958 	}
959 
960 	worker->flags |= flags;
961 }
962 
963 /**
964  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
965  * @worker: self
966  * @flags: flags to clear
967  *
968  * Clear @flags in @worker->flags and adjust nr_running accordingly.
969  *
970  * CONTEXT:
971  * spin_lock_irq(pool->lock)
972  */
973 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
974 {
975 	struct worker_pool *pool = worker->pool;
976 	unsigned int oflags = worker->flags;
977 
978 	WARN_ON_ONCE(worker->task != current);
979 
980 	worker->flags &= ~flags;
981 
982 	/*
983 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
984 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
985 	 * of multiple flags, not a single flag.
986 	 */
987 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
988 		if (!(worker->flags & WORKER_NOT_RUNNING))
989 			atomic_inc(&pool->nr_running);
990 }
991 
992 /**
993  * find_worker_executing_work - find worker which is executing a work
994  * @pool: pool of interest
995  * @work: work to find worker for
996  *
997  * Find a worker which is executing @work on @pool by searching
998  * @pool->busy_hash which is keyed by the address of @work.  For a worker
999  * to match, its current execution should match the address of @work and
1000  * its work function.  This is to avoid unwanted dependency between
1001  * unrelated work executions through a work item being recycled while still
1002  * being executed.
1003  *
1004  * This is a bit tricky.  A work item may be freed once its execution
1005  * starts and nothing prevents the freed area from being recycled for
1006  * another work item.  If the same work item address ends up being reused
1007  * before the original execution finishes, workqueue will identify the
1008  * recycled work item as currently executing and make it wait until the
1009  * current execution finishes, introducing an unwanted dependency.
1010  *
1011  * This function checks the work item address and work function to avoid
1012  * false positives.  Note that this isn't complete as one may construct a
1013  * work function which can introduce dependency onto itself through a
1014  * recycled work item.  Well, if somebody wants to shoot oneself in the
1015  * foot that badly, there's only so much we can do, and if such deadlock
1016  * actually occurs, it should be easy to locate the culprit work function.
1017  *
1018  * CONTEXT:
1019  * spin_lock_irq(pool->lock).
1020  *
1021  * Return:
1022  * Pointer to worker which is executing @work if found, %NULL
1023  * otherwise.
1024  */
1025 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1026 						 struct work_struct *work)
1027 {
1028 	struct worker *worker;
1029 
1030 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1031 			       (unsigned long)work)
1032 		if (worker->current_work == work &&
1033 		    worker->current_func == work->func)
1034 			return worker;
1035 
1036 	return NULL;
1037 }
1038 
1039 /**
1040  * move_linked_works - move linked works to a list
1041  * @work: start of series of works to be scheduled
1042  * @head: target list to append @work to
1043  * @nextp: out parameter for nested worklist walking
1044  *
1045  * Schedule linked works starting from @work to @head.  Work series to
1046  * be scheduled starts at @work and includes any consecutive work with
1047  * WORK_STRUCT_LINKED set in its predecessor.
1048  *
1049  * If @nextp is not NULL, it's updated to point to the next work of
1050  * the last scheduled work.  This allows move_linked_works() to be
1051  * nested inside outer list_for_each_entry_safe().
1052  *
1053  * CONTEXT:
1054  * spin_lock_irq(pool->lock).
1055  */
1056 static void move_linked_works(struct work_struct *work, struct list_head *head,
1057 			      struct work_struct **nextp)
1058 {
1059 	struct work_struct *n;
1060 
1061 	/*
1062 	 * Linked worklist will always end before the end of the list,
1063 	 * use NULL for list head.
1064 	 */
1065 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1066 		list_move_tail(&work->entry, head);
1067 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1068 			break;
1069 	}
1070 
1071 	/*
1072 	 * If we're already inside safe list traversal and have moved
1073 	 * multiple works to the scheduled queue, the next position
1074 	 * needs to be updated.
1075 	 */
1076 	if (nextp)
1077 		*nextp = n;
1078 }
1079 
1080 /**
1081  * get_pwq - get an extra reference on the specified pool_workqueue
1082  * @pwq: pool_workqueue to get
1083  *
1084  * Obtain an extra reference on @pwq.  The caller should guarantee that
1085  * @pwq has positive refcnt and be holding the matching pool->lock.
1086  */
1087 static void get_pwq(struct pool_workqueue *pwq)
1088 {
1089 	lockdep_assert_held(&pwq->pool->lock);
1090 	WARN_ON_ONCE(pwq->refcnt <= 0);
1091 	pwq->refcnt++;
1092 }
1093 
1094 /**
1095  * put_pwq - put a pool_workqueue reference
1096  * @pwq: pool_workqueue to put
1097  *
1098  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1099  * destruction.  The caller should be holding the matching pool->lock.
1100  */
1101 static void put_pwq(struct pool_workqueue *pwq)
1102 {
1103 	lockdep_assert_held(&pwq->pool->lock);
1104 	if (likely(--pwq->refcnt))
1105 		return;
1106 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1107 		return;
1108 	/*
1109 	 * @pwq can't be released under pool->lock, bounce to
1110 	 * pwq_unbound_release_workfn().  This never recurses on the same
1111 	 * pool->lock as this path is taken only for unbound workqueues and
1112 	 * the release work item is scheduled on a per-cpu workqueue.  To
1113 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1114 	 * subclass of 1 in get_unbound_pool().
1115 	 */
1116 	schedule_work(&pwq->unbound_release_work);
1117 }
1118 
1119 /**
1120  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1121  * @pwq: pool_workqueue to put (can be %NULL)
1122  *
1123  * put_pwq() with locking.  This function also allows %NULL @pwq.
1124  */
1125 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1126 {
1127 	if (pwq) {
1128 		/*
1129 		 * As both pwqs and pools are sched-RCU protected, the
1130 		 * following lock operations are safe.
1131 		 */
1132 		spin_lock_irq(&pwq->pool->lock);
1133 		put_pwq(pwq);
1134 		spin_unlock_irq(&pwq->pool->lock);
1135 	}
1136 }
1137 
1138 static void pwq_activate_delayed_work(struct work_struct *work)
1139 {
1140 	struct pool_workqueue *pwq = get_work_pwq(work);
1141 
1142 	trace_workqueue_activate_work(work);
1143 	if (list_empty(&pwq->pool->worklist))
1144 		pwq->pool->watchdog_ts = jiffies;
1145 	move_linked_works(work, &pwq->pool->worklist, NULL);
1146 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1147 	pwq->nr_active++;
1148 }
1149 
1150 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1151 {
1152 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1153 						    struct work_struct, entry);
1154 
1155 	pwq_activate_delayed_work(work);
1156 }
1157 
1158 /**
1159  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1160  * @pwq: pwq of interest
1161  * @color: color of work which left the queue
1162  *
1163  * A work either has completed or is removed from pending queue,
1164  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1165  *
1166  * CONTEXT:
1167  * spin_lock_irq(pool->lock).
1168  */
1169 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1170 {
1171 	/* uncolored work items don't participate in flushing or nr_active */
1172 	if (color == WORK_NO_COLOR)
1173 		goto out_put;
1174 
1175 	pwq->nr_in_flight[color]--;
1176 
1177 	pwq->nr_active--;
1178 	if (!list_empty(&pwq->delayed_works)) {
1179 		/* one down, submit a delayed one */
1180 		if (pwq->nr_active < pwq->max_active)
1181 			pwq_activate_first_delayed(pwq);
1182 	}
1183 
1184 	/* is flush in progress and are we at the flushing tip? */
1185 	if (likely(pwq->flush_color != color))
1186 		goto out_put;
1187 
1188 	/* are there still in-flight works? */
1189 	if (pwq->nr_in_flight[color])
1190 		goto out_put;
1191 
1192 	/* this pwq is done, clear flush_color */
1193 	pwq->flush_color = -1;
1194 
1195 	/*
1196 	 * If this was the last pwq, wake up the first flusher.  It
1197 	 * will handle the rest.
1198 	 */
1199 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1200 		complete(&pwq->wq->first_flusher->done);
1201 out_put:
1202 	put_pwq(pwq);
1203 }
1204 
1205 /**
1206  * try_to_grab_pending - steal work item from worklist and disable irq
1207  * @work: work item to steal
1208  * @is_dwork: @work is a delayed_work
1209  * @flags: place to store irq state
1210  *
1211  * Try to grab PENDING bit of @work.  This function can handle @work in any
1212  * stable state - idle, on timer or on worklist.
1213  *
1214  * Return:
1215  *  1		if @work was pending and we successfully stole PENDING
1216  *  0		if @work was idle and we claimed PENDING
1217  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1218  *  -ENOENT	if someone else is canceling @work, this state may persist
1219  *		for arbitrarily long
1220  *
1221  * Note:
1222  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1223  * interrupted while holding PENDING and @work off queue, irq must be
1224  * disabled on entry.  This, combined with delayed_work->timer being
1225  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1226  *
1227  * On successful return, >= 0, irq is disabled and the caller is
1228  * responsible for releasing it using local_irq_restore(*@flags).
1229  *
1230  * This function is safe to call from any context including IRQ handler.
1231  */
1232 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1233 			       unsigned long *flags)
1234 {
1235 	struct worker_pool *pool;
1236 	struct pool_workqueue *pwq;
1237 
1238 	local_irq_save(*flags);
1239 
1240 	/* try to steal the timer if it exists */
1241 	if (is_dwork) {
1242 		struct delayed_work *dwork = to_delayed_work(work);
1243 
1244 		/*
1245 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1246 		 * guaranteed that the timer is not queued anywhere and not
1247 		 * running on the local CPU.
1248 		 */
1249 		if (likely(del_timer(&dwork->timer)))
1250 			return 1;
1251 	}
1252 
1253 	/* try to claim PENDING the normal way */
1254 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1255 		return 0;
1256 
1257 	/*
1258 	 * The queueing is in progress, or it is already queued. Try to
1259 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1260 	 */
1261 	pool = get_work_pool(work);
1262 	if (!pool)
1263 		goto fail;
1264 
1265 	spin_lock(&pool->lock);
1266 	/*
1267 	 * work->data is guaranteed to point to pwq only while the work
1268 	 * item is queued on pwq->wq, and both updating work->data to point
1269 	 * to pwq on queueing and to pool on dequeueing are done under
1270 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1271 	 * points to pwq which is associated with a locked pool, the work
1272 	 * item is currently queued on that pool.
1273 	 */
1274 	pwq = get_work_pwq(work);
1275 	if (pwq && pwq->pool == pool) {
1276 		debug_work_deactivate(work);
1277 
1278 		/*
1279 		 * A delayed work item cannot be grabbed directly because
1280 		 * it might have linked NO_COLOR work items which, if left
1281 		 * on the delayed_list, will confuse pwq->nr_active
1282 		 * management later on and cause stall.  Make sure the work
1283 		 * item is activated before grabbing.
1284 		 */
1285 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1286 			pwq_activate_delayed_work(work);
1287 
1288 		list_del_init(&work->entry);
1289 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1290 
1291 		/* work->data points to pwq iff queued, point to pool */
1292 		set_work_pool_and_keep_pending(work, pool->id);
1293 
1294 		spin_unlock(&pool->lock);
1295 		return 1;
1296 	}
1297 	spin_unlock(&pool->lock);
1298 fail:
1299 	local_irq_restore(*flags);
1300 	if (work_is_canceling(work))
1301 		return -ENOENT;
1302 	cpu_relax();
1303 	return -EAGAIN;
1304 }
1305 
1306 /**
1307  * insert_work - insert a work into a pool
1308  * @pwq: pwq @work belongs to
1309  * @work: work to insert
1310  * @head: insertion point
1311  * @extra_flags: extra WORK_STRUCT_* flags to set
1312  *
1313  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1314  * work_struct flags.
1315  *
1316  * CONTEXT:
1317  * spin_lock_irq(pool->lock).
1318  */
1319 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1320 			struct list_head *head, unsigned int extra_flags)
1321 {
1322 	struct worker_pool *pool = pwq->pool;
1323 
1324 	/* we own @work, set data and link */
1325 	set_work_pwq(work, pwq, extra_flags);
1326 	list_add_tail(&work->entry, head);
1327 	get_pwq(pwq);
1328 
1329 	/*
1330 	 * Ensure either wq_worker_sleeping() sees the above
1331 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1332 	 * around lazily while there are works to be processed.
1333 	 */
1334 	smp_mb();
1335 
1336 	if (__need_more_worker(pool))
1337 		wake_up_worker(pool);
1338 }
1339 
1340 /*
1341  * Test whether @work is being queued from another work executing on the
1342  * same workqueue.
1343  */
1344 static bool is_chained_work(struct workqueue_struct *wq)
1345 {
1346 	struct worker *worker;
1347 
1348 	worker = current_wq_worker();
1349 	/*
1350 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1351 	 * I'm @worker, it's safe to dereference it without locking.
1352 	 */
1353 	return worker && worker->current_pwq->wq == wq;
1354 }
1355 
1356 /*
1357  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1358  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1359  * avoid perturbing sensitive tasks.
1360  */
1361 static int wq_select_unbound_cpu(int cpu)
1362 {
1363 	static bool printed_dbg_warning;
1364 	int new_cpu;
1365 
1366 	if (likely(!wq_debug_force_rr_cpu)) {
1367 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1368 			return cpu;
1369 	} else if (!printed_dbg_warning) {
1370 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1371 		printed_dbg_warning = true;
1372 	}
1373 
1374 	if (cpumask_empty(wq_unbound_cpumask))
1375 		return cpu;
1376 
1377 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1378 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1379 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1380 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1381 		if (unlikely(new_cpu >= nr_cpu_ids))
1382 			return cpu;
1383 	}
1384 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1385 
1386 	return new_cpu;
1387 }
1388 
1389 static void __queue_work(int cpu, struct workqueue_struct *wq,
1390 			 struct work_struct *work)
1391 {
1392 	struct pool_workqueue *pwq;
1393 	struct worker_pool *last_pool;
1394 	struct list_head *worklist;
1395 	unsigned int work_flags;
1396 	unsigned int req_cpu = cpu;
1397 
1398 	/*
1399 	 * While a work item is PENDING && off queue, a task trying to
1400 	 * steal the PENDING will busy-loop waiting for it to either get
1401 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1402 	 * happen with IRQ disabled.
1403 	 */
1404 	lockdep_assert_irqs_disabled();
1405 
1406 	debug_work_activate(work);
1407 
1408 	/* if draining, only works from the same workqueue are allowed */
1409 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1410 	    WARN_ON_ONCE(!is_chained_work(wq)))
1411 		return;
1412 retry:
1413 	if (req_cpu == WORK_CPU_UNBOUND)
1414 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1415 
1416 	/* pwq which will be used unless @work is executing elsewhere */
1417 	if (!(wq->flags & WQ_UNBOUND))
1418 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1419 	else
1420 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1421 
1422 	/*
1423 	 * If @work was previously on a different pool, it might still be
1424 	 * running there, in which case the work needs to be queued on that
1425 	 * pool to guarantee non-reentrancy.
1426 	 */
1427 	last_pool = get_work_pool(work);
1428 	if (last_pool && last_pool != pwq->pool) {
1429 		struct worker *worker;
1430 
1431 		spin_lock(&last_pool->lock);
1432 
1433 		worker = find_worker_executing_work(last_pool, work);
1434 
1435 		if (worker && worker->current_pwq->wq == wq) {
1436 			pwq = worker->current_pwq;
1437 		} else {
1438 			/* meh... not running there, queue here */
1439 			spin_unlock(&last_pool->lock);
1440 			spin_lock(&pwq->pool->lock);
1441 		}
1442 	} else {
1443 		spin_lock(&pwq->pool->lock);
1444 	}
1445 
1446 	/*
1447 	 * pwq is determined and locked.  For unbound pools, we could have
1448 	 * raced with pwq release and it could already be dead.  If its
1449 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1450 	 * without another pwq replacing it in the numa_pwq_tbl or while
1451 	 * work items are executing on it, so the retrying is guaranteed to
1452 	 * make forward-progress.
1453 	 */
1454 	if (unlikely(!pwq->refcnt)) {
1455 		if (wq->flags & WQ_UNBOUND) {
1456 			spin_unlock(&pwq->pool->lock);
1457 			cpu_relax();
1458 			goto retry;
1459 		}
1460 		/* oops */
1461 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1462 			  wq->name, cpu);
1463 	}
1464 
1465 	/* pwq determined, queue */
1466 	trace_workqueue_queue_work(req_cpu, pwq, work);
1467 
1468 	if (WARN_ON(!list_empty(&work->entry))) {
1469 		spin_unlock(&pwq->pool->lock);
1470 		return;
1471 	}
1472 
1473 	pwq->nr_in_flight[pwq->work_color]++;
1474 	work_flags = work_color_to_flags(pwq->work_color);
1475 
1476 	if (likely(pwq->nr_active < pwq->max_active)) {
1477 		trace_workqueue_activate_work(work);
1478 		pwq->nr_active++;
1479 		worklist = &pwq->pool->worklist;
1480 		if (list_empty(worklist))
1481 			pwq->pool->watchdog_ts = jiffies;
1482 	} else {
1483 		work_flags |= WORK_STRUCT_DELAYED;
1484 		worklist = &pwq->delayed_works;
1485 	}
1486 
1487 	insert_work(pwq, work, worklist, work_flags);
1488 
1489 	spin_unlock(&pwq->pool->lock);
1490 }
1491 
1492 /**
1493  * queue_work_on - queue work on specific cpu
1494  * @cpu: CPU number to execute work on
1495  * @wq: workqueue to use
1496  * @work: work to queue
1497  *
1498  * We queue the work to a specific CPU, the caller must ensure it
1499  * can't go away.
1500  *
1501  * Return: %false if @work was already on a queue, %true otherwise.
1502  */
1503 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1504 		   struct work_struct *work)
1505 {
1506 	bool ret = false;
1507 	unsigned long flags;
1508 
1509 	local_irq_save(flags);
1510 
1511 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1512 		__queue_work(cpu, wq, work);
1513 		ret = true;
1514 	}
1515 
1516 	local_irq_restore(flags);
1517 	return ret;
1518 }
1519 EXPORT_SYMBOL(queue_work_on);
1520 
1521 /**
1522  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1523  * @node: NUMA node ID that we want to select a CPU from
1524  *
1525  * This function will attempt to find a "random" cpu available on a given
1526  * node. If there are no CPUs available on the given node it will return
1527  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1528  * available CPU if we need to schedule this work.
1529  */
1530 static int workqueue_select_cpu_near(int node)
1531 {
1532 	int cpu;
1533 
1534 	/* No point in doing this if NUMA isn't enabled for workqueues */
1535 	if (!wq_numa_enabled)
1536 		return WORK_CPU_UNBOUND;
1537 
1538 	/* Delay binding to CPU if node is not valid or online */
1539 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1540 		return WORK_CPU_UNBOUND;
1541 
1542 	/* Use local node/cpu if we are already there */
1543 	cpu = raw_smp_processor_id();
1544 	if (node == cpu_to_node(cpu))
1545 		return cpu;
1546 
1547 	/* Use "random" otherwise know as "first" online CPU of node */
1548 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1549 
1550 	/* If CPU is valid return that, otherwise just defer */
1551 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1552 }
1553 
1554 /**
1555  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1556  * @node: NUMA node that we are targeting the work for
1557  * @wq: workqueue to use
1558  * @work: work to queue
1559  *
1560  * We queue the work to a "random" CPU within a given NUMA node. The basic
1561  * idea here is to provide a way to somehow associate work with a given
1562  * NUMA node.
1563  *
1564  * This function will only make a best effort attempt at getting this onto
1565  * the right NUMA node. If no node is requested or the requested node is
1566  * offline then we just fall back to standard queue_work behavior.
1567  *
1568  * Currently the "random" CPU ends up being the first available CPU in the
1569  * intersection of cpu_online_mask and the cpumask of the node, unless we
1570  * are running on the node. In that case we just use the current CPU.
