xref: /openbmc/linux/kernel/workqueue.c (revision 565d76cb)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 
45 #include "workqueue_sched.h"
46 
47 enum {
48 	/* global_cwq flags */
49 	GCWQ_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
50 	GCWQ_MANAGING_WORKERS	= 1 << 1,	/* managing workers */
51 	GCWQ_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
52 	GCWQ_FREEZING		= 1 << 3,	/* freeze in progress */
53 	GCWQ_HIGHPRI_PENDING	= 1 << 4,	/* highpri works on queue */
54 
55 	/* worker flags */
56 	WORKER_STARTED		= 1 << 0,	/* started */
57 	WORKER_DIE		= 1 << 1,	/* die die die */
58 	WORKER_IDLE		= 1 << 2,	/* is idle */
59 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
60 	WORKER_ROGUE		= 1 << 4,	/* not bound to any cpu */
61 	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
62 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
63 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
64 
65 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 				  WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
67 
68 	/* gcwq->trustee_state */
69 	TRUSTEE_START		= 0,		/* start */
70 	TRUSTEE_IN_CHARGE	= 1,		/* trustee in charge of gcwq */
71 	TRUSTEE_BUTCHER		= 2,		/* butcher workers */
72 	TRUSTEE_RELEASE		= 3,		/* release workers */
73 	TRUSTEE_DONE		= 4,		/* trustee is done */
74 
75 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
76 	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
77 	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
78 
79 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
80 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
81 
82 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
83 						/* call for help after 10ms
84 						   (min two ticks) */
85 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
86 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
87 	TRUSTEE_COOLDOWN	= HZ / 10,	/* for trustee draining */
88 
89 	/*
90 	 * Rescue workers are used only on emergencies and shared by
91 	 * all cpus.  Give -20.
92 	 */
93 	RESCUER_NICE_LEVEL	= -20,
94 };
95 
96 /*
97  * Structure fields follow one of the following exclusion rules.
98  *
99  * I: Modifiable by initialization/destruction paths and read-only for
100  *    everyone else.
101  *
102  * P: Preemption protected.  Disabling preemption is enough and should
103  *    only be modified and accessed from the local cpu.
104  *
105  * L: gcwq->lock protected.  Access with gcwq->lock held.
106  *
107  * X: During normal operation, modification requires gcwq->lock and
108  *    should be done only from local cpu.  Either disabling preemption
109  *    on local cpu or grabbing gcwq->lock is enough for read access.
110  *    If GCWQ_DISASSOCIATED is set, it's identical to L.
111  *
112  * F: wq->flush_mutex protected.
113  *
114  * W: workqueue_lock protected.
115  */
116 
117 struct global_cwq;
118 
119 /*
120  * The poor guys doing the actual heavy lifting.  All on-duty workers
121  * are either serving the manager role, on idle list or on busy hash.
122  */
123 struct worker {
124 	/* on idle list while idle, on busy hash table while busy */
125 	union {
126 		struct list_head	entry;	/* L: while idle */
127 		struct hlist_node	hentry;	/* L: while busy */
128 	};
129 
130 	struct work_struct	*current_work;	/* L: work being processed */
131 	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
132 	struct list_head	scheduled;	/* L: scheduled works */
133 	struct task_struct	*task;		/* I: worker task */
134 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
135 	/* 64 bytes boundary on 64bit, 32 on 32bit */
136 	unsigned long		last_active;	/* L: last active timestamp */
137 	unsigned int		flags;		/* X: flags */
138 	int			id;		/* I: worker id */
139 	struct work_struct	rebind_work;	/* L: rebind worker to cpu */
140 };
141 
142 /*
143  * Global per-cpu workqueue.  There's one and only one for each cpu
144  * and all works are queued and processed here regardless of their
145  * target workqueues.
146  */
147 struct global_cwq {
148 	spinlock_t		lock;		/* the gcwq lock */
149 	struct list_head	worklist;	/* L: list of pending works */
150 	unsigned int		cpu;		/* I: the associated cpu */
151 	unsigned int		flags;		/* L: GCWQ_* flags */
152 
153 	int			nr_workers;	/* L: total number of workers */
154 	int			nr_idle;	/* L: currently idle ones */
155 
156 	/* workers are chained either in the idle_list or busy_hash */
157 	struct list_head	idle_list;	/* X: list of idle workers */
158 	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
159 						/* L: hash of busy workers */
160 
161 	struct timer_list	idle_timer;	/* L: worker idle timeout */
162 	struct timer_list	mayday_timer;	/* L: SOS timer for dworkers */
163 
164 	struct ida		worker_ida;	/* L: for worker IDs */
165 
166 	struct task_struct	*trustee;	/* L: for gcwq shutdown */
167 	unsigned int		trustee_state;	/* L: trustee state */
168 	wait_queue_head_t	trustee_wait;	/* trustee wait */
169 	struct worker		*first_idle;	/* L: first idle worker */
170 } ____cacheline_aligned_in_smp;
171 
172 /*
173  * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
174  * work_struct->data are used for flags and thus cwqs need to be
175  * aligned at two's power of the number of flag bits.
176  */
177 struct cpu_workqueue_struct {
178 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
179 	struct workqueue_struct *wq;		/* I: the owning workqueue */
180 	int			work_color;	/* L: current color */
181 	int			flush_color;	/* L: flushing color */
182 	int			nr_in_flight[WORK_NR_COLORS];
183 						/* L: nr of in_flight works */
184 	int			nr_active;	/* L: nr of active works */
185 	int			max_active;	/* L: max active works */
186 	struct list_head	delayed_works;	/* L: delayed works */
187 };
188 
189 /*
190  * Structure used to wait for workqueue flush.
191  */
192 struct wq_flusher {
193 	struct list_head	list;		/* F: list of flushers */
194 	int			flush_color;	/* F: flush color waiting for */
195 	struct completion	done;		/* flush completion */
196 };
197 
198 /*
199  * All cpumasks are assumed to be always set on UP and thus can't be
200  * used to determine whether there's something to be done.
201  */
202 #ifdef CONFIG_SMP
203 typedef cpumask_var_t mayday_mask_t;
204 #define mayday_test_and_set_cpu(cpu, mask)	\
205 	cpumask_test_and_set_cpu((cpu), (mask))
206 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
207 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
208 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
209 #define free_mayday_mask(mask)			free_cpumask_var((mask))
210 #else
211 typedef unsigned long mayday_mask_t;
212 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
213 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
214 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
215 #define alloc_mayday_mask(maskp, gfp)		true
216 #define free_mayday_mask(mask)			do { } while (0)
217 #endif
218 
219 /*
220  * The externally visible workqueue abstraction is an array of
221  * per-CPU workqueues:
222  */
223 struct workqueue_struct {
224 	unsigned int		flags;		/* I: WQ_* flags */
225 	union {
226 		struct cpu_workqueue_struct __percpu	*pcpu;
227 		struct cpu_workqueue_struct		*single;
228 		unsigned long				v;
229 	} cpu_wq;				/* I: cwq's */
230 	struct list_head	list;		/* W: list of all workqueues */
231 
232 	struct mutex		flush_mutex;	/* protects wq flushing */
233 	int			work_color;	/* F: current work color */
234 	int			flush_color;	/* F: current flush color */
235 	atomic_t		nr_cwqs_to_flush; /* flush in progress */
236 	struct wq_flusher	*first_flusher;	/* F: first flusher */
237 	struct list_head	flusher_queue;	/* F: flush waiters */
238 	struct list_head	flusher_overflow; /* F: flush overflow list */
239 
240 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
241 	struct worker		*rescuer;	/* I: rescue worker */
242 
243 	int			saved_max_active; /* W: saved cwq max_active */
244 	const char		*name;		/* I: workqueue name */
245 #ifdef CONFIG_LOCKDEP
246 	struct lockdep_map	lockdep_map;
247 #endif
248 };
249 
250 struct workqueue_struct *system_wq __read_mostly;
251 struct workqueue_struct *system_long_wq __read_mostly;
252 struct workqueue_struct *system_nrt_wq __read_mostly;
253 struct workqueue_struct *system_unbound_wq __read_mostly;
254 struct workqueue_struct *system_freezable_wq __read_mostly;
255 EXPORT_SYMBOL_GPL(system_wq);
256 EXPORT_SYMBOL_GPL(system_long_wq);
257 EXPORT_SYMBOL_GPL(system_nrt_wq);
258 EXPORT_SYMBOL_GPL(system_unbound_wq);
259 EXPORT_SYMBOL_GPL(system_freezable_wq);
260 
261 #define CREATE_TRACE_POINTS
262 #include <trace/events/workqueue.h>
263 
264 #define for_each_busy_worker(worker, i, pos, gcwq)			\
265 	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
266 		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
267 
268 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
269 				  unsigned int sw)
270 {
271 	if (cpu < nr_cpu_ids) {
272 		if (sw & 1) {
273 			cpu = cpumask_next(cpu, mask);
274 			if (cpu < nr_cpu_ids)
275 				return cpu;
276 		}
277 		if (sw & 2)
278 			return WORK_CPU_UNBOUND;
279 	}
280 	return WORK_CPU_NONE;
281 }
282 
283 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
284 				struct workqueue_struct *wq)
285 {
286 	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
287 }
288 
289 /*
290  * CPU iterators
291  *
292  * An extra gcwq is defined for an invalid cpu number
293  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
294  * specific CPU.  The following iterators are similar to
295  * for_each_*_cpu() iterators but also considers the unbound gcwq.
296  *
297  * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
298  * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
299  * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
300  *				  WORK_CPU_UNBOUND for unbound workqueues
301  */
302 #define for_each_gcwq_cpu(cpu)						\
303 	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
304 	     (cpu) < WORK_CPU_NONE;					\
305 	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
306 
307 #define for_each_online_gcwq_cpu(cpu)					\
308 	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
309 	     (cpu) < WORK_CPU_NONE;					\
310 	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
311 
312 #define for_each_cwq_cpu(cpu, wq)					\
313 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
314 	     (cpu) < WORK_CPU_NONE;					\
315 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
316 
317 #ifdef CONFIG_DEBUG_OBJECTS_WORK
318 
319 static struct debug_obj_descr work_debug_descr;
320 
321 static void *work_debug_hint(void *addr)
322 {
323 	return ((struct work_struct *) addr)->func;
324 }
325 
326 /*
327  * fixup_init is called when:
328  * - an active object is initialized
329  */
330 static int work_fixup_init(void *addr, enum debug_obj_state state)
331 {
332 	struct work_struct *work = addr;
333 
334 	switch (state) {
335 	case ODEBUG_STATE_ACTIVE:
336 		cancel_work_sync(work);
337 		debug_object_init(work, &work_debug_descr);
338 		return 1;
339 	default:
340 		return 0;
341 	}
342 }
343 
344 /*
345  * fixup_activate is called when:
346  * - an active object is activated
347  * - an unknown object is activated (might be a statically initialized object)
348  */
349 static int work_fixup_activate(void *addr, enum debug_obj_state state)
350 {
351 	struct work_struct *work = addr;
352 
353 	switch (state) {
354 
355 	case ODEBUG_STATE_NOTAVAILABLE:
356 		/*
357 		 * This is not really a fixup. The work struct was
358 		 * statically initialized. We just make sure that it
359 		 * is tracked in the object tracker.
360 		 */
361 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
362 			debug_object_init(work, &work_debug_descr);
363 			debug_object_activate(work, &work_debug_descr);
364 			return 0;
365 		}
366 		WARN_ON_ONCE(1);
367 		return 0;
368 
369 	case ODEBUG_STATE_ACTIVE:
370 		WARN_ON(1);
371 
372 	default:
373 		return 0;
374 	}
375 }
376 
377 /*
378  * fixup_free is called when:
379  * - an active object is freed
380  */
381 static int work_fixup_free(void *addr, enum debug_obj_state state)
382 {
383 	struct work_struct *work = addr;
384 
385 	switch (state) {
386 	case ODEBUG_STATE_ACTIVE:
387 		cancel_work_sync(work);
388 		debug_object_free(work, &work_debug_descr);
389 		return 1;
390 	default:
391 		return 0;
392 	}
393 }
394 
395 static struct debug_obj_descr work_debug_descr = {
396 	.name		= "work_struct",
397 	.debug_hint	= work_debug_hint,
398 	.fixup_init	= work_fixup_init,
399 	.fixup_activate	= work_fixup_activate,
400 	.fixup_free	= work_fixup_free,
401 };
402 
403 static inline void debug_work_activate(struct work_struct *work)
404 {
405 	debug_object_activate(work, &work_debug_descr);
406 }
407 
408 static inline void debug_work_deactivate(struct work_struct *work)
409 {
410 	debug_object_deactivate(work, &work_debug_descr);
411 }
412 
413 void __init_work(struct work_struct *work, int onstack)
414 {
415 	if (onstack)
416 		debug_object_init_on_stack(work, &work_debug_descr);
417 	else
418 		debug_object_init(work, &work_debug_descr);
419 }
420 EXPORT_SYMBOL_GPL(__init_work);
421 
422 void destroy_work_on_stack(struct work_struct *work)
423 {
424 	debug_object_free(work, &work_debug_descr);
425 }
426 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
427 
428 #else
429 static inline void debug_work_activate(struct work_struct *work) { }
430 static inline void debug_work_deactivate(struct work_struct *work) { }
431 #endif
432 
433 /* Serializes the accesses to the list of workqueues. */
434 static DEFINE_SPINLOCK(workqueue_lock);
435 static LIST_HEAD(workqueues);
436 static bool workqueue_freezing;		/* W: have wqs started freezing? */
437 
438 /*
439  * The almighty global cpu workqueues.  nr_running is the only field
440  * which is expected to be used frequently by other cpus via
441  * try_to_wake_up().  Put it in a separate cacheline.
442  */
443 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
444 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
445 
446 /*
447  * Global cpu workqueue and nr_running counter for unbound gcwq.  The
448  * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
449  * workers have WORKER_UNBOUND set.
450  */
451 static struct global_cwq unbound_global_cwq;
452 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0);	/* always 0 */
453 
454 static int worker_thread(void *__worker);
455 
456 static struct global_cwq *get_gcwq(unsigned int cpu)
457 {
458 	if (cpu != WORK_CPU_UNBOUND)
459 		return &per_cpu(global_cwq, cpu);
460 	else
461 		return &unbound_global_cwq;
462 }
463 
464 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
465 {
466 	if (cpu != WORK_CPU_UNBOUND)
467 		return &per_cpu(gcwq_nr_running, cpu);
468 	else
469 		return &unbound_gcwq_nr_running;
470 }
471 
472 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
473 					    struct workqueue_struct *wq)
474 {
475 	if (!(wq->flags & WQ_UNBOUND)) {
476 		if (likely(cpu < nr_cpu_ids)) {
477 #ifdef CONFIG_SMP
478 			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
479 #else
480 			return wq->cpu_wq.single;
481 #endif
482 		}
483 	} else if (likely(cpu == WORK_CPU_UNBOUND))
484 		return wq->cpu_wq.single;
485 	return NULL;
486 }
487 
488 static unsigned int work_color_to_flags(int color)
489 {
490 	return color << WORK_STRUCT_COLOR_SHIFT;
491 }
492 
493 static int get_work_color(struct work_struct *work)
494 {
495 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
496 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
497 }
498 
499 static int work_next_color(int color)
500 {
501 	return (color + 1) % WORK_NR_COLORS;
502 }
503 
504 /*
505  * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
506  * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
507  * cleared and the work data contains the cpu number it was last on.
508  *
509  * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
510  * cwq, cpu or clear work->data.  These functions should only be
511  * called while the work is owned - ie. while the PENDING bit is set.
512  *
513  * get_work_[g]cwq() can be used to obtain the gcwq or cwq
514  * corresponding to a work.  gcwq is available once the work has been
515  * queued anywhere after initialization.  cwq is available only from
516  * queueing until execution starts.
