xref: /openbmc/linux/kernel/workqueue.c (revision 5214cae7)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 
73 	/* worker flags */
74 	WORKER_DIE		= 1 << 1,	/* die die die */
75 	WORKER_IDLE		= 1 << 2,	/* is idle */
76 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80 
81 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
82 				  WORKER_UNBOUND | WORKER_REBOUND,
83 
84 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85 
86 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
87 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88 
89 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
90 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
91 
92 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
93 						/* call for help after 10ms
94 						   (min two ticks) */
95 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
96 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
97 
98 	/*
99 	 * Rescue workers are used only on emergencies and shared by
100 	 * all cpus.  Give MIN_NICE.
101 	 */
102 	RESCUER_NICE_LEVEL	= MIN_NICE,
103 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 
105 	WQ_NAME_LEN		= 24,
106 };
107 
108 /*
109  * Structure fields follow one of the following exclusion rules.
110  *
111  * I: Modifiable by initialization/destruction paths and read-only for
112  *    everyone else.
113  *
114  * P: Preemption protected.  Disabling preemption is enough and should
115  *    only be modified and accessed from the local cpu.
116  *
117  * L: pool->lock protected.  Access with pool->lock held.
118  *
119  * X: During normal operation, modification requires pool->lock and should
120  *    be done only from local cpu.  Either disabling preemption on local
121  *    cpu or grabbing pool->lock is enough for read access.  If
122  *    POOL_DISASSOCIATED is set, it's identical to L.
123  *
124  * A: pool->attach_mutex protected.
125  *
126  * PL: wq_pool_mutex protected.
127  *
128  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129  *
130  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
131  *
132  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
133  *      sched-RCU for reads.
134  *
135  * WQ: wq->mutex protected.
136  *
137  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138  *
139  * MD: wq_mayday_lock protected.
140  */
141 
142 /* struct worker is defined in workqueue_internal.h */
143 
144 struct worker_pool {
145 	spinlock_t		lock;		/* the pool lock */
146 	int			cpu;		/* I: the associated cpu */
147 	int			node;		/* I: the associated node ID */
148 	int			id;		/* I: pool ID */
149 	unsigned int		flags;		/* X: flags */
150 
151 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
152 
153 	struct list_head	worklist;	/* L: list of pending works */
154 	int			nr_workers;	/* L: total number of workers */
155 
156 	/* nr_idle includes the ones off idle_list for rebinding */
157 	int			nr_idle;	/* L: currently idle ones */
158 
159 	struct list_head	idle_list;	/* X: list of idle workers */
160 	struct timer_list	idle_timer;	/* L: worker idle timeout */
161 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
162 
163 	/* a workers is either on busy_hash or idle_list, or the manager */
164 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 						/* L: hash of busy workers */
166 
167 	/* see manage_workers() for details on the two manager mutexes */
168 	struct mutex		manager_arb;	/* manager arbitration */
169 	struct worker		*manager;	/* L: purely informational */
170 	struct mutex		attach_mutex;	/* attach/detach exclusion */
171 	struct list_head	workers;	/* A: attached workers */
172 	struct completion	*detach_completion; /* all workers detached */
173 
174 	struct ida		worker_ida;	/* worker IDs for task name */
175 
176 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
178 	int			refcnt;		/* PL: refcnt for unbound pools */
179 
180 	/*
181 	 * The current concurrency level.  As it's likely to be accessed
182 	 * from other CPUs during try_to_wake_up(), put it in a separate
183 	 * cacheline.
184 	 */
185 	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 
187 	/*
188 	 * Destruction of pool is sched-RCU protected to allow dereferences
189 	 * from get_work_pool().
190 	 */
191 	struct rcu_head		rcu;
192 } ____cacheline_aligned_in_smp;
193 
194 /*
195  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
196  * of work_struct->data are used for flags and the remaining high bits
197  * point to the pwq; thus, pwqs need to be aligned at two's power of the
198  * number of flag bits.
199  */
200 struct pool_workqueue {
201 	struct worker_pool	*pool;		/* I: the associated pool */
202 	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 	int			work_color;	/* L: current color */
204 	int			flush_color;	/* L: flushing color */
205 	int			refcnt;		/* L: reference count */
206 	int			nr_in_flight[WORK_NR_COLORS];
207 						/* L: nr of in_flight works */
208 	int			nr_active;	/* L: nr of active works */
209 	int			max_active;	/* L: max active works */
210 	struct list_head	delayed_works;	/* L: delayed works */
211 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
213 
214 	/*
215 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
216 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
217 	 * itself is also sched-RCU protected so that the first pwq can be
218 	 * determined without grabbing wq->mutex.
219 	 */
220 	struct work_struct	unbound_release_work;
221 	struct rcu_head		rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223 
224 /*
225  * Structure used to wait for workqueue flush.
226  */
227 struct wq_flusher {
228 	struct list_head	list;		/* WQ: list of flushers */
229 	int			flush_color;	/* WQ: flush color waiting for */
230 	struct completion	done;		/* flush completion */
231 };
232 
233 struct wq_device;
234 
235 /*
236  * The externally visible workqueue.  It relays the issued work items to
237  * the appropriate worker_pool through its pool_workqueues.
238  */
239 struct workqueue_struct {
240 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241 	struct list_head	list;		/* PR: list of all workqueues */
242 
243 	struct mutex		mutex;		/* protects this wq */
244 	int			work_color;	/* WQ: current work color */
245 	int			flush_color;	/* WQ: current flush color */
246 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
248 	struct list_head	flusher_queue;	/* WQ: flush waiters */
249 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250 
251 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 	struct worker		*rescuer;	/* I: rescue worker */
253 
254 	int			nr_drainers;	/* WQ: drain in progress */
255 	int			saved_max_active; /* WQ: saved pwq max_active */
256 
257 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
258 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259 
260 #ifdef CONFIG_SYSFS
261 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267 
268 	/*
269 	 * Destruction of workqueue_struct is sched-RCU protected to allow
270 	 * walking the workqueues list without grabbing wq_pool_mutex.
271 	 * This is used to dump all workqueues from sysrq.
272 	 */
273 	struct rcu_head		rcu;
274 
275 	/* hot fields used during command issue, aligned to cacheline */
276 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280 
281 static struct kmem_cache *pwq_cache;
282 
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 					/* possible CPUs of each node */
285 
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288 
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292 
293 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
294 
295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297 
298 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
299 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
300 
301 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
302 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
303 
304 /* PL: allowable cpus for unbound wqs and work items */
305 static cpumask_var_t wq_unbound_cpumask;
306 
307 /* CPU where unbound work was last round robin scheduled from this CPU */
308 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
309 
310 /*
311  * Local execution of unbound work items is no longer guaranteed.  The
312  * following always forces round-robin CPU selection on unbound work items
313  * to uncover usages which depend on it.
314  */
315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316 static bool wq_debug_force_rr_cpu = true;
317 #else
318 static bool wq_debug_force_rr_cpu = false;
319 #endif
320 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
321 
322 /* the per-cpu worker pools */
323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
324 
325 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
326 
327 /* PL: hash of all unbound pools keyed by pool->attrs */
328 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
329 
330 /* I: attributes used when instantiating standard unbound pools on demand */
331 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
332 
333 /* I: attributes used when instantiating ordered pools on demand */
334 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
335 
336 struct workqueue_struct *system_wq __read_mostly;
337 EXPORT_SYMBOL(system_wq);
338 struct workqueue_struct *system_highpri_wq __read_mostly;
339 EXPORT_SYMBOL_GPL(system_highpri_wq);
340 struct workqueue_struct *system_long_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_long_wq);
342 struct workqueue_struct *system_unbound_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_unbound_wq);
344 struct workqueue_struct *system_freezable_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_freezable_wq);
346 struct workqueue_struct *system_power_efficient_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
348 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
350 
351 static int worker_thread(void *__worker);
352 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
353 
354 #define CREATE_TRACE_POINTS
355 #include <trace/events/workqueue.h>
356 
357 #define assert_rcu_or_pool_mutex()					\
358 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
359 			 !lockdep_is_held(&wq_pool_mutex),		\
360 			 "sched RCU or wq_pool_mutex should be held")
361 
362 #define assert_rcu_or_wq_mutex(wq)					\
363 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
364 			 !lockdep_is_held(&wq->mutex),			\
365 			 "sched RCU or wq->mutex should be held")
366 
367 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
368 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
369 			 !lockdep_is_held(&wq->mutex) &&		\
370 			 !lockdep_is_held(&wq_pool_mutex),		\
371 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
372 
373 #define for_each_cpu_worker_pool(pool, cpu)				\
374 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
375 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
376 	     (pool)++)
377 
378 /**
379  * for_each_pool - iterate through all worker_pools in the system
380  * @pool: iteration cursor
381  * @pi: integer used for iteration
382  *
383  * This must be called either with wq_pool_mutex held or sched RCU read
384  * locked.  If the pool needs to be used beyond the locking in effect, the
385  * caller is responsible for guaranteeing that the pool stays online.
386  *
387  * The if/else clause exists only for the lockdep assertion and can be
388  * ignored.
389  */
390 #define for_each_pool(pool, pi)						\
391 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
392 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
393 		else
394 
395 /**
396  * for_each_pool_worker - iterate through all workers of a worker_pool
397  * @worker: iteration cursor
398  * @pool: worker_pool to iterate workers of
399  *
400  * This must be called with @pool->attach_mutex.
401  *
402  * The if/else clause exists only for the lockdep assertion and can be
403  * ignored.
404  */
405 #define for_each_pool_worker(worker, pool)				\
406 	list_for_each_entry((worker), &(pool)->workers, node)		\
407 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
408 		else
409 
410 /**
411  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
412  * @pwq: iteration cursor
413  * @wq: the target workqueue
414  *
415  * This must be called either with wq->mutex held or sched RCU read locked.
416  * If the pwq needs to be used beyond the locking in effect, the caller is
417  * responsible for guaranteeing that the pwq stays online.
418  *
419  * The if/else clause exists only for the lockdep assertion and can be
420  * ignored.
421  */
422 #define for_each_pwq(pwq, wq)						\
423 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
424 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
425 		else
426 
427 #ifdef CONFIG_DEBUG_OBJECTS_WORK
428 
429 static struct debug_obj_descr work_debug_descr;
430 
431 static void *work_debug_hint(void *addr)
432 {
433 	return ((struct work_struct *) addr)->func;
434 }
435 
436 /*
437  * fixup_init is called when:
438  * - an active object is initialized
439  */
440 static int work_fixup_init(void *addr, enum debug_obj_state state)
441 {
442 	struct work_struct *work = addr;
443 
444 	switch (state) {
445 	case ODEBUG_STATE_ACTIVE:
446 		cancel_work_sync(work);
447 		debug_object_init(work, &work_debug_descr);
448 		return 1;
449 	default:
450 		return 0;
451 	}
452 }
453 
454 /*
455  * fixup_activate is called when:
456  * - an active object is activated
457  * - an unknown object is activated (might be a statically initialized object)
458  */
459 static int work_fixup_activate(void *addr, enum debug_obj_state state)
460 {
461 	struct work_struct *work = addr;
462 
463 	switch (state) {
464 
465 	case ODEBUG_STATE_NOTAVAILABLE:
466 		/*
467 		 * This is not really a fixup. The work struct was
468 		 * statically initialized. We just make sure that it
469 		 * is tracked in the object tracker.
470 		 */
471 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
472 			debug_object_init(work, &work_debug_descr);
473 			debug_object_activate(work, &work_debug_descr);
474 			return 0;
475 		}
476 		WARN_ON_ONCE(1);
477 		return 0;
478 
479 	case ODEBUG_STATE_ACTIVE:
480 		WARN_ON(1);
481 
482 	default:
483 		return 0;
484 	}
485 }
486 
487 /*
488  * fixup_free is called when:
489  * - an active object is freed
490  */
491 static int work_fixup_free(void *addr, enum debug_obj_state state)
492 {
493 	struct work_struct *work = addr;
494 
495 	switch (state) {
496 	case ODEBUG_STATE_ACTIVE:
497 		cancel_work_sync(work);
498 		debug_object_free(work, &work_debug_descr);
499 		return 1;
500 	default:
501 		return 0;
502 	}
503 }
504 
505 static struct debug_obj_descr work_debug_descr = {
506 	.name		= "work_struct",
507 	.debug_hint	= work_debug_hint,
508 	.fixup_init	= work_fixup_init,
509 	.fixup_activate	= work_fixup_activate,
510 	.fixup_free	= work_fixup_free,
511 };
512 
513 static inline void debug_work_activate(struct work_struct *work)
514 {
515 	debug_object_activate(work, &work_debug_descr);
516 }
517 
518 static inline void debug_work_deactivate(struct work_struct *work)
519 {
520 	debug_object_deactivate(work, &work_debug_descr);
521 }
522 
523 void __init_work(struct work_struct *work, int onstack)
524 {
525 	if (onstack)
526 		debug_object_init_on_stack(work, &work_debug_descr);
527 	else
528 		debug_object_init(work, &work_debug_descr);
529 }
530 EXPORT_SYMBOL_GPL(__init_work);
531 
532 void destroy_work_on_stack(struct work_struct *work)
533 {
534 	debug_object_free(work, &work_debug_descr);
535 }
536 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
537 
538 void destroy_delayed_work_on_stack(struct delayed_work *work)
539 {
540 	destroy_timer_on_stack(&work->timer);
541 	debug_object_free(&work->work, &work_debug_descr);
542 }
543 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
544 
545 #else
546 static inline void debug_work_activate(struct work_struct *work) { }
547 static inline void debug_work_deactivate(struct work_struct *work) { }
548 #endif
549 
550 /**
551  * worker_pool_assign_id - allocate ID and assing it to @pool
552  * @pool: the pool pointer of interest
553  *
554  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
555  * successfully, -errno on failure.
556  */
557 static int worker_pool_assign_id(struct worker_pool *pool)
558 {
559 	int ret;
560 
561 	lockdep_assert_held(&wq_pool_mutex);
562 
563 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
564 			GFP_KERNEL);
565 	if (ret >= 0) {
566 		pool->id = ret;
567 		return 0;
568 	}
569 	return ret;
570 }
571 
572 /**
573  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
574  * @wq: the target workqueue
575  * @node: the node ID
576  *
577  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
578  * read locked.
579  * If the pwq needs to be used beyond the locking in effect, the caller is
580  * responsible for guaranteeing that the pwq stays online.
581  *
582  * Return: The unbound pool_workqueue for @node.
583  */
584 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
585 						  int node)
586 {
587 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
588 
589 	/*
590 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
591 	 * delayed item is pending.  The plan is to keep CPU -> NODE
592 	 * mapping valid and stable across CPU on/offlines.  Once that
593 	 * happens, this workaround can be removed.
594 	 */
595 	if (unlikely(node == NUMA_NO_NODE))
596 		return wq->dfl_pwq;
597 
598 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
599 }
600 
601 static unsigned int work_color_to_flags(int color)
602 {
603 	return color << WORK_STRUCT_COLOR_SHIFT;
604 }
605 
606 static int get_work_color(struct work_struct *work)
607 {
608 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
609 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
610 }
611 
612 static int work_next_color(int color)
613 {
614 	return (color + 1) % WORK_NR_COLORS;
615 }
616 
617 /*
618  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
619  * contain the pointer to the queued pwq.  Once execution starts, the flag
620  * is cleared and the high bits contain OFFQ flags and pool ID.
621  *
622  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
623  * and clear_work_data() can be used to set the pwq, pool or clear
624  * work->data.  These functions should only be called while the work is
625  * owned - ie. while the PENDING bit is set.
626  *
627  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
628  * corresponding to a work.  Pool is available once the work has been
629  * queued anywhere after initialization until it is sync canceled.  pwq is
630  * available only while the work item is queued.
631  *
632  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
633  * canceled.  While being canceled, a work item may have its PENDING set
634  * but stay off timer and worklist for arbitrarily long and nobody should
635  * try to steal the PENDING bit.
636  */
637 static inline void set_work_data(struct work_struct *work, unsigned long data,
638 				 unsigned long flags)
639 {
640 	WARN_ON_ONCE(!work_pending(work));
641 	atomic_long_set(&work->data, data | flags | work_static(work));
642 }
643 
644 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
645 			 unsigned long extra_flags)
646 {
647 	set_work_data(work, (unsigned long)pwq,
648 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
649 }
650 
651 static void set_work_pool_and_keep_pending(struct work_struct *work,
652 					   int pool_id)
653 {
654 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
655 		      WORK_STRUCT_PENDING);
656 }
657 
658 static void set_work_pool_and_clear_pending(struct work_struct *work,
659 					    int pool_id)
660 {
661 	/*
662 	 * The following wmb is paired with the implied mb in
663 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
664 	 * here are visible to and precede any updates by the next PENDING
665 	 * owner.
666 	 */
667 	smp_wmb();
668 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
669 	/*
670 	 * The following mb guarantees that previous clear of a PENDING bit
671 	 * will not be reordered with any speculative LOADS or STORES from
672 	 * work->current_func, which is executed afterwards.  This possible
673 	 * reordering can lead to a missed execution on attempt to qeueue
674 	 * the same @work.  E.g. consider this case:
675 	 *
676 	 *   CPU#0                         CPU#1
677 	 *   ----------------------------  --------------------------------
678 	 *
679 	 * 1  STORE event_indicated
680 	 * 2  queue_work_on() {
681 	 * 3    test_and_set_bit(PENDING)
682 	 * 4 }                             set_..._and_clear_pending() {
683 	 * 5                                 set_work_data() # clear bit
684 	 * 6                                 smp_mb()
685 	 * 7                               work->current_func() {
686 	 * 8				      LOAD event_indicated
687 	 *				   }
688 	 *
689 	 * Without an explicit full barrier speculative LOAD on line 8 can
690 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
691 	 * CPU#0 observes the PENDING bit is still set and new execution of
692 	 * a @work is not queued in a hope, that CPU#1 will eventually
693 	 * finish the queued @work.  Meanwhile CPU#1 does not see
694 	 * event_indicated is set, because speculative LOAD was executed
695 	 * before actual STORE.
696 	 */
697 	smp_mb();
698 }
699 
700 static void clear_work_data(struct work_struct *work)
701 {
702 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
703 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
704 }
705 
706 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
707 {
708 	unsigned long data = atomic_long_read(&work->data);
709 
710 	if (data & WORK_STRUCT_PWQ)
711 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
712 	else
713 		return NULL;
714 }
715 
716 /**
717  * get_work_pool - return the worker_pool a given work was associated with
718  * @work: the work item of interest
719  *
720  * Pools are created and destroyed under wq_pool_mutex, and allows read
721  * access under sched-RCU read lock.  As such, this function should be
722  * called under wq_pool_mutex or with preemption disabled.
723  *
724  * All fields of the returned pool are accessible as long as the above
725  * mentioned locking is in effect.  If the returned pool needs to be used
726  * beyond the critical section, the caller is responsible for ensuring the
727  * returned pool is and stays online.
728  *
729  * Return: The worker_pool @work was last associated with.  %NULL if none.
730  */
731 static struct worker_pool *get_work_pool(struct work_struct *work)
732 {
733 	unsigned long data = atomic_long_read(&work->data);
734 	int pool_id;
735 
736 	assert_rcu_or_pool_mutex();
737 
738 	if (data & WORK_STRUCT_PWQ)
739 		return ((struct pool_workqueue *)
740 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
741 
742 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
743 	if (pool_id == WORK_OFFQ_POOL_NONE)
744 		return NULL;
745 
746 	return idr_find(&worker_pool_idr, pool_id);
747 }
748 
749 /**
750  * get_work_pool_id - return the worker pool ID a given work is associated with
751  * @work: the work item of interest
752  *
753  * Return: The worker_pool ID @work was last associated with.
754  * %WORK_OFFQ_POOL_NONE if none.
755  */
756 static int get_work_pool_id(struct work_struct *work)
757 {
758 	unsigned long data = atomic_long_read(&work->data);
759 
760 	if (data & WORK_STRUCT_PWQ)
761 		return ((struct pool_workqueue *)
762 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
763 
764 	return data >> WORK_OFFQ_POOL_SHIFT;
765 }
766 
767 static void mark_work_canceling(struct work_struct *work)
768 {
769 	unsigned long pool_id = get_work_pool_id(work);
770 
771 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
772 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
773 }
774 
775 static bool work_is_canceling(struct work_struct *work)
776 {
777 	unsigned long data = atomic_long_read(&work->data);
778 
779 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
780 }
781 
782 /*
783  * Policy functions.  These define the policies on how the global worker
784  * pools are managed.  Unless noted otherwise, these functions assume that
785  * they're being called with pool->lock held.
786  */
787 
788 static bool __need_more_worker(struct worker_pool *pool)
789 {
790 	return !atomic_read(&pool->nr_running);
791 }
792 
793 /*
794  * Need to wake up a worker?  Called from anything but currently
795  * running workers.
796  *
797  * Note that, because unbound workers never contribute to nr_running, this
798  * function will always return %true for unbound pools as long as the
799  * worklist isn't empty.