1571  *
1572  * Return: %false if @work was already on a queue, %true otherwise.
1573  */
1574 bool queue_work_node(int node, struct workqueue_struct *wq,
1575 		     struct work_struct *work)
1576 {
1577 	unsigned long flags;
1578 	bool ret = false;
1579 
1580 	/*
1581 	 * This current implementation is specific to unbound workqueues.
1582 	 * Specifically we only return the first available CPU for a given
1583 	 * node instead of cycling through individual CPUs within the node.
1584 	 *
1585 	 * If this is used with a per-cpu workqueue then the logic in
1586 	 * workqueue_select_cpu_near would need to be updated to allow for
1587 	 * some round robin type logic.
1588 	 */
1589 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1590 
1591 	local_irq_save(flags);
1592 
1593 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1594 		int cpu = workqueue_select_cpu_near(node);
1595 
1596 		__queue_work(cpu, wq, work);
1597 		ret = true;
1598 	}
1599 
1600 	local_irq_restore(flags);
1601 	return ret;
1602 }
1603 EXPORT_SYMBOL_GPL(queue_work_node);
1604 
1605 void delayed_work_timer_fn(struct timer_list *t)
1606 {
1607 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1608 
1609 	/* should have been called from irqsafe timer with irq already off */
1610 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1611 }
1612 EXPORT_SYMBOL(delayed_work_timer_fn);
1613 
1614 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1615 				struct delayed_work *dwork, unsigned long delay)
1616 {
1617 	struct timer_list *timer = &dwork->timer;
1618 	struct work_struct *work = &dwork->work;
1619 
1620 	WARN_ON_ONCE(!wq);
1621 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1622 	WARN_ON_ONCE(timer_pending(timer));
1623 	WARN_ON_ONCE(!list_empty(&work->entry));
1624 
1625 	/*
1626 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1627 	 * both optimization and correctness.  The earliest @timer can
1628 	 * expire is on the closest next tick and delayed_work users depend
1629 	 * on that there's no such delay when @delay is 0.
1630 	 */
1631 	if (!delay) {
1632 		__queue_work(cpu, wq, &dwork->work);
1633 		return;
1634 	}
1635 
1636 	dwork->wq = wq;
1637 	dwork->cpu = cpu;
1638 	timer->expires = jiffies + delay;
1639 
1640 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1641 		add_timer_on(timer, cpu);
1642 	else
1643 		add_timer(timer);
1644 }
1645 
1646 /**
1647  * queue_delayed_work_on - queue work on specific CPU after delay
1648  * @cpu: CPU number to execute work on
1649  * @wq: workqueue to use
1650  * @dwork: work to queue
1651  * @delay: number of jiffies to wait before queueing
1652  *
1653  * Return: %false if @work was already on a queue, %true otherwise.  If
1654  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1655  * execution.
1656  */
1657 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1658 			   struct delayed_work *dwork, unsigned long delay)
1659 {
1660 	struct work_struct *work = &dwork->work;
1661 	bool ret = false;
1662 	unsigned long flags;
1663 
1664 	/* read the comment in __queue_work() */
1665 	local_irq_save(flags);
1666 
1667 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1668 		__queue_delayed_work(cpu, wq, dwork, delay);
1669 		ret = true;
1670 	}
1671 
1672 	local_irq_restore(flags);
1673 	return ret;
1674 }
1675 EXPORT_SYMBOL(queue_delayed_work_on);
1676 
1677 /**
1678  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1679  * @cpu: CPU number to execute work on
1680  * @wq: workqueue to use
1681  * @dwork: work to queue
1682  * @delay: number of jiffies to wait before queueing
1683  *
1684  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1685  * modify @dwork's timer so that it expires after @delay.  If @delay is
1686  * zero, @work is guaranteed to be scheduled immediately regardless of its
1687  * current state.
1688  *
1689  * Return: %false if @dwork was idle and queued, %true if @dwork was
1690  * pending and its timer was modified.
1691  *
1692  * This function is safe to call from any context including IRQ handler.
1693  * See try_to_grab_pending() for details.
1694  */
1695 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1696 			 struct delayed_work *dwork, unsigned long delay)
1697 {
1698 	unsigned long flags;
1699 	int ret;
1700 
1701 	do {
1702 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1703 	} while (unlikely(ret == -EAGAIN));
1704 
1705 	if (likely(ret >= 0)) {
1706 		__queue_delayed_work(cpu, wq, dwork, delay);
1707 		local_irq_restore(flags);
1708 	}
1709 
1710 	/* -ENOENT from try_to_grab_pending() becomes %true */
1711 	return ret;
1712 }
1713 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1714 
1715 static void rcu_work_rcufn(struct rcu_head *rcu)
1716 {
1717 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1718 
1719 	/* read the comment in __queue_work() */
1720 	local_irq_disable();
1721 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1722 	local_irq_enable();
1723 }
1724 
1725 /**
1726  * queue_rcu_work - queue work after a RCU grace period
1727  * @wq: workqueue to use
1728  * @rwork: work to queue
1729  *
1730  * Return: %false if @rwork was already pending, %true otherwise.  Note
1731  * that a full RCU grace period is guaranteed only after a %true return.
1732  * While @rwork is guaranteed to be executed after a %false return, the
1733  * execution may happen before a full RCU grace period has passed.
1734  */
1735 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1736 {
1737 	struct work_struct *work = &rwork->work;
1738 
1739 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1740 		rwork->wq = wq;
1741 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1742 		return true;
1743 	}
1744 
1745 	return false;
1746 }
1747 EXPORT_SYMBOL(queue_rcu_work);
1748 
1749 /**
1750  * worker_enter_idle - enter idle state
1751  * @worker: worker which is entering idle state
1752  *
1753  * @worker is entering idle state.  Update stats and idle timer if
1754  * necessary.
1755  *
1756  * LOCKING:
1757  * spin_lock_irq(pool->lock).
1758  */
1759 static void worker_enter_idle(struct worker *worker)
1760 {
1761 	struct worker_pool *pool = worker->pool;
1762 
1763 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1764 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1765 			 (worker->hentry.next || worker->hentry.pprev)))
1766 		return;
1767 
1768 	/* can't use worker_set_flags(), also called from create_worker() */
1769 	worker->flags |= WORKER_IDLE;
1770 	pool->nr_idle++;
1771 	worker->last_active = jiffies;
1772 
1773 	/* idle_list is LIFO */
1774 	list_add(&worker->entry, &pool->idle_list);
1775 
1776 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1777 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1778 
1779 	/*
1780 	 * Sanity check nr_running.  Because unbind_workers() releases
1781 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1782 	 * nr_running, the warning may trigger spuriously.  Check iff
1783 	 * unbind is not in progress.
1784 	 */
1785 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1786 		     pool->nr_workers == pool->nr_idle &&
1787 		     atomic_read(&pool->nr_running));
1788 }
1789 
1790 /**
1791  * worker_leave_idle - leave idle state
1792  * @worker: worker which is leaving idle state
1793  *
1794  * @worker is leaving idle state.  Update stats.
1795  *
1796  * LOCKING:
1797  * spin_lock_irq(pool->lock).
1798  */
1799 static void worker_leave_idle(struct worker *worker)
1800 {
1801 	struct worker_pool *pool = worker->pool;
1802 
1803 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1804 		return;
1805 	worker_clr_flags(worker, WORKER_IDLE);
1806 	pool->nr_idle--;
1807 	list_del_init(&worker->entry);
1808 }
1809 
1810 static struct worker *alloc_worker(int node)
1811 {
1812 	struct worker *worker;
1813 
1814 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1815 	if (worker) {
1816 		INIT_LIST_HEAD(&worker->entry);
1817 		INIT_LIST_HEAD(&worker->scheduled);
1818 		INIT_LIST_HEAD(&worker->node);
1819 		/* on creation a worker is in !idle && prep state */
1820 		worker->flags = WORKER_PREP;
1821 	}
1822 	return worker;
1823 }
1824 
1825 /**
1826  * worker_attach_to_pool() - attach a worker to a pool
1827  * @worker: worker to be attached
1828  * @pool: the target pool
1829  *
1830  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1831  * cpu-binding of @worker are kept coordinated with the pool across
1832  * cpu-[un]hotplugs.
1833  */
1834 static void worker_attach_to_pool(struct worker *worker,
1835 				   struct worker_pool *pool)
1836 {
1837 	mutex_lock(&wq_pool_attach_mutex);
1838 
1839 	/*
1840 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1841 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1842 	 */
1843 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1844 
1845 	/*
1846 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1847 	 * stable across this function.  See the comments above the flag
1848 	 * definition for details.
1849 	 */
1850 	if (pool->flags & POOL_DISASSOCIATED)
1851 		worker->flags |= WORKER_UNBOUND;
1852 
1853 	list_add_tail(&worker->node, &pool->workers);
1854 	worker->pool = pool;
1855 
1856 	mutex_unlock(&wq_pool_attach_mutex);
1857 }
1858 
1859 /**
1860  * worker_detach_from_pool() - detach a worker from its pool
1861  * @worker: worker which is attached to its pool
1862  *
1863  * Undo the attaching which had been done in worker_attach_to_pool().  The
1864  * caller worker shouldn't access to the pool after detached except it has
1865  * other reference to the pool.
1866  */
1867 static void worker_detach_from_pool(struct worker *worker)
1868 {
1869 	struct worker_pool *pool = worker->pool;
1870 	struct completion *detach_completion = NULL;
1871 
1872 	mutex_lock(&wq_pool_attach_mutex);
1873 
1874 	list_del(&worker->node);
1875 	worker->pool = NULL;
1876 
1877 	if (list_empty(&pool->workers))
1878 		detach_completion = pool->detach_completion;
1879 	mutex_unlock(&wq_pool_attach_mutex);
1880 
1881 	/* clear leftover flags without pool->lock after it is detached */
1882 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1883 
1884 	if (detach_completion)
1885 		complete(detach_completion);
1886 }
1887 
1888 /**
1889  * create_worker - create a new workqueue worker
1890  * @pool: pool the new worker will belong to
1891  *
1892  * Create and start a new worker which is attached to @pool.
1893  *
1894  * CONTEXT:
1895  * Might sleep.  Does GFP_KERNEL allocations.
1896  *
1897  * Return:
1898  * Pointer to the newly created worker.
1899  */
1900 static struct worker *create_worker(struct worker_pool *pool)
1901 {
1902 	struct worker *worker = NULL;
1903 	int id = -1;
1904 	char id_buf[16];
1905 
1906 	/* ID is needed to determine kthread name */
1907 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1908 	if (id < 0)
1909 		goto fail;
1910 
1911 	worker = alloc_worker(pool->node);
1912 	if (!worker)
1913 		goto fail;
1914 
1915 	worker->id = id;
1916 
1917 	if (pool->cpu >= 0)
1918 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1919 			 pool->attrs->nice < 0  ? "H" : "");
1920 	else
1921 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1922 
1923 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1924 					      "kworker/%s", id_buf);
1925 	if (IS_ERR(worker->task))
1926 		goto fail;
1927 
1928 	set_user_nice(worker->task, pool->attrs->nice);
1929 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1930 
1931 	/* successful, attach the worker to the pool */
1932 	worker_attach_to_pool(worker, pool);
1933 
1934 	/* start the newly created worker */
1935 	spin_lock_irq(&pool->lock);
1936 	worker->pool->nr_workers++;
1937 	worker_enter_idle(worker);
1938 	wake_up_process(worker->task);
1939 	spin_unlock_irq(&pool->lock);
1940 
1941 	return worker;
1942 
1943 fail:
1944 	if (id >= 0)
1945 		ida_simple_remove(&pool->worker_ida, id);
1946 	kfree(worker);
1947 	return NULL;
1948 }
1949 
1950 /**
1951  * destroy_worker - destroy a workqueue worker
1952  * @worker: worker to be destroyed
1953  *
1954  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1955  * be idle.
1956  *
1957  * CONTEXT:
1958  * spin_lock_irq(pool->lock).
1959  */
1960 static void destroy_worker(struct worker *worker)
1961 {
1962 	struct worker_pool *pool = worker->pool;
1963 
1964 	lockdep_assert_held(&pool->lock);
1965 
1966 	/* sanity check frenzy */
1967 	if (WARN_ON(worker->current_work) ||
1968 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1969 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1970 		return;
1971 
1972 	pool->nr_workers--;
1973 	pool->nr_idle--;
1974 
1975 	list_del_init(&worker->entry);
1976 	worker->flags |= WORKER_DIE;
1977 	wake_up_process(worker->task);
1978 }
1979 
1980 static void idle_worker_timeout(struct timer_list *t)
1981 {
1982 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1983 
1984 	spin_lock_irq(&pool->lock);
1985 
1986 	while (too_many_workers(pool)) {
1987 		struct worker *worker;
1988 		unsigned long expires;
1989 
1990 		/* idle_list is kept in LIFO order, check the last one */
1991 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1992 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1993 
1994 		if (time_before(jiffies, expires)) {
1995 			mod_timer(&pool->idle_timer, expires);
1996 			break;
1997 		}
1998 
1999 		destroy_worker(worker);
2000 	}
2001 
2002 	spin_unlock_irq(&pool->lock);
2003 }
2004 
2005 static void send_mayday(struct work_struct *work)
2006 {
2007 	struct pool_workqueue *pwq = get_work_pwq(work);
2008 	struct workqueue_struct *wq = pwq->wq;
2009 
2010 	lockdep_assert_held(&wq_mayday_lock);
2011 
2012 	if (!wq->rescuer)
2013 		return;
2014 
2015 	/* mayday mayday mayday */
2016 	if (list_empty(&pwq->mayday_node)) {
2017 		/*
2018 		 * If @pwq is for an unbound wq, its base ref may be put at
2019 		 * any time due to an attribute change.  Pin @pwq until the
2020 		 * rescuer is done with it.
2021 		 */
2022 		get_pwq(pwq);
2023 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2024 		wake_up_process(wq->rescuer->task);
2025 	}
2026 }
2027 
2028 static void pool_mayday_timeout(struct timer_list *t)
2029 {
2030 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2031 	struct work_struct *work;
2032 
2033 	spin_lock_irq(&pool->lock);
2034 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2035 
2036 	if (need_to_create_worker(pool)) {
2037 		/*
2038 		 * We've been trying to create a new worker but
2039 		 * haven't been successful.  We might be hitting an
2040 		 * allocation deadlock.  Send distress signals to
2041 		 * rescuers.
2042 		 */
2043 		list_for_each_entry(work, &pool->worklist, entry)
2044 			send_mayday(work);
2045 	}
2046 
2047 	spin_unlock(&wq_mayday_lock);
2048 	spin_unlock_irq(&pool->lock);
2049 
2050 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2051 }
2052 
2053 /**
2054  * maybe_create_worker - create a new worker if necessary
2055  * @pool: pool to create a new worker for
2056  *
2057  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2058  * have at least one idle worker on return from this function.  If
2059  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2060  * sent to all rescuers with works scheduled on @pool to resolve
2061  * possible allocation deadlock.
2062  *
2063  * On return, need_to_create_worker() is guaranteed to be %false and
2064  * may_start_working() %true.
2065  *
2066  * LOCKING:
2067  * spin_lock_irq(pool->lock) which may be released and regrabbed
2068  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2069  * manager.
2070  */
2071 static void maybe_create_worker(struct worker_pool *pool)
2072 __releases(&pool->lock)
2073 __acquires(&pool->lock)
2074 {
2075 restart:
2076 	spin_unlock_irq(&pool->lock);
2077 
2078 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2079 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2080 
2081 	while (true) {
2082 		if (create_worker(pool) || !need_to_create_worker(pool))
2083 			break;
2084 
2085 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2086 
2087 		if (!need_to_create_worker(pool))
2088 			break;
2089 	}
2090 
2091 	del_timer_sync(&pool->mayday_timer);
2092 	spin_lock_irq(&pool->lock);
2093 	/*
2094 	 * This is necessary even after a new worker was just successfully
2095 	 * created as @pool->lock was dropped and the new worker might have
2096 	 * already become busy.
2097 	 */
2098 	if (need_to_create_worker(pool))
2099 		goto restart;
2100 }
2101 
2102 /**
2103  * manage_workers - manage worker pool
2104  * @worker: self
2105  *
2106  * Assume the manager role and manage the worker pool @worker belongs
2107  * to.  At any given time, there can be only zero or one manager per
2108  * pool.  The exclusion is handled automatically by this function.
2109  *
2110  * The caller can safely start processing works on false return.  On
2111  * true return, it's guaranteed that need_to_create_worker() is false
2112  * and may_start_working() is true.
2113  *
2114  * CONTEXT:
2115  * spin_lock_irq(pool->lock) which may be released and regrabbed
2116  * multiple times.  Does GFP_KERNEL allocations.
2117  *
2118  * Return:
2119  * %false if the pool doesn't need management and the caller can safely
2120  * start processing works, %true if management function was performed and
2121  * the conditions that the caller verified before calling the function may
2122  * no longer be true.
2123  */
2124 static bool manage_workers(struct worker *worker)
2125 {
2126 	struct worker_pool *pool = worker->pool;
2127 
2128 	if (pool->flags & POOL_MANAGER_ACTIVE)
2129 		return false;
2130 
2131 	pool->flags |= POOL_MANAGER_ACTIVE;
2132 	pool->manager = worker;
2133 
2134 	maybe_create_worker(pool);
2135 
2136 	pool->manager = NULL;
2137 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2138 	wake_up(&wq_manager_wait);
2139 	return true;
2140 }
2141 
2142 /**
2143  * process_one_work - process single work
2144  * @worker: self
2145  * @work: work to process
2146  *
2147  * Process @work.  This function contains all the logics necessary to
2148  * process a single work including synchronization against and
2149  * interaction with other workers on the same cpu, queueing and
2150  * flushing.  As long as context requirement is met, any worker can
2151  * call this function to process a work.
2152  *
2153  * CONTEXT:
2154  * spin_lock_irq(pool->lock) which is released and regrabbed.
2155  */
2156 static void process_one_work(struct worker *worker, struct work_struct *work)
2157 __releases(&pool->lock)
2158 __acquires(&pool->lock)
2159 {
2160 	struct pool_workqueue *pwq = get_work_pwq(work);
2161 	struct worker_pool *pool = worker->pool;
2162 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2163 	int work_color;
2164 	struct worker *collision;
2165 #ifdef CONFIG_LOCKDEP
2166 	/*
2167 	 * It is permissible to free the struct work_struct from
2168 	 * inside the function that is called from it, this we need to
2169 	 * take into account for lockdep too.  To avoid bogus "held
2170 	 * lock freed" warnings as well as problems when looking into
2171 	 * work->lockdep_map, make a copy and use that here.
2172 	 */
2173 	struct lockdep_map lockdep_map;
2174 
2175 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2176 #endif
2177 	/* ensure we're on the correct CPU */
2178 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2179 		     raw_smp_processor_id() != pool->cpu);
2180 
2181 	/*
2182 	 * A single work shouldn't be executed concurrently by
2183 	 * multiple workers on a single cpu.  Check whether anyone is
2184 	 * already processing the work.  If so, defer the work to the
2185 	 * currently executing one.
2186 	 */
2187 	collision = find_worker_executing_work(pool, work);
2188 	if (unlikely(collision)) {
2189 		move_linked_works(work, &collision->scheduled, NULL);
2190 		return;
2191 	}
2192 
2193 	/* claim and dequeue */
2194 	debug_work_deactivate(work);
2195 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2196 	worker->current_work = work;
2197 	worker->current_func = work->func;
2198 	worker->current_pwq = pwq;
2199 	work_color = get_work_color(work);
2200 
2201 	/*
2202 	 * Record wq name for cmdline and debug reporting, may get
2203 	 * overridden through set_worker_desc().