517  */
518 static inline void set_work_data(struct work_struct *work, unsigned long data,
519 				 unsigned long flags)
520 {
521 	BUG_ON(!work_pending(work));
522 	atomic_long_set(&work->data, data | flags | work_static(work));
523 }
524 
525 static void set_work_cwq(struct work_struct *work,
526 			 struct cpu_workqueue_struct *cwq,
527 			 unsigned long extra_flags)
528 {
529 	set_work_data(work, (unsigned long)cwq,
530 		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
531 }
532 
533 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
534 {
535 	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
536 }
537 
538 static void clear_work_data(struct work_struct *work)
539 {
540 	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
541 }
542 
543 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
544 {
545 	unsigned long data = atomic_long_read(&work->data);
546 
547 	if (data & WORK_STRUCT_CWQ)
548 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
549 	else
550 		return NULL;
551 }
552 
553 static struct global_cwq *get_work_gcwq(struct work_struct *work)
554 {
555 	unsigned long data = atomic_long_read(&work->data);
556 	unsigned int cpu;
557 
558 	if (data & WORK_STRUCT_CWQ)
559 		return ((struct cpu_workqueue_struct *)
560 			(data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
561 
562 	cpu = data >> WORK_STRUCT_FLAG_BITS;
563 	if (cpu == WORK_CPU_NONE)
564 		return NULL;
565 
566 	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
567 	return get_gcwq(cpu);
568 }
569 
570 /*
571  * Policy functions.  These define the policies on how the global
572  * worker pool is managed.  Unless noted otherwise, these functions
573  * assume that they're being called with gcwq->lock held.
574  */
575 
576 static bool __need_more_worker(struct global_cwq *gcwq)
577 {
578 	return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
579 		gcwq->flags & GCWQ_HIGHPRI_PENDING;
580 }
581 
582 /*
583  * Need to wake up a worker?  Called from anything but currently
584  * running workers.
585  */
586 static bool need_more_worker(struct global_cwq *gcwq)
587 {
588 	return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
589 }
590 
591 /* Can I start working?  Called from busy but !running workers. */
592 static bool may_start_working(struct global_cwq *gcwq)
593 {
594 	return gcwq->nr_idle;
595 }
596 
597 /* Do I need to keep working?  Called from currently running workers. */
598 static bool keep_working(struct global_cwq *gcwq)
599 {
600 	atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
601 
602 	return !list_empty(&gcwq->worklist) &&
603 		(atomic_read(nr_running) <= 1 ||
604 		 gcwq->flags & GCWQ_HIGHPRI_PENDING);
605 }
606 
607 /* Do we need a new worker?  Called from manager. */
608 static bool need_to_create_worker(struct global_cwq *gcwq)
609 {
610 	return need_more_worker(gcwq) && !may_start_working(gcwq);
611 }
612 
613 /* Do I need to be the manager? */
614 static bool need_to_manage_workers(struct global_cwq *gcwq)
615 {
616 	return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
617 }
618 
619 /* Do we have too many workers and should some go away? */
620 static bool too_many_workers(struct global_cwq *gcwq)
621 {
622 	bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
623 	int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
624 	int nr_busy = gcwq->nr_workers - nr_idle;
625 
626 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
627 }
628 
629 /*
630  * Wake up functions.
631  */
632 
633 /* Return the first worker.  Safe with preemption disabled */
634 static struct worker *first_worker(struct global_cwq *gcwq)
635 {
636 	if (unlikely(list_empty(&gcwq->idle_list)))
637 		return NULL;
638 
639 	return list_first_entry(&gcwq->idle_list, struct worker, entry);
640 }
641 
642 /**
643  * wake_up_worker - wake up an idle worker
644  * @gcwq: gcwq to wake worker for
645  *
646  * Wake up the first idle worker of @gcwq.
647  *
648  * CONTEXT:
649  * spin_lock_irq(gcwq->lock).
650  */
651 static void wake_up_worker(struct global_cwq *gcwq)
652 {
653 	struct worker *worker = first_worker(gcwq);
654 
655 	if (likely(worker))
656 		wake_up_process(worker->task);
657 }
658 
659 /**
660  * wq_worker_waking_up - a worker is waking up
661  * @task: task waking up
662  * @cpu: CPU @task is waking up to
663  *
664  * This function is called during try_to_wake_up() when a worker is
665  * being awoken.
666  *
667  * CONTEXT:
668  * spin_lock_irq(rq->lock)
669  */
670 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
671 {
672 	struct worker *worker = kthread_data(task);
673 
674 	if (!(worker->flags & WORKER_NOT_RUNNING))
675 		atomic_inc(get_gcwq_nr_running(cpu));
676 }
677 
678 /**
679  * wq_worker_sleeping - a worker is going to sleep
680  * @task: task going to sleep
681  * @cpu: CPU in question, must be the current CPU number
682  *
683  * This function is called during schedule() when a busy worker is
684  * going to sleep.  Worker on the same cpu can be woken up by
685  * returning pointer to its task.
686  *
687  * CONTEXT:
688  * spin_lock_irq(rq->lock)
689  *
690  * RETURNS:
691  * Worker task on @cpu to wake up, %NULL if none.
692  */
693 struct task_struct *wq_worker_sleeping(struct task_struct *task,
694 				       unsigned int cpu)
695 {
696 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
697 	struct global_cwq *gcwq = get_gcwq(cpu);
698 	atomic_t *nr_running = get_gcwq_nr_running(cpu);
699 
700 	if (worker->flags & WORKER_NOT_RUNNING)
701 		return NULL;
702 
703 	/* this can only happen on the local cpu */
704 	BUG_ON(cpu != raw_smp_processor_id());
705 
706 	/*
707 	 * The counterpart of the following dec_and_test, implied mb,
708 	 * worklist not empty test sequence is in insert_work().
709 	 * Please read comment there.
710 	 *
711 	 * NOT_RUNNING is clear.  This means that trustee is not in
712 	 * charge and we're running on the local cpu w/ rq lock held
713 	 * and preemption disabled, which in turn means that none else
714 	 * could be manipulating idle_list, so dereferencing idle_list
715 	 * without gcwq lock is safe.
716 	 */
717 	if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
718 		to_wakeup = first_worker(gcwq);
719 	return to_wakeup ? to_wakeup->task : NULL;
720 }
721 
722 /**
723  * worker_set_flags - set worker flags and adjust nr_running accordingly
724  * @worker: self
725  * @flags: flags to set
726  * @wakeup: wakeup an idle worker if necessary
727  *
728  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
729  * nr_running becomes zero and @wakeup is %true, an idle worker is
730  * woken up.
731  *
732  * CONTEXT:
733  * spin_lock_irq(gcwq->lock)
734  */
735 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
736 				    bool wakeup)
737 {
738 	struct global_cwq *gcwq = worker->gcwq;
739 
740 	WARN_ON_ONCE(worker->task != current);
741 
742 	/*
743 	 * If transitioning into NOT_RUNNING, adjust nr_running and
744 	 * wake up an idle worker as necessary if requested by
745 	 * @wakeup.
746 	 */
747 	if ((flags & WORKER_NOT_RUNNING) &&
748 	    !(worker->flags & WORKER_NOT_RUNNING)) {
749 		atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
750 
751 		if (wakeup) {
752 			if (atomic_dec_and_test(nr_running) &&
753 			    !list_empty(&gcwq->worklist))
754 				wake_up_worker(gcwq);
755 		} else
756 			atomic_dec(nr_running);
757 	}
758 
759 	worker->flags |= flags;
760 }
761 
762 /**
763  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
764  * @worker: self
765  * @flags: flags to clear
766  *
767  * Clear @flags in @worker->flags and adjust nr_running accordingly.
768  *
769  * CONTEXT:
770  * spin_lock_irq(gcwq->lock)
771  */
772 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
773 {
774 	struct global_cwq *gcwq = worker->gcwq;
775 	unsigned int oflags = worker->flags;
776 
777 	WARN_ON_ONCE(worker->task != current);
778 
779 	worker->flags &= ~flags;
780 
781 	/*
782 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
783 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
784 	 * of multiple flags, not a single flag.
785 	 */
786 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
787 		if (!(worker->flags & WORKER_NOT_RUNNING))
788 			atomic_inc(get_gcwq_nr_running(gcwq->cpu));
789 }
790 
791 /**
792  * busy_worker_head - return the busy hash head for a work
793  * @gcwq: gcwq of interest
794  * @work: work to be hashed
795  *
796  * Return hash head of @gcwq for @work.
797  *
798  * CONTEXT:
799  * spin_lock_irq(gcwq->lock).
800  *
801  * RETURNS:
802  * Pointer to the hash head.
803  */
804 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
805 					   struct work_struct *work)
806 {
807 	const int base_shift = ilog2(sizeof(struct work_struct));
808 	unsigned long v = (unsigned long)work;
809 
810 	/* simple shift and fold hash, do we need something better? */
811 	v >>= base_shift;
812 	v += v >> BUSY_WORKER_HASH_ORDER;
813 	v &= BUSY_WORKER_HASH_MASK;
814 
815 	return &gcwq->busy_hash[v];
816 }
817 
818 /**
819  * __find_worker_executing_work - find worker which is executing a work
820  * @gcwq: gcwq of interest
821  * @bwh: hash head as returned by busy_worker_head()
822  * @work: work to find worker for
823  *
824  * Find a worker which is executing @work on @gcwq.  @bwh should be
825  * the hash head obtained by calling busy_worker_head() with the same
826  * work.
827  *
828  * CONTEXT:
829  * spin_lock_irq(gcwq->lock).
830  *
831  * RETURNS:
832  * Pointer to worker which is executing @work if found, NULL
833  * otherwise.
834  */
835 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
836 						   struct hlist_head *bwh,
837 						   struct work_struct *work)
838 {
839 	struct worker *worker;
840 	struct hlist_node *tmp;
841 
842 	hlist_for_each_entry(worker, tmp, bwh, hentry)
843 		if (worker->current_work == work)
844 			return worker;
845 	return NULL;
846 }
847 
848 /**
849  * find_worker_executing_work - find worker which is executing a work
850  * @gcwq: gcwq of interest
851  * @work: work to find worker for
852  *
853  * Find a worker which is executing @work on @gcwq.  This function is
854  * identical to __find_worker_executing_work() except that this
855  * function calculates @bwh itself.
856  *
857  * CONTEXT:
858  * spin_lock_irq(gcwq->lock).
859  *
860  * RETURNS:
861  * Pointer to worker which is executing @work if found, NULL
862  * otherwise.
863  */
864 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
865 						 struct work_struct *work)
866 {
867 	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
868 					    work);
869 }
870 
871 /**
872  * gcwq_determine_ins_pos - find insertion position
873  * @gcwq: gcwq of interest
874  * @cwq: cwq a work is being queued for
875  *
876  * A work for @cwq is about to be queued on @gcwq, determine insertion
877  * position for the work.  If @cwq is for HIGHPRI wq, the work is
878  * queued at the head of the queue but in FIFO order with respect to
879  * other HIGHPRI works; otherwise, at the end of the queue.  This
880  * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
881  * there are HIGHPRI works pending.
882  *
883  * CONTEXT:
884  * spin_lock_irq(gcwq->lock).
885  *
886  * RETURNS:
887  * Pointer to inserstion position.
888  */
889 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
890 					       struct cpu_workqueue_struct *cwq)
891 {
892 	struct work_struct *twork;
893 
894 	if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
895 		return &gcwq->worklist;
896 
897 	list_for_each_entry(twork, &gcwq->worklist, entry) {
898 		struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
899 
900 		if (!(tcwq->wq->flags & WQ_HIGHPRI))
901 			break;
902 	}
903 
904 	gcwq->flags |= GCWQ_HIGHPRI_PENDING;
905 	return &twork->entry;
906 }
907 
908 /**
909  * insert_work - insert a work into gcwq
910  * @cwq: cwq @work belongs to
911  * @work: work to insert
912  * @head: insertion point
913  * @extra_flags: extra WORK_STRUCT_* flags to set
914  *
915  * Insert @work which belongs to @cwq into @gcwq after @head.
916  * @extra_flags is or'd to work_struct flags.
917  *
918  * CONTEXT:
919  * spin_lock_irq(gcwq->lock).
920  */
921 static void insert_work(struct cpu_workqueue_struct *cwq,
922 			struct work_struct *work, struct list_head *head,
923 			unsigned int extra_flags)
924 {
925 	struct global_cwq *gcwq = cwq->gcwq;
926 
927 	/* we own @work, set data and link */
928 	set_work_cwq(work, cwq, extra_flags);
929 
930 	/*
931 	 * Ensure that we get the right work->data if we see the
932 	 * result of list_add() below, see try_to_grab_pending().
933 	 */
934 	smp_wmb();
935 
936 	list_add_tail(&work->entry, head);
937 
938 	/*
939 	 * Ensure either worker_sched_deactivated() sees the above
940 	 * list_add_tail() or we see zero nr_running to avoid workers
941 	 * lying around lazily while there are works to be processed.
942 	 */
943 	smp_mb();
944 
945 	if (__need_more_worker(gcwq))
946 		wake_up_worker(gcwq);
947 }
948 
949 /*
950  * Test whether @work is being queued from another work executing on the
951  * same workqueue.  This is rather expensive and should only be used from
952  * cold paths.
953  */
954 static bool is_chained_work(struct workqueue_struct *wq)
955 {
956 	unsigned long flags;
957 	unsigned int cpu;
958 
959 	for_each_gcwq_cpu(cpu) {
960 		struct global_cwq *gcwq = get_gcwq(cpu);
961 		struct worker *worker;
962 		struct hlist_node *pos;
963 		int i;
964 
965 		spin_lock_irqsave(&gcwq->lock, flags);
966 		for_each_busy_worker(worker, i, pos, gcwq) {
967 			if (worker->task != current)
968 				continue;
969 			spin_unlock_irqrestore(&gcwq->lock, flags);
970 			/*
971 			 * I'm @worker, no locking necessary.  See if @work
972 			 * is headed to the same workqueue.
973 			 */
974 			return worker->current_cwq->wq == wq;
975 		}
976 		spin_unlock_irqrestore(&gcwq->lock, flags);
977 	}
978 	return false;
979 }
980 
981 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
982 			 struct work_struct *work)
983 {
984 	struct global_cwq *gcwq;
985 	struct cpu_workqueue_struct *cwq;
986 	struct list_head *worklist;
987 	unsigned int work_flags;
988 	unsigned long flags;
989 
990 	debug_work_activate(work);
991 
992 	/* if dying, only works from the same workqueue are allowed */
993 	if (unlikely(wq->flags & WQ_DYING) &&
994 	    WARN_ON_ONCE(!is_chained_work(wq)))
995 		return;
996 
997 	/* determine gcwq to use */
998 	if (!(wq->flags & WQ_UNBOUND)) {
999 		struct global_cwq *last_gcwq;
1000 
1001 		if (unlikely(cpu == WORK_CPU_UNBOUND))
1002 			cpu = raw_smp_processor_id();
1003 
1004 		/*
1005 		 * It's multi cpu.  If @wq is non-reentrant and @work
1006 		 * was previously on a different cpu, it might still
1007 		 * be running there, in which case the work needs to
1008 		 * be queued on that cpu to guarantee non-reentrance.