800  */
801 static bool need_more_worker(struct worker_pool *pool)
802 {
803 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
804 }
805 
806 /* Can I start working?  Called from busy but !running workers. */
807 static bool may_start_working(struct worker_pool *pool)
808 {
809 	return pool->nr_idle;
810 }
811 
812 /* Do I need to keep working?  Called from currently running workers. */
813 static bool keep_working(struct worker_pool *pool)
814 {
815 	return !list_empty(&pool->worklist) &&
816 		atomic_read(&pool->nr_running) <= 1;
817 }
818 
819 /* Do we need a new worker?  Called from manager. */
820 static bool need_to_create_worker(struct worker_pool *pool)
821 {
822 	return need_more_worker(pool) && !may_start_working(pool);
823 }
824 
825 /* Do we have too many workers and should some go away? */
826 static bool too_many_workers(struct worker_pool *pool)
827 {
828 	bool managing = mutex_is_locked(&pool->manager_arb);
829 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
830 	int nr_busy = pool->nr_workers - nr_idle;
831 
832 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
833 }
834 
835 /*
836  * Wake up functions.
837  */
838 
839 /* Return the first idle worker.  Safe with preemption disabled */
840 static struct worker *first_idle_worker(struct worker_pool *pool)
841 {
842 	if (unlikely(list_empty(&pool->idle_list)))
843 		return NULL;
844 
845 	return list_first_entry(&pool->idle_list, struct worker, entry);
846 }
847 
848 /**
849  * wake_up_worker - wake up an idle worker
850  * @pool: worker pool to wake worker from
851  *
852  * Wake up the first idle worker of @pool.
853  *
854  * CONTEXT:
855  * spin_lock_irq(pool->lock).
856  */
857 static void wake_up_worker(struct worker_pool *pool)
858 {
859 	struct worker *worker = first_idle_worker(pool);
860 
861 	if (likely(worker))
862 		wake_up_process(worker->task);
863 }
864 
865 /**
866  * wq_worker_waking_up - a worker is waking up
867  * @task: task waking up
868  * @cpu: CPU @task is waking up to
869  *
870  * This function is called during try_to_wake_up() when a worker is
871  * being awoken.
872  *
873  * CONTEXT:
874  * spin_lock_irq(rq->lock)
875  */
876 void wq_worker_waking_up(struct task_struct *task, int cpu)
877 {
878 	struct worker *worker = kthread_data(task);
879 
880 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
881 		WARN_ON_ONCE(worker->pool->cpu != cpu);
882 		atomic_inc(&worker->pool->nr_running);
883 	}
884 }
885 
886 /**
887  * wq_worker_sleeping - a worker is going to sleep
888  * @task: task going to sleep
889  *
890  * This function is called during schedule() when a busy worker is
891  * going to sleep.  Worker on the same cpu can be woken up by
892  * returning pointer to its task.
893  *
894  * CONTEXT:
895  * spin_lock_irq(rq->lock)
896  *
897  * Return:
898  * Worker task on @cpu to wake up, %NULL if none.
899  */
900 struct task_struct *wq_worker_sleeping(struct task_struct *task)
901 {
902 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
903 	struct worker_pool *pool;
904 
905 	/*
906 	 * Rescuers, which may not have all the fields set up like normal
907 	 * workers, also reach here, let's not access anything before
908 	 * checking NOT_RUNNING.
909 	 */
910 	if (worker->flags & WORKER_NOT_RUNNING)
911 		return NULL;
912 
913 	pool = worker->pool;
914 
915 	/* this can only happen on the local cpu */
916 	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
917 		return NULL;
918 
919 	/*
920 	 * The counterpart of the following dec_and_test, implied mb,
921 	 * worklist not empty test sequence is in insert_work().
922 	 * Please read comment there.
923 	 *
924 	 * NOT_RUNNING is clear.  This means that we're bound to and
925 	 * running on the local cpu w/ rq lock held and preemption
926 	 * disabled, which in turn means that none else could be
927 	 * manipulating idle_list, so dereferencing idle_list without pool
928 	 * lock is safe.
929 	 */
930 	if (atomic_dec_and_test(&pool->nr_running) &&
931 	    !list_empty(&pool->worklist))
932 		to_wakeup = first_idle_worker(pool);
933 	return to_wakeup ? to_wakeup->task : NULL;
934 }
935 
936 /**
937  * worker_set_flags - set worker flags and adjust nr_running accordingly
938  * @worker: self
939  * @flags: flags to set
940  *
941  * Set @flags in @worker->flags and adjust nr_running accordingly.
942  *
943  * CONTEXT:
944  * spin_lock_irq(pool->lock)
945  */
946 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
947 {
948 	struct worker_pool *pool = worker->pool;
949 
950 	WARN_ON_ONCE(worker->task != current);
951 
952 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
953 	if ((flags & WORKER_NOT_RUNNING) &&
954 	    !(worker->flags & WORKER_NOT_RUNNING)) {
955 		atomic_dec(&pool->nr_running);
956 	}
957 
958 	worker->flags |= flags;
959 }
960 
961 /**
962  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
963  * @worker: self
964  * @flags: flags to clear
965  *
966  * Clear @flags in @worker->flags and adjust nr_running accordingly.
967  *
968  * CONTEXT:
969  * spin_lock_irq(pool->lock)
970  */
971 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
972 {
973 	struct worker_pool *pool = worker->pool;
974 	unsigned int oflags = worker->flags;
975 
976 	WARN_ON_ONCE(worker->task != current);
977 
978 	worker->flags &= ~flags;
979 
980 	/*
981 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
982 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
983 	 * of multiple flags, not a single flag.
984 	 */
985 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
986 		if (!(worker->flags & WORKER_NOT_RUNNING))
987 			atomic_inc(&pool->nr_running);
988 }
989 
990 /**
991  * find_worker_executing_work - find worker which is executing a work
992  * @pool: pool of interest
993  * @work: work to find worker for
994  *
995  * Find a worker which is executing @work on @pool by searching
996  * @pool->busy_hash which is keyed by the address of @work.  For a worker
997  * to match, its current execution should match the address of @work and
998  * its work function.  This is to avoid unwanted dependency between
999  * unrelated work executions through a work item being recycled while still
1000  * being executed.
1001  *
1002  * This is a bit tricky.  A work item may be freed once its execution
1003  * starts and nothing prevents the freed area from being recycled for
1004  * another work item.  If the same work item address ends up being reused
1005  * before the original execution finishes, workqueue will identify the
1006  * recycled work item as currently executing and make it wait until the
1007  * current execution finishes, introducing an unwanted dependency.
1008  *
1009  * This function checks the work item address and work function to avoid
1010  * false positives.  Note that this isn't complete as one may construct a
1011  * work function which can introduce dependency onto itself through a
1012  * recycled work item.  Well, if somebody wants to shoot oneself in the
1013  * foot that badly, there's only so much we can do, and if such deadlock
1014  * actually occurs, it should be easy to locate the culprit work function.
1015  *
1016  * CONTEXT:
1017  * spin_lock_irq(pool->lock).
1018  *
1019  * Return:
1020  * Pointer to worker which is executing @work if found, %NULL
1021  * otherwise.
1022  */
1023 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1024 						 struct work_struct *work)
1025 {
1026 	struct worker *worker;
1027 
1028 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1029 			       (unsigned long)work)
1030 		if (worker->current_work == work &&
1031 		    worker->current_func == work->func)
1032 			return worker;
1033 
1034 	return NULL;
1035 }
1036 
1037 /**
1038  * move_linked_works - move linked works to a list
1039  * @work: start of series of works to be scheduled
1040  * @head: target list to append @work to
1041  * @nextp: out parameter for nested worklist walking
1042  *
1043  * Schedule linked works starting from @work to @head.  Work series to
1044  * be scheduled starts at @work and includes any consecutive work with
1045  * WORK_STRUCT_LINKED set in its predecessor.
1046  *
1047  * If @nextp is not NULL, it's updated to point to the next work of
1048  * the last scheduled work.  This allows move_linked_works() to be
1049  * nested inside outer list_for_each_entry_safe().
1050  *
1051  * CONTEXT:
1052  * spin_lock_irq(pool->lock).
1053  */
1054 static void move_linked_works(struct work_struct *work, struct list_head *head,
1055 			      struct work_struct **nextp)
1056 {
1057 	struct work_struct *n;
1058 
1059 	/*
1060 	 * Linked worklist will always end before the end of the list,
1061 	 * use NULL for list head.
1062 	 */
1063 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1064 		list_move_tail(&work->entry, head);
1065 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1066 			break;
1067 	}
1068 
1069 	/*
1070 	 * If we're already inside safe list traversal and have moved
1071 	 * multiple works to the scheduled queue, the next position
1072 	 * needs to be updated.
1073 	 */
1074 	if (nextp)
1075 		*nextp = n;
1076 }
1077 
1078 /**
1079  * get_pwq - get an extra reference on the specified pool_workqueue
1080  * @pwq: pool_workqueue to get
1081  *
1082  * Obtain an extra reference on @pwq.  The caller should guarantee that
1083  * @pwq has positive refcnt and be holding the matching pool->lock.
1084  */
1085 static void get_pwq(struct pool_workqueue *pwq)
1086 {
1087 	lockdep_assert_held(&pwq->pool->lock);
1088 	WARN_ON_ONCE(pwq->refcnt <= 0);
1089 	pwq->refcnt++;
1090 }
1091 
1092 /**
1093  * put_pwq - put a pool_workqueue reference
1094  * @pwq: pool_workqueue to put
1095  *
1096  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1097  * destruction.  The caller should be holding the matching pool->lock.
1098  */
1099 static void put_pwq(struct pool_workqueue *pwq)
1100 {
1101 	lockdep_assert_held(&pwq->pool->lock);
1102 	if (likely(--pwq->refcnt))
1103 		return;
1104 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1105 		return;
1106 	/*
1107 	 * @pwq can't be released under pool->lock, bounce to
1108 	 * pwq_unbound_release_workfn().  This never recurses on the same
1109 	 * pool->lock as this path is taken only for unbound workqueues and
1110 	 * the release work item is scheduled on a per-cpu workqueue.  To
1111 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1112 	 * subclass of 1 in get_unbound_pool().
1113 	 */
1114 	schedule_work(&pwq->unbound_release_work);
1115 }
1116 
1117 /**
1118  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1119  * @pwq: pool_workqueue to put (can be %NULL)
1120  *
1121  * put_pwq() with locking.  This function also allows %NULL @pwq.
1122  */
1123 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1124 {
1125 	if (pwq) {
1126 		/*
1127 		 * As both pwqs and pools are sched-RCU protected, the
1128 		 * following lock operations are safe.
1129 		 */
1130 		spin_lock_irq(&pwq->pool->lock);
1131 		put_pwq(pwq);
1132 		spin_unlock_irq(&pwq->pool->lock);
1133 	}
1134 }
1135 
1136 static void pwq_activate_delayed_work(struct work_struct *work)
1137 {
1138 	struct pool_workqueue *pwq = get_work_pwq(work);
1139 
1140 	trace_workqueue_activate_work(work);
1141 	if (list_empty(&pwq->pool->worklist))
1142 		pwq->pool->watchdog_ts = jiffies;
1143 	move_linked_works(work, &pwq->pool->worklist, NULL);
1144 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1145 	pwq->nr_active++;
1146 }
1147 
1148 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1149 {
1150 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1151 						    struct work_struct, entry);
1152 
1153 	pwq_activate_delayed_work(work);
1154 }
1155 
1156 /**
1157  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1158  * @pwq: pwq of interest
1159  * @color: color of work which left the queue
1160  *
1161  * A work either has completed or is removed from pending queue,
1162  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1163  *
1164  * CONTEXT:
1165  * spin_lock_irq(pool->lock).
1166  */
1167 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1168 {
1169 	/* uncolored work items don't participate in flushing or nr_active */
1170 	if (color == WORK_NO_COLOR)
1171 		goto out_put;
1172 
1173 	pwq->nr_in_flight[color]--;
1174 
1175 	pwq->nr_active--;
1176 	if (!list_empty(&pwq->delayed_works)) {
1177 		/* one down, submit a delayed one */
1178 		if (pwq->nr_active < pwq->max_active)
1179 			pwq_activate_first_delayed(pwq);
1180 	}
1181 
1182 	/* is flush in progress and are we at the flushing tip? */
1183 	if (likely(pwq->flush_color != color))
1184 		goto out_put;
1185 
1186 	/* are there still in-flight works? */
1187 	if (pwq->nr_in_flight[color])
1188 		goto out_put;
1189 
1190 	/* this pwq is done, clear flush_color */
1191 	pwq->flush_color = -1;
1192 
1193 	/*
1194 	 * If this was the last pwq, wake up the first flusher.  It
1195 	 * will handle the rest.
1196 	 */
1197 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1198 		complete(&pwq->wq->first_flusher->done);
1199 out_put:
1200 	put_pwq(pwq);
1201 }
1202 
1203 /**
1204  * try_to_grab_pending - steal work item from worklist and disable irq
1205  * @work: work item to steal
1206  * @is_dwork: @work is a delayed_work
1207  * @flags: place to store irq state
1208  *
1209  * Try to grab PENDING bit of @work.  This function can handle @work in any
1210  * stable state - idle, on timer or on worklist.
1211  *
1212  * Return:
1213  *  1		if @work was pending and we successfully stole PENDING
1214  *  0		if @work was idle and we claimed PENDING
1215  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1216  *  -ENOENT	if someone else is canceling @work, this state may persist
1217  *		for arbitrarily long
1218  *
1219  * Note:
1220  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1221  * interrupted while holding PENDING and @work off queue, irq must be
1222  * disabled on entry.  This, combined with delayed_work->timer being
1223  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1224  *
1225  * On successful return, >= 0, irq is disabled and the caller is
1226  * responsible for releasing it using local_irq_restore(*@flags).
1227  *
1228  * This function is safe to call from any context including IRQ handler.
1229  */
1230 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1231 			       unsigned long *flags)
1232 {
1233 	struct worker_pool *pool;
1234 	struct pool_workqueue *pwq;
1235 
1236 	local_irq_save(*flags);
1237 
1238 	/* try to steal the timer if it exists */
1239 	if (is_dwork) {
1240 		struct delayed_work *dwork = to_delayed_work(work);
1241 
1242 		/*
1243 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1244 		 * guaranteed that the timer is not queued anywhere and not
1245 		 * running on the local CPU.
1246 		 */
1247 		if (likely(del_timer(&dwork->timer)))
1248 			return 1;
1249 	}
1250 
1251 	/* try to claim PENDING the normal way */
1252 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1253 		return 0;
1254 
1255 	/*
1256 	 * The queueing is in progress, or it is already queued. Try to
1257 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1258 	 */
1259 	pool = get_work_pool(work);
1260 	if (!pool)
1261 		goto fail;
1262 
1263 	spin_lock(&pool->lock);
1264 	/*
1265 	 * work->data is guaranteed to point to pwq only while the work
1266 	 * item is queued on pwq->wq, and both updating work->data to point
1267 	 * to pwq on queueing and to pool on dequeueing are done under
1268 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1269 	 * points to pwq which is associated with a locked pool, the work
1270 	 * item is currently queued on that pool.
1271 	 */
1272 	pwq = get_work_pwq(work);
1273 	if (pwq && pwq->pool == pool) {
1274 		debug_work_deactivate(work);
1275 
1276 		/*
1277 		 * A delayed work item cannot be grabbed directly because
1278 		 * it might have linked NO_COLOR work items which, if left
1279 		 * on the delayed_list, will confuse pwq->nr_active
1280 		 * management later on and cause stall.  Make sure the work
1281 		 * item is activated before grabbing.
1282 		 */
1283 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1284 			pwq_activate_delayed_work(work);
1285 
1286 		list_del_init(&work->entry);
1287 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1288 
1289 		/* work->data points to pwq iff queued, point to pool */
1290 		set_work_pool_and_keep_pending(work, pool->id);
1291 
1292 		spin_unlock(&pool->lock);
1293 		return 1;
1294 	}
1295 	spin_unlock(&pool->lock);
1296 fail:
1297 	local_irq_restore(*flags);
1298 	if (work_is_canceling(work))
1299 		return -ENOENT;
1300 	cpu_relax();
1301 	return -EAGAIN;
1302 }
1303 
1304 /**
1305  * insert_work - insert a work into a pool
1306  * @pwq: pwq @work belongs to
1307  * @work: work to insert
1308  * @head: insertion point
1309  * @extra_flags: extra WORK_STRUCT_* flags to set
1310  *
1311  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1312  * work_struct flags.
1313  *
1314  * CONTEXT:
1315  * spin_lock_irq(pool->lock).
1316  */
1317 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1318 			struct list_head *head, unsigned int extra_flags)
1319 {
1320 	struct worker_pool *pool = pwq->pool;
1321 
1322 	/* we own @work, set data and link */
1323 	set_work_pwq(work, pwq, extra_flags);
1324 	list_add_tail(&work->entry, head);
1325 	get_pwq(pwq);
1326 
1327 	/*
1328 	 * Ensure either wq_worker_sleeping() sees the above
1329 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1330 	 * around lazily while there are works to be processed.
1331 	 */
1332 	smp_mb();
1333 
1334 	if (__need_more_worker(pool))
1335 		wake_up_worker(pool);
1336 }
1337 
1338 /*
1339  * Test whether @work is being queued from another work executing on the
1340  * same workqueue.
1341  */
1342 static bool is_chained_work(struct workqueue_struct *wq)
1343 {
1344 	struct worker *worker;
1345 
1346 	worker = current_wq_worker();
1347 	/*
1348 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1349 	 * I'm @worker, it's safe to dereference it without locking.
1350 	 */
1351 	return worker && worker->current_pwq->wq == wq;
1352 }
1353 
1354 /*
1355  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1356  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1357  * avoid perturbing sensitive tasks.
1358  */
1359 static int wq_select_unbound_cpu(int cpu)
1360 {
1361 	static bool printed_dbg_warning;
1362 	int new_cpu;
1363 
1364 	if (likely(!wq_debug_force_rr_cpu)) {
1365 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1366 			return cpu;
1367 	} else if (!printed_dbg_warning) {
1368 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1369 		printed_dbg_warning = true;
1370 	}
1371 
1372 	if (cpumask_empty(wq_unbound_cpumask))
1373 		return cpu;
1374 
1375 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1376 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1377 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1378 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1379 		if (unlikely(new_cpu >= nr_cpu_ids))
1380 			return cpu;
1381 	}
1382 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1383 
1384 	return new_cpu;
1385 }
1386 
1387 static void __queue_work(int cpu, struct workqueue_struct *wq,
1388 			 struct work_struct *work)
1389 {
1390 	struct pool_workqueue *pwq;
1391 	struct worker_pool *last_pool;
1392 	struct list_head *worklist;
1393 	unsigned int work_flags;
1394 	unsigned int req_cpu = cpu;
1395 
1396 	/*
1397 	 * While a work item is PENDING && off queue, a task trying to
1398 	 * steal the PENDING will busy-loop waiting for it to either get
1399 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1400 	 * happen with IRQ disabled.
1401 	 */
1402 	WARN_ON_ONCE(!irqs_disabled());
1403 
1404 	debug_work_activate(work);
1405 
1406 	/* if draining, only works from the same workqueue are allowed */
1407 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1408 	    WARN_ON_ONCE(!is_chained_work(wq)))
1409 		return;
1410 retry:
1411 	if (req_cpu == WORK_CPU_UNBOUND)
1412 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1413 
1414 	/* pwq which will be used unless @work is executing elsewhere */
1415 	if (!(wq->flags & WQ_UNBOUND))
1416 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1417 	else
1418 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1419 
1420 	/*
1421 	 * If @work was previously on a different pool, it might still be
1422 	 * running there, in which case the work needs to be queued on that
1423 	 * pool to guarantee non-reentrancy.
1424 	 */
1425 	last_pool = get_work_pool(work);
1426 	if (last_pool && last_pool != pwq->pool) {
1427 		struct worker *worker;
1428 
1429 		spin_lock(&last_pool->lock);
1430 
1431 		worker = find_worker_executing_work(last_pool, work);
1432 
1433 		if (worker && worker->current_pwq->wq == wq) {
1434 			pwq = worker->current_pwq;
1435 		} else {
1436 			/* meh... not running there, queue here */
1437 			spin_unlock(&last_pool->lock);
1438 			spin_lock(&pwq->pool->lock);
1439 		}
1440 	} else {
1441 		spin_lock(&pwq->pool->lock);
1442 	}
1443 
1444 	/*
1445 	 * pwq is determined and locked.  For unbound pools, we could have
1446 	 * raced with pwq release and it could already be dead.  If its
1447 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1448 	 * without another pwq replacing it in the numa_pwq_tbl or while
1449 	 * work items are executing on it, so the retrying is guaranteed to
1450 	 * make forward-progress.
1451 	 */
1452 	if (unlikely(!pwq->refcnt)) {
1453 		if (wq->flags & WQ_UNBOUND) {
1454 			spin_unlock(&pwq->pool->lock);
1455 			cpu_relax();
1456 			goto retry;
1457 		}
1458 		/* oops */
1459 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1460 			  wq->name, cpu);
1461 	}
1462 
1463 	/* pwq determined, queue */
1464 	trace_workqueue_queue_work(req_cpu, pwq, work);
1465 
1466 	if (WARN_ON(!list_empty(&work->entry))) {
1467 		spin_unlock(&pwq->pool->lock);
1468 		return;
1469 	}
1470 
1471 	pwq->nr_in_flight[pwq->work_color]++;
1472 	work_flags = work_color_to_flags(pwq->work_color);
1473 
1474 	if (likely(pwq->nr_active < pwq->max_active)) {
1475 		trace_workqueue_activate_work(work);
1476 		pwq->nr_active++;
1477 		worklist = &pwq->pool->worklist;
1478 		if (list_empty(worklist))
1479 			pwq->pool->watchdog_ts = jiffies;
1480 	} else {
1481 		work_flags |= WORK_STRUCT_DELAYED;
1482 		worklist = &pwq->delayed_works;
1483 	}
1484 
1485 	insert_work(pwq, work, worklist, work_flags);
1486 
1487 	spin_unlock(&pwq->pool->lock);
1488 }
1489 
1490 /**
1491  * queue_work_on - queue work on specific cpu
1492  * @cpu: CPU number to execute work on
1493  * @wq: workqueue to use
1494  * @work: work to queue
1495  *
1496  * We queue the work to a specific CPU, the caller must ensure it
1497  * can't go away.
