1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/core-api/workqueue.rst for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 #include <linux/jhash.h> 45 #include <linux/hashtable.h> 46 #include <linux/rculist.h> 47 #include <linux/nodemask.h> 48 #include <linux/moduleparam.h> 49 #include <linux/uaccess.h> 50 #include <linux/sched/isolation.h> 51 #include <linux/nmi.h> 52 53 #include "workqueue_internal.h" 54 55 enum { 56 /* 57 * worker_pool flags 58 * 59 * A bound pool is either associated or disassociated with its CPU. 60 * While associated (!DISASSOCIATED), all workers are bound to the 61 * CPU and none has %WORKER_UNBOUND set and concurrency management 62 * is in effect. 63 * 64 * While DISASSOCIATED, the cpu may be offline and all workers have 65 * %WORKER_UNBOUND set and concurrency management disabled, and may 66 * be executing on any CPU. The pool behaves as an unbound one. 67 * 68 * Note that DISASSOCIATED should be flipped only while holding 69 * wq_pool_attach_mutex to avoid changing binding state while 70 * worker_attach_to_pool() is in progress. 71 */ 72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 74 75 /* worker flags */ 76 WORKER_DIE = 1 << 1, /* die die die */ 77 WORKER_IDLE = 1 << 2, /* is idle */ 78 WORKER_PREP = 1 << 3, /* preparing to run works */ 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 82 83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 84 WORKER_UNBOUND | WORKER_REBOUND, 85 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 87 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 90 91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 93 94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 95 /* call for help after 10ms 96 (min two ticks) */ 97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 98 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 99 100 /* 101 * Rescue workers are used only on emergencies and shared by 102 * all cpus. Give MIN_NICE. 103 */ 104 RESCUER_NICE_LEVEL = MIN_NICE, 105 HIGHPRI_NICE_LEVEL = MIN_NICE, 106 107 WQ_NAME_LEN = 24, 108 }; 109 110 /* 111 * Structure fields follow one of the following exclusion rules. 112 * 113 * I: Modifiable by initialization/destruction paths and read-only for 114 * everyone else. 115 * 116 * P: Preemption protected. Disabling preemption is enough and should 117 * only be modified and accessed from the local cpu. 118 * 119 * L: pool->lock protected. Access with pool->lock held. 120 * 121 * X: During normal operation, modification requires pool->lock and should 122 * be done only from local cpu. Either disabling preemption on local 123 * cpu or grabbing pool->lock is enough for read access. If 124 * POOL_DISASSOCIATED is set, it's identical to L. 125 * 126 * A: wq_pool_attach_mutex protected. 127 * 128 * PL: wq_pool_mutex protected. 129 * 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 131 * 132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 133 * 134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 135 * sched-RCU for reads. 136 * 137 * WQ: wq->mutex protected. 138 * 139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 140 * 141 * MD: wq_mayday_lock protected. 142 */ 143 144 /* struct worker is defined in workqueue_internal.h */ 145 146 struct worker_pool { 147 spinlock_t lock; /* the pool lock */ 148 int cpu; /* I: the associated cpu */ 149 int node; /* I: the associated node ID */ 150 int id; /* I: pool ID */ 151 unsigned int flags; /* X: flags */ 152 153 unsigned long watchdog_ts; /* L: watchdog timestamp */ 154 155 struct list_head worklist; /* L: list of pending works */ 156 157 int nr_workers; /* L: total number of workers */ 158 int nr_idle; /* L: currently idle workers */ 159 160 struct list_head idle_list; /* X: list of idle workers */ 161 struct timer_list idle_timer; /* L: worker idle timeout */ 162 struct timer_list mayday_timer; /* L: SOS timer for workers */ 163 164 /* a workers is either on busy_hash or idle_list, or the manager */ 165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 166 /* L: hash of busy workers */ 167 168 struct worker *manager; /* L: purely informational */ 169 struct list_head workers; /* A: attached workers */ 170 struct completion *detach_completion; /* all workers detached */ 171 172 struct ida worker_ida; /* worker IDs for task name */ 173 174 struct workqueue_attrs *attrs; /* I: worker attributes */ 175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 176 int refcnt; /* PL: refcnt for unbound pools */ 177 178 /* 179 * The current concurrency level. As it's likely to be accessed 180 * from other CPUs during try_to_wake_up(), put it in a separate 181 * cacheline. 182 */ 183 atomic_t nr_running ____cacheline_aligned_in_smp; 184 185 /* 186 * Destruction of pool is sched-RCU protected to allow dereferences 187 * from get_work_pool(). 188 */ 189 struct rcu_head rcu; 190 } ____cacheline_aligned_in_smp; 191 192 /* 193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 194 * of work_struct->data are used for flags and the remaining high bits 195 * point to the pwq; thus, pwqs need to be aligned at two's power of the 196 * number of flag bits. 197 */ 198 struct pool_workqueue { 199 struct worker_pool *pool; /* I: the associated pool */ 200 struct workqueue_struct *wq; /* I: the owning workqueue */ 201 int work_color; /* L: current color */ 202 int flush_color; /* L: flushing color */ 203 int refcnt; /* L: reference count */ 204 int nr_in_flight[WORK_NR_COLORS]; 205 /* L: nr of in_flight works */ 206 int nr_active; /* L: nr of active works */ 207 int max_active; /* L: max active works */ 208 struct list_head delayed_works; /* L: delayed works */ 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 210 struct list_head mayday_node; /* MD: node on wq->maydays */ 211 212 /* 213 * Release of unbound pwq is punted to system_wq. See put_pwq() 214 * and pwq_unbound_release_workfn() for details. pool_workqueue 215 * itself is also sched-RCU protected so that the first pwq can be 216 * determined without grabbing wq->mutex. 217 */ 218 struct work_struct unbound_release_work; 219 struct rcu_head rcu; 220 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 221 222 /* 223 * Structure used to wait for workqueue flush. 224 */ 225 struct wq_flusher { 226 struct list_head list; /* WQ: list of flushers */ 227 int flush_color; /* WQ: flush color waiting for */ 228 struct completion done; /* flush completion */ 229 }; 230 231 struct wq_device; 232 233 /* 234 * The externally visible workqueue. It relays the issued work items to 235 * the appropriate worker_pool through its pool_workqueues. 236 */ 237 struct workqueue_struct { 238 struct list_head pwqs; /* WR: all pwqs of this wq */ 239 struct list_head list; /* PR: list of all workqueues */ 240 241 struct mutex mutex; /* protects this wq */ 242 int work_color; /* WQ: current work color */ 243 int flush_color; /* WQ: current flush color */ 244 atomic_t nr_pwqs_to_flush; /* flush in progress */ 245 struct wq_flusher *first_flusher; /* WQ: first flusher */ 246 struct list_head flusher_queue; /* WQ: flush waiters */ 247 struct list_head flusher_overflow; /* WQ: flush overflow list */ 248 249 struct list_head maydays; /* MD: pwqs requesting rescue */ 250 struct worker *rescuer; /* I: rescue worker */ 251 252 int nr_drainers; /* WQ: drain in progress */ 253 int saved_max_active; /* WQ: saved pwq max_active */ 254 255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 257 258 #ifdef CONFIG_SYSFS 259 struct wq_device *wq_dev; /* I: for sysfs interface */ 260 #endif 261 #ifdef CONFIG_LOCKDEP 262 char *lock_name; 263 struct lock_class_key key; 264 struct lockdep_map lockdep_map; 265 #endif 266 char name[WQ_NAME_LEN]; /* I: workqueue name */ 267 268 /* 269 * Destruction of workqueue_struct is sched-RCU protected to allow 270 * walking the workqueues list without grabbing wq_pool_mutex. 271 * This is used to dump all workqueues from sysrq. 272 */ 273 struct rcu_head rcu; 274 275 /* hot fields used during command issue, aligned to cacheline */ 276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 279 }; 280 281 static struct kmem_cache *pwq_cache; 282 283 static cpumask_var_t *wq_numa_possible_cpumask; 284 /* possible CPUs of each node */ 285 286 static bool wq_disable_numa; 287 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 288 289 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 291 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 292 293 static bool wq_online; /* can kworkers be created yet? */ 294 295 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 296 297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 299 300 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 301 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 302 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 303 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 304 305 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 306 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 307 308 /* PL: allowable cpus for unbound wqs and work items */ 309 static cpumask_var_t wq_unbound_cpumask; 310 311 /* CPU where unbound work was last round robin scheduled from this CPU */ 312 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 313 314 /* 315 * Local execution of unbound work items is no longer guaranteed. The 316 * following always forces round-robin CPU selection on unbound work items 317 * to uncover usages which depend on it. 318 */ 319 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 320 static bool wq_debug_force_rr_cpu = true; 321 #else 322 static bool wq_debug_force_rr_cpu = false; 323 #endif 324 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 325 326 /* the per-cpu worker pools */ 327 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 328 329 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 330 331 /* PL: hash of all unbound pools keyed by pool->attrs */ 332 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 333 334 /* I: attributes used when instantiating standard unbound pools on demand */ 335 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 336 337 /* I: attributes used when instantiating ordered pools on demand */ 338 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 339 340 struct workqueue_struct *system_wq __read_mostly; 341 EXPORT_SYMBOL(system_wq); 342 struct workqueue_struct *system_highpri_wq __read_mostly; 343 EXPORT_SYMBOL_GPL(system_highpri_wq); 344 struct workqueue_struct *system_long_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_long_wq); 346 struct workqueue_struct *system_unbound_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_unbound_wq); 348 struct workqueue_struct *system_freezable_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_freezable_wq); 350 struct workqueue_struct *system_power_efficient_wq __read_mostly; 351 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 352 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 353 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 354 355 static int worker_thread(void *__worker); 356 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 357 358 #define CREATE_TRACE_POINTS 359 #include <trace/events/workqueue.h> 360 361 #define assert_rcu_or_pool_mutex() \ 362 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 363 !lockdep_is_held(&wq_pool_mutex), \ 364 "sched RCU or wq_pool_mutex should be held") 365 366 #define assert_rcu_or_wq_mutex(wq) \ 367 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 368 !lockdep_is_held(&wq->mutex), \ 369 "sched RCU or wq->mutex should be held") 370 371 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 372 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 373 !lockdep_is_held(&wq->mutex) && \ 374 !lockdep_is_held(&wq_pool_mutex), \ 375 "sched RCU, wq->mutex or wq_pool_mutex should be held") 376 377 #define for_each_cpu_worker_pool(pool, cpu) \ 378 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 379 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 380 (pool)++) 381 382 /** 383 * for_each_pool - iterate through all worker_pools in the system 384 * @pool: iteration cursor 385 * @pi: integer used for iteration 386 * 387 * This must be called either with wq_pool_mutex held or sched RCU read 388 * locked. If the pool needs to be used beyond the locking in effect, the 389 * caller is responsible for guaranteeing that the pool stays online. 390 * 391 * The if/else clause exists only for the lockdep assertion and can be 392 * ignored. 393 */ 394 #define for_each_pool(pool, pi) \ 395 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 396 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 397 else 398 399 /** 400 * for_each_pool_worker - iterate through all workers of a worker_pool 401 * @worker: iteration cursor 402 * @pool: worker_pool to iterate workers of 403 * 404 * This must be called with wq_pool_attach_mutex. 405 * 406 * The if/else clause exists only for the lockdep assertion and can be 407 * ignored. 408 */ 409 #define for_each_pool_worker(worker, pool) \ 410 list_for_each_entry((worker), &(pool)->workers, node) \ 411 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 412 else 413 414 /** 415 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 416 * @pwq: iteration cursor 417 * @wq: the target workqueue 418 * 419 * This must be called either with wq->mutex held or sched RCU read locked. 420 * If the pwq needs to be used beyond the locking in effect, the caller is 421 * responsible for guaranteeing that the pwq stays online. 422 * 423 * The if/else clause exists only for the lockdep assertion and can be 424 * ignored. 425 */ 426 #define for_each_pwq(pwq, wq) \ 427 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 428 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 429 else 430 431 #ifdef CONFIG_DEBUG_OBJECTS_WORK 432 433 static struct debug_obj_descr work_debug_descr; 434 435 static void *work_debug_hint(void *addr) 436 { 437 return ((struct work_struct *) addr)->func; 438 } 439 440 static bool work_is_static_object(void *addr) 441 { 442 struct work_struct *work = addr; 443 444 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 445 } 446 447 /* 448 * fixup_init is called when: 449 * - an active object is initialized 450 */ 451 static bool work_fixup_init(void *addr, enum debug_obj_state state) 452 { 453 struct work_struct *work = addr; 454 455 switch (state) { 456 case ODEBUG_STATE_ACTIVE: 457 cancel_work_sync(work); 458 debug_object_init(work, &work_debug_descr); 459 return true; 460 default: 461 return false; 462 } 463 } 464 465 /* 466 * fixup_free is called when: 467 * - an active object is freed 468 */ 469 static bool work_fixup_free(void *addr, enum debug_obj_state state) 470 { 471 struct work_struct *work = addr; 472 473 switch (state) { 474 case ODEBUG_STATE_ACTIVE: 475 cancel_work_sync(work); 476 debug_object_free(work, &work_debug_descr); 477 return true; 478 default: 479 return false; 480 } 481 } 482 483 static struct debug_obj_descr work_debug_descr = { 484 .name = "work_struct", 485 .debug_hint = work_debug_hint, 486 .is_static_object = work_is_static_object, 487 .fixup_init = work_fixup_init, 488 .fixup_free = work_fixup_free, 489 }; 490 491 static inline void debug_work_activate(struct work_struct *work) 492 { 493 debug_object_activate(work, &work_debug_descr); 494 } 495 496 static inline void debug_work_deactivate(struct work_struct *work) 497 { 498 debug_object_deactivate(work, &work_debug_descr); 499 } 500 501 void __init_work(struct work_struct *work, int onstack) 502 { 503 if (onstack) 504 debug_object_init_on_stack(work, &work_debug_descr); 505 else 506 debug_object_init(work, &work_debug_descr); 507 } 508 EXPORT_SYMBOL_GPL(__init_work); 509 510 void destroy_work_on_stack(struct work_struct *work) 511 { 512 debug_object_free(work, &work_debug_descr); 513 } 514 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 515 516 void destroy_delayed_work_on_stack(struct delayed_work *work) 517 { 518 destroy_timer_on_stack(&work->timer); 519 debug_object_free(&work->work, &work_debug_descr); 520 } 521 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 522 523 #else 524 static inline void debug_work_activate(struct work_struct *work) { } 525 static inline void debug_work_deactivate(struct work_struct *work) { } 526 #endif 527 528 /** 529 * worker_pool_assign_id - allocate ID and assing it to @pool 530 * @pool: the pool pointer of interest 531 * 532 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 533 * successfully, -errno on failure. 534 */ 535 static int worker_pool_assign_id(struct worker_pool *pool) 536 { 537 int ret; 538 539 lockdep_assert_held(&wq_pool_mutex); 540 541 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 542 GFP_KERNEL); 543 if (ret >= 0) { 544 pool->id = ret; 545 return 0; 546 } 547 return ret; 548 } 549 550 /** 551 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 552 * @wq: the target workqueue 553 * @node: the node ID 554 * 555 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 556 * read locked. 557 * If the pwq needs to be used beyond the locking in effect, the caller is 558 * responsible for guaranteeing that the pwq stays online. 559 * 560 * Return: The unbound pool_workqueue for @node. 561 */ 562 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 563 int node) 564 { 565 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 566 567 /* 568 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 569 * delayed item is pending. The plan is to keep CPU -> NODE 570 * mapping valid and stable across CPU on/offlines. Once that 571 * happens, this workaround can be removed. 572 */ 573 if (unlikely(node == NUMA_NO_NODE)) 574 return wq->dfl_pwq; 575 576 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 577 } 578 579 static unsigned int work_color_to_flags(int color) 580 { 581 return color << WORK_STRUCT_COLOR_SHIFT; 582 } 583 584 static int get_work_color(struct work_struct *work) 585 { 586 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 587 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 588 } 589 590 static int work_next_color(int color) 591 { 592 return (color + 1) % WORK_NR_COLORS; 593 } 594 595 /* 596 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 597 * contain the pointer to the queued pwq. Once execution starts, the flag 598 * is cleared and the high bits contain OFFQ flags and pool ID. 599 * 600 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 601 * and clear_work_data() can be used to set the pwq, pool or clear 602 * work->data. These functions should only be called while the work is 603 * owned - ie. while the PENDING bit is set. 604 * 605 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 606 * corresponding to a work. Pool is available once the work has been 607 * queued anywhere after initialization until it is sync canceled. pwq is 608 * available only while the work item is queued. 609 * 610 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 611 * canceled. While being canceled, a work item may have its PENDING set 612 * but stay off timer and worklist for arbitrarily long and nobody should 613 * try to steal the PENDING bit. 614 */ 615 static inline void set_work_data(struct work_struct *work, unsigned long data, 616 unsigned long flags) 617 { 618 WARN_ON_ONCE(!work_pending(work)); 619 atomic_long_set(&work->data, data | flags | work_static(work)); 620 } 621 622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 623 unsigned long extra_flags) 624 { 625 set_work_data(work, (unsigned long)pwq, 626 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 627 } 628 629 static void set_work_pool_and_keep_pending(struct work_struct *work, 630 int pool_id) 631 { 632 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 633 WORK_STRUCT_PENDING); 634 } 635 636 static void set_work_pool_and_clear_pending(struct work_struct *work, 637 int pool_id) 638 { 639 /* 640 * The following wmb is paired with the implied mb in 641 * test_and_set_bit(PENDING) and ensures all updates to @work made 642 * here are visible to and precede any updates by the next PENDING 643 * owner. 644 */ 645 smp_wmb(); 646 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 647 /* 648 * The following mb guarantees that previous clear of a PENDING bit 649 * will not be reordered with any speculative LOADS or STORES from 650 * work->current_func, which is executed afterwards. This possible 651 * reordering can lead to a missed execution on attempt to queue 652 * the same @work. E.g. consider this case: 653 * 654 * CPU#0 CPU#1 655 * ---------------------------- -------------------------------- 656 * 657 * 1 STORE event_indicated 658 * 2 queue_work_on() { 659 * 3 test_and_set_bit(PENDING) 660 * 4 } set_..._and_clear_pending() { 661 * 5 set_work_data() # clear bit 662 * 6 smp_mb() 663 * 7 work->current_func() { 664 * 8 LOAD event_indicated 665 * } 666 * 667 * Without an explicit full barrier speculative LOAD on line 8 can 668 * be executed before CPU#0 does STORE on line 1. If that happens, 669 * CPU#0 observes the PENDING bit is still set and new execution of 670 * a @work is not queued in a hope, that CPU#1 will eventually 671 * finish the queued @work. Meanwhile CPU#1 does not see 672 * event_indicated is set, because speculative LOAD was executed 673 * before actual STORE. 674 */ 675 smp_mb(); 676 } 677 678 static void clear_work_data(struct work_struct *work) 679 { 680 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 681 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 682 } 683 684 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 685 { 686 unsigned long data = atomic_long_read(&work->data); 687 688 if (data & WORK_STRUCT_PWQ) 689 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 690 else 691 return NULL; 692 } 693 694 /** 695 * get_work_pool - return the worker_pool a given work was associated with 696 * @work: the work item of interest 697 * 698 * Pools are created and destroyed under wq_pool_mutex, and allows read 699 * access under sched-RCU read lock. As such, this function should be 700 * called under wq_pool_mutex or with preemption disabled. 701 * 702 * All fields of the returned pool are accessible as long as the above 703 * mentioned locking is in effect. If the returned pool needs to be used 704 * beyond the critical section, the caller is responsible for ensuring the 705 * returned pool is and stays online. 