1009 		 */
1010 		gcwq = get_gcwq(cpu);
1011 		if (wq->flags & WQ_NON_REENTRANT &&
1012 		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1013 			struct worker *worker;
1014 
1015 			spin_lock_irqsave(&last_gcwq->lock, flags);
1016 
1017 			worker = find_worker_executing_work(last_gcwq, work);
1018 
1019 			if (worker && worker->current_cwq->wq == wq)
1020 				gcwq = last_gcwq;
1021 			else {
1022 				/* meh... not running there, queue here */
1023 				spin_unlock_irqrestore(&last_gcwq->lock, flags);
1024 				spin_lock_irqsave(&gcwq->lock, flags);
1025 			}
1026 		} else
1027 			spin_lock_irqsave(&gcwq->lock, flags);
1028 	} else {
1029 		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1030 		spin_lock_irqsave(&gcwq->lock, flags);
1031 	}
1032 
1033 	/* gcwq determined, get cwq and queue */
1034 	cwq = get_cwq(gcwq->cpu, wq);
1035 	trace_workqueue_queue_work(cpu, cwq, work);
1036 
1037 	BUG_ON(!list_empty(&work->entry));
1038 
1039 	cwq->nr_in_flight[cwq->work_color]++;
1040 	work_flags = work_color_to_flags(cwq->work_color);
1041 
1042 	if (likely(cwq->nr_active < cwq->max_active)) {
1043 		trace_workqueue_activate_work(work);
1044 		cwq->nr_active++;
1045 		worklist = gcwq_determine_ins_pos(gcwq, cwq);
1046 	} else {
1047 		work_flags |= WORK_STRUCT_DELAYED;
1048 		worklist = &cwq->delayed_works;
1049 	}
1050 
1051 	insert_work(cwq, work, worklist, work_flags);
1052 
1053 	spin_unlock_irqrestore(&gcwq->lock, flags);
1054 }
1055 
1056 /**
1057  * queue_work - queue work on a workqueue
1058  * @wq: workqueue to use
1059  * @work: work to queue
1060  *
1061  * Returns 0 if @work was already on a queue, non-zero otherwise.
1062  *
1063  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1064  * it can be processed by another CPU.
1065  */
1066 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1067 {
1068 	int ret;
1069 
1070 	ret = queue_work_on(get_cpu(), wq, work);
1071 	put_cpu();
1072 
1073 	return ret;
1074 }
1075 EXPORT_SYMBOL_GPL(queue_work);
1076 
1077 /**
1078  * queue_work_on - queue work on specific cpu
1079  * @cpu: CPU number to execute work on
1080  * @wq: workqueue to use
1081  * @work: work to queue
1082  *
1083  * Returns 0 if @work was already on a queue, non-zero otherwise.
1084  *
1085  * We queue the work to a specific CPU, the caller must ensure it
1086  * can't go away.
1087  */
1088 int
1089 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1090 {
1091 	int ret = 0;
1092 
1093 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1094 		__queue_work(cpu, wq, work);
1095 		ret = 1;
1096 	}
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL_GPL(queue_work_on);
1100 
1101 static void delayed_work_timer_fn(unsigned long __data)
1102 {
1103 	struct delayed_work *dwork = (struct delayed_work *)__data;
1104 	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1105 
1106 	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1107 }
1108 
1109 /**
1110  * queue_delayed_work - queue work on a workqueue after delay
1111  * @wq: workqueue to use
1112  * @dwork: delayable work to queue
1113  * @delay: number of jiffies to wait before queueing
1114  *
1115  * Returns 0 if @work was already on a queue, non-zero otherwise.
1116  */
1117 int queue_delayed_work(struct workqueue_struct *wq,
1118 			struct delayed_work *dwork, unsigned long delay)
1119 {
1120 	if (delay == 0)
1121 		return queue_work(wq, &dwork->work);
1122 
1123 	return queue_delayed_work_on(-1, wq, dwork, delay);
1124 }
1125 EXPORT_SYMBOL_GPL(queue_delayed_work);
1126 
1127 /**
1128  * queue_delayed_work_on - queue work on specific CPU after delay
1129  * @cpu: CPU number to execute work on
1130  * @wq: workqueue to use
1131  * @dwork: work to queue
1132  * @delay: number of jiffies to wait before queueing
1133  *
1134  * Returns 0 if @work was already on a queue, non-zero otherwise.
1135  */
1136 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1137 			struct delayed_work *dwork, unsigned long delay)
1138 {
1139 	int ret = 0;
1140 	struct timer_list *timer = &dwork->timer;
1141 	struct work_struct *work = &dwork->work;
1142 
1143 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1144 		unsigned int lcpu;
1145 
1146 		BUG_ON(timer_pending(timer));
1147 		BUG_ON(!list_empty(&work->entry));
1148 
1149 		timer_stats_timer_set_start_info(&dwork->timer);
1150 
1151 		/*
1152 		 * This stores cwq for the moment, for the timer_fn.
1153 		 * Note that the work's gcwq is preserved to allow
1154 		 * reentrance detection for delayed works.
1155 		 */
1156 		if (!(wq->flags & WQ_UNBOUND)) {
1157 			struct global_cwq *gcwq = get_work_gcwq(work);
1158 
1159 			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1160 				lcpu = gcwq->cpu;
1161 			else
1162 				lcpu = raw_smp_processor_id();
1163 		} else
1164 			lcpu = WORK_CPU_UNBOUND;
1165 
1166 		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1167 
1168 		timer->expires = jiffies + delay;
1169 		timer->data = (unsigned long)dwork;
1170 		timer->function = delayed_work_timer_fn;
1171 
1172 		if (unlikely(cpu >= 0))
1173 			add_timer_on(timer, cpu);
1174 		else
1175 			add_timer(timer);
1176 		ret = 1;
1177 	}
1178 	return ret;
1179 }
1180 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1181 
1182 /**
1183  * worker_enter_idle - enter idle state
1184  * @worker: worker which is entering idle state
1185  *
1186  * @worker is entering idle state.  Update stats and idle timer if
1187  * necessary.
1188  *
1189  * LOCKING:
1190  * spin_lock_irq(gcwq->lock).
1191  */
1192 static void worker_enter_idle(struct worker *worker)
1193 {
1194 	struct global_cwq *gcwq = worker->gcwq;
1195 
1196 	BUG_ON(worker->flags & WORKER_IDLE);
1197 	BUG_ON(!list_empty(&worker->entry) &&
1198 	       (worker->hentry.next || worker->hentry.pprev));
1199 
1200 	/* can't use worker_set_flags(), also called from start_worker() */
1201 	worker->flags |= WORKER_IDLE;
1202 	gcwq->nr_idle++;
1203 	worker->last_active = jiffies;
1204 
1205 	/* idle_list is LIFO */
1206 	list_add(&worker->entry, &gcwq->idle_list);
1207 
1208 	if (likely(!(worker->flags & WORKER_ROGUE))) {
1209 		if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1210 			mod_timer(&gcwq->idle_timer,
1211 				  jiffies + IDLE_WORKER_TIMEOUT);
1212 	} else
1213 		wake_up_all(&gcwq->trustee_wait);
1214 
1215 	/* sanity check nr_running */
1216 	WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1217 		     atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1218 }
1219 
1220 /**
1221  * worker_leave_idle - leave idle state
1222  * @worker: worker which is leaving idle state
1223  *
1224  * @worker is leaving idle state.  Update stats.
1225  *
1226  * LOCKING:
1227  * spin_lock_irq(gcwq->lock).
1228  */
1229 static void worker_leave_idle(struct worker *worker)
1230 {
1231 	struct global_cwq *gcwq = worker->gcwq;
1232 
1233 	BUG_ON(!(worker->flags & WORKER_IDLE));
1234 	worker_clr_flags(worker, WORKER_IDLE);
1235 	gcwq->nr_idle--;
1236 	list_del_init(&worker->entry);
1237 }
1238 
1239 /**
1240  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1241  * @worker: self
1242  *
1243  * Works which are scheduled while the cpu is online must at least be
1244  * scheduled to a worker which is bound to the cpu so that if they are
1245  * flushed from cpu callbacks while cpu is going down, they are
1246  * guaranteed to execute on the cpu.
1247  *
1248  * This function is to be used by rogue workers and rescuers to bind
1249  * themselves to the target cpu and may race with cpu going down or
1250  * coming online.  kthread_bind() can't be used because it may put the
1251  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1252  * verbatim as it's best effort and blocking and gcwq may be
1253  * [dis]associated in the meantime.
1254  *
1255  * This function tries set_cpus_allowed() and locks gcwq and verifies
1256  * the binding against GCWQ_DISASSOCIATED which is set during
1257  * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1258  * idle state or fetches works without dropping lock, it can guarantee
1259  * the scheduling requirement described in the first paragraph.
1260  *
1261  * CONTEXT:
1262  * Might sleep.  Called without any lock but returns with gcwq->lock
1263  * held.
1264  *
1265  * RETURNS:
1266  * %true if the associated gcwq is online (@worker is successfully
1267  * bound), %false if offline.
1268  */
1269 static bool worker_maybe_bind_and_lock(struct worker *worker)
1270 __acquires(&gcwq->lock)
1271 {
1272 	struct global_cwq *gcwq = worker->gcwq;
1273 	struct task_struct *task = worker->task;
1274 
1275 	while (true) {
1276 		/*
1277 		 * The following call may fail, succeed or succeed
1278 		 * without actually migrating the task to the cpu if
1279 		 * it races with cpu hotunplug operation.  Verify
1280 		 * against GCWQ_DISASSOCIATED.
1281 		 */
1282 		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1283 			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1284 
1285 		spin_lock_irq(&gcwq->lock);
1286 		if (gcwq->flags & GCWQ_DISASSOCIATED)
1287 			return false;
1288 		if (task_cpu(task) == gcwq->cpu &&
1289 		    cpumask_equal(&current->cpus_allowed,
1290 				  get_cpu_mask(gcwq->cpu)))
1291 			return true;
1292 		spin_unlock_irq(&gcwq->lock);
1293 
1294 		/* CPU has come up inbetween, retry migration */
1295 		cpu_relax();
1296 	}
1297 }
1298 
1299 /*
1300  * Function for worker->rebind_work used to rebind rogue busy workers
1301  * to the associated cpu which is coming back online.  This is
1302  * scheduled by cpu up but can race with other cpu hotplug operations
1303  * and may be executed twice without intervening cpu down.
1304  */
1305 static void worker_rebind_fn(struct work_struct *work)
1306 {
1307 	struct worker *worker = container_of(work, struct worker, rebind_work);
1308 	struct global_cwq *gcwq = worker->gcwq;
1309 
1310 	if (worker_maybe_bind_and_lock(worker))
1311 		worker_clr_flags(worker, WORKER_REBIND);
1312 
1313 	spin_unlock_irq(&gcwq->lock);
1314 }
1315 
1316 static struct worker *alloc_worker(void)
1317 {
1318 	struct worker *worker;
1319 
1320 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1321 	if (worker) {
1322 		INIT_LIST_HEAD(&worker->entry);
1323 		INIT_LIST_HEAD(&worker->scheduled);
1324 		INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1325 		/* on creation a worker is in !idle && prep state */
1326 		worker->flags = WORKER_PREP;
1327 	}
1328 	return worker;
1329 }
1330 
1331 /**
1332  * create_worker - create a new workqueue worker
1333  * @gcwq: gcwq the new worker will belong to
1334  * @bind: whether to set affinity to @cpu or not
1335  *
1336  * Create a new worker which is bound to @gcwq.  The returned worker
1337  * can be started by calling start_worker() or destroyed using
1338  * destroy_worker().
1339  *
1340  * CONTEXT:
1341  * Might sleep.  Does GFP_KERNEL allocations.
1342  *
1343  * RETURNS:
1344  * Pointer to the newly created worker.
1345  */
1346 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1347 {
1348 	bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1349 	struct worker *worker = NULL;
1350 	int id = -1;
1351 
1352 	spin_lock_irq(&gcwq->lock);
1353 	while (ida_get_new(&gcwq->worker_ida, &id)) {
1354 		spin_unlock_irq(&gcwq->lock);
1355 		if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1356 			goto fail;
1357 		spin_lock_irq(&gcwq->lock);
1358 	}
1359 	spin_unlock_irq(&gcwq->lock);
1360 
1361 	worker = alloc_worker();
1362 	if (!worker)
1363 		goto fail;
1364 
1365 	worker->gcwq = gcwq;
1366 	worker->id = id;
1367 
1368 	if (!on_unbound_cpu)
1369 		worker->task = kthread_create_on_node(worker_thread,
1370 						      worker,
1371 						      cpu_to_node(gcwq->cpu),
1372 						      "kworker/%u:%d", gcwq->cpu, id);
1373 	else
1374 		worker->task = kthread_create(worker_thread, worker,
1375 					      "kworker/u:%d", id);
1376 	if (IS_ERR(worker->task))
1377 		goto fail;
1378 
1379 	/*
1380 	 * A rogue worker will become a regular one if CPU comes
1381 	 * online later on.  Make sure every worker has
1382 	 * PF_THREAD_BOUND set.
1383 	 */
1384 	if (bind && !on_unbound_cpu)
1385 		kthread_bind(worker->task, gcwq->cpu);
1386 	else {
1387 		worker->task->flags |= PF_THREAD_BOUND;
1388 		if (on_unbound_cpu)
1389 			worker->flags |= WORKER_UNBOUND;
1390 	}
1391 
1392 	return worker;
1393 fail:
1394 	if (id >= 0) {
1395 		spin_lock_irq(&gcwq->lock);
1396 		ida_remove(&gcwq->worker_ida, id);
1397 		spin_unlock_irq(&gcwq->lock);
1398 	}
1399 	kfree(worker);
1400 	return NULL;
1401 }
1402 
1403 /**
1404  * start_worker - start a newly created worker
1405  * @worker: worker to start
1406  *
1407  * Make the gcwq aware of @worker and start it.
1408  *
1409  * CONTEXT:
1410  * spin_lock_irq(gcwq->lock).
1411  */
1412 static void start_worker(struct worker *worker)
1413 {
1414 	worker->flags |= WORKER_STARTED;
1415 	worker->gcwq->nr_workers++;
1416 	worker_enter_idle(worker);
1417 	wake_up_process(worker->task);
1418 }
1419 
1420 /**
1421  * destroy_worker - destroy a workqueue worker
1422  * @worker: worker to be destroyed
1423  *
1424  * Destroy @worker and adjust @gcwq stats accordingly.
1425  *
1426  * CONTEXT:
1427  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1428  */
1429 static void destroy_worker(struct worker *worker)
1430 {
1431 	struct global_cwq *gcwq = worker->gcwq;
1432 	int id = worker->id;
1433 
1434 	/* sanity check frenzy */
1435 	BUG_ON(worker->current_work);
1436 	BUG_ON(!list_empty(&worker->scheduled));
1437 
1438 	if (worker->flags & WORKER_STARTED)
1439 		gcwq->nr_workers--;
1440 	if (worker->flags & WORKER_IDLE)
1441 		gcwq->nr_idle--;
1442 
1443 	list_del_init(&worker->entry);
1444 	worker->flags |= WORKER_DIE;
1445 
1446 	spin_unlock_irq(&gcwq->lock);
1447 
1448 	kthread_stop(worker->task);
1449 	kfree(worker);
1450 
1451 	spin_lock_irq(&gcwq->lock);
1452 	ida_remove(&gcwq->worker_ida, id);
1453 }
1454 
1455 static void idle_worker_timeout(unsigned long __gcwq)
1456 {
1457 	struct global_cwq *gcwq = (void *)__gcwq;
1458 
1459 	spin_lock_irq(&gcwq->lock);
1460 
1461 	if (too_many_workers(gcwq)) {
1462 		struct worker *worker;
1463 		unsigned long expires;
1464 
1465 		/* idle_list is kept in LIFO order, check the last one */
1466 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1467 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1468 
1469 		if (time_before(jiffies, expires))
1470 			mod_timer(&gcwq->idle_timer, expires);
1471 		else {
1472 			/* it's been idle for too long, wake up manager */
1473 			gcwq->flags |= GCWQ_MANAGE_WORKERS;
1474 			wake_up_worker(gcwq);
1475 		}
1476 	}
1477 
1478 	spin_unlock_irq(&gcwq->lock);
1479 }
1480 
1481 static bool send_mayday(struct work_struct *work)
1482 {
1483 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1484 	struct workqueue_struct *wq = cwq->wq;
1485 	unsigned int cpu;
1486 
1487 	if (!(wq->flags & WQ_RESCUER))
1488 		return false;
1489 
1490 	/* mayday mayday mayday */
1491 	cpu = cwq->gcwq->cpu;
1492 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1493 	if (cpu == WORK_CPU_UNBOUND)
1494 		cpu = 0;
1495 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1496 		wake_up_process(wq->rescuer->task);
1497 	return true;
1498 }
1499 
1500 static void gcwq_mayday_timeout(unsigned long __gcwq)
1501 {
1502 	struct global_cwq *gcwq = (void *)__gcwq;
1503 	struct work_struct *work;
1504 
1505 	spin_lock_irq(&gcwq->lock);
1506 
1507 	if (need_to_create_worker(gcwq)) {
1508 		/*
1509 		 * We've been trying to create a new worker but
1510 		 * haven't been successful.  We might be hitting an
1511 		 * allocation deadlock.  Send distress signals to
1512 		 * rescuers.