1498  *
1499  * Return: %false if @work was already on a queue, %true otherwise.
1500  */
1501 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1502 		   struct work_struct *work)
1503 {
1504 	bool ret = false;
1505 	unsigned long flags;
1506 
1507 	local_irq_save(flags);
1508 
1509 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1510 		__queue_work(cpu, wq, work);
1511 		ret = true;
1512 	}
1513 
1514 	local_irq_restore(flags);
1515 	return ret;
1516 }
1517 EXPORT_SYMBOL(queue_work_on);
1518 
1519 void delayed_work_timer_fn(unsigned long __data)
1520 {
1521 	struct delayed_work *dwork = (struct delayed_work *)__data;
1522 
1523 	/* should have been called from irqsafe timer with irq already off */
1524 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1525 }
1526 EXPORT_SYMBOL(delayed_work_timer_fn);
1527 
1528 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1529 				struct delayed_work *dwork, unsigned long delay)
1530 {
1531 	struct timer_list *timer = &dwork->timer;
1532 	struct work_struct *work = &dwork->work;
1533 
1534 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1535 		     timer->data != (unsigned long)dwork);
1536 	WARN_ON_ONCE(timer_pending(timer));
1537 	WARN_ON_ONCE(!list_empty(&work->entry));
1538 
1539 	/*
1540 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1541 	 * both optimization and correctness.  The earliest @timer can
1542 	 * expire is on the closest next tick and delayed_work users depend
1543 	 * on that there's no such delay when @delay is 0.
1544 	 */
1545 	if (!delay) {
1546 		__queue_work(cpu, wq, &dwork->work);
1547 		return;
1548 	}
1549 
1550 	timer_stats_timer_set_start_info(&dwork->timer);
1551 
1552 	dwork->wq = wq;
1553 	dwork->cpu = cpu;
1554 	timer->expires = jiffies + delay;
1555 
1556 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1557 		add_timer_on(timer, cpu);
1558 	else
1559 		add_timer(timer);
1560 }
1561 
1562 /**
1563  * queue_delayed_work_on - queue work on specific CPU after delay
1564  * @cpu: CPU number to execute work on
1565  * @wq: workqueue to use
1566  * @dwork: work to queue
1567  * @delay: number of jiffies to wait before queueing
1568  *
1569  * Return: %false if @work was already on a queue, %true otherwise.  If
1570  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1571  * execution.
1572  */
1573 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1574 			   struct delayed_work *dwork, unsigned long delay)
1575 {
1576 	struct work_struct *work = &dwork->work;
1577 	bool ret = false;
1578 	unsigned long flags;
1579 
1580 	/* read the comment in __queue_work() */
1581 	local_irq_save(flags);
1582 
1583 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1584 		__queue_delayed_work(cpu, wq, dwork, delay);
1585 		ret = true;
1586 	}
1587 
1588 	local_irq_restore(flags);
1589 	return ret;
1590 }
1591 EXPORT_SYMBOL(queue_delayed_work_on);
1592 
1593 /**
1594  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1595  * @cpu: CPU number to execute work on
1596  * @wq: workqueue to use
1597  * @dwork: work to queue
1598  * @delay: number of jiffies to wait before queueing
1599  *
1600  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1601  * modify @dwork's timer so that it expires after @delay.  If @delay is
1602  * zero, @work is guaranteed to be scheduled immediately regardless of its
1603  * current state.
1604  *
1605  * Return: %false if @dwork was idle and queued, %true if @dwork was
1606  * pending and its timer was modified.
1607  *
1608  * This function is safe to call from any context including IRQ handler.
1609  * See try_to_grab_pending() for details.
1610  */
1611 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1612 			 struct delayed_work *dwork, unsigned long delay)
1613 {
1614 	unsigned long flags;
1615 	int ret;
1616 
1617 	do {
1618 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1619 	} while (unlikely(ret == -EAGAIN));
1620 
1621 	if (likely(ret >= 0)) {
1622 		__queue_delayed_work(cpu, wq, dwork, delay);
1623 		local_irq_restore(flags);
1624 	}
1625 
1626 	/* -ENOENT from try_to_grab_pending() becomes %true */
1627 	return ret;
1628 }
1629 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1630 
1631 /**
1632  * worker_enter_idle - enter idle state
1633  * @worker: worker which is entering idle state
1634  *
1635  * @worker is entering idle state.  Update stats and idle timer if
1636  * necessary.
1637  *
1638  * LOCKING:
1639  * spin_lock_irq(pool->lock).
1640  */
1641 static void worker_enter_idle(struct worker *worker)
1642 {
1643 	struct worker_pool *pool = worker->pool;
1644 
1645 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1646 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1647 			 (worker->hentry.next || worker->hentry.pprev)))
1648 		return;
1649 
1650 	/* can't use worker_set_flags(), also called from create_worker() */
1651 	worker->flags |= WORKER_IDLE;
1652 	pool->nr_idle++;
1653 	worker->last_active = jiffies;
1654 
1655 	/* idle_list is LIFO */
1656 	list_add(&worker->entry, &pool->idle_list);
1657 
1658 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1659 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1660 
1661 	/*
1662 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1663 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1664 	 * nr_running, the warning may trigger spuriously.  Check iff
1665 	 * unbind is not in progress.
1666 	 */
1667 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1668 		     pool->nr_workers == pool->nr_idle &&
1669 		     atomic_read(&pool->nr_running));
1670 }
1671 
1672 /**
1673  * worker_leave_idle - leave idle state
1674  * @worker: worker which is leaving idle state
1675  *
1676  * @worker is leaving idle state.  Update stats.
1677  *
1678  * LOCKING:
1679  * spin_lock_irq(pool->lock).
1680  */
1681 static void worker_leave_idle(struct worker *worker)
1682 {
1683 	struct worker_pool *pool = worker->pool;
1684 
1685 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1686 		return;
1687 	worker_clr_flags(worker, WORKER_IDLE);
1688 	pool->nr_idle--;
1689 	list_del_init(&worker->entry);
1690 }
1691 
1692 static struct worker *alloc_worker(int node)
1693 {
1694 	struct worker *worker;
1695 
1696 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1697 	if (worker) {
1698 		INIT_LIST_HEAD(&worker->entry);
1699 		INIT_LIST_HEAD(&worker->scheduled);
1700 		INIT_LIST_HEAD(&worker->node);
1701 		/* on creation a worker is in !idle && prep state */
1702 		worker->flags = WORKER_PREP;
1703 	}
1704 	return worker;
1705 }
1706 
1707 /**
1708  * worker_attach_to_pool() - attach a worker to a pool
1709  * @worker: worker to be attached
1710  * @pool: the target pool
1711  *
1712  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1713  * cpu-binding of @worker are kept coordinated with the pool across
1714  * cpu-[un]hotplugs.
1715  */
1716 static void worker_attach_to_pool(struct worker *worker,
1717 				   struct worker_pool *pool)
1718 {
1719 	mutex_lock(&pool->attach_mutex);
1720 
1721 	/*
1722 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1723 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1724 	 */
1725 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1726 
1727 	/*
1728 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1729 	 * stable across this function.  See the comments above the
1730 	 * flag definition for details.
1731 	 */
1732 	if (pool->flags & POOL_DISASSOCIATED)
1733 		worker->flags |= WORKER_UNBOUND;
1734 
1735 	list_add_tail(&worker->node, &pool->workers);
1736 
1737 	mutex_unlock(&pool->attach_mutex);
1738 }
1739 
1740 /**
1741  * worker_detach_from_pool() - detach a worker from its pool
1742  * @worker: worker which is attached to its pool
1743  * @pool: the pool @worker is attached to
1744  *
1745  * Undo the attaching which had been done in worker_attach_to_pool().  The
1746  * caller worker shouldn't access to the pool after detached except it has
1747  * other reference to the pool.
1748  */
1749 static void worker_detach_from_pool(struct worker *worker,
1750 				    struct worker_pool *pool)
1751 {
1752 	struct completion *detach_completion = NULL;
1753 
1754 	mutex_lock(&pool->attach_mutex);
1755 	list_del(&worker->node);
1756 	if (list_empty(&pool->workers))
1757 		detach_completion = pool->detach_completion;
1758 	mutex_unlock(&pool->attach_mutex);
1759 
1760 	/* clear leftover flags without pool->lock after it is detached */
1761 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1762 
1763 	if (detach_completion)
1764 		complete(detach_completion);
1765 }
1766 
1767 /**
1768  * create_worker - create a new workqueue worker
1769  * @pool: pool the new worker will belong to
1770  *
1771  * Create and start a new worker which is attached to @pool.
1772  *
1773  * CONTEXT:
1774  * Might sleep.  Does GFP_KERNEL allocations.
1775  *
1776  * Return:
1777  * Pointer to the newly created worker.
1778  */
1779 static struct worker *create_worker(struct worker_pool *pool)
1780 {
1781 	struct worker *worker = NULL;
1782 	int id = -1;
1783 	char id_buf[16];
1784 
1785 	/* ID is needed to determine kthread name */
1786 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1787 	if (id < 0)
1788 		goto fail;
1789 
1790 	worker = alloc_worker(pool->node);
1791 	if (!worker)
1792 		goto fail;
1793 
1794 	worker->pool = pool;
1795 	worker->id = id;
1796 
1797 	if (pool->cpu >= 0)
1798 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1799 			 pool->attrs->nice < 0  ? "H" : "");
1800 	else
1801 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1802 
1803 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1804 					      "kworker/%s", id_buf);
1805 	if (IS_ERR(worker->task))
1806 		goto fail;
1807 
1808 	set_user_nice(worker->task, pool->attrs->nice);
1809 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1810 
1811 	/* successful, attach the worker to the pool */
1812 	worker_attach_to_pool(worker, pool);
1813 
1814 	/* start the newly created worker */
1815 	spin_lock_irq(&pool->lock);
1816 	worker->pool->nr_workers++;
1817 	worker_enter_idle(worker);
1818 	wake_up_process(worker->task);
1819 	spin_unlock_irq(&pool->lock);
1820 
1821 	return worker;
1822 
1823 fail:
1824 	if (id >= 0)
1825 		ida_simple_remove(&pool->worker_ida, id);
1826 	kfree(worker);
1827 	return NULL;
1828 }
1829 
1830 /**
1831  * destroy_worker - destroy a workqueue worker
1832  * @worker: worker to be destroyed
1833  *
1834  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1835  * be idle.
1836  *
1837  * CONTEXT:
1838  * spin_lock_irq(pool->lock).
1839  */
1840 static void destroy_worker(struct worker *worker)
1841 {
1842 	struct worker_pool *pool = worker->pool;
1843 
1844 	lockdep_assert_held(&pool->lock);
1845 
1846 	/* sanity check frenzy */
1847 	if (WARN_ON(worker->current_work) ||
1848 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1849 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1850 		return;
1851 
1852 	pool->nr_workers--;
1853 	pool->nr_idle--;
1854 
1855 	list_del_init(&worker->entry);
1856 	worker->flags |= WORKER_DIE;
1857 	wake_up_process(worker->task);
1858 }
1859 
1860 static void idle_worker_timeout(unsigned long __pool)
1861 {
1862 	struct worker_pool *pool = (void *)__pool;
1863 
1864 	spin_lock_irq(&pool->lock);
1865 
1866 	while (too_many_workers(pool)) {
1867 		struct worker *worker;
1868 		unsigned long expires;
1869 
1870 		/* idle_list is kept in LIFO order, check the last one */
1871 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1872 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1873 
1874 		if (time_before(jiffies, expires)) {
1875 			mod_timer(&pool->idle_timer, expires);
1876 			break;
1877 		}
1878 
1879 		destroy_worker(worker);
1880 	}
1881 
1882 	spin_unlock_irq(&pool->lock);
1883 }
1884 
1885 static void send_mayday(struct work_struct *work)
1886 {
1887 	struct pool_workqueue *pwq = get_work_pwq(work);
1888 	struct workqueue_struct *wq = pwq->wq;
1889 
1890 	lockdep_assert_held(&wq_mayday_lock);
1891 
1892 	if (!wq->rescuer)
1893 		return;
1894 
1895 	/* mayday mayday mayday */
1896 	if (list_empty(&pwq->mayday_node)) {
1897 		/*
1898 		 * If @pwq is for an unbound wq, its base ref may be put at
1899 		 * any time due to an attribute change.  Pin @pwq until the
1900 		 * rescuer is done with it.
1901 		 */
1902 		get_pwq(pwq);
1903 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1904 		wake_up_process(wq->rescuer->task);
1905 	}
1906 }
1907 
1908 static void pool_mayday_timeout(unsigned long __pool)
1909 {
1910 	struct worker_pool *pool = (void *)__pool;
1911 	struct work_struct *work;
1912 
1913 	spin_lock_irq(&pool->lock);
1914 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1915 
1916 	if (need_to_create_worker(pool)) {
1917 		/*
1918 		 * We've been trying to create a new worker but
1919 		 * haven't been successful.  We might be hitting an
1920 		 * allocation deadlock.  Send distress signals to
1921 		 * rescuers.
1922 		 */
1923 		list_for_each_entry(work, &pool->worklist, entry)
1924 			send_mayday(work);
1925 	}
1926 
1927 	spin_unlock(&wq_mayday_lock);
1928 	spin_unlock_irq(&pool->lock);
1929 
1930 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1931 }
1932 
1933 /**
1934  * maybe_create_worker - create a new worker if necessary
1935  * @pool: pool to create a new worker for
1936  *
1937  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1938  * have at least one idle worker on return from this function.  If
1939  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1940  * sent to all rescuers with works scheduled on @pool to resolve
1941  * possible allocation deadlock.
1942  *
1943  * On return, need_to_create_worker() is guaranteed to be %false and
1944  * may_start_working() %true.
1945  *
1946  * LOCKING:
1947  * spin_lock_irq(pool->lock) which may be released and regrabbed
1948  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1949  * manager.
1950  */
1951 static void maybe_create_worker(struct worker_pool *pool)
1952 __releases(&pool->lock)
1953 __acquires(&pool->lock)
1954 {
1955 restart:
1956 	spin_unlock_irq(&pool->lock);
1957 
1958 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1959 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1960 
1961 	while (true) {
1962 		if (create_worker(pool) || !need_to_create_worker(pool))
1963 			break;
1964 
1965 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1966 
1967 		if (!need_to_create_worker(pool))
1968 			break;
1969 	}
1970 
1971 	del_timer_sync(&pool->mayday_timer);
1972 	spin_lock_irq(&pool->lock);
1973 	/*
1974 	 * This is necessary even after a new worker was just successfully
1975 	 * created as @pool->lock was dropped and the new worker might have
1976 	 * already become busy.
1977 	 */
1978 	if (need_to_create_worker(pool))
1979 		goto restart;
1980 }
1981 
1982 /**
1983  * manage_workers - manage worker pool
1984  * @worker: self
1985  *
1986  * Assume the manager role and manage the worker pool @worker belongs
1987  * to.  At any given time, there can be only zero or one manager per
1988  * pool.  The exclusion is handled automatically by this function.
1989  *
1990  * The caller can safely start processing works on false return.  On
1991  * true return, it's guaranteed that need_to_create_worker() is false
1992  * and may_start_working() is true.
1993  *
1994  * CONTEXT:
1995  * spin_lock_irq(pool->lock) which may be released and regrabbed
1996  * multiple times.  Does GFP_KERNEL allocations.
1997  *
1998  * Return:
1999  * %false if the pool doesn't need management and the caller can safely
2000  * start processing works, %true if management function was performed and
2001  * the conditions that the caller verified before calling the function may
2002  * no longer be true.
2003  */
2004 static bool manage_workers(struct worker *worker)
2005 {
2006 	struct worker_pool *pool = worker->pool;
2007 
2008 	/*
2009 	 * Anyone who successfully grabs manager_arb wins the arbitration
2010 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
2011 	 * failure while holding pool->lock reliably indicates that someone
2012 	 * else is managing the pool and the worker which failed trylock
2013 	 * can proceed to executing work items.  This means that anyone
2014 	 * grabbing manager_arb is responsible for actually performing
2015 	 * manager duties.  If manager_arb is grabbed and released without
2016 	 * actual management, the pool may stall indefinitely.
2017 	 */
2018 	if (!mutex_trylock(&pool->manager_arb))
2019 		return false;
2020 	pool->manager = worker;
2021 
2022 	maybe_create_worker(pool);
2023 
2024 	pool->manager = NULL;
2025 	mutex_unlock(&pool->manager_arb);
2026 	return true;
2027 }
2028 
2029 /**
2030  * process_one_work - process single work
2031  * @worker: self
2032  * @work: work to process
2033  *
2034  * Process @work.  This function contains all the logics necessary to
2035  * process a single work including synchronization against and
2036  * interaction with other workers on the same cpu, queueing and
2037  * flushing.  As long as context requirement is met, any worker can
2038  * call this function to process a work.
2039  *
2040  * CONTEXT:
2041  * spin_lock_irq(pool->lock) which is released and regrabbed.
2042  */
2043 static void process_one_work(struct worker *worker, struct work_struct *work)
2044 __releases(&pool->lock)
2045 __acquires(&pool->lock)
2046 {
2047 	struct pool_workqueue *pwq = get_work_pwq(work);
2048 	struct worker_pool *pool = worker->pool;
2049 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2050 	int work_color;
2051 	struct worker *collision;
2052 #ifdef CONFIG_LOCKDEP
2053 	/*
2054 	 * It is permissible to free the struct work_struct from
2055 	 * inside the function that is called from it, this we need to
2056 	 * take into account for lockdep too.  To avoid bogus "held
2057 	 * lock freed" warnings as well as problems when looking into
2058 	 * work->lockdep_map, make a copy and use that here.
2059 	 */
2060 	struct lockdep_map lockdep_map;
2061 
2062 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2063 #endif
2064 	/* ensure we're on the correct CPU */
2065 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2066 		     raw_smp_processor_id() != pool->cpu);
2067 
2068 	/*
2069 	 * A single work shouldn't be executed concurrently by
2070 	 * multiple workers on a single cpu.  Check whether anyone is
2071 	 * already processing the work.  If so, defer the work to the
2072 	 * currently executing one.
2073 	 */
2074 	collision = find_worker_executing_work(pool, work);
2075 	if (unlikely(collision)) {
2076 		move_linked_works(work, &collision->scheduled, NULL);
2077 		return;
2078 	}
2079 
2080 	/* claim and dequeue */
2081 	debug_work_deactivate(work);
2082 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2083 	worker->current_work = work;
2084 	worker->current_func = work->func;
2085 	worker->current_pwq = pwq;
2086 	work_color = get_work_color(work);
2087 
2088 	list_del_init(&work->entry);
2089 
2090 	/*
2091 	 * CPU intensive works don't participate in concurrency management.
2092 	 * They're the scheduler's responsibility.  This takes @worker out
2093 	 * of concurrency management and the next code block will chain
2094 	 * execution of the pending work items.
2095 	 */
2096 	if (unlikely(cpu_intensive))
2097 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2098 
2099 	/*
2100 	 * Wake up another worker if necessary.  The condition is always
2101 	 * false for normal per-cpu workers since nr_running would always
2102 	 * be >= 1 at this point.  This is used to chain execution of the
2103 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2104 	 * UNBOUND and CPU_INTENSIVE ones.
2105 	 */
2106 	if (need_more_worker(pool))
2107 		wake_up_worker(pool);
2108 
2109 	/*
2110 	 * Record the last pool and clear PENDING which should be the last
2111 	 * update to @work.  Also, do this inside @pool->lock so that
2112 	 * PENDING and queued state changes happen together while IRQ is
2113 	 * disabled.
2114 	 */
2115 	set_work_pool_and_clear_pending(work, pool->id);
2116 
2117 	spin_unlock_irq(&pool->lock);
2118 
2119 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2120 	lock_map_acquire(&lockdep_map);
2121 	trace_workqueue_execute_start(work);
2122 	worker->current_func(work);
2123 	/*
2124 	 * While we must be careful to not use "work" after this, the trace
2125 	 * point will only record its address.
2126 	 */
2127 	trace_workqueue_execute_end(work);
2128 	lock_map_release(&lockdep_map);
2129 	lock_map_release(&pwq->wq->lockdep_map);
2130 
2131 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2132 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2133 		       "     last function: %pf\n",
2134 		       current->comm, preempt_count(), task_pid_nr(current),
2135 		       worker->current_func);
2136 		debug_show_held_locks(current);
2137 		dump_stack();
2138 	}
2139 
2140 	/*
2141 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2142 	 * kernels, where a requeueing work item waiting for something to
2143 	 * happen could deadlock with stop_machine as such work item could
2144 	 * indefinitely requeue itself while all other CPUs are trapped in
2145 	 * stop_machine. At the same time, report a quiescent RCU state so
2146 	 * the same condition doesn't freeze RCU.