706 * 707 * Return: The worker_pool @work was last associated with. %NULL if none. 708 */ 709 static struct worker_pool *get_work_pool(struct work_struct *work) 710 { 711 unsigned long data = atomic_long_read(&work->data); 712 int pool_id; 713 714 assert_rcu_or_pool_mutex(); 715 716 if (data & WORK_STRUCT_PWQ) 717 return ((struct pool_workqueue *) 718 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 719 720 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 721 if (pool_id == WORK_OFFQ_POOL_NONE) 722 return NULL; 723 724 return idr_find(&worker_pool_idr, pool_id); 725 } 726 727 /** 728 * get_work_pool_id - return the worker pool ID a given work is associated with 729 * @work: the work item of interest 730 * 731 * Return: The worker_pool ID @work was last associated with. 732 * %WORK_OFFQ_POOL_NONE if none. 733 */ 734 static int get_work_pool_id(struct work_struct *work) 735 { 736 unsigned long data = atomic_long_read(&work->data); 737 738 if (data & WORK_STRUCT_PWQ) 739 return ((struct pool_workqueue *) 740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 741 742 return data >> WORK_OFFQ_POOL_SHIFT; 743 } 744 745 static void mark_work_canceling(struct work_struct *work) 746 { 747 unsigned long pool_id = get_work_pool_id(work); 748 749 pool_id <<= WORK_OFFQ_POOL_SHIFT; 750 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 751 } 752 753 static bool work_is_canceling(struct work_struct *work) 754 { 755 unsigned long data = atomic_long_read(&work->data); 756 757 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 758 } 759 760 /* 761 * Policy functions. These define the policies on how the global worker 762 * pools are managed. Unless noted otherwise, these functions assume that 763 * they're being called with pool->lock held. 764 */ 765 766 static bool __need_more_worker(struct worker_pool *pool) 767 { 768 return !atomic_read(&pool->nr_running); 769 } 770 771 /* 772 * Need to wake up a worker? Called from anything but currently 773 * running workers. 774 * 775 * Note that, because unbound workers never contribute to nr_running, this 776 * function will always return %true for unbound pools as long as the 777 * worklist isn't empty. 778 */ 779 static bool need_more_worker(struct worker_pool *pool) 780 { 781 return !list_empty(&pool->worklist) && __need_more_worker(pool); 782 } 783 784 /* Can I start working? Called from busy but !running workers. */ 785 static bool may_start_working(struct worker_pool *pool) 786 { 787 return pool->nr_idle; 788 } 789 790 /* Do I need to keep working? Called from currently running workers. */ 791 static bool keep_working(struct worker_pool *pool) 792 { 793 return !list_empty(&pool->worklist) && 794 atomic_read(&pool->nr_running) <= 1; 795 } 796 797 /* Do we need a new worker? Called from manager. */ 798 static bool need_to_create_worker(struct worker_pool *pool) 799 { 800 return need_more_worker(pool) && !may_start_working(pool); 801 } 802 803 /* Do we have too many workers and should some go away? */ 804 static bool too_many_workers(struct worker_pool *pool) 805 { 806 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 807 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 808 int nr_busy = pool->nr_workers - nr_idle; 809 810 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 811 } 812 813 /* 814 * Wake up functions. 815 */ 816 817 /* Return the first idle worker. Safe with preemption disabled */ 818 static struct worker *first_idle_worker(struct worker_pool *pool) 819 { 820 if (unlikely(list_empty(&pool->idle_list))) 821 return NULL; 822 823 return list_first_entry(&pool->idle_list, struct worker, entry); 824 } 825 826 /** 827 * wake_up_worker - wake up an idle worker 828 * @pool: worker pool to wake worker from 829 * 830 * Wake up the first idle worker of @pool. 831 * 832 * CONTEXT: 833 * spin_lock_irq(pool->lock). 834 */ 835 static void wake_up_worker(struct worker_pool *pool) 836 { 837 struct worker *worker = first_idle_worker(pool); 838 839 if (likely(worker)) 840 wake_up_process(worker->task); 841 } 842 843 /** 844 * wq_worker_running - a worker is running again 845 * @task: task waking up 846 * 847 * This function is called when a worker returns from schedule() 848 */ 849 void wq_worker_running(struct task_struct *task) 850 { 851 struct worker *worker = kthread_data(task); 852 853 if (!worker->sleeping) 854 return; 855 if (!(worker->flags & WORKER_NOT_RUNNING)) 856 atomic_inc(&worker->pool->nr_running); 857 worker->sleeping = 0; 858 } 859 860 /** 861 * wq_worker_sleeping - a worker is going to sleep 862 * @task: task going to sleep 863 * 864 * This function is called from schedule() when a busy worker is 865 * going to sleep. 866 */ 867 void wq_worker_sleeping(struct task_struct *task) 868 { 869 struct worker *next, *worker = kthread_data(task); 870 struct worker_pool *pool; 871 872 /* 873 * Rescuers, which may not have all the fields set up like normal 874 * workers, also reach here, let's not access anything before 875 * checking NOT_RUNNING. 876 */ 877 if (worker->flags & WORKER_NOT_RUNNING) 878 return; 879 880 pool = worker->pool; 881 882 if (WARN_ON_ONCE(worker->sleeping)) 883 return; 884 885 worker->sleeping = 1; 886 spin_lock_irq(&pool->lock); 887 888 /* 889 * The counterpart of the following dec_and_test, implied mb, 890 * worklist not empty test sequence is in insert_work(). 891 * Please read comment there. 892 * 893 * NOT_RUNNING is clear. This means that we're bound to and 894 * running on the local cpu w/ rq lock held and preemption 895 * disabled, which in turn means that none else could be 896 * manipulating idle_list, so dereferencing idle_list without pool 897 * lock is safe. 898 */ 899 if (atomic_dec_and_test(&pool->nr_running) && 900 !list_empty(&pool->worklist)) { 901 next = first_idle_worker(pool); 902 if (next) 903 wake_up_process(next->task); 904 } 905 spin_unlock_irq(&pool->lock); 906 } 907 908 /** 909 * wq_worker_last_func - retrieve worker's last work function 910 * 911 * Determine the last function a worker executed. This is called from 912 * the scheduler to get a worker's last known identity. 913 * 914 * CONTEXT: 915 * spin_lock_irq(rq->lock) 916 * 917 * This function is called during schedule() when a kworker is going 918 * to sleep. It's used by psi to identify aggregation workers during 919 * dequeuing, to allow periodic aggregation to shut-off when that 920 * worker is the last task in the system or cgroup to go to sleep. 921 * 922 * As this function doesn't involve any workqueue-related locking, it 923 * only returns stable values when called from inside the scheduler's 924 * queuing and dequeuing paths, when @task, which must be a kworker, 925 * is guaranteed to not be processing any works. 926 * 927 * Return: 928 * The last work function %current executed as a worker, NULL if it 929 * hasn't executed any work yet. 930 */ 931 work_func_t wq_worker_last_func(struct task_struct *task) 932 { 933 struct worker *worker = kthread_data(task); 934 935 return worker->last_func; 936 } 937 938 /** 939 * worker_set_flags - set worker flags and adjust nr_running accordingly 940 * @worker: self 941 * @flags: flags to set 942 * 943 * Set @flags in @worker->flags and adjust nr_running accordingly. 944 * 945 * CONTEXT: 946 * spin_lock_irq(pool->lock) 947 */ 948 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 949 { 950 struct worker_pool *pool = worker->pool; 951 952 WARN_ON_ONCE(worker->task != current); 953 954 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 955 if ((flags & WORKER_NOT_RUNNING) && 956 !(worker->flags & WORKER_NOT_RUNNING)) { 957 atomic_dec(&pool->nr_running); 958 } 959 960 worker->flags |= flags; 961 } 962 963 /** 964 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 965 * @worker: self 966 * @flags: flags to clear 967 * 968 * Clear @flags in @worker->flags and adjust nr_running accordingly. 969 * 970 * CONTEXT: 971 * spin_lock_irq(pool->lock) 972 */ 973 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 974 { 975 struct worker_pool *pool = worker->pool; 976 unsigned int oflags = worker->flags; 977 978 WARN_ON_ONCE(worker->task != current); 979 980 worker->flags &= ~flags; 981 982 /* 983 * If transitioning out of NOT_RUNNING, increment nr_running. Note 984 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 985 * of multiple flags, not a single flag. 986 */ 987 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 988 if (!(worker->flags & WORKER_NOT_RUNNING)) 989 atomic_inc(&pool->nr_running); 990 } 991 992 /** 993 * find_worker_executing_work - find worker which is executing a work 994 * @pool: pool of interest 995 * @work: work to find worker for 996 * 997 * Find a worker which is executing @work on @pool by searching 998 * @pool->busy_hash which is keyed by the address of @work. For a worker 999 * to match, its current execution should match the address of @work and 1000 * its work function. This is to avoid unwanted dependency between 1001 * unrelated work executions through a work item being recycled while still 1002 * being executed. 1003 * 1004 * This is a bit tricky. A work item may be freed once its execution 1005 * starts and nothing prevents the freed area from being recycled for 1006 * another work item. If the same work item address ends up being reused 1007 * before the original execution finishes, workqueue will identify the 1008 * recycled work item as currently executing and make it wait until the 1009 * current execution finishes, introducing an unwanted dependency. 1010 * 1011 * This function checks the work item address and work function to avoid 1012 * false positives. Note that this isn't complete as one may construct a 1013 * work function which can introduce dependency onto itself through a 1014 * recycled work item. Well, if somebody wants to shoot oneself in the 1015 * foot that badly, there's only so much we can do, and if such deadlock 1016 * actually occurs, it should be easy to locate the culprit work function. 1017 * 1018 * CONTEXT: 1019 * spin_lock_irq(pool->lock). 1020 * 1021 * Return: 1022 * Pointer to worker which is executing @work if found, %NULL 1023 * otherwise. 1024 */ 1025 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1026 struct work_struct *work) 1027 { 1028 struct worker *worker; 1029 1030 hash_for_each_possible(pool->busy_hash, worker, hentry, 1031 (unsigned long)work) 1032 if (worker->current_work == work && 1033 worker->current_func == work->func) 1034 return worker; 1035 1036 return NULL; 1037 } 1038 1039 /** 1040 * move_linked_works - move linked works to a list 1041 * @work: start of series of works to be scheduled 1042 * @head: target list to append @work to 1043 * @nextp: out parameter for nested worklist walking 1044 * 1045 * Schedule linked works starting from @work to @head. Work series to 1046 * be scheduled starts at @work and includes any consecutive work with 1047 * WORK_STRUCT_LINKED set in its predecessor. 1048 * 1049 * If @nextp is not NULL, it's updated to point to the next work of 1050 * the last scheduled work. This allows move_linked_works() to be 1051 * nested inside outer list_for_each_entry_safe(). 1052 * 1053 * CONTEXT: 1054 * spin_lock_irq(pool->lock). 1055 */ 1056 static void move_linked_works(struct work_struct *work, struct list_head *head, 1057 struct work_struct **nextp) 1058 { 1059 struct work_struct *n; 1060 1061 /* 1062 * Linked worklist will always end before the end of the list, 1063 * use NULL for list head. 1064 */ 1065 list_for_each_entry_safe_from(work, n, NULL, entry) { 1066 list_move_tail(&work->entry, head); 1067 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1068 break; 1069 } 1070 1071 /* 1072 * If we're already inside safe list traversal and have moved 1073 * multiple works to the scheduled queue, the next position 1074 * needs to be updated. 1075 */ 1076 if (nextp) 1077 *nextp = n; 1078 } 1079 1080 /** 1081 * get_pwq - get an extra reference on the specified pool_workqueue 1082 * @pwq: pool_workqueue to get 1083 * 1084 * Obtain an extra reference on @pwq. The caller should guarantee that 1085 * @pwq has positive refcnt and be holding the matching pool->lock. 1086 */ 1087 static void get_pwq(struct pool_workqueue *pwq) 1088 { 1089 lockdep_assert_held(&pwq->pool->lock); 1090 WARN_ON_ONCE(pwq->refcnt <= 0); 1091 pwq->refcnt++; 1092 } 1093 1094 /** 1095 * put_pwq - put a pool_workqueue reference 1096 * @pwq: pool_workqueue to put 1097 * 1098 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1099 * destruction. The caller should be holding the matching pool->lock. 1100 */ 1101 static void put_pwq(struct pool_workqueue *pwq) 1102 { 1103 lockdep_assert_held(&pwq->pool->lock); 1104 if (likely(--pwq->refcnt)) 1105 return; 1106 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1107 return; 1108 /* 1109 * @pwq can't be released under pool->lock, bounce to 1110 * pwq_unbound_release_workfn(). This never recurses on the same 1111 * pool->lock as this path is taken only for unbound workqueues and 1112 * the release work item is scheduled on a per-cpu workqueue. To 1113 * avoid lockdep warning, unbound pool->locks are given lockdep 1114 * subclass of 1 in get_unbound_pool(). 1115 */ 1116 schedule_work(&pwq->unbound_release_work); 1117 } 1118 1119 /** 1120 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1121 * @pwq: pool_workqueue to put (can be %NULL) 1122 * 1123 * put_pwq() with locking. This function also allows %NULL @pwq. 1124 */ 1125 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1126 { 1127 if (pwq) { 1128 /* 1129 * As both pwqs and pools are sched-RCU protected, the 1130 * following lock operations are safe. 1131 */ 1132 spin_lock_irq(&pwq->pool->lock); 1133 put_pwq(pwq); 1134 spin_unlock_irq(&pwq->pool->lock); 1135 } 1136 } 1137 1138 static void pwq_activate_delayed_work(struct work_struct *work) 1139 { 1140 struct pool_workqueue *pwq = get_work_pwq(work); 1141 1142 trace_workqueue_activate_work(work); 1143 if (list_empty(&pwq->pool->worklist)) 1144 pwq->pool->watchdog_ts = jiffies; 1145 move_linked_works(work, &pwq->pool->worklist, NULL); 1146 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1147 pwq->nr_active++; 1148 } 1149 1150 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1151 { 1152 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1153 struct work_struct, entry); 1154 1155 pwq_activate_delayed_work(work); 1156 } 1157 1158 /** 1159 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1160 * @pwq: pwq of interest 1161 * @color: color of work which left the queue 1162 * 1163 * A work either has completed or is removed from pending queue, 1164 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1165 * 1166 * CONTEXT: 1167 * spin_lock_irq(pool->lock). 1168 */ 1169 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1170 { 1171 /* uncolored work items don't participate in flushing or nr_active */ 1172 if (color == WORK_NO_COLOR) 1173 goto out_put; 1174 1175 pwq->nr_in_flight[color]--; 1176 1177 pwq->nr_active--; 1178 if (!list_empty(&pwq->delayed_works)) { 1179 /* one down, submit a delayed one */ 1180 if (pwq->nr_active < pwq->max_active) 1181 pwq_activate_first_delayed(pwq); 1182 } 1183 1184 /* is flush in progress and are we at the flushing tip? */ 1185 if (likely(pwq->flush_color != color)) 1186 goto out_put; 1187 1188 /* are there still in-flight works? */ 1189 if (pwq->nr_in_flight[color]) 1190 goto out_put; 1191 1192 /* this pwq is done, clear flush_color */ 1193 pwq->flush_color = -1; 1194 1195 /* 1196 * If this was the last pwq, wake up the first flusher. It 1197 * will handle the rest. 1198 */ 1199 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1200 complete(&pwq->wq->first_flusher->done); 1201 out_put: 1202 put_pwq(pwq); 1203 } 1204 1205 /** 1206 * try_to_grab_pending - steal work item from worklist and disable irq 1207 * @work: work item to steal 1208 * @is_dwork: @work is a delayed_work 1209 * @flags: place to store irq state 1210 * 1211 * Try to grab PENDING bit of @work. This function can handle @work in any 1212 * stable state - idle, on timer or on worklist. 1213 * 1214 * Return: 1215 * 1 if @work was pending and we successfully stole PENDING 1216 * 0 if @work was idle and we claimed PENDING 1217 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1218 * -ENOENT if someone else is canceling @work, this state may persist 1219 * for arbitrarily long 1220 * 1221 * Note: 1222 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1223 * interrupted while holding PENDING and @work off queue, irq must be 1224 * disabled on entry. This, combined with delayed_work->timer being 1225 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1226 * 1227 * On successful return, >= 0, irq is disabled and the caller is 1228 * responsible for releasing it using local_irq_restore(*@flags). 1229 * 1230 * This function is safe to call from any context including IRQ handler. 1231 */ 1232 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1233 unsigned long *flags) 1234 { 1235 struct worker_pool *pool; 1236 struct pool_workqueue *pwq; 1237 1238 local_irq_save(*flags); 1239 1240 /* try to steal the timer if it exists */ 1241 if (is_dwork) { 1242 struct delayed_work *dwork = to_delayed_work(work); 1243 1244 /* 1245 * dwork->timer is irqsafe. If del_timer() fails, it's 1246 * guaranteed that the timer is not queued anywhere and not 1247 * running on the local CPU. 1248 */ 1249 if (likely(del_timer(&dwork->timer))) 1250 return 1; 1251 } 1252 1253 /* try to claim PENDING the normal way */ 1254 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1255 return 0; 1256 1257 /* 1258 * The queueing is in progress, or it is already queued. Try to 1259 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1260 */ 1261 pool = get_work_pool(work); 1262 if (!pool) 1263 goto fail; 1264 1265 spin_lock(&pool->lock); 1266 /* 1267 * work->data is guaranteed to point to pwq only while the work 1268 * item is queued on pwq->wq, and both updating work->data to point 1269 * to pwq on queueing and to pool on dequeueing are done under 1270 * pwq->pool->lock. This in turn guarantees that, if work->data 1271 * points to pwq which is associated with a locked pool, the work 1272 * item is currently queued on that pool. 1273 */ 1274 pwq = get_work_pwq(work); 1275 if (pwq && pwq->pool == pool) { 1276 debug_work_deactivate(work); 1277 1278 /* 1279 * A delayed work item cannot be grabbed directly because 1280 * it might have linked NO_COLOR work items which, if left 1281 * on the delayed_list, will confuse pwq->nr_active 1282 * management later on and cause stall. Make sure the work 1283 * item is activated before grabbing. 1284 */ 1285 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1286 pwq_activate_delayed_work(work); 1287 1288 list_del_init(&work->entry); 1289 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1290 1291 /* work->data points to pwq iff queued, point to pool */ 1292 set_work_pool_and_keep_pending(work, pool->id); 1293 1294 spin_unlock(&pool->lock); 1295 return 1; 1296 } 1297 spin_unlock(&pool->lock); 1298 fail: 1299 local_irq_restore(*flags); 1300 if (work_is_canceling(work)) 1301 return -ENOENT; 1302 cpu_relax(); 1303 return -EAGAIN; 1304 } 1305 1306 /** 1307 * insert_work - insert a work into a pool 1308 * @pwq: pwq @work belongs to 1309 * @work: work to insert 1310 * @head: insertion point 1311 * @extra_flags: extra WORK_STRUCT_* flags to set 1312 * 1313 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1314 * work_struct flags. 1315 * 1316 * CONTEXT: 1317 * spin_lock_irq(pool->lock). 1318 */ 1319 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1320 struct list_head *head, unsigned int extra_flags) 1321 { 1322 struct worker_pool *pool = pwq->pool; 1323 1324 /* we own @work, set data and link */ 1325 set_work_pwq(work, pwq, extra_flags); 1326 list_add_tail(&work->entry, head); 1327 get_pwq(pwq); 1328 1329 /* 1330 * Ensure either wq_worker_sleeping() sees the above 1331 * list_add_tail() or we see zero nr_running to avoid workers lying 1332 * around lazily while there are works to be processed. 1333 */ 1334 smp_mb(); 1335 1336 if (__need_more_worker(pool)) 1337 wake_up_worker(pool); 1338 } 1339 1340 /* 1341 * Test whether @work is being queued from another work executing on the 1342 * same workqueue. 1343 */ 1344 static bool is_chained_work(struct workqueue_struct *wq) 1345 { 1346 struct worker *worker; 1347 1348 worker = current_wq_worker(); 1349 /* 1350 * Return %true iff I'm a worker executing a work item on @wq. If 1351 * I'm @worker, it's safe to dereference it without locking. 1352 */ 1353 return worker && worker->current_pwq->wq == wq; 1354 } 1355 1356 /* 1357 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1358 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1359 * avoid perturbing sensitive tasks. 1360 */ 1361 static int wq_select_unbound_cpu(int cpu) 1362 { 1363 static bool printed_dbg_warning; 1364 int new_cpu; 1365 1366 if (likely(!wq_debug_force_rr_cpu)) { 1367 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1368 return cpu; 1369 } else if (!printed_dbg_warning) { 1370 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1371 printed_dbg_warning = true; 1372 } 1373 1374 if (cpumask_empty(wq_unbound_cpumask)) 1375 return cpu; 1376 1377 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1378 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1379 if (unlikely(new_cpu >= nr_cpu_ids)) { 1380 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1381 if (unlikely(new_cpu >= nr_cpu_ids)) 1382 return cpu; 1383 } 1384 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1385 1386 return new_cpu; 1387 } 1388 1389 static void __queue_work(int cpu, struct workqueue_struct *wq, 1390 struct work_struct *work) 1391 { 1392 struct pool_workqueue *pwq; 1393 struct worker_pool *last_pool; 1394 struct list_head *worklist; 1395 unsigned int work_flags; 1396 unsigned int req_cpu = cpu; 1397 1398 /* 1399 * While a work item is PENDING && off queue, a task trying to 1400 * steal the PENDING will busy-loop waiting for it to either get 1401 * queued or lose PENDING. Grabbing PENDING and queueing should 1402 * happen with IRQ disabled. 1403 */ 1404 lockdep_assert_irqs_disabled(); 1405 1406 debug_work_activate(work); 1407 1408 /* if draining, only works from the same workqueue are allowed */ 1409 if (unlikely(wq->flags & __WQ_DRAINING) && 1410 WARN_ON_ONCE(!is_chained_work(wq))) 1411 return; 1412 retry: 1413 if (req_cpu == WORK_CPU_UNBOUND) 1414 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1415 1416 /* pwq which will be used unless @work is executing elsewhere */ 1417 if (!(wq->flags & WQ_UNBOUND)) 1418 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1419 else 1420 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1421 1422 /* 1423 * If @work was previously on a different pool, it might still be 1424 * running there, in which case the work needs to be queued on that 1425 * pool to guarantee non-reentrancy. 