1513 		 */
1514 		list_for_each_entry(work, &gcwq->worklist, entry)
1515 			send_mayday(work);
1516 	}
1517 
1518 	spin_unlock_irq(&gcwq->lock);
1519 
1520 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1521 }
1522 
1523 /**
1524  * maybe_create_worker - create a new worker if necessary
1525  * @gcwq: gcwq to create a new worker for
1526  *
1527  * Create a new worker for @gcwq if necessary.  @gcwq is guaranteed to
1528  * have at least one idle worker on return from this function.  If
1529  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1530  * sent to all rescuers with works scheduled on @gcwq to resolve
1531  * possible allocation deadlock.
1532  *
1533  * On return, need_to_create_worker() is guaranteed to be false and
1534  * may_start_working() true.
1535  *
1536  * LOCKING:
1537  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1538  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1539  * manager.
1540  *
1541  * RETURNS:
1542  * false if no action was taken and gcwq->lock stayed locked, true
1543  * otherwise.
1544  */
1545 static bool maybe_create_worker(struct global_cwq *gcwq)
1546 __releases(&gcwq->lock)
1547 __acquires(&gcwq->lock)
1548 {
1549 	if (!need_to_create_worker(gcwq))
1550 		return false;
1551 restart:
1552 	spin_unlock_irq(&gcwq->lock);
1553 
1554 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1555 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1556 
1557 	while (true) {
1558 		struct worker *worker;
1559 
1560 		worker = create_worker(gcwq, true);
1561 		if (worker) {
1562 			del_timer_sync(&gcwq->mayday_timer);
1563 			spin_lock_irq(&gcwq->lock);
1564 			start_worker(worker);
1565 			BUG_ON(need_to_create_worker(gcwq));
1566 			return true;
1567 		}
1568 
1569 		if (!need_to_create_worker(gcwq))
1570 			break;
1571 
1572 		__set_current_state(TASK_INTERRUPTIBLE);
1573 		schedule_timeout(CREATE_COOLDOWN);
1574 
1575 		if (!need_to_create_worker(gcwq))
1576 			break;
1577 	}
1578 
1579 	del_timer_sync(&gcwq->mayday_timer);
1580 	spin_lock_irq(&gcwq->lock);
1581 	if (need_to_create_worker(gcwq))
1582 		goto restart;
1583 	return true;
1584 }
1585 
1586 /**
1587  * maybe_destroy_worker - destroy workers which have been idle for a while
1588  * @gcwq: gcwq to destroy workers for
1589  *
1590  * Destroy @gcwq workers which have been idle for longer than
1591  * IDLE_WORKER_TIMEOUT.
1592  *
1593  * LOCKING:
1594  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1595  * multiple times.  Called only from manager.
1596  *
1597  * RETURNS:
1598  * false if no action was taken and gcwq->lock stayed locked, true
1599  * otherwise.
1600  */
1601 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1602 {
1603 	bool ret = false;
1604 
1605 	while (too_many_workers(gcwq)) {
1606 		struct worker *worker;
1607 		unsigned long expires;
1608 
1609 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1610 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1611 
1612 		if (time_before(jiffies, expires)) {
1613 			mod_timer(&gcwq->idle_timer, expires);
1614 			break;
1615 		}
1616 
1617 		destroy_worker(worker);
1618 		ret = true;
1619 	}
1620 
1621 	return ret;
1622 }
1623 
1624 /**
1625  * manage_workers - manage worker pool
1626  * @worker: self
1627  *
1628  * Assume the manager role and manage gcwq worker pool @worker belongs
1629  * to.  At any given time, there can be only zero or one manager per
1630  * gcwq.  The exclusion is handled automatically by this function.
1631  *
1632  * The caller can safely start processing works on false return.  On
1633  * true return, it's guaranteed that need_to_create_worker() is false
1634  * and may_start_working() is true.
1635  *
1636  * CONTEXT:
1637  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1638  * multiple times.  Does GFP_KERNEL allocations.
1639  *
1640  * RETURNS:
1641  * false if no action was taken and gcwq->lock stayed locked, true if
1642  * some action was taken.
1643  */
1644 static bool manage_workers(struct worker *worker)
1645 {
1646 	struct global_cwq *gcwq = worker->gcwq;
1647 	bool ret = false;
1648 
1649 	if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1650 		return ret;
1651 
1652 	gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1653 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
1654 
1655 	/*
1656 	 * Destroy and then create so that may_start_working() is true
1657 	 * on return.
1658 	 */
1659 	ret |= maybe_destroy_workers(gcwq);
1660 	ret |= maybe_create_worker(gcwq);
1661 
1662 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1663 
1664 	/*
1665 	 * The trustee might be waiting to take over the manager
1666 	 * position, tell it we're done.
1667 	 */
1668 	if (unlikely(gcwq->trustee))
1669 		wake_up_all(&gcwq->trustee_wait);
1670 
1671 	return ret;
1672 }
1673 
1674 /**
1675  * move_linked_works - move linked works to a list
1676  * @work: start of series of works to be scheduled
1677  * @head: target list to append @work to
1678  * @nextp: out paramter for nested worklist walking
1679  *
1680  * Schedule linked works starting from @work to @head.  Work series to
1681  * be scheduled starts at @work and includes any consecutive work with
1682  * WORK_STRUCT_LINKED set in its predecessor.
1683  *
1684  * If @nextp is not NULL, it's updated to point to the next work of
1685  * the last scheduled work.  This allows move_linked_works() to be
1686  * nested inside outer list_for_each_entry_safe().
1687  *
1688  * CONTEXT:
1689  * spin_lock_irq(gcwq->lock).
1690  */
1691 static void move_linked_works(struct work_struct *work, struct list_head *head,
1692 			      struct work_struct **nextp)
1693 {
1694 	struct work_struct *n;
1695 
1696 	/*
1697 	 * Linked worklist will always end before the end of the list,
1698 	 * use NULL for list head.
1699 	 */
1700 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1701 		list_move_tail(&work->entry, head);
1702 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1703 			break;
1704 	}
1705 
1706 	/*
1707 	 * If we're already inside safe list traversal and have moved
1708 	 * multiple works to the scheduled queue, the next position
1709 	 * needs to be updated.
1710 	 */
1711 	if (nextp)
1712 		*nextp = n;
1713 }
1714 
1715 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1716 {
1717 	struct work_struct *work = list_first_entry(&cwq->delayed_works,
1718 						    struct work_struct, entry);
1719 	struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1720 
1721 	trace_workqueue_activate_work(work);
1722 	move_linked_works(work, pos, NULL);
1723 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1724 	cwq->nr_active++;
1725 }
1726 
1727 /**
1728  * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1729  * @cwq: cwq of interest
1730  * @color: color of work which left the queue
1731  * @delayed: for a delayed work
1732  *
1733  * A work either has completed or is removed from pending queue,
1734  * decrement nr_in_flight of its cwq and handle workqueue flushing.
1735  *
1736  * CONTEXT:
1737  * spin_lock_irq(gcwq->lock).
1738  */
1739 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1740 				 bool delayed)
1741 {
1742 	/* ignore uncolored works */
1743 	if (color == WORK_NO_COLOR)
1744 		return;
1745 
1746 	cwq->nr_in_flight[color]--;
1747 
1748 	if (!delayed) {
1749 		cwq->nr_active--;
1750 		if (!list_empty(&cwq->delayed_works)) {
1751 			/* one down, submit a delayed one */
1752 			if (cwq->nr_active < cwq->max_active)
1753 				cwq_activate_first_delayed(cwq);
1754 		}
1755 	}
1756 
1757 	/* is flush in progress and are we at the flushing tip? */
1758 	if (likely(cwq->flush_color != color))
1759 		return;
1760 
1761 	/* are there still in-flight works? */
1762 	if (cwq->nr_in_flight[color])
1763 		return;
1764 
1765 	/* this cwq is done, clear flush_color */
1766 	cwq->flush_color = -1;
1767 
1768 	/*
1769 	 * If this was the last cwq, wake up the first flusher.  It
1770 	 * will handle the rest.
1771 	 */
1772 	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1773 		complete(&cwq->wq->first_flusher->done);
1774 }
1775 
1776 /**
1777  * process_one_work - process single work
1778  * @worker: self
1779  * @work: work to process
1780  *
1781  * Process @work.  This function contains all the logics necessary to
1782  * process a single work including synchronization against and
1783  * interaction with other workers on the same cpu, queueing and
1784  * flushing.  As long as context requirement is met, any worker can
1785  * call this function to process a work.
1786  *
1787  * CONTEXT:
1788  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1789  */
1790 static void process_one_work(struct worker *worker, struct work_struct *work)
1791 __releases(&gcwq->lock)
1792 __acquires(&gcwq->lock)
1793 {
1794 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1795 	struct global_cwq *gcwq = cwq->gcwq;
1796 	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1797 	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1798 	work_func_t f = work->func;
1799 	int work_color;
1800 	struct worker *collision;
1801 #ifdef CONFIG_LOCKDEP
1802 	/*
1803 	 * It is permissible to free the struct work_struct from
1804 	 * inside the function that is called from it, this we need to
1805 	 * take into account for lockdep too.  To avoid bogus "held
1806 	 * lock freed" warnings as well as problems when looking into
1807 	 * work->lockdep_map, make a copy and use that here.
1808 	 */
1809 	struct lockdep_map lockdep_map = work->lockdep_map;
1810 #endif
1811 	/*
1812 	 * A single work shouldn't be executed concurrently by
1813 	 * multiple workers on a single cpu.  Check whether anyone is
1814 	 * already processing the work.  If so, defer the work to the
1815 	 * currently executing one.
1816 	 */
1817 	collision = __find_worker_executing_work(gcwq, bwh, work);
1818 	if (unlikely(collision)) {
1819 		move_linked_works(work, &collision->scheduled, NULL);
1820 		return;
1821 	}
1822 
1823 	/* claim and process */
1824 	debug_work_deactivate(work);
1825 	hlist_add_head(&worker->hentry, bwh);
1826 	worker->current_work = work;
1827 	worker->current_cwq = cwq;
1828 	work_color = get_work_color(work);
1829 
1830 	/* record the current cpu number in the work data and dequeue */
1831 	set_work_cpu(work, gcwq->cpu);
1832 	list_del_init(&work->entry);
1833 
1834 	/*
1835 	 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1836 	 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1837 	 */
1838 	if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1839 		struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1840 						struct work_struct, entry);
1841 
1842 		if (!list_empty(&gcwq->worklist) &&
1843 		    get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1844 			wake_up_worker(gcwq);
1845 		else
1846 			gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1847 	}
1848 
1849 	/*
1850 	 * CPU intensive works don't participate in concurrency
1851 	 * management.  They're the scheduler's responsibility.
1852 	 */
1853 	if (unlikely(cpu_intensive))
1854 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1855 
1856 	spin_unlock_irq(&gcwq->lock);
1857 
1858 	work_clear_pending(work);
1859 	lock_map_acquire_read(&cwq->wq->lockdep_map);
1860 	lock_map_acquire(&lockdep_map);
1861 	trace_workqueue_execute_start(work);
1862 	f(work);
1863 	/*
1864 	 * While we must be careful to not use "work" after this, the trace
1865 	 * point will only record its address.
1866 	 */
1867 	trace_workqueue_execute_end(work);
1868 	lock_map_release(&lockdep_map);
1869 	lock_map_release(&cwq->wq->lockdep_map);
1870 
1871 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1872 		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1873 		       "%s/0x%08x/%d\n",
1874 		       current->comm, preempt_count(), task_pid_nr(current));
1875 		printk(KERN_ERR "    last function: ");
1876 		print_symbol("%s\n", (unsigned long)f);
1877 		debug_show_held_locks(current);
1878 		dump_stack();
1879 	}
1880 
1881 	spin_lock_irq(&gcwq->lock);
1882 
1883 	/* clear cpu intensive status */
1884 	if (unlikely(cpu_intensive))
1885 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1886 
1887 	/* we're done with it, release */
1888 	hlist_del_init(&worker->hentry);
1889 	worker->current_work = NULL;
1890 	worker->current_cwq = NULL;
1891 	cwq_dec_nr_in_flight(cwq, work_color, false);
1892 }
1893 
1894 /**
1895  * process_scheduled_works - process scheduled works
1896  * @worker: self
1897  *
1898  * Process all scheduled works.  Please note that the scheduled list
1899  * may change while processing a work, so this function repeatedly
1900  * fetches a work from the top and executes it.
1901  *
1902  * CONTEXT:
1903  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1904  * multiple times.
1905  */
1906 static void process_scheduled_works(struct worker *worker)
1907 {
1908 	while (!list_empty(&worker->scheduled)) {
1909 		struct work_struct *work = list_first_entry(&worker->scheduled,
1910 						struct work_struct, entry);
1911 		process_one_work(worker, work);
1912 	}
1913 }
1914 
1915 /**
1916  * worker_thread - the worker thread function
1917  * @__worker: self
1918  *
1919  * The gcwq worker thread function.  There's a single dynamic pool of
1920  * these per each cpu.  These workers process all works regardless of
1921  * their specific target workqueue.  The only exception is works which
1922  * belong to workqueues with a rescuer which will be explained in
1923  * rescuer_thread().
1924  */
1925 static int worker_thread(void *__worker)
1926 {
1927 	struct worker *worker = __worker;
1928 	struct global_cwq *gcwq = worker->gcwq;
1929 
1930 	/* tell the scheduler that this is a workqueue worker */
1931 	worker->task->flags |= PF_WQ_WORKER;
1932 woke_up:
1933 	spin_lock_irq(&gcwq->lock);
1934 
1935 	/* DIE can be set only while we're idle, checking here is enough */
1936 	if (worker->flags & WORKER_DIE) {
1937 		spin_unlock_irq(&gcwq->lock);
1938 		worker->task->flags &= ~PF_WQ_WORKER;
1939 		return 0;
1940 	}
1941 
1942 	worker_leave_idle(worker);
1943 recheck:
1944 	/* no more worker necessary? */
1945 	if (!need_more_worker(gcwq))
1946 		goto sleep;
1947 
1948 	/* do we need to manage? */
1949 	if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1950 		goto recheck;
1951 
1952 	/*
1953 	 * ->scheduled list can only be filled while a worker is
1954 	 * preparing to process a work or actually processing it.
1955 	 * Make sure nobody diddled with it while I was sleeping.
1956 	 */
1957 	BUG_ON(!list_empty(&worker->scheduled));
1958 
1959 	/*
1960 	 * When control reaches this point, we're guaranteed to have
1961 	 * at least one idle worker or that someone else has already
1962 	 * assumed the manager role.