2147 	 */
2148 	cond_resched_rcu_qs();
2149 
2150 	spin_lock_irq(&pool->lock);
2151 
2152 	/* clear cpu intensive status */
2153 	if (unlikely(cpu_intensive))
2154 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2155 
2156 	/* we're done with it, release */
2157 	hash_del(&worker->hentry);
2158 	worker->current_work = NULL;
2159 	worker->current_func = NULL;
2160 	worker->current_pwq = NULL;
2161 	worker->desc_valid = false;
2162 	pwq_dec_nr_in_flight(pwq, work_color);
2163 }
2164 
2165 /**
2166  * process_scheduled_works - process scheduled works
2167  * @worker: self
2168  *
2169  * Process all scheduled works.  Please note that the scheduled list
2170  * may change while processing a work, so this function repeatedly
2171  * fetches a work from the top and executes it.
2172  *
2173  * CONTEXT:
2174  * spin_lock_irq(pool->lock) which may be released and regrabbed
2175  * multiple times.
2176  */
2177 static void process_scheduled_works(struct worker *worker)
2178 {
2179 	while (!list_empty(&worker->scheduled)) {
2180 		struct work_struct *work = list_first_entry(&worker->scheduled,
2181 						struct work_struct, entry);
2182 		process_one_work(worker, work);
2183 	}
2184 }
2185 
2186 /**
2187  * worker_thread - the worker thread function
2188  * @__worker: self
2189  *
2190  * The worker thread function.  All workers belong to a worker_pool -
2191  * either a per-cpu one or dynamic unbound one.  These workers process all
2192  * work items regardless of their specific target workqueue.  The only
2193  * exception is work items which belong to workqueues with a rescuer which
2194  * will be explained in rescuer_thread().
2195  *
2196  * Return: 0
2197  */
2198 static int worker_thread(void *__worker)
2199 {
2200 	struct worker *worker = __worker;
2201 	struct worker_pool *pool = worker->pool;
2202 
2203 	/* tell the scheduler that this is a workqueue worker */
2204 	worker->task->flags |= PF_WQ_WORKER;
2205 woke_up:
2206 	spin_lock_irq(&pool->lock);
2207 
2208 	/* am I supposed to die? */
2209 	if (unlikely(worker->flags & WORKER_DIE)) {
2210 		spin_unlock_irq(&pool->lock);
2211 		WARN_ON_ONCE(!list_empty(&worker->entry));
2212 		worker->task->flags &= ~PF_WQ_WORKER;
2213 
2214 		set_task_comm(worker->task, "kworker/dying");
2215 		ida_simple_remove(&pool->worker_ida, worker->id);
2216 		worker_detach_from_pool(worker, pool);
2217 		kfree(worker);
2218 		return 0;
2219 	}
2220 
2221 	worker_leave_idle(worker);
2222 recheck:
2223 	/* no more worker necessary? */
2224 	if (!need_more_worker(pool))
2225 		goto sleep;
2226 
2227 	/* do we need to manage? */
2228 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2229 		goto recheck;
2230 
2231 	/*
2232 	 * ->scheduled list can only be filled while a worker is
2233 	 * preparing to process a work or actually processing it.
2234 	 * Make sure nobody diddled with it while I was sleeping.
2235 	 */
2236 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2237 
2238 	/*
2239 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2240 	 * worker or that someone else has already assumed the manager
2241 	 * role.  This is where @worker starts participating in concurrency
2242 	 * management if applicable and concurrency management is restored
2243 	 * after being rebound.  See rebind_workers() for details.
2244 	 */
2245 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2246 
2247 	do {
2248 		struct work_struct *work =
2249 			list_first_entry(&pool->worklist,
2250 					 struct work_struct, entry);
2251 
2252 		pool->watchdog_ts = jiffies;
2253 
2254 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2255 			/* optimization path, not strictly necessary */
2256 			process_one_work(worker, work);
2257 			if (unlikely(!list_empty(&worker->scheduled)))
2258 				process_scheduled_works(worker);
2259 		} else {
2260 			move_linked_works(work, &worker->scheduled, NULL);
2261 			process_scheduled_works(worker);
2262 		}
2263 	} while (keep_working(pool));
2264 
2265 	worker_set_flags(worker, WORKER_PREP);
2266 sleep:
2267 	/*
2268 	 * pool->lock is held and there's no work to process and no need to
2269 	 * manage, sleep.  Workers are woken up only while holding
2270 	 * pool->lock or from local cpu, so setting the current state
2271 	 * before releasing pool->lock is enough to prevent losing any
2272 	 * event.
2273 	 */
2274 	worker_enter_idle(worker);
2275 	__set_current_state(TASK_INTERRUPTIBLE);
2276 	spin_unlock_irq(&pool->lock);
2277 	schedule();
2278 	goto woke_up;
2279 }
2280 
2281 /**
2282  * rescuer_thread - the rescuer thread function
2283  * @__rescuer: self
2284  *
2285  * Workqueue rescuer thread function.  There's one rescuer for each
2286  * workqueue which has WQ_MEM_RECLAIM set.
2287  *
2288  * Regular work processing on a pool may block trying to create a new
2289  * worker which uses GFP_KERNEL allocation which has slight chance of
2290  * developing into deadlock if some works currently on the same queue
2291  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2292  * the problem rescuer solves.
2293  *
2294  * When such condition is possible, the pool summons rescuers of all
2295  * workqueues which have works queued on the pool and let them process
2296  * those works so that forward progress can be guaranteed.
2297  *
2298  * This should happen rarely.
2299  *
2300  * Return: 0
2301  */
2302 static int rescuer_thread(void *__rescuer)
2303 {
2304 	struct worker *rescuer = __rescuer;
2305 	struct workqueue_struct *wq = rescuer->rescue_wq;
2306 	struct list_head *scheduled = &rescuer->scheduled;
2307 	bool should_stop;
2308 
2309 	set_user_nice(current, RESCUER_NICE_LEVEL);
2310 
2311 	/*
2312 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2313 	 * doesn't participate in concurrency management.
2314 	 */
2315 	rescuer->task->flags |= PF_WQ_WORKER;
2316 repeat:
2317 	set_current_state(TASK_INTERRUPTIBLE);
2318 
2319 	/*
2320 	 * By the time the rescuer is requested to stop, the workqueue
2321 	 * shouldn't have any work pending, but @wq->maydays may still have
2322 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2323 	 * all the work items before the rescuer got to them.  Go through
2324 	 * @wq->maydays processing before acting on should_stop so that the
2325 	 * list is always empty on exit.
2326 	 */
2327 	should_stop = kthread_should_stop();
2328 
2329 	/* see whether any pwq is asking for help */
2330 	spin_lock_irq(&wq_mayday_lock);
2331 
2332 	while (!list_empty(&wq->maydays)) {
2333 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2334 					struct pool_workqueue, mayday_node);
2335 		struct worker_pool *pool = pwq->pool;
2336 		struct work_struct *work, *n;
2337 		bool first = true;
2338 
2339 		__set_current_state(TASK_RUNNING);
2340 		list_del_init(&pwq->mayday_node);
2341 
2342 		spin_unlock_irq(&wq_mayday_lock);
2343 
2344 		worker_attach_to_pool(rescuer, pool);
2345 
2346 		spin_lock_irq(&pool->lock);
2347 		rescuer->pool = pool;
2348 
2349 		/*
2350 		 * Slurp in all works issued via this workqueue and
2351 		 * process'em.
2352 		 */
2353 		WARN_ON_ONCE(!list_empty(scheduled));
2354 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2355 			if (get_work_pwq(work) == pwq) {
2356 				if (first)
2357 					pool->watchdog_ts = jiffies;
2358 				move_linked_works(work, scheduled, &n);
2359 			}
2360 			first = false;
2361 		}
2362 
2363 		if (!list_empty(scheduled)) {
2364 			process_scheduled_works(rescuer);
2365 
2366 			/*
2367 			 * The above execution of rescued work items could
2368 			 * have created more to rescue through
2369 			 * pwq_activate_first_delayed() or chained
2370 			 * queueing.  Let's put @pwq back on mayday list so
2371 			 * that such back-to-back work items, which may be
2372 			 * being used to relieve memory pressure, don't
2373 			 * incur MAYDAY_INTERVAL delay inbetween.
2374 			 */
2375 			if (need_to_create_worker(pool)) {
2376 				spin_lock(&wq_mayday_lock);
2377 				get_pwq(pwq);
2378 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2379 				spin_unlock(&wq_mayday_lock);
2380 			}
2381 		}
2382 
2383 		/*
2384 		 * Put the reference grabbed by send_mayday().  @pool won't
2385 		 * go away while we're still attached to it.
2386 		 */
2387 		put_pwq(pwq);
2388 
2389 		/*
2390 		 * Leave this pool.  If need_more_worker() is %true, notify a
2391 		 * regular worker; otherwise, we end up with 0 concurrency
2392 		 * and stalling the execution.
2393 		 */
2394 		if (need_more_worker(pool))
2395 			wake_up_worker(pool);
2396 
2397 		rescuer->pool = NULL;
2398 		spin_unlock_irq(&pool->lock);
2399 
2400 		worker_detach_from_pool(rescuer, pool);
2401 
2402 		spin_lock_irq(&wq_mayday_lock);
2403 	}
2404 
2405 	spin_unlock_irq(&wq_mayday_lock);
2406 
2407 	if (should_stop) {
2408 		__set_current_state(TASK_RUNNING);
2409 		rescuer->task->flags &= ~PF_WQ_WORKER;
2410 		return 0;
2411 	}
2412 
2413 	/* rescuers should never participate in concurrency management */
2414 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2415 	schedule();
2416 	goto repeat;
2417 }
2418 
2419 /**
2420  * check_flush_dependency - check for flush dependency sanity
2421  * @target_wq: workqueue being flushed
2422  * @target_work: work item being flushed (NULL for workqueue flushes)
2423  *
2424  * %current is trying to flush the whole @target_wq or @target_work on it.
2425  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2426  * reclaiming memory or running on a workqueue which doesn't have
2427  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2428  * a deadlock.
2429  */
2430 static void check_flush_dependency(struct workqueue_struct *target_wq,
2431 				   struct work_struct *target_work)
2432 {
2433 	work_func_t target_func = target_work ? target_work->func : NULL;
2434 	struct worker *worker;
2435 
2436 	if (target_wq->flags & WQ_MEM_RECLAIM)
2437 		return;
2438 
2439 	worker = current_wq_worker();
2440 
2441 	WARN_ONCE(current->flags & PF_MEMALLOC,
2442 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2443 		  current->pid, current->comm, target_wq->name, target_func);
2444 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2445 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2446 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2447 		  worker->current_pwq->wq->name, worker->current_func,
2448 		  target_wq->name, target_func);
2449 }
2450 
2451 struct wq_barrier {
2452 	struct work_struct	work;
2453 	struct completion	done;
2454 	struct task_struct	*task;	/* purely informational */
2455 };
2456 
2457 static void wq_barrier_func(struct work_struct *work)
2458 {
2459 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2460 	complete(&barr->done);
2461 }
2462 
2463 /**
2464  * insert_wq_barrier - insert a barrier work
2465  * @pwq: pwq to insert barrier into
2466  * @barr: wq_barrier to insert
2467  * @target: target work to attach @barr to
2468  * @worker: worker currently executing @target, NULL if @target is not executing
2469  *
2470  * @barr is linked to @target such that @barr is completed only after
2471  * @target finishes execution.  Please note that the ordering
2472  * guarantee is observed only with respect to @target and on the local
2473  * cpu.
2474  *
2475  * Currently, a queued barrier can't be canceled.  This is because
2476  * try_to_grab_pending() can't determine whether the work to be
2477  * grabbed is at the head of the queue and thus can't clear LINKED
2478  * flag of the previous work while there must be a valid next work
2479  * after a work with LINKED flag set.
2480  *
2481  * Note that when @worker is non-NULL, @target may be modified
2482  * underneath us, so we can't reliably determine pwq from @target.
2483  *
2484  * CONTEXT:
2485  * spin_lock_irq(pool->lock).
2486  */
2487 static void insert_wq_barrier(struct pool_workqueue *pwq,
2488 			      struct wq_barrier *barr,
2489 			      struct work_struct *target, struct worker *worker)
2490 {
2491 	struct list_head *head;
2492 	unsigned int linked = 0;
2493 
2494 	/*
2495 	 * debugobject calls are safe here even with pool->lock locked
2496 	 * as we know for sure that this will not trigger any of the
2497 	 * checks and call back into the fixup functions where we
2498 	 * might deadlock.
2499 	 */
2500 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2501 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2502 	init_completion(&barr->done);
2503 	barr->task = current;
2504 
2505 	/*
2506 	 * If @target is currently being executed, schedule the
2507 	 * barrier to the worker; otherwise, put it after @target.
2508 	 */
2509 	if (worker)
2510 		head = worker->scheduled.next;
2511 	else {
2512 		unsigned long *bits = work_data_bits(target);
2513 
2514 		head = target->entry.next;
2515 		/* there can already be other linked works, inherit and set */
2516 		linked = *bits & WORK_STRUCT_LINKED;
2517 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2518 	}
2519 
2520 	debug_work_activate(&barr->work);
2521 	insert_work(pwq, &barr->work, head,
2522 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2523 }
2524 
2525 /**
2526  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2527  * @wq: workqueue being flushed
2528  * @flush_color: new flush color, < 0 for no-op
2529  * @work_color: new work color, < 0 for no-op
2530  *
2531  * Prepare pwqs for workqueue flushing.
2532  *
2533  * If @flush_color is non-negative, flush_color on all pwqs should be
2534  * -1.  If no pwq has in-flight commands at the specified color, all
2535  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2536  * has in flight commands, its pwq->flush_color is set to
2537  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2538  * wakeup logic is armed and %true is returned.
2539  *
2540  * The caller should have initialized @wq->first_flusher prior to
2541  * calling this function with non-negative @flush_color.  If
2542  * @flush_color is negative, no flush color update is done and %false
2543  * is returned.
2544  *
2545  * If @work_color is non-negative, all pwqs should have the same
2546  * work_color which is previous to @work_color and all will be
2547  * advanced to @work_color.
2548  *
2549  * CONTEXT:
2550  * mutex_lock(wq->mutex).
2551  *
2552  * Return:
2553  * %true if @flush_color >= 0 and there's something to flush.  %false
2554  * otherwise.
2555  */
2556 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2557 				      int flush_color, int work_color)
2558 {
2559 	bool wait = false;
2560 	struct pool_workqueue *pwq;
2561 
2562 	if (flush_color >= 0) {
2563 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2564 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2565 	}
2566 
2567 	for_each_pwq(pwq, wq) {
2568 		struct worker_pool *pool = pwq->pool;
2569 
2570 		spin_lock_irq(&pool->lock);
2571 
2572 		if (flush_color >= 0) {
2573 			WARN_ON_ONCE(pwq->flush_color != -1);
2574 
2575 			if (pwq->nr_in_flight[flush_color]) {
2576 				pwq->flush_color = flush_color;
2577 				atomic_inc(&wq->nr_pwqs_to_flush);
2578 				wait = true;
2579 			}
2580 		}
2581 
2582 		if (work_color >= 0) {
2583 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2584 			pwq->work_color = work_color;
2585 		}
2586 
2587 		spin_unlock_irq(&pool->lock);
2588 	}
2589 
2590 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2591 		complete(&wq->first_flusher->done);
2592 
2593 	return wait;
2594 }
2595 
2596 /**
2597  * flush_workqueue - ensure that any scheduled work has run to completion.
2598  * @wq: workqueue to flush
2599  *
2600  * This function sleeps until all work items which were queued on entry
2601  * have finished execution, but it is not livelocked by new incoming ones.
2602  */
2603 void flush_workqueue(struct workqueue_struct *wq)
2604 {
2605 	struct wq_flusher this_flusher = {
2606 		.list = LIST_HEAD_INIT(this_flusher.list),
2607 		.flush_color = -1,
2608 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2609 	};
2610 	int next_color;
2611 
2612 	lock_map_acquire(&wq->lockdep_map);
2613 	lock_map_release(&wq->lockdep_map);
2614 
2615 	mutex_lock(&wq->mutex);
2616 
2617 	/*
2618 	 * Start-to-wait phase
2619 	 */
2620 	next_color = work_next_color(wq->work_color);
2621 
2622 	if (next_color != wq->flush_color) {
2623 		/*
2624 		 * Color space is not full.  The current work_color
2625 		 * becomes our flush_color and work_color is advanced
2626 		 * by one.
2627 		 */
2628 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2629 		this_flusher.flush_color = wq->work_color;
2630 		wq->work_color = next_color;
2631 
2632 		if (!wq->first_flusher) {
2633 			/* no flush in progress, become the first flusher */
2634 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2635 
2636 			wq->first_flusher = &this_flusher;
2637 
2638 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2639 						       wq->work_color)) {
2640 				/* nothing to flush, done */
2641 				wq->flush_color = next_color;
2642 				wq->first_flusher = NULL;
2643 				goto out_unlock;
2644 			}
2645 		} else {
2646 			/* wait in queue */
2647 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2648 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2649 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2650 		}
2651 	} else {
2652 		/*
2653 		 * Oops, color space is full, wait on overflow queue.
2654 		 * The next flush completion will assign us
2655 		 * flush_color and transfer to flusher_queue.
2656 		 */
2657 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2658 	}
2659 
2660 	check_flush_dependency(wq, NULL);
2661 
2662 	mutex_unlock(&wq->mutex);
2663 
2664 	wait_for_completion(&this_flusher.done);
2665 
2666 	/*
2667 	 * Wake-up-and-cascade phase
2668 	 *
2669 	 * First flushers are responsible for cascading flushes and
2670 	 * handling overflow.  Non-first flushers can simply return.
2671 	 */
2672 	if (wq->first_flusher != &this_flusher)
2673 		return;
2674 
2675 	mutex_lock(&wq->mutex);
2676 
2677 	/* we might have raced, check again with mutex held */
2678 	if (wq->first_flusher != &this_flusher)
2679 		goto out_unlock;
2680 
2681 	wq->first_flusher = NULL;
2682 
2683 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2684 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2685 
2686 	while (true) {
2687 		struct wq_flusher *next, *tmp;
2688 
2689 		/* complete all the flushers sharing the current flush color */
2690 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2691 			if (next->flush_color != wq->flush_color)
2692 				break;
2693 			list_del_init(&next->list);
2694 			complete(&next->done);
2695 		}
2696 
2697 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2698 			     wq->flush_color != work_next_color(wq->work_color));
2699 
2700 		/* this flush_color is finished, advance by one */
2701 		wq->flush_color = work_next_color(wq->flush_color);
2702 
2703 		/* one color has been freed, handle overflow queue */
2704 		if (!list_empty(&wq->flusher_overflow)) {
2705 			/*
2706 			 * Assign the same color to all overflowed
2707 			 * flushers, advance work_color and append to
2708 			 * flusher_queue.  This is the start-to-wait
2709 			 * phase for these overflowed flushers.
2710 			 */
2711 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2712 				tmp->flush_color = wq->work_color;
2713 
2714 			wq->work_color = work_next_color(wq->work_color);
2715 
2716 			list_splice_tail_init(&wq->flusher_overflow,
2717 					      &wq->flusher_queue);
2718 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2719 		}
2720 
2721 		if (list_empty(&wq->flusher_queue)) {
2722 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2723 			break;
2724 		}
2725 
2726 		/*
2727 		 * Need to flush more colors.  Make the next flusher
2728 		 * the new first flusher and arm pwqs.
2729 		 */
2730 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2731 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2732 
2733 		list_del_init(&next->list);
2734 		wq->first_flusher = next;
2735 
2736 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2737 			break;
2738 
2739 		/*
2740 		 * Meh... this color is already done, clear first
2741 		 * flusher and repeat cascading.
2742 		 */
2743 		wq->first_flusher = NULL;
2744 	}
2745 
2746 out_unlock:
2747 	mutex_unlock(&wq->mutex);
2748 }
2749 EXPORT_SYMBOL(flush_workqueue);
2750 
2751 /**
2752  * drain_workqueue - drain a workqueue
2753  * @wq: workqueue to drain
2754  *
2755  * Wait until the workqueue becomes empty.  While draining is in progress,
2756  * only chain queueing is allowed.  IOW, only currently pending or running
2757  * work items on @wq can queue further work items on it.  @wq is flushed
2758  * repeatedly until it becomes empty.  The number of flushing is determined
2759  * by the depth of chaining and should be relatively short.  Whine if it
2760  * takes too long.
2761  */
2762 void drain_workqueue(struct workqueue_struct *wq)
2763 {
2764 	unsigned int flush_cnt = 0;
2765 	struct pool_workqueue *pwq;
2766 
2767 	/*
2768 	 * __queue_work() needs to test whether there are drainers, is much
2769 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2770 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2771 	 */
2772 	mutex_lock(&wq->mutex);
2773 	if (!wq->nr_drainers++)
2774 		wq->flags |= __WQ_DRAINING;
2775 	mutex_unlock(&wq->mutex);
2776 reflush:
2777 	flush_workqueue(wq);
2778 
2779 	mutex_lock(&wq->mutex);
2780 
2781 	for_each_pwq(pwq, wq) {
2782 		bool drained;
2783 
2784 		spin_lock_irq(&pwq->pool->lock);
2785 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2786 		spin_unlock_irq(&pwq->pool->lock);
2787 
2788 		if (drained)
2789 			continue;
2790 
2791 		if (++flush_cnt == 10 ||
2792 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2793 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2794 				wq->name, flush_cnt);
2795 
2796 		mutex_unlock(&wq->mutex);
2797 		goto reflush;
2798 	}
2799 
2800 	if (!--wq->nr_drainers)
2801 		wq->flags &= ~__WQ_DRAINING;
2802 	mutex_unlock(&wq->mutex);
2803 }
2804 EXPORT_SYMBOL_GPL(drain_workqueue);
2805 
2806 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2807 {
2808 	struct worker *worker = NULL;
2809 	struct worker_pool *pool;
2810 	struct pool_workqueue *pwq;
2811 
2812 	might_sleep();
2813 
2814 	local_irq_disable();
2815 	pool = get_work_pool(work);
2816 	if (!pool) {
2817 		local_irq_enable();
2818 		return false;
2819 	}
2820 
2821 	spin_lock(&pool->lock);
2822 	/* see the comment in try_to_grab_pending() with the same code */
2823 	pwq = get_work_pwq(work);
2824 	if (pwq) {
2825 		if (unlikely(pwq->pool != pool))
2826 			goto already_gone;
2827 	} else {
2828 		worker = find_worker_executing_work(pool, work);
2829 		if (!worker)
2830 			goto already_gone;
2831 		pwq = worker->current_pwq;
2832 	}
2833 
2834 	check_flush_dependency(pwq->wq, work);
2835 
2836 	insert_wq_barrier(pwq, barr, work, worker);
2837 	spin_unlock_irq(&pool->lock);
2838 
2839 	/*
2840 	 * If @max_active is 1 or rescuer is in use, flushing another work
2841 	 * item on the same workqueue may lead to deadlock.  Make sure the
2842 	 * flusher is not running on the same workqueue by verifying write
2843 	 * access.