2204 	 */
2205 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2206 
2207 	list_del_init(&work->entry);
2208 
2209 	/*
2210 	 * CPU intensive works don't participate in concurrency management.
2211 	 * They're the scheduler's responsibility.  This takes @worker out
2212 	 * of concurrency management and the next code block will chain
2213 	 * execution of the pending work items.
2214 	 */
2215 	if (unlikely(cpu_intensive))
2216 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2217 
2218 	/*
2219 	 * Wake up another worker if necessary.  The condition is always
2220 	 * false for normal per-cpu workers since nr_running would always
2221 	 * be >= 1 at this point.  This is used to chain execution of the
2222 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2223 	 * UNBOUND and CPU_INTENSIVE ones.
2224 	 */
2225 	if (need_more_worker(pool))
2226 		wake_up_worker(pool);
2227 
2228 	/*
2229 	 * Record the last pool and clear PENDING which should be the last
2230 	 * update to @work.  Also, do this inside @pool->lock so that
2231 	 * PENDING and queued state changes happen together while IRQ is
2232 	 * disabled.
2233 	 */
2234 	set_work_pool_and_clear_pending(work, pool->id);
2235 
2236 	spin_unlock_irq(&pool->lock);
2237 
2238 	lock_map_acquire(&pwq->wq->lockdep_map);
2239 	lock_map_acquire(&lockdep_map);
2240 	/*
2241 	 * Strictly speaking we should mark the invariant state without holding
2242 	 * any locks, that is, before these two lock_map_acquire()'s.
2243 	 *
2244 	 * However, that would result in:
2245 	 *
2246 	 *   A(W1)
2247 	 *   WFC(C)
2248 	 *		A(W1)
2249 	 *		C(C)
2250 	 *
2251 	 * Which would create W1->C->W1 dependencies, even though there is no
2252 	 * actual deadlock possible. There are two solutions, using a
2253 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2254 	 * hit the lockdep limitation on recursive locks, or simply discard
2255 	 * these locks.
2256 	 *
2257 	 * AFAICT there is no possible deadlock scenario between the
2258 	 * flush_work() and complete() primitives (except for single-threaded
2259 	 * workqueues), so hiding them isn't a problem.
2260 	 */
2261 	lockdep_invariant_state(true);
2262 	trace_workqueue_execute_start(work);
2263 	worker->current_func(work);
2264 	/*
2265 	 * While we must be careful to not use "work" after this, the trace
2266 	 * point will only record its address.
2267 	 */
2268 	trace_workqueue_execute_end(work);
2269 	lock_map_release(&lockdep_map);
2270 	lock_map_release(&pwq->wq->lockdep_map);
2271 
2272 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2273 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2274 		       "     last function: %pf\n",
2275 		       current->comm, preempt_count(), task_pid_nr(current),
2276 		       worker->current_func);
2277 		debug_show_held_locks(current);
2278 		dump_stack();
2279 	}
2280 
2281 	/*
2282 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2283 	 * kernels, where a requeueing work item waiting for something to
2284 	 * happen could deadlock with stop_machine as such work item could
2285 	 * indefinitely requeue itself while all other CPUs are trapped in
2286 	 * stop_machine. At the same time, report a quiescent RCU state so
2287 	 * the same condition doesn't freeze RCU.
2288 	 */
2289 	cond_resched();
2290 
2291 	spin_lock_irq(&pool->lock);
2292 
2293 	/* clear cpu intensive status */
2294 	if (unlikely(cpu_intensive))
2295 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2296 
2297 	/* tag the worker for identification in schedule() */
2298 	worker->last_func = worker->current_func;
2299 
2300 	/* we're done with it, release */
2301 	hash_del(&worker->hentry);
2302 	worker->current_work = NULL;
2303 	worker->current_func = NULL;
2304 	worker->current_pwq = NULL;
2305 	pwq_dec_nr_in_flight(pwq, work_color);
2306 }
2307 
2308 /**
2309  * process_scheduled_works - process scheduled works
2310  * @worker: self
2311  *
2312  * Process all scheduled works.  Please note that the scheduled list
2313  * may change while processing a work, so this function repeatedly
2314  * fetches a work from the top and executes it.
2315  *
2316  * CONTEXT:
2317  * spin_lock_irq(pool->lock) which may be released and regrabbed
2318  * multiple times.
2319  */
2320 static void process_scheduled_works(struct worker *worker)
2321 {
2322 	while (!list_empty(&worker->scheduled)) {
2323 		struct work_struct *work = list_first_entry(&worker->scheduled,
2324 						struct work_struct, entry);
2325 		process_one_work(worker, work);
2326 	}
2327 }
2328 
2329 static void set_pf_worker(bool val)
2330 {
2331 	mutex_lock(&wq_pool_attach_mutex);
2332 	if (val)
2333 		current->flags |= PF_WQ_WORKER;
2334 	else
2335 		current->flags &= ~PF_WQ_WORKER;
2336 	mutex_unlock(&wq_pool_attach_mutex);
2337 }
2338 
2339 /**
2340  * worker_thread - the worker thread function
2341  * @__worker: self
2342  *
2343  * The worker thread function.  All workers belong to a worker_pool -
2344  * either a per-cpu one or dynamic unbound one.  These workers process all
2345  * work items regardless of their specific target workqueue.  The only
2346  * exception is work items which belong to workqueues with a rescuer which
2347  * will be explained in rescuer_thread().
2348  *
2349  * Return: 0
2350  */
2351 static int worker_thread(void *__worker)
2352 {
2353 	struct worker *worker = __worker;
2354 	struct worker_pool *pool = worker->pool;
2355 
2356 	/* tell the scheduler that this is a workqueue worker */
2357 	set_pf_worker(true);
2358 woke_up:
2359 	spin_lock_irq(&pool->lock);
2360 
2361 	/* am I supposed to die? */
2362 	if (unlikely(worker->flags & WORKER_DIE)) {
2363 		spin_unlock_irq(&pool->lock);
2364 		WARN_ON_ONCE(!list_empty(&worker->entry));
2365 		set_pf_worker(false);
2366 
2367 		set_task_comm(worker->task, "kworker/dying");
2368 		ida_simple_remove(&pool->worker_ida, worker->id);
2369 		worker_detach_from_pool(worker);
2370 		kfree(worker);
2371 		return 0;
2372 	}
2373 
2374 	worker_leave_idle(worker);
2375 recheck:
2376 	/* no more worker necessary? */
2377 	if (!need_more_worker(pool))
2378 		goto sleep;
2379 
2380 	/* do we need to manage? */
2381 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2382 		goto recheck;
2383 
2384 	/*
2385 	 * ->scheduled list can only be filled while a worker is
2386 	 * preparing to process a work or actually processing it.
2387 	 * Make sure nobody diddled with it while I was sleeping.
2388 	 */
2389 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2390 
2391 	/*
2392 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2393 	 * worker or that someone else has already assumed the manager
2394 	 * role.  This is where @worker starts participating in concurrency
2395 	 * management if applicable and concurrency management is restored
2396 	 * after being rebound.  See rebind_workers() for details.
2397 	 */
2398 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2399 
2400 	do {
2401 		struct work_struct *work =
2402 			list_first_entry(&pool->worklist,
2403 					 struct work_struct, entry);
2404 
2405 		pool->watchdog_ts = jiffies;
2406 
2407 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2408 			/* optimization path, not strictly necessary */
2409 			process_one_work(worker, work);
2410 			if (unlikely(!list_empty(&worker->scheduled)))
2411 				process_scheduled_works(worker);
2412 		} else {
2413 			move_linked_works(work, &worker->scheduled, NULL);
2414 			process_scheduled_works(worker);
2415 		}
2416 	} while (keep_working(pool));
2417 
2418 	worker_set_flags(worker, WORKER_PREP);
2419 sleep:
2420 	/*
2421 	 * pool->lock is held and there's no work to process and no need to
2422 	 * manage, sleep.  Workers are woken up only while holding
2423 	 * pool->lock or from local cpu, so setting the current state
2424 	 * before releasing pool->lock is enough to prevent losing any
2425 	 * event.
2426 	 */
2427 	worker_enter_idle(worker);
2428 	__set_current_state(TASK_IDLE);
2429 	spin_unlock_irq(&pool->lock);
2430 	schedule();
2431 	goto woke_up;
2432 }
2433 
2434 /**
2435  * rescuer_thread - the rescuer thread function
2436  * @__rescuer: self
2437  *
2438  * Workqueue rescuer thread function.  There's one rescuer for each
2439  * workqueue which has WQ_MEM_RECLAIM set.
2440  *
2441  * Regular work processing on a pool may block trying to create a new
2442  * worker which uses GFP_KERNEL allocation which has slight chance of
2443  * developing into deadlock if some works currently on the same queue
2444  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2445  * the problem rescuer solves.
2446  *
2447  * When such condition is possible, the pool summons rescuers of all
2448  * workqueues which have works queued on the pool and let them process
2449  * those works so that forward progress can be guaranteed.
2450  *
2451  * This should happen rarely.
2452  *
2453  * Return: 0
2454  */
2455 static int rescuer_thread(void *__rescuer)
2456 {
2457 	struct worker *rescuer = __rescuer;
2458 	struct workqueue_struct *wq = rescuer->rescue_wq;
2459 	struct list_head *scheduled = &rescuer->scheduled;
2460 	bool should_stop;
2461 
2462 	set_user_nice(current, RESCUER_NICE_LEVEL);
2463 
2464 	/*
2465 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2466 	 * doesn't participate in concurrency management.
2467 	 */
2468 	set_pf_worker(true);
2469 repeat:
2470 	set_current_state(TASK_IDLE);
2471 
2472 	/*
2473 	 * By the time the rescuer is requested to stop, the workqueue
2474 	 * shouldn't have any work pending, but @wq->maydays may still have
2475 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2476 	 * all the work items before the rescuer got to them.  Go through
2477 	 * @wq->maydays processing before acting on should_stop so that the
2478 	 * list is always empty on exit.
2479 	 */
2480 	should_stop = kthread_should_stop();
2481 
2482 	/* see whether any pwq is asking for help */
2483 	spin_lock_irq(&wq_mayday_lock);
2484 
2485 	while (!list_empty(&wq->maydays)) {
2486 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2487 					struct pool_workqueue, mayday_node);
2488 		struct worker_pool *pool = pwq->pool;
2489 		struct work_struct *work, *n;
2490 		bool first = true;
2491 
2492 		__set_current_state(TASK_RUNNING);
2493 		list_del_init(&pwq->mayday_node);
2494 
2495 		spin_unlock_irq(&wq_mayday_lock);
2496 
2497 		worker_attach_to_pool(rescuer, pool);
2498 
2499 		spin_lock_irq(&pool->lock);
2500 
2501 		/*
2502 		 * Slurp in all works issued via this workqueue and
2503 		 * process'em.
2504 		 */
2505 		WARN_ON_ONCE(!list_empty(scheduled));
2506 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2507 			if (get_work_pwq(work) == pwq) {
2508 				if (first)
2509 					pool->watchdog_ts = jiffies;
2510 				move_linked_works(work, scheduled, &n);
2511 			}
2512 			first = false;
2513 		}
2514 
2515 		if (!list_empty(scheduled)) {
2516 			process_scheduled_works(rescuer);
2517 
2518 			/*
2519 			 * The above execution of rescued work items could
2520 			 * have created more to rescue through
2521 			 * pwq_activate_first_delayed() or chained
2522 			 * queueing.  Let's put @pwq back on mayday list so
2523 			 * that such back-to-back work items, which may be
2524 			 * being used to relieve memory pressure, don't
2525 			 * incur MAYDAY_INTERVAL delay inbetween.
2526 			 */
2527 			if (need_to_create_worker(pool)) {
2528 				spin_lock(&wq_mayday_lock);
2529 				get_pwq(pwq);
2530 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2531 				spin_unlock(&wq_mayday_lock);
2532 			}
2533 		}
2534 
2535 		/*
2536 		 * Put the reference grabbed by send_mayday().  @pool won't
2537 		 * go away while we're still attached to it.
2538 		 */
2539 		put_pwq(pwq);
2540 
2541 		/*
2542 		 * Leave this pool.  If need_more_worker() is %true, notify a
2543 		 * regular worker; otherwise, we end up with 0 concurrency
2544 		 * and stalling the execution.
2545 		 */
2546 		if (need_more_worker(pool))
2547 			wake_up_worker(pool);
2548 
2549 		spin_unlock_irq(&pool->lock);
2550 
2551 		worker_detach_from_pool(rescuer);
2552 
2553 		spin_lock_irq(&wq_mayday_lock);
2554 	}
2555 
2556 	spin_unlock_irq(&wq_mayday_lock);
2557 
2558 	if (should_stop) {
2559 		__set_current_state(TASK_RUNNING);
2560 		set_pf_worker(false);
2561 		return 0;
2562 	}
2563 
2564 	/* rescuers should never participate in concurrency management */
2565 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2566 	schedule();
2567 	goto repeat;
2568 }
2569 
2570 /**
2571  * check_flush_dependency - check for flush dependency sanity
2572  * @target_wq: workqueue being flushed
2573  * @target_work: work item being flushed (NULL for workqueue flushes)
2574  *
2575  * %current is trying to flush the whole @target_wq or @target_work on it.
2576  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2577  * reclaiming memory or running on a workqueue which doesn't have
2578  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2579  * a deadlock.
2580  */
2581 static void check_flush_dependency(struct workqueue_struct *target_wq,
2582 				   struct work_struct *target_work)
2583 {
2584 	work_func_t target_func = target_work ? target_work->func : NULL;
2585 	struct worker *worker;
2586 
2587 	if (target_wq->flags & WQ_MEM_RECLAIM)
2588 		return;
2589 
2590 	worker = current_wq_worker();
2591 
2592 	WARN_ONCE(current->flags & PF_MEMALLOC,
2593 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2594 		  current->pid, current->comm, target_wq->name, target_func);
2595 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2596 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2597 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2598 		  worker->current_pwq->wq->name, worker->current_func,
2599 		  target_wq->name, target_func);
2600 }
2601 
2602 struct wq_barrier {
2603 	struct work_struct	work;
2604 	struct completion	done;
2605 	struct task_struct	*task;	/* purely informational */
2606 };
2607 
2608 static void wq_barrier_func(struct work_struct *work)
2609 {
2610 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2611 	complete(&barr->done);
2612 }
2613 
2614 /**
2615  * insert_wq_barrier - insert a barrier work
2616  * @pwq: pwq to insert barrier into
2617  * @barr: wq_barrier to insert
2618  * @target: target work to attach @barr to
2619  * @worker: worker currently executing @target, NULL if @target is not executing
2620  *
2621  * @barr is linked to @target such that @barr is completed only after
2622  * @target finishes execution.  Please note that the ordering
2623  * guarantee is observed only with respect to @target and on the local
2624  * cpu.
2625  *
2626  * Currently, a queued barrier can't be canceled.  This is because
2627  * try_to_grab_pending() can't determine whether the work to be
2628  * grabbed is at the head of the queue and thus can't clear LINKED
2629  * flag of the previous work while there must be a valid next work
2630  * after a work with LINKED flag set.
2631  *
2632  * Note that when @worker is non-NULL, @target may be modified
2633  * underneath us, so we can't reliably determine pwq from @target.
2634  *
2635  * CONTEXT:
2636  * spin_lock_irq(pool->lock).
2637  */
2638 static void insert_wq_barrier(struct pool_workqueue *pwq,
2639 			      struct wq_barrier *barr,
2640 			      struct work_struct *target, struct worker *worker)
2641 {
2642 	struct list_head *head;
2643 	unsigned int linked = 0;
2644 
2645 	/*
2646 	 * debugobject calls are safe here even with pool->lock locked
2647 	 * as we know for sure that this will not trigger any of the
2648 	 * checks and call back into the fixup functions where we
2649 	 * might deadlock.
2650 	 */
2651 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2652 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2653 
2654 	init_completion_map(&barr->done, &target->lockdep_map);
2655 
2656 	barr->task = current;
2657 
2658 	/*
2659 	 * If @target is currently being executed, schedule the
2660 	 * barrier to the worker; otherwise, put it after @target.
2661 	 */
2662 	if (worker)
2663 		head = worker->scheduled.next;
2664 	else {
2665 		unsigned long *bits = work_data_bits(target);
2666 
2667 		head = target->entry.next;
2668 		/* there can already be other linked works, inherit and set */
2669 		linked = *bits & WORK_STRUCT_LINKED;
2670 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2671 	}
2672 
2673 	debug_work_activate(&barr->work);
2674 	insert_work(pwq, &barr->work, head,
2675 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2676 }
2677 
2678 /**
2679  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2680  * @wq: workqueue being flushed
2681  * @flush_color: new flush color, < 0 for no-op
2682  * @work_color: new work color, < 0 for no-op
2683  *
2684  * Prepare pwqs for workqueue flushing.
2685  *
2686  * If @flush_color is non-negative, flush_color on all pwqs should be
2687  * -1.  If no pwq has in-flight commands at the specified color, all
2688  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2689  * has in flight commands, its pwq->flush_color is set to
2690  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2691  * wakeup logic is armed and %true is returned.
2692  *
2693  * The caller should have initialized @wq->first_flusher prior to
2694  * calling this function with non-negative @flush_color.  If
2695  * @flush_color is negative, no flush color update is done and %false
2696  * is returned.
2697  *
2698  * If @work_color is non-negative, all pwqs should have the same
2699  * work_color which is previous to @work_color and all will be
2700  * advanced to @work_color.
2701  *
2702  * CONTEXT:
2703  * mutex_lock(wq->mutex).
2704  *
2705  * Return:
2706  * %true if @flush_color >= 0 and there's something to flush.  %false
2707  * otherwise.
2708  */
2709 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2710 				      int flush_color, int work_color)
2711 {
2712 	bool wait = false;
2713 	struct pool_workqueue *pwq;
2714 
2715 	if (flush_color >= 0) {
2716 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2717 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2718 	}
2719 
2720 	for_each_pwq(pwq, wq) {
2721 		struct worker_pool *pool = pwq->pool;
2722 
2723 		spin_lock_irq(&pool->lock);
2724 
2725 		if (flush_color >= 0) {
2726 			WARN_ON_ONCE(pwq->flush_color != -1);
2727 
2728 			if (pwq->nr_in_flight[flush_color]) {
2729 				pwq->flush_color = flush_color;
2730 				atomic_inc(&wq->nr_pwqs_to_flush);
2731 				wait = true;
2732 			}
2733 		}
2734 
2735 		if (work_color >= 0) {
2736 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2737 			pwq->work_color = work_color;
2738 		}
2739 
2740 		spin_unlock_irq(&pool->lock);
2741 	}
2742 
2743 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2744 		complete(&wq->first_flusher->done);
2745 
2746 	return wait;
2747 }
2748 
2749 /**
2750  * flush_workqueue - ensure that any scheduled work has run to completion.
2751  * @wq: workqueue to flush
2752  *
2753  * This function sleeps until all work items which were queued on entry
2754  * have finished execution, but it is not livelocked by new incoming ones.
2755  */
2756 void flush_workqueue(struct workqueue_struct *wq)
2757 {
2758 	struct wq_flusher this_flusher = {
2759 		.list = LIST_HEAD_INIT(this_flusher.list),
2760 		.flush_color = -1,
2761 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2762 	};
2763 	int next_color;
2764 
2765 	if (WARN_ON(!wq_online))
2766 		return;
2767 
2768 	lock_map_acquire(&wq->lockdep_map);
2769 	lock_map_release(&wq->lockdep_map);
2770 
2771 	mutex_lock(&wq->mutex);
2772 
2773 	/*
2774 	 * Start-to-wait phase
2775 	 */
2776 	next_color = work_next_color(wq->work_color);
2777 
2778 	if (next_color != wq->flush_color) {
2779 		/*
2780 		 * Color space is not full.  The current work_color
2781 		 * becomes our flush_color and work_color is advanced
2782 		 * by one.