1963 	 */
1964 	worker_clr_flags(worker, WORKER_PREP);
1965 
1966 	do {
1967 		struct work_struct *work =
1968 			list_first_entry(&gcwq->worklist,
1969 					 struct work_struct, entry);
1970 
1971 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1972 			/* optimization path, not strictly necessary */
1973 			process_one_work(worker, work);
1974 			if (unlikely(!list_empty(&worker->scheduled)))
1975 				process_scheduled_works(worker);
1976 		} else {
1977 			move_linked_works(work, &worker->scheduled, NULL);
1978 			process_scheduled_works(worker);
1979 		}
1980 	} while (keep_working(gcwq));
1981 
1982 	worker_set_flags(worker, WORKER_PREP, false);
1983 sleep:
1984 	if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1985 		goto recheck;
1986 
1987 	/*
1988 	 * gcwq->lock is held and there's no work to process and no
1989 	 * need to manage, sleep.  Workers are woken up only while
1990 	 * holding gcwq->lock or from local cpu, so setting the
1991 	 * current state before releasing gcwq->lock is enough to
1992 	 * prevent losing any event.
1993 	 */
1994 	worker_enter_idle(worker);
1995 	__set_current_state(TASK_INTERRUPTIBLE);
1996 	spin_unlock_irq(&gcwq->lock);
1997 	schedule();
1998 	goto woke_up;
1999 }
2000 
2001 /**
2002  * rescuer_thread - the rescuer thread function
2003  * @__wq: the associated workqueue
2004  *
2005  * Workqueue rescuer thread function.  There's one rescuer for each
2006  * workqueue which has WQ_RESCUER set.
2007  *
2008  * Regular work processing on a gcwq may block trying to create a new
2009  * worker which uses GFP_KERNEL allocation which has slight chance of
2010  * developing into deadlock if some works currently on the same queue
2011  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2012  * the problem rescuer solves.
2013  *
2014  * When such condition is possible, the gcwq summons rescuers of all
2015  * workqueues which have works queued on the gcwq and let them process
2016  * those works so that forward progress can be guaranteed.
2017  *
2018  * This should happen rarely.
2019  */
2020 static int rescuer_thread(void *__wq)
2021 {
2022 	struct workqueue_struct *wq = __wq;
2023 	struct worker *rescuer = wq->rescuer;
2024 	struct list_head *scheduled = &rescuer->scheduled;
2025 	bool is_unbound = wq->flags & WQ_UNBOUND;
2026 	unsigned int cpu;
2027 
2028 	set_user_nice(current, RESCUER_NICE_LEVEL);
2029 repeat:
2030 	set_current_state(TASK_INTERRUPTIBLE);
2031 
2032 	if (kthread_should_stop())
2033 		return 0;
2034 
2035 	/*
2036 	 * See whether any cpu is asking for help.  Unbounded
2037 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2038 	 */
2039 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2040 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2041 		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2042 		struct global_cwq *gcwq = cwq->gcwq;
2043 		struct work_struct *work, *n;
2044 
2045 		__set_current_state(TASK_RUNNING);
2046 		mayday_clear_cpu(cpu, wq->mayday_mask);
2047 
2048 		/* migrate to the target cpu if possible */
2049 		rescuer->gcwq = gcwq;
2050 		worker_maybe_bind_and_lock(rescuer);
2051 
2052 		/*
2053 		 * Slurp in all works issued via this workqueue and
2054 		 * process'em.
2055 		 */
2056 		BUG_ON(!list_empty(&rescuer->scheduled));
2057 		list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2058 			if (get_work_cwq(work) == cwq)
2059 				move_linked_works(work, scheduled, &n);
2060 
2061 		process_scheduled_works(rescuer);
2062 
2063 		/*
2064 		 * Leave this gcwq.  If keep_working() is %true, notify a
2065 		 * regular worker; otherwise, we end up with 0 concurrency
2066 		 * and stalling the execution.
2067 		 */
2068 		if (keep_working(gcwq))
2069 			wake_up_worker(gcwq);
2070 
2071 		spin_unlock_irq(&gcwq->lock);
2072 	}
2073 
2074 	schedule();
2075 	goto repeat;
2076 }
2077 
2078 struct wq_barrier {
2079 	struct work_struct	work;
2080 	struct completion	done;
2081 };
2082 
2083 static void wq_barrier_func(struct work_struct *work)
2084 {
2085 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2086 	complete(&barr->done);
2087 }
2088 
2089 /**
2090  * insert_wq_barrier - insert a barrier work
2091  * @cwq: cwq to insert barrier into
2092  * @barr: wq_barrier to insert
2093  * @target: target work to attach @barr to
2094  * @worker: worker currently executing @target, NULL if @target is not executing
2095  *
2096  * @barr is linked to @target such that @barr is completed only after
2097  * @target finishes execution.  Please note that the ordering
2098  * guarantee is observed only with respect to @target and on the local
2099  * cpu.
2100  *
2101  * Currently, a queued barrier can't be canceled.  This is because
2102  * try_to_grab_pending() can't determine whether the work to be
2103  * grabbed is at the head of the queue and thus can't clear LINKED
2104  * flag of the previous work while there must be a valid next work
2105  * after a work with LINKED flag set.
2106  *
2107  * Note that when @worker is non-NULL, @target may be modified
2108  * underneath us, so we can't reliably determine cwq from @target.
2109  *
2110  * CONTEXT:
2111  * spin_lock_irq(gcwq->lock).
2112  */
2113 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2114 			      struct wq_barrier *barr,
2115 			      struct work_struct *target, struct worker *worker)
2116 {
2117 	struct list_head *head;
2118 	unsigned int linked = 0;
2119 
2120 	/*
2121 	 * debugobject calls are safe here even with gcwq->lock locked
2122 	 * as we know for sure that this will not trigger any of the
2123 	 * checks and call back into the fixup functions where we
2124 	 * might deadlock.
2125 	 */
2126 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2127 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2128 	init_completion(&barr->done);
2129 
2130 	/*
2131 	 * If @target is currently being executed, schedule the
2132 	 * barrier to the worker; otherwise, put it after @target.
2133 	 */
2134 	if (worker)
2135 		head = worker->scheduled.next;
2136 	else {
2137 		unsigned long *bits = work_data_bits(target);
2138 
2139 		head = target->entry.next;
2140 		/* there can already be other linked works, inherit and set */
2141 		linked = *bits & WORK_STRUCT_LINKED;
2142 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2143 	}
2144 
2145 	debug_work_activate(&barr->work);
2146 	insert_work(cwq, &barr->work, head,
2147 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2148 }
2149 
2150 /**
2151  * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2152  * @wq: workqueue being flushed
2153  * @flush_color: new flush color, < 0 for no-op
2154  * @work_color: new work color, < 0 for no-op
2155  *
2156  * Prepare cwqs for workqueue flushing.
2157  *
2158  * If @flush_color is non-negative, flush_color on all cwqs should be
2159  * -1.  If no cwq has in-flight commands at the specified color, all
2160  * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2161  * has in flight commands, its cwq->flush_color is set to
2162  * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2163  * wakeup logic is armed and %true is returned.
2164  *
2165  * The caller should have initialized @wq->first_flusher prior to
2166  * calling this function with non-negative @flush_color.  If
2167  * @flush_color is negative, no flush color update is done and %false
2168  * is returned.
2169  *
2170  * If @work_color is non-negative, all cwqs should have the same
2171  * work_color which is previous to @work_color and all will be
2172  * advanced to @work_color.
2173  *
2174  * CONTEXT:
2175  * mutex_lock(wq->flush_mutex).
2176  *
2177  * RETURNS:
2178  * %true if @flush_color >= 0 and there's something to flush.  %false
2179  * otherwise.
2180  */
2181 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2182 				      int flush_color, int work_color)
2183 {
2184 	bool wait = false;
2185 	unsigned int cpu;
2186 
2187 	if (flush_color >= 0) {
2188 		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2189 		atomic_set(&wq->nr_cwqs_to_flush, 1);
2190 	}
2191 
2192 	for_each_cwq_cpu(cpu, wq) {
2193 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2194 		struct global_cwq *gcwq = cwq->gcwq;
2195 
2196 		spin_lock_irq(&gcwq->lock);
2197 
2198 		if (flush_color >= 0) {
2199 			BUG_ON(cwq->flush_color != -1);
2200 
2201 			if (cwq->nr_in_flight[flush_color]) {
2202 				cwq->flush_color = flush_color;
2203 				atomic_inc(&wq->nr_cwqs_to_flush);
2204 				wait = true;
2205 			}
2206 		}
2207 
2208 		if (work_color >= 0) {
2209 			BUG_ON(work_color != work_next_color(cwq->work_color));
2210 			cwq->work_color = work_color;
2211 		}
2212 
2213 		spin_unlock_irq(&gcwq->lock);
2214 	}
2215 
2216 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2217 		complete(&wq->first_flusher->done);
2218 
2219 	return wait;
2220 }
2221 
2222 /**
2223  * flush_workqueue - ensure that any scheduled work has run to completion.
2224  * @wq: workqueue to flush
2225  *
2226  * Forces execution of the workqueue and blocks until its completion.
2227  * This is typically used in driver shutdown handlers.
2228  *
2229  * We sleep until all works which were queued on entry have been handled,
2230  * but we are not livelocked by new incoming ones.
2231  */
2232 void flush_workqueue(struct workqueue_struct *wq)
2233 {
2234 	struct wq_flusher this_flusher = {
2235 		.list = LIST_HEAD_INIT(this_flusher.list),
2236 		.flush_color = -1,
2237 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2238 	};
2239 	int next_color;
2240 
2241 	lock_map_acquire(&wq->lockdep_map);
2242 	lock_map_release(&wq->lockdep_map);
2243 
2244 	mutex_lock(&wq->flush_mutex);
2245 
2246 	/*
2247 	 * Start-to-wait phase
2248 	 */
2249 	next_color = work_next_color(wq->work_color);
2250 
2251 	if (next_color != wq->flush_color) {
2252 		/*
2253 		 * Color space is not full.  The current work_color
2254 		 * becomes our flush_color and work_color is advanced
2255 		 * by one.
2256 		 */
2257 		BUG_ON(!list_empty(&wq->flusher_overflow));
2258 		this_flusher.flush_color = wq->work_color;
2259 		wq->work_color = next_color;
2260 
2261 		if (!wq->first_flusher) {
2262 			/* no flush in progress, become the first flusher */
2263 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2264 
2265 			wq->first_flusher = &this_flusher;
2266 
2267 			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2268 						       wq->work_color)) {
2269 				/* nothing to flush, done */
2270 				wq->flush_color = next_color;
2271 				wq->first_flusher = NULL;
2272 				goto out_unlock;
2273 			}
2274 		} else {
2275 			/* wait in queue */
2276 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2277 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2278 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2279 		}
2280 	} else {
2281 		/*
2282 		 * Oops, color space is full, wait on overflow queue.
2283 		 * The next flush completion will assign us
2284 		 * flush_color and transfer to flusher_queue.
2285 		 */
2286 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2287 	}
2288 
2289 	mutex_unlock(&wq->flush_mutex);
2290 
2291 	wait_for_completion(&this_flusher.done);
2292 
2293 	/*
2294 	 * Wake-up-and-cascade phase
2295 	 *
2296 	 * First flushers are responsible for cascading flushes and
2297 	 * handling overflow.  Non-first flushers can simply return.
2298 	 */
2299 	if (wq->first_flusher != &this_flusher)
2300 		return;
2301 
2302 	mutex_lock(&wq->flush_mutex);
2303 
2304 	/* we might have raced, check again with mutex held */
2305 	if (wq->first_flusher != &this_flusher)
2306 		goto out_unlock;
2307 
2308 	wq->first_flusher = NULL;
2309 
2310 	BUG_ON(!list_empty(&this_flusher.list));
2311 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2312 
2313 	while (true) {
2314 		struct wq_flusher *next, *tmp;
2315 
2316 		/* complete all the flushers sharing the current flush color */
2317 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2318 			if (next->flush_color != wq->flush_color)
2319 				break;
2320 			list_del_init(&next->list);
2321 			complete(&next->done);
2322 		}
2323 
2324 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2325 		       wq->flush_color != work_next_color(wq->work_color));
2326 
2327 		/* this flush_color is finished, advance by one */
2328 		wq->flush_color = work_next_color(wq->flush_color);
2329 
2330 		/* one color has been freed, handle overflow queue */
2331 		if (!list_empty(&wq->flusher_overflow)) {
2332 			/*
2333 			 * Assign the same color to all overflowed
2334 			 * flushers, advance work_color and append to
2335 			 * flusher_queue.  This is the start-to-wait
2336 			 * phase for these overflowed flushers.
2337 			 */
2338 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2339 				tmp->flush_color = wq->work_color;
2340 
2341 			wq->work_color = work_next_color(wq->work_color);
2342 
2343 			list_splice_tail_init(&wq->flusher_overflow,
2344 					      &wq->flusher_queue);
2345 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2346 		}
2347 
2348 		if (list_empty(&wq->flusher_queue)) {
2349 			BUG_ON(wq->flush_color != wq->work_color);
2350 			break;
2351 		}
2352 
2353 		/*
2354 		 * Need to flush more colors.  Make the next flusher
2355 		 * the new first flusher and arm cwqs.
2356 		 */
2357 		BUG_ON(wq->flush_color == wq->work_color);
2358 		BUG_ON(wq->flush_color != next->flush_color);
2359 
2360 		list_del_init(&next->list);
2361 		wq->first_flusher = next;
2362 
2363 		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2364 			break;
2365 
2366 		/*
2367 		 * Meh... this color is already done, clear first
2368 		 * flusher and repeat cascading.
2369 		 */
2370 		wq->first_flusher = NULL;
2371 	}
2372 
2373 out_unlock:
2374 	mutex_unlock(&wq->flush_mutex);
2375 }
2376 EXPORT_SYMBOL_GPL(flush_workqueue);
2377 
2378 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2379 			     bool wait_executing)
2380 {
2381 	struct worker *worker = NULL;
2382 	struct global_cwq *gcwq;
2383 	struct cpu_workqueue_struct *cwq;
2384 
2385 	might_sleep();
2386 	gcwq = get_work_gcwq(work);
2387 	if (!gcwq)
2388 		return false;
2389 
2390 	spin_lock_irq(&gcwq->lock);
2391 	if (!list_empty(&work->entry)) {
2392 		/*
2393 		 * See the comment near try_to_grab_pending()->smp_rmb().
2394 		 * If it was re-queued to a different gcwq under us, we
2395 		 * are not going to wait.
2396 		 */
2397 		smp_rmb();
2398 		cwq = get_work_cwq(work);
2399 		if (unlikely(!cwq || gcwq != cwq->gcwq))
2400 			goto already_gone;
2401 	} else if (wait_executing) {
2402 		worker = find_worker_executing_work(gcwq, work);
2403 		if (!worker)
2404 			goto already_gone;
2405 		cwq = worker->current_cwq;
2406 	} else
2407 		goto already_gone;
2408 
2409 	insert_wq_barrier(cwq, barr, work, worker);
2410 	spin_unlock_irq(&gcwq->lock);
2411 
2412 	/*
2413 	 * If @max_active is 1 or rescuer is in use, flushing another work
2414 	 * item on the same workqueue may lead to deadlock.  Make sure the
2415 	 * flusher is not running on the same workqueue by verifying write
2416 	 * access.