1426 */ 1427 last_pool = get_work_pool(work); 1428 if (last_pool && last_pool != pwq->pool) { 1429 struct worker *worker; 1430 1431 spin_lock(&last_pool->lock); 1432 1433 worker = find_worker_executing_work(last_pool, work); 1434 1435 if (worker && worker->current_pwq->wq == wq) { 1436 pwq = worker->current_pwq; 1437 } else { 1438 /* meh... not running there, queue here */ 1439 spin_unlock(&last_pool->lock); 1440 spin_lock(&pwq->pool->lock); 1441 } 1442 } else { 1443 spin_lock(&pwq->pool->lock); 1444 } 1445 1446 /* 1447 * pwq is determined and locked. For unbound pools, we could have 1448 * raced with pwq release and it could already be dead. If its 1449 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1450 * without another pwq replacing it in the numa_pwq_tbl or while 1451 * work items are executing on it, so the retrying is guaranteed to 1452 * make forward-progress. 1453 */ 1454 if (unlikely(!pwq->refcnt)) { 1455 if (wq->flags & WQ_UNBOUND) { 1456 spin_unlock(&pwq->pool->lock); 1457 cpu_relax(); 1458 goto retry; 1459 } 1460 /* oops */ 1461 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1462 wq->name, cpu); 1463 } 1464 1465 /* pwq determined, queue */ 1466 trace_workqueue_queue_work(req_cpu, pwq, work); 1467 1468 if (WARN_ON(!list_empty(&work->entry))) { 1469 spin_unlock(&pwq->pool->lock); 1470 return; 1471 } 1472 1473 pwq->nr_in_flight[pwq->work_color]++; 1474 work_flags = work_color_to_flags(pwq->work_color); 1475 1476 if (likely(pwq->nr_active < pwq->max_active)) { 1477 trace_workqueue_activate_work(work); 1478 pwq->nr_active++; 1479 worklist = &pwq->pool->worklist; 1480 if (list_empty(worklist)) 1481 pwq->pool->watchdog_ts = jiffies; 1482 } else { 1483 work_flags |= WORK_STRUCT_DELAYED; 1484 worklist = &pwq->delayed_works; 1485 } 1486 1487 insert_work(pwq, work, worklist, work_flags); 1488 1489 spin_unlock(&pwq->pool->lock); 1490 } 1491 1492 /** 1493 * queue_work_on - queue work on specific cpu 1494 * @cpu: CPU number to execute work on 1495 * @wq: workqueue to use 1496 * @work: work to queue 1497 * 1498 * We queue the work to a specific CPU, the caller must ensure it 1499 * can't go away. 1500 * 1501 * Return: %false if @work was already on a queue, %true otherwise. 1502 */ 1503 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1504 struct work_struct *work) 1505 { 1506 bool ret = false; 1507 unsigned long flags; 1508 1509 local_irq_save(flags); 1510 1511 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1512 __queue_work(cpu, wq, work); 1513 ret = true; 1514 } 1515 1516 local_irq_restore(flags); 1517 return ret; 1518 } 1519 EXPORT_SYMBOL(queue_work_on); 1520 1521 /** 1522 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1523 * @node: NUMA node ID that we want to select a CPU from 1524 * 1525 * This function will attempt to find a "random" cpu available on a given 1526 * node. If there are no CPUs available on the given node it will return 1527 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1528 * available CPU if we need to schedule this work. 1529 */ 1530 static int workqueue_select_cpu_near(int node) 1531 { 1532 int cpu; 1533 1534 /* No point in doing this if NUMA isn't enabled for workqueues */ 1535 if (!wq_numa_enabled) 1536 return WORK_CPU_UNBOUND; 1537 1538 /* Delay binding to CPU if node is not valid or online */ 1539 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1540 return WORK_CPU_UNBOUND; 1541 1542 /* Use local node/cpu if we are already there */ 1543 cpu = raw_smp_processor_id(); 1544 if (node == cpu_to_node(cpu)) 1545 return cpu; 1546 1547 /* Use "random" otherwise know as "first" online CPU of node */ 1548 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1549 1550 /* If CPU is valid return that, otherwise just defer */ 1551 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1552 } 1553 1554 /** 1555 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1556 * @node: NUMA node that we are targeting the work for 1557 * @wq: workqueue to use 1558 * @work: work to queue 1559 * 1560 * We queue the work to a "random" CPU within a given NUMA node. The basic 1561 * idea here is to provide a way to somehow associate work with a given 1562 * NUMA node. 1563 * 1564 * This function will only make a best effort attempt at getting this onto 1565 * the right NUMA node. If no node is requested or the requested node is 1566 * offline then we just fall back to standard queue_work behavior. 1567 * 1568 * Currently the "random" CPU ends up being the first available CPU in the 1569 * intersection of cpu_online_mask and the cpumask of the node, unless we 1570 * are running on the node. In that case we just use the current CPU. 1571 * 1572 * Return: %false if @work was already on a queue, %true otherwise. 1573 */ 1574 bool queue_work_node(int node, struct workqueue_struct *wq, 1575 struct work_struct *work) 1576 { 1577 unsigned long flags; 1578 bool ret = false; 1579 1580 /* 1581 * This current implementation is specific to unbound workqueues. 1582 * Specifically we only return the first available CPU for a given 1583 * node instead of cycling through individual CPUs within the node. 1584 * 1585 * If this is used with a per-cpu workqueue then the logic in 1586 * workqueue_select_cpu_near would need to be updated to allow for 1587 * some round robin type logic. 1588 */ 1589 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1590 1591 local_irq_save(flags); 1592 1593 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1594 int cpu = workqueue_select_cpu_near(node); 1595 1596 __queue_work(cpu, wq, work); 1597 ret = true; 1598 } 1599 1600 local_irq_restore(flags); 1601 return ret; 1602 } 1603 EXPORT_SYMBOL_GPL(queue_work_node); 1604 1605 void delayed_work_timer_fn(struct timer_list *t) 1606 { 1607 struct delayed_work *dwork = from_timer(dwork, t, timer); 1608 1609 /* should have been called from irqsafe timer with irq already off */ 1610 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1611 } 1612 EXPORT_SYMBOL(delayed_work_timer_fn); 1613 1614 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1615 struct delayed_work *dwork, unsigned long delay) 1616 { 1617 struct timer_list *timer = &dwork->timer; 1618 struct work_struct *work = &dwork->work; 1619 1620 WARN_ON_ONCE(!wq); 1621 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1622 WARN_ON_ONCE(timer_pending(timer)); 1623 WARN_ON_ONCE(!list_empty(&work->entry)); 1624 1625 /* 1626 * If @delay is 0, queue @dwork->work immediately. This is for 1627 * both optimization and correctness. The earliest @timer can 1628 * expire is on the closest next tick and delayed_work users depend 1629 * on that there's no such delay when @delay is 0. 1630 */ 1631 if (!delay) { 1632 __queue_work(cpu, wq, &dwork->work); 1633 return; 1634 } 1635 1636 dwork->wq = wq; 1637 dwork->cpu = cpu; 1638 timer->expires = jiffies + delay; 1639 1640 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1641 add_timer_on(timer, cpu); 1642 else 1643 add_timer(timer); 1644 } 1645 1646 /** 1647 * queue_delayed_work_on - queue work on specific CPU after delay 1648 * @cpu: CPU number to execute work on 1649 * @wq: workqueue to use 1650 * @dwork: work to queue 1651 * @delay: number of jiffies to wait before queueing 1652 * 1653 * Return: %false if @work was already on a queue, %true otherwise. If 1654 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1655 * execution. 1656 */ 1657 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1658 struct delayed_work *dwork, unsigned long delay) 1659 { 1660 struct work_struct *work = &dwork->work; 1661 bool ret = false; 1662 unsigned long flags; 1663 1664 /* read the comment in __queue_work() */ 1665 local_irq_save(flags); 1666 1667 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1668 __queue_delayed_work(cpu, wq, dwork, delay); 1669 ret = true; 1670 } 1671 1672 local_irq_restore(flags); 1673 return ret; 1674 } 1675 EXPORT_SYMBOL(queue_delayed_work_on); 1676 1677 /** 1678 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1679 * @cpu: CPU number to execute work on 1680 * @wq: workqueue to use 1681 * @dwork: work to queue 1682 * @delay: number of jiffies to wait before queueing 1683 * 1684 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1685 * modify @dwork's timer so that it expires after @delay. If @delay is 1686 * zero, @work is guaranteed to be scheduled immediately regardless of its 1687 * current state. 1688 * 1689 * Return: %false if @dwork was idle and queued, %true if @dwork was 1690 * pending and its timer was modified. 1691 * 1692 * This function is safe to call from any context including IRQ handler. 1693 * See try_to_grab_pending() for details. 1694 */ 1695 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1696 struct delayed_work *dwork, unsigned long delay) 1697 { 1698 unsigned long flags; 1699 int ret; 1700 1701 do { 1702 ret = try_to_grab_pending(&dwork->work, true, &flags); 1703 } while (unlikely(ret == -EAGAIN)); 1704 1705 if (likely(ret >= 0)) { 1706 __queue_delayed_work(cpu, wq, dwork, delay); 1707 local_irq_restore(flags); 1708 } 1709 1710 /* -ENOENT from try_to_grab_pending() becomes %true */ 1711 return ret; 1712 } 1713 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1714 1715 static void rcu_work_rcufn(struct rcu_head *rcu) 1716 { 1717 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1718 1719 /* read the comment in __queue_work() */ 1720 local_irq_disable(); 1721 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1722 local_irq_enable(); 1723 } 1724 1725 /** 1726 * queue_rcu_work - queue work after a RCU grace period 1727 * @wq: workqueue to use 1728 * @rwork: work to queue 1729 * 1730 * Return: %false if @rwork was already pending, %true otherwise. Note 1731 * that a full RCU grace period is guaranteed only after a %true return. 1732 * While @rwork is guaranteed to be executed after a %false return, the 1733 * execution may happen before a full RCU grace period has passed. 1734 */ 1735 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1736 { 1737 struct work_struct *work = &rwork->work; 1738 1739 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1740 rwork->wq = wq; 1741 call_rcu(&rwork->rcu, rcu_work_rcufn); 1742 return true; 1743 } 1744 1745 return false; 1746 } 1747 EXPORT_SYMBOL(queue_rcu_work); 1748 1749 /** 1750 * worker_enter_idle - enter idle state 1751 * @worker: worker which is entering idle state 1752 * 1753 * @worker is entering idle state. Update stats and idle timer if 1754 * necessary. 1755 * 1756 * LOCKING: 1757 * spin_lock_irq(pool->lock). 1758 */ 1759 static void worker_enter_idle(struct worker *worker) 1760 { 1761 struct worker_pool *pool = worker->pool; 1762 1763 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1764 WARN_ON_ONCE(!list_empty(&worker->entry) && 1765 (worker->hentry.next || worker->hentry.pprev))) 1766 return; 1767 1768 /* can't use worker_set_flags(), also called from create_worker() */ 1769 worker->flags |= WORKER_IDLE; 1770 pool->nr_idle++; 1771 worker->last_active = jiffies; 1772 1773 /* idle_list is LIFO */ 1774 list_add(&worker->entry, &pool->idle_list); 1775 1776 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1777 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1778 1779 /* 1780 * Sanity check nr_running. Because unbind_workers() releases 1781 * pool->lock between setting %WORKER_UNBOUND and zapping 1782 * nr_running, the warning may trigger spuriously. Check iff 1783 * unbind is not in progress. 1784 */ 1785 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1786 pool->nr_workers == pool->nr_idle && 1787 atomic_read(&pool->nr_running)); 1788 } 1789 1790 /** 1791 * worker_leave_idle - leave idle state 1792 * @worker: worker which is leaving idle state 1793 * 1794 * @worker is leaving idle state. Update stats. 1795 * 1796 * LOCKING: 1797 * spin_lock_irq(pool->lock). 1798 */ 1799 static void worker_leave_idle(struct worker *worker) 1800 { 1801 struct worker_pool *pool = worker->pool; 1802 1803 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1804 return; 1805 worker_clr_flags(worker, WORKER_IDLE); 1806 pool->nr_idle--; 1807 list_del_init(&worker->entry); 1808 } 1809 1810 static struct worker *alloc_worker(int node) 1811 { 1812 struct worker *worker; 1813 1814 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1815 if (worker) { 1816 INIT_LIST_HEAD(&worker->entry); 1817 INIT_LIST_HEAD(&worker->scheduled); 1818 INIT_LIST_HEAD(&worker->node); 1819 /* on creation a worker is in !idle && prep state */ 1820 worker->flags = WORKER_PREP; 1821 } 1822 return worker; 1823 } 1824 1825 /** 1826 * worker_attach_to_pool() - attach a worker to a pool 1827 * @worker: worker to be attached 1828 * @pool: the target pool 1829 * 1830 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1831 * cpu-binding of @worker are kept coordinated with the pool across 1832 * cpu-[un]hotplugs. 1833 */ 1834 static void worker_attach_to_pool(struct worker *worker, 1835 struct worker_pool *pool) 1836 { 1837 mutex_lock(&wq_pool_attach_mutex); 1838 1839 /* 1840 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1841 * online CPUs. It'll be re-applied when any of the CPUs come up. 1842 */ 1843 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1844 1845 /* 1846 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1847 * stable across this function. See the comments above the flag 1848 * definition for details. 1849 */ 1850 if (pool->flags & POOL_DISASSOCIATED) 1851 worker->flags |= WORKER_UNBOUND; 1852 1853 list_add_tail(&worker->node, &pool->workers); 1854 worker->pool = pool; 1855 1856 mutex_unlock(&wq_pool_attach_mutex); 1857 } 1858 1859 /** 1860 * worker_detach_from_pool() - detach a worker from its pool 1861 * @worker: worker which is attached to its pool 1862 * 1863 * Undo the attaching which had been done in worker_attach_to_pool(). The 1864 * caller worker shouldn't access to the pool after detached except it has 1865 * other reference to the pool. 1866 */ 1867 static void worker_detach_from_pool(struct worker *worker) 1868 { 1869 struct worker_pool *pool = worker->pool; 1870 struct completion *detach_completion = NULL; 1871 1872 mutex_lock(&wq_pool_attach_mutex); 1873 1874 list_del(&worker->node); 1875 worker->pool = NULL; 1876 1877 if (list_empty(&pool->workers)) 1878 detach_completion = pool->detach_completion; 1879 mutex_unlock(&wq_pool_attach_mutex); 1880 1881 /* clear leftover flags without pool->lock after it is detached */ 1882 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1883 1884 if (detach_completion) 1885 complete(detach_completion); 1886 } 1887 1888 /** 1889 * create_worker - create a new workqueue worker 1890 * @pool: pool the new worker will belong to 1891 * 1892 * Create and start a new worker which is attached to @pool. 1893 * 1894 * CONTEXT: 1895 * Might sleep. Does GFP_KERNEL allocations. 1896 * 1897 * Return: 1898 * Pointer to the newly created worker. 1899 */ 1900 static struct worker *create_worker(struct worker_pool *pool) 1901 { 1902 struct worker *worker = NULL; 1903 int id = -1; 1904 char id_buf[16]; 1905 1906 /* ID is needed to determine kthread name */ 1907 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1908 if (id < 0) 1909 goto fail; 1910 1911 worker = alloc_worker(pool->node); 1912 if (!worker) 1913 goto fail; 1914 1915 worker->id = id; 1916 1917 if (pool->cpu >= 0) 1918 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1919 pool->attrs->nice < 0 ? "H" : ""); 1920 else 1921 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1922 1923 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1924 "kworker/%s", id_buf); 1925 if (IS_ERR(worker->task)) 1926 goto fail; 1927 1928 set_user_nice(worker->task, pool->attrs->nice); 1929 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1930 1931 /* successful, attach the worker to the pool */ 1932 worker_attach_to_pool(worker, pool); 1933 1934 /* start the newly created worker */ 1935 spin_lock_irq(&pool->lock); 1936 worker->pool->nr_workers++; 1937 worker_enter_idle(worker); 1938 wake_up_process(worker->task); 1939 spin_unlock_irq(&pool->lock); 1940 1941 return worker; 1942 1943 fail: 1944 if (id >= 0) 1945 ida_simple_remove(&pool->worker_ida, id); 1946 kfree(worker); 1947 return NULL; 1948 } 1949 1950 /** 1951 * destroy_worker - destroy a workqueue worker 1952 * @worker: worker to be destroyed 1953 * 1954 * Destroy @worker and adjust @pool stats accordingly. The worker should 1955 * be idle. 1956 * 1957 * CONTEXT: 1958 * spin_lock_irq(pool->lock). 1959 */ 1960 static void destroy_worker(struct worker *worker) 1961 { 1962 struct worker_pool *pool = worker->pool; 1963 1964 lockdep_assert_held(&pool->lock); 1965 1966 /* sanity check frenzy */ 1967 if (WARN_ON(worker->current_work) || 1968 WARN_ON(!list_empty(&worker->scheduled)) || 1969 WARN_ON(!(worker->flags & WORKER_IDLE))) 1970 return; 1971 1972 pool->nr_workers--; 1973 pool->nr_idle--; 1974 1975 list_del_init(&worker->entry); 1976 worker->flags |= WORKER_DIE; 1977 wake_up_process(worker->task); 1978 } 1979 1980 static void idle_worker_timeout(struct timer_list *t) 1981 { 1982 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1983 1984 spin_lock_irq(&pool->lock); 1985 1986 while (too_many_workers(pool)) { 1987 struct worker *worker; 1988 unsigned long expires; 1989 1990 /* idle_list is kept in LIFO order, check the last one */ 1991 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1992 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1993 1994 if (time_before(jiffies, expires)) { 1995 mod_timer(&pool->idle_timer, expires); 1996 break; 1997 } 1998 1999 destroy_worker(worker); 2000 } 2001 2002 spin_unlock_irq(&pool->lock); 2003 } 2004 2005 static void send_mayday(struct work_struct *work) 2006 { 2007 struct pool_workqueue *pwq = get_work_pwq(work); 2008 struct workqueue_struct *wq = pwq->wq; 2009 2010 lockdep_assert_held(&wq_mayday_lock); 2011 2012 if (!wq->rescuer) 2013 return; 2014 2015 /* mayday mayday mayday */ 2016 if (list_empty(&pwq->mayday_node)) { 2017 /* 2018 * If @pwq is for an unbound wq, its base ref may be put at 2019 * any time due to an attribute change. Pin @pwq until the 2020 * rescuer is done with it. 2021 */ 2022 get_pwq(pwq); 2023 list_add_tail(&pwq->mayday_node, &wq->maydays); 2024 wake_up_process(wq->rescuer->task); 2025 } 2026 } 2027 2028 static void pool_mayday_timeout(struct timer_list *t) 2029 { 2030 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2031 struct work_struct *work; 2032 2033 spin_lock_irq(&pool->lock); 2034 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2035 2036 if (need_to_create_worker(pool)) { 2037 /* 2038 * We've been trying to create a new worker but 2039 * haven't been successful. We might be hitting an 2040 * allocation deadlock. Send distress signals to 2041 * rescuers. 2042 */ 2043 list_for_each_entry(work, &pool->worklist, entry) 2044 send_mayday(work); 2045 } 2046 2047 spin_unlock(&wq_mayday_lock); 2048 spin_unlock_irq(&pool->lock); 2049 2050 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2051 } 2052 2053 /** 2054 * maybe_create_worker - create a new worker if necessary 2055 * @pool: pool to create a new worker for 2056 * 2057 * Create a new worker for @pool if necessary. @pool is guaranteed to 2058 * have at least one idle worker on return from this function. If 2059 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2060 * sent to all rescuers with works scheduled on @pool to resolve 2061 * possible allocation deadlock. 2062 * 2063 * On return, need_to_create_worker() is guaranteed to be %false and 2064 * may_start_working() %true. 2065 * 2066 * LOCKING: 2067 * spin_lock_irq(pool->lock) which may be released and regrabbed 2068 * multiple times. Does GFP_KERNEL allocations. Called only from 2069 * manager. 2070 */ 2071 static void maybe_create_worker(struct worker_pool *pool) 2072 __releases(&pool->lock) 2073 __acquires(&pool->lock) 2074 { 2075 restart: 2076 spin_unlock_irq(&pool->lock); 2077 2078 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2079 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2080 2081 while (true) { 2082 if (create_worker(pool) || !need_to_create_worker(pool)) 2083 break; 2084 2085 schedule_timeout_interruptible(CREATE_COOLDOWN); 2086 2087 if (!need_to_create_worker(pool)) 2088 break; 2089 } 2090 2091 del_timer_sync(&pool->mayday_timer); 2092 spin_lock_irq(&pool->lock); 2093 /* 2094 * This is necessary even after a new worker was just successfully 2095 * created as @pool->lock was dropped and the new worker might have 2096 * already become busy. 2097 */ 2098 if (need_to_create_worker(pool)) 2099 goto restart; 2100 } 2101 2102 /** 2103 * manage_workers - manage worker pool 2104 * @worker: self 2105 * 2106 * Assume the manager role and manage the worker pool @worker belongs 2107 * to. At any given time, there can be only zero or one manager per 2108 * pool. The exclusion is handled automatically by this function. 2109 * 2110 * The caller can safely start processing works on false return. On 2111 * true return, it's guaranteed that need_to_create_worker() is false 2112 * and may_start_working() is true. 2113 * 2114 * CONTEXT: 2115 * spin_lock_irq(pool->lock) which may be released and regrabbed 2116 * multiple times. Does GFP_KERNEL allocations. 2117 * 2118 * Return: 2119 * %false if the pool doesn't need management and the caller can safely 2120 * start processing works, %true if management function was performed and 2121 * the conditions that the caller verified before calling the function may 2122 * no longer be true. 2123 */ 2124 static bool manage_workers(struct worker *worker) 2125 { 2126 struct worker_pool *pool = worker->pool; 2127 2128 if (pool->flags & POOL_MANAGER_ACTIVE) 2129 return false; 2130 2131 pool->flags |= POOL_MANAGER_ACTIVE; 2132 pool->manager = worker; 2133 2134 maybe_create_worker(pool); 2135 2136 pool->manager = NULL; 2137 pool->flags &= ~POOL_MANAGER_ACTIVE; 2138 wake_up(&wq_manager_wait); 2139 return true; 2140 } 2141 2142 /** 2143 * process_one_work - process single work 2144 * @worker: self 2145 * @work: work to process 2146 * 2147 * Process @work. This function contains all the logics necessary to 2148 * process a single work including synchronization against and 2149 * interaction with other workers on the same cpu, queueing and 2150 * flushing. As long as context requirement is met, any worker can 2151 * call this function to process a work. 2152 * 2153 * CONTEXT: 2154 * spin_lock_irq(pool->lock) which is released and regrabbed. 