2783 		 */
2784 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2785 		this_flusher.flush_color = wq->work_color;
2786 		wq->work_color = next_color;
2787 
2788 		if (!wq->first_flusher) {
2789 			/* no flush in progress, become the first flusher */
2790 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2791 
2792 			wq->first_flusher = &this_flusher;
2793 
2794 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2795 						       wq->work_color)) {
2796 				/* nothing to flush, done */
2797 				wq->flush_color = next_color;
2798 				wq->first_flusher = NULL;
2799 				goto out_unlock;
2800 			}
2801 		} else {
2802 			/* wait in queue */
2803 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2804 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2805 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2806 		}
2807 	} else {
2808 		/*
2809 		 * Oops, color space is full, wait on overflow queue.
2810 		 * The next flush completion will assign us
2811 		 * flush_color and transfer to flusher_queue.
2812 		 */
2813 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2814 	}
2815 
2816 	check_flush_dependency(wq, NULL);
2817 
2818 	mutex_unlock(&wq->mutex);
2819 
2820 	wait_for_completion(&this_flusher.done);
2821 
2822 	/*
2823 	 * Wake-up-and-cascade phase
2824 	 *
2825 	 * First flushers are responsible for cascading flushes and
2826 	 * handling overflow.  Non-first flushers can simply return.
2827 	 */
2828 	if (wq->first_flusher != &this_flusher)
2829 		return;
2830 
2831 	mutex_lock(&wq->mutex);
2832 
2833 	/* we might have raced, check again with mutex held */
2834 	if (wq->first_flusher != &this_flusher)
2835 		goto out_unlock;
2836 
2837 	wq->first_flusher = NULL;
2838 
2839 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2840 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2841 
2842 	while (true) {
2843 		struct wq_flusher *next, *tmp;
2844 
2845 		/* complete all the flushers sharing the current flush color */
2846 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2847 			if (next->flush_color != wq->flush_color)
2848 				break;
2849 			list_del_init(&next->list);
2850 			complete(&next->done);
2851 		}
2852 
2853 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2854 			     wq->flush_color != work_next_color(wq->work_color));
2855 
2856 		/* this flush_color is finished, advance by one */
2857 		wq->flush_color = work_next_color(wq->flush_color);
2858 
2859 		/* one color has been freed, handle overflow queue */
2860 		if (!list_empty(&wq->flusher_overflow)) {
2861 			/*
2862 			 * Assign the same color to all overflowed
2863 			 * flushers, advance work_color and append to
2864 			 * flusher_queue.  This is the start-to-wait
2865 			 * phase for these overflowed flushers.
2866 			 */
2867 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2868 				tmp->flush_color = wq->work_color;
2869 
2870 			wq->work_color = work_next_color(wq->work_color);
2871 
2872 			list_splice_tail_init(&wq->flusher_overflow,
2873 					      &wq->flusher_queue);
2874 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2875 		}
2876 
2877 		if (list_empty(&wq->flusher_queue)) {
2878 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2879 			break;
2880 		}
2881 
2882 		/*
2883 		 * Need to flush more colors.  Make the next flusher
2884 		 * the new first flusher and arm pwqs.
2885 		 */
2886 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2887 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2888 
2889 		list_del_init(&next->list);
2890 		wq->first_flusher = next;
2891 
2892 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2893 			break;
2894 
2895 		/*
2896 		 * Meh... this color is already done, clear first
2897 		 * flusher and repeat cascading.
2898 		 */
2899 		wq->first_flusher = NULL;
2900 	}
2901 
2902 out_unlock:
2903 	mutex_unlock(&wq->mutex);
2904 }
2905 EXPORT_SYMBOL(flush_workqueue);
2906 
2907 /**
2908  * drain_workqueue - drain a workqueue
2909  * @wq: workqueue to drain
2910  *
2911  * Wait until the workqueue becomes empty.  While draining is in progress,
2912  * only chain queueing is allowed.  IOW, only currently pending or running
2913  * work items on @wq can queue further work items on it.  @wq is flushed
2914  * repeatedly until it becomes empty.  The number of flushing is determined
2915  * by the depth of chaining and should be relatively short.  Whine if it
2916  * takes too long.
2917  */
2918 void drain_workqueue(struct workqueue_struct *wq)
2919 {
2920 	unsigned int flush_cnt = 0;
2921 	struct pool_workqueue *pwq;
2922 
2923 	/*
2924 	 * __queue_work() needs to test whether there are drainers, is much
2925 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2926 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2927 	 */
2928 	mutex_lock(&wq->mutex);
2929 	if (!wq->nr_drainers++)
2930 		wq->flags |= __WQ_DRAINING;
2931 	mutex_unlock(&wq->mutex);
2932 reflush:
2933 	flush_workqueue(wq);
2934 
2935 	mutex_lock(&wq->mutex);
2936 
2937 	for_each_pwq(pwq, wq) {
2938 		bool drained;
2939 
2940 		spin_lock_irq(&pwq->pool->lock);
2941 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2942 		spin_unlock_irq(&pwq->pool->lock);
2943 
2944 		if (drained)
2945 			continue;
2946 
2947 		if (++flush_cnt == 10 ||
2948 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2949 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2950 				wq->name, flush_cnt);
2951 
2952 		mutex_unlock(&wq->mutex);
2953 		goto reflush;
2954 	}
2955 
2956 	if (!--wq->nr_drainers)
2957 		wq->flags &= ~__WQ_DRAINING;
2958 	mutex_unlock(&wq->mutex);
2959 }
2960 EXPORT_SYMBOL_GPL(drain_workqueue);
2961 
2962 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2963 			     bool from_cancel)
2964 {
2965 	struct worker *worker = NULL;
2966 	struct worker_pool *pool;
2967 	struct pool_workqueue *pwq;
2968 
2969 	might_sleep();
2970 
2971 	local_irq_disable();
2972 	pool = get_work_pool(work);
2973 	if (!pool) {
2974 		local_irq_enable();
2975 		return false;
2976 	}
2977 
2978 	spin_lock(&pool->lock);
2979 	/* see the comment in try_to_grab_pending() with the same code */
2980 	pwq = get_work_pwq(work);
2981 	if (pwq) {
2982 		if (unlikely(pwq->pool != pool))
2983 			goto already_gone;
2984 	} else {
2985 		worker = find_worker_executing_work(pool, work);
2986 		if (!worker)
2987 			goto already_gone;
2988 		pwq = worker->current_pwq;
2989 	}
2990 
2991 	check_flush_dependency(pwq->wq, work);
2992 
2993 	insert_wq_barrier(pwq, barr, work, worker);
2994 	spin_unlock_irq(&pool->lock);
2995 
2996 	/*
2997 	 * Force a lock recursion deadlock when using flush_work() inside a
2998 	 * single-threaded or rescuer equipped workqueue.
2999 	 *
3000 	 * For single threaded workqueues the deadlock happens when the work
3001 	 * is after the work issuing the flush_work(). For rescuer equipped
3002 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3003 	 * forward progress.
3004 	 */
3005 	if (!from_cancel &&
3006 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3007 		lock_map_acquire(&pwq->wq->lockdep_map);
3008 		lock_map_release(&pwq->wq->lockdep_map);
3009 	}
3010 
3011 	return true;
3012 already_gone:
3013 	spin_unlock_irq(&pool->lock);
3014 	return false;
3015 }
3016 
3017 static bool __flush_work(struct work_struct *work, bool from_cancel)
3018 {
3019 	struct wq_barrier barr;
3020 
3021 	if (WARN_ON(!wq_online))
3022 		return false;
3023 
3024 	if (WARN_ON(!work->func))
3025 		return false;
3026 
3027 	if (!from_cancel) {
3028 		lock_map_acquire(&work->lockdep_map);
3029 		lock_map_release(&work->lockdep_map);
3030 	}
3031 
3032 	if (start_flush_work(work, &barr, from_cancel)) {
3033 		wait_for_completion(&barr.done);
3034 		destroy_work_on_stack(&barr.work);
3035 		return true;
3036 	} else {
3037 		return false;
3038 	}
3039 }
3040 
3041 /**
3042  * flush_work - wait for a work to finish executing the last queueing instance
3043  * @work: the work to flush
3044  *
3045  * Wait until @work has finished execution.  @work is guaranteed to be idle
3046  * on return if it hasn't been requeued since flush started.
3047  *
3048  * Return:
3049  * %true if flush_work() waited for the work to finish execution,
3050  * %false if it was already idle.
3051  */
3052 bool flush_work(struct work_struct *work)
3053 {
3054 	return __flush_work(work, false);
3055 }
3056 EXPORT_SYMBOL_GPL(flush_work);
3057 
3058 struct cwt_wait {
3059 	wait_queue_entry_t		wait;
3060 	struct work_struct	*work;
3061 };
3062 
3063 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3064 {
3065 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3066 
3067 	if (cwait->work != key)
3068 		return 0;
3069 	return autoremove_wake_function(wait, mode, sync, key);
3070 }
3071 
3072 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3073 {
3074 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3075 	unsigned long flags;
3076 	int ret;
3077 
3078 	do {
3079 		ret = try_to_grab_pending(work, is_dwork, &flags);
3080 		/*
3081 		 * If someone else is already canceling, wait for it to
3082 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3083 		 * because we may get scheduled between @work's completion
3084 		 * and the other canceling task resuming and clearing
3085 		 * CANCELING - flush_work() will return false immediately
3086 		 * as @work is no longer busy, try_to_grab_pending() will
3087 		 * return -ENOENT as @work is still being canceled and the
3088 		 * other canceling task won't be able to clear CANCELING as
3089 		 * we're hogging the CPU.
3090 		 *
3091 		 * Let's wait for completion using a waitqueue.  As this
3092 		 * may lead to the thundering herd problem, use a custom
3093 		 * wake function which matches @work along with exclusive
3094 		 * wait and wakeup.
3095 		 */
3096 		if (unlikely(ret == -ENOENT)) {
3097 			struct cwt_wait cwait;
3098 
3099 			init_wait(&cwait.wait);
3100 			cwait.wait.func = cwt_wakefn;
3101 			cwait.work = work;
3102 
3103 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3104 						  TASK_UNINTERRUPTIBLE);
3105 			if (work_is_canceling(work))
3106 				schedule();
3107 			finish_wait(&cancel_waitq, &cwait.wait);
3108 		}
3109 	} while (unlikely(ret < 0));
3110 
3111 	/* tell other tasks trying to grab @work to back off */
3112 	mark_work_canceling(work);
3113 	local_irq_restore(flags);
3114 
3115 	/*
3116 	 * This allows canceling during early boot.  We know that @work
3117 	 * isn't executing.
3118 	 */
3119 	if (wq_online)
3120 		__flush_work(work, true);
3121 
3122 	clear_work_data(work);
3123 
3124 	/*
3125 	 * Paired with prepare_to_wait() above so that either
3126 	 * waitqueue_active() is visible here or !work_is_canceling() is
3127 	 * visible there.
3128 	 */
3129 	smp_mb();
3130 	if (waitqueue_active(&cancel_waitq))
3131 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3132 
3133 	return ret;
3134 }
3135 
3136 /**
3137  * cancel_work_sync - cancel a work and wait for it to finish
3138  * @work: the work to cancel
3139  *
3140  * Cancel @work and wait for its execution to finish.  This function
3141  * can be used even if the work re-queues itself or migrates to
3142  * another workqueue.  On return from this function, @work is
3143  * guaranteed to be not pending or executing on any CPU.
3144  *
3145  * cancel_work_sync(&delayed_work->work) must not be used for
3146  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3147  *
3148  * The caller must ensure that the workqueue on which @work was last
3149  * queued can't be destroyed before this function returns.
3150  *
3151  * Return:
3152  * %true if @work was pending, %false otherwise.
3153  */
3154 bool cancel_work_sync(struct work_struct *work)
3155 {
3156 	return __cancel_work_timer(work, false);
3157 }
3158 EXPORT_SYMBOL_GPL(cancel_work_sync);
3159 
3160 /**
3161  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3162  * @dwork: the delayed work to flush
3163  *
3164  * Delayed timer is cancelled and the pending work is queued for
3165  * immediate execution.  Like flush_work(), this function only
3166  * considers the last queueing instance of @dwork.
3167  *
3168  * Return:
3169  * %true if flush_work() waited for the work to finish execution,
3170  * %false if it was already idle.
3171  */
3172 bool flush_delayed_work(struct delayed_work *dwork)
3173 {
3174 	local_irq_disable();
3175 	if (del_timer_sync(&dwork->timer))
3176 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3177 	local_irq_enable();
3178 	return flush_work(&dwork->work);
3179 }
3180 EXPORT_SYMBOL(flush_delayed_work);
3181 
3182 /**
3183  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3184  * @rwork: the rcu work to flush
3185  *
3186  * Return:
3187  * %true if flush_rcu_work() waited for the work to finish execution,
3188  * %false if it was already idle.
3189  */
3190 bool flush_rcu_work(struct rcu_work *rwork)
3191 {
3192 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3193 		rcu_barrier();
3194 		flush_work(&rwork->work);
3195 		return true;
3196 	} else {
3197 		return flush_work(&rwork->work);
3198 	}
3199 }
3200 EXPORT_SYMBOL(flush_rcu_work);
3201 
3202 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3203 {
3204 	unsigned long flags;
3205 	int ret;
3206 
3207 	do {
3208 		ret = try_to_grab_pending(work, is_dwork, &flags);
3209 	} while (unlikely(ret == -EAGAIN));
3210 
3211 	if (unlikely(ret < 0))
3212 		return false;
3213 
3214 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3215 	local_irq_restore(flags);
3216 	return ret;
3217 }
3218 
3219 /**
3220  * cancel_delayed_work - cancel a delayed work
3221  * @dwork: delayed_work to cancel
3222  *
3223  * Kill off a pending delayed_work.
3224  *
3225  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3226  * pending.
3227  *
3228  * Note:
3229  * The work callback function may still be running on return, unless
3230  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3231  * use cancel_delayed_work_sync() to wait on it.
3232  *
3233  * This function is safe to call from any context including IRQ handler.
3234  */
3235 bool cancel_delayed_work(struct delayed_work *dwork)
3236 {
3237 	return __cancel_work(&dwork->work, true);
3238 }
3239 EXPORT_SYMBOL(cancel_delayed_work);
3240 
3241 /**
3242  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3243  * @dwork: the delayed work cancel
3244  *
3245  * This is cancel_work_sync() for delayed works.
3246  *
3247  * Return:
3248  * %true if @dwork was pending, %false otherwise.
3249  */
3250 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3251 {
3252 	return __cancel_work_timer(&dwork->work, true);
3253 }
3254 EXPORT_SYMBOL(cancel_delayed_work_sync);
3255 
3256 /**
3257  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3258  * @func: the function to call
3259  *
3260  * schedule_on_each_cpu() executes @func on each online CPU using the
3261  * system workqueue and blocks until all CPUs have completed.
3262  * schedule_on_each_cpu() is very slow.
3263  *
3264  * Return:
3265  * 0 on success, -errno on failure.
3266  */
3267 int schedule_on_each_cpu(work_func_t func)
3268 {
3269 	int cpu;
3270 	struct work_struct __percpu *works;
3271 
3272 	works = alloc_percpu(struct work_struct);
3273 	if (!works)
3274 		return -ENOMEM;
3275 
3276 	get_online_cpus();
3277 
3278 	for_each_online_cpu(cpu) {
3279 		struct work_struct *work = per_cpu_ptr(works, cpu);
3280 
3281 		INIT_WORK(work, func);
3282 		schedule_work_on(cpu, work);
3283 	}
3284 
3285 	for_each_online_cpu(cpu)
3286 		flush_work(per_cpu_ptr(works, cpu));
3287 
3288 	put_online_cpus();
3289 	free_percpu(works);
3290 	return 0;
3291 }
3292 
3293 /**
3294  * execute_in_process_context - reliably execute the routine with user context
3295  * @fn:		the function to execute
3296  * @ew:		guaranteed storage for the execute work structure (must
3297  *		be available when the work executes)
3298  *
3299  * Executes the function immediately if process context is available,
3300  * otherwise schedules the function for delayed execution.
3301  *
3302  * Return:	0 - function was executed
3303  *		1 - function was scheduled for execution
3304  */
3305 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3306 {
3307 	if (!in_interrupt()) {
3308 		fn(&ew->work);
3309 		return 0;
3310 	}
3311 
3312 	INIT_WORK(&ew->work, fn);
3313 	schedule_work(&ew->work);
3314 
3315 	return 1;
3316 }
3317 EXPORT_SYMBOL_GPL(execute_in_process_context);
3318 
3319 /**
3320  * free_workqueue_attrs - free a workqueue_attrs
3321  * @attrs: workqueue_attrs to free
3322  *
3323  * Undo alloc_workqueue_attrs().
3324  */
3325 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3326 {
3327 	if (attrs) {
3328 		free_cpumask_var(attrs->cpumask);
3329 		kfree(attrs);
3330 	}
3331 }
3332 
3333 /**
3334  * alloc_workqueue_attrs - allocate a workqueue_attrs
3335  * @gfp_mask: allocation mask to use
3336  *
3337  * Allocate a new workqueue_attrs, initialize with default settings and
3338  * return it.
3339  *
3340  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3341  */
3342 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3343 {
3344 	struct workqueue_attrs *attrs;
3345 
3346 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3347 	if (!attrs)
3348 		goto fail;
3349 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3350 		goto fail;
3351 
3352 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3353 	return attrs;
3354 fail:
3355 	free_workqueue_attrs(attrs);
3356 	return NULL;
3357 }
3358 
3359 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3360 				 const struct workqueue_attrs *from)
3361 {
3362 	to->nice = from->nice;
3363 	cpumask_copy(to->cpumask, from->cpumask);
3364 	/*
3365 	 * Unlike hash and equality test, this function doesn't ignore
3366 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3367 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3368 	 */
3369 	to->no_numa = from->no_numa;
3370 }
3371 
3372 /* hash value of the content of @attr */
3373 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3374 {
3375 	u32 hash = 0;
3376 
3377 	hash = jhash_1word(attrs->nice, hash);
3378 	hash = jhash(cpumask_bits(attrs->cpumask),
3379 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3380 	return hash;
3381 }
3382 
3383 /* content equality test */
3384 static bool wqattrs_equal(const struct workqueue_attrs *a,
3385 			  const struct workqueue_attrs *b)
3386 {
3387 	if (a->nice != b->nice)
3388 		return false;
3389 	if (!cpumask_equal(a->cpumask, b->cpumask))
3390 		return false;
3391 	return true;
3392 }
3393 
3394 /**
3395  * init_worker_pool - initialize a newly zalloc'd worker_pool
3396  * @pool: worker_pool to initialize
3397  *
3398  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3399  *
3400  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3401  * inside @pool proper are initialized and put_unbound_pool() can be called
3402  * on @pool safely to release it.