2844 	 */
2845 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2846 		lock_map_acquire(&pwq->wq->lockdep_map);
2847 	else
2848 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2849 	lock_map_release(&pwq->wq->lockdep_map);
2850 
2851 	return true;
2852 already_gone:
2853 	spin_unlock_irq(&pool->lock);
2854 	return false;
2855 }
2856 
2857 /**
2858  * flush_work - wait for a work to finish executing the last queueing instance
2859  * @work: the work to flush
2860  *
2861  * Wait until @work has finished execution.  @work is guaranteed to be idle
2862  * on return if it hasn't been requeued since flush started.
2863  *
2864  * Return:
2865  * %true if flush_work() waited for the work to finish execution,
2866  * %false if it was already idle.
2867  */
2868 bool flush_work(struct work_struct *work)
2869 {
2870 	struct wq_barrier barr;
2871 
2872 	lock_map_acquire(&work->lockdep_map);
2873 	lock_map_release(&work->lockdep_map);
2874 
2875 	if (start_flush_work(work, &barr)) {
2876 		wait_for_completion(&barr.done);
2877 		destroy_work_on_stack(&barr.work);
2878 		return true;
2879 	} else {
2880 		return false;
2881 	}
2882 }
2883 EXPORT_SYMBOL_GPL(flush_work);
2884 
2885 struct cwt_wait {
2886 	wait_queue_t		wait;
2887 	struct work_struct	*work;
2888 };
2889 
2890 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2891 {
2892 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2893 
2894 	if (cwait->work != key)
2895 		return 0;
2896 	return autoremove_wake_function(wait, mode, sync, key);
2897 }
2898 
2899 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2900 {
2901 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2902 	unsigned long flags;
2903 	int ret;
2904 
2905 	do {
2906 		ret = try_to_grab_pending(work, is_dwork, &flags);
2907 		/*
2908 		 * If someone else is already canceling, wait for it to
2909 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2910 		 * because we may get scheduled between @work's completion
2911 		 * and the other canceling task resuming and clearing
2912 		 * CANCELING - flush_work() will return false immediately
2913 		 * as @work is no longer busy, try_to_grab_pending() will
2914 		 * return -ENOENT as @work is still being canceled and the
2915 		 * other canceling task won't be able to clear CANCELING as
2916 		 * we're hogging the CPU.
2917 		 *
2918 		 * Let's wait for completion using a waitqueue.  As this
2919 		 * may lead to the thundering herd problem, use a custom
2920 		 * wake function which matches @work along with exclusive
2921 		 * wait and wakeup.
2922 		 */
2923 		if (unlikely(ret == -ENOENT)) {
2924 			struct cwt_wait cwait;
2925 
2926 			init_wait(&cwait.wait);
2927 			cwait.wait.func = cwt_wakefn;
2928 			cwait.work = work;
2929 
2930 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2931 						  TASK_UNINTERRUPTIBLE);
2932 			if (work_is_canceling(work))
2933 				schedule();
2934 			finish_wait(&cancel_waitq, &cwait.wait);
2935 		}
2936 	} while (unlikely(ret < 0));
2937 
2938 	/* tell other tasks trying to grab @work to back off */
2939 	mark_work_canceling(work);
2940 	local_irq_restore(flags);
2941 
2942 	flush_work(work);
2943 	clear_work_data(work);
2944 
2945 	/*
2946 	 * Paired with prepare_to_wait() above so that either
2947 	 * waitqueue_active() is visible here or !work_is_canceling() is
2948 	 * visible there.
2949 	 */
2950 	smp_mb();
2951 	if (waitqueue_active(&cancel_waitq))
2952 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2953 
2954 	return ret;
2955 }
2956 
2957 /**
2958  * cancel_work_sync - cancel a work and wait for it to finish
2959  * @work: the work to cancel
2960  *
2961  * Cancel @work and wait for its execution to finish.  This function
2962  * can be used even if the work re-queues itself or migrates to
2963  * another workqueue.  On return from this function, @work is
2964  * guaranteed to be not pending or executing on any CPU.
2965  *
2966  * cancel_work_sync(&delayed_work->work) must not be used for
2967  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2968  *
2969  * The caller must ensure that the workqueue on which @work was last
2970  * queued can't be destroyed before this function returns.
2971  *
2972  * Return:
2973  * %true if @work was pending, %false otherwise.
2974  */
2975 bool cancel_work_sync(struct work_struct *work)
2976 {
2977 	return __cancel_work_timer(work, false);
2978 }
2979 EXPORT_SYMBOL_GPL(cancel_work_sync);
2980 
2981 /**
2982  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2983  * @dwork: the delayed work to flush
2984  *
2985  * Delayed timer is cancelled and the pending work is queued for
2986  * immediate execution.  Like flush_work(), this function only
2987  * considers the last queueing instance of @dwork.
2988  *
2989  * Return:
2990  * %true if flush_work() waited for the work to finish execution,
2991  * %false if it was already idle.
2992  */
2993 bool flush_delayed_work(struct delayed_work *dwork)
2994 {
2995 	local_irq_disable();
2996 	if (del_timer_sync(&dwork->timer))
2997 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2998 	local_irq_enable();
2999 	return flush_work(&dwork->work);
3000 }
3001 EXPORT_SYMBOL(flush_delayed_work);
3002 
3003 /**
3004  * cancel_delayed_work - cancel a delayed work
3005  * @dwork: delayed_work to cancel
3006  *
3007  * Kill off a pending delayed_work.
3008  *
3009  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3010  * pending.
3011  *
3012  * Note:
3013  * The work callback function may still be running on return, unless
3014  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3015  * use cancel_delayed_work_sync() to wait on it.
3016  *
3017  * This function is safe to call from any context including IRQ handler.
3018  */
3019 bool cancel_delayed_work(struct delayed_work *dwork)
3020 {
3021 	unsigned long flags;
3022 	int ret;
3023 
3024 	do {
3025 		ret = try_to_grab_pending(&dwork->work, true, &flags);
3026 	} while (unlikely(ret == -EAGAIN));
3027 
3028 	if (unlikely(ret < 0))
3029 		return false;
3030 
3031 	set_work_pool_and_clear_pending(&dwork->work,
3032 					get_work_pool_id(&dwork->work));
3033 	local_irq_restore(flags);
3034 	return ret;
3035 }
3036 EXPORT_SYMBOL(cancel_delayed_work);
3037 
3038 /**
3039  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3040  * @dwork: the delayed work cancel
3041  *
3042  * This is cancel_work_sync() for delayed works.
3043  *
3044  * Return:
3045  * %true if @dwork was pending, %false otherwise.
3046  */
3047 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3048 {
3049 	return __cancel_work_timer(&dwork->work, true);
3050 }
3051 EXPORT_SYMBOL(cancel_delayed_work_sync);
3052 
3053 /**
3054  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3055  * @func: the function to call
3056  *
3057  * schedule_on_each_cpu() executes @func on each online CPU using the
3058  * system workqueue and blocks until all CPUs have completed.
3059  * schedule_on_each_cpu() is very slow.
3060  *
3061  * Return:
3062  * 0 on success, -errno on failure.
3063  */
3064 int schedule_on_each_cpu(work_func_t func)
3065 {
3066 	int cpu;
3067 	struct work_struct __percpu *works;
3068 
3069 	works = alloc_percpu(struct work_struct);
3070 	if (!works)
3071 		return -ENOMEM;
3072 
3073 	get_online_cpus();
3074 
3075 	for_each_online_cpu(cpu) {
3076 		struct work_struct *work = per_cpu_ptr(works, cpu);
3077 
3078 		INIT_WORK(work, func);
3079 		schedule_work_on(cpu, work);
3080 	}
3081 
3082 	for_each_online_cpu(cpu)
3083 		flush_work(per_cpu_ptr(works, cpu));
3084 
3085 	put_online_cpus();
3086 	free_percpu(works);
3087 	return 0;
3088 }
3089 
3090 /**
3091  * execute_in_process_context - reliably execute the routine with user context
3092  * @fn:		the function to execute
3093  * @ew:		guaranteed storage for the execute work structure (must
3094  *		be available when the work executes)
3095  *
3096  * Executes the function immediately if process context is available,
3097  * otherwise schedules the function for delayed execution.
3098  *
3099  * Return:	0 - function was executed
3100  *		1 - function was scheduled for execution
3101  */
3102 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3103 {
3104 	if (!in_interrupt()) {
3105 		fn(&ew->work);
3106 		return 0;
3107 	}
3108 
3109 	INIT_WORK(&ew->work, fn);
3110 	schedule_work(&ew->work);
3111 
3112 	return 1;
3113 }
3114 EXPORT_SYMBOL_GPL(execute_in_process_context);
3115 
3116 /**
3117  * free_workqueue_attrs - free a workqueue_attrs
3118  * @attrs: workqueue_attrs to free
3119  *
3120  * Undo alloc_workqueue_attrs().
3121  */
3122 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3123 {
3124 	if (attrs) {
3125 		free_cpumask_var(attrs->cpumask);
3126 		kfree(attrs);
3127 	}
3128 }
3129 
3130 /**
3131  * alloc_workqueue_attrs - allocate a workqueue_attrs
3132  * @gfp_mask: allocation mask to use
3133  *
3134  * Allocate a new workqueue_attrs, initialize with default settings and
3135  * return it.
3136  *
3137  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3138  */
3139 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3140 {
3141 	struct workqueue_attrs *attrs;
3142 
3143 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3144 	if (!attrs)
3145 		goto fail;
3146 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3147 		goto fail;
3148 
3149 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3150 	return attrs;
3151 fail:
3152 	free_workqueue_attrs(attrs);
3153 	return NULL;
3154 }
3155 
3156 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3157 				 const struct workqueue_attrs *from)
3158 {
3159 	to->nice = from->nice;
3160 	cpumask_copy(to->cpumask, from->cpumask);
3161 	/*
3162 	 * Unlike hash and equality test, this function doesn't ignore
3163 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3164 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3165 	 */
3166 	to->no_numa = from->no_numa;
3167 }
3168 
3169 /* hash value of the content of @attr */
3170 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3171 {
3172 	u32 hash = 0;
3173 
3174 	hash = jhash_1word(attrs->nice, hash);
3175 	hash = jhash(cpumask_bits(attrs->cpumask),
3176 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3177 	return hash;
3178 }
3179 
3180 /* content equality test */
3181 static bool wqattrs_equal(const struct workqueue_attrs *a,
3182 			  const struct workqueue_attrs *b)
3183 {
3184 	if (a->nice != b->nice)
3185 		return false;
3186 	if (!cpumask_equal(a->cpumask, b->cpumask))
3187 		return false;
3188 	return true;
3189 }
3190 
3191 /**
3192  * init_worker_pool - initialize a newly zalloc'd worker_pool
3193  * @pool: worker_pool to initialize
3194  *
3195  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3196  *
3197  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3198  * inside @pool proper are initialized and put_unbound_pool() can be called
3199  * on @pool safely to release it.
3200  */
3201 static int init_worker_pool(struct worker_pool *pool)
3202 {
3203 	spin_lock_init(&pool->lock);
3204 	pool->id = -1;
3205 	pool->cpu = -1;
3206 	pool->node = NUMA_NO_NODE;
3207 	pool->flags |= POOL_DISASSOCIATED;
3208 	pool->watchdog_ts = jiffies;
3209 	INIT_LIST_HEAD(&pool->worklist);
3210 	INIT_LIST_HEAD(&pool->idle_list);
3211 	hash_init(pool->busy_hash);
3212 
3213 	init_timer_deferrable(&pool->idle_timer);
3214 	pool->idle_timer.function = idle_worker_timeout;
3215 	pool->idle_timer.data = (unsigned long)pool;
3216 
3217 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3218 		    (unsigned long)pool);
3219 
3220 	mutex_init(&pool->manager_arb);
3221 	mutex_init(&pool->attach_mutex);
3222 	INIT_LIST_HEAD(&pool->workers);
3223 
3224 	ida_init(&pool->worker_ida);
3225 	INIT_HLIST_NODE(&pool->hash_node);
3226 	pool->refcnt = 1;
3227 
3228 	/* shouldn't fail above this point */
3229 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3230 	if (!pool->attrs)
3231 		return -ENOMEM;
3232 	return 0;
3233 }
3234 
3235 static void rcu_free_wq(struct rcu_head *rcu)
3236 {
3237 	struct workqueue_struct *wq =
3238 		container_of(rcu, struct workqueue_struct, rcu);
3239 
3240 	if (!(wq->flags & WQ_UNBOUND))
3241 		free_percpu(wq->cpu_pwqs);
3242 	else
3243 		free_workqueue_attrs(wq->unbound_attrs);
3244 
3245 	kfree(wq->rescuer);
3246 	kfree(wq);
3247 }
3248 
3249 static void rcu_free_pool(struct rcu_head *rcu)
3250 {
3251 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3252 
3253 	ida_destroy(&pool->worker_ida);
3254 	free_workqueue_attrs(pool->attrs);
3255 	kfree(pool);
3256 }
3257 
3258 /**
3259  * put_unbound_pool - put a worker_pool
3260  * @pool: worker_pool to put
3261  *
3262  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3263  * safe manner.  get_unbound_pool() calls this function on its failure path
3264  * and this function should be able to release pools which went through,
3265  * successfully or not, init_worker_pool().
3266  *
3267  * Should be called with wq_pool_mutex held.
3268  */
3269 static void put_unbound_pool(struct worker_pool *pool)
3270 {
3271 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3272 	struct worker *worker;
3273 
3274 	lockdep_assert_held(&wq_pool_mutex);
3275 
3276 	if (--pool->refcnt)
3277 		return;
3278 
3279 	/* sanity checks */
3280 	if (WARN_ON(!(pool->cpu < 0)) ||
3281 	    WARN_ON(!list_empty(&pool->worklist)))
3282 		return;
3283 
3284 	/* release id and unhash */
3285 	if (pool->id >= 0)
3286 		idr_remove(&worker_pool_idr, pool->id);
3287 	hash_del(&pool->hash_node);
3288 
3289 	/*
3290 	 * Become the manager and destroy all workers.  Grabbing
3291 	 * manager_arb prevents @pool's workers from blocking on
3292 	 * attach_mutex.
3293 	 */
3294 	mutex_lock(&pool->manager_arb);
3295 
3296 	spin_lock_irq(&pool->lock);
3297 	while ((worker = first_idle_worker(pool)))
3298 		destroy_worker(worker);
3299 	WARN_ON(pool->nr_workers || pool->nr_idle);
3300 	spin_unlock_irq(&pool->lock);
3301 
3302 	mutex_lock(&pool->attach_mutex);
3303 	if (!list_empty(&pool->workers))
3304 		pool->detach_completion = &detach_completion;
3305 	mutex_unlock(&pool->attach_mutex);
3306 
3307 	if (pool->detach_completion)
3308 		wait_for_completion(pool->detach_completion);
3309 
3310 	mutex_unlock(&pool->manager_arb);
3311 
3312 	/* shut down the timers */
3313 	del_timer_sync(&pool->idle_timer);
3314 	del_timer_sync(&pool->mayday_timer);
3315 
3316 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3317 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3318 }
3319 
3320 /**
3321  * get_unbound_pool - get a worker_pool with the specified attributes
3322  * @attrs: the attributes of the worker_pool to get
3323  *
3324  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3325  * reference count and return it.  If there already is a matching
3326  * worker_pool, it will be used; otherwise, this function attempts to
3327  * create a new one.
3328  *
3329  * Should be called with wq_pool_mutex held.
3330  *
3331  * Return: On success, a worker_pool with the same attributes as @attrs.
3332  * On failure, %NULL.
3333  */
3334 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3335 {
3336 	u32 hash = wqattrs_hash(attrs);
3337 	struct worker_pool *pool;
3338 	int node;
3339 	int target_node = NUMA_NO_NODE;
3340 
3341 	lockdep_assert_held(&wq_pool_mutex);
3342 
3343 	/* do we already have a matching pool? */
3344 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3345 		if (wqattrs_equal(pool->attrs, attrs)) {
3346 			pool->refcnt++;
3347 			return pool;
3348 		}
3349 	}
3350 
3351 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3352 	if (wq_numa_enabled) {
3353 		for_each_node(node) {
3354 			if (cpumask_subset(attrs->cpumask,
3355 					   wq_numa_possible_cpumask[node])) {
3356 				target_node = node;
3357 				break;
3358 			}
3359 		}
3360 	}
3361 
3362 	/* nope, create a new one */
3363 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3364 	if (!pool || init_worker_pool(pool) < 0)
3365 		goto fail;
3366 
3367 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3368 	copy_workqueue_attrs(pool->attrs, attrs);
3369 	pool->node = target_node;
3370 
3371 	/*
3372 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3373 	 * 'struct workqueue_attrs' comments for detail.
3374 	 */
3375 	pool->attrs->no_numa = false;
3376 
3377 	if (worker_pool_assign_id(pool) < 0)
3378 		goto fail;
3379 
3380 	/* create and start the initial worker */
3381 	if (!create_worker(pool))
3382 		goto fail;
3383 
3384 	/* install */
3385 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3386 
3387 	return pool;
3388 fail:
3389 	if (pool)
3390 		put_unbound_pool(pool);
3391 	return NULL;
3392 }
3393 
3394 static void rcu_free_pwq(struct rcu_head *rcu)
3395 {
3396 	kmem_cache_free(pwq_cache,
3397 			container_of(rcu, struct pool_workqueue, rcu));
3398 }
3399 
3400 /*
3401  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3402  * and needs to be destroyed.
3403  */
3404 static void pwq_unbound_release_workfn(struct work_struct *work)
3405 {
3406 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3407 						  unbound_release_work);
3408 	struct workqueue_struct *wq = pwq->wq;
3409 	struct worker_pool *pool = pwq->pool;
3410 	bool is_last;
3411 
3412 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3413 		return;
3414 
3415 	mutex_lock(&wq->mutex);
3416 	list_del_rcu(&pwq->pwqs_node);
3417 	is_last = list_empty(&wq->pwqs);
3418 	mutex_unlock(&wq->mutex);
3419 
3420 	mutex_lock(&wq_pool_mutex);
3421 	put_unbound_pool(pool);
3422 	mutex_unlock(&wq_pool_mutex);
3423 
3424 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3425 
3426 	/*
3427 	 * If we're the last pwq going away, @wq is already dead and no one
3428 	 * is gonna access it anymore.  Schedule RCU free.
3429 	 */
3430 	if (is_last)
3431 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3432 }
3433 
3434 /**
3435  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3436  * @pwq: target pool_workqueue
3437  *
3438  * If @pwq isn't freezing, set @pwq->max_active to the associated
3439  * workqueue's saved_max_active and activate delayed work items
3440  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3441  */
3442 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3443 {
3444 	struct workqueue_struct *wq = pwq->wq;
3445 	bool freezable = wq->flags & WQ_FREEZABLE;
3446 
3447 	/* for @wq->saved_max_active */
3448 	lockdep_assert_held(&wq->mutex);
3449 
3450 	/* fast exit for non-freezable wqs */
3451 	if (!freezable && pwq->max_active == wq->saved_max_active)
3452 		return;
3453 
3454 	spin_lock_irq(&pwq->pool->lock);
3455 
3456 	/*
3457 	 * During [un]freezing, the caller is responsible for ensuring that
3458 	 * this function is called at least once after @workqueue_freezing
3459 	 * is updated and visible.
3460 	 */
3461 	if (!freezable || !workqueue_freezing) {
3462 		pwq->max_active = wq->saved_max_active;
3463 
3464 		while (!list_empty(&pwq->delayed_works) &&
3465 		       pwq->nr_active < pwq->max_active)
3466 			pwq_activate_first_delayed(pwq);
3467 
3468 		/*
3469 		 * Need to kick a worker after thawed or an unbound wq's
3470 		 * max_active is bumped.  It's a slow path.  Do it always.