2155 */ 2156 static void process_one_work(struct worker *worker, struct work_struct *work) 2157 __releases(&pool->lock) 2158 __acquires(&pool->lock) 2159 { 2160 struct pool_workqueue *pwq = get_work_pwq(work); 2161 struct worker_pool *pool = worker->pool; 2162 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2163 int work_color; 2164 struct worker *collision; 2165 #ifdef CONFIG_LOCKDEP 2166 /* 2167 * It is permissible to free the struct work_struct from 2168 * inside the function that is called from it, this we need to 2169 * take into account for lockdep too. To avoid bogus "held 2170 * lock freed" warnings as well as problems when looking into 2171 * work->lockdep_map, make a copy and use that here. 2172 */ 2173 struct lockdep_map lockdep_map; 2174 2175 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2176 #endif 2177 /* ensure we're on the correct CPU */ 2178 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2179 raw_smp_processor_id() != pool->cpu); 2180 2181 /* 2182 * A single work shouldn't be executed concurrently by 2183 * multiple workers on a single cpu. Check whether anyone is 2184 * already processing the work. If so, defer the work to the 2185 * currently executing one. 2186 */ 2187 collision = find_worker_executing_work(pool, work); 2188 if (unlikely(collision)) { 2189 move_linked_works(work, &collision->scheduled, NULL); 2190 return; 2191 } 2192 2193 /* claim and dequeue */ 2194 debug_work_deactivate(work); 2195 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2196 worker->current_work = work; 2197 worker->current_func = work->func; 2198 worker->current_pwq = pwq; 2199 work_color = get_work_color(work); 2200 2201 /* 2202 * Record wq name for cmdline and debug reporting, may get 2203 * overridden through set_worker_desc(). 2204 */ 2205 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2206 2207 list_del_init(&work->entry); 2208 2209 /* 2210 * CPU intensive works don't participate in concurrency management. 2211 * They're the scheduler's responsibility. This takes @worker out 2212 * of concurrency management and the next code block will chain 2213 * execution of the pending work items. 2214 */ 2215 if (unlikely(cpu_intensive)) 2216 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2217 2218 /* 2219 * Wake up another worker if necessary. The condition is always 2220 * false for normal per-cpu workers since nr_running would always 2221 * be >= 1 at this point. This is used to chain execution of the 2222 * pending work items for WORKER_NOT_RUNNING workers such as the 2223 * UNBOUND and CPU_INTENSIVE ones. 2224 */ 2225 if (need_more_worker(pool)) 2226 wake_up_worker(pool); 2227 2228 /* 2229 * Record the last pool and clear PENDING which should be the last 2230 * update to @work. Also, do this inside @pool->lock so that 2231 * PENDING and queued state changes happen together while IRQ is 2232 * disabled. 2233 */ 2234 set_work_pool_and_clear_pending(work, pool->id); 2235 2236 spin_unlock_irq(&pool->lock); 2237 2238 lock_map_acquire(&pwq->wq->lockdep_map); 2239 lock_map_acquire(&lockdep_map); 2240 /* 2241 * Strictly speaking we should mark the invariant state without holding 2242 * any locks, that is, before these two lock_map_acquire()'s. 2243 * 2244 * However, that would result in: 2245 * 2246 * A(W1) 2247 * WFC(C) 2248 * A(W1) 2249 * C(C) 2250 * 2251 * Which would create W1->C->W1 dependencies, even though there is no 2252 * actual deadlock possible. There are two solutions, using a 2253 * read-recursive acquire on the work(queue) 'locks', but this will then 2254 * hit the lockdep limitation on recursive locks, or simply discard 2255 * these locks. 2256 * 2257 * AFAICT there is no possible deadlock scenario between the 2258 * flush_work() and complete() primitives (except for single-threaded 2259 * workqueues), so hiding them isn't a problem. 2260 */ 2261 lockdep_invariant_state(true); 2262 trace_workqueue_execute_start(work); 2263 worker->current_func(work); 2264 /* 2265 * While we must be careful to not use "work" after this, the trace 2266 * point will only record its address. 2267 */ 2268 trace_workqueue_execute_end(work); 2269 lock_map_release(&lockdep_map); 2270 lock_map_release(&pwq->wq->lockdep_map); 2271 2272 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2273 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2274 " last function: %pf\n", 2275 current->comm, preempt_count(), task_pid_nr(current), 2276 worker->current_func); 2277 debug_show_held_locks(current); 2278 dump_stack(); 2279 } 2280 2281 /* 2282 * The following prevents a kworker from hogging CPU on !PREEMPT 2283 * kernels, where a requeueing work item waiting for something to 2284 * happen could deadlock with stop_machine as such work item could 2285 * indefinitely requeue itself while all other CPUs are trapped in 2286 * stop_machine. At the same time, report a quiescent RCU state so 2287 * the same condition doesn't freeze RCU. 2288 */ 2289 cond_resched(); 2290 2291 spin_lock_irq(&pool->lock); 2292 2293 /* clear cpu intensive status */ 2294 if (unlikely(cpu_intensive)) 2295 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2296 2297 /* tag the worker for identification in schedule() */ 2298 worker->last_func = worker->current_func; 2299 2300 /* we're done with it, release */ 2301 hash_del(&worker->hentry); 2302 worker->current_work = NULL; 2303 worker->current_func = NULL; 2304 worker->current_pwq = NULL; 2305 pwq_dec_nr_in_flight(pwq, work_color); 2306 } 2307 2308 /** 2309 * process_scheduled_works - process scheduled works 2310 * @worker: self 2311 * 2312 * Process all scheduled works. Please note that the scheduled list 2313 * may change while processing a work, so this function repeatedly 2314 * fetches a work from the top and executes it. 2315 * 2316 * CONTEXT: 2317 * spin_lock_irq(pool->lock) which may be released and regrabbed 2318 * multiple times. 2319 */ 2320 static void process_scheduled_works(struct worker *worker) 2321 { 2322 while (!list_empty(&worker->scheduled)) { 2323 struct work_struct *work = list_first_entry(&worker->scheduled, 2324 struct work_struct, entry); 2325 process_one_work(worker, work); 2326 } 2327 } 2328 2329 static void set_pf_worker(bool val) 2330 { 2331 mutex_lock(&wq_pool_attach_mutex); 2332 if (val) 2333 current->flags |= PF_WQ_WORKER; 2334 else 2335 current->flags &= ~PF_WQ_WORKER; 2336 mutex_unlock(&wq_pool_attach_mutex); 2337 } 2338 2339 /** 2340 * worker_thread - the worker thread function 2341 * @__worker: self 2342 * 2343 * The worker thread function. All workers belong to a worker_pool - 2344 * either a per-cpu one or dynamic unbound one. These workers process all 2345 * work items regardless of their specific target workqueue. The only 2346 * exception is work items which belong to workqueues with a rescuer which 2347 * will be explained in rescuer_thread(). 2348 * 2349 * Return: 0 2350 */ 2351 static int worker_thread(void *__worker) 2352 { 2353 struct worker *worker = __worker; 2354 struct worker_pool *pool = worker->pool; 2355 2356 /* tell the scheduler that this is a workqueue worker */ 2357 set_pf_worker(true); 2358 woke_up: 2359 spin_lock_irq(&pool->lock); 2360 2361 /* am I supposed to die? */ 2362 if (unlikely(worker->flags & WORKER_DIE)) { 2363 spin_unlock_irq(&pool->lock); 2364 WARN_ON_ONCE(!list_empty(&worker->entry)); 2365 set_pf_worker(false); 2366 2367 set_task_comm(worker->task, "kworker/dying"); 2368 ida_simple_remove(&pool->worker_ida, worker->id); 2369 worker_detach_from_pool(worker); 2370 kfree(worker); 2371 return 0; 2372 } 2373 2374 worker_leave_idle(worker); 2375 recheck: 2376 /* no more worker necessary? */ 2377 if (!need_more_worker(pool)) 2378 goto sleep; 2379 2380 /* do we need to manage? */ 2381 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2382 goto recheck; 2383 2384 /* 2385 * ->scheduled list can only be filled while a worker is 2386 * preparing to process a work or actually processing it. 2387 * Make sure nobody diddled with it while I was sleeping. 2388 */ 2389 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2390 2391 /* 2392 * Finish PREP stage. We're guaranteed to have at least one idle 2393 * worker or that someone else has already assumed the manager 2394 * role. This is where @worker starts participating in concurrency 2395 * management if applicable and concurrency management is restored 2396 * after being rebound. See rebind_workers() for details. 2397 */ 2398 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2399 2400 do { 2401 struct work_struct *work = 2402 list_first_entry(&pool->worklist, 2403 struct work_struct, entry); 2404 2405 pool->watchdog_ts = jiffies; 2406 2407 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2408 /* optimization path, not strictly necessary */ 2409 process_one_work(worker, work); 2410 if (unlikely(!list_empty(&worker->scheduled))) 2411 process_scheduled_works(worker); 2412 } else { 2413 move_linked_works(work, &worker->scheduled, NULL); 2414 process_scheduled_works(worker); 2415 } 2416 } while (keep_working(pool)); 2417 2418 worker_set_flags(worker, WORKER_PREP); 2419 sleep: 2420 /* 2421 * pool->lock is held and there's no work to process and no need to 2422 * manage, sleep. Workers are woken up only while holding 2423 * pool->lock or from local cpu, so setting the current state 2424 * before releasing pool->lock is enough to prevent losing any 2425 * event. 2426 */ 2427 worker_enter_idle(worker); 2428 __set_current_state(TASK_IDLE); 2429 spin_unlock_irq(&pool->lock); 2430 schedule(); 2431 goto woke_up; 2432 } 2433 2434 /** 2435 * rescuer_thread - the rescuer thread function 2436 * @__rescuer: self 2437 * 2438 * Workqueue rescuer thread function. There's one rescuer for each 2439 * workqueue which has WQ_MEM_RECLAIM set. 2440 * 2441 * Regular work processing on a pool may block trying to create a new 2442 * worker which uses GFP_KERNEL allocation which has slight chance of 2443 * developing into deadlock if some works currently on the same queue 2444 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2445 * the problem rescuer solves. 2446 * 2447 * When such condition is possible, the pool summons rescuers of all 2448 * workqueues which have works queued on the pool and let them process 2449 * those works so that forward progress can be guaranteed. 2450 * 2451 * This should happen rarely. 2452 * 2453 * Return: 0 2454 */ 2455 static int rescuer_thread(void *__rescuer) 2456 { 2457 struct worker *rescuer = __rescuer; 2458 struct workqueue_struct *wq = rescuer->rescue_wq; 2459 struct list_head *scheduled = &rescuer->scheduled; 2460 bool should_stop; 2461 2462 set_user_nice(current, RESCUER_NICE_LEVEL); 2463 2464 /* 2465 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2466 * doesn't participate in concurrency management. 2467 */ 2468 set_pf_worker(true); 2469 repeat: 2470 set_current_state(TASK_IDLE); 2471 2472 /* 2473 * By the time the rescuer is requested to stop, the workqueue 2474 * shouldn't have any work pending, but @wq->maydays may still have 2475 * pwq(s) queued. This can happen by non-rescuer workers consuming 2476 * all the work items before the rescuer got to them. Go through 2477 * @wq->maydays processing before acting on should_stop so that the 2478 * list is always empty on exit. 2479 */ 2480 should_stop = kthread_should_stop(); 2481 2482 /* see whether any pwq is asking for help */ 2483 spin_lock_irq(&wq_mayday_lock); 2484 2485 while (!list_empty(&wq->maydays)) { 2486 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2487 struct pool_workqueue, mayday_node); 2488 struct worker_pool *pool = pwq->pool; 2489 struct work_struct *work, *n; 2490 bool first = true; 2491 2492 __set_current_state(TASK_RUNNING); 2493 list_del_init(&pwq->mayday_node); 2494 2495 spin_unlock_irq(&wq_mayday_lock); 2496 2497 worker_attach_to_pool(rescuer, pool); 2498 2499 spin_lock_irq(&pool->lock); 2500 2501 /* 2502 * Slurp in all works issued via this workqueue and 2503 * process'em. 2504 */ 2505 WARN_ON_ONCE(!list_empty(scheduled)); 2506 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2507 if (get_work_pwq(work) == pwq) { 2508 if (first) 2509 pool->watchdog_ts = jiffies; 2510 move_linked_works(work, scheduled, &n); 2511 } 2512 first = false; 2513 } 2514 2515 if (!list_empty(scheduled)) { 2516 process_scheduled_works(rescuer); 2517 2518 /* 2519 * The above execution of rescued work items could 2520 * have created more to rescue through 2521 * pwq_activate_first_delayed() or chained 2522 * queueing. Let's put @pwq back on mayday list so 2523 * that such back-to-back work items, which may be 2524 * being used to relieve memory pressure, don't 2525 * incur MAYDAY_INTERVAL delay inbetween. 2526 */ 2527 if (need_to_create_worker(pool)) { 2528 spin_lock(&wq_mayday_lock); 2529 get_pwq(pwq); 2530 list_move_tail(&pwq->mayday_node, &wq->maydays); 2531 spin_unlock(&wq_mayday_lock); 2532 } 2533 } 2534 2535 /* 2536 * Put the reference grabbed by send_mayday(). @pool won't 2537 * go away while we're still attached to it. 2538 */ 2539 put_pwq(pwq); 2540 2541 /* 2542 * Leave this pool. If need_more_worker() is %true, notify a 2543 * regular worker; otherwise, we end up with 0 concurrency 2544 * and stalling the execution. 2545 */ 2546 if (need_more_worker(pool)) 2547 wake_up_worker(pool); 2548 2549 spin_unlock_irq(&pool->lock); 2550 2551 worker_detach_from_pool(rescuer); 2552 2553 spin_lock_irq(&wq_mayday_lock); 2554 } 2555 2556 spin_unlock_irq(&wq_mayday_lock); 2557 2558 if (should_stop) { 2559 __set_current_state(TASK_RUNNING); 2560 set_pf_worker(false); 2561 return 0; 2562 } 2563 2564 /* rescuers should never participate in concurrency management */ 2565 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2566 schedule(); 2567 goto repeat; 2568 } 2569 2570 /** 2571 * check_flush_dependency - check for flush dependency sanity 2572 * @target_wq: workqueue being flushed 2573 * @target_work: work item being flushed (NULL for workqueue flushes) 2574 * 2575 * %current is trying to flush the whole @target_wq or @target_work on it. 2576 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2577 * reclaiming memory or running on a workqueue which doesn't have 2578 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2579 * a deadlock. 2580 */ 2581 static void check_flush_dependency(struct workqueue_struct *target_wq, 2582 struct work_struct *target_work) 2583 { 2584 work_func_t target_func = target_work ? target_work->func : NULL; 2585 struct worker *worker; 2586 2587 if (target_wq->flags & WQ_MEM_RECLAIM) 2588 return; 2589 2590 worker = current_wq_worker(); 2591 2592 WARN_ONCE(current->flags & PF_MEMALLOC, 2593 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2594 current->pid, current->comm, target_wq->name, target_func); 2595 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2596 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2597 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2598 worker->current_pwq->wq->name, worker->current_func, 2599 target_wq->name, target_func); 2600 } 2601 2602 struct wq_barrier { 2603 struct work_struct work; 2604 struct completion done; 2605 struct task_struct *task; /* purely informational */ 2606 }; 2607 2608 static void wq_barrier_func(struct work_struct *work) 2609 { 2610 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2611 complete(&barr->done); 2612 } 2613 2614 /** 2615 * insert_wq_barrier - insert a barrier work 2616 * @pwq: pwq to insert barrier into 2617 * @barr: wq_barrier to insert 2618 * @target: target work to attach @barr to 2619 * @worker: worker currently executing @target, NULL if @target is not executing 2620 * 2621 * @barr is linked to @target such that @barr is completed only after 2622 * @target finishes execution. Please note that the ordering 2623 * guarantee is observed only with respect to @target and on the local 2624 * cpu. 2625 * 2626 * Currently, a queued barrier can't be canceled. This is because 2627 * try_to_grab_pending() can't determine whether the work to be 2628 * grabbed is at the head of the queue and thus can't clear LINKED 2629 * flag of the previous work while there must be a valid next work 2630 * after a work with LINKED flag set. 2631 * 2632 * Note that when @worker is non-NULL, @target may be modified 2633 * underneath us, so we can't reliably determine pwq from @target. 2634 * 2635 * CONTEXT: 2636 * spin_lock_irq(pool->lock). 2637 */ 2638 static void insert_wq_barrier(struct pool_workqueue *pwq, 2639 struct wq_barrier *barr, 2640 struct work_struct *target, struct worker *worker) 2641 { 2642 struct list_head *head; 2643 unsigned int linked = 0; 2644 2645 /* 2646 * debugobject calls are safe here even with pool->lock locked 2647 * as we know for sure that this will not trigger any of the 2648 * checks and call back into the fixup functions where we 2649 * might deadlock. 2650 */ 2651 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2652 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2653 2654 init_completion_map(&barr->done, &target->lockdep_map); 2655 2656 barr->task = current; 2657 2658 /* 2659 * If @target is currently being executed, schedule the 2660 * barrier to the worker; otherwise, put it after @target. 2661 */ 2662 if (worker) 2663 head = worker->scheduled.next; 2664 else { 2665 unsigned long *bits = work_data_bits(target); 2666 2667 head = target->entry.next; 2668 /* there can already be other linked works, inherit and set */ 2669 linked = *bits & WORK_STRUCT_LINKED; 2670 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2671 } 2672 2673 debug_work_activate(&barr->work); 2674 insert_work(pwq, &barr->work, head, 2675 work_color_to_flags(WORK_NO_COLOR) | linked); 2676 } 2677 2678 /** 2679 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2680 * @wq: workqueue being flushed 2681 * @flush_color: new flush color, < 0 for no-op 2682 * @work_color: new work color, < 0 for no-op 2683 * 2684 * Prepare pwqs for workqueue flushing. 2685 * 2686 * If @flush_color is non-negative, flush_color on all pwqs should be 2687 * -1. If no pwq has in-flight commands at the specified color, all 2688 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2689 * has in flight commands, its pwq->flush_color is set to 2690 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2691 * wakeup logic is armed and %true is returned. 2692 * 2693 * The caller should have initialized @wq->first_flusher prior to 2694 * calling this function with non-negative @flush_color. If 2695 * @flush_color is negative, no flush color update is done and %false 2696 * is returned. 2697 * 2698 * If @work_color is non-negative, all pwqs should have the same 2699 * work_color which is previous to @work_color and all will be 2700 * advanced to @work_color. 2701 * 2702 * CONTEXT: 2703 * mutex_lock(wq->mutex). 2704 * 2705 * Return: 2706 * %true if @flush_color >= 0 and there's something to flush. %false 2707 * otherwise. 2708 */ 2709 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2710 int flush_color, int work_color) 2711 { 2712 bool wait = false; 2713 struct pool_workqueue *pwq; 2714 2715 if (flush_color >= 0) { 2716 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2717 atomic_set(&wq->nr_pwqs_to_flush, 1); 2718 } 2719 2720 for_each_pwq(pwq, wq) { 2721 struct worker_pool *pool = pwq->pool; 2722 2723 spin_lock_irq(&pool->lock); 2724 2725 if (flush_color >= 0) { 2726 WARN_ON_ONCE(pwq->flush_color != -1); 2727 2728 if (pwq->nr_in_flight[flush_color]) { 2729 pwq->flush_color = flush_color; 2730 atomic_inc(&wq->nr_pwqs_to_flush); 2731 wait = true; 2732 } 2733 } 2734 2735 if (work_color >= 0) { 2736 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2737 pwq->work_color = work_color; 2738 } 2739 2740 spin_unlock_irq(&pool->lock); 2741 } 2742 2743 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2744 complete(&wq->first_flusher->done); 2745 2746 return wait; 2747 } 2748 2749 /** 2750 * flush_workqueue - ensure that any scheduled work has run to completion. 2751 * @wq: workqueue to flush 2752 * 2753 * This function sleeps until all work items which were queued on entry 2754 * have finished execution, but it is not livelocked by new incoming ones. 2755 */ 2756 void flush_workqueue(struct workqueue_struct *wq) 2757 { 2758 struct wq_flusher this_flusher = { 2759 .list = LIST_HEAD_INIT(this_flusher.list), 2760 .flush_color = -1, 2761 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2762 }; 2763 int next_color; 2764 2765 if (WARN_ON(!wq_online)) 2766 return; 2767 2768 lock_map_acquire(&wq->lockdep_map); 2769 lock_map_release(&wq->lockdep_map); 2770 2771 mutex_lock(&wq->mutex); 2772 2773 /* 2774 * Start-to-wait phase 2775 */ 2776 next_color = work_next_color(wq->work_color); 2777 2778 if (next_color != wq->flush_color) { 2779 /* 2780 * Color space is not full. The current work_color 2781 * becomes our flush_color and work_color is advanced 2782 * by one. 2783 */ 2784 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2785 this_flusher.flush_color = wq->work_color; 2786 wq->work_color = next_color; 2787 2788 if (!wq->first_flusher) { 2789 /* no flush in progress, become the first flusher */ 2790 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2791 2792 wq->first_flusher = &this_flusher; 2793 2794 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2795 wq->work_color)) { 2796 /* nothing to flush, done */ 2797 wq->flush_color = next_color; 2798 wq->first_flusher = NULL; 2799 goto out_unlock; 2800 } 2801 } else { 2802 /* wait in queue */ 2803 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2804 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2805 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2806 } 2807 } else { 2808 /* 2809 * Oops, color space is full, wait on overflow queue. 2810 * The next flush completion will assign us 2811 * flush_color and transfer to flusher_queue. 2812 */ 2813 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2814 } 2815 2816 check_flush_dependency(wq, NULL); 2817 2818 mutex_unlock(&wq->mutex); 2819 2820 wait_for_completion(&this_flusher.done); 2821 2822 /* 2823 * Wake-up-and-cascade phase 2824 * 2825 * First flushers are responsible for cascading flushes and 2826 * handling overflow. Non-first flushers can simply return. 2827 */ 2828 if (wq->first_flusher != &this_flusher) 2829 return; 2830 2831 mutex_lock(&wq->mutex); 2832 2833 /* we might have raced, check again with mutex held */ 2834 if (wq->first_flusher != &this_flusher) 2835 goto out_unlock; 2836 2837 wq->first_flusher = NULL; 2838 2839 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2840 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2841 2842 while (true) { 2843 struct wq_flusher *next, *tmp; 2844 2845 /* complete all the flushers sharing the current flush color */ 2846 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2847 if (next->flush_color != wq->flush_color) 2848 break; 2849 list_del_init(&next->list); 2850 complete(&next->done); 2851 } 2852 2853 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2854 wq->flush_color != work_next_color(wq->work_color)); 2855 2856 /* this flush_color is finished, advance by one */ 2857 wq->flush_color = work_next_color(wq->flush_color); 2858 2859 /* one color has been freed, handle overflow queue */ 2860 if (!list_empty(&wq->flusher_overflow)) { 2861 /* 2862 * Assign the same color to all overflowed 2863 * flushers, advance work_color and append to 2864 * flusher_queue. This is the start-to-wait 2865 * phase for these overflowed flushers. 