3403  */
3404 static int init_worker_pool(struct worker_pool *pool)
3405 {
3406 	spin_lock_init(&pool->lock);
3407 	pool->id = -1;
3408 	pool->cpu = -1;
3409 	pool->node = NUMA_NO_NODE;
3410 	pool->flags |= POOL_DISASSOCIATED;
3411 	pool->watchdog_ts = jiffies;
3412 	INIT_LIST_HEAD(&pool->worklist);
3413 	INIT_LIST_HEAD(&pool->idle_list);
3414 	hash_init(pool->busy_hash);
3415 
3416 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3417 
3418 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3419 
3420 	INIT_LIST_HEAD(&pool->workers);
3421 
3422 	ida_init(&pool->worker_ida);
3423 	INIT_HLIST_NODE(&pool->hash_node);
3424 	pool->refcnt = 1;
3425 
3426 	/* shouldn't fail above this point */
3427 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3428 	if (!pool->attrs)
3429 		return -ENOMEM;
3430 	return 0;
3431 }
3432 
3433 #ifdef CONFIG_LOCKDEP
3434 static void wq_init_lockdep(struct workqueue_struct *wq)
3435 {
3436 	char *lock_name;
3437 
3438 	lockdep_register_key(&wq->key);
3439 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3440 	if (!lock_name)
3441 		lock_name = wq->name;
3442 
3443 	wq->lock_name = lock_name;
3444 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3445 }
3446 
3447 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3448 {
3449 	lockdep_unregister_key(&wq->key);
3450 }
3451 
3452 static void wq_free_lockdep(struct workqueue_struct *wq)
3453 {
3454 	if (wq->lock_name != wq->name)
3455 		kfree(wq->lock_name);
3456 }
3457 #else
3458 static void wq_init_lockdep(struct workqueue_struct *wq)
3459 {
3460 }
3461 
3462 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3463 {
3464 }
3465 
3466 static void wq_free_lockdep(struct workqueue_struct *wq)
3467 {
3468 }
3469 #endif
3470 
3471 static void rcu_free_wq(struct rcu_head *rcu)
3472 {
3473 	struct workqueue_struct *wq =
3474 		container_of(rcu, struct workqueue_struct, rcu);
3475 
3476 	wq_free_lockdep(wq);
3477 
3478 	if (!(wq->flags & WQ_UNBOUND))
3479 		free_percpu(wq->cpu_pwqs);
3480 	else
3481 		free_workqueue_attrs(wq->unbound_attrs);
3482 
3483 	kfree(wq->rescuer);
3484 	kfree(wq);
3485 }
3486 
3487 static void rcu_free_pool(struct rcu_head *rcu)
3488 {
3489 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3490 
3491 	ida_destroy(&pool->worker_ida);
3492 	free_workqueue_attrs(pool->attrs);
3493 	kfree(pool);
3494 }
3495 
3496 /**
3497  * put_unbound_pool - put a worker_pool
3498  * @pool: worker_pool to put
3499  *
3500  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3501  * safe manner.  get_unbound_pool() calls this function on its failure path
3502  * and this function should be able to release pools which went through,
3503  * successfully or not, init_worker_pool().
3504  *
3505  * Should be called with wq_pool_mutex held.
3506  */
3507 static void put_unbound_pool(struct worker_pool *pool)
3508 {
3509 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3510 	struct worker *worker;
3511 
3512 	lockdep_assert_held(&wq_pool_mutex);
3513 
3514 	if (--pool->refcnt)
3515 		return;
3516 
3517 	/* sanity checks */
3518 	if (WARN_ON(!(pool->cpu < 0)) ||
3519 	    WARN_ON(!list_empty(&pool->worklist)))
3520 		return;
3521 
3522 	/* release id and unhash */
3523 	if (pool->id >= 0)
3524 		idr_remove(&worker_pool_idr, pool->id);
3525 	hash_del(&pool->hash_node);
3526 
3527 	/*
3528 	 * Become the manager and destroy all workers.  This prevents
3529 	 * @pool's workers from blocking on attach_mutex.  We're the last
3530 	 * manager and @pool gets freed with the flag set.
3531 	 */
3532 	spin_lock_irq(&pool->lock);
3533 	wait_event_lock_irq(wq_manager_wait,
3534 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3535 	pool->flags |= POOL_MANAGER_ACTIVE;
3536 
3537 	while ((worker = first_idle_worker(pool)))
3538 		destroy_worker(worker);
3539 	WARN_ON(pool->nr_workers || pool->nr_idle);
3540 	spin_unlock_irq(&pool->lock);
3541 
3542 	mutex_lock(&wq_pool_attach_mutex);
3543 	if (!list_empty(&pool->workers))
3544 		pool->detach_completion = &detach_completion;
3545 	mutex_unlock(&wq_pool_attach_mutex);
3546 
3547 	if (pool->detach_completion)
3548 		wait_for_completion(pool->detach_completion);
3549 
3550 	/* shut down the timers */
3551 	del_timer_sync(&pool->idle_timer);
3552 	del_timer_sync(&pool->mayday_timer);
3553 
3554 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3555 	call_rcu(&pool->rcu, rcu_free_pool);
3556 }
3557 
3558 /**
3559  * get_unbound_pool - get a worker_pool with the specified attributes
3560  * @attrs: the attributes of the worker_pool to get
3561  *
3562  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3563  * reference count and return it.  If there already is a matching
3564  * worker_pool, it will be used; otherwise, this function attempts to
3565  * create a new one.
3566  *
3567  * Should be called with wq_pool_mutex held.
3568  *
3569  * Return: On success, a worker_pool with the same attributes as @attrs.
3570  * On failure, %NULL.
3571  */
3572 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3573 {
3574 	u32 hash = wqattrs_hash(attrs);
3575 	struct worker_pool *pool;
3576 	int node;
3577 	int target_node = NUMA_NO_NODE;
3578 
3579 	lockdep_assert_held(&wq_pool_mutex);
3580 
3581 	/* do we already have a matching pool? */
3582 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3583 		if (wqattrs_equal(pool->attrs, attrs)) {
3584 			pool->refcnt++;
3585 			return pool;
3586 		}
3587 	}
3588 
3589 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3590 	if (wq_numa_enabled) {
3591 		for_each_node(node) {
3592 			if (cpumask_subset(attrs->cpumask,
3593 					   wq_numa_possible_cpumask[node])) {
3594 				target_node = node;
3595 				break;
3596 			}
3597 		}
3598 	}
3599 
3600 	/* nope, create a new one */
3601 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3602 	if (!pool || init_worker_pool(pool) < 0)
3603 		goto fail;
3604 
3605 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3606 	copy_workqueue_attrs(pool->attrs, attrs);
3607 	pool->node = target_node;
3608 
3609 	/*
3610 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3611 	 * 'struct workqueue_attrs' comments for detail.
3612 	 */
3613 	pool->attrs->no_numa = false;
3614 
3615 	if (worker_pool_assign_id(pool) < 0)
3616 		goto fail;
3617 
3618 	/* create and start the initial worker */
3619 	if (wq_online && !create_worker(pool))
3620 		goto fail;
3621 
3622 	/* install */
3623 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3624 
3625 	return pool;
3626 fail:
3627 	if (pool)
3628 		put_unbound_pool(pool);
3629 	return NULL;
3630 }
3631 
3632 static void rcu_free_pwq(struct rcu_head *rcu)
3633 {
3634 	kmem_cache_free(pwq_cache,
3635 			container_of(rcu, struct pool_workqueue, rcu));
3636 }
3637 
3638 /*
3639  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3640  * and needs to be destroyed.
3641  */
3642 static void pwq_unbound_release_workfn(struct work_struct *work)
3643 {
3644 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3645 						  unbound_release_work);
3646 	struct workqueue_struct *wq = pwq->wq;
3647 	struct worker_pool *pool = pwq->pool;
3648 	bool is_last;
3649 
3650 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3651 		return;
3652 
3653 	mutex_lock(&wq->mutex);
3654 	list_del_rcu(&pwq->pwqs_node);
3655 	is_last = list_empty(&wq->pwqs);
3656 	mutex_unlock(&wq->mutex);
3657 
3658 	mutex_lock(&wq_pool_mutex);
3659 	put_unbound_pool(pool);
3660 	mutex_unlock(&wq_pool_mutex);
3661 
3662 	call_rcu(&pwq->rcu, rcu_free_pwq);
3663 
3664 	/*
3665 	 * If we're the last pwq going away, @wq is already dead and no one
3666 	 * is gonna access it anymore.  Schedule RCU free.
3667 	 */
3668 	if (is_last) {
3669 		wq_unregister_lockdep(wq);
3670 		call_rcu(&wq->rcu, rcu_free_wq);
3671 	}
3672 }
3673 
3674 /**
3675  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3676  * @pwq: target pool_workqueue
3677  *
3678  * If @pwq isn't freezing, set @pwq->max_active to the associated
3679  * workqueue's saved_max_active and activate delayed work items
3680  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3681  */
3682 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3683 {
3684 	struct workqueue_struct *wq = pwq->wq;
3685 	bool freezable = wq->flags & WQ_FREEZABLE;
3686 	unsigned long flags;
3687 
3688 	/* for @wq->saved_max_active */
3689 	lockdep_assert_held(&wq->mutex);
3690 
3691 	/* fast exit for non-freezable wqs */
3692 	if (!freezable && pwq->max_active == wq->saved_max_active)
3693 		return;
3694 
3695 	/* this function can be called during early boot w/ irq disabled */
3696 	spin_lock_irqsave(&pwq->pool->lock, flags);
3697 
3698 	/*
3699 	 * During [un]freezing, the caller is responsible for ensuring that
3700 	 * this function is called at least once after @workqueue_freezing
3701 	 * is updated and visible.
3702 	 */
3703 	if (!freezable || !workqueue_freezing) {
3704 		pwq->max_active = wq->saved_max_active;
3705 
3706 		while (!list_empty(&pwq->delayed_works) &&
3707 		       pwq->nr_active < pwq->max_active)
3708 			pwq_activate_first_delayed(pwq);
3709 
3710 		/*
3711 		 * Need to kick a worker after thawed or an unbound wq's
3712 		 * max_active is bumped.  It's a slow path.  Do it always.
3713 		 */
3714 		wake_up_worker(pwq->pool);
3715 	} else {
3716 		pwq->max_active = 0;
3717 	}
3718 
3719 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3720 }
3721 
3722 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3723 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3724 		     struct worker_pool *pool)
3725 {
3726 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3727 
3728 	memset(pwq, 0, sizeof(*pwq));
3729 
3730 	pwq->pool = pool;
3731 	pwq->wq = wq;
3732 	pwq->flush_color = -1;
3733 	pwq->refcnt = 1;
3734 	INIT_LIST_HEAD(&pwq->delayed_works);
3735 	INIT_LIST_HEAD(&pwq->pwqs_node);
3736 	INIT_LIST_HEAD(&pwq->mayday_node);
3737 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3738 }
3739 
3740 /* sync @pwq with the current state of its associated wq and link it */
3741 static void link_pwq(struct pool_workqueue *pwq)
3742 {
3743 	struct workqueue_struct *wq = pwq->wq;
3744 
3745 	lockdep_assert_held(&wq->mutex);
3746 
3747 	/* may be called multiple times, ignore if already linked */
3748 	if (!list_empty(&pwq->pwqs_node))
3749 		return;
3750 
3751 	/* set the matching work_color */
3752 	pwq->work_color = wq->work_color;
3753 
3754 	/* sync max_active to the current setting */
3755 	pwq_adjust_max_active(pwq);
3756 
3757 	/* link in @pwq */
3758 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3759 }
3760 
3761 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3762 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3763 					const struct workqueue_attrs *attrs)
3764 {
3765 	struct worker_pool *pool;
3766 	struct pool_workqueue *pwq;
3767 
3768 	lockdep_assert_held(&wq_pool_mutex);
3769 
3770 	pool = get_unbound_pool(attrs);
3771 	if (!pool)
3772 		return NULL;
3773 
3774 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3775 	if (!pwq) {
3776 		put_unbound_pool(pool);
3777 		return NULL;
3778 	}
3779 
3780 	init_pwq(pwq, wq, pool);
3781 	return pwq;
3782 }
3783 
3784 /**
3785  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3786  * @attrs: the wq_attrs of the default pwq of the target workqueue
3787  * @node: the target NUMA node
3788  * @cpu_going_down: if >= 0, the CPU to consider as offline
3789  * @cpumask: outarg, the resulting cpumask
3790  *
3791  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3792  * @cpu_going_down is >= 0, that cpu is considered offline during
3793  * calculation.  The result is stored in @cpumask.
3794  *
3795  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3796  * enabled and @node has online CPUs requested by @attrs, the returned
3797  * cpumask is the intersection of the possible CPUs of @node and
3798  * @attrs->cpumask.
3799  *
3800  * The caller is responsible for ensuring that the cpumask of @node stays
3801  * stable.
3802  *
3803  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3804  * %false if equal.
3805  */
3806 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3807 				 int cpu_going_down, cpumask_t *cpumask)
3808 {
3809 	if (!wq_numa_enabled || attrs->no_numa)
3810 		goto use_dfl;
3811 
3812 	/* does @node have any online CPUs @attrs wants? */
3813 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3814 	if (cpu_going_down >= 0)
3815 		cpumask_clear_cpu(cpu_going_down, cpumask);
3816 
3817 	if (cpumask_empty(cpumask))
3818 		goto use_dfl;
3819 
3820 	/* yeap, return possible CPUs in @node that @attrs wants */
3821 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3822 
3823 	if (cpumask_empty(cpumask)) {
3824 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3825 				"possible intersect\n");
3826 		return false;
3827 	}
3828 
3829 	return !cpumask_equal(cpumask, attrs->cpumask);
3830 
3831 use_dfl:
3832 	cpumask_copy(cpumask, attrs->cpumask);
3833 	return false;
3834 }
3835 
3836 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3837 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3838 						   int node,
3839 						   struct pool_workqueue *pwq)
3840 {
3841 	struct pool_workqueue *old_pwq;
3842 
3843 	lockdep_assert_held(&wq_pool_mutex);
3844 	lockdep_assert_held(&wq->mutex);
3845 
3846 	/* link_pwq() can handle duplicate calls */
3847 	link_pwq(pwq);
3848 
3849 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3850 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3851 	return old_pwq;
3852 }
3853 
3854 /* context to store the prepared attrs & pwqs before applying */
3855 struct apply_wqattrs_ctx {
3856 	struct workqueue_struct	*wq;		/* target workqueue */
3857 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3858 	struct list_head	list;		/* queued for batching commit */
3859 	struct pool_workqueue	*dfl_pwq;
3860 	struct pool_workqueue	*pwq_tbl[];
3861 };
3862 
3863 /* free the resources after success or abort */
3864 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3865 {
3866 	if (ctx) {
3867 		int node;
3868 
3869 		for_each_node(node)
3870 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3871 		put_pwq_unlocked(ctx->dfl_pwq);
3872 
3873 		free_workqueue_attrs(ctx->attrs);
3874 
3875 		kfree(ctx);
3876 	}
3877 }
3878 
3879 /* allocate the attrs and pwqs for later installation */
3880 static struct apply_wqattrs_ctx *
3881 apply_wqattrs_prepare(struct workqueue_struct *wq,
3882 		      const struct workqueue_attrs *attrs)
3883 {
3884 	struct apply_wqattrs_ctx *ctx;
3885 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3886 	int node;
3887 
3888 	lockdep_assert_held(&wq_pool_mutex);
3889 
3890 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3891 
3892 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3893 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3894 	if (!ctx || !new_attrs || !tmp_attrs)
3895 		goto out_free;
3896 
3897 	/*
3898 	 * Calculate the attrs of the default pwq.
3899 	 * If the user configured cpumask doesn't overlap with the
3900 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3901 	 */
3902 	copy_workqueue_attrs(new_attrs, attrs);
3903 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3904 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3905 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3906 
3907 	/*
3908 	 * We may create multiple pwqs with differing cpumasks.  Make a
3909 	 * copy of @new_attrs which will be modified and used to obtain
3910 	 * pools.
3911 	 */
3912 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3913 
3914 	/*
3915 	 * If something goes wrong during CPU up/down, we'll fall back to
3916 	 * the default pwq covering whole @attrs->cpumask.  Always create
3917 	 * it even if we don't use it immediately.
3918 	 */
3919 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3920 	if (!ctx->dfl_pwq)
3921 		goto out_free;
3922 
3923 	for_each_node(node) {
3924 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3925 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3926 			if (!ctx->pwq_tbl[node])
3927 				goto out_free;
3928 		} else {
3929 			ctx->dfl_pwq->refcnt++;
3930 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3931 		}
3932 	}
3933 
3934 	/* save the user configured attrs and sanitize it. */
3935 	copy_workqueue_attrs(new_attrs, attrs);
3936 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3937 	ctx->attrs = new_attrs;
3938 
3939 	ctx->wq = wq;
3940 	free_workqueue_attrs(tmp_attrs);
3941 	return ctx;
3942 
3943 out_free:
3944 	free_workqueue_attrs(tmp_attrs);
3945 	free_workqueue_attrs(new_attrs);
3946 	apply_wqattrs_cleanup(ctx);
3947 	return NULL;
3948 }
3949 
3950 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3951 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3952 {
3953 	int node;
3954 
3955 	/* all pwqs have been created successfully, let's install'em */
3956 	mutex_lock(&ctx->wq->mutex);
3957 
3958 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3959 
3960 	/* save the previous pwq and install the new one */
3961 	for_each_node(node)
3962 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3963 							  ctx->pwq_tbl[node]);
3964 
3965 	/* @dfl_pwq might not have been used, ensure it's linked */
3966 	link_pwq(ctx->dfl_pwq);
3967 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3968 
3969 	mutex_unlock(&ctx->wq->mutex);
3970 }
3971 
3972 static void apply_wqattrs_lock(void)
3973 {
3974 	/* CPUs should stay stable across pwq creations and installations */
3975 	get_online_cpus();
3976 	mutex_lock(&wq_pool_mutex);
3977 }
3978 
3979 static void apply_wqattrs_unlock(void)
3980 {
3981 	mutex_unlock(&wq_pool_mutex);
3982 	put_online_cpus();
3983 }
3984 
3985 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3986 					const struct workqueue_attrs *attrs)
3987 {
3988 	struct apply_wqattrs_ctx *ctx;
3989 
3990 	/* only unbound workqueues can change attributes */
3991 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3992 		return -EINVAL;
3993 
3994 	/* creating multiple pwqs breaks ordering guarantee */
3995 	if (!list_empty(&wq->pwqs)) {
3996 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3997 			return -EINVAL;
3998 
3999 		wq->flags &= ~__WQ_ORDERED;
4000 	}
4001 
4002 	ctx = apply_wqattrs_prepare(wq, attrs);
4003 	if (!ctx)
4004 		return -ENOMEM;
4005 
4006 	/* the ctx has been prepared successfully, let's commit it */
4007 	apply_wqattrs_commit(ctx);
4008 	apply_wqattrs_cleanup(ctx);
4009 
4010 	return 0;
4011 }
4012 
4013 /**
4014  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4015  * @wq: the target workqueue
4016  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4017  *
4018  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4019  * machines, this function maps a separate pwq to each NUMA node with
4020  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4021  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4022  * items finish.  Note that a work item which repeatedly requeues itself
4023  * back-to-back will stay on its current pwq.
4024  *
4025  * Performs GFP_KERNEL allocations.
4026  *
4027  * Return: 0 on success and -errno on failure.
4028  */
4029 int apply_workqueue_attrs(struct workqueue_struct *wq,
4030 			  const struct workqueue_attrs *attrs)
4031 {
4032 	int ret;
4033 
4034 	apply_wqattrs_lock();
4035 	ret = apply_workqueue_attrs_locked(wq, attrs);
4036 	apply_wqattrs_unlock();
4037 
4038 	return ret;
4039 }
4040 EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
4041 
4042 /**
4043  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4044  * @wq: the target workqueue
4045  * @cpu: the CPU coming up or going down
4046  * @online: whether @cpu is coming up or going down
4047  *
4048  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4049  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4050  * @wq accordingly.
4051  *
4052  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4053  * falls back to @wq->dfl_pwq which may not be optimal but is always
4054  * correct.
4055  *
4056  * Note that when the last allowed CPU of a NUMA node goes offline for a
4057  * workqueue with a cpumask spanning multiple nodes, the workers which were
4058  * already executing the work items for the workqueue will lose their CPU
4059  * affinity and may execute on any CPU.  This is similar to how per-cpu
4060  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4061  * affinity, it's the user's responsibility to flush the work item from
4062  * CPU_DOWN_PREPARE.