3471 		 */
3472 		wake_up_worker(pwq->pool);
3473 	} else {
3474 		pwq->max_active = 0;
3475 	}
3476 
3477 	spin_unlock_irq(&pwq->pool->lock);
3478 }
3479 
3480 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3481 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3482 		     struct worker_pool *pool)
3483 {
3484 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3485 
3486 	memset(pwq, 0, sizeof(*pwq));
3487 
3488 	pwq->pool = pool;
3489 	pwq->wq = wq;
3490 	pwq->flush_color = -1;
3491 	pwq->refcnt = 1;
3492 	INIT_LIST_HEAD(&pwq->delayed_works);
3493 	INIT_LIST_HEAD(&pwq->pwqs_node);
3494 	INIT_LIST_HEAD(&pwq->mayday_node);
3495 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3496 }
3497 
3498 /* sync @pwq with the current state of its associated wq and link it */
3499 static void link_pwq(struct pool_workqueue *pwq)
3500 {
3501 	struct workqueue_struct *wq = pwq->wq;
3502 
3503 	lockdep_assert_held(&wq->mutex);
3504 
3505 	/* may be called multiple times, ignore if already linked */
3506 	if (!list_empty(&pwq->pwqs_node))
3507 		return;
3508 
3509 	/* set the matching work_color */
3510 	pwq->work_color = wq->work_color;
3511 
3512 	/* sync max_active to the current setting */
3513 	pwq_adjust_max_active(pwq);
3514 
3515 	/* link in @pwq */
3516 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3517 }
3518 
3519 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3520 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3521 					const struct workqueue_attrs *attrs)
3522 {
3523 	struct worker_pool *pool;
3524 	struct pool_workqueue *pwq;
3525 
3526 	lockdep_assert_held(&wq_pool_mutex);
3527 
3528 	pool = get_unbound_pool(attrs);
3529 	if (!pool)
3530 		return NULL;
3531 
3532 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3533 	if (!pwq) {
3534 		put_unbound_pool(pool);
3535 		return NULL;
3536 	}
3537 
3538 	init_pwq(pwq, wq, pool);
3539 	return pwq;
3540 }
3541 
3542 /**
3543  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3544  * @attrs: the wq_attrs of the default pwq of the target workqueue
3545  * @node: the target NUMA node
3546  * @cpu_going_down: if >= 0, the CPU to consider as offline
3547  * @cpumask: outarg, the resulting cpumask
3548  *
3549  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3550  * @cpu_going_down is >= 0, that cpu is considered offline during
3551  * calculation.  The result is stored in @cpumask.
3552  *
3553  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3554  * enabled and @node has online CPUs requested by @attrs, the returned
3555  * cpumask is the intersection of the possible CPUs of @node and
3556  * @attrs->cpumask.
3557  *
3558  * The caller is responsible for ensuring that the cpumask of @node stays
3559  * stable.
3560  *
3561  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3562  * %false if equal.
3563  */
3564 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3565 				 int cpu_going_down, cpumask_t *cpumask)
3566 {
3567 	if (!wq_numa_enabled || attrs->no_numa)
3568 		goto use_dfl;
3569 
3570 	/* does @node have any online CPUs @attrs wants? */
3571 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3572 	if (cpu_going_down >= 0)
3573 		cpumask_clear_cpu(cpu_going_down, cpumask);
3574 
3575 	if (cpumask_empty(cpumask))
3576 		goto use_dfl;
3577 
3578 	/* yeap, return possible CPUs in @node that @attrs wants */
3579 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3580 	return !cpumask_equal(cpumask, attrs->cpumask);
3581 
3582 use_dfl:
3583 	cpumask_copy(cpumask, attrs->cpumask);
3584 	return false;
3585 }
3586 
3587 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3588 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3589 						   int node,
3590 						   struct pool_workqueue *pwq)
3591 {
3592 	struct pool_workqueue *old_pwq;
3593 
3594 	lockdep_assert_held(&wq_pool_mutex);
3595 	lockdep_assert_held(&wq->mutex);
3596 
3597 	/* link_pwq() can handle duplicate calls */
3598 	link_pwq(pwq);
3599 
3600 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3601 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3602 	return old_pwq;
3603 }
3604 
3605 /* context to store the prepared attrs & pwqs before applying */
3606 struct apply_wqattrs_ctx {
3607 	struct workqueue_struct	*wq;		/* target workqueue */
3608 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3609 	struct list_head	list;		/* queued for batching commit */
3610 	struct pool_workqueue	*dfl_pwq;
3611 	struct pool_workqueue	*pwq_tbl[];
3612 };
3613 
3614 /* free the resources after success or abort */
3615 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3616 {
3617 	if (ctx) {
3618 		int node;
3619 
3620 		for_each_node(node)
3621 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3622 		put_pwq_unlocked(ctx->dfl_pwq);
3623 
3624 		free_workqueue_attrs(ctx->attrs);
3625 
3626 		kfree(ctx);
3627 	}
3628 }
3629 
3630 /* allocate the attrs and pwqs for later installation */
3631 static struct apply_wqattrs_ctx *
3632 apply_wqattrs_prepare(struct workqueue_struct *wq,
3633 		      const struct workqueue_attrs *attrs)
3634 {
3635 	struct apply_wqattrs_ctx *ctx;
3636 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3637 	int node;
3638 
3639 	lockdep_assert_held(&wq_pool_mutex);
3640 
3641 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3642 		      GFP_KERNEL);
3643 
3644 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3645 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3646 	if (!ctx || !new_attrs || !tmp_attrs)
3647 		goto out_free;
3648 
3649 	/*
3650 	 * Calculate the attrs of the default pwq.
3651 	 * If the user configured cpumask doesn't overlap with the
3652 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3653 	 */
3654 	copy_workqueue_attrs(new_attrs, attrs);
3655 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3656 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3657 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3658 
3659 	/*
3660 	 * We may create multiple pwqs with differing cpumasks.  Make a
3661 	 * copy of @new_attrs which will be modified and used to obtain
3662 	 * pools.
3663 	 */
3664 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3665 
3666 	/*
3667 	 * If something goes wrong during CPU up/down, we'll fall back to
3668 	 * the default pwq covering whole @attrs->cpumask.  Always create
3669 	 * it even if we don't use it immediately.
3670 	 */
3671 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3672 	if (!ctx->dfl_pwq)
3673 		goto out_free;
3674 
3675 	for_each_node(node) {
3676 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3677 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3678 			if (!ctx->pwq_tbl[node])
3679 				goto out_free;
3680 		} else {
3681 			ctx->dfl_pwq->refcnt++;
3682 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3683 		}
3684 	}
3685 
3686 	/* save the user configured attrs and sanitize it. */
3687 	copy_workqueue_attrs(new_attrs, attrs);
3688 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3689 	ctx->attrs = new_attrs;
3690 
3691 	ctx->wq = wq;
3692 	free_workqueue_attrs(tmp_attrs);
3693 	return ctx;
3694 
3695 out_free:
3696 	free_workqueue_attrs(tmp_attrs);
3697 	free_workqueue_attrs(new_attrs);
3698 	apply_wqattrs_cleanup(ctx);
3699 	return NULL;
3700 }
3701 
3702 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3703 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3704 {
3705 	int node;
3706 
3707 	/* all pwqs have been created successfully, let's install'em */
3708 	mutex_lock(&ctx->wq->mutex);
3709 
3710 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3711 
3712 	/* save the previous pwq and install the new one */
3713 	for_each_node(node)
3714 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3715 							  ctx->pwq_tbl[node]);
3716 
3717 	/* @dfl_pwq might not have been used, ensure it's linked */
3718 	link_pwq(ctx->dfl_pwq);
3719 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3720 
3721 	mutex_unlock(&ctx->wq->mutex);
3722 }
3723 
3724 static void apply_wqattrs_lock(void)
3725 {
3726 	/* CPUs should stay stable across pwq creations and installations */
3727 	get_online_cpus();
3728 	mutex_lock(&wq_pool_mutex);
3729 }
3730 
3731 static void apply_wqattrs_unlock(void)
3732 {
3733 	mutex_unlock(&wq_pool_mutex);
3734 	put_online_cpus();
3735 }
3736 
3737 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3738 					const struct workqueue_attrs *attrs)
3739 {
3740 	struct apply_wqattrs_ctx *ctx;
3741 
3742 	/* only unbound workqueues can change attributes */
3743 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3744 		return -EINVAL;
3745 
3746 	/* creating multiple pwqs breaks ordering guarantee */
3747 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3748 		return -EINVAL;
3749 
3750 	ctx = apply_wqattrs_prepare(wq, attrs);
3751 	if (!ctx)
3752 		return -ENOMEM;
3753 
3754 	/* the ctx has been prepared successfully, let's commit it */
3755 	apply_wqattrs_commit(ctx);
3756 	apply_wqattrs_cleanup(ctx);
3757 
3758 	return 0;
3759 }
3760 
3761 /**
3762  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3763  * @wq: the target workqueue
3764  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3765  *
3766  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3767  * machines, this function maps a separate pwq to each NUMA node with
3768  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3769  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3770  * items finish.  Note that a work item which repeatedly requeues itself
3771  * back-to-back will stay on its current pwq.
3772  *
3773  * Performs GFP_KERNEL allocations.
3774  *
3775  * Return: 0 on success and -errno on failure.
3776  */
3777 int apply_workqueue_attrs(struct workqueue_struct *wq,
3778 			  const struct workqueue_attrs *attrs)
3779 {
3780 	int ret;
3781 
3782 	apply_wqattrs_lock();
3783 	ret = apply_workqueue_attrs_locked(wq, attrs);
3784 	apply_wqattrs_unlock();
3785 
3786 	return ret;
3787 }
3788 
3789 /**
3790  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3791  * @wq: the target workqueue
3792  * @cpu: the CPU coming up or going down
3793  * @online: whether @cpu is coming up or going down
3794  *
3795  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3796  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3797  * @wq accordingly.
3798  *
3799  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3800  * falls back to @wq->dfl_pwq which may not be optimal but is always
3801  * correct.
3802  *
3803  * Note that when the last allowed CPU of a NUMA node goes offline for a
3804  * workqueue with a cpumask spanning multiple nodes, the workers which were
3805  * already executing the work items for the workqueue will lose their CPU
3806  * affinity and may execute on any CPU.  This is similar to how per-cpu
3807  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3808  * affinity, it's the user's responsibility to flush the work item from
3809  * CPU_DOWN_PREPARE.
3810  */
3811 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3812 				   bool online)
3813 {
3814 	int node = cpu_to_node(cpu);
3815 	int cpu_off = online ? -1 : cpu;
3816 	struct pool_workqueue *old_pwq = NULL, *pwq;
3817 	struct workqueue_attrs *target_attrs;
3818 	cpumask_t *cpumask;
3819 
3820 	lockdep_assert_held(&wq_pool_mutex);
3821 
3822 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3823 	    wq->unbound_attrs->no_numa)
3824 		return;
3825 
3826 	/*
3827 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3828 	 * Let's use a preallocated one.  The following buf is protected by
3829 	 * CPU hotplug exclusion.
3830 	 */
3831 	target_attrs = wq_update_unbound_numa_attrs_buf;
3832 	cpumask = target_attrs->cpumask;
3833 
3834 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3835 	pwq = unbound_pwq_by_node(wq, node);
3836 
3837 	/*
3838 	 * Let's determine what needs to be done.  If the target cpumask is
3839 	 * different from the default pwq's, we need to compare it to @pwq's
3840 	 * and create a new one if they don't match.  If the target cpumask
3841 	 * equals the default pwq's, the default pwq should be used.
3842 	 */
3843 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3844 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3845 			return;
3846 	} else {
3847 		goto use_dfl_pwq;
3848 	}
3849 
3850 	/* create a new pwq */
3851 	pwq = alloc_unbound_pwq(wq, target_attrs);
3852 	if (!pwq) {
3853 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3854 			wq->name);
3855 		goto use_dfl_pwq;
3856 	}
3857 
3858 	/* Install the new pwq. */
3859 	mutex_lock(&wq->mutex);
3860 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3861 	goto out_unlock;
3862 
3863 use_dfl_pwq:
3864 	mutex_lock(&wq->mutex);
3865 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3866 	get_pwq(wq->dfl_pwq);
3867 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3868 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3869 out_unlock:
3870 	mutex_unlock(&wq->mutex);
3871 	put_pwq_unlocked(old_pwq);
3872 }
3873 
3874 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3875 {
3876 	bool highpri = wq->flags & WQ_HIGHPRI;
3877 	int cpu, ret;
3878 
3879 	if (!(wq->flags & WQ_UNBOUND)) {
3880 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3881 		if (!wq->cpu_pwqs)
3882 			return -ENOMEM;
3883 
3884 		for_each_possible_cpu(cpu) {
3885 			struct pool_workqueue *pwq =
3886 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3887 			struct worker_pool *cpu_pools =
3888 				per_cpu(cpu_worker_pools, cpu);
3889 
3890 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3891 
3892 			mutex_lock(&wq->mutex);
3893 			link_pwq(pwq);
3894 			mutex_unlock(&wq->mutex);
3895 		}
3896 		return 0;
3897 	} else if (wq->flags & __WQ_ORDERED) {
3898 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3899 		/* there should only be single pwq for ordering guarantee */
3900 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3901 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3902 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3903 		return ret;
3904 	} else {
3905 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3906 	}
3907 }
3908 
3909 static int wq_clamp_max_active(int max_active, unsigned int flags,
3910 			       const char *name)
3911 {
3912 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3913 
3914 	if (max_active < 1 || max_active > lim)
3915 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3916 			max_active, name, 1, lim);
3917 
3918 	return clamp_val(max_active, 1, lim);
3919 }
3920 
3921 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3922 					       unsigned int flags,
3923 					       int max_active,
3924 					       struct lock_class_key *key,
3925 					       const char *lock_name, ...)
3926 {
3927 	size_t tbl_size = 0;
3928 	va_list args;
3929 	struct workqueue_struct *wq;
3930 	struct pool_workqueue *pwq;
3931 
3932 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3933 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3934 		flags |= WQ_UNBOUND;
3935 
3936 	/* allocate wq and format name */
3937 	if (flags & WQ_UNBOUND)
3938 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3939 
3940 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3941 	if (!wq)
3942 		return NULL;
3943 
3944 	if (flags & WQ_UNBOUND) {
3945 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3946 		if (!wq->unbound_attrs)
3947 			goto err_free_wq;
3948 	}
3949 
3950 	va_start(args, lock_name);
3951 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3952 	va_end(args);
3953 
3954 	max_active = max_active ?: WQ_DFL_ACTIVE;
3955 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3956 
3957 	/* init wq */
3958 	wq->flags = flags;
3959 	wq->saved_max_active = max_active;
3960 	mutex_init(&wq->mutex);
3961 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3962 	INIT_LIST_HEAD(&wq->pwqs);
3963 	INIT_LIST_HEAD(&wq->flusher_queue);
3964 	INIT_LIST_HEAD(&wq->flusher_overflow);
3965 	INIT_LIST_HEAD(&wq->maydays);
3966 
3967 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3968 	INIT_LIST_HEAD(&wq->list);
3969 
3970 	if (alloc_and_link_pwqs(wq) < 0)
3971 		goto err_free_wq;
3972 
3973 	/*
3974 	 * Workqueues which may be used during memory reclaim should
3975 	 * have a rescuer to guarantee forward progress.
3976 	 */
3977 	if (flags & WQ_MEM_RECLAIM) {
3978 		struct worker *rescuer;
3979 
3980 		rescuer = alloc_worker(NUMA_NO_NODE);
3981 		if (!rescuer)
3982 			goto err_destroy;
3983 
3984 		rescuer->rescue_wq = wq;
3985 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3986 					       wq->name);
3987 		if (IS_ERR(rescuer->task)) {
3988 			kfree(rescuer);
3989 			goto err_destroy;
3990 		}
3991 
3992 		wq->rescuer = rescuer;
3993 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3994 		wake_up_process(rescuer->task);
3995 	}
3996 
3997 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3998 		goto err_destroy;
3999 
4000 	/*
4001 	 * wq_pool_mutex protects global freeze state and workqueues list.
4002 	 * Grab it, adjust max_active and add the new @wq to workqueues
4003 	 * list.
4004 	 */
4005 	mutex_lock(&wq_pool_mutex);
4006 
4007 	mutex_lock(&wq->mutex);
4008 	for_each_pwq(pwq, wq)
4009 		pwq_adjust_max_active(pwq);
4010 	mutex_unlock(&wq->mutex);
4011 
4012 	list_add_tail_rcu(&wq->list, &workqueues);
4013 
4014 	mutex_unlock(&wq_pool_mutex);
4015 
4016 	return wq;
4017 
4018 err_free_wq:
4019 	free_workqueue_attrs(wq->unbound_attrs);
4020 	kfree(wq);
4021 	return NULL;
4022 err_destroy:
4023 	destroy_workqueue(wq);
4024 	return NULL;
4025 }
4026 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4027 
4028 /**
4029  * destroy_workqueue - safely terminate a workqueue
4030  * @wq: target workqueue
4031  *
4032  * Safely destroy a workqueue. All work currently pending will be done first.
4033  */
4034 void destroy_workqueue(struct workqueue_struct *wq)
4035 {
4036 	struct pool_workqueue *pwq;
4037 	int node;
4038 
4039 	/* drain it before proceeding with destruction */
4040 	drain_workqueue(wq);
4041 
4042 	/* sanity checks */
4043 	mutex_lock(&wq->mutex);
4044 	for_each_pwq(pwq, wq) {
4045 		int i;
4046 
4047 		for (i = 0; i < WORK_NR_COLORS; i++) {
4048 			if (WARN_ON(pwq->nr_in_flight[i])) {
4049 				mutex_unlock(&wq->mutex);
4050 				return;
4051 			}
4052 		}
4053 
4054 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4055 		    WARN_ON(pwq->nr_active) ||
4056 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4057 			mutex_unlock(&wq->mutex);
4058 			return;
4059 		}
4060 	}
4061 	mutex_unlock(&wq->mutex);
4062 
4063 	/*
4064 	 * wq list is used to freeze wq, remove from list after
4065 	 * flushing is complete in case freeze races us.
4066 	 */
4067 	mutex_lock(&wq_pool_mutex);
4068 	list_del_rcu(&wq->list);
4069 	mutex_unlock(&wq_pool_mutex);
4070 
4071 	workqueue_sysfs_unregister(wq);
4072 
4073 	if (wq->rescuer)
4074 		kthread_stop(wq->rescuer->task);
4075 
4076 	if (!(wq->flags & WQ_UNBOUND)) {
4077 		/*
4078 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4079 		 * schedule RCU free.
4080 		 */
4081 		call_rcu_sched(&wq->rcu, rcu_free_wq);
4082 	} else {
4083 		/*
4084 		 * We're the sole accessor of @wq at this point.  Directly
4085 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4086 		 * @wq will be freed when the last pwq is released.
4087 		 */
4088 		for_each_node(node) {
4089 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4090 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4091 			put_pwq_unlocked(pwq);
4092 		}
4093 
4094 		/*
4095 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4096 		 * put.  Don't access it afterwards.
4097 		 */
4098 		pwq = wq->dfl_pwq;
4099 		wq->dfl_pwq = NULL;
4100 		put_pwq_unlocked(pwq);
4101 	}
4102 }
4103 EXPORT_SYMBOL_GPL(destroy_workqueue);
4104 
4105 /**
4106  * workqueue_set_max_active - adjust max_active of a workqueue
4107  * @wq: target workqueue
4108  * @max_active: new max_active value.
4109  *
4110  * Set max_active of @wq to @max_active.
4111  *
4112  * CONTEXT:
4113  * Don't call from IRQ context.
4114  */
4115 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4116 {
4117 	struct pool_workqueue *pwq;
4118 
4119 	/* disallow meddling with max_active for ordered workqueues */
4120 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4121 		return;
4122 
4123 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4124 
4125 	mutex_lock(&wq->mutex);
4126 
4127 	wq->saved_max_active = max_active;
4128 
4129 	for_each_pwq(pwq, wq)
4130 		pwq_adjust_max_active(pwq);
4131 
4132 	mutex_unlock(&wq->mutex);
4133 }
4134 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4135 
4136 /**
4137  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4138  *
4139  * Determine whether %current is a workqueue rescuer.  Can be used from
4140  * work functions to determine whether it's being run off the rescuer task.
4141  *
4142  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4143  */
4144 bool current_is_workqueue_rescuer(void)
4145 {
4146 	struct worker *worker = current_wq_worker();
4147 
4148 	return worker && worker->rescue_wq;
4149 }
4150 
4151 /**
4152  * workqueue_congested - test whether a workqueue is congested
4153  * @cpu: CPU in question
4154  * @wq: target workqueue
4155  *
4156  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4157  * no synchronization around this function and the test result is
4158  * unreliable and only useful as advisory hints or for debugging.
4159  *
4160  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4161  * Note that both per-cpu and unbound workqueues may be associated with
4162  * multiple pool_workqueues which have separate congested states.  A
4163  * workqueue being congested on one CPU doesn't mean the workqueue is also
4164  * contested on other CPUs / NUMA nodes.
4165  *
4166  * Return:
4167  * %true if congested, %false otherwise.
4168  */
4169 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4170 {
4171 	struct pool_workqueue *pwq;
4172 	bool ret;
4173 
4174 	rcu_read_lock_sched();
4175 
4176 	if (cpu == WORK_CPU_UNBOUND)
4177 		cpu = smp_processor_id();
4178 
4179 	if (!(wq->flags & WQ_UNBOUND))
4180 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4181 	else
4182 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4183 
4184 	ret = !list_empty(&pwq->delayed_works);
4185 	rcu_read_unlock_sched();
4186 
4187 	return ret;
4188 }
4189 EXPORT_SYMBOL_GPL(workqueue_congested);
4190 
4191 /**
4192  * work_busy - test whether a work is currently pending or running
4193  * @work: the work to be tested
4194  *
4195  * Test whether @work is currently pending or running.  There is no
4196  * synchronization around this function and the test result is
4197  * unreliable and only useful as advisory hints or for debugging.