2866 */ 2867 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2868 tmp->flush_color = wq->work_color; 2869 2870 wq->work_color = work_next_color(wq->work_color); 2871 2872 list_splice_tail_init(&wq->flusher_overflow, 2873 &wq->flusher_queue); 2874 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2875 } 2876 2877 if (list_empty(&wq->flusher_queue)) { 2878 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2879 break; 2880 } 2881 2882 /* 2883 * Need to flush more colors. Make the next flusher 2884 * the new first flusher and arm pwqs. 2885 */ 2886 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2887 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2888 2889 list_del_init(&next->list); 2890 wq->first_flusher = next; 2891 2892 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2893 break; 2894 2895 /* 2896 * Meh... this color is already done, clear first 2897 * flusher and repeat cascading. 2898 */ 2899 wq->first_flusher = NULL; 2900 } 2901 2902 out_unlock: 2903 mutex_unlock(&wq->mutex); 2904 } 2905 EXPORT_SYMBOL(flush_workqueue); 2906 2907 /** 2908 * drain_workqueue - drain a workqueue 2909 * @wq: workqueue to drain 2910 * 2911 * Wait until the workqueue becomes empty. While draining is in progress, 2912 * only chain queueing is allowed. IOW, only currently pending or running 2913 * work items on @wq can queue further work items on it. @wq is flushed 2914 * repeatedly until it becomes empty. The number of flushing is determined 2915 * by the depth of chaining and should be relatively short. Whine if it 2916 * takes too long. 2917 */ 2918 void drain_workqueue(struct workqueue_struct *wq) 2919 { 2920 unsigned int flush_cnt = 0; 2921 struct pool_workqueue *pwq; 2922 2923 /* 2924 * __queue_work() needs to test whether there are drainers, is much 2925 * hotter than drain_workqueue() and already looks at @wq->flags. 2926 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2927 */ 2928 mutex_lock(&wq->mutex); 2929 if (!wq->nr_drainers++) 2930 wq->flags |= __WQ_DRAINING; 2931 mutex_unlock(&wq->mutex); 2932 reflush: 2933 flush_workqueue(wq); 2934 2935 mutex_lock(&wq->mutex); 2936 2937 for_each_pwq(pwq, wq) { 2938 bool drained; 2939 2940 spin_lock_irq(&pwq->pool->lock); 2941 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2942 spin_unlock_irq(&pwq->pool->lock); 2943 2944 if (drained) 2945 continue; 2946 2947 if (++flush_cnt == 10 || 2948 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2949 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2950 wq->name, flush_cnt); 2951 2952 mutex_unlock(&wq->mutex); 2953 goto reflush; 2954 } 2955 2956 if (!--wq->nr_drainers) 2957 wq->flags &= ~__WQ_DRAINING; 2958 mutex_unlock(&wq->mutex); 2959 } 2960 EXPORT_SYMBOL_GPL(drain_workqueue); 2961 2962 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2963 bool from_cancel) 2964 { 2965 struct worker *worker = NULL; 2966 struct worker_pool *pool; 2967 struct pool_workqueue *pwq; 2968 2969 might_sleep(); 2970 2971 local_irq_disable(); 2972 pool = get_work_pool(work); 2973 if (!pool) { 2974 local_irq_enable(); 2975 return false; 2976 } 2977 2978 spin_lock(&pool->lock); 2979 /* see the comment in try_to_grab_pending() with the same code */ 2980 pwq = get_work_pwq(work); 2981 if (pwq) { 2982 if (unlikely(pwq->pool != pool)) 2983 goto already_gone; 2984 } else { 2985 worker = find_worker_executing_work(pool, work); 2986 if (!worker) 2987 goto already_gone; 2988 pwq = worker->current_pwq; 2989 } 2990 2991 check_flush_dependency(pwq->wq, work); 2992 2993 insert_wq_barrier(pwq, barr, work, worker); 2994 spin_unlock_irq(&pool->lock); 2995 2996 /* 2997 * Force a lock recursion deadlock when using flush_work() inside a 2998 * single-threaded or rescuer equipped workqueue. 2999 * 3000 * For single threaded workqueues the deadlock happens when the work 3001 * is after the work issuing the flush_work(). For rescuer equipped 3002 * workqueues the deadlock happens when the rescuer stalls, blocking 3003 * forward progress. 3004 */ 3005 if (!from_cancel && 3006 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3007 lock_map_acquire(&pwq->wq->lockdep_map); 3008 lock_map_release(&pwq->wq->lockdep_map); 3009 } 3010 3011 return true; 3012 already_gone: 3013 spin_unlock_irq(&pool->lock); 3014 return false; 3015 } 3016 3017 static bool __flush_work(struct work_struct *work, bool from_cancel) 3018 { 3019 struct wq_barrier barr; 3020 3021 if (WARN_ON(!wq_online)) 3022 return false; 3023 3024 if (WARN_ON(!work->func)) 3025 return false; 3026 3027 if (!from_cancel) { 3028 lock_map_acquire(&work->lockdep_map); 3029 lock_map_release(&work->lockdep_map); 3030 } 3031 3032 if (start_flush_work(work, &barr, from_cancel)) { 3033 wait_for_completion(&barr.done); 3034 destroy_work_on_stack(&barr.work); 3035 return true; 3036 } else { 3037 return false; 3038 } 3039 } 3040 3041 /** 3042 * flush_work - wait for a work to finish executing the last queueing instance 3043 * @work: the work to flush 3044 * 3045 * Wait until @work has finished execution. @work is guaranteed to be idle 3046 * on return if it hasn't been requeued since flush started. 3047 * 3048 * Return: 3049 * %true if flush_work() waited for the work to finish execution, 3050 * %false if it was already idle. 3051 */ 3052 bool flush_work(struct work_struct *work) 3053 { 3054 return __flush_work(work, false); 3055 } 3056 EXPORT_SYMBOL_GPL(flush_work); 3057 3058 struct cwt_wait { 3059 wait_queue_entry_t wait; 3060 struct work_struct *work; 3061 }; 3062 3063 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3064 { 3065 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3066 3067 if (cwait->work != key) 3068 return 0; 3069 return autoremove_wake_function(wait, mode, sync, key); 3070 } 3071 3072 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3073 { 3074 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3075 unsigned long flags; 3076 int ret; 3077 3078 do { 3079 ret = try_to_grab_pending(work, is_dwork, &flags); 3080 /* 3081 * If someone else is already canceling, wait for it to 3082 * finish. flush_work() doesn't work for PREEMPT_NONE 3083 * because we may get scheduled between @work's completion 3084 * and the other canceling task resuming and clearing 3085 * CANCELING - flush_work() will return false immediately 3086 * as @work is no longer busy, try_to_grab_pending() will 3087 * return -ENOENT as @work is still being canceled and the 3088 * other canceling task won't be able to clear CANCELING as 3089 * we're hogging the CPU. 3090 * 3091 * Let's wait for completion using a waitqueue. As this 3092 * may lead to the thundering herd problem, use a custom 3093 * wake function which matches @work along with exclusive 3094 * wait and wakeup. 3095 */ 3096 if (unlikely(ret == -ENOENT)) { 3097 struct cwt_wait cwait; 3098 3099 init_wait(&cwait.wait); 3100 cwait.wait.func = cwt_wakefn; 3101 cwait.work = work; 3102 3103 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3104 TASK_UNINTERRUPTIBLE); 3105 if (work_is_canceling(work)) 3106 schedule(); 3107 finish_wait(&cancel_waitq, &cwait.wait); 3108 } 3109 } while (unlikely(ret < 0)); 3110 3111 /* tell other tasks trying to grab @work to back off */ 3112 mark_work_canceling(work); 3113 local_irq_restore(flags); 3114 3115 /* 3116 * This allows canceling during early boot. We know that @work 3117 * isn't executing. 3118 */ 3119 if (wq_online) 3120 __flush_work(work, true); 3121 3122 clear_work_data(work); 3123 3124 /* 3125 * Paired with prepare_to_wait() above so that either 3126 * waitqueue_active() is visible here or !work_is_canceling() is 3127 * visible there. 3128 */ 3129 smp_mb(); 3130 if (waitqueue_active(&cancel_waitq)) 3131 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3132 3133 return ret; 3134 } 3135 3136 /** 3137 * cancel_work_sync - cancel a work and wait for it to finish 3138 * @work: the work to cancel 3139 * 3140 * Cancel @work and wait for its execution to finish. This function 3141 * can be used even if the work re-queues itself or migrates to 3142 * another workqueue. On return from this function, @work is 3143 * guaranteed to be not pending or executing on any CPU. 3144 * 3145 * cancel_work_sync(&delayed_work->work) must not be used for 3146 * delayed_work's. Use cancel_delayed_work_sync() instead. 3147 * 3148 * The caller must ensure that the workqueue on which @work was last 3149 * queued can't be destroyed before this function returns. 3150 * 3151 * Return: 3152 * %true if @work was pending, %false otherwise. 3153 */ 3154 bool cancel_work_sync(struct work_struct *work) 3155 { 3156 return __cancel_work_timer(work, false); 3157 } 3158 EXPORT_SYMBOL_GPL(cancel_work_sync); 3159 3160 /** 3161 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3162 * @dwork: the delayed work to flush 3163 * 3164 * Delayed timer is cancelled and the pending work is queued for 3165 * immediate execution. Like flush_work(), this function only 3166 * considers the last queueing instance of @dwork. 3167 * 3168 * Return: 3169 * %true if flush_work() waited for the work to finish execution, 3170 * %false if it was already idle. 3171 */ 3172 bool flush_delayed_work(struct delayed_work *dwork) 3173 { 3174 local_irq_disable(); 3175 if (del_timer_sync(&dwork->timer)) 3176 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3177 local_irq_enable(); 3178 return flush_work(&dwork->work); 3179 } 3180 EXPORT_SYMBOL(flush_delayed_work); 3181 3182 /** 3183 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3184 * @rwork: the rcu work to flush 3185 * 3186 * Return: 3187 * %true if flush_rcu_work() waited for the work to finish execution, 3188 * %false if it was already idle. 3189 */ 3190 bool flush_rcu_work(struct rcu_work *rwork) 3191 { 3192 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3193 rcu_barrier(); 3194 flush_work(&rwork->work); 3195 return true; 3196 } else { 3197 return flush_work(&rwork->work); 3198 } 3199 } 3200 EXPORT_SYMBOL(flush_rcu_work); 3201 3202 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3203 { 3204 unsigned long flags; 3205 int ret; 3206 3207 do { 3208 ret = try_to_grab_pending(work, is_dwork, &flags); 3209 } while (unlikely(ret == -EAGAIN)); 3210 3211 if (unlikely(ret < 0)) 3212 return false; 3213 3214 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3215 local_irq_restore(flags); 3216 return ret; 3217 } 3218 3219 /** 3220 * cancel_delayed_work - cancel a delayed work 3221 * @dwork: delayed_work to cancel 3222 * 3223 * Kill off a pending delayed_work. 3224 * 3225 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3226 * pending. 3227 * 3228 * Note: 3229 * The work callback function may still be running on return, unless 3230 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3231 * use cancel_delayed_work_sync() to wait on it. 3232 * 3233 * This function is safe to call from any context including IRQ handler. 3234 */ 3235 bool cancel_delayed_work(struct delayed_work *dwork) 3236 { 3237 return __cancel_work(&dwork->work, true); 3238 } 3239 EXPORT_SYMBOL(cancel_delayed_work); 3240 3241 /** 3242 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3243 * @dwork: the delayed work cancel 3244 * 3245 * This is cancel_work_sync() for delayed works. 3246 * 3247 * Return: 3248 * %true if @dwork was pending, %false otherwise. 3249 */ 3250 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3251 { 3252 return __cancel_work_timer(&dwork->work, true); 3253 } 3254 EXPORT_SYMBOL(cancel_delayed_work_sync); 3255 3256 /** 3257 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3258 * @func: the function to call 3259 * 3260 * schedule_on_each_cpu() executes @func on each online CPU using the 3261 * system workqueue and blocks until all CPUs have completed. 3262 * schedule_on_each_cpu() is very slow. 3263 * 3264 * Return: 3265 * 0 on success, -errno on failure. 3266 */ 3267 int schedule_on_each_cpu(work_func_t func) 3268 { 3269 int cpu; 3270 struct work_struct __percpu *works; 3271 3272 works = alloc_percpu(struct work_struct); 3273 if (!works) 3274 return -ENOMEM; 3275 3276 get_online_cpus(); 3277 3278 for_each_online_cpu(cpu) { 3279 struct work_struct *work = per_cpu_ptr(works, cpu); 3280 3281 INIT_WORK(work, func); 3282 schedule_work_on(cpu, work); 3283 } 3284 3285 for_each_online_cpu(cpu) 3286 flush_work(per_cpu_ptr(works, cpu)); 3287 3288 put_online_cpus(); 3289 free_percpu(works); 3290 return 0; 3291 } 3292 3293 /** 3294 * execute_in_process_context - reliably execute the routine with user context 3295 * @fn: the function to execute 3296 * @ew: guaranteed storage for the execute work structure (must 3297 * be available when the work executes) 3298 * 3299 * Executes the function immediately if process context is available, 3300 * otherwise schedules the function for delayed execution. 3301 * 3302 * Return: 0 - function was executed 3303 * 1 - function was scheduled for execution 3304 */ 3305 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3306 { 3307 if (!in_interrupt()) { 3308 fn(&ew->work); 3309 return 0; 3310 } 3311 3312 INIT_WORK(&ew->work, fn); 3313 schedule_work(&ew->work); 3314 3315 return 1; 3316 } 3317 EXPORT_SYMBOL_GPL(execute_in_process_context); 3318 3319 /** 3320 * free_workqueue_attrs - free a workqueue_attrs 3321 * @attrs: workqueue_attrs to free 3322 * 3323 * Undo alloc_workqueue_attrs(). 3324 */ 3325 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3326 { 3327 if (attrs) { 3328 free_cpumask_var(attrs->cpumask); 3329 kfree(attrs); 3330 } 3331 } 3332 3333 /** 3334 * alloc_workqueue_attrs - allocate a workqueue_attrs 3335 * @gfp_mask: allocation mask to use 3336 * 3337 * Allocate a new workqueue_attrs, initialize with default settings and 3338 * return it. 3339 * 3340 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3341 */ 3342 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3343 { 3344 struct workqueue_attrs *attrs; 3345 3346 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3347 if (!attrs) 3348 goto fail; 3349 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3350 goto fail; 3351 3352 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3353 return attrs; 3354 fail: 3355 free_workqueue_attrs(attrs); 3356 return NULL; 3357 } 3358 3359 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3360 const struct workqueue_attrs *from) 3361 { 3362 to->nice = from->nice; 3363 cpumask_copy(to->cpumask, from->cpumask); 3364 /* 3365 * Unlike hash and equality test, this function doesn't ignore 3366 * ->no_numa as it is used for both pool and wq attrs. Instead, 3367 * get_unbound_pool() explicitly clears ->no_numa after copying. 3368 */ 3369 to->no_numa = from->no_numa; 3370 } 3371 3372 /* hash value of the content of @attr */ 3373 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3374 { 3375 u32 hash = 0; 3376 3377 hash = jhash_1word(attrs->nice, hash); 3378 hash = jhash(cpumask_bits(attrs->cpumask), 3379 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3380 return hash; 3381 } 3382 3383 /* content equality test */ 3384 static bool wqattrs_equal(const struct workqueue_attrs *a, 3385 const struct workqueue_attrs *b) 3386 { 3387 if (a->nice != b->nice) 3388 return false; 3389 if (!cpumask_equal(a->cpumask, b->cpumask)) 3390 return false; 3391 return true; 3392 } 3393 3394 /** 3395 * init_worker_pool - initialize a newly zalloc'd worker_pool 3396 * @pool: worker_pool to initialize 3397 * 3398 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3399 * 3400 * Return: 0 on success, -errno on failure. Even on failure, all fields 3401 * inside @pool proper are initialized and put_unbound_pool() can be called 3402 * on @pool safely to release it. 3403 */ 3404 static int init_worker_pool(struct worker_pool *pool) 3405 { 3406 spin_lock_init(&pool->lock); 3407 pool->id = -1; 3408 pool->cpu = -1; 3409 pool->node = NUMA_NO_NODE; 3410 pool->flags |= POOL_DISASSOCIATED; 3411 pool->watchdog_ts = jiffies; 3412 INIT_LIST_HEAD(&pool->worklist); 3413 INIT_LIST_HEAD(&pool->idle_list); 3414 hash_init(pool->busy_hash); 3415 3416 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3417 3418 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3419 3420 INIT_LIST_HEAD(&pool->workers); 3421 3422 ida_init(&pool->worker_ida); 3423 INIT_HLIST_NODE(&pool->hash_node); 3424 pool->refcnt = 1; 3425 3426 /* shouldn't fail above this point */ 3427 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3428 if (!pool->attrs) 3429 return -ENOMEM; 3430 return 0; 3431 } 3432 3433 #ifdef CONFIG_LOCKDEP 3434 static void wq_init_lockdep(struct workqueue_struct *wq) 3435 { 3436 char *lock_name; 3437 3438 lockdep_register_key(&wq->key); 3439 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3440 if (!lock_name) 3441 lock_name = wq->name; 3442 3443 wq->lock_name = lock_name; 3444 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3445 } 3446 3447 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3448 { 3449 lockdep_unregister_key(&wq->key); 3450 } 3451 3452 static void wq_free_lockdep(struct workqueue_struct *wq) 3453 { 3454 if (wq->lock_name != wq->name) 3455 kfree(wq->lock_name); 3456 } 3457 #else 3458 static void wq_init_lockdep(struct workqueue_struct *wq) 3459 { 3460 } 3461 3462 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3463 { 3464 } 3465 3466 static void wq_free_lockdep(struct workqueue_struct *wq) 3467 { 3468 } 3469 #endif 3470 3471 static void rcu_free_wq(struct rcu_head *rcu) 3472 { 3473 struct workqueue_struct *wq = 3474 container_of(rcu, struct workqueue_struct, rcu); 3475 3476 wq_free_lockdep(wq); 3477 3478 if (!(wq->flags & WQ_UNBOUND)) 3479 free_percpu(wq->cpu_pwqs); 3480 else 3481 free_workqueue_attrs(wq->unbound_attrs); 3482 3483 kfree(wq->rescuer); 3484 kfree(wq); 3485 } 3486 3487 static void rcu_free_pool(struct rcu_head *rcu) 3488 { 3489 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3490 3491 ida_destroy(&pool->worker_ida); 3492 free_workqueue_attrs(pool->attrs); 3493 kfree(pool); 3494 } 3495 3496 /** 3497 * put_unbound_pool - put a worker_pool 3498 * @pool: worker_pool to put 3499 * 3500 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3501 * safe manner. get_unbound_pool() calls this function on its failure path 3502 * and this function should be able to release pools which went through, 3503 * successfully or not, init_worker_pool(). 3504 * 3505 * Should be called with wq_pool_mutex held. 3506 */ 3507 static void put_unbound_pool(struct worker_pool *pool) 3508 { 3509 DECLARE_COMPLETION_ONSTACK(detach_completion); 3510 struct worker *worker; 3511 3512 lockdep_assert_held(&wq_pool_mutex); 3513 3514 if (--pool->refcnt) 3515 return; 3516 3517 /* sanity checks */ 3518 if (WARN_ON(!(pool->cpu < 0)) || 3519 WARN_ON(!list_empty(&pool->worklist))) 3520 return; 3521 3522 /* release id and unhash */ 3523 if (pool->id >= 0) 3524 idr_remove(&worker_pool_idr, pool->id); 3525 hash_del(&pool->hash_node); 3526 3527 /* 3528 * Become the manager and destroy all workers. This prevents 3529 * @pool's workers from blocking on attach_mutex. We're the last 3530 * manager and @pool gets freed with the flag set. 3531 */ 3532 spin_lock_irq(&pool->lock); 3533 wait_event_lock_irq(wq_manager_wait, 3534 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3535 pool->flags |= POOL_MANAGER_ACTIVE; 3536 3537 while ((worker = first_idle_worker(pool))) 3538 destroy_worker(worker); 3539 WARN_ON(pool->nr_workers || pool->nr_idle); 3540 spin_unlock_irq(&pool->lock); 3541 3542 mutex_lock(&wq_pool_attach_mutex); 3543 if (!list_empty(&pool->workers)) 3544 pool->detach_completion = &detach_completion; 3545 mutex_unlock(&wq_pool_attach_mutex); 3546 3547 if (pool->detach_completion) 3548 wait_for_completion(pool->detach_completion); 3549 3550 /* shut down the timers */ 3551 del_timer_sync(&pool->idle_timer); 3552 del_timer_sync(&pool->mayday_timer); 3553 3554 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3555 call_rcu(&pool->rcu, rcu_free_pool); 3556 } 3557 3558 /** 3559 * get_unbound_pool - get a worker_pool with the specified attributes 3560 * @attrs: the attributes of the worker_pool to get 3561 * 3562 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3563 * reference count and return it. If there already is a matching 3564 * worker_pool, it will be used; otherwise, this function attempts to 3565 * create a new one. 3566 * 3567 * Should be called with wq_pool_mutex held. 3568 * 3569 * Return: On success, a worker_pool with the same attributes as @attrs. 3570 * On failure, %NULL. 3571 */ 3572 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3573 { 3574 u32 hash = wqattrs_hash(attrs); 3575 struct worker_pool *pool; 3576 int node; 3577 int target_node = NUMA_NO_NODE; 3578 3579 lockdep_assert_held(&wq_pool_mutex); 3580 3581 /* do we already have a matching pool? */ 3582 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3583 if (wqattrs_equal(pool->attrs, attrs)) { 3584 pool->refcnt++; 3585 return pool; 3586 } 3587 } 3588 3589 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3590 if (wq_numa_enabled) { 3591 for_each_node(node) { 3592 if (cpumask_subset(attrs->cpumask, 3593 wq_numa_possible_cpumask[node])) { 3594 target_node = node; 3595 break; 3596 } 3597 } 3598 } 3599 3600 /* nope, create a new one */ 3601 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3602 if (!pool || init_worker_pool(pool) < 0) 3603 goto fail; 3604 3605 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3606 copy_workqueue_attrs(pool->attrs, attrs); 3607 pool->node = target_node; 3608 3609 /* 3610 * no_numa isn't a worker_pool attribute, always clear it. See 3611 * 'struct workqueue_attrs' comments for detail. 3612 */ 3613 pool->attrs->no_numa = false; 3614 3615 if (worker_pool_assign_id(pool) < 0) 3616 goto fail; 3617 3618 /* create and start the initial worker */ 3619 if (wq_online && !create_worker(pool)) 3620 goto fail; 3621 3622 /* install */ 3623 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3624 3625 return pool; 3626 fail: 3627 if (pool) 3628 put_unbound_pool(pool); 3629 return NULL; 3630 } 3631 3632 static void rcu_free_pwq(struct rcu_head *rcu) 3633 { 3634 kmem_cache_free(pwq_cache, 3635 container_of(rcu, struct pool_workqueue, rcu)); 3636 } 3637 3638 /* 3639 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3640 * and needs to be destroyed. 