4063  */
4064 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4065 				   bool online)
4066 {
4067 	int node = cpu_to_node(cpu);
4068 	int cpu_off = online ? -1 : cpu;
4069 	struct pool_workqueue *old_pwq = NULL, *pwq;
4070 	struct workqueue_attrs *target_attrs;
4071 	cpumask_t *cpumask;
4072 
4073 	lockdep_assert_held(&wq_pool_mutex);
4074 
4075 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4076 	    wq->unbound_attrs->no_numa)
4077 		return;
4078 
4079 	/*
4080 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4081 	 * Let's use a preallocated one.  The following buf is protected by
4082 	 * CPU hotplug exclusion.
4083 	 */
4084 	target_attrs = wq_update_unbound_numa_attrs_buf;
4085 	cpumask = target_attrs->cpumask;
4086 
4087 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4088 	pwq = unbound_pwq_by_node(wq, node);
4089 
4090 	/*
4091 	 * Let's determine what needs to be done.  If the target cpumask is
4092 	 * different from the default pwq's, we need to compare it to @pwq's
4093 	 * and create a new one if they don't match.  If the target cpumask
4094 	 * equals the default pwq's, the default pwq should be used.
4095 	 */
4096 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4097 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4098 			return;
4099 	} else {
4100 		goto use_dfl_pwq;
4101 	}
4102 
4103 	/* create a new pwq */
4104 	pwq = alloc_unbound_pwq(wq, target_attrs);
4105 	if (!pwq) {
4106 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4107 			wq->name);
4108 		goto use_dfl_pwq;
4109 	}
4110 
4111 	/* Install the new pwq. */
4112 	mutex_lock(&wq->mutex);
4113 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4114 	goto out_unlock;
4115 
4116 use_dfl_pwq:
4117 	mutex_lock(&wq->mutex);
4118 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4119 	get_pwq(wq->dfl_pwq);
4120 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4121 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4122 out_unlock:
4123 	mutex_unlock(&wq->mutex);
4124 	put_pwq_unlocked(old_pwq);
4125 }
4126 
4127 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4128 {
4129 	bool highpri = wq->flags & WQ_HIGHPRI;
4130 	int cpu, ret;
4131 
4132 	if (!(wq->flags & WQ_UNBOUND)) {
4133 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4134 		if (!wq->cpu_pwqs)
4135 			return -ENOMEM;
4136 
4137 		for_each_possible_cpu(cpu) {
4138 			struct pool_workqueue *pwq =
4139 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4140 			struct worker_pool *cpu_pools =
4141 				per_cpu(cpu_worker_pools, cpu);
4142 
4143 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4144 
4145 			mutex_lock(&wq->mutex);
4146 			link_pwq(pwq);
4147 			mutex_unlock(&wq->mutex);
4148 		}
4149 		return 0;
4150 	} else if (wq->flags & __WQ_ORDERED) {
4151 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4152 		/* there should only be single pwq for ordering guarantee */
4153 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4154 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4155 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4156 		return ret;
4157 	} else {
4158 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4159 	}
4160 }
4161 
4162 static int wq_clamp_max_active(int max_active, unsigned int flags,
4163 			       const char *name)
4164 {
4165 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4166 
4167 	if (max_active < 1 || max_active > lim)
4168 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4169 			max_active, name, 1, lim);
4170 
4171 	return clamp_val(max_active, 1, lim);
4172 }
4173 
4174 /*
4175  * Workqueues which may be used during memory reclaim should have a rescuer
4176  * to guarantee forward progress.
4177  */
4178 static int init_rescuer(struct workqueue_struct *wq)
4179 {
4180 	struct worker *rescuer;
4181 	int ret;
4182 
4183 	if (!(wq->flags & WQ_MEM_RECLAIM))
4184 		return 0;
4185 
4186 	rescuer = alloc_worker(NUMA_NO_NODE);
4187 	if (!rescuer)
4188 		return -ENOMEM;
4189 
4190 	rescuer->rescue_wq = wq;
4191 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4192 	ret = PTR_ERR_OR_ZERO(rescuer->task);
4193 	if (ret) {
4194 		kfree(rescuer);
4195 		return ret;
4196 	}
4197 
4198 	wq->rescuer = rescuer;
4199 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4200 	wake_up_process(rescuer->task);
4201 
4202 	return 0;
4203 }
4204 
4205 struct workqueue_struct *alloc_workqueue(const char *fmt,
4206 					 unsigned int flags,
4207 					 int max_active, ...)
4208 {
4209 	size_t tbl_size = 0;
4210 	va_list args;
4211 	struct workqueue_struct *wq;
4212 	struct pool_workqueue *pwq;
4213 
4214 	/*
4215 	 * Unbound && max_active == 1 used to imply ordered, which is no
4216 	 * longer the case on NUMA machines due to per-node pools.  While
4217 	 * alloc_ordered_workqueue() is the right way to create an ordered
4218 	 * workqueue, keep the previous behavior to avoid subtle breakages
4219 	 * on NUMA.
4220 	 */
4221 	if ((flags & WQ_UNBOUND) && max_active == 1)
4222 		flags |= __WQ_ORDERED;
4223 
4224 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4225 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4226 		flags |= WQ_UNBOUND;
4227 
4228 	/* allocate wq and format name */
4229 	if (flags & WQ_UNBOUND)
4230 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4231 
4232 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4233 	if (!wq)
4234 		return NULL;
4235 
4236 	if (flags & WQ_UNBOUND) {
4237 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4238 		if (!wq->unbound_attrs)
4239 			goto err_free_wq;
4240 	}
4241 
4242 	va_start(args, max_active);
4243 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4244 	va_end(args);
4245 
4246 	max_active = max_active ?: WQ_DFL_ACTIVE;
4247 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4248 
4249 	/* init wq */
4250 	wq->flags = flags;
4251 	wq->saved_max_active = max_active;
4252 	mutex_init(&wq->mutex);
4253 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4254 	INIT_LIST_HEAD(&wq->pwqs);
4255 	INIT_LIST_HEAD(&wq->flusher_queue);
4256 	INIT_LIST_HEAD(&wq->flusher_overflow);
4257 	INIT_LIST_HEAD(&wq->maydays);
4258 
4259 	wq_init_lockdep(wq);
4260 	INIT_LIST_HEAD(&wq->list);
4261 
4262 	if (alloc_and_link_pwqs(wq) < 0)
4263 		goto err_unreg_lockdep;
4264 
4265 	if (wq_online && init_rescuer(wq) < 0)
4266 		goto err_destroy;
4267 
4268 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4269 		goto err_destroy;
4270 
4271 	/*
4272 	 * wq_pool_mutex protects global freeze state and workqueues list.
4273 	 * Grab it, adjust max_active and add the new @wq to workqueues
4274 	 * list.
4275 	 */
4276 	mutex_lock(&wq_pool_mutex);
4277 
4278 	mutex_lock(&wq->mutex);
4279 	for_each_pwq(pwq, wq)
4280 		pwq_adjust_max_active(pwq);
4281 	mutex_unlock(&wq->mutex);
4282 
4283 	list_add_tail_rcu(&wq->list, &workqueues);
4284 
4285 	mutex_unlock(&wq_pool_mutex);
4286 
4287 	return wq;
4288 
4289 err_unreg_lockdep:
4290 	wq_unregister_lockdep(wq);
4291 	wq_free_lockdep(wq);
4292 err_free_wq:
4293 	free_workqueue_attrs(wq->unbound_attrs);
4294 	kfree(wq);
4295 	return NULL;
4296 err_destroy:
4297 	destroy_workqueue(wq);
4298 	return NULL;
4299 }
4300 EXPORT_SYMBOL_GPL(alloc_workqueue);
4301 
4302 /**
4303  * destroy_workqueue - safely terminate a workqueue
4304  * @wq: target workqueue
4305  *
4306  * Safely destroy a workqueue. All work currently pending will be done first.
4307  */
4308 void destroy_workqueue(struct workqueue_struct *wq)
4309 {
4310 	struct pool_workqueue *pwq;
4311 	int node;
4312 
4313 	/* drain it before proceeding with destruction */
4314 	drain_workqueue(wq);
4315 
4316 	/* sanity checks */
4317 	mutex_lock(&wq->mutex);
4318 	for_each_pwq(pwq, wq) {
4319 		int i;
4320 
4321 		for (i = 0; i < WORK_NR_COLORS; i++) {
4322 			if (WARN_ON(pwq->nr_in_flight[i])) {
4323 				mutex_unlock(&wq->mutex);
4324 				show_workqueue_state();
4325 				return;
4326 			}
4327 		}
4328 
4329 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4330 		    WARN_ON(pwq->nr_active) ||
4331 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4332 			mutex_unlock(&wq->mutex);
4333 			show_workqueue_state();
4334 			return;
4335 		}
4336 	}
4337 	mutex_unlock(&wq->mutex);
4338 
4339 	/*
4340 	 * wq list is used to freeze wq, remove from list after
4341 	 * flushing is complete in case freeze races us.
4342 	 */
4343 	mutex_lock(&wq_pool_mutex);
4344 	list_del_rcu(&wq->list);
4345 	mutex_unlock(&wq_pool_mutex);
4346 
4347 	workqueue_sysfs_unregister(wq);
4348 
4349 	if (wq->rescuer)
4350 		kthread_stop(wq->rescuer->task);
4351 
4352 	if (!(wq->flags & WQ_UNBOUND)) {
4353 		wq_unregister_lockdep(wq);
4354 		/*
4355 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4356 		 * schedule RCU free.
4357 		 */
4358 		call_rcu(&wq->rcu, rcu_free_wq);
4359 	} else {
4360 		/*
4361 		 * We're the sole accessor of @wq at this point.  Directly
4362 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4363 		 * @wq will be freed when the last pwq is released.
4364 		 */
4365 		for_each_node(node) {
4366 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4367 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4368 			put_pwq_unlocked(pwq);
4369 		}
4370 
4371 		/*
4372 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4373 		 * put.  Don't access it afterwards.
4374 		 */
4375 		pwq = wq->dfl_pwq;
4376 		wq->dfl_pwq = NULL;
4377 		put_pwq_unlocked(pwq);
4378 	}
4379 }
4380 EXPORT_SYMBOL_GPL(destroy_workqueue);
4381 
4382 /**
4383  * workqueue_set_max_active - adjust max_active of a workqueue
4384  * @wq: target workqueue
4385  * @max_active: new max_active value.
4386  *
4387  * Set max_active of @wq to @max_active.
4388  *
4389  * CONTEXT:
4390  * Don't call from IRQ context.
4391  */
4392 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4393 {
4394 	struct pool_workqueue *pwq;
4395 
4396 	/* disallow meddling with max_active for ordered workqueues */
4397 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4398 		return;
4399 
4400 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4401 
4402 	mutex_lock(&wq->mutex);
4403 
4404 	wq->flags &= ~__WQ_ORDERED;
4405 	wq->saved_max_active = max_active;
4406 
4407 	for_each_pwq(pwq, wq)
4408 		pwq_adjust_max_active(pwq);
4409 
4410 	mutex_unlock(&wq->mutex);
4411 }
4412 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4413 
4414 /**
4415  * current_work - retrieve %current task's work struct
4416  *
4417  * Determine if %current task is a workqueue worker and what it's working on.
4418  * Useful to find out the context that the %current task is running in.
4419  *
4420  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4421  */
4422 struct work_struct *current_work(void)
4423 {
4424 	struct worker *worker = current_wq_worker();
4425 
4426 	return worker ? worker->current_work : NULL;
4427 }
4428 EXPORT_SYMBOL(current_work);
4429 
4430 /**
4431  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4432  *
4433  * Determine whether %current is a workqueue rescuer.  Can be used from
4434  * work functions to determine whether it's being run off the rescuer task.
4435  *
4436  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4437  */
4438 bool current_is_workqueue_rescuer(void)
4439 {
4440 	struct worker *worker = current_wq_worker();
4441 
4442 	return worker && worker->rescue_wq;
4443 }
4444 
4445 /**
4446  * workqueue_congested - test whether a workqueue is congested
4447  * @cpu: CPU in question
4448  * @wq: target workqueue
4449  *
4450  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4451  * no synchronization around this function and the test result is
4452  * unreliable and only useful as advisory hints or for debugging.
4453  *
4454  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4455  * Note that both per-cpu and unbound workqueues may be associated with
4456  * multiple pool_workqueues which have separate congested states.  A
4457  * workqueue being congested on one CPU doesn't mean the workqueue is also
4458  * contested on other CPUs / NUMA nodes.
4459  *
4460  * Return:
4461  * %true if congested, %false otherwise.
4462  */
4463 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4464 {
4465 	struct pool_workqueue *pwq;
4466 	bool ret;
4467 
4468 	rcu_read_lock_sched();
4469 
4470 	if (cpu == WORK_CPU_UNBOUND)
4471 		cpu = smp_processor_id();
4472 
4473 	if (!(wq->flags & WQ_UNBOUND))
4474 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4475 	else
4476 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4477 
4478 	ret = !list_empty(&pwq->delayed_works);
4479 	rcu_read_unlock_sched();
4480 
4481 	return ret;
4482 }
4483 EXPORT_SYMBOL_GPL(workqueue_congested);
4484 
4485 /**
4486  * work_busy - test whether a work is currently pending or running
4487  * @work: the work to be tested
4488  *
4489  * Test whether @work is currently pending or running.  There is no
4490  * synchronization around this function and the test result is
4491  * unreliable and only useful as advisory hints or for debugging.
4492  *
4493  * Return:
4494  * OR'd bitmask of WORK_BUSY_* bits.
4495  */
4496 unsigned int work_busy(struct work_struct *work)
4497 {
4498 	struct worker_pool *pool;
4499 	unsigned long flags;
4500 	unsigned int ret = 0;
4501 
4502 	if (work_pending(work))
4503 		ret |= WORK_BUSY_PENDING;
4504 
4505 	local_irq_save(flags);
4506 	pool = get_work_pool(work);
4507 	if (pool) {
4508 		spin_lock(&pool->lock);
4509 		if (find_worker_executing_work(pool, work))
4510 			ret |= WORK_BUSY_RUNNING;
4511 		spin_unlock(&pool->lock);
4512 	}
4513 	local_irq_restore(flags);
4514 
4515 	return ret;
4516 }
4517 EXPORT_SYMBOL_GPL(work_busy);
4518 
4519 /**
4520  * set_worker_desc - set description for the current work item
4521  * @fmt: printf-style format string
4522  * @...: arguments for the format string
4523  *
4524  * This function can be called by a running work function to describe what
4525  * the work item is about.  If the worker task gets dumped, this
4526  * information will be printed out together to help debugging.  The
4527  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4528  */
4529 void set_worker_desc(const char *fmt, ...)
4530 {
4531 	struct worker *worker = current_wq_worker();
4532 	va_list args;
4533 
4534 	if (worker) {
4535 		va_start(args, fmt);
4536 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4537 		va_end(args);
4538 	}
4539 }
4540 EXPORT_SYMBOL_GPL(set_worker_desc);
4541 
4542 /**
4543  * print_worker_info - print out worker information and description
4544  * @log_lvl: the log level to use when printing
4545  * @task: target task
4546  *
4547  * If @task is a worker and currently executing a work item, print out the
4548  * name of the workqueue being serviced and worker description set with
4549  * set_worker_desc() by the currently executing work item.
4550  *
4551  * This function can be safely called on any task as long as the
4552  * task_struct itself is accessible.  While safe, this function isn't
4553  * synchronized and may print out mixups or garbages of limited length.
4554  */
4555 void print_worker_info(const char *log_lvl, struct task_struct *task)
4556 {
4557 	work_func_t *fn = NULL;
4558 	char name[WQ_NAME_LEN] = { };
4559 	char desc[WORKER_DESC_LEN] = { };
4560 	struct pool_workqueue *pwq = NULL;
4561 	struct workqueue_struct *wq = NULL;
4562 	struct worker *worker;
4563 
4564 	if (!(task->flags & PF_WQ_WORKER))
4565 		return;
4566 
4567 	/*
4568 	 * This function is called without any synchronization and @task
4569 	 * could be in any state.  Be careful with dereferences.
4570 	 */
4571 	worker = kthread_probe_data(task);
4572 
4573 	/*
4574 	 * Carefully copy the associated workqueue's workfn, name and desc.
4575 	 * Keep the original last '\0' in case the original is garbage.
4576 	 */
4577 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4578 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4579 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4580 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4581 	probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4582 
4583 	if (fn || name[0] || desc[0]) {
4584 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4585 		if (strcmp(name, desc))
4586 			pr_cont(" (%s)", desc);
4587 		pr_cont("\n");
4588 	}
4589 }
4590 
4591 static void pr_cont_pool_info(struct worker_pool *pool)
4592 {
4593 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4594 	if (pool->node != NUMA_NO_NODE)
4595 		pr_cont(" node=%d", pool->node);
4596 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4597 }
4598 
4599 static void pr_cont_work(bool comma, struct work_struct *work)
4600 {
4601 	if (work->func == wq_barrier_func) {
4602 		struct wq_barrier *barr;
4603 
4604 		barr = container_of(work, struct wq_barrier, work);
4605 
4606 		pr_cont("%s BAR(%d)", comma ? "," : "",
4607 			task_pid_nr(barr->task));
4608 	} else {
4609 		pr_cont("%s %pf", comma ? "," : "", work->func);
4610 	}
4611 }
4612 
4613 static void show_pwq(struct pool_workqueue *pwq)
4614 {
4615 	struct worker_pool *pool = pwq->pool;
4616 	struct work_struct *work;
4617 	struct worker *worker;
4618 	bool has_in_flight = false, has_pending = false;
4619 	int bkt;
4620 
4621 	pr_info("  pwq %d:", pool->id);
4622 	pr_cont_pool_info(pool);
4623 
4624 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4625 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4626 
4627 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4628 		if (worker->current_pwq == pwq) {
4629 			has_in_flight = true;
4630 			break;
4631 		}
4632 	}
4633 	if (has_in_flight) {
4634 		bool comma = false;
4635 
4636 		pr_info("    in-flight:");
4637 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4638 			if (worker->current_pwq != pwq)
4639 				continue;
4640 
4641 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4642 				task_pid_nr(worker->task),
4643 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4644 				worker->current_func);
4645 			list_for_each_entry(work, &worker->scheduled, entry)
4646 				pr_cont_work(false, work);
4647 			comma = true;
4648 		}
4649 		pr_cont("\n");
4650 	}
4651 
4652 	list_for_each_entry(work, &pool->worklist, entry) {
4653 		if (get_work_pwq(work) == pwq) {
4654 			has_pending = true;
4655 			break;
4656 		}
4657 	}
4658 	if (has_pending) {
4659 		bool comma = false;
4660 
4661 		pr_info("    pending:");
4662 		list_for_each_entry(work, &pool->worklist, entry) {
4663 			if (get_work_pwq(work) != pwq)
4664 				continue;
4665 
4666 			pr_cont_work(comma, work);
4667 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4668 		}
4669 		pr_cont("\n");
4670 	}
4671 
4672 	if (!list_empty(&pwq->delayed_works)) {
4673 		bool comma = false;
4674 
4675 		pr_info("    delayed:");
4676 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4677 			pr_cont_work(comma, work);
4678 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4679 		}
4680 		pr_cont("\n");
4681 	}
4682 }
4683 
4684 /**
4685  * show_workqueue_state - dump workqueue state
4686  *
4687  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4688  * all busy workqueues and pools.
4689  */
4690 void show_workqueue_state(void)
4691 {
4692 	struct workqueue_struct *wq;
4693 	struct worker_pool *pool;
4694 	unsigned long flags;
4695 	int pi;
4696 
4697 	rcu_read_lock_sched();
4698 
4699 	pr_info("Showing busy workqueues and worker pools:\n");
4700 
4701 	list_for_each_entry_rcu(wq, &workqueues, list) {
4702 		struct pool_workqueue *pwq;
4703 		bool idle = true;
4704 
4705 		for_each_pwq(pwq, wq) {
4706 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4707 				idle = false;
4708 				break;
4709 			}
4710 		}
4711 		if (idle)
4712 			continue;
4713 
4714 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4715 
4716 		for_each_pwq(pwq, wq) {
4717 			spin_lock_irqsave(&pwq->pool->lock, flags);
4718 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4719 				show_pwq(pwq);
4720 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4721 			/*
4722 			 * We could be printing a lot from atomic context, e.g.