2417 	 */
2418 	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2419 		lock_map_acquire(&cwq->wq->lockdep_map);
2420 	else
2421 		lock_map_acquire_read(&cwq->wq->lockdep_map);
2422 	lock_map_release(&cwq->wq->lockdep_map);
2423 
2424 	return true;
2425 already_gone:
2426 	spin_unlock_irq(&gcwq->lock);
2427 	return false;
2428 }
2429 
2430 /**
2431  * flush_work - wait for a work to finish executing the last queueing instance
2432  * @work: the work to flush
2433  *
2434  * Wait until @work has finished execution.  This function considers
2435  * only the last queueing instance of @work.  If @work has been
2436  * enqueued across different CPUs on a non-reentrant workqueue or on
2437  * multiple workqueues, @work might still be executing on return on
2438  * some of the CPUs from earlier queueing.
2439  *
2440  * If @work was queued only on a non-reentrant, ordered or unbound
2441  * workqueue, @work is guaranteed to be idle on return if it hasn't
2442  * been requeued since flush started.
2443  *
2444  * RETURNS:
2445  * %true if flush_work() waited for the work to finish execution,
2446  * %false if it was already idle.
2447  */
2448 bool flush_work(struct work_struct *work)
2449 {
2450 	struct wq_barrier barr;
2451 
2452 	if (start_flush_work(work, &barr, true)) {
2453 		wait_for_completion(&barr.done);
2454 		destroy_work_on_stack(&barr.work);
2455 		return true;
2456 	} else
2457 		return false;
2458 }
2459 EXPORT_SYMBOL_GPL(flush_work);
2460 
2461 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2462 {
2463 	struct wq_barrier barr;
2464 	struct worker *worker;
2465 
2466 	spin_lock_irq(&gcwq->lock);
2467 
2468 	worker = find_worker_executing_work(gcwq, work);
2469 	if (unlikely(worker))
2470 		insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2471 
2472 	spin_unlock_irq(&gcwq->lock);
2473 
2474 	if (unlikely(worker)) {
2475 		wait_for_completion(&barr.done);
2476 		destroy_work_on_stack(&barr.work);
2477 		return true;
2478 	} else
2479 		return false;
2480 }
2481 
2482 static bool wait_on_work(struct work_struct *work)
2483 {
2484 	bool ret = false;
2485 	int cpu;
2486 
2487 	might_sleep();
2488 
2489 	lock_map_acquire(&work->lockdep_map);
2490 	lock_map_release(&work->lockdep_map);
2491 
2492 	for_each_gcwq_cpu(cpu)
2493 		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2494 	return ret;
2495 }
2496 
2497 /**
2498  * flush_work_sync - wait until a work has finished execution
2499  * @work: the work to flush
2500  *
2501  * Wait until @work has finished execution.  On return, it's
2502  * guaranteed that all queueing instances of @work which happened
2503  * before this function is called are finished.  In other words, if
2504  * @work hasn't been requeued since this function was called, @work is
2505  * guaranteed to be idle on return.
2506  *
2507  * RETURNS:
2508  * %true if flush_work_sync() waited for the work to finish execution,
2509  * %false if it was already idle.
2510  */
2511 bool flush_work_sync(struct work_struct *work)
2512 {
2513 	struct wq_barrier barr;
2514 	bool pending, waited;
2515 
2516 	/* we'll wait for executions separately, queue barr only if pending */
2517 	pending = start_flush_work(work, &barr, false);
2518 
2519 	/* wait for executions to finish */
2520 	waited = wait_on_work(work);
2521 
2522 	/* wait for the pending one */
2523 	if (pending) {
2524 		wait_for_completion(&barr.done);
2525 		destroy_work_on_stack(&barr.work);
2526 	}
2527 
2528 	return pending || waited;
2529 }
2530 EXPORT_SYMBOL_GPL(flush_work_sync);
2531 
2532 /*
2533  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2534  * so this work can't be re-armed in any way.
2535  */
2536 static int try_to_grab_pending(struct work_struct *work)
2537 {
2538 	struct global_cwq *gcwq;
2539 	int ret = -1;
2540 
2541 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2542 		return 0;
2543 
2544 	/*
2545 	 * The queueing is in progress, or it is already queued. Try to
2546 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2547 	 */
2548 	gcwq = get_work_gcwq(work);
2549 	if (!gcwq)
2550 		return ret;
2551 
2552 	spin_lock_irq(&gcwq->lock);
2553 	if (!list_empty(&work->entry)) {
2554 		/*
2555 		 * This work is queued, but perhaps we locked the wrong gcwq.
2556 		 * In that case we must see the new value after rmb(), see
2557 		 * insert_work()->wmb().
2558 		 */
2559 		smp_rmb();
2560 		if (gcwq == get_work_gcwq(work)) {
2561 			debug_work_deactivate(work);
2562 			list_del_init(&work->entry);
2563 			cwq_dec_nr_in_flight(get_work_cwq(work),
2564 				get_work_color(work),
2565 				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2566 			ret = 1;
2567 		}
2568 	}
2569 	spin_unlock_irq(&gcwq->lock);
2570 
2571 	return ret;
2572 }
2573 
2574 static bool __cancel_work_timer(struct work_struct *work,
2575 				struct timer_list* timer)
2576 {
2577 	int ret;
2578 
2579 	do {
2580 		ret = (timer && likely(del_timer(timer)));
2581 		if (!ret)
2582 			ret = try_to_grab_pending(work);
2583 		wait_on_work(work);
2584 	} while (unlikely(ret < 0));
2585 
2586 	clear_work_data(work);
2587 	return ret;
2588 }
2589 
2590 /**
2591  * cancel_work_sync - cancel a work and wait for it to finish
2592  * @work: the work to cancel
2593  *
2594  * Cancel @work and wait for its execution to finish.  This function
2595  * can be used even if the work re-queues itself or migrates to
2596  * another workqueue.  On return from this function, @work is
2597  * guaranteed to be not pending or executing on any CPU.
2598  *
2599  * cancel_work_sync(&delayed_work->work) must not be used for
2600  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2601  *
2602  * The caller must ensure that the workqueue on which @work was last
2603  * queued can't be destroyed before this function returns.
2604  *
2605  * RETURNS:
2606  * %true if @work was pending, %false otherwise.
2607  */
2608 bool cancel_work_sync(struct work_struct *work)
2609 {
2610 	return __cancel_work_timer(work, NULL);
2611 }
2612 EXPORT_SYMBOL_GPL(cancel_work_sync);
2613 
2614 /**
2615  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2616  * @dwork: the delayed work to flush
2617  *
2618  * Delayed timer is cancelled and the pending work is queued for
2619  * immediate execution.  Like flush_work(), this function only
2620  * considers the last queueing instance of @dwork.
2621  *
2622  * RETURNS:
2623  * %true if flush_work() waited for the work to finish execution,
2624  * %false if it was already idle.
2625  */
2626 bool flush_delayed_work(struct delayed_work *dwork)
2627 {
2628 	if (del_timer_sync(&dwork->timer))
2629 		__queue_work(raw_smp_processor_id(),
2630 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2631 	return flush_work(&dwork->work);
2632 }
2633 EXPORT_SYMBOL(flush_delayed_work);
2634 
2635 /**
2636  * flush_delayed_work_sync - wait for a dwork to finish
2637  * @dwork: the delayed work to flush
2638  *
2639  * Delayed timer is cancelled and the pending work is queued for
2640  * execution immediately.  Other than timer handling, its behavior
2641  * is identical to flush_work_sync().
2642  *
2643  * RETURNS:
2644  * %true if flush_work_sync() waited for the work to finish execution,
2645  * %false if it was already idle.
2646  */
2647 bool flush_delayed_work_sync(struct delayed_work *dwork)
2648 {
2649 	if (del_timer_sync(&dwork->timer))
2650 		__queue_work(raw_smp_processor_id(),
2651 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2652 	return flush_work_sync(&dwork->work);
2653 }
2654 EXPORT_SYMBOL(flush_delayed_work_sync);
2655 
2656 /**
2657  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2658  * @dwork: the delayed work cancel
2659  *
2660  * This is cancel_work_sync() for delayed works.
2661  *
2662  * RETURNS:
2663  * %true if @dwork was pending, %false otherwise.
2664  */
2665 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2666 {
2667 	return __cancel_work_timer(&dwork->work, &dwork->timer);
2668 }
2669 EXPORT_SYMBOL(cancel_delayed_work_sync);
2670 
2671 /**
2672  * schedule_work - put work task in global workqueue
2673  * @work: job to be done
2674  *
2675  * Returns zero if @work was already on the kernel-global workqueue and
2676  * non-zero otherwise.
2677  *
2678  * This puts a job in the kernel-global workqueue if it was not already
2679  * queued and leaves it in the same position on the kernel-global
2680  * workqueue otherwise.
2681  */
2682 int schedule_work(struct work_struct *work)
2683 {
2684 	return queue_work(system_wq, work);
2685 }
2686 EXPORT_SYMBOL(schedule_work);
2687 
2688 /*
2689  * schedule_work_on - put work task on a specific cpu
2690  * @cpu: cpu to put the work task on
2691  * @work: job to be done
2692  *
2693  * This puts a job on a specific cpu
2694  */
2695 int schedule_work_on(int cpu, struct work_struct *work)
2696 {
2697 	return queue_work_on(cpu, system_wq, work);
2698 }
2699 EXPORT_SYMBOL(schedule_work_on);
2700 
2701 /**
2702  * schedule_delayed_work - put work task in global workqueue after delay
2703  * @dwork: job to be done
2704  * @delay: number of jiffies to wait or 0 for immediate execution
2705  *
2706  * After waiting for a given time this puts a job in the kernel-global
2707  * workqueue.
2708  */
2709 int schedule_delayed_work(struct delayed_work *dwork,
2710 					unsigned long delay)
2711 {
2712 	return queue_delayed_work(system_wq, dwork, delay);
2713 }
2714 EXPORT_SYMBOL(schedule_delayed_work);
2715 
2716 /**
2717  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2718  * @cpu: cpu to use
2719  * @dwork: job to be done
2720  * @delay: number of jiffies to wait
2721  *
2722  * After waiting for a given time this puts a job in the kernel-global
2723  * workqueue on the specified CPU.
2724  */
2725 int schedule_delayed_work_on(int cpu,
2726 			struct delayed_work *dwork, unsigned long delay)
2727 {
2728 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2729 }
2730 EXPORT_SYMBOL(schedule_delayed_work_on);
2731 
2732 /**
2733  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2734  * @func: the function to call
2735  *
2736  * schedule_on_each_cpu() executes @func on each online CPU using the
2737  * system workqueue and blocks until all CPUs have completed.
2738  * schedule_on_each_cpu() is very slow.
2739  *
2740  * RETURNS:
2741  * 0 on success, -errno on failure.
2742  */
2743 int schedule_on_each_cpu(work_func_t func)
2744 {
2745 	int cpu;
2746 	struct work_struct __percpu *works;
2747 
2748 	works = alloc_percpu(struct work_struct);
2749 	if (!works)
2750 		return -ENOMEM;
2751 
2752 	get_online_cpus();
2753 
2754 	for_each_online_cpu(cpu) {
2755 		struct work_struct *work = per_cpu_ptr(works, cpu);
2756 
2757 		INIT_WORK(work, func);
2758 		schedule_work_on(cpu, work);
2759 	}
2760 
2761 	for_each_online_cpu(cpu)
2762 		flush_work(per_cpu_ptr(works, cpu));
2763 
2764 	put_online_cpus();
2765 	free_percpu(works);
2766 	return 0;
2767 }
2768 
2769 /**
2770  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2771  *
2772  * Forces execution of the kernel-global workqueue and blocks until its
2773  * completion.
2774  *
2775  * Think twice before calling this function!  It's very easy to get into
2776  * trouble if you don't take great care.  Either of the following situations
2777  * will lead to deadlock:
2778  *
2779  *	One of the work items currently on the workqueue needs to acquire
2780  *	a lock held by your code or its caller.
2781  *
2782  *	Your code is running in the context of a work routine.
2783  *
2784  * They will be detected by lockdep when they occur, but the first might not
2785  * occur very often.  It depends on what work items are on the workqueue and
2786  * what locks they need, which you have no control over.
2787  *
2788  * In most situations flushing the entire workqueue is overkill; you merely
2789  * need to know that a particular work item isn't queued and isn't running.
2790  * In such cases you should use cancel_delayed_work_sync() or
2791  * cancel_work_sync() instead.
2792  */
2793 void flush_scheduled_work(void)
2794 {
2795 	flush_workqueue(system_wq);
2796 }
2797 EXPORT_SYMBOL(flush_scheduled_work);
2798 
2799 /**
2800  * execute_in_process_context - reliably execute the routine with user context
2801  * @fn:		the function to execute
2802  * @ew:		guaranteed storage for the execute work structure (must
2803  *		be available when the work executes)
2804  *
2805  * Executes the function immediately if process context is available,
2806  * otherwise schedules the function for delayed execution.
2807  *
2808  * Returns:	0 - function was executed
2809  *		1 - function was scheduled for execution
2810  */
2811 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2812 {
2813 	if (!in_interrupt()) {
2814 		fn(&ew->work);
2815 		return 0;
2816 	}
2817 
2818 	INIT_WORK(&ew->work, fn);
2819 	schedule_work(&ew->work);
2820 
2821 	return 1;
2822 }
2823 EXPORT_SYMBOL_GPL(execute_in_process_context);
2824 
2825 int keventd_up(void)
2826 {
2827 	return system_wq != NULL;
2828 }
2829 
2830 static int alloc_cwqs(struct workqueue_struct *wq)
2831 {
2832 	/*
2833 	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2834 	 * Make sure that the alignment isn't lower than that of
2835 	 * unsigned long long.
2836 	 */
2837 	const size_t size = sizeof(struct cpu_workqueue_struct);
2838 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2839 				   __alignof__(unsigned long long));
2840 #ifdef CONFIG_SMP
2841 	bool percpu = !(wq->flags & WQ_UNBOUND);
2842 #else
2843 	bool percpu = false;
2844 #endif
2845 
2846 	if (percpu)
2847 		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2848 	else {
2849 		void *ptr;
2850 
2851 		/*
2852 		 * Allocate enough room to align cwq and put an extra
2853 		 * pointer at the end pointing back to the originally
2854 		 * allocated pointer which will be used for free.
2855 		 */
2856 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2857 		if (ptr) {
2858 			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2859 			*(void **)(wq->cpu_wq.single + 1) = ptr;
2860 		}
2861 	}
2862 
2863 	/* just in case, make sure it's actually aligned
2864 	 * - this is affected by PERCPU() alignment in vmlinux.lds.S
2865 	 */
2866 	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2867 	return wq->cpu_wq.v ? 0 : -ENOMEM;
2868 }
2869 
2870 static void free_cwqs(struct workqueue_struct *wq)
2871 {
2872 #ifdef CONFIG_SMP
2873 	bool percpu = !(wq->flags & WQ_UNBOUND);
2874 #else
2875 	bool percpu = false;
2876 #endif
2877 
2878 	if (percpu)
2879 		free_percpu(wq->cpu_wq.pcpu);
2880 	else if (wq->cpu_wq.single) {
2881 		/* the pointer to free is stored right after the cwq */
2882 		kfree(*(void **)(wq->cpu_wq.single + 1));
2883 	}
2884 }
2885 
2886 static int wq_clamp_max_active(int max_active, unsigned int flags,
2887 			       const char *name)
2888 {
2889 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2890 
2891 	if (max_active < 1 || max_active > lim)
2892 		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2893 		       "is out of range, clamping between %d and %d\n",
2894 		       max_active, name, 1, lim);
2895 
2896 	return clamp_val(max_active, 1, lim);
2897 }
2898 
2899 struct workqueue_struct *__alloc_workqueue_key(const char *name,
2900 					       unsigned int flags,
2901 					       int max_active,
2902 					       struct lock_class_key *key,
2903 					       const char *lock_name)
2904 {
2905 	struct workqueue_struct *wq;
2906 	unsigned int cpu;
2907 
2908 	/*
2909 	 * Workqueues which may be used during memory reclaim should
2910 	 * have a rescuer to guarantee forward progress.