3641 */ 3642 static void pwq_unbound_release_workfn(struct work_struct *work) 3643 { 3644 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3645 unbound_release_work); 3646 struct workqueue_struct *wq = pwq->wq; 3647 struct worker_pool *pool = pwq->pool; 3648 bool is_last; 3649 3650 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3651 return; 3652 3653 mutex_lock(&wq->mutex); 3654 list_del_rcu(&pwq->pwqs_node); 3655 is_last = list_empty(&wq->pwqs); 3656 mutex_unlock(&wq->mutex); 3657 3658 mutex_lock(&wq_pool_mutex); 3659 put_unbound_pool(pool); 3660 mutex_unlock(&wq_pool_mutex); 3661 3662 call_rcu(&pwq->rcu, rcu_free_pwq); 3663 3664 /* 3665 * If we're the last pwq going away, @wq is already dead and no one 3666 * is gonna access it anymore. Schedule RCU free. 3667 */ 3668 if (is_last) { 3669 wq_unregister_lockdep(wq); 3670 call_rcu(&wq->rcu, rcu_free_wq); 3671 } 3672 } 3673 3674 /** 3675 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3676 * @pwq: target pool_workqueue 3677 * 3678 * If @pwq isn't freezing, set @pwq->max_active to the associated 3679 * workqueue's saved_max_active and activate delayed work items 3680 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3681 */ 3682 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3683 { 3684 struct workqueue_struct *wq = pwq->wq; 3685 bool freezable = wq->flags & WQ_FREEZABLE; 3686 unsigned long flags; 3687 3688 /* for @wq->saved_max_active */ 3689 lockdep_assert_held(&wq->mutex); 3690 3691 /* fast exit for non-freezable wqs */ 3692 if (!freezable && pwq->max_active == wq->saved_max_active) 3693 return; 3694 3695 /* this function can be called during early boot w/ irq disabled */ 3696 spin_lock_irqsave(&pwq->pool->lock, flags); 3697 3698 /* 3699 * During [un]freezing, the caller is responsible for ensuring that 3700 * this function is called at least once after @workqueue_freezing 3701 * is updated and visible. 3702 */ 3703 if (!freezable || !workqueue_freezing) { 3704 pwq->max_active = wq->saved_max_active; 3705 3706 while (!list_empty(&pwq->delayed_works) && 3707 pwq->nr_active < pwq->max_active) 3708 pwq_activate_first_delayed(pwq); 3709 3710 /* 3711 * Need to kick a worker after thawed or an unbound wq's 3712 * max_active is bumped. It's a slow path. Do it always. 3713 */ 3714 wake_up_worker(pwq->pool); 3715 } else { 3716 pwq->max_active = 0; 3717 } 3718 3719 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3720 } 3721 3722 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3723 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3724 struct worker_pool *pool) 3725 { 3726 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3727 3728 memset(pwq, 0, sizeof(*pwq)); 3729 3730 pwq->pool = pool; 3731 pwq->wq = wq; 3732 pwq->flush_color = -1; 3733 pwq->refcnt = 1; 3734 INIT_LIST_HEAD(&pwq->delayed_works); 3735 INIT_LIST_HEAD(&pwq->pwqs_node); 3736 INIT_LIST_HEAD(&pwq->mayday_node); 3737 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3738 } 3739 3740 /* sync @pwq with the current state of its associated wq and link it */ 3741 static void link_pwq(struct pool_workqueue *pwq) 3742 { 3743 struct workqueue_struct *wq = pwq->wq; 3744 3745 lockdep_assert_held(&wq->mutex); 3746 3747 /* may be called multiple times, ignore if already linked */ 3748 if (!list_empty(&pwq->pwqs_node)) 3749 return; 3750 3751 /* set the matching work_color */ 3752 pwq->work_color = wq->work_color; 3753 3754 /* sync max_active to the current setting */ 3755 pwq_adjust_max_active(pwq); 3756 3757 /* link in @pwq */ 3758 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3759 } 3760 3761 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3762 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3763 const struct workqueue_attrs *attrs) 3764 { 3765 struct worker_pool *pool; 3766 struct pool_workqueue *pwq; 3767 3768 lockdep_assert_held(&wq_pool_mutex); 3769 3770 pool = get_unbound_pool(attrs); 3771 if (!pool) 3772 return NULL; 3773 3774 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3775 if (!pwq) { 3776 put_unbound_pool(pool); 3777 return NULL; 3778 } 3779 3780 init_pwq(pwq, wq, pool); 3781 return pwq; 3782 } 3783 3784 /** 3785 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3786 * @attrs: the wq_attrs of the default pwq of the target workqueue 3787 * @node: the target NUMA node 3788 * @cpu_going_down: if >= 0, the CPU to consider as offline 3789 * @cpumask: outarg, the resulting cpumask 3790 * 3791 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3792 * @cpu_going_down is >= 0, that cpu is considered offline during 3793 * calculation. The result is stored in @cpumask. 3794 * 3795 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3796 * enabled and @node has online CPUs requested by @attrs, the returned 3797 * cpumask is the intersection of the possible CPUs of @node and 3798 * @attrs->cpumask. 3799 * 3800 * The caller is responsible for ensuring that the cpumask of @node stays 3801 * stable. 3802 * 3803 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3804 * %false if equal. 3805 */ 3806 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3807 int cpu_going_down, cpumask_t *cpumask) 3808 { 3809 if (!wq_numa_enabled || attrs->no_numa) 3810 goto use_dfl; 3811 3812 /* does @node have any online CPUs @attrs wants? */ 3813 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3814 if (cpu_going_down >= 0) 3815 cpumask_clear_cpu(cpu_going_down, cpumask); 3816 3817 if (cpumask_empty(cpumask)) 3818 goto use_dfl; 3819 3820 /* yeap, return possible CPUs in @node that @attrs wants */ 3821 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3822 3823 if (cpumask_empty(cpumask)) { 3824 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3825 "possible intersect\n"); 3826 return false; 3827 } 3828 3829 return !cpumask_equal(cpumask, attrs->cpumask); 3830 3831 use_dfl: 3832 cpumask_copy(cpumask, attrs->cpumask); 3833 return false; 3834 } 3835 3836 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3837 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3838 int node, 3839 struct pool_workqueue *pwq) 3840 { 3841 struct pool_workqueue *old_pwq; 3842 3843 lockdep_assert_held(&wq_pool_mutex); 3844 lockdep_assert_held(&wq->mutex); 3845 3846 /* link_pwq() can handle duplicate calls */ 3847 link_pwq(pwq); 3848 3849 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3850 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3851 return old_pwq; 3852 } 3853 3854 /* context to store the prepared attrs & pwqs before applying */ 3855 struct apply_wqattrs_ctx { 3856 struct workqueue_struct *wq; /* target workqueue */ 3857 struct workqueue_attrs *attrs; /* attrs to apply */ 3858 struct list_head list; /* queued for batching commit */ 3859 struct pool_workqueue *dfl_pwq; 3860 struct pool_workqueue *pwq_tbl[]; 3861 }; 3862 3863 /* free the resources after success or abort */ 3864 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3865 { 3866 if (ctx) { 3867 int node; 3868 3869 for_each_node(node) 3870 put_pwq_unlocked(ctx->pwq_tbl[node]); 3871 put_pwq_unlocked(ctx->dfl_pwq); 3872 3873 free_workqueue_attrs(ctx->attrs); 3874 3875 kfree(ctx); 3876 } 3877 } 3878 3879 /* allocate the attrs and pwqs for later installation */ 3880 static struct apply_wqattrs_ctx * 3881 apply_wqattrs_prepare(struct workqueue_struct *wq, 3882 const struct workqueue_attrs *attrs) 3883 { 3884 struct apply_wqattrs_ctx *ctx; 3885 struct workqueue_attrs *new_attrs, *tmp_attrs; 3886 int node; 3887 3888 lockdep_assert_held(&wq_pool_mutex); 3889 3890 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3891 3892 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3893 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3894 if (!ctx || !new_attrs || !tmp_attrs) 3895 goto out_free; 3896 3897 /* 3898 * Calculate the attrs of the default pwq. 3899 * If the user configured cpumask doesn't overlap with the 3900 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3901 */ 3902 copy_workqueue_attrs(new_attrs, attrs); 3903 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3904 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3905 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3906 3907 /* 3908 * We may create multiple pwqs with differing cpumasks. Make a 3909 * copy of @new_attrs which will be modified and used to obtain 3910 * pools. 3911 */ 3912 copy_workqueue_attrs(tmp_attrs, new_attrs); 3913 3914 /* 3915 * If something goes wrong during CPU up/down, we'll fall back to 3916 * the default pwq covering whole @attrs->cpumask. Always create 3917 * it even if we don't use it immediately. 3918 */ 3919 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3920 if (!ctx->dfl_pwq) 3921 goto out_free; 3922 3923 for_each_node(node) { 3924 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3925 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3926 if (!ctx->pwq_tbl[node]) 3927 goto out_free; 3928 } else { 3929 ctx->dfl_pwq->refcnt++; 3930 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3931 } 3932 } 3933 3934 /* save the user configured attrs and sanitize it. */ 3935 copy_workqueue_attrs(new_attrs, attrs); 3936 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3937 ctx->attrs = new_attrs; 3938 3939 ctx->wq = wq; 3940 free_workqueue_attrs(tmp_attrs); 3941 return ctx; 3942 3943 out_free: 3944 free_workqueue_attrs(tmp_attrs); 3945 free_workqueue_attrs(new_attrs); 3946 apply_wqattrs_cleanup(ctx); 3947 return NULL; 3948 } 3949 3950 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3951 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3952 { 3953 int node; 3954 3955 /* all pwqs have been created successfully, let's install'em */ 3956 mutex_lock(&ctx->wq->mutex); 3957 3958 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3959 3960 /* save the previous pwq and install the new one */ 3961 for_each_node(node) 3962 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3963 ctx->pwq_tbl[node]); 3964 3965 /* @dfl_pwq might not have been used, ensure it's linked */ 3966 link_pwq(ctx->dfl_pwq); 3967 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3968 3969 mutex_unlock(&ctx->wq->mutex); 3970 } 3971 3972 static void apply_wqattrs_lock(void) 3973 { 3974 /* CPUs should stay stable across pwq creations and installations */ 3975 get_online_cpus(); 3976 mutex_lock(&wq_pool_mutex); 3977 } 3978 3979 static void apply_wqattrs_unlock(void) 3980 { 3981 mutex_unlock(&wq_pool_mutex); 3982 put_online_cpus(); 3983 } 3984 3985 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3986 const struct workqueue_attrs *attrs) 3987 { 3988 struct apply_wqattrs_ctx *ctx; 3989 3990 /* only unbound workqueues can change attributes */ 3991 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3992 return -EINVAL; 3993 3994 /* creating multiple pwqs breaks ordering guarantee */ 3995 if (!list_empty(&wq->pwqs)) { 3996 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 3997 return -EINVAL; 3998 3999 wq->flags &= ~__WQ_ORDERED; 4000 } 4001 4002 ctx = apply_wqattrs_prepare(wq, attrs); 4003 if (!ctx) 4004 return -ENOMEM; 4005 4006 /* the ctx has been prepared successfully, let's commit it */ 4007 apply_wqattrs_commit(ctx); 4008 apply_wqattrs_cleanup(ctx); 4009 4010 return 0; 4011 } 4012 4013 /** 4014 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4015 * @wq: the target workqueue 4016 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4017 * 4018 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4019 * machines, this function maps a separate pwq to each NUMA node with 4020 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4021 * NUMA node it was issued on. Older pwqs are released as in-flight work 4022 * items finish. Note that a work item which repeatedly requeues itself 4023 * back-to-back will stay on its current pwq. 4024 * 4025 * Performs GFP_KERNEL allocations. 4026 * 4027 * Return: 0 on success and -errno on failure. 4028 */ 4029 int apply_workqueue_attrs(struct workqueue_struct *wq, 4030 const struct workqueue_attrs *attrs) 4031 { 4032 int ret; 4033 4034 apply_wqattrs_lock(); 4035 ret = apply_workqueue_attrs_locked(wq, attrs); 4036 apply_wqattrs_unlock(); 4037 4038 return ret; 4039 } 4040 EXPORT_SYMBOL_GPL(apply_workqueue_attrs); 4041 4042 /** 4043 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4044 * @wq: the target workqueue 4045 * @cpu: the CPU coming up or going down 4046 * @online: whether @cpu is coming up or going down 4047 * 4048 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4049 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4050 * @wq accordingly. 4051 * 4052 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4053 * falls back to @wq->dfl_pwq which may not be optimal but is always 4054 * correct. 4055 * 4056 * Note that when the last allowed CPU of a NUMA node goes offline for a 4057 * workqueue with a cpumask spanning multiple nodes, the workers which were 4058 * already executing the work items for the workqueue will lose their CPU 4059 * affinity and may execute on any CPU. This is similar to how per-cpu 4060 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4061 * affinity, it's the user's responsibility to flush the work item from 4062 * CPU_DOWN_PREPARE. 4063 */ 4064 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4065 bool online) 4066 { 4067 int node = cpu_to_node(cpu); 4068 int cpu_off = online ? -1 : cpu; 4069 struct pool_workqueue *old_pwq = NULL, *pwq; 4070 struct workqueue_attrs *target_attrs; 4071 cpumask_t *cpumask; 4072 4073 lockdep_assert_held(&wq_pool_mutex); 4074 4075 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4076 wq->unbound_attrs->no_numa) 4077 return; 4078 4079 /* 4080 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4081 * Let's use a preallocated one. The following buf is protected by 4082 * CPU hotplug exclusion. 4083 */ 4084 target_attrs = wq_update_unbound_numa_attrs_buf; 4085 cpumask = target_attrs->cpumask; 4086 4087 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4088 pwq = unbound_pwq_by_node(wq, node); 4089 4090 /* 4091 * Let's determine what needs to be done. If the target cpumask is 4092 * different from the default pwq's, we need to compare it to @pwq's 4093 * and create a new one if they don't match. If the target cpumask 4094 * equals the default pwq's, the default pwq should be used. 4095 */ 4096 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4097 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4098 return; 4099 } else { 4100 goto use_dfl_pwq; 4101 } 4102 4103 /* create a new pwq */ 4104 pwq = alloc_unbound_pwq(wq, target_attrs); 4105 if (!pwq) { 4106 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4107 wq->name); 4108 goto use_dfl_pwq; 4109 } 4110 4111 /* Install the new pwq. */ 4112 mutex_lock(&wq->mutex); 4113 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4114 goto out_unlock; 4115 4116 use_dfl_pwq: 4117 mutex_lock(&wq->mutex); 4118 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4119 get_pwq(wq->dfl_pwq); 4120 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4121 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4122 out_unlock: 4123 mutex_unlock(&wq->mutex); 4124 put_pwq_unlocked(old_pwq); 4125 } 4126 4127 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4128 { 4129 bool highpri = wq->flags & WQ_HIGHPRI; 4130 int cpu, ret; 4131 4132 if (!(wq->flags & WQ_UNBOUND)) { 4133 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4134 if (!wq->cpu_pwqs) 4135 return -ENOMEM; 4136 4137 for_each_possible_cpu(cpu) { 4138 struct pool_workqueue *pwq = 4139 per_cpu_ptr(wq->cpu_pwqs, cpu); 4140 struct worker_pool *cpu_pools = 4141 per_cpu(cpu_worker_pools, cpu); 4142 4143 init_pwq(pwq, wq, &cpu_pools[highpri]); 4144 4145 mutex_lock(&wq->mutex); 4146 link_pwq(pwq); 4147 mutex_unlock(&wq->mutex); 4148 } 4149 return 0; 4150 } else if (wq->flags & __WQ_ORDERED) { 4151 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4152 /* there should only be single pwq for ordering guarantee */ 4153 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4154 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4155 "ordering guarantee broken for workqueue %s\n", wq->name); 4156 return ret; 4157 } else { 4158 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4159 } 4160 } 4161 4162 static int wq_clamp_max_active(int max_active, unsigned int flags, 4163 const char *name) 4164 { 4165 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4166 4167 if (max_active < 1 || max_active > lim) 4168 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4169 max_active, name, 1, lim); 4170 4171 return clamp_val(max_active, 1, lim); 4172 } 4173 4174 /* 4175 * Workqueues which may be used during memory reclaim should have a rescuer 4176 * to guarantee forward progress. 4177 */ 4178 static int init_rescuer(struct workqueue_struct *wq) 4179 { 4180 struct worker *rescuer; 4181 int ret; 4182 4183 if (!(wq->flags & WQ_MEM_RECLAIM)) 4184 return 0; 4185 4186 rescuer = alloc_worker(NUMA_NO_NODE); 4187 if (!rescuer) 4188 return -ENOMEM; 4189 4190 rescuer->rescue_wq = wq; 4191 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4192 ret = PTR_ERR_OR_ZERO(rescuer->task); 4193 if (ret) { 4194 kfree(rescuer); 4195 return ret; 4196 } 4197 4198 wq->rescuer = rescuer; 4199 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4200 wake_up_process(rescuer->task); 4201 4202 return 0; 4203 } 4204 4205 struct workqueue_struct *alloc_workqueue(const char *fmt, 4206 unsigned int flags, 4207 int max_active, ...) 4208 { 4209 size_t tbl_size = 0; 4210 va_list args; 4211 struct workqueue_struct *wq; 4212 struct pool_workqueue *pwq; 4213 4214 /* 4215 * Unbound && max_active == 1 used to imply ordered, which is no 4216 * longer the case on NUMA machines due to per-node pools. While 4217 * alloc_ordered_workqueue() is the right way to create an ordered 4218 * workqueue, keep the previous behavior to avoid subtle breakages 4219 * on NUMA. 4220 */ 4221 if ((flags & WQ_UNBOUND) && max_active == 1) 4222 flags |= __WQ_ORDERED; 4223 4224 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4225 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4226 flags |= WQ_UNBOUND; 4227 4228 /* allocate wq and format name */ 4229 if (flags & WQ_UNBOUND) 4230 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4231 4232 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4233 if (!wq) 4234 return NULL; 4235 4236 if (flags & WQ_UNBOUND) { 4237 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4238 if (!wq->unbound_attrs) 4239 goto err_free_wq; 4240 } 4241 4242 va_start(args, max_active); 4243 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4244 va_end(args); 4245 4246 max_active = max_active ?: WQ_DFL_ACTIVE; 4247 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4248 4249 /* init wq */ 4250 wq->flags = flags; 4251 wq->saved_max_active = max_active; 4252 mutex_init(&wq->mutex); 4253 atomic_set(&wq->nr_pwqs_to_flush, 0); 4254 INIT_LIST_HEAD(&wq->pwqs); 4255 INIT_LIST_HEAD(&wq->flusher_queue); 4256 INIT_LIST_HEAD(&wq->flusher_overflow); 4257 INIT_LIST_HEAD(&wq->maydays); 4258 4259 wq_init_lockdep(wq); 4260 INIT_LIST_HEAD(&wq->list); 4261 4262 if (alloc_and_link_pwqs(wq) < 0) 4263 goto err_unreg_lockdep; 4264 4265 if (wq_online && init_rescuer(wq) < 0) 4266 goto err_destroy; 4267 4268 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4269 goto err_destroy; 4270 4271 /* 4272 * wq_pool_mutex protects global freeze state and workqueues list. 4273 * Grab it, adjust max_active and add the new @wq to workqueues 4274 * list. 4275 */ 4276 mutex_lock(&wq_pool_mutex); 4277 4278 mutex_lock(&wq->mutex); 4279 for_each_pwq(pwq, wq) 4280 pwq_adjust_max_active(pwq); 4281 mutex_unlock(&wq->mutex); 4282 4283 list_add_tail_rcu(&wq->list, &workqueues); 4284 4285 mutex_unlock(&wq_pool_mutex); 4286 4287 return wq; 4288 4289 err_unreg_lockdep: 4290 wq_unregister_lockdep(wq); 4291 wq_free_lockdep(wq); 4292 err_free_wq: 4293 free_workqueue_attrs(wq->unbound_attrs); 4294 kfree(wq); 4295 return NULL; 4296 err_destroy: 4297 destroy_workqueue(wq); 4298 return NULL; 4299 } 4300 EXPORT_SYMBOL_GPL(alloc_workqueue); 4301 4302 /** 4303 * destroy_workqueue - safely terminate a workqueue 4304 * @wq: target workqueue 4305 * 4306 * Safely destroy a workqueue. All work currently pending will be done first. 4307 */ 4308 void destroy_workqueue(struct workqueue_struct *wq) 4309 { 4310 struct pool_workqueue *pwq; 4311 int node; 4312 4313 /* drain it before proceeding with destruction */ 4314 drain_workqueue(wq); 4315 4316 /* sanity checks */ 4317 mutex_lock(&wq->mutex); 4318 for_each_pwq(pwq, wq) { 4319 int i; 4320 4321 for (i = 0; i < WORK_NR_COLORS; i++) { 4322 if (WARN_ON(pwq->nr_in_flight[i])) { 4323 mutex_unlock(&wq->mutex); 4324 show_workqueue_state(); 4325 return; 4326 } 4327 } 4328 4329 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4330 WARN_ON(pwq->nr_active) || 4331 WARN_ON(!list_empty(&pwq->delayed_works))) { 4332 mutex_unlock(&wq->mutex); 4333 show_workqueue_state(); 4334 return; 4335 } 4336 } 4337 mutex_unlock(&wq->mutex); 4338 4339 /* 4340 * wq list is used to freeze wq, remove from list after 4341 * flushing is complete in case freeze races us. 4342 */ 4343 mutex_lock(&wq_pool_mutex); 4344 list_del_rcu(&wq->list); 4345 mutex_unlock(&wq_pool_mutex); 4346 4347 workqueue_sysfs_unregister(wq); 4348 4349 if (wq->rescuer) 4350 kthread_stop(wq->rescuer->task); 4351 4352 if (!(wq->flags & WQ_UNBOUND)) { 4353 wq_unregister_lockdep(wq); 4354 /* 4355 * The base ref is never dropped on per-cpu pwqs. Directly 4356 * schedule RCU free. 4357 */ 4358 call_rcu(&wq->rcu, rcu_free_wq); 4359 } else { 4360 /* 4361 * We're the sole accessor of @wq at this point. Directly 4362 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4363 * @wq will be freed when the last pwq is released. 4364 */ 4365 for_each_node(node) { 4366 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4367 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4368 put_pwq_unlocked(pwq); 4369 } 4370 4371 /* 4372 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4373 * put. Don't access it afterwards. 4374 */ 4375 pwq = wq->dfl_pwq; 4376 wq->dfl_pwq = NULL; 4377 put_pwq_unlocked(pwq); 4378 } 4379 } 4380 EXPORT_SYMBOL_GPL(destroy_workqueue); 4381 4382 /** 4383 * workqueue_set_max_active - adjust max_active of a workqueue 4384 * @wq: target workqueue 4385 * @max_active: new max_active value. 4386 * 4387 * Set max_active of @wq to @max_active. 4388 * 4389 * CONTEXT: 4390 * Don't call from IRQ context. 