4198  *
4199  * Return:
4200  * OR'd bitmask of WORK_BUSY_* bits.
4201  */
4202 unsigned int work_busy(struct work_struct *work)
4203 {
4204 	struct worker_pool *pool;
4205 	unsigned long flags;
4206 	unsigned int ret = 0;
4207 
4208 	if (work_pending(work))
4209 		ret |= WORK_BUSY_PENDING;
4210 
4211 	local_irq_save(flags);
4212 	pool = get_work_pool(work);
4213 	if (pool) {
4214 		spin_lock(&pool->lock);
4215 		if (find_worker_executing_work(pool, work))
4216 			ret |= WORK_BUSY_RUNNING;
4217 		spin_unlock(&pool->lock);
4218 	}
4219 	local_irq_restore(flags);
4220 
4221 	return ret;
4222 }
4223 EXPORT_SYMBOL_GPL(work_busy);
4224 
4225 /**
4226  * set_worker_desc - set description for the current work item
4227  * @fmt: printf-style format string
4228  * @...: arguments for the format string
4229  *
4230  * This function can be called by a running work function to describe what
4231  * the work item is about.  If the worker task gets dumped, this
4232  * information will be printed out together to help debugging.  The
4233  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4234  */
4235 void set_worker_desc(const char *fmt, ...)
4236 {
4237 	struct worker *worker = current_wq_worker();
4238 	va_list args;
4239 
4240 	if (worker) {
4241 		va_start(args, fmt);
4242 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4243 		va_end(args);
4244 		worker->desc_valid = true;
4245 	}
4246 }
4247 
4248 /**
4249  * print_worker_info - print out worker information and description
4250  * @log_lvl: the log level to use when printing
4251  * @task: target task
4252  *
4253  * If @task is a worker and currently executing a work item, print out the
4254  * name of the workqueue being serviced and worker description set with
4255  * set_worker_desc() by the currently executing work item.
4256  *
4257  * This function can be safely called on any task as long as the
4258  * task_struct itself is accessible.  While safe, this function isn't
4259  * synchronized and may print out mixups or garbages of limited length.
4260  */
4261 void print_worker_info(const char *log_lvl, struct task_struct *task)
4262 {
4263 	work_func_t *fn = NULL;
4264 	char name[WQ_NAME_LEN] = { };
4265 	char desc[WORKER_DESC_LEN] = { };
4266 	struct pool_workqueue *pwq = NULL;
4267 	struct workqueue_struct *wq = NULL;
4268 	bool desc_valid = false;
4269 	struct worker *worker;
4270 
4271 	if (!(task->flags & PF_WQ_WORKER))
4272 		return;
4273 
4274 	/*
4275 	 * This function is called without any synchronization and @task
4276 	 * could be in any state.  Be careful with dereferences.
4277 	 */
4278 	worker = probe_kthread_data(task);
4279 
4280 	/*
4281 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4282 	 * the original last '\0' in case the original contains garbage.
4283 	 */
4284 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4285 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4286 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4287 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4288 
4289 	/* copy worker description */
4290 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4291 	if (desc_valid)
4292 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4293 
4294 	if (fn || name[0] || desc[0]) {
4295 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4296 		if (desc[0])
4297 			pr_cont(" (%s)", desc);
4298 		pr_cont("\n");
4299 	}
4300 }
4301 
4302 static void pr_cont_pool_info(struct worker_pool *pool)
4303 {
4304 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4305 	if (pool->node != NUMA_NO_NODE)
4306 		pr_cont(" node=%d", pool->node);
4307 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4308 }
4309 
4310 static void pr_cont_work(bool comma, struct work_struct *work)
4311 {
4312 	if (work->func == wq_barrier_func) {
4313 		struct wq_barrier *barr;
4314 
4315 		barr = container_of(work, struct wq_barrier, work);
4316 
4317 		pr_cont("%s BAR(%d)", comma ? "," : "",
4318 			task_pid_nr(barr->task));
4319 	} else {
4320 		pr_cont("%s %pf", comma ? "," : "", work->func);
4321 	}
4322 }
4323 
4324 static void show_pwq(struct pool_workqueue *pwq)
4325 {
4326 	struct worker_pool *pool = pwq->pool;
4327 	struct work_struct *work;
4328 	struct worker *worker;
4329 	bool has_in_flight = false, has_pending = false;
4330 	int bkt;
4331 
4332 	pr_info("  pwq %d:", pool->id);
4333 	pr_cont_pool_info(pool);
4334 
4335 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4336 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4337 
4338 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4339 		if (worker->current_pwq == pwq) {
4340 			has_in_flight = true;
4341 			break;
4342 		}
4343 	}
4344 	if (has_in_flight) {
4345 		bool comma = false;
4346 
4347 		pr_info("    in-flight:");
4348 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4349 			if (worker->current_pwq != pwq)
4350 				continue;
4351 
4352 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4353 				task_pid_nr(worker->task),
4354 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4355 				worker->current_func);
4356 			list_for_each_entry(work, &worker->scheduled, entry)
4357 				pr_cont_work(false, work);
4358 			comma = true;
4359 		}
4360 		pr_cont("\n");
4361 	}
4362 
4363 	list_for_each_entry(work, &pool->worklist, entry) {
4364 		if (get_work_pwq(work) == pwq) {
4365 			has_pending = true;
4366 			break;
4367 		}
4368 	}
4369 	if (has_pending) {
4370 		bool comma = false;
4371 
4372 		pr_info("    pending:");
4373 		list_for_each_entry(work, &pool->worklist, entry) {
4374 			if (get_work_pwq(work) != pwq)
4375 				continue;
4376 
4377 			pr_cont_work(comma, work);
4378 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4379 		}
4380 		pr_cont("\n");
4381 	}
4382 
4383 	if (!list_empty(&pwq->delayed_works)) {
4384 		bool comma = false;
4385 
4386 		pr_info("    delayed:");
4387 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4388 			pr_cont_work(comma, work);
4389 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4390 		}
4391 		pr_cont("\n");
4392 	}
4393 }
4394 
4395 /**
4396  * show_workqueue_state - dump workqueue state
4397  *
4398  * Called from a sysrq handler and prints out all busy workqueues and
4399  * pools.
4400  */
4401 void show_workqueue_state(void)
4402 {
4403 	struct workqueue_struct *wq;
4404 	struct worker_pool *pool;
4405 	unsigned long flags;
4406 	int pi;
4407 
4408 	rcu_read_lock_sched();
4409 
4410 	pr_info("Showing busy workqueues and worker pools:\n");
4411 
4412 	list_for_each_entry_rcu(wq, &workqueues, list) {
4413 		struct pool_workqueue *pwq;
4414 		bool idle = true;
4415 
4416 		for_each_pwq(pwq, wq) {
4417 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4418 				idle = false;
4419 				break;
4420 			}
4421 		}
4422 		if (idle)
4423 			continue;
4424 
4425 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4426 
4427 		for_each_pwq(pwq, wq) {
4428 			spin_lock_irqsave(&pwq->pool->lock, flags);
4429 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4430 				show_pwq(pwq);
4431 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4432 		}
4433 	}
4434 
4435 	for_each_pool(pool, pi) {
4436 		struct worker *worker;
4437 		bool first = true;
4438 
4439 		spin_lock_irqsave(&pool->lock, flags);
4440 		if (pool->nr_workers == pool->nr_idle)
4441 			goto next_pool;
4442 
4443 		pr_info("pool %d:", pool->id);
4444 		pr_cont_pool_info(pool);
4445 		pr_cont(" hung=%us workers=%d",
4446 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4447 			pool->nr_workers);
4448 		if (pool->manager)
4449 			pr_cont(" manager: %d",
4450 				task_pid_nr(pool->manager->task));
4451 		list_for_each_entry(worker, &pool->idle_list, entry) {
4452 			pr_cont(" %s%d", first ? "idle: " : "",
4453 				task_pid_nr(worker->task));
4454 			first = false;
4455 		}
4456 		pr_cont("\n");
4457 	next_pool:
4458 		spin_unlock_irqrestore(&pool->lock, flags);
4459 	}
4460 
4461 	rcu_read_unlock_sched();
4462 }
4463 
4464 /*
4465  * CPU hotplug.
4466  *
4467  * There are two challenges in supporting CPU hotplug.  Firstly, there
4468  * are a lot of assumptions on strong associations among work, pwq and
4469  * pool which make migrating pending and scheduled works very
4470  * difficult to implement without impacting hot paths.  Secondly,
4471  * worker pools serve mix of short, long and very long running works making
4472  * blocked draining impractical.
4473  *
4474  * This is solved by allowing the pools to be disassociated from the CPU
4475  * running as an unbound one and allowing it to be reattached later if the
4476  * cpu comes back online.
4477  */
4478 
4479 static void wq_unbind_fn(struct work_struct *work)
4480 {
4481 	int cpu = smp_processor_id();
4482 	struct worker_pool *pool;
4483 	struct worker *worker;
4484 
4485 	for_each_cpu_worker_pool(pool, cpu) {
4486 		mutex_lock(&pool->attach_mutex);
4487 		spin_lock_irq(&pool->lock);
4488 
4489 		/*
4490 		 * We've blocked all attach/detach operations. Make all workers
4491 		 * unbound and set DISASSOCIATED.  Before this, all workers
4492 		 * except for the ones which are still executing works from
4493 		 * before the last CPU down must be on the cpu.  After
4494 		 * this, they may become diasporas.
4495 		 */
4496 		for_each_pool_worker(worker, pool)
4497 			worker->flags |= WORKER_UNBOUND;
4498 
4499 		pool->flags |= POOL_DISASSOCIATED;
4500 
4501 		spin_unlock_irq(&pool->lock);
4502 		mutex_unlock(&pool->attach_mutex);
4503 
4504 		/*
4505 		 * Call schedule() so that we cross rq->lock and thus can
4506 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4507 		 * This is necessary as scheduler callbacks may be invoked
4508 		 * from other cpus.
4509 		 */
4510 		schedule();
4511 
4512 		/*
4513 		 * Sched callbacks are disabled now.  Zap nr_running.
4514 		 * After this, nr_running stays zero and need_more_worker()
4515 		 * and keep_working() are always true as long as the
4516 		 * worklist is not empty.  This pool now behaves as an
4517 		 * unbound (in terms of concurrency management) pool which
4518 		 * are served by workers tied to the pool.
4519 		 */
4520 		atomic_set(&pool->nr_running, 0);
4521 
4522 		/*
4523 		 * With concurrency management just turned off, a busy
4524 		 * worker blocking could lead to lengthy stalls.  Kick off
4525 		 * unbound chain execution of currently pending work items.
4526 		 */
4527 		spin_lock_irq(&pool->lock);
4528 		wake_up_worker(pool);
4529 		spin_unlock_irq(&pool->lock);
4530 	}
4531 }
4532 
4533 /**
4534  * rebind_workers - rebind all workers of a pool to the associated CPU
4535  * @pool: pool of interest
4536  *
4537  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4538  */
4539 static void rebind_workers(struct worker_pool *pool)
4540 {
4541 	struct worker *worker;
4542 
4543 	lockdep_assert_held(&pool->attach_mutex);
4544 
4545 	/*
4546 	 * Restore CPU affinity of all workers.  As all idle workers should
4547 	 * be on the run-queue of the associated CPU before any local
4548 	 * wake-ups for concurrency management happen, restore CPU affinity
4549 	 * of all workers first and then clear UNBOUND.  As we're called
4550 	 * from CPU_ONLINE, the following shouldn't fail.
4551 	 */
4552 	for_each_pool_worker(worker, pool)
4553 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4554 						  pool->attrs->cpumask) < 0);
4555 
4556 	spin_lock_irq(&pool->lock);
4557 	pool->flags &= ~POOL_DISASSOCIATED;
4558 
4559 	for_each_pool_worker(worker, pool) {
4560 		unsigned int worker_flags = worker->flags;
4561 
4562 		/*
4563 		 * A bound idle worker should actually be on the runqueue
4564 		 * of the associated CPU for local wake-ups targeting it to
4565 		 * work.  Kick all idle workers so that they migrate to the
4566 		 * associated CPU.  Doing this in the same loop as
4567 		 * replacing UNBOUND with REBOUND is safe as no worker will
4568 		 * be bound before @pool->lock is released.
4569 		 */
4570 		if (worker_flags & WORKER_IDLE)
4571 			wake_up_process(worker->task);
4572 
4573 		/*
4574 		 * We want to clear UNBOUND but can't directly call
4575 		 * worker_clr_flags() or adjust nr_running.  Atomically
4576 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4577 		 * @worker will clear REBOUND using worker_clr_flags() when
4578 		 * it initiates the next execution cycle thus restoring
4579 		 * concurrency management.  Note that when or whether
4580 		 * @worker clears REBOUND doesn't affect correctness.
4581 		 *
4582 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4583 		 * tested without holding any lock in
4584 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4585 		 * fail incorrectly leading to premature concurrency
4586 		 * management operations.
4587 		 */
4588 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4589 		worker_flags |= WORKER_REBOUND;
4590 		worker_flags &= ~WORKER_UNBOUND;
4591 		ACCESS_ONCE(worker->flags) = worker_flags;
4592 	}
4593 
4594 	spin_unlock_irq(&pool->lock);
4595 }
4596 
4597 /**
4598  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4599  * @pool: unbound pool of interest
4600  * @cpu: the CPU which is coming up
4601  *
4602  * An unbound pool may end up with a cpumask which doesn't have any online
4603  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4604  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4605  * online CPU before, cpus_allowed of all its workers should be restored.
4606  */
4607 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4608 {
4609 	static cpumask_t cpumask;
4610 	struct worker *worker;
4611 
4612 	lockdep_assert_held(&pool->attach_mutex);
4613 
4614 	/* is @cpu allowed for @pool? */
4615 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4616 		return;
4617 
4618 	/* is @cpu the only online CPU? */
4619 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4620 	if (cpumask_weight(&cpumask) != 1)
4621 		return;
4622 
4623 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4624 	for_each_pool_worker(worker, pool)
4625 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4626 						  pool->attrs->cpumask) < 0);
4627 }
4628 
4629 /*
4630  * Workqueues should be brought up before normal priority CPU notifiers.
4631  * This will be registered high priority CPU notifier.
4632  */
4633 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4634 					       unsigned long action,
4635 					       void *hcpu)
4636 {
4637 	int cpu = (unsigned long)hcpu;
4638 	struct worker_pool *pool;
4639 	struct workqueue_struct *wq;
4640 	int pi;
4641 
4642 	switch (action & ~CPU_TASKS_FROZEN) {
4643 	case CPU_UP_PREPARE:
4644 		for_each_cpu_worker_pool(pool, cpu) {
4645 			if (pool->nr_workers)
4646 				continue;
4647 			if (!create_worker(pool))
4648 				return NOTIFY_BAD;
4649 		}
4650 		break;
4651 
4652 	case CPU_DOWN_FAILED:
4653 	case CPU_ONLINE:
4654 		mutex_lock(&wq_pool_mutex);
4655 
4656 		for_each_pool(pool, pi) {
4657 			mutex_lock(&pool->attach_mutex);
4658 
4659 			if (pool->cpu == cpu)
4660 				rebind_workers(pool);
4661 			else if (pool->cpu < 0)
4662 				restore_unbound_workers_cpumask(pool, cpu);
4663 
4664 			mutex_unlock(&pool->attach_mutex);
4665 		}
4666 
4667 		/* update NUMA affinity of unbound workqueues */
4668 		list_for_each_entry(wq, &workqueues, list)
4669 			wq_update_unbound_numa(wq, cpu, true);
4670 
4671 		mutex_unlock(&wq_pool_mutex);
4672 		break;
4673 	}
4674 	return NOTIFY_OK;
4675 }
4676 
4677 /*
4678  * Workqueues should be brought down after normal priority CPU notifiers.
4679  * This will be registered as low priority CPU notifier.
4680  */
4681 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4682 						 unsigned long action,
4683 						 void *hcpu)
4684 {
4685 	int cpu = (unsigned long)hcpu;
4686 	struct work_struct unbind_work;
4687 	struct workqueue_struct *wq;
4688 
4689 	switch (action & ~CPU_TASKS_FROZEN) {
4690 	case CPU_DOWN_PREPARE:
4691 		/* unbinding per-cpu workers should happen on the local CPU */
4692 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4693 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4694 
4695 		/* update NUMA affinity of unbound workqueues */
4696 		mutex_lock(&wq_pool_mutex);
4697 		list_for_each_entry(wq, &workqueues, list)
4698 			wq_update_unbound_numa(wq, cpu, false);
4699 		mutex_unlock(&wq_pool_mutex);
4700 
4701 		/* wait for per-cpu unbinding to finish */
4702 		flush_work(&unbind_work);
4703 		destroy_work_on_stack(&unbind_work);
4704 		break;
4705 	}
4706 	return NOTIFY_OK;
4707 }
4708 
4709 #ifdef CONFIG_SMP
4710 
4711 struct work_for_cpu {
4712 	struct work_struct work;
4713 	long (*fn)(void *);
4714 	void *arg;
4715 	long ret;
4716 };
4717 
4718 static void work_for_cpu_fn(struct work_struct *work)
4719 {
4720 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4721 
4722 	wfc->ret = wfc->fn(wfc->arg);
4723 }
4724 
4725 /**
4726  * work_on_cpu - run a function in thread context on a particular cpu
4727  * @cpu: the cpu to run on
4728  * @fn: the function to run
4729  * @arg: the function arg
4730  *
4731  * It is up to the caller to ensure that the cpu doesn't go offline.
4732  * The caller must not hold any locks which would prevent @fn from completing.
4733  *
4734  * Return: The value @fn returns.
4735  */
4736 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4737 {
4738 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4739 
4740 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4741 	schedule_work_on(cpu, &wfc.work);
4742 	flush_work(&wfc.work);
4743 	destroy_work_on_stack(&wfc.work);
4744 	return wfc.ret;
4745 }
4746 EXPORT_SYMBOL_GPL(work_on_cpu);
4747 #endif /* CONFIG_SMP */
4748 
4749 #ifdef CONFIG_FREEZER
4750 
4751 /**
4752  * freeze_workqueues_begin - begin freezing workqueues
4753  *
4754  * Start freezing workqueues.  After this function returns, all freezable
4755  * workqueues will queue new works to their delayed_works list instead of
4756  * pool->worklist.
4757  *
4758  * CONTEXT:
4759  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4760  */
4761 void freeze_workqueues_begin(void)
4762 {
4763 	struct workqueue_struct *wq;
4764 	struct pool_workqueue *pwq;
4765 
4766 	mutex_lock(&wq_pool_mutex);
4767 
4768 	WARN_ON_ONCE(workqueue_freezing);
4769 	workqueue_freezing = true;
4770 
4771 	list_for_each_entry(wq, &workqueues, list) {
4772 		mutex_lock(&wq->mutex);
4773 		for_each_pwq(pwq, wq)
4774 			pwq_adjust_max_active(pwq);
4775 		mutex_unlock(&wq->mutex);
4776 	}
4777 
4778 	mutex_unlock(&wq_pool_mutex);
4779 }
4780 
4781 /**
4782  * freeze_workqueues_busy - are freezable workqueues still busy?
4783  *
4784  * Check whether freezing is complete.  This function must be called
4785  * between freeze_workqueues_begin() and thaw_workqueues().
4786  *
4787  * CONTEXT:
4788  * Grabs and releases wq_pool_mutex.
4789  *
4790  * Return:
4791  * %true if some freezable workqueues are still busy.  %false if freezing
4792  * is complete.
4793  */
4794 bool freeze_workqueues_busy(void)
4795 {
4796 	bool busy = false;
4797 	struct workqueue_struct *wq;
4798 	struct pool_workqueue *pwq;
4799 
4800 	mutex_lock(&wq_pool_mutex);
4801 
4802 	WARN_ON_ONCE(!workqueue_freezing);
4803 
4804 	list_for_each_entry(wq, &workqueues, list) {
4805 		if (!(wq->flags & WQ_FREEZABLE))
4806 			continue;
4807 		/*
4808 		 * nr_active is monotonically decreasing.  It's safe
4809 		 * to peek without lock.
4810 		 */
4811 		rcu_read_lock_sched();
4812 		for_each_pwq(pwq, wq) {
4813 			WARN_ON_ONCE(pwq->nr_active < 0);
4814 			if (pwq->nr_active) {
4815 				busy = true;
4816 				rcu_read_unlock_sched();
4817 				goto out_unlock;
4818 			}
4819 		}
4820 		rcu_read_unlock_sched();
4821 	}
4822 out_unlock:
4823 	mutex_unlock(&wq_pool_mutex);
4824 	return busy;
4825 }
4826 
4827 /**
4828  * thaw_workqueues - thaw workqueues
4829  *
4830  * Thaw workqueues.  Normal queueing is restored and all collected
4831  * frozen works are transferred to their respective pool worklists.