2911 	 */
2912 	if (flags & WQ_MEM_RECLAIM)
2913 		flags |= WQ_RESCUER;
2914 
2915 	/*
2916 	 * Unbound workqueues aren't concurrency managed and should be
2917 	 * dispatched to workers immediately.
2918 	 */
2919 	if (flags & WQ_UNBOUND)
2920 		flags |= WQ_HIGHPRI;
2921 
2922 	max_active = max_active ?: WQ_DFL_ACTIVE;
2923 	max_active = wq_clamp_max_active(max_active, flags, name);
2924 
2925 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2926 	if (!wq)
2927 		goto err;
2928 
2929 	wq->flags = flags;
2930 	wq->saved_max_active = max_active;
2931 	mutex_init(&wq->flush_mutex);
2932 	atomic_set(&wq->nr_cwqs_to_flush, 0);
2933 	INIT_LIST_HEAD(&wq->flusher_queue);
2934 	INIT_LIST_HEAD(&wq->flusher_overflow);
2935 
2936 	wq->name = name;
2937 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2938 	INIT_LIST_HEAD(&wq->list);
2939 
2940 	if (alloc_cwqs(wq) < 0)
2941 		goto err;
2942 
2943 	for_each_cwq_cpu(cpu, wq) {
2944 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2945 		struct global_cwq *gcwq = get_gcwq(cpu);
2946 
2947 		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2948 		cwq->gcwq = gcwq;
2949 		cwq->wq = wq;
2950 		cwq->flush_color = -1;
2951 		cwq->max_active = max_active;
2952 		INIT_LIST_HEAD(&cwq->delayed_works);
2953 	}
2954 
2955 	if (flags & WQ_RESCUER) {
2956 		struct worker *rescuer;
2957 
2958 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
2959 			goto err;
2960 
2961 		wq->rescuer = rescuer = alloc_worker();
2962 		if (!rescuer)
2963 			goto err;
2964 
2965 		rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2966 		if (IS_ERR(rescuer->task))
2967 			goto err;
2968 
2969 		rescuer->task->flags |= PF_THREAD_BOUND;
2970 		wake_up_process(rescuer->task);
2971 	}
2972 
2973 	/*
2974 	 * workqueue_lock protects global freeze state and workqueues
2975 	 * list.  Grab it, set max_active accordingly and add the new
2976 	 * workqueue to workqueues list.
2977 	 */
2978 	spin_lock(&workqueue_lock);
2979 
2980 	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
2981 		for_each_cwq_cpu(cpu, wq)
2982 			get_cwq(cpu, wq)->max_active = 0;
2983 
2984 	list_add(&wq->list, &workqueues);
2985 
2986 	spin_unlock(&workqueue_lock);
2987 
2988 	return wq;
2989 err:
2990 	if (wq) {
2991 		free_cwqs(wq);
2992 		free_mayday_mask(wq->mayday_mask);
2993 		kfree(wq->rescuer);
2994 		kfree(wq);
2995 	}
2996 	return NULL;
2997 }
2998 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
2999 
3000 /**
3001  * destroy_workqueue - safely terminate a workqueue
3002  * @wq: target workqueue
3003  *
3004  * Safely destroy a workqueue. All work currently pending will be done first.
3005  */
3006 void destroy_workqueue(struct workqueue_struct *wq)
3007 {
3008 	unsigned int flush_cnt = 0;
3009 	unsigned int cpu;
3010 
3011 	/*
3012 	 * Mark @wq dying and drain all pending works.  Once WQ_DYING is
3013 	 * set, only chain queueing is allowed.  IOW, only currently
3014 	 * pending or running work items on @wq can queue further work
3015 	 * items on it.  @wq is flushed repeatedly until it becomes empty.
3016 	 * The number of flushing is detemined by the depth of chaining and
3017 	 * should be relatively short.  Whine if it takes too long.
3018 	 */
3019 	wq->flags |= WQ_DYING;
3020 reflush:
3021 	flush_workqueue(wq);
3022 
3023 	for_each_cwq_cpu(cpu, wq) {
3024 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3025 
3026 		if (!cwq->nr_active && list_empty(&cwq->delayed_works))
3027 			continue;
3028 
3029 		if (++flush_cnt == 10 ||
3030 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3031 			printk(KERN_WARNING "workqueue %s: flush on "
3032 			       "destruction isn't complete after %u tries\n",
3033 			       wq->name, flush_cnt);
3034 		goto reflush;
3035 	}
3036 
3037 	/*
3038 	 * wq list is used to freeze wq, remove from list after
3039 	 * flushing is complete in case freeze races us.
3040 	 */
3041 	spin_lock(&workqueue_lock);
3042 	list_del(&wq->list);
3043 	spin_unlock(&workqueue_lock);
3044 
3045 	/* sanity check */
3046 	for_each_cwq_cpu(cpu, wq) {
3047 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3048 		int i;
3049 
3050 		for (i = 0; i < WORK_NR_COLORS; i++)
3051 			BUG_ON(cwq->nr_in_flight[i]);
3052 		BUG_ON(cwq->nr_active);
3053 		BUG_ON(!list_empty(&cwq->delayed_works));
3054 	}
3055 
3056 	if (wq->flags & WQ_RESCUER) {
3057 		kthread_stop(wq->rescuer->task);
3058 		free_mayday_mask(wq->mayday_mask);
3059 		kfree(wq->rescuer);
3060 	}
3061 
3062 	free_cwqs(wq);
3063 	kfree(wq);
3064 }
3065 EXPORT_SYMBOL_GPL(destroy_workqueue);
3066 
3067 /**
3068  * workqueue_set_max_active - adjust max_active of a workqueue
3069  * @wq: target workqueue
3070  * @max_active: new max_active value.
3071  *
3072  * Set max_active of @wq to @max_active.
3073  *
3074  * CONTEXT:
3075  * Don't call from IRQ context.
3076  */
3077 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3078 {
3079 	unsigned int cpu;
3080 
3081 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3082 
3083 	spin_lock(&workqueue_lock);
3084 
3085 	wq->saved_max_active = max_active;
3086 
3087 	for_each_cwq_cpu(cpu, wq) {
3088 		struct global_cwq *gcwq = get_gcwq(cpu);
3089 
3090 		spin_lock_irq(&gcwq->lock);
3091 
3092 		if (!(wq->flags & WQ_FREEZABLE) ||
3093 		    !(gcwq->flags & GCWQ_FREEZING))
3094 			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3095 
3096 		spin_unlock_irq(&gcwq->lock);
3097 	}
3098 
3099 	spin_unlock(&workqueue_lock);
3100 }
3101 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3102 
3103 /**
3104  * workqueue_congested - test whether a workqueue is congested
3105  * @cpu: CPU in question
3106  * @wq: target workqueue
3107  *
3108  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3109  * no synchronization around this function and the test result is
3110  * unreliable and only useful as advisory hints or for debugging.
3111  *
3112  * RETURNS:
3113  * %true if congested, %false otherwise.
3114  */
3115 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3116 {
3117 	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3118 
3119 	return !list_empty(&cwq->delayed_works);
3120 }
3121 EXPORT_SYMBOL_GPL(workqueue_congested);
3122 
3123 /**
3124  * work_cpu - return the last known associated cpu for @work
3125  * @work: the work of interest
3126  *
3127  * RETURNS:
3128  * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3129  */
3130 unsigned int work_cpu(struct work_struct *work)
3131 {
3132 	struct global_cwq *gcwq = get_work_gcwq(work);
3133 
3134 	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3135 }
3136 EXPORT_SYMBOL_GPL(work_cpu);
3137 
3138 /**
3139  * work_busy - test whether a work is currently pending or running
3140  * @work: the work to be tested
3141  *
3142  * Test whether @work is currently pending or running.  There is no
3143  * synchronization around this function and the test result is
3144  * unreliable and only useful as advisory hints or for debugging.
3145  * Especially for reentrant wqs, the pending state might hide the
3146  * running state.
3147  *
3148  * RETURNS:
3149  * OR'd bitmask of WORK_BUSY_* bits.
3150  */
3151 unsigned int work_busy(struct work_struct *work)
3152 {
3153 	struct global_cwq *gcwq = get_work_gcwq(work);
3154 	unsigned long flags;
3155 	unsigned int ret = 0;
3156 
3157 	if (!gcwq)
3158 		return false;
3159 
3160 	spin_lock_irqsave(&gcwq->lock, flags);
3161 
3162 	if (work_pending(work))
3163 		ret |= WORK_BUSY_PENDING;
3164 	if (find_worker_executing_work(gcwq, work))
3165 		ret |= WORK_BUSY_RUNNING;
3166 
3167 	spin_unlock_irqrestore(&gcwq->lock, flags);
3168 
3169 	return ret;
3170 }
3171 EXPORT_SYMBOL_GPL(work_busy);
3172 
3173 /*
3174  * CPU hotplug.
3175  *
3176  * There are two challenges in supporting CPU hotplug.  Firstly, there
3177  * are a lot of assumptions on strong associations among work, cwq and
3178  * gcwq which make migrating pending and scheduled works very
3179  * difficult to implement without impacting hot paths.  Secondly,
3180  * gcwqs serve mix of short, long and very long running works making
3181  * blocked draining impractical.
3182  *
3183  * This is solved by allowing a gcwq to be detached from CPU, running
3184  * it with unbound (rogue) workers and allowing it to be reattached
3185  * later if the cpu comes back online.  A separate thread is created
3186  * to govern a gcwq in such state and is called the trustee of the
3187  * gcwq.
3188  *
3189  * Trustee states and their descriptions.
3190  *
3191  * START	Command state used on startup.  On CPU_DOWN_PREPARE, a
3192  *		new trustee is started with this state.
3193  *
3194  * IN_CHARGE	Once started, trustee will enter this state after
3195  *		assuming the manager role and making all existing
3196  *		workers rogue.  DOWN_PREPARE waits for trustee to
3197  *		enter this state.  After reaching IN_CHARGE, trustee
3198  *		tries to execute the pending worklist until it's empty
3199  *		and the state is set to BUTCHER, or the state is set
3200  *		to RELEASE.
3201  *
3202  * BUTCHER	Command state which is set by the cpu callback after
3203  *		the cpu has went down.  Once this state is set trustee
3204  *		knows that there will be no new works on the worklist
3205  *		and once the worklist is empty it can proceed to
3206  *		killing idle workers.
3207  *
3208  * RELEASE	Command state which is set by the cpu callback if the
3209  *		cpu down has been canceled or it has come online
3210  *		again.  After recognizing this state, trustee stops
3211  *		trying to drain or butcher and clears ROGUE, rebinds
3212  *		all remaining workers back to the cpu and releases
3213  *		manager role.
3214  *
3215  * DONE		Trustee will enter this state after BUTCHER or RELEASE
3216  *		is complete.
3217  *
3218  *          trustee                 CPU                draining
3219  *         took over                down               complete
3220  * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3221  *                        |                     |                  ^
3222  *                        | CPU is back online  v   return workers |
3223  *                         ----------------> RELEASE --------------
3224  */
3225 
3226 /**
3227  * trustee_wait_event_timeout - timed event wait for trustee
3228  * @cond: condition to wait for
3229  * @timeout: timeout in jiffies
3230  *
3231  * wait_event_timeout() for trustee to use.  Handles locking and
3232  * checks for RELEASE request.
3233  *
3234  * CONTEXT:
3235  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3236  * multiple times.  To be used by trustee.
3237  *
3238  * RETURNS:
3239  * Positive indicating left time if @cond is satisfied, 0 if timed
3240  * out, -1 if canceled.
3241  */
3242 #define trustee_wait_event_timeout(cond, timeout) ({			\
3243 	long __ret = (timeout);						\
3244 	while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) &&	\
3245 	       __ret) {							\
3246 		spin_unlock_irq(&gcwq->lock);				\
3247 		__wait_event_timeout(gcwq->trustee_wait, (cond) ||	\
3248 			(gcwq->trustee_state == TRUSTEE_RELEASE),	\
3249 			__ret);						\
3250 		spin_lock_irq(&gcwq->lock);				\
3251 	}								\
3252 	gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret);		\
3253 })
3254 
3255 /**
3256  * trustee_wait_event - event wait for trustee
3257  * @cond: condition to wait for
3258  *
3259  * wait_event() for trustee to use.  Automatically handles locking and
3260  * checks for CANCEL request.
3261  *
3262  * CONTEXT:
3263  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3264  * multiple times.  To be used by trustee.
3265  *
3266  * RETURNS:
3267  * 0 if @cond is satisfied, -1 if canceled.
3268  */
3269 #define trustee_wait_event(cond) ({					\
3270 	long __ret1;							\
3271 	__ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3272 	__ret1 < 0 ? -1 : 0;						\
3273 })
3274 
3275 static int __cpuinit trustee_thread(void *__gcwq)
3276 {
3277 	struct global_cwq *gcwq = __gcwq;
3278 	struct worker *worker;
3279 	struct work_struct *work;
3280 	struct hlist_node *pos;
3281 	long rc;
3282 	int i;
3283 
3284 	BUG_ON(gcwq->cpu != smp_processor_id());
3285 
3286 	spin_lock_irq(&gcwq->lock);
3287 	/*
3288 	 * Claim the manager position and make all workers rogue.
3289 	 * Trustee must be bound to the target cpu and can't be
3290 	 * cancelled.
3291 	 */
3292 	BUG_ON(gcwq->cpu != smp_processor_id());
3293 	rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3294 	BUG_ON(rc < 0);
3295 
3296 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
3297 
3298 	list_for_each_entry(worker, &gcwq->idle_list, entry)
3299 		worker->flags |= WORKER_ROGUE;
3300 
3301 	for_each_busy_worker(worker, i, pos, gcwq)
3302 		worker->flags |= WORKER_ROGUE;
3303 
3304 	/*
3305 	 * Call schedule() so that we cross rq->lock and thus can
3306 	 * guarantee sched callbacks see the rogue flag.  This is
3307 	 * necessary as scheduler callbacks may be invoked from other
3308 	 * cpus.
3309 	 */
3310 	spin_unlock_irq(&gcwq->lock);
3311 	schedule();
3312 	spin_lock_irq(&gcwq->lock);
3313 
3314 	/*
3315 	 * Sched callbacks are disabled now.  Zap nr_running.  After
3316 	 * this, nr_running stays zero and need_more_worker() and
3317 	 * keep_working() are always true as long as the worklist is
3318 	 * not empty.
3319 	 */
3320 	atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3321 
3322 	spin_unlock_irq(&gcwq->lock);
3323 	del_timer_sync(&gcwq->idle_timer);
3324 	spin_lock_irq(&gcwq->lock);
3325 
3326 	/*
3327 	 * We're now in charge.  Notify and proceed to drain.  We need
3328 	 * to keep the gcwq running during the whole CPU down
3329 	 * procedure as other cpu hotunplug callbacks may need to
3330 	 * flush currently running tasks.
3331 	 */
3332 	gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3333 	wake_up_all(&gcwq->trustee_wait);
3334 
3335 	/*
3336 	 * The original cpu is in the process of dying and may go away
3337 	 * anytime now.  When that happens, we and all workers would
3338 	 * be migrated to other cpus.  Try draining any left work.  We
3339 	 * want to get it over with ASAP - spam rescuers, wake up as
3340 	 * many idlers as necessary and create new ones till the
3341 	 * worklist is empty.  Note that if the gcwq is frozen, there
3342 	 * may be frozen works in freezable cwqs.  Don't declare
3343 	 * completion while frozen.