4391 */ 4392 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4393 { 4394 struct pool_workqueue *pwq; 4395 4396 /* disallow meddling with max_active for ordered workqueues */ 4397 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4398 return; 4399 4400 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4401 4402 mutex_lock(&wq->mutex); 4403 4404 wq->flags &= ~__WQ_ORDERED; 4405 wq->saved_max_active = max_active; 4406 4407 for_each_pwq(pwq, wq) 4408 pwq_adjust_max_active(pwq); 4409 4410 mutex_unlock(&wq->mutex); 4411 } 4412 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4413 4414 /** 4415 * current_work - retrieve %current task's work struct 4416 * 4417 * Determine if %current task is a workqueue worker and what it's working on. 4418 * Useful to find out the context that the %current task is running in. 4419 * 4420 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4421 */ 4422 struct work_struct *current_work(void) 4423 { 4424 struct worker *worker = current_wq_worker(); 4425 4426 return worker ? worker->current_work : NULL; 4427 } 4428 EXPORT_SYMBOL(current_work); 4429 4430 /** 4431 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4432 * 4433 * Determine whether %current is a workqueue rescuer. Can be used from 4434 * work functions to determine whether it's being run off the rescuer task. 4435 * 4436 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4437 */ 4438 bool current_is_workqueue_rescuer(void) 4439 { 4440 struct worker *worker = current_wq_worker(); 4441 4442 return worker && worker->rescue_wq; 4443 } 4444 4445 /** 4446 * workqueue_congested - test whether a workqueue is congested 4447 * @cpu: CPU in question 4448 * @wq: target workqueue 4449 * 4450 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4451 * no synchronization around this function and the test result is 4452 * unreliable and only useful as advisory hints or for debugging. 4453 * 4454 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4455 * Note that both per-cpu and unbound workqueues may be associated with 4456 * multiple pool_workqueues which have separate congested states. A 4457 * workqueue being congested on one CPU doesn't mean the workqueue is also 4458 * contested on other CPUs / NUMA nodes. 4459 * 4460 * Return: 4461 * %true if congested, %false otherwise. 4462 */ 4463 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4464 { 4465 struct pool_workqueue *pwq; 4466 bool ret; 4467 4468 rcu_read_lock_sched(); 4469 4470 if (cpu == WORK_CPU_UNBOUND) 4471 cpu = smp_processor_id(); 4472 4473 if (!(wq->flags & WQ_UNBOUND)) 4474 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4475 else 4476 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4477 4478 ret = !list_empty(&pwq->delayed_works); 4479 rcu_read_unlock_sched(); 4480 4481 return ret; 4482 } 4483 EXPORT_SYMBOL_GPL(workqueue_congested); 4484 4485 /** 4486 * work_busy - test whether a work is currently pending or running 4487 * @work: the work to be tested 4488 * 4489 * Test whether @work is currently pending or running. There is no 4490 * synchronization around this function and the test result is 4491 * unreliable and only useful as advisory hints or for debugging. 4492 * 4493 * Return: 4494 * OR'd bitmask of WORK_BUSY_* bits. 4495 */ 4496 unsigned int work_busy(struct work_struct *work) 4497 { 4498 struct worker_pool *pool; 4499 unsigned long flags; 4500 unsigned int ret = 0; 4501 4502 if (work_pending(work)) 4503 ret |= WORK_BUSY_PENDING; 4504 4505 local_irq_save(flags); 4506 pool = get_work_pool(work); 4507 if (pool) { 4508 spin_lock(&pool->lock); 4509 if (find_worker_executing_work(pool, work)) 4510 ret |= WORK_BUSY_RUNNING; 4511 spin_unlock(&pool->lock); 4512 } 4513 local_irq_restore(flags); 4514 4515 return ret; 4516 } 4517 EXPORT_SYMBOL_GPL(work_busy); 4518 4519 /** 4520 * set_worker_desc - set description for the current work item 4521 * @fmt: printf-style format string 4522 * @...: arguments for the format string 4523 * 4524 * This function can be called by a running work function to describe what 4525 * the work item is about. If the worker task gets dumped, this 4526 * information will be printed out together to help debugging. The 4527 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4528 */ 4529 void set_worker_desc(const char *fmt, ...) 4530 { 4531 struct worker *worker = current_wq_worker(); 4532 va_list args; 4533 4534 if (worker) { 4535 va_start(args, fmt); 4536 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4537 va_end(args); 4538 } 4539 } 4540 EXPORT_SYMBOL_GPL(set_worker_desc); 4541 4542 /** 4543 * print_worker_info - print out worker information and description 4544 * @log_lvl: the log level to use when printing 4545 * @task: target task 4546 * 4547 * If @task is a worker and currently executing a work item, print out the 4548 * name of the workqueue being serviced and worker description set with 4549 * set_worker_desc() by the currently executing work item. 4550 * 4551 * This function can be safely called on any task as long as the 4552 * task_struct itself is accessible. While safe, this function isn't 4553 * synchronized and may print out mixups or garbages of limited length. 4554 */ 4555 void print_worker_info(const char *log_lvl, struct task_struct *task) 4556 { 4557 work_func_t *fn = NULL; 4558 char name[WQ_NAME_LEN] = { }; 4559 char desc[WORKER_DESC_LEN] = { }; 4560 struct pool_workqueue *pwq = NULL; 4561 struct workqueue_struct *wq = NULL; 4562 struct worker *worker; 4563 4564 if (!(task->flags & PF_WQ_WORKER)) 4565 return; 4566 4567 /* 4568 * This function is called without any synchronization and @task 4569 * could be in any state. Be careful with dereferences. 4570 */ 4571 worker = kthread_probe_data(task); 4572 4573 /* 4574 * Carefully copy the associated workqueue's workfn, name and desc. 4575 * Keep the original last '\0' in case the original is garbage. 4576 */ 4577 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4578 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4579 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4580 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4581 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4582 4583 if (fn || name[0] || desc[0]) { 4584 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4585 if (strcmp(name, desc)) 4586 pr_cont(" (%s)", desc); 4587 pr_cont("\n"); 4588 } 4589 } 4590 4591 static void pr_cont_pool_info(struct worker_pool *pool) 4592 { 4593 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4594 if (pool->node != NUMA_NO_NODE) 4595 pr_cont(" node=%d", pool->node); 4596 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4597 } 4598 4599 static void pr_cont_work(bool comma, struct work_struct *work) 4600 { 4601 if (work->func == wq_barrier_func) { 4602 struct wq_barrier *barr; 4603 4604 barr = container_of(work, struct wq_barrier, work); 4605 4606 pr_cont("%s BAR(%d)", comma ? "," : "", 4607 task_pid_nr(barr->task)); 4608 } else { 4609 pr_cont("%s %pf", comma ? "," : "", work->func); 4610 } 4611 } 4612 4613 static void show_pwq(struct pool_workqueue *pwq) 4614 { 4615 struct worker_pool *pool = pwq->pool; 4616 struct work_struct *work; 4617 struct worker *worker; 4618 bool has_in_flight = false, has_pending = false; 4619 int bkt; 4620 4621 pr_info(" pwq %d:", pool->id); 4622 pr_cont_pool_info(pool); 4623 4624 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4625 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4626 4627 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4628 if (worker->current_pwq == pwq) { 4629 has_in_flight = true; 4630 break; 4631 } 4632 } 4633 if (has_in_flight) { 4634 bool comma = false; 4635 4636 pr_info(" in-flight:"); 4637 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4638 if (worker->current_pwq != pwq) 4639 continue; 4640 4641 pr_cont("%s %d%s:%pf", comma ? "," : "", 4642 task_pid_nr(worker->task), 4643 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4644 worker->current_func); 4645 list_for_each_entry(work, &worker->scheduled, entry) 4646 pr_cont_work(false, work); 4647 comma = true; 4648 } 4649 pr_cont("\n"); 4650 } 4651 4652 list_for_each_entry(work, &pool->worklist, entry) { 4653 if (get_work_pwq(work) == pwq) { 4654 has_pending = true; 4655 break; 4656 } 4657 } 4658 if (has_pending) { 4659 bool comma = false; 4660 4661 pr_info(" pending:"); 4662 list_for_each_entry(work, &pool->worklist, entry) { 4663 if (get_work_pwq(work) != pwq) 4664 continue; 4665 4666 pr_cont_work(comma, work); 4667 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4668 } 4669 pr_cont("\n"); 4670 } 4671 4672 if (!list_empty(&pwq->delayed_works)) { 4673 bool comma = false; 4674 4675 pr_info(" delayed:"); 4676 list_for_each_entry(work, &pwq->delayed_works, entry) { 4677 pr_cont_work(comma, work); 4678 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4679 } 4680 pr_cont("\n"); 4681 } 4682 } 4683 4684 /** 4685 * show_workqueue_state - dump workqueue state 4686 * 4687 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4688 * all busy workqueues and pools. 4689 */ 4690 void show_workqueue_state(void) 4691 { 4692 struct workqueue_struct *wq; 4693 struct worker_pool *pool; 4694 unsigned long flags; 4695 int pi; 4696 4697 rcu_read_lock_sched(); 4698 4699 pr_info("Showing busy workqueues and worker pools:\n"); 4700 4701 list_for_each_entry_rcu(wq, &workqueues, list) { 4702 struct pool_workqueue *pwq; 4703 bool idle = true; 4704 4705 for_each_pwq(pwq, wq) { 4706 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4707 idle = false; 4708 break; 4709 } 4710 } 4711 if (idle) 4712 continue; 4713 4714 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4715 4716 for_each_pwq(pwq, wq) { 4717 spin_lock_irqsave(&pwq->pool->lock, flags); 4718 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4719 show_pwq(pwq); 4720 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4721 /* 4722 * We could be printing a lot from atomic context, e.g. 4723 * sysrq-t -> show_workqueue_state(). Avoid triggering 4724 * hard lockup. 4725 */ 4726 touch_nmi_watchdog(); 4727 } 4728 } 4729 4730 for_each_pool(pool, pi) { 4731 struct worker *worker; 4732 bool first = true; 4733 4734 spin_lock_irqsave(&pool->lock, flags); 4735 if (pool->nr_workers == pool->nr_idle) 4736 goto next_pool; 4737 4738 pr_info("pool %d:", pool->id); 4739 pr_cont_pool_info(pool); 4740 pr_cont(" hung=%us workers=%d", 4741 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4742 pool->nr_workers); 4743 if (pool->manager) 4744 pr_cont(" manager: %d", 4745 task_pid_nr(pool->manager->task)); 4746 list_for_each_entry(worker, &pool->idle_list, entry) { 4747 pr_cont(" %s%d", first ? "idle: " : "", 4748 task_pid_nr(worker->task)); 4749 first = false; 4750 } 4751 pr_cont("\n"); 4752 next_pool: 4753 spin_unlock_irqrestore(&pool->lock, flags); 4754 /* 4755 * We could be printing a lot from atomic context, e.g. 4756 * sysrq-t -> show_workqueue_state(). Avoid triggering 4757 * hard lockup. 4758 */ 4759 touch_nmi_watchdog(); 4760 } 4761 4762 rcu_read_unlock_sched(); 4763 } 4764 4765 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4766 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4767 { 4768 int off; 4769 4770 /* always show the actual comm */ 4771 off = strscpy(buf, task->comm, size); 4772 if (off < 0) 4773 return; 4774 4775 /* stabilize PF_WQ_WORKER and worker pool association */ 4776 mutex_lock(&wq_pool_attach_mutex); 4777 4778 if (task->flags & PF_WQ_WORKER) { 4779 struct worker *worker = kthread_data(task); 4780 struct worker_pool *pool = worker->pool; 4781 4782 if (pool) { 4783 spin_lock_irq(&pool->lock); 4784 /* 4785 * ->desc tracks information (wq name or 4786 * set_worker_desc()) for the latest execution. If 4787 * current, prepend '+', otherwise '-'. 4788 */ 4789 if (worker->desc[0] != '\0') { 4790 if (worker->current_work) 4791 scnprintf(buf + off, size - off, "+%s", 4792 worker->desc); 4793 else 4794 scnprintf(buf + off, size - off, "-%s", 4795 worker->desc); 4796 } 4797 spin_unlock_irq(&pool->lock); 4798 } 4799 } 4800 4801 mutex_unlock(&wq_pool_attach_mutex); 4802 } 4803 4804 #ifdef CONFIG_SMP 4805 4806 /* 4807 * CPU hotplug. 4808 * 4809 * There are two challenges in supporting CPU hotplug. Firstly, there 4810 * are a lot of assumptions on strong associations among work, pwq and 4811 * pool which make migrating pending and scheduled works very 4812 * difficult to implement without impacting hot paths. Secondly, 4813 * worker pools serve mix of short, long and very long running works making 4814 * blocked draining impractical. 4815 * 4816 * This is solved by allowing the pools to be disassociated from the CPU 4817 * running as an unbound one and allowing it to be reattached later if the 4818 * cpu comes back online. 4819 */ 4820 4821 static void unbind_workers(int cpu) 4822 { 4823 struct worker_pool *pool; 4824 struct worker *worker; 4825 4826 for_each_cpu_worker_pool(pool, cpu) { 4827 mutex_lock(&wq_pool_attach_mutex); 4828 spin_lock_irq(&pool->lock); 4829 4830 /* 4831 * We've blocked all attach/detach operations. Make all workers 4832 * unbound and set DISASSOCIATED. Before this, all workers 4833 * except for the ones which are still executing works from 4834 * before the last CPU down must be on the cpu. After 4835 * this, they may become diasporas. 4836 */ 4837 for_each_pool_worker(worker, pool) 4838 worker->flags |= WORKER_UNBOUND; 4839 4840 pool->flags |= POOL_DISASSOCIATED; 4841 4842 spin_unlock_irq(&pool->lock); 4843 mutex_unlock(&wq_pool_attach_mutex); 4844 4845 /* 4846 * Call schedule() so that we cross rq->lock and thus can 4847 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4848 * This is necessary as scheduler callbacks may be invoked 4849 * from other cpus. 4850 */ 4851 schedule(); 4852 4853 /* 4854 * Sched callbacks are disabled now. Zap nr_running. 4855 * After this, nr_running stays zero and need_more_worker() 4856 * and keep_working() are always true as long as the 4857 * worklist is not empty. This pool now behaves as an 4858 * unbound (in terms of concurrency management) pool which 4859 * are served by workers tied to the pool. 4860 */ 4861 atomic_set(&pool->nr_running, 0); 4862 4863 /* 4864 * With concurrency management just turned off, a busy 4865 * worker blocking could lead to lengthy stalls. Kick off 4866 * unbound chain execution of currently pending work items. 4867 */ 4868 spin_lock_irq(&pool->lock); 4869 wake_up_worker(pool); 4870 spin_unlock_irq(&pool->lock); 4871 } 4872 } 4873 4874 /** 4875 * rebind_workers - rebind all workers of a pool to the associated CPU 4876 * @pool: pool of interest 4877 * 4878 * @pool->cpu is coming online. Rebind all workers to the CPU. 4879 */ 4880 static void rebind_workers(struct worker_pool *pool) 4881 { 4882 struct worker *worker; 4883 4884 lockdep_assert_held(&wq_pool_attach_mutex); 4885 4886 /* 4887 * Restore CPU affinity of all workers. As all idle workers should 4888 * be on the run-queue of the associated CPU before any local 4889 * wake-ups for concurrency management happen, restore CPU affinity 4890 * of all workers first and then clear UNBOUND. As we're called 4891 * from CPU_ONLINE, the following shouldn't fail. 4892 */ 4893 for_each_pool_worker(worker, pool) 4894 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4895 pool->attrs->cpumask) < 0); 4896 4897 spin_lock_irq(&pool->lock); 4898 4899 pool->flags &= ~POOL_DISASSOCIATED; 4900 4901 for_each_pool_worker(worker, pool) { 4902 unsigned int worker_flags = worker->flags; 4903 4904 /* 4905 * A bound idle worker should actually be on the runqueue 4906 * of the associated CPU for local wake-ups targeting it to 4907 * work. Kick all idle workers so that they migrate to the 4908 * associated CPU. Doing this in the same loop as 4909 * replacing UNBOUND with REBOUND is safe as no worker will 4910 * be bound before @pool->lock is released. 4911 */ 4912 if (worker_flags & WORKER_IDLE) 4913 wake_up_process(worker->task); 4914 4915 /* 4916 * We want to clear UNBOUND but can't directly call 4917 * worker_clr_flags() or adjust nr_running. Atomically 4918 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4919 * @worker will clear REBOUND using worker_clr_flags() when 4920 * it initiates the next execution cycle thus restoring 4921 * concurrency management. Note that when or whether 4922 * @worker clears REBOUND doesn't affect correctness. 4923 * 4924 * WRITE_ONCE() is necessary because @worker->flags may be 4925 * tested without holding any lock in 4926 * wq_worker_running(). Without it, NOT_RUNNING test may 4927 * fail incorrectly leading to premature concurrency 4928 * management operations. 4929 */ 4930 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4931 worker_flags |= WORKER_REBOUND; 4932 worker_flags &= ~WORKER_UNBOUND; 4933 WRITE_ONCE(worker->flags, worker_flags); 4934 } 4935 4936 spin_unlock_irq(&pool->lock); 4937 } 4938 4939 /** 4940 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4941 * @pool: unbound pool of interest 4942 * @cpu: the CPU which is coming up 4943 * 4944 * An unbound pool may end up with a cpumask which doesn't have any online 4945 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4946 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4947 * online CPU before, cpus_allowed of all its workers should be restored. 4948 */ 4949 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4950 { 4951 static cpumask_t cpumask; 4952 struct worker *worker; 4953 4954 lockdep_assert_held(&wq_pool_attach_mutex); 4955 4956 /* is @cpu allowed for @pool? */ 4957 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4958 return; 4959 4960 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4961 4962 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4963 for_each_pool_worker(worker, pool) 4964 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4965 } 4966 4967 int workqueue_prepare_cpu(unsigned int cpu) 4968 { 4969 struct worker_pool *pool; 4970 4971 for_each_cpu_worker_pool(pool, cpu) { 4972 if (pool->nr_workers) 4973 continue; 4974 if (!create_worker(pool)) 4975 return -ENOMEM; 4976 } 4977 return 0; 4978 } 4979 4980 int workqueue_online_cpu(unsigned int cpu) 4981 { 4982 struct worker_pool *pool; 4983 struct workqueue_struct *wq; 4984 int pi; 4985 4986 mutex_lock(&wq_pool_mutex); 4987 4988 for_each_pool(pool, pi) { 4989 mutex_lock(&wq_pool_attach_mutex); 4990 4991 if (pool->cpu == cpu) 4992 rebind_workers(pool); 4993 else if (pool->cpu < 0) 4994 restore_unbound_workers_cpumask(pool, cpu); 4995 4996 mutex_unlock(&wq_pool_attach_mutex); 4997 } 4998 4999 /* update NUMA affinity of unbound workqueues */ 5000 list_for_each_entry(wq, &workqueues, list) 5001 wq_update_unbound_numa(wq, cpu, true); 5002 5003 mutex_unlock(&wq_pool_mutex); 5004 return 0; 5005 } 5006 5007 int workqueue_offline_cpu(unsigned int cpu) 5008 { 5009 struct workqueue_struct *wq; 5010 5011 /* unbinding per-cpu workers should happen on the local CPU */ 5012 if (WARN_ON(cpu != smp_processor_id())) 5013 return -1; 5014 5015 unbind_workers(cpu); 5016 5017 /* update NUMA affinity of unbound workqueues */ 5018 mutex_lock(&wq_pool_mutex); 5019 list_for_each_entry(wq, &workqueues, list) 5020 wq_update_unbound_numa(wq, cpu, false); 5021 mutex_unlock(&wq_pool_mutex); 5022 5023 return 0; 5024 } 5025 5026 struct work_for_cpu { 5027 struct work_struct work; 5028 long (*fn)(void *); 5029 void *arg; 5030 long ret; 5031 }; 5032 5033 static void work_for_cpu_fn(struct work_struct *work) 5034 { 5035 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5036 5037 wfc->ret = wfc->fn(wfc->arg); 5038 } 5039 5040 /** 5041 * work_on_cpu - run a function in thread context on a particular cpu 5042 * @cpu: the cpu to run on 5043 * @fn: the function to run 5044 * @arg: the function arg 5045 * 5046 * It is up to the caller to ensure that the cpu doesn't go offline. 5047 * The caller must not hold any locks which would prevent @fn from completing. 5048 * 5049 * Return: The value @fn returns. 5050 */ 5051 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5052 { 5053 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5054 5055 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5056 schedule_work_on(cpu, &wfc.work); 5057 flush_work(&wfc.work); 5058 destroy_work_on_stack(&wfc.work); 5059 return wfc.ret; 5060 } 5061 EXPORT_SYMBOL_GPL(work_on_cpu); 5062 5063 /** 5064 * work_on_cpu_safe - run a function in thread context on a particular cpu 5065 * @cpu: the cpu to run on 5066 * @fn: the function to run 5067 * @arg: the function argument 5068 * 5069 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5070 * any locks which would prevent @fn from completing. 5071 * 5072 * Return: The value @fn returns. 5073 */ 5074 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5075 { 5076 long ret = -ENODEV; 5077 5078 get_online_cpus(); 5079 if (cpu_online(cpu)) 5080 ret = work_on_cpu(cpu, fn, arg); 5081 put_online_cpus(); 5082 return ret; 5083 } 5084 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5085 #endif /* CONFIG_SMP */ 5086 5087 #ifdef CONFIG_FREEZER 5088 5089 /** 5090 * freeze_workqueues_begin - begin freezing workqueues 5091 * 5092 * Start freezing workqueues. After this function returns, all freezable 5093 * workqueues will queue new works to their delayed_works list instead of 5094 * pool->worklist. 5095 * 5096 * CONTEXT: 5097 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5098 */ 5099 void freeze_workqueues_begin(void) 5100 { 5101 struct workqueue_struct *wq; 5102 struct pool_workqueue *pwq; 5103 5104 mutex_lock(&wq_pool_mutex); 5105 5106 WARN_ON_ONCE(workqueue_freezing); 5107 workqueue_freezing = true; 5108 5109 list_for_each_entry(wq, &workqueues, list) { 5110 mutex_lock(&wq->mutex); 5111 for_each_pwq(pwq, wq) 5112 pwq_adjust_max_active(pwq); 5113 mutex_unlock(&wq->mutex); 5114 } 5115 5116 mutex_unlock(&wq_pool_mutex); 5117 } 5118 5119 /** 5120 * freeze_workqueues_busy - are freezable workqueues still busy? 5121 * 5122 * Check whether freezing is complete. This function must be called 5123 * between freeze_workqueues_begin() and thaw_workqueues(). 5124 * 5125 * CONTEXT: 5126 * Grabs and releases wq_pool_mutex. 5127 * 5128 * Return: 5129 * %true if some freezable workqueues are still busy. %false if freezing 5130 * is complete. 5131 */ 5132 bool freeze_workqueues_busy(void) 5133 { 5134 bool busy = false; 5135 struct workqueue_struct *wq; 5136 struct pool_workqueue *pwq; 5137 5138 mutex_lock(&wq_pool_mutex); 5139 5140 WARN_ON_ONCE(!workqueue_freezing); 5141 5142 list_for_each_entry(wq, &workqueues, list) { 5143 if (!(wq->flags & WQ_FREEZABLE)) 5144 continue; 5145 /* 5146 * nr_active is monotonically decreasing. It's safe 5147 * to peek without lock. 5148 */ 5149 rcu_read_lock_sched(); 5150 for_each_pwq(pwq, wq) { 5151 WARN_ON_ONCE(pwq->nr_active < 0); 5152 if (pwq->nr_active) { 5153 busy = true; 5154 rcu_read_unlock_sched(); 5155 goto out_unlock; 5156 } 5157 } 5158 rcu_read_unlock_sched(); 5159 } 5160 out_unlock: 5161 mutex_unlock(&wq_pool_mutex); 5162 return busy; 5163 } 5164 5165 /** 5166 * thaw_workqueues - thaw workqueues 5167 * 5168 * Thaw workqueues. Normal queueing is restored and all collected 5169 * frozen works are transferred to their respective pool worklists. 