4723 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4724 			 * hard lockup.
4725 			 */
4726 			touch_nmi_watchdog();
4727 		}
4728 	}
4729 
4730 	for_each_pool(pool, pi) {
4731 		struct worker *worker;
4732 		bool first = true;
4733 
4734 		spin_lock_irqsave(&pool->lock, flags);
4735 		if (pool->nr_workers == pool->nr_idle)
4736 			goto next_pool;
4737 
4738 		pr_info("pool %d:", pool->id);
4739 		pr_cont_pool_info(pool);
4740 		pr_cont(" hung=%us workers=%d",
4741 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4742 			pool->nr_workers);
4743 		if (pool->manager)
4744 			pr_cont(" manager: %d",
4745 				task_pid_nr(pool->manager->task));
4746 		list_for_each_entry(worker, &pool->idle_list, entry) {
4747 			pr_cont(" %s%d", first ? "idle: " : "",
4748 				task_pid_nr(worker->task));
4749 			first = false;
4750 		}
4751 		pr_cont("\n");
4752 	next_pool:
4753 		spin_unlock_irqrestore(&pool->lock, flags);
4754 		/*
4755 		 * We could be printing a lot from atomic context, e.g.
4756 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4757 		 * hard lockup.
4758 		 */
4759 		touch_nmi_watchdog();
4760 	}
4761 
4762 	rcu_read_unlock_sched();
4763 }
4764 
4765 /* used to show worker information through /proc/PID/{comm,stat,status} */
4766 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4767 {
4768 	int off;
4769 
4770 	/* always show the actual comm */
4771 	off = strscpy(buf, task->comm, size);
4772 	if (off < 0)
4773 		return;
4774 
4775 	/* stabilize PF_WQ_WORKER and worker pool association */
4776 	mutex_lock(&wq_pool_attach_mutex);
4777 
4778 	if (task->flags & PF_WQ_WORKER) {
4779 		struct worker *worker = kthread_data(task);
4780 		struct worker_pool *pool = worker->pool;
4781 
4782 		if (pool) {
4783 			spin_lock_irq(&pool->lock);
4784 			/*
4785 			 * ->desc tracks information (wq name or
4786 			 * set_worker_desc()) for the latest execution.  If
4787 			 * current, prepend '+', otherwise '-'.
4788 			 */
4789 			if (worker->desc[0] != '\0') {
4790 				if (worker->current_work)
4791 					scnprintf(buf + off, size - off, "+%s",
4792 						  worker->desc);
4793 				else
4794 					scnprintf(buf + off, size - off, "-%s",
4795 						  worker->desc);
4796 			}
4797 			spin_unlock_irq(&pool->lock);
4798 		}
4799 	}
4800 
4801 	mutex_unlock(&wq_pool_attach_mutex);
4802 }
4803 
4804 #ifdef CONFIG_SMP
4805 
4806 /*
4807  * CPU hotplug.
4808  *
4809  * There are two challenges in supporting CPU hotplug.  Firstly, there
4810  * are a lot of assumptions on strong associations among work, pwq and
4811  * pool which make migrating pending and scheduled works very
4812  * difficult to implement without impacting hot paths.  Secondly,
4813  * worker pools serve mix of short, long and very long running works making
4814  * blocked draining impractical.
4815  *
4816  * This is solved by allowing the pools to be disassociated from the CPU
4817  * running as an unbound one and allowing it to be reattached later if the
4818  * cpu comes back online.
4819  */
4820 
4821 static void unbind_workers(int cpu)
4822 {
4823 	struct worker_pool *pool;
4824 	struct worker *worker;
4825 
4826 	for_each_cpu_worker_pool(pool, cpu) {
4827 		mutex_lock(&wq_pool_attach_mutex);
4828 		spin_lock_irq(&pool->lock);
4829 
4830 		/*
4831 		 * We've blocked all attach/detach operations. Make all workers
4832 		 * unbound and set DISASSOCIATED.  Before this, all workers
4833 		 * except for the ones which are still executing works from
4834 		 * before the last CPU down must be on the cpu.  After
4835 		 * this, they may become diasporas.
4836 		 */
4837 		for_each_pool_worker(worker, pool)
4838 			worker->flags |= WORKER_UNBOUND;
4839 
4840 		pool->flags |= POOL_DISASSOCIATED;
4841 
4842 		spin_unlock_irq(&pool->lock);
4843 		mutex_unlock(&wq_pool_attach_mutex);
4844 
4845 		/*
4846 		 * Call schedule() so that we cross rq->lock and thus can
4847 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4848 		 * This is necessary as scheduler callbacks may be invoked
4849 		 * from other cpus.
4850 		 */
4851 		schedule();
4852 
4853 		/*
4854 		 * Sched callbacks are disabled now.  Zap nr_running.
4855 		 * After this, nr_running stays zero and need_more_worker()
4856 		 * and keep_working() are always true as long as the
4857 		 * worklist is not empty.  This pool now behaves as an
4858 		 * unbound (in terms of concurrency management) pool which
4859 		 * are served by workers tied to the pool.
4860 		 */
4861 		atomic_set(&pool->nr_running, 0);
4862 
4863 		/*
4864 		 * With concurrency management just turned off, a busy
4865 		 * worker blocking could lead to lengthy stalls.  Kick off
4866 		 * unbound chain execution of currently pending work items.
4867 		 */
4868 		spin_lock_irq(&pool->lock);
4869 		wake_up_worker(pool);
4870 		spin_unlock_irq(&pool->lock);
4871 	}
4872 }
4873 
4874 /**
4875  * rebind_workers - rebind all workers of a pool to the associated CPU
4876  * @pool: pool of interest
4877  *
4878  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4879  */
4880 static void rebind_workers(struct worker_pool *pool)
4881 {
4882 	struct worker *worker;
4883 
4884 	lockdep_assert_held(&wq_pool_attach_mutex);
4885 
4886 	/*
4887 	 * Restore CPU affinity of all workers.  As all idle workers should
4888 	 * be on the run-queue of the associated CPU before any local
4889 	 * wake-ups for concurrency management happen, restore CPU affinity
4890 	 * of all workers first and then clear UNBOUND.  As we're called
4891 	 * from CPU_ONLINE, the following shouldn't fail.
4892 	 */
4893 	for_each_pool_worker(worker, pool)
4894 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4895 						  pool->attrs->cpumask) < 0);
4896 
4897 	spin_lock_irq(&pool->lock);
4898 
4899 	pool->flags &= ~POOL_DISASSOCIATED;
4900 
4901 	for_each_pool_worker(worker, pool) {
4902 		unsigned int worker_flags = worker->flags;
4903 
4904 		/*
4905 		 * A bound idle worker should actually be on the runqueue
4906 		 * of the associated CPU for local wake-ups targeting it to
4907 		 * work.  Kick all idle workers so that they migrate to the
4908 		 * associated CPU.  Doing this in the same loop as
4909 		 * replacing UNBOUND with REBOUND is safe as no worker will
4910 		 * be bound before @pool->lock is released.
4911 		 */
4912 		if (worker_flags & WORKER_IDLE)
4913 			wake_up_process(worker->task);
4914 
4915 		/*
4916 		 * We want to clear UNBOUND but can't directly call
4917 		 * worker_clr_flags() or adjust nr_running.  Atomically
4918 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4919 		 * @worker will clear REBOUND using worker_clr_flags() when
4920 		 * it initiates the next execution cycle thus restoring
4921 		 * concurrency management.  Note that when or whether
4922 		 * @worker clears REBOUND doesn't affect correctness.
4923 		 *
4924 		 * WRITE_ONCE() is necessary because @worker->flags may be
4925 		 * tested without holding any lock in
4926 		 * wq_worker_running().  Without it, NOT_RUNNING test may
4927 		 * fail incorrectly leading to premature concurrency
4928 		 * management operations.
4929 		 */
4930 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4931 		worker_flags |= WORKER_REBOUND;
4932 		worker_flags &= ~WORKER_UNBOUND;
4933 		WRITE_ONCE(worker->flags, worker_flags);
4934 	}
4935 
4936 	spin_unlock_irq(&pool->lock);
4937 }
4938 
4939 /**
4940  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4941  * @pool: unbound pool of interest
4942  * @cpu: the CPU which is coming up
4943  *
4944  * An unbound pool may end up with a cpumask which doesn't have any online
4945  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4946  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4947  * online CPU before, cpus_allowed of all its workers should be restored.
4948  */
4949 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4950 {
4951 	static cpumask_t cpumask;
4952 	struct worker *worker;
4953 
4954 	lockdep_assert_held(&wq_pool_attach_mutex);
4955 
4956 	/* is @cpu allowed for @pool? */
4957 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4958 		return;
4959 
4960 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4961 
4962 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4963 	for_each_pool_worker(worker, pool)
4964 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4965 }
4966 
4967 int workqueue_prepare_cpu(unsigned int cpu)
4968 {
4969 	struct worker_pool *pool;
4970 
4971 	for_each_cpu_worker_pool(pool, cpu) {
4972 		if (pool->nr_workers)
4973 			continue;
4974 		if (!create_worker(pool))
4975 			return -ENOMEM;
4976 	}
4977 	return 0;
4978 }
4979 
4980 int workqueue_online_cpu(unsigned int cpu)
4981 {
4982 	struct worker_pool *pool;
4983 	struct workqueue_struct *wq;
4984 	int pi;
4985 
4986 	mutex_lock(&wq_pool_mutex);
4987 
4988 	for_each_pool(pool, pi) {
4989 		mutex_lock(&wq_pool_attach_mutex);
4990 
4991 		if (pool->cpu == cpu)
4992 			rebind_workers(pool);
4993 		else if (pool->cpu < 0)
4994 			restore_unbound_workers_cpumask(pool, cpu);
4995 
4996 		mutex_unlock(&wq_pool_attach_mutex);
4997 	}
4998 
4999 	/* update NUMA affinity of unbound workqueues */
5000 	list_for_each_entry(wq, &workqueues, list)
5001 		wq_update_unbound_numa(wq, cpu, true);
5002 
5003 	mutex_unlock(&wq_pool_mutex);
5004 	return 0;
5005 }
5006 
5007 int workqueue_offline_cpu(unsigned int cpu)
5008 {
5009 	struct workqueue_struct *wq;
5010 
5011 	/* unbinding per-cpu workers should happen on the local CPU */
5012 	if (WARN_ON(cpu != smp_processor_id()))
5013 		return -1;
5014 
5015 	unbind_workers(cpu);
5016 
5017 	/* update NUMA affinity of unbound workqueues */
5018 	mutex_lock(&wq_pool_mutex);
5019 	list_for_each_entry(wq, &workqueues, list)
5020 		wq_update_unbound_numa(wq, cpu, false);
5021 	mutex_unlock(&wq_pool_mutex);
5022 
5023 	return 0;
5024 }
5025 
5026 struct work_for_cpu {
5027 	struct work_struct work;
5028 	long (*fn)(void *);
5029 	void *arg;
5030 	long ret;
5031 };
5032 
5033 static void work_for_cpu_fn(struct work_struct *work)
5034 {
5035 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5036 
5037 	wfc->ret = wfc->fn(wfc->arg);
5038 }
5039 
5040 /**
5041  * work_on_cpu - run a function in thread context on a particular cpu
5042  * @cpu: the cpu to run on
5043  * @fn: the function to run
5044  * @arg: the function arg
5045  *
5046  * It is up to the caller to ensure that the cpu doesn't go offline.
5047  * The caller must not hold any locks which would prevent @fn from completing.
5048  *
5049  * Return: The value @fn returns.
5050  */
5051 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5052 {
5053 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5054 
5055 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5056 	schedule_work_on(cpu, &wfc.work);
5057 	flush_work(&wfc.work);
5058 	destroy_work_on_stack(&wfc.work);
5059 	return wfc.ret;
5060 }
5061 EXPORT_SYMBOL_GPL(work_on_cpu);
5062 
5063 /**
5064  * work_on_cpu_safe - run a function in thread context on a particular cpu
5065  * @cpu: the cpu to run on
5066  * @fn:  the function to run
5067  * @arg: the function argument
5068  *
5069  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5070  * any locks which would prevent @fn from completing.
5071  *
5072  * Return: The value @fn returns.
5073  */
5074 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5075 {
5076 	long ret = -ENODEV;
5077 
5078 	get_online_cpus();
5079 	if (cpu_online(cpu))
5080 		ret = work_on_cpu(cpu, fn, arg);
5081 	put_online_cpus();
5082 	return ret;
5083 }
5084 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5085 #endif /* CONFIG_SMP */
5086 
5087 #ifdef CONFIG_FREEZER
5088 
5089 /**
5090  * freeze_workqueues_begin - begin freezing workqueues
5091  *
5092  * Start freezing workqueues.  After this function returns, all freezable
5093  * workqueues will queue new works to their delayed_works list instead of
5094  * pool->worklist.
5095  *
5096  * CONTEXT:
5097  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5098  */
5099 void freeze_workqueues_begin(void)
5100 {
5101 	struct workqueue_struct *wq;
5102 	struct pool_workqueue *pwq;
5103 
5104 	mutex_lock(&wq_pool_mutex);
5105 
5106 	WARN_ON_ONCE(workqueue_freezing);
5107 	workqueue_freezing = true;
5108 
5109 	list_for_each_entry(wq, &workqueues, list) {
5110 		mutex_lock(&wq->mutex);
5111 		for_each_pwq(pwq, wq)
5112 			pwq_adjust_max_active(pwq);
5113 		mutex_unlock(&wq->mutex);
5114 	}
5115 
5116 	mutex_unlock(&wq_pool_mutex);
5117 }
5118 
5119 /**
5120  * freeze_workqueues_busy - are freezable workqueues still busy?
5121  *
5122  * Check whether freezing is complete.  This function must be called
5123  * between freeze_workqueues_begin() and thaw_workqueues().
5124  *
5125  * CONTEXT:
5126  * Grabs and releases wq_pool_mutex.
5127  *
5128  * Return:
5129  * %true if some freezable workqueues are still busy.  %false if freezing
5130  * is complete.
5131  */
5132 bool freeze_workqueues_busy(void)
5133 {
5134 	bool busy = false;
5135 	struct workqueue_struct *wq;
5136 	struct pool_workqueue *pwq;
5137 
5138 	mutex_lock(&wq_pool_mutex);
5139 
5140 	WARN_ON_ONCE(!workqueue_freezing);
5141 
5142 	list_for_each_entry(wq, &workqueues, list) {
5143 		if (!(wq->flags & WQ_FREEZABLE))
5144 			continue;
5145 		/*
5146 		 * nr_active is monotonically decreasing.  It's safe
5147 		 * to peek without lock.
5148 		 */
5149 		rcu_read_lock_sched();
5150 		for_each_pwq(pwq, wq) {
5151 			WARN_ON_ONCE(pwq->nr_active < 0);
5152 			if (pwq->nr_active) {
5153 				busy = true;
5154 				rcu_read_unlock_sched();
5155 				goto out_unlock;
5156 			}
5157 		}
5158 		rcu_read_unlock_sched();
5159 	}
5160 out_unlock:
5161 	mutex_unlock(&wq_pool_mutex);
5162 	return busy;
5163 }
5164 
5165 /**
5166  * thaw_workqueues - thaw workqueues
5167  *
5168  * Thaw workqueues.  Normal queueing is restored and all collected
5169  * frozen works are transferred to their respective pool worklists.
5170  *
5171  * CONTEXT:
5172  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5173  */
5174 void thaw_workqueues(void)
5175 {
5176 	struct workqueue_struct *wq;
5177 	struct pool_workqueue *pwq;
5178 
5179 	mutex_lock(&wq_pool_mutex);
5180 
5181 	if (!workqueue_freezing)
5182 		goto out_unlock;
5183 
5184 	workqueue_freezing = false;
5185 
5186 	/* restore max_active and repopulate worklist */
5187 	list_for_each_entry(wq, &workqueues, list) {
5188 		mutex_lock(&wq->mutex);
5189 		for_each_pwq(pwq, wq)
5190 			pwq_adjust_max_active(pwq);
5191 		mutex_unlock(&wq->mutex);
5192 	}
5193 
5194 out_unlock:
5195 	mutex_unlock(&wq_pool_mutex);
5196 }
5197 #endif /* CONFIG_FREEZER */
5198 
5199 static int workqueue_apply_unbound_cpumask(void)
5200 {
5201 	LIST_HEAD(ctxs);
5202 	int ret = 0;
5203 	struct workqueue_struct *wq;
5204 	struct apply_wqattrs_ctx *ctx, *n;
5205 
5206 	lockdep_assert_held(&wq_pool_mutex);
5207 
5208 	list_for_each_entry(wq, &workqueues, list) {
5209 		if (!(wq->flags & WQ_UNBOUND))
5210 			continue;
5211 		/* creating multiple pwqs breaks ordering guarantee */
5212 		if (wq->flags & __WQ_ORDERED)
5213 			continue;
5214 
5215 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5216 		if (!ctx) {
5217 			ret = -ENOMEM;
5218 			break;
5219 		}
5220 
5221 		list_add_tail(&ctx->list, &ctxs);
5222 	}
5223 
5224 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5225 		if (!ret)
5226 			apply_wqattrs_commit(ctx);
5227 		apply_wqattrs_cleanup(ctx);
5228 	}
5229 
5230 	return ret;
5231 }
5232 
5233 /**
5234  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5235  *  @cpumask: the cpumask to set
5236  *
5237  *  The low-level workqueues cpumask is a global cpumask that limits
5238  *  the affinity of all unbound workqueues.  This function check the @cpumask
5239  *  and apply it to all unbound workqueues and updates all pwqs of them.
5240  *
5241  *  Retun:	0	- Success
5242  *  		-EINVAL	- Invalid @cpumask
5243  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5244  */
5245 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5246 {
5247 	int ret = -EINVAL;
5248 	cpumask_var_t saved_cpumask;
5249 
5250 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5251 		return -ENOMEM;
5252 
5253 	/*
5254 	 * Not excluding isolated cpus on purpose.
5255 	 * If the user wishes to include them, we allow that.
5256 	 */
5257 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5258 	if (!cpumask_empty(cpumask)) {
5259 		apply_wqattrs_lock();
5260 
5261 		/* save the old wq_unbound_cpumask. */
5262 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5263 
5264 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5265 		cpumask_copy(wq_unbound_cpumask, cpumask);
5266 		ret = workqueue_apply_unbound_cpumask();
5267 
5268 		/* restore the wq_unbound_cpumask when failed. */
5269 		if (ret < 0)
5270 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5271 
5272 		apply_wqattrs_unlock();
5273 	}
5274 
5275 	free_cpumask_var(saved_cpumask);
5276 	return ret;
5277 }
5278 
5279 #ifdef CONFIG_SYSFS
5280 /*
5281  * Workqueues with WQ_SYSFS flag set is visible to userland via
5282  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5283  * following attributes.
5284  *
5285  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5286  *  max_active	RW int	: maximum number of in-flight work items
5287  *
5288  * Unbound workqueues have the following extra attributes.