4832  *
4833  * CONTEXT:
4834  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4835  */
4836 void thaw_workqueues(void)
4837 {
4838 	struct workqueue_struct *wq;
4839 	struct pool_workqueue *pwq;
4840 
4841 	mutex_lock(&wq_pool_mutex);
4842 
4843 	if (!workqueue_freezing)
4844 		goto out_unlock;
4845 
4846 	workqueue_freezing = false;
4847 
4848 	/* restore max_active and repopulate worklist */
4849 	list_for_each_entry(wq, &workqueues, list) {
4850 		mutex_lock(&wq->mutex);
4851 		for_each_pwq(pwq, wq)
4852 			pwq_adjust_max_active(pwq);
4853 		mutex_unlock(&wq->mutex);
4854 	}
4855 
4856 out_unlock:
4857 	mutex_unlock(&wq_pool_mutex);
4858 }
4859 #endif /* CONFIG_FREEZER */
4860 
4861 static int workqueue_apply_unbound_cpumask(void)
4862 {
4863 	LIST_HEAD(ctxs);
4864 	int ret = 0;
4865 	struct workqueue_struct *wq;
4866 	struct apply_wqattrs_ctx *ctx, *n;
4867 
4868 	lockdep_assert_held(&wq_pool_mutex);
4869 
4870 	list_for_each_entry(wq, &workqueues, list) {
4871 		if (!(wq->flags & WQ_UNBOUND))
4872 			continue;
4873 		/* creating multiple pwqs breaks ordering guarantee */
4874 		if (wq->flags & __WQ_ORDERED)
4875 			continue;
4876 
4877 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4878 		if (!ctx) {
4879 			ret = -ENOMEM;
4880 			break;
4881 		}
4882 
4883 		list_add_tail(&ctx->list, &ctxs);
4884 	}
4885 
4886 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4887 		if (!ret)
4888 			apply_wqattrs_commit(ctx);
4889 		apply_wqattrs_cleanup(ctx);
4890 	}
4891 
4892 	return ret;
4893 }
4894 
4895 /**
4896  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4897  *  @cpumask: the cpumask to set
4898  *
4899  *  The low-level workqueues cpumask is a global cpumask that limits
4900  *  the affinity of all unbound workqueues.  This function check the @cpumask
4901  *  and apply it to all unbound workqueues and updates all pwqs of them.
4902  *
4903  *  Retun:	0	- Success
4904  *  		-EINVAL	- Invalid @cpumask
4905  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4906  */
4907 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4908 {
4909 	int ret = -EINVAL;
4910 	cpumask_var_t saved_cpumask;
4911 
4912 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4913 		return -ENOMEM;
4914 
4915 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4916 	if (!cpumask_empty(cpumask)) {
4917 		apply_wqattrs_lock();
4918 
4919 		/* save the old wq_unbound_cpumask. */
4920 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4921 
4922 		/* update wq_unbound_cpumask at first and apply it to wqs. */
4923 		cpumask_copy(wq_unbound_cpumask, cpumask);
4924 		ret = workqueue_apply_unbound_cpumask();
4925 
4926 		/* restore the wq_unbound_cpumask when failed. */
4927 		if (ret < 0)
4928 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4929 
4930 		apply_wqattrs_unlock();
4931 	}
4932 
4933 	free_cpumask_var(saved_cpumask);
4934 	return ret;
4935 }
4936 
4937 #ifdef CONFIG_SYSFS
4938 /*
4939  * Workqueues with WQ_SYSFS flag set is visible to userland via
4940  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4941  * following attributes.
4942  *
4943  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4944  *  max_active	RW int	: maximum number of in-flight work items
4945  *
4946  * Unbound workqueues have the following extra attributes.
4947  *
4948  *  id		RO int	: the associated pool ID
4949  *  nice	RW int	: nice value of the workers
4950  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4951  */
4952 struct wq_device {
4953 	struct workqueue_struct		*wq;
4954 	struct device			dev;
4955 };
4956 
4957 static struct workqueue_struct *dev_to_wq(struct device *dev)
4958 {
4959 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4960 
4961 	return wq_dev->wq;
4962 }
4963 
4964 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4965 			    char *buf)
4966 {
4967 	struct workqueue_struct *wq = dev_to_wq(dev);
4968 
4969 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4970 }
4971 static DEVICE_ATTR_RO(per_cpu);
4972 
4973 static ssize_t max_active_show(struct device *dev,
4974 			       struct device_attribute *attr, char *buf)
4975 {
4976 	struct workqueue_struct *wq = dev_to_wq(dev);
4977 
4978 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4979 }
4980 
4981 static ssize_t max_active_store(struct device *dev,
4982 				struct device_attribute *attr, const char *buf,
4983 				size_t count)
4984 {
4985 	struct workqueue_struct *wq = dev_to_wq(dev);
4986 	int val;
4987 
4988 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4989 		return -EINVAL;
4990 
4991 	workqueue_set_max_active(wq, val);
4992 	return count;
4993 }
4994 static DEVICE_ATTR_RW(max_active);
4995 
4996 static struct attribute *wq_sysfs_attrs[] = {
4997 	&dev_attr_per_cpu.attr,
4998 	&dev_attr_max_active.attr,
4999 	NULL,
5000 };
5001 ATTRIBUTE_GROUPS(wq_sysfs);
5002 
5003 static ssize_t wq_pool_ids_show(struct device *dev,
5004 				struct device_attribute *attr, char *buf)
5005 {
5006 	struct workqueue_struct *wq = dev_to_wq(dev);
5007 	const char *delim = "";
5008 	int node, written = 0;
5009 
5010 	rcu_read_lock_sched();
5011 	for_each_node(node) {
5012 		written += scnprintf(buf + written, PAGE_SIZE - written,
5013 				     "%s%d:%d", delim, node,
5014 				     unbound_pwq_by_node(wq, node)->pool->id);
5015 		delim = " ";
5016 	}
5017 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5018 	rcu_read_unlock_sched();
5019 
5020 	return written;
5021 }
5022 
5023 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5024 			    char *buf)
5025 {
5026 	struct workqueue_struct *wq = dev_to_wq(dev);
5027 	int written;
5028 
5029 	mutex_lock(&wq->mutex);
5030 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5031 	mutex_unlock(&wq->mutex);
5032 
5033 	return written;
5034 }
5035 
5036 /* prepare workqueue_attrs for sysfs store operations */
5037 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5038 {
5039 	struct workqueue_attrs *attrs;
5040 
5041 	lockdep_assert_held(&wq_pool_mutex);
5042 
5043 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5044 	if (!attrs)
5045 		return NULL;
5046 
5047 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5048 	return attrs;
5049 }
5050 
5051 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5052 			     const char *buf, size_t count)
5053 {
5054 	struct workqueue_struct *wq = dev_to_wq(dev);
5055 	struct workqueue_attrs *attrs;
5056 	int ret = -ENOMEM;
5057 
5058 	apply_wqattrs_lock();
5059 
5060 	attrs = wq_sysfs_prep_attrs(wq);
5061 	if (!attrs)
5062 		goto out_unlock;
5063 
5064 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5065 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5066 		ret = apply_workqueue_attrs_locked(wq, attrs);
5067 	else
5068 		ret = -EINVAL;
5069 
5070 out_unlock:
5071 	apply_wqattrs_unlock();
5072 	free_workqueue_attrs(attrs);
5073 	return ret ?: count;
5074 }
5075 
5076 static ssize_t wq_cpumask_show(struct device *dev,
5077 			       struct device_attribute *attr, char *buf)
5078 {
5079 	struct workqueue_struct *wq = dev_to_wq(dev);
5080 	int written;
5081 
5082 	mutex_lock(&wq->mutex);
5083 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5084 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5085 	mutex_unlock(&wq->mutex);
5086 	return written;
5087 }
5088 
5089 static ssize_t wq_cpumask_store(struct device *dev,
5090 				struct device_attribute *attr,
5091 				const char *buf, size_t count)
5092 {
5093 	struct workqueue_struct *wq = dev_to_wq(dev);
5094 	struct workqueue_attrs *attrs;
5095 	int ret = -ENOMEM;
5096 
5097 	apply_wqattrs_lock();
5098 
5099 	attrs = wq_sysfs_prep_attrs(wq);
5100 	if (!attrs)
5101 		goto out_unlock;
5102 
5103 	ret = cpumask_parse(buf, attrs->cpumask);
5104 	if (!ret)
5105 		ret = apply_workqueue_attrs_locked(wq, attrs);
5106 
5107 out_unlock:
5108 	apply_wqattrs_unlock();
5109 	free_workqueue_attrs(attrs);
5110 	return ret ?: count;
5111 }
5112 
5113 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5114 			    char *buf)
5115 {
5116 	struct workqueue_struct *wq = dev_to_wq(dev);
5117 	int written;
5118 
5119 	mutex_lock(&wq->mutex);
5120 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5121 			    !wq->unbound_attrs->no_numa);
5122 	mutex_unlock(&wq->mutex);
5123 
5124 	return written;
5125 }
5126 
5127 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5128 			     const char *buf, size_t count)
5129 {
5130 	struct workqueue_struct *wq = dev_to_wq(dev);
5131 	struct workqueue_attrs *attrs;
5132 	int v, ret = -ENOMEM;
5133 
5134 	apply_wqattrs_lock();
5135 
5136 	attrs = wq_sysfs_prep_attrs(wq);
5137 	if (!attrs)
5138 		goto out_unlock;
5139 
5140 	ret = -EINVAL;
5141 	if (sscanf(buf, "%d", &v) == 1) {
5142 		attrs->no_numa = !v;
5143 		ret = apply_workqueue_attrs_locked(wq, attrs);
5144 	}
5145 
5146 out_unlock:
5147 	apply_wqattrs_unlock();
5148 	free_workqueue_attrs(attrs);
5149 	return ret ?: count;
5150 }
5151 
5152 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5153 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5154 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5155 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5156 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5157 	__ATTR_NULL,
5158 };
5159 
5160 static struct bus_type wq_subsys = {
5161 	.name				= "workqueue",
5162 	.dev_groups			= wq_sysfs_groups,
5163 };
5164 
5165 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5166 		struct device_attribute *attr, char *buf)
5167 {
5168 	int written;
5169 
5170 	mutex_lock(&wq_pool_mutex);
5171 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5172 			    cpumask_pr_args(wq_unbound_cpumask));
5173 	mutex_unlock(&wq_pool_mutex);
5174 
5175 	return written;
5176 }
5177 
5178 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5179 		struct device_attribute *attr, const char *buf, size_t count)
5180 {
5181 	cpumask_var_t cpumask;
5182 	int ret;
5183 
5184 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5185 		return -ENOMEM;
5186 
5187 	ret = cpumask_parse(buf, cpumask);
5188 	if (!ret)
5189 		ret = workqueue_set_unbound_cpumask(cpumask);
5190 
5191 	free_cpumask_var(cpumask);
5192 	return ret ? ret : count;
5193 }
5194 
5195 static struct device_attribute wq_sysfs_cpumask_attr =
5196 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5197 	       wq_unbound_cpumask_store);
5198 
5199 static int __init wq_sysfs_init(void)
5200 {
5201 	int err;
5202 
5203 	err = subsys_virtual_register(&wq_subsys, NULL);
5204 	if (err)
5205 		return err;
5206 
5207 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5208 }
5209 core_initcall(wq_sysfs_init);
5210 
5211 static void wq_device_release(struct device *dev)
5212 {
5213 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5214 
5215 	kfree(wq_dev);
5216 }
5217 
5218 /**
5219  * workqueue_sysfs_register - make a workqueue visible in sysfs
5220  * @wq: the workqueue to register
5221  *
5222  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5223  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5224  * which is the preferred method.
5225  *
5226  * Workqueue user should use this function directly iff it wants to apply
5227  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5228  * apply_workqueue_attrs() may race against userland updating the
5229  * attributes.
5230  *
5231  * Return: 0 on success, -errno on failure.
5232  */
5233 int workqueue_sysfs_register(struct workqueue_struct *wq)
5234 {
5235 	struct wq_device *wq_dev;
5236 	int ret;
5237 
5238 	/*
5239 	 * Adjusting max_active or creating new pwqs by applying
5240 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5241 	 * workqueues.
5242 	 */
5243 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5244 		return -EINVAL;
5245 
5246 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5247 	if (!wq_dev)
5248 		return -ENOMEM;
5249 
5250 	wq_dev->wq = wq;
5251 	wq_dev->dev.bus = &wq_subsys;
5252 	wq_dev->dev.release = wq_device_release;
5253 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5254 
5255 	/*
5256 	 * unbound_attrs are created separately.  Suppress uevent until
5257 	 * everything is ready.
5258 	 */
5259 	dev_set_uevent_suppress(&wq_dev->dev, true);
5260 
5261 	ret = device_register(&wq_dev->dev);
5262 	if (ret) {
5263 		kfree(wq_dev);
5264 		wq->wq_dev = NULL;
5265 		return ret;
5266 	}
5267 
5268 	if (wq->flags & WQ_UNBOUND) {
5269 		struct device_attribute *attr;
5270 
5271 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5272 			ret = device_create_file(&wq_dev->dev, attr);
5273 			if (ret) {
5274 				device_unregister(&wq_dev->dev);
5275 				wq->wq_dev = NULL;
5276 				return ret;
5277 			}
5278 		}
5279 	}
5280 
5281 	dev_set_uevent_suppress(&wq_dev->dev, false);
5282 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5283 	return 0;
5284 }
5285 
5286 /**
5287  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5288  * @wq: the workqueue to unregister
5289  *
5290  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5291  */
5292 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5293 {
5294 	struct wq_device *wq_dev = wq->wq_dev;
5295 
5296 	if (!wq->wq_dev)
5297 		return;
5298 
5299 	wq->wq_dev = NULL;
5300 	device_unregister(&wq_dev->dev);
5301 }
5302 #else	/* CONFIG_SYSFS */
5303 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5304 #endif	/* CONFIG_SYSFS */
5305 
5306 /*
5307  * Workqueue watchdog.
5308  *
5309  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5310  * flush dependency, a concurrency managed work item which stays RUNNING
5311  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5312  * usual warning mechanisms don't trigger and internal workqueue state is
5313  * largely opaque.
5314  *
5315  * Workqueue watchdog monitors all worker pools periodically and dumps
5316  * state if some pools failed to make forward progress for a while where
5317  * forward progress is defined as the first item on ->worklist changing.
5318  *
5319  * This mechanism is controlled through the kernel parameter
5320  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5321  * corresponding sysfs parameter file.
5322  */
5323 #ifdef CONFIG_WQ_WATCHDOG
5324 
5325 static void wq_watchdog_timer_fn(unsigned long data);
5326 
5327 static unsigned long wq_watchdog_thresh = 30;
5328 static struct timer_list wq_watchdog_timer =
5329 	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5330 
5331 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5332 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5333 
5334 static void wq_watchdog_reset_touched(void)
5335 {
5336 	int cpu;
5337 
5338 	wq_watchdog_touched = jiffies;
5339 	for_each_possible_cpu(cpu)
5340 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5341 }
5342 
5343 static void wq_watchdog_timer_fn(unsigned long data)
5344 {
5345 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5346 	bool lockup_detected = false;
5347 	struct worker_pool *pool;
5348 	int pi;
5349 
5350 	if (!thresh)
5351 		return;
5352 
5353 	rcu_read_lock();
5354 
5355 	for_each_pool(pool, pi) {
5356 		unsigned long pool_ts, touched, ts;
5357 
5358 		if (list_empty(&pool->worklist))
5359 			continue;
5360 
5361 		/* get the latest of pool and touched timestamps */
5362 		pool_ts = READ_ONCE(pool->watchdog_ts);
5363 		touched = READ_ONCE(wq_watchdog_touched);
5364 
5365 		if (time_after(pool_ts, touched))
5366 			ts = pool_ts;
5367 		else
5368 			ts = touched;
5369 
5370 		if (pool->cpu >= 0) {
5371 			unsigned long cpu_touched =
5372 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5373 						  pool->cpu));
5374 			if (time_after(cpu_touched, ts))
5375 				ts = cpu_touched;
5376 		}
5377 
5378 		/* did we stall? */
5379 		if (time_after(jiffies, ts + thresh)) {
5380 			lockup_detected = true;
5381 			pr_emerg("BUG: workqueue lockup - pool");
5382 			pr_cont_pool_info(pool);
5383 			pr_cont(" stuck for %us!\n",
5384 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5385 		}
5386 	}
5387 
5388 	rcu_read_unlock();
5389 
5390 	if (lockup_detected)
5391 		show_workqueue_state();
5392 
5393 	wq_watchdog_reset_touched();
5394 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5395 }
5396 
5397 void wq_watchdog_touch(int cpu)
5398 {
5399 	if (cpu >= 0)
5400 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5401 	else
5402 		wq_watchdog_touched = jiffies;
5403 }
5404 
5405 static void wq_watchdog_set_thresh(unsigned long thresh)
5406 {
5407 	wq_watchdog_thresh = 0;
5408 	del_timer_sync(&wq_watchdog_timer);
5409 
5410 	if (thresh) {
5411 		wq_watchdog_thresh = thresh;
5412 		wq_watchdog_reset_touched();
5413 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5414 	}
5415 }
5416 
5417 static int wq_watchdog_param_set_thresh(const char *val,
5418 					const struct kernel_param *kp)
5419 {
5420 	unsigned long thresh;
5421 	int ret;
5422 
5423 	ret = kstrtoul(val, 0, &thresh);
5424 	if (ret)
5425 		return ret;
5426 
5427 	if (system_wq)
5428 		wq_watchdog_set_thresh(thresh);
5429 	else
5430 		wq_watchdog_thresh = thresh;
5431 
5432 	return 0;
5433 }
5434 
5435 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5436 	.set	= wq_watchdog_param_set_thresh,
5437 	.get	= param_get_ulong,
5438 };
5439 
5440 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5441 		0644);
5442 
5443 static void wq_watchdog_init(void)
5444 {
5445 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5446 }
5447 
5448 #else	/* CONFIG_WQ_WATCHDOG */
5449 
5450 static inline void wq_watchdog_init(void) { }
5451 
5452 #endif	/* CONFIG_WQ_WATCHDOG */
5453 
5454 static void __init wq_numa_init(void)
5455 {
5456 	cpumask_var_t *tbl;
5457 	int node, cpu;
5458 
5459 	if (num_possible_nodes() <= 1)
5460 		return;
5461 
5462 	if (wq_disable_numa) {
5463 		pr_info("workqueue: NUMA affinity support disabled\n");
5464 		return;
5465 	}
5466 
5467 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5468 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5469 
5470 	/*
5471 	 * We want masks of possible CPUs of each node which isn't readily
5472 	 * available.  Build one from cpu_to_node() which should have been
5473 	 * fully initialized by now.
5474 	 */
5475 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5476 	BUG_ON(!tbl);
5477 
5478 	for_each_node(node)
5479 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5480 				node_online(node) ? node : NUMA_NO_NODE));
5481 
5482 	for_each_possible_cpu(cpu) {
5483 		node = cpu_to_node(cpu);
5484 		if (WARN_ON(node == NUMA_NO_NODE)) {
5485 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5486 			/* happens iff arch is bonkers, let's just proceed */
5487 			return;
5488 		}
5489 		cpumask_set_cpu(cpu, tbl[node]);
5490 	}
5491 
5492 	wq_numa_possible_cpumask = tbl;
5493 	wq_numa_enabled = true;
5494 }
5495 
5496 static int __init init_workqueues(void)
5497 {
5498 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5499 	int i, cpu;
5500 
5501 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5502 
5503 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5504 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5505 
5506 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5507 
5508 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5509 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5510 
5511 	wq_numa_init();
5512 
5513 	/* initialize CPU pools */
5514 	for_each_possible_cpu(cpu) {
5515 		struct worker_pool *pool;
5516 
5517 		i = 0;
5518 		for_each_cpu_worker_pool(pool, cpu) {
5519 			BUG_ON(init_worker_pool(pool));
5520 			pool->cpu = cpu;
5521 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5522 			pool->attrs->nice = std_nice[i++];
5523 			pool->node = cpu_to_node(cpu);
5524 
5525 			/* alloc pool ID */
5526 			mutex_lock(&wq_pool_mutex);
5527 			BUG_ON(worker_pool_assign_id(pool));
5528 			mutex_unlock(&wq_pool_mutex);
5529 		}
5530 	}
5531 
5532 	/* create the initial worker */
5533 	for_each_online_cpu(cpu) {
5534 		struct worker_pool *pool;
5535 
5536 		for_each_cpu_worker_pool(pool, cpu) {
5537 			pool->flags &= ~POOL_DISASSOCIATED;
5538 			BUG_ON(!create_worker(pool));
5539 		}
5540 	}
5541 
5542 	/* create default unbound and ordered wq attrs */
5543 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5544 		struct workqueue_attrs *attrs;
5545 
5546 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5547 		attrs->nice = std_nice[i];
5548 		unbound_std_wq_attrs[i] = attrs;
5549 
5550 		/*
5551 		 * An ordered wq should have only one pwq as ordering is
5552 		 * guaranteed by max_active which is enforced by pwqs.
5553 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5554 		 */
5555 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5556 		attrs->nice = std_nice[i];
5557 		attrs->no_numa = true;
5558 		ordered_wq_attrs[i] = attrs;
5559 	}
5560 
5561 	system_wq = alloc_workqueue("events", 0, 0);
5562 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5563 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5564 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5565 					    WQ_UNBOUND_MAX_ACTIVE);
5566 	system_freezable_wq = alloc_workqueue("events_freezable",
5567 					      WQ_FREEZABLE, 0);
5568 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5569 					      WQ_POWER_EFFICIENT, 0);
5570 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5571 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5572 					      0);
5573 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5574 	       !system_unbound_wq || !system_freezable_wq ||
5575 	       !system_power_efficient_wq ||
5576 	       !system_freezable_power_efficient_wq);
5577 
5578 	wq_watchdog_init();
5579 
5580 	return 0;
5581 }
5582 early_initcall(init_workqueues);
5583