5170 * 5171 * CONTEXT: 5172 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5173 */ 5174 void thaw_workqueues(void) 5175 { 5176 struct workqueue_struct *wq; 5177 struct pool_workqueue *pwq; 5178 5179 mutex_lock(&wq_pool_mutex); 5180 5181 if (!workqueue_freezing) 5182 goto out_unlock; 5183 5184 workqueue_freezing = false; 5185 5186 /* restore max_active and repopulate worklist */ 5187 list_for_each_entry(wq, &workqueues, list) { 5188 mutex_lock(&wq->mutex); 5189 for_each_pwq(pwq, wq) 5190 pwq_adjust_max_active(pwq); 5191 mutex_unlock(&wq->mutex); 5192 } 5193 5194 out_unlock: 5195 mutex_unlock(&wq_pool_mutex); 5196 } 5197 #endif /* CONFIG_FREEZER */ 5198 5199 static int workqueue_apply_unbound_cpumask(void) 5200 { 5201 LIST_HEAD(ctxs); 5202 int ret = 0; 5203 struct workqueue_struct *wq; 5204 struct apply_wqattrs_ctx *ctx, *n; 5205 5206 lockdep_assert_held(&wq_pool_mutex); 5207 5208 list_for_each_entry(wq, &workqueues, list) { 5209 if (!(wq->flags & WQ_UNBOUND)) 5210 continue; 5211 /* creating multiple pwqs breaks ordering guarantee */ 5212 if (wq->flags & __WQ_ORDERED) 5213 continue; 5214 5215 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5216 if (!ctx) { 5217 ret = -ENOMEM; 5218 break; 5219 } 5220 5221 list_add_tail(&ctx->list, &ctxs); 5222 } 5223 5224 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5225 if (!ret) 5226 apply_wqattrs_commit(ctx); 5227 apply_wqattrs_cleanup(ctx); 5228 } 5229 5230 return ret; 5231 } 5232 5233 /** 5234 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5235 * @cpumask: the cpumask to set 5236 * 5237 * The low-level workqueues cpumask is a global cpumask that limits 5238 * the affinity of all unbound workqueues. This function check the @cpumask 5239 * and apply it to all unbound workqueues and updates all pwqs of them. 5240 * 5241 * Retun: 0 - Success 5242 * -EINVAL - Invalid @cpumask 5243 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5244 */ 5245 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5246 { 5247 int ret = -EINVAL; 5248 cpumask_var_t saved_cpumask; 5249 5250 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5251 return -ENOMEM; 5252 5253 /* 5254 * Not excluding isolated cpus on purpose. 5255 * If the user wishes to include them, we allow that. 5256 */ 5257 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5258 if (!cpumask_empty(cpumask)) { 5259 apply_wqattrs_lock(); 5260 5261 /* save the old wq_unbound_cpumask. */ 5262 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5263 5264 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5265 cpumask_copy(wq_unbound_cpumask, cpumask); 5266 ret = workqueue_apply_unbound_cpumask(); 5267 5268 /* restore the wq_unbound_cpumask when failed. */ 5269 if (ret < 0) 5270 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5271 5272 apply_wqattrs_unlock(); 5273 } 5274 5275 free_cpumask_var(saved_cpumask); 5276 return ret; 5277 } 5278 5279 #ifdef CONFIG_SYSFS 5280 /* 5281 * Workqueues with WQ_SYSFS flag set is visible to userland via 5282 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5283 * following attributes. 5284 * 5285 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5286 * max_active RW int : maximum number of in-flight work items 5287 * 5288 * Unbound workqueues have the following extra attributes. 5289 * 5290 * pool_ids RO int : the associated pool IDs for each node 5291 * nice RW int : nice value of the workers 5292 * cpumask RW mask : bitmask of allowed CPUs for the workers 5293 * numa RW bool : whether enable NUMA affinity 5294 */ 5295 struct wq_device { 5296 struct workqueue_struct *wq; 5297 struct device dev; 5298 }; 5299 5300 static struct workqueue_struct *dev_to_wq(struct device *dev) 5301 { 5302 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5303 5304 return wq_dev->wq; 5305 } 5306 5307 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5308 char *buf) 5309 { 5310 struct workqueue_struct *wq = dev_to_wq(dev); 5311 5312 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5313 } 5314 static DEVICE_ATTR_RO(per_cpu); 5315 5316 static ssize_t max_active_show(struct device *dev, 5317 struct device_attribute *attr, char *buf) 5318 { 5319 struct workqueue_struct *wq = dev_to_wq(dev); 5320 5321 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5322 } 5323 5324 static ssize_t max_active_store(struct device *dev, 5325 struct device_attribute *attr, const char *buf, 5326 size_t count) 5327 { 5328 struct workqueue_struct *wq = dev_to_wq(dev); 5329 int val; 5330 5331 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5332 return -EINVAL; 5333 5334 workqueue_set_max_active(wq, val); 5335 return count; 5336 } 5337 static DEVICE_ATTR_RW(max_active); 5338 5339 static struct attribute *wq_sysfs_attrs[] = { 5340 &dev_attr_per_cpu.attr, 5341 &dev_attr_max_active.attr, 5342 NULL, 5343 }; 5344 ATTRIBUTE_GROUPS(wq_sysfs); 5345 5346 static ssize_t wq_pool_ids_show(struct device *dev, 5347 struct device_attribute *attr, char *buf) 5348 { 5349 struct workqueue_struct *wq = dev_to_wq(dev); 5350 const char *delim = ""; 5351 int node, written = 0; 5352 5353 rcu_read_lock_sched(); 5354 for_each_node(node) { 5355 written += scnprintf(buf + written, PAGE_SIZE - written, 5356 "%s%d:%d", delim, node, 5357 unbound_pwq_by_node(wq, node)->pool->id); 5358 delim = " "; 5359 } 5360 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5361 rcu_read_unlock_sched(); 5362 5363 return written; 5364 } 5365 5366 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5367 char *buf) 5368 { 5369 struct workqueue_struct *wq = dev_to_wq(dev); 5370 int written; 5371 5372 mutex_lock(&wq->mutex); 5373 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5374 mutex_unlock(&wq->mutex); 5375 5376 return written; 5377 } 5378 5379 /* prepare workqueue_attrs for sysfs store operations */ 5380 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5381 { 5382 struct workqueue_attrs *attrs; 5383 5384 lockdep_assert_held(&wq_pool_mutex); 5385 5386 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5387 if (!attrs) 5388 return NULL; 5389 5390 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5391 return attrs; 5392 } 5393 5394 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5395 const char *buf, size_t count) 5396 { 5397 struct workqueue_struct *wq = dev_to_wq(dev); 5398 struct workqueue_attrs *attrs; 5399 int ret = -ENOMEM; 5400 5401 apply_wqattrs_lock(); 5402 5403 attrs = wq_sysfs_prep_attrs(wq); 5404 if (!attrs) 5405 goto out_unlock; 5406 5407 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5408 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5409 ret = apply_workqueue_attrs_locked(wq, attrs); 5410 else 5411 ret = -EINVAL; 5412 5413 out_unlock: 5414 apply_wqattrs_unlock(); 5415 free_workqueue_attrs(attrs); 5416 return ret ?: count; 5417 } 5418 5419 static ssize_t wq_cpumask_show(struct device *dev, 5420 struct device_attribute *attr, char *buf) 5421 { 5422 struct workqueue_struct *wq = dev_to_wq(dev); 5423 int written; 5424 5425 mutex_lock(&wq->mutex); 5426 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5427 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5428 mutex_unlock(&wq->mutex); 5429 return written; 5430 } 5431 5432 static ssize_t wq_cpumask_store(struct device *dev, 5433 struct device_attribute *attr, 5434 const char *buf, size_t count) 5435 { 5436 struct workqueue_struct *wq = dev_to_wq(dev); 5437 struct workqueue_attrs *attrs; 5438 int ret = -ENOMEM; 5439 5440 apply_wqattrs_lock(); 5441 5442 attrs = wq_sysfs_prep_attrs(wq); 5443 if (!attrs) 5444 goto out_unlock; 5445 5446 ret = cpumask_parse(buf, attrs->cpumask); 5447 if (!ret) 5448 ret = apply_workqueue_attrs_locked(wq, attrs); 5449 5450 out_unlock: 5451 apply_wqattrs_unlock(); 5452 free_workqueue_attrs(attrs); 5453 return ret ?: count; 5454 } 5455 5456 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5457 char *buf) 5458 { 5459 struct workqueue_struct *wq = dev_to_wq(dev); 5460 int written; 5461 5462 mutex_lock(&wq->mutex); 5463 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5464 !wq->unbound_attrs->no_numa); 5465 mutex_unlock(&wq->mutex); 5466 5467 return written; 5468 } 5469 5470 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5471 const char *buf, size_t count) 5472 { 5473 struct workqueue_struct *wq = dev_to_wq(dev); 5474 struct workqueue_attrs *attrs; 5475 int v, ret = -ENOMEM; 5476 5477 apply_wqattrs_lock(); 5478 5479 attrs = wq_sysfs_prep_attrs(wq); 5480 if (!attrs) 5481 goto out_unlock; 5482 5483 ret = -EINVAL; 5484 if (sscanf(buf, "%d", &v) == 1) { 5485 attrs->no_numa = !v; 5486 ret = apply_workqueue_attrs_locked(wq, attrs); 5487 } 5488 5489 out_unlock: 5490 apply_wqattrs_unlock(); 5491 free_workqueue_attrs(attrs); 5492 return ret ?: count; 5493 } 5494 5495 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5496 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5497 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5498 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5499 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5500 __ATTR_NULL, 5501 }; 5502 5503 static struct bus_type wq_subsys = { 5504 .name = "workqueue", 5505 .dev_groups = wq_sysfs_groups, 5506 }; 5507 5508 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5509 struct device_attribute *attr, char *buf) 5510 { 5511 int written; 5512 5513 mutex_lock(&wq_pool_mutex); 5514 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5515 cpumask_pr_args(wq_unbound_cpumask)); 5516 mutex_unlock(&wq_pool_mutex); 5517 5518 return written; 5519 } 5520 5521 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5522 struct device_attribute *attr, const char *buf, size_t count) 5523 { 5524 cpumask_var_t cpumask; 5525 int ret; 5526 5527 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5528 return -ENOMEM; 5529 5530 ret = cpumask_parse(buf, cpumask); 5531 if (!ret) 5532 ret = workqueue_set_unbound_cpumask(cpumask); 5533 5534 free_cpumask_var(cpumask); 5535 return ret ? ret : count; 5536 } 5537 5538 static struct device_attribute wq_sysfs_cpumask_attr = 5539 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5540 wq_unbound_cpumask_store); 5541 5542 static int __init wq_sysfs_init(void) 5543 { 5544 int err; 5545 5546 err = subsys_virtual_register(&wq_subsys, NULL); 5547 if (err) 5548 return err; 5549 5550 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5551 } 5552 core_initcall(wq_sysfs_init); 5553 5554 static void wq_device_release(struct device *dev) 5555 { 5556 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5557 5558 kfree(wq_dev); 5559 } 5560 5561 /** 5562 * workqueue_sysfs_register - make a workqueue visible in sysfs 5563 * @wq: the workqueue to register 5564 * 5565 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5566 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5567 * which is the preferred method. 5568 * 5569 * Workqueue user should use this function directly iff it wants to apply 5570 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5571 * apply_workqueue_attrs() may race against userland updating the 5572 * attributes. 5573 * 5574 * Return: 0 on success, -errno on failure. 5575 */ 5576 int workqueue_sysfs_register(struct workqueue_struct *wq) 5577 { 5578 struct wq_device *wq_dev; 5579 int ret; 5580 5581 /* 5582 * Adjusting max_active or creating new pwqs by applying 5583 * attributes breaks ordering guarantee. Disallow exposing ordered 5584 * workqueues. 5585 */ 5586 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5587 return -EINVAL; 5588 5589 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5590 if (!wq_dev) 5591 return -ENOMEM; 5592 5593 wq_dev->wq = wq; 5594 wq_dev->dev.bus = &wq_subsys; 5595 wq_dev->dev.release = wq_device_release; 5596 dev_set_name(&wq_dev->dev, "%s", wq->name); 5597 5598 /* 5599 * unbound_attrs are created separately. Suppress uevent until 5600 * everything is ready. 5601 */ 5602 dev_set_uevent_suppress(&wq_dev->dev, true); 5603 5604 ret = device_register(&wq_dev->dev); 5605 if (ret) { 5606 put_device(&wq_dev->dev); 5607 wq->wq_dev = NULL; 5608 return ret; 5609 } 5610 5611 if (wq->flags & WQ_UNBOUND) { 5612 struct device_attribute *attr; 5613 5614 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5615 ret = device_create_file(&wq_dev->dev, attr); 5616 if (ret) { 5617 device_unregister(&wq_dev->dev); 5618 wq->wq_dev = NULL; 5619 return ret; 5620 } 5621 } 5622 } 5623 5624 dev_set_uevent_suppress(&wq_dev->dev, false); 5625 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5626 return 0; 5627 } 5628 5629 /** 5630 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5631 * @wq: the workqueue to unregister 5632 * 5633 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5634 */ 5635 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5636 { 5637 struct wq_device *wq_dev = wq->wq_dev; 5638 5639 if (!wq->wq_dev) 5640 return; 5641 5642 wq->wq_dev = NULL; 5643 device_unregister(&wq_dev->dev); 5644 } 5645 #else /* CONFIG_SYSFS */ 5646 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5647 #endif /* CONFIG_SYSFS */ 5648 5649 /* 5650 * Workqueue watchdog. 5651 * 5652 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5653 * flush dependency, a concurrency managed work item which stays RUNNING 5654 * indefinitely. Workqueue stalls can be very difficult to debug as the 5655 * usual warning mechanisms don't trigger and internal workqueue state is 5656 * largely opaque. 5657 * 5658 * Workqueue watchdog monitors all worker pools periodically and dumps 5659 * state if some pools failed to make forward progress for a while where 5660 * forward progress is defined as the first item on ->worklist changing. 5661 * 5662 * This mechanism is controlled through the kernel parameter 5663 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5664 * corresponding sysfs parameter file. 5665 */ 5666 #ifdef CONFIG_WQ_WATCHDOG 5667 5668 static unsigned long wq_watchdog_thresh = 30; 5669 static struct timer_list wq_watchdog_timer; 5670 5671 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5672 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5673 5674 static void wq_watchdog_reset_touched(void) 5675 { 5676 int cpu; 5677 5678 wq_watchdog_touched = jiffies; 5679 for_each_possible_cpu(cpu) 5680 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5681 } 5682 5683 static void wq_watchdog_timer_fn(struct timer_list *unused) 5684 { 5685 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5686 bool lockup_detected = false; 5687 struct worker_pool *pool; 5688 int pi; 5689 5690 if (!thresh) 5691 return; 5692 5693 rcu_read_lock(); 5694 5695 for_each_pool(pool, pi) { 5696 unsigned long pool_ts, touched, ts; 5697 5698 if (list_empty(&pool->worklist)) 5699 continue; 5700 5701 /* get the latest of pool and touched timestamps */ 5702 pool_ts = READ_ONCE(pool->watchdog_ts); 5703 touched = READ_ONCE(wq_watchdog_touched); 5704 5705 if (time_after(pool_ts, touched)) 5706 ts = pool_ts; 5707 else 5708 ts = touched; 5709 5710 if (pool->cpu >= 0) { 5711 unsigned long cpu_touched = 5712 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5713 pool->cpu)); 5714 if (time_after(cpu_touched, ts)) 5715 ts = cpu_touched; 5716 } 5717 5718 /* did we stall? */ 5719 if (time_after(jiffies, ts + thresh)) { 5720 lockup_detected = true; 5721 pr_emerg("BUG: workqueue lockup - pool"); 5722 pr_cont_pool_info(pool); 5723 pr_cont(" stuck for %us!\n", 5724 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5725 } 5726 } 5727 5728 rcu_read_unlock(); 5729 5730 if (lockup_detected) 5731 show_workqueue_state(); 5732 5733 wq_watchdog_reset_touched(); 5734 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5735 } 5736 5737 notrace void wq_watchdog_touch(int cpu) 5738 { 5739 if (cpu >= 0) 5740 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5741 else 5742 wq_watchdog_touched = jiffies; 5743 } 5744 5745 static void wq_watchdog_set_thresh(unsigned long thresh) 5746 { 5747 wq_watchdog_thresh = 0; 5748 del_timer_sync(&wq_watchdog_timer); 5749 5750 if (thresh) { 5751 wq_watchdog_thresh = thresh; 5752 wq_watchdog_reset_touched(); 5753 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5754 } 5755 } 5756 5757 static int wq_watchdog_param_set_thresh(const char *val, 5758 const struct kernel_param *kp) 5759 { 5760 unsigned long thresh; 5761 int ret; 5762 5763 ret = kstrtoul(val, 0, &thresh); 5764 if (ret) 5765 return ret; 5766 5767 if (system_wq) 5768 wq_watchdog_set_thresh(thresh); 5769 else 5770 wq_watchdog_thresh = thresh; 5771 5772 return 0; 5773 } 5774 5775 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5776 .set = wq_watchdog_param_set_thresh, 5777 .get = param_get_ulong, 5778 }; 5779 5780 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5781 0644); 5782 5783 static void wq_watchdog_init(void) 5784 { 5785 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5786 wq_watchdog_set_thresh(wq_watchdog_thresh); 5787 } 5788 5789 #else /* CONFIG_WQ_WATCHDOG */ 5790 5791 static inline void wq_watchdog_init(void) { } 5792 5793 #endif /* CONFIG_WQ_WATCHDOG */ 5794 5795 static void __init wq_numa_init(void) 5796 { 5797 cpumask_var_t *tbl; 5798 int node, cpu; 5799 5800 if (num_possible_nodes() <= 1) 5801 return; 5802 5803 if (wq_disable_numa) { 5804 pr_info("workqueue: NUMA affinity support disabled\n"); 5805 return; 5806 } 5807 5808 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5809 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5810 5811 /* 5812 * We want masks of possible CPUs of each node which isn't readily 5813 * available. Build one from cpu_to_node() which should have been 5814 * fully initialized by now. 5815 */ 5816 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5817 BUG_ON(!tbl); 5818 5819 for_each_node(node) 5820 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5821 node_online(node) ? node : NUMA_NO_NODE)); 5822 5823 for_each_possible_cpu(cpu) { 5824 node = cpu_to_node(cpu); 5825 if (WARN_ON(node == NUMA_NO_NODE)) { 5826 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5827 /* happens iff arch is bonkers, let's just proceed */ 5828 return; 5829 } 5830 cpumask_set_cpu(cpu, tbl[node]); 5831 } 5832 5833 wq_numa_possible_cpumask = tbl; 5834 wq_numa_enabled = true; 5835 } 5836 5837 /** 5838 * workqueue_init_early - early init for workqueue subsystem 5839 * 5840 * This is the first half of two-staged workqueue subsystem initialization 5841 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5842 * idr are up. It sets up all the data structures and system workqueues 5843 * and allows early boot code to create workqueues and queue/cancel work 5844 * items. Actual work item execution starts only after kthreads can be 5845 * created and scheduled right before early initcalls. 5846 */ 5847 int __init workqueue_init_early(void) 5848 { 5849 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5850 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5851 int i, cpu; 5852 5853 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5854 5855 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5856 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5857 5858 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5859 5860 /* initialize CPU pools */ 5861 for_each_possible_cpu(cpu) { 5862 struct worker_pool *pool; 5863 5864 i = 0; 5865 for_each_cpu_worker_pool(pool, cpu) { 5866 BUG_ON(init_worker_pool(pool)); 5867 pool->cpu = cpu; 5868 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5869 pool->attrs->nice = std_nice[i++]; 5870 pool->node = cpu_to_node(cpu); 5871 5872 /* alloc pool ID */ 5873 mutex_lock(&wq_pool_mutex); 5874 BUG_ON(worker_pool_assign_id(pool)); 5875 mutex_unlock(&wq_pool_mutex); 5876 } 5877 } 5878 5879 /* create default unbound and ordered wq attrs */ 5880 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5881 struct workqueue_attrs *attrs; 5882 5883 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5884 attrs->nice = std_nice[i]; 5885 unbound_std_wq_attrs[i] = attrs; 5886 5887 /* 5888 * An ordered wq should have only one pwq as ordering is 5889 * guaranteed by max_active which is enforced by pwqs. 5890 * Turn off NUMA so that dfl_pwq is used for all nodes. 5891 */ 5892 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5893 attrs->nice = std_nice[i]; 5894 attrs->no_numa = true; 5895 ordered_wq_attrs[i] = attrs; 5896 } 5897 5898 system_wq = alloc_workqueue("events", 0, 0); 5899 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5900 system_long_wq = alloc_workqueue("events_long", 0, 0); 5901 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5902 WQ_UNBOUND_MAX_ACTIVE); 5903 system_freezable_wq = alloc_workqueue("events_freezable", 5904 WQ_FREEZABLE, 0); 5905 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5906 WQ_POWER_EFFICIENT, 0); 5907 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5908 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5909 0); 5910 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5911 !system_unbound_wq || !system_freezable_wq || 5912 !system_power_efficient_wq || 5913 !system_freezable_power_efficient_wq); 5914 5915 return 0; 5916 } 5917 5918 /** 5919 * workqueue_init - bring workqueue subsystem fully online 5920 * 5921 * This is the latter half of two-staged workqueue subsystem initialization 5922 * and invoked as soon as kthreads can be created and scheduled. 5923 * Workqueues have been created and work items queued on them, but there 5924 * are no kworkers executing the work items yet. Populate the worker pools 5925 * with the initial workers and enable future kworker creations. 5926 */ 5927 int __init workqueue_init(void) 5928 { 5929 struct workqueue_struct *wq; 5930 struct worker_pool *pool; 5931 int cpu, bkt; 5932 5933 /* 5934 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5935 * CPU to node mapping may not be available that early on some 5936 * archs such as power and arm64. As per-cpu pools created 5937 * previously could be missing node hint and unbound pools NUMA 5938 * affinity, fix them up. 5939 * 5940 * Also, while iterating workqueues, create rescuers if requested. 5941 */ 5942 wq_numa_init(); 5943 5944 mutex_lock(&wq_pool_mutex); 5945 5946 for_each_possible_cpu(cpu) { 5947 for_each_cpu_worker_pool(pool, cpu) { 5948 pool->node = cpu_to_node(cpu); 5949 } 5950 } 5951 5952 list_for_each_entry(wq, &workqueues, list) { 5953 wq_update_unbound_numa(wq, smp_processor_id(), true); 5954 WARN(init_rescuer(wq), 5955 "workqueue: failed to create early rescuer for %s", 5956 wq->name); 5957 } 5958 5959 mutex_unlock(&wq_pool_mutex); 5960 5961 /* create the initial workers */ 5962 for_each_online_cpu(cpu) { 5963 for_each_cpu_worker_pool(pool, cpu) { 5964 pool->flags &= ~POOL_DISASSOCIATED; 5965 BUG_ON(!create_worker(pool)); 5966 } 5967 } 5968 5969 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 5970 BUG_ON(!create_worker(pool)); 5971 5972 wq_online = true; 5973 wq_watchdog_init(); 5974 5975 return 0; 5976 } 5977