5289  *
5290  *  pool_ids	RO int	: the associated pool IDs for each node
5291  *  nice	RW int	: nice value of the workers
5292  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5293  *  numa	RW bool	: whether enable NUMA affinity
5294  */
5295 struct wq_device {
5296 	struct workqueue_struct		*wq;
5297 	struct device			dev;
5298 };
5299 
5300 static struct workqueue_struct *dev_to_wq(struct device *dev)
5301 {
5302 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5303 
5304 	return wq_dev->wq;
5305 }
5306 
5307 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5308 			    char *buf)
5309 {
5310 	struct workqueue_struct *wq = dev_to_wq(dev);
5311 
5312 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5313 }
5314 static DEVICE_ATTR_RO(per_cpu);
5315 
5316 static ssize_t max_active_show(struct device *dev,
5317 			       struct device_attribute *attr, char *buf)
5318 {
5319 	struct workqueue_struct *wq = dev_to_wq(dev);
5320 
5321 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5322 }
5323 
5324 static ssize_t max_active_store(struct device *dev,
5325 				struct device_attribute *attr, const char *buf,
5326 				size_t count)
5327 {
5328 	struct workqueue_struct *wq = dev_to_wq(dev);
5329 	int val;
5330 
5331 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5332 		return -EINVAL;
5333 
5334 	workqueue_set_max_active(wq, val);
5335 	return count;
5336 }
5337 static DEVICE_ATTR_RW(max_active);
5338 
5339 static struct attribute *wq_sysfs_attrs[] = {
5340 	&dev_attr_per_cpu.attr,
5341 	&dev_attr_max_active.attr,
5342 	NULL,
5343 };
5344 ATTRIBUTE_GROUPS(wq_sysfs);
5345 
5346 static ssize_t wq_pool_ids_show(struct device *dev,
5347 				struct device_attribute *attr, char *buf)
5348 {
5349 	struct workqueue_struct *wq = dev_to_wq(dev);
5350 	const char *delim = "";
5351 	int node, written = 0;
5352 
5353 	rcu_read_lock_sched();
5354 	for_each_node(node) {
5355 		written += scnprintf(buf + written, PAGE_SIZE - written,
5356 				     "%s%d:%d", delim, node,
5357 				     unbound_pwq_by_node(wq, node)->pool->id);
5358 		delim = " ";
5359 	}
5360 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5361 	rcu_read_unlock_sched();
5362 
5363 	return written;
5364 }
5365 
5366 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5367 			    char *buf)
5368 {
5369 	struct workqueue_struct *wq = dev_to_wq(dev);
5370 	int written;
5371 
5372 	mutex_lock(&wq->mutex);
5373 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5374 	mutex_unlock(&wq->mutex);
5375 
5376 	return written;
5377 }
5378 
5379 /* prepare workqueue_attrs for sysfs store operations */
5380 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5381 {
5382 	struct workqueue_attrs *attrs;
5383 
5384 	lockdep_assert_held(&wq_pool_mutex);
5385 
5386 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5387 	if (!attrs)
5388 		return NULL;
5389 
5390 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5391 	return attrs;
5392 }
5393 
5394 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5395 			     const char *buf, size_t count)
5396 {
5397 	struct workqueue_struct *wq = dev_to_wq(dev);
5398 	struct workqueue_attrs *attrs;
5399 	int ret = -ENOMEM;
5400 
5401 	apply_wqattrs_lock();
5402 
5403 	attrs = wq_sysfs_prep_attrs(wq);
5404 	if (!attrs)
5405 		goto out_unlock;
5406 
5407 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5408 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5409 		ret = apply_workqueue_attrs_locked(wq, attrs);
5410 	else
5411 		ret = -EINVAL;
5412 
5413 out_unlock:
5414 	apply_wqattrs_unlock();
5415 	free_workqueue_attrs(attrs);
5416 	return ret ?: count;
5417 }
5418 
5419 static ssize_t wq_cpumask_show(struct device *dev,
5420 			       struct device_attribute *attr, char *buf)
5421 {
5422 	struct workqueue_struct *wq = dev_to_wq(dev);
5423 	int written;
5424 
5425 	mutex_lock(&wq->mutex);
5426 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5427 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5428 	mutex_unlock(&wq->mutex);
5429 	return written;
5430 }
5431 
5432 static ssize_t wq_cpumask_store(struct device *dev,
5433 				struct device_attribute *attr,
5434 				const char *buf, size_t count)
5435 {
5436 	struct workqueue_struct *wq = dev_to_wq(dev);
5437 	struct workqueue_attrs *attrs;
5438 	int ret = -ENOMEM;
5439 
5440 	apply_wqattrs_lock();
5441 
5442 	attrs = wq_sysfs_prep_attrs(wq);
5443 	if (!attrs)
5444 		goto out_unlock;
5445 
5446 	ret = cpumask_parse(buf, attrs->cpumask);
5447 	if (!ret)
5448 		ret = apply_workqueue_attrs_locked(wq, attrs);
5449 
5450 out_unlock:
5451 	apply_wqattrs_unlock();
5452 	free_workqueue_attrs(attrs);
5453 	return ret ?: count;
5454 }
5455 
5456 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5457 			    char *buf)
5458 {
5459 	struct workqueue_struct *wq = dev_to_wq(dev);
5460 	int written;
5461 
5462 	mutex_lock(&wq->mutex);
5463 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5464 			    !wq->unbound_attrs->no_numa);
5465 	mutex_unlock(&wq->mutex);
5466 
5467 	return written;
5468 }
5469 
5470 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5471 			     const char *buf, size_t count)
5472 {
5473 	struct workqueue_struct *wq = dev_to_wq(dev);
5474 	struct workqueue_attrs *attrs;
5475 	int v, ret = -ENOMEM;
5476 
5477 	apply_wqattrs_lock();
5478 
5479 	attrs = wq_sysfs_prep_attrs(wq);
5480 	if (!attrs)
5481 		goto out_unlock;
5482 
5483 	ret = -EINVAL;
5484 	if (sscanf(buf, "%d", &v) == 1) {
5485 		attrs->no_numa = !v;
5486 		ret = apply_workqueue_attrs_locked(wq, attrs);
5487 	}
5488 
5489 out_unlock:
5490 	apply_wqattrs_unlock();
5491 	free_workqueue_attrs(attrs);
5492 	return ret ?: count;
5493 }
5494 
5495 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5496 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5497 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5498 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5499 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5500 	__ATTR_NULL,
5501 };
5502 
5503 static struct bus_type wq_subsys = {
5504 	.name				= "workqueue",
5505 	.dev_groups			= wq_sysfs_groups,
5506 };
5507 
5508 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5509 		struct device_attribute *attr, char *buf)
5510 {
5511 	int written;
5512 
5513 	mutex_lock(&wq_pool_mutex);
5514 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5515 			    cpumask_pr_args(wq_unbound_cpumask));
5516 	mutex_unlock(&wq_pool_mutex);
5517 
5518 	return written;
5519 }
5520 
5521 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5522 		struct device_attribute *attr, const char *buf, size_t count)
5523 {
5524 	cpumask_var_t cpumask;
5525 	int ret;
5526 
5527 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5528 		return -ENOMEM;
5529 
5530 	ret = cpumask_parse(buf, cpumask);
5531 	if (!ret)
5532 		ret = workqueue_set_unbound_cpumask(cpumask);
5533 
5534 	free_cpumask_var(cpumask);
5535 	return ret ? ret : count;
5536 }
5537 
5538 static struct device_attribute wq_sysfs_cpumask_attr =
5539 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5540 	       wq_unbound_cpumask_store);
5541 
5542 static int __init wq_sysfs_init(void)
5543 {
5544 	int err;
5545 
5546 	err = subsys_virtual_register(&wq_subsys, NULL);
5547 	if (err)
5548 		return err;
5549 
5550 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5551 }
5552 core_initcall(wq_sysfs_init);
5553 
5554 static void wq_device_release(struct device *dev)
5555 {
5556 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5557 
5558 	kfree(wq_dev);
5559 }
5560 
5561 /**
5562  * workqueue_sysfs_register - make a workqueue visible in sysfs
5563  * @wq: the workqueue to register
5564  *
5565  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5566  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5567  * which is the preferred method.
5568  *
5569  * Workqueue user should use this function directly iff it wants to apply
5570  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5571  * apply_workqueue_attrs() may race against userland updating the
5572  * attributes.
5573  *
5574  * Return: 0 on success, -errno on failure.
5575  */
5576 int workqueue_sysfs_register(struct workqueue_struct *wq)
5577 {
5578 	struct wq_device *wq_dev;
5579 	int ret;
5580 
5581 	/*
5582 	 * Adjusting max_active or creating new pwqs by applying
5583 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5584 	 * workqueues.
5585 	 */
5586 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5587 		return -EINVAL;
5588 
5589 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5590 	if (!wq_dev)
5591 		return -ENOMEM;
5592 
5593 	wq_dev->wq = wq;
5594 	wq_dev->dev.bus = &wq_subsys;
5595 	wq_dev->dev.release = wq_device_release;
5596 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5597 
5598 	/*
5599 	 * unbound_attrs are created separately.  Suppress uevent until
5600 	 * everything is ready.
5601 	 */
5602 	dev_set_uevent_suppress(&wq_dev->dev, true);
5603 
5604 	ret = device_register(&wq_dev->dev);
5605 	if (ret) {
5606 		put_device(&wq_dev->dev);
5607 		wq->wq_dev = NULL;
5608 		return ret;
5609 	}
5610 
5611 	if (wq->flags & WQ_UNBOUND) {
5612 		struct device_attribute *attr;
5613 
5614 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5615 			ret = device_create_file(&wq_dev->dev, attr);
5616 			if (ret) {
5617 				device_unregister(&wq_dev->dev);
5618 				wq->wq_dev = NULL;
5619 				return ret;
5620 			}
5621 		}
5622 	}
5623 
5624 	dev_set_uevent_suppress(&wq_dev->dev, false);
5625 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5626 	return 0;
5627 }
5628 
5629 /**
5630  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5631  * @wq: the workqueue to unregister
5632  *
5633  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5634  */
5635 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5636 {
5637 	struct wq_device *wq_dev = wq->wq_dev;
5638 
5639 	if (!wq->wq_dev)
5640 		return;
5641 
5642 	wq->wq_dev = NULL;
5643 	device_unregister(&wq_dev->dev);
5644 }
5645 #else	/* CONFIG_SYSFS */
5646 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5647 #endif	/* CONFIG_SYSFS */
5648 
5649 /*
5650  * Workqueue watchdog.
5651  *
5652  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5653  * flush dependency, a concurrency managed work item which stays RUNNING
5654  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5655  * usual warning mechanisms don't trigger and internal workqueue state is
5656  * largely opaque.
5657  *
5658  * Workqueue watchdog monitors all worker pools periodically and dumps
5659  * state if some pools failed to make forward progress for a while where
5660  * forward progress is defined as the first item on ->worklist changing.
5661  *
5662  * This mechanism is controlled through the kernel parameter
5663  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5664  * corresponding sysfs parameter file.
5665  */
5666 #ifdef CONFIG_WQ_WATCHDOG
5667 
5668 static unsigned long wq_watchdog_thresh = 30;
5669 static struct timer_list wq_watchdog_timer;
5670 
5671 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5672 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5673 
5674 static void wq_watchdog_reset_touched(void)
5675 {
5676 	int cpu;
5677 
5678 	wq_watchdog_touched = jiffies;
5679 	for_each_possible_cpu(cpu)
5680 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5681 }
5682 
5683 static void wq_watchdog_timer_fn(struct timer_list *unused)
5684 {
5685 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5686 	bool lockup_detected = false;
5687 	struct worker_pool *pool;
5688 	int pi;
5689 
5690 	if (!thresh)
5691 		return;
5692 
5693 	rcu_read_lock();
5694 
5695 	for_each_pool(pool, pi) {
5696 		unsigned long pool_ts, touched, ts;
5697 
5698 		if (list_empty(&pool->worklist))
5699 			continue;
5700 
5701 		/* get the latest of pool and touched timestamps */
5702 		pool_ts = READ_ONCE(pool->watchdog_ts);
5703 		touched = READ_ONCE(wq_watchdog_touched);
5704 
5705 		if (time_after(pool_ts, touched))
5706 			ts = pool_ts;
5707 		else
5708 			ts = touched;
5709 
5710 		if (pool->cpu >= 0) {
5711 			unsigned long cpu_touched =
5712 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5713 						  pool->cpu));
5714 			if (time_after(cpu_touched, ts))
5715 				ts = cpu_touched;
5716 		}
5717 
5718 		/* did we stall? */
5719 		if (time_after(jiffies, ts + thresh)) {
5720 			lockup_detected = true;
5721 			pr_emerg("BUG: workqueue lockup - pool");
5722 			pr_cont_pool_info(pool);
5723 			pr_cont(" stuck for %us!\n",
5724 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5725 		}
5726 	}
5727 
5728 	rcu_read_unlock();
5729 
5730 	if (lockup_detected)
5731 		show_workqueue_state();
5732 
5733 	wq_watchdog_reset_touched();
5734 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5735 }
5736 
5737 notrace void wq_watchdog_touch(int cpu)
5738 {
5739 	if (cpu >= 0)
5740 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5741 	else
5742 		wq_watchdog_touched = jiffies;
5743 }
5744 
5745 static void wq_watchdog_set_thresh(unsigned long thresh)
5746 {
5747 	wq_watchdog_thresh = 0;
5748 	del_timer_sync(&wq_watchdog_timer);
5749 
5750 	if (thresh) {
5751 		wq_watchdog_thresh = thresh;
5752 		wq_watchdog_reset_touched();
5753 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5754 	}
5755 }
5756 
5757 static int wq_watchdog_param_set_thresh(const char *val,
5758 					const struct kernel_param *kp)
5759 {
5760 	unsigned long thresh;
5761 	int ret;
5762 
5763 	ret = kstrtoul(val, 0, &thresh);
5764 	if (ret)
5765 		return ret;
5766 
5767 	if (system_wq)
5768 		wq_watchdog_set_thresh(thresh);
5769 	else
5770 		wq_watchdog_thresh = thresh;
5771 
5772 	return 0;
5773 }
5774 
5775 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5776 	.set	= wq_watchdog_param_set_thresh,
5777 	.get	= param_get_ulong,
5778 };
5779 
5780 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5781 		0644);
5782 
5783 static void wq_watchdog_init(void)
5784 {
5785 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5786 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5787 }
5788 
5789 #else	/* CONFIG_WQ_WATCHDOG */
5790 
5791 static inline void wq_watchdog_init(void) { }
5792 
5793 #endif	/* CONFIG_WQ_WATCHDOG */
5794 
5795 static void __init wq_numa_init(void)
5796 {
5797 	cpumask_var_t *tbl;
5798 	int node, cpu;
5799 
5800 	if (num_possible_nodes() <= 1)
5801 		return;
5802 
5803 	if (wq_disable_numa) {
5804 		pr_info("workqueue: NUMA affinity support disabled\n");
5805 		return;
5806 	}
5807 
5808 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5809 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5810 
5811 	/*
5812 	 * We want masks of possible CPUs of each node which isn't readily
5813 	 * available.  Build one from cpu_to_node() which should have been
5814 	 * fully initialized by now.
5815 	 */
5816 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5817 	BUG_ON(!tbl);
5818 
5819 	for_each_node(node)
5820 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5821 				node_online(node) ? node : NUMA_NO_NODE));
5822 
5823 	for_each_possible_cpu(cpu) {
5824 		node = cpu_to_node(cpu);
5825 		if (WARN_ON(node == NUMA_NO_NODE)) {
5826 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5827 			/* happens iff arch is bonkers, let's just proceed */
5828 			return;
5829 		}
5830 		cpumask_set_cpu(cpu, tbl[node]);
5831 	}
5832 
5833 	wq_numa_possible_cpumask = tbl;
5834 	wq_numa_enabled = true;
5835 }
5836 
5837 /**
5838  * workqueue_init_early - early init for workqueue subsystem
5839  *
5840  * This is the first half of two-staged workqueue subsystem initialization
5841  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5842  * idr are up.  It sets up all the data structures and system workqueues
5843  * and allows early boot code to create workqueues and queue/cancel work
5844  * items.  Actual work item execution starts only after kthreads can be
5845  * created and scheduled right before early initcalls.
5846  */
5847 int __init workqueue_init_early(void)
5848 {
5849 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5850 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5851 	int i, cpu;
5852 
5853 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5854 
5855 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5856 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5857 
5858 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5859 
5860 	/* initialize CPU pools */
5861 	for_each_possible_cpu(cpu) {
5862 		struct worker_pool *pool;
5863 
5864 		i = 0;
5865 		for_each_cpu_worker_pool(pool, cpu) {
5866 			BUG_ON(init_worker_pool(pool));
5867 			pool->cpu = cpu;
5868 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5869 			pool->attrs->nice = std_nice[i++];
5870 			pool->node = cpu_to_node(cpu);
5871 
5872 			/* alloc pool ID */
5873 			mutex_lock(&wq_pool_mutex);
5874 			BUG_ON(worker_pool_assign_id(pool));
5875 			mutex_unlock(&wq_pool_mutex);
5876 		}
5877 	}
5878 
5879 	/* create default unbound and ordered wq attrs */
5880 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5881 		struct workqueue_attrs *attrs;
5882 
5883 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5884 		attrs->nice = std_nice[i];
5885 		unbound_std_wq_attrs[i] = attrs;
5886 
5887 		/*
5888 		 * An ordered wq should have only one pwq as ordering is
5889 		 * guaranteed by max_active which is enforced by pwqs.
5890 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5891 		 */
5892 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5893 		attrs->nice = std_nice[i];
5894 		attrs->no_numa = true;
5895 		ordered_wq_attrs[i] = attrs;
5896 	}
5897 
5898 	system_wq = alloc_workqueue("events", 0, 0);
5899 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5900 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5901 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5902 					    WQ_UNBOUND_MAX_ACTIVE);
5903 	system_freezable_wq = alloc_workqueue("events_freezable",
5904 					      WQ_FREEZABLE, 0);
5905 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5906 					      WQ_POWER_EFFICIENT, 0);
5907 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5908 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5909 					      0);
5910 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5911 	       !system_unbound_wq || !system_freezable_wq ||
5912 	       !system_power_efficient_wq ||
5913 	       !system_freezable_power_efficient_wq);
5914 
5915 	return 0;
5916 }
5917 
5918 /**
5919  * workqueue_init - bring workqueue subsystem fully online
5920  *
5921  * This is the latter half of two-staged workqueue subsystem initialization
5922  * and invoked as soon as kthreads can be created and scheduled.
5923  * Workqueues have been created and work items queued on them, but there
5924  * are no kworkers executing the work items yet.  Populate the worker pools
5925  * with the initial workers and enable future kworker creations.
5926  */
5927 int __init workqueue_init(void)
5928 {
5929 	struct workqueue_struct *wq;
5930 	struct worker_pool *pool;
5931 	int cpu, bkt;
5932 
5933 	/*
5934 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5935 	 * CPU to node mapping may not be available that early on some
5936 	 * archs such as power and arm64.  As per-cpu pools created
5937 	 * previously could be missing node hint and unbound pools NUMA
5938 	 * affinity, fix them up.
5939 	 *
5940 	 * Also, while iterating workqueues, create rescuers if requested.
5941 	 */
5942 	wq_numa_init();
5943 
5944 	mutex_lock(&wq_pool_mutex);
5945 
5946 	for_each_possible_cpu(cpu) {
5947 		for_each_cpu_worker_pool(pool, cpu) {
5948 			pool->node = cpu_to_node(cpu);
5949 		}
5950 	}
5951 
5952 	list_for_each_entry(wq, &workqueues, list) {
5953 		wq_update_unbound_numa(wq, smp_processor_id(), true);
5954 		WARN(init_rescuer(wq),
5955 		     "workqueue: failed to create early rescuer for %s",
5956 		     wq->name);
5957 	}
5958 
5959 	mutex_unlock(&wq_pool_mutex);
5960 
5961 	/* create the initial workers */
5962 	for_each_online_cpu(cpu) {
5963 		for_each_cpu_worker_pool(pool, cpu) {
5964 			pool->flags &= ~POOL_DISASSOCIATED;
5965 			BUG_ON(!create_worker(pool));
5966 		}
5967 	}
5968 
5969 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5970 		BUG_ON(!create_worker(pool));
5971 
5972 	wq_online = true;
5973 	wq_watchdog_init();
5974 
5975 	return 0;
5976 }
5977