3344 	 */
3345 	while (gcwq->nr_workers != gcwq->nr_idle ||
3346 	       gcwq->flags & GCWQ_FREEZING ||
3347 	       gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3348 		int nr_works = 0;
3349 
3350 		list_for_each_entry(work, &gcwq->worklist, entry) {
3351 			send_mayday(work);
3352 			nr_works++;
3353 		}
3354 
3355 		list_for_each_entry(worker, &gcwq->idle_list, entry) {
3356 			if (!nr_works--)
3357 				break;
3358 			wake_up_process(worker->task);
3359 		}
3360 
3361 		if (need_to_create_worker(gcwq)) {
3362 			spin_unlock_irq(&gcwq->lock);
3363 			worker = create_worker(gcwq, false);
3364 			spin_lock_irq(&gcwq->lock);
3365 			if (worker) {
3366 				worker->flags |= WORKER_ROGUE;
3367 				start_worker(worker);
3368 			}
3369 		}
3370 
3371 		/* give a breather */
3372 		if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3373 			break;
3374 	}
3375 
3376 	/*
3377 	 * Either all works have been scheduled and cpu is down, or
3378 	 * cpu down has already been canceled.  Wait for and butcher
3379 	 * all workers till we're canceled.
3380 	 */
3381 	do {
3382 		rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3383 		while (!list_empty(&gcwq->idle_list))
3384 			destroy_worker(list_first_entry(&gcwq->idle_list,
3385 							struct worker, entry));
3386 	} while (gcwq->nr_workers && rc >= 0);
3387 
3388 	/*
3389 	 * At this point, either draining has completed and no worker
3390 	 * is left, or cpu down has been canceled or the cpu is being
3391 	 * brought back up.  There shouldn't be any idle one left.
3392 	 * Tell the remaining busy ones to rebind once it finishes the
3393 	 * currently scheduled works by scheduling the rebind_work.
3394 	 */
3395 	WARN_ON(!list_empty(&gcwq->idle_list));
3396 
3397 	for_each_busy_worker(worker, i, pos, gcwq) {
3398 		struct work_struct *rebind_work = &worker->rebind_work;
3399 
3400 		/*
3401 		 * Rebind_work may race with future cpu hotplug
3402 		 * operations.  Use a separate flag to mark that
3403 		 * rebinding is scheduled.
3404 		 */
3405 		worker->flags |= WORKER_REBIND;
3406 		worker->flags &= ~WORKER_ROGUE;
3407 
3408 		/* queue rebind_work, wq doesn't matter, use the default one */
3409 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3410 				     work_data_bits(rebind_work)))
3411 			continue;
3412 
3413 		debug_work_activate(rebind_work);
3414 		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3415 			    worker->scheduled.next,
3416 			    work_color_to_flags(WORK_NO_COLOR));
3417 	}
3418 
3419 	/* relinquish manager role */
3420 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3421 
3422 	/* notify completion */
3423 	gcwq->trustee = NULL;
3424 	gcwq->trustee_state = TRUSTEE_DONE;
3425 	wake_up_all(&gcwq->trustee_wait);
3426 	spin_unlock_irq(&gcwq->lock);
3427 	return 0;
3428 }
3429 
3430 /**
3431  * wait_trustee_state - wait for trustee to enter the specified state
3432  * @gcwq: gcwq the trustee of interest belongs to
3433  * @state: target state to wait for
3434  *
3435  * Wait for the trustee to reach @state.  DONE is already matched.
3436  *
3437  * CONTEXT:
3438  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3439  * multiple times.  To be used by cpu_callback.
3440  */
3441 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3442 __releases(&gcwq->lock)
3443 __acquires(&gcwq->lock)
3444 {
3445 	if (!(gcwq->trustee_state == state ||
3446 	      gcwq->trustee_state == TRUSTEE_DONE)) {
3447 		spin_unlock_irq(&gcwq->lock);
3448 		__wait_event(gcwq->trustee_wait,
3449 			     gcwq->trustee_state == state ||
3450 			     gcwq->trustee_state == TRUSTEE_DONE);
3451 		spin_lock_irq(&gcwq->lock);
3452 	}
3453 }
3454 
3455 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3456 						unsigned long action,
3457 						void *hcpu)
3458 {
3459 	unsigned int cpu = (unsigned long)hcpu;
3460 	struct global_cwq *gcwq = get_gcwq(cpu);
3461 	struct task_struct *new_trustee = NULL;
3462 	struct worker *uninitialized_var(new_worker);
3463 	unsigned long flags;
3464 
3465 	action &= ~CPU_TASKS_FROZEN;
3466 
3467 	switch (action) {
3468 	case CPU_DOWN_PREPARE:
3469 		new_trustee = kthread_create(trustee_thread, gcwq,
3470 					     "workqueue_trustee/%d\n", cpu);
3471 		if (IS_ERR(new_trustee))
3472 			return notifier_from_errno(PTR_ERR(new_trustee));
3473 		kthread_bind(new_trustee, cpu);
3474 		/* fall through */
3475 	case CPU_UP_PREPARE:
3476 		BUG_ON(gcwq->first_idle);
3477 		new_worker = create_worker(gcwq, false);
3478 		if (!new_worker) {
3479 			if (new_trustee)
3480 				kthread_stop(new_trustee);
3481 			return NOTIFY_BAD;
3482 		}
3483 	}
3484 
3485 	/* some are called w/ irq disabled, don't disturb irq status */
3486 	spin_lock_irqsave(&gcwq->lock, flags);
3487 
3488 	switch (action) {
3489 	case CPU_DOWN_PREPARE:
3490 		/* initialize trustee and tell it to acquire the gcwq */
3491 		BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3492 		gcwq->trustee = new_trustee;
3493 		gcwq->trustee_state = TRUSTEE_START;
3494 		wake_up_process(gcwq->trustee);
3495 		wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3496 		/* fall through */
3497 	case CPU_UP_PREPARE:
3498 		BUG_ON(gcwq->first_idle);
3499 		gcwq->first_idle = new_worker;
3500 		break;
3501 
3502 	case CPU_DYING:
3503 		/*
3504 		 * Before this, the trustee and all workers except for
3505 		 * the ones which are still executing works from
3506 		 * before the last CPU down must be on the cpu.  After
3507 		 * this, they'll all be diasporas.
3508 		 */
3509 		gcwq->flags |= GCWQ_DISASSOCIATED;
3510 		break;
3511 
3512 	case CPU_POST_DEAD:
3513 		gcwq->trustee_state = TRUSTEE_BUTCHER;
3514 		/* fall through */
3515 	case CPU_UP_CANCELED:
3516 		destroy_worker(gcwq->first_idle);
3517 		gcwq->first_idle = NULL;
3518 		break;
3519 
3520 	case CPU_DOWN_FAILED:
3521 	case CPU_ONLINE:
3522 		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3523 		if (gcwq->trustee_state != TRUSTEE_DONE) {
3524 			gcwq->trustee_state = TRUSTEE_RELEASE;
3525 			wake_up_process(gcwq->trustee);
3526 			wait_trustee_state(gcwq, TRUSTEE_DONE);
3527 		}
3528 
3529 		/*
3530 		 * Trustee is done and there might be no worker left.
3531 		 * Put the first_idle in and request a real manager to
3532 		 * take a look.
3533 		 */
3534 		spin_unlock_irq(&gcwq->lock);
3535 		kthread_bind(gcwq->first_idle->task, cpu);
3536 		spin_lock_irq(&gcwq->lock);
3537 		gcwq->flags |= GCWQ_MANAGE_WORKERS;
3538 		start_worker(gcwq->first_idle);
3539 		gcwq->first_idle = NULL;
3540 		break;
3541 	}
3542 
3543 	spin_unlock_irqrestore(&gcwq->lock, flags);
3544 
3545 	return notifier_from_errno(0);
3546 }
3547 
3548 #ifdef CONFIG_SMP
3549 
3550 struct work_for_cpu {
3551 	struct completion completion;
3552 	long (*fn)(void *);
3553 	void *arg;
3554 	long ret;
3555 };
3556 
3557 static int do_work_for_cpu(void *_wfc)
3558 {
3559 	struct work_for_cpu *wfc = _wfc;
3560 	wfc->ret = wfc->fn(wfc->arg);
3561 	complete(&wfc->completion);
3562 	return 0;
3563 }
3564 
3565 /**
3566  * work_on_cpu - run a function in user context on a particular cpu
3567  * @cpu: the cpu to run on
3568  * @fn: the function to run
3569  * @arg: the function arg
3570  *
3571  * This will return the value @fn returns.
3572  * It is up to the caller to ensure that the cpu doesn't go offline.
3573  * The caller must not hold any locks which would prevent @fn from completing.
3574  */
3575 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3576 {
3577 	struct task_struct *sub_thread;
3578 	struct work_for_cpu wfc = {
3579 		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3580 		.fn = fn,
3581 		.arg = arg,
3582 	};
3583 
3584 	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3585 	if (IS_ERR(sub_thread))
3586 		return PTR_ERR(sub_thread);
3587 	kthread_bind(sub_thread, cpu);
3588 	wake_up_process(sub_thread);
3589 	wait_for_completion(&wfc.completion);
3590 	return wfc.ret;
3591 }
3592 EXPORT_SYMBOL_GPL(work_on_cpu);
3593 #endif /* CONFIG_SMP */
3594 
3595 #ifdef CONFIG_FREEZER
3596 
3597 /**
3598  * freeze_workqueues_begin - begin freezing workqueues
3599  *
3600  * Start freezing workqueues.  After this function returns, all freezable
3601  * workqueues will queue new works to their frozen_works list instead of
3602  * gcwq->worklist.
3603  *
3604  * CONTEXT:
3605  * Grabs and releases workqueue_lock and gcwq->lock's.
3606  */
3607 void freeze_workqueues_begin(void)
3608 {
3609 	unsigned int cpu;
3610 
3611 	spin_lock(&workqueue_lock);
3612 
3613 	BUG_ON(workqueue_freezing);
3614 	workqueue_freezing = true;
3615 
3616 	for_each_gcwq_cpu(cpu) {
3617 		struct global_cwq *gcwq = get_gcwq(cpu);
3618 		struct workqueue_struct *wq;
3619 
3620 		spin_lock_irq(&gcwq->lock);
3621 
3622 		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3623 		gcwq->flags |= GCWQ_FREEZING;
3624 
3625 		list_for_each_entry(wq, &workqueues, list) {
3626 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3627 
3628 			if (cwq && wq->flags & WQ_FREEZABLE)
3629 				cwq->max_active = 0;
3630 		}
3631 
3632 		spin_unlock_irq(&gcwq->lock);
3633 	}
3634 
3635 	spin_unlock(&workqueue_lock);
3636 }
3637 
3638 /**
3639  * freeze_workqueues_busy - are freezable workqueues still busy?
3640  *
3641  * Check whether freezing is complete.  This function must be called
3642  * between freeze_workqueues_begin() and thaw_workqueues().
3643  *
3644  * CONTEXT:
3645  * Grabs and releases workqueue_lock.
3646  *
3647  * RETURNS:
3648  * %true if some freezable workqueues are still busy.  %false if freezing
3649  * is complete.
3650  */
3651 bool freeze_workqueues_busy(void)
3652 {
3653 	unsigned int cpu;
3654 	bool busy = false;
3655 
3656 	spin_lock(&workqueue_lock);
3657 
3658 	BUG_ON(!workqueue_freezing);
3659 
3660 	for_each_gcwq_cpu(cpu) {
3661 		struct workqueue_struct *wq;
3662 		/*
3663 		 * nr_active is monotonically decreasing.  It's safe
3664 		 * to peek without lock.
3665 		 */
3666 		list_for_each_entry(wq, &workqueues, list) {
3667 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3668 
3669 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3670 				continue;
3671 
3672 			BUG_ON(cwq->nr_active < 0);
3673 			if (cwq->nr_active) {
3674 				busy = true;
3675 				goto out_unlock;
3676 			}
3677 		}
3678 	}
3679 out_unlock:
3680 	spin_unlock(&workqueue_lock);
3681 	return busy;
3682 }
3683 
3684 /**
3685  * thaw_workqueues - thaw workqueues
3686  *
3687  * Thaw workqueues.  Normal queueing is restored and all collected
3688  * frozen works are transferred to their respective gcwq worklists.
3689  *
3690  * CONTEXT:
3691  * Grabs and releases workqueue_lock and gcwq->lock's.
3692  */
3693 void thaw_workqueues(void)
3694 {
3695 	unsigned int cpu;
3696 
3697 	spin_lock(&workqueue_lock);
3698 
3699 	if (!workqueue_freezing)
3700 		goto out_unlock;
3701 
3702 	for_each_gcwq_cpu(cpu) {
3703 		struct global_cwq *gcwq = get_gcwq(cpu);
3704 		struct workqueue_struct *wq;
3705 
3706 		spin_lock_irq(&gcwq->lock);
3707 
3708 		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3709 		gcwq->flags &= ~GCWQ_FREEZING;
3710 
3711 		list_for_each_entry(wq, &workqueues, list) {
3712 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3713 
3714 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3715 				continue;
3716 
3717 			/* restore max_active and repopulate worklist */
3718 			cwq->max_active = wq->saved_max_active;
3719 
3720 			while (!list_empty(&cwq->delayed_works) &&
3721 			       cwq->nr_active < cwq->max_active)
3722 				cwq_activate_first_delayed(cwq);
3723 		}
3724 
3725 		wake_up_worker(gcwq);
3726 
3727 		spin_unlock_irq(&gcwq->lock);
3728 	}
3729 
3730 	workqueue_freezing = false;
3731 out_unlock:
3732 	spin_unlock(&workqueue_lock);
3733 }
3734 #endif /* CONFIG_FREEZER */
3735 
3736 static int __init init_workqueues(void)
3737 {
3738 	unsigned int cpu;
3739 	int i;
3740 
3741 	cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3742 
3743 	/* initialize gcwqs */
3744 	for_each_gcwq_cpu(cpu) {
3745 		struct global_cwq *gcwq = get_gcwq(cpu);
3746 
3747 		spin_lock_init(&gcwq->lock);
3748 		INIT_LIST_HEAD(&gcwq->worklist);
3749 		gcwq->cpu = cpu;
3750 		gcwq->flags |= GCWQ_DISASSOCIATED;
3751 
3752 		INIT_LIST_HEAD(&gcwq->idle_list);
3753 		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3754 			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3755 
3756 		init_timer_deferrable(&gcwq->idle_timer);
3757 		gcwq->idle_timer.function = idle_worker_timeout;
3758 		gcwq->idle_timer.data = (unsigned long)gcwq;
3759 
3760 		setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3761 			    (unsigned long)gcwq);
3762 
3763 		ida_init(&gcwq->worker_ida);
3764 
3765 		gcwq->trustee_state = TRUSTEE_DONE;
3766 		init_waitqueue_head(&gcwq->trustee_wait);
3767 	}
3768 
3769 	/* create the initial worker */
3770 	for_each_online_gcwq_cpu(cpu) {
3771 		struct global_cwq *gcwq = get_gcwq(cpu);
3772 		struct worker *worker;
3773 
3774 		if (cpu != WORK_CPU_UNBOUND)
3775 			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3776 		worker = create_worker(gcwq, true);
3777 		BUG_ON(!worker);
3778 		spin_lock_irq(&gcwq->lock);
3779 		start_worker(worker);
3780 		spin_unlock_irq(&gcwq->lock);
3781 	}
3782 
3783 	system_wq = alloc_workqueue("events", 0, 0);
3784 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3785 	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3786 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3787 					    WQ_UNBOUND_MAX_ACTIVE);
3788 	system_freezable_wq = alloc_workqueue("events_freezable",
3789 					      WQ_FREEZABLE, 0);
3790 	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3791 	       !system_unbound_wq || !system_freezable_wq);
3792 	return 0;
3793 }
3794 early_initcall(init_workqueues);
3795