xref: /openbmc/linux/kernel/workqueue.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 
73 	/* worker flags */
74 	WORKER_DIE		= 1 << 1,	/* die die die */
75 	WORKER_IDLE		= 1 << 2,	/* is idle */
76 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80 
81 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
82 				  WORKER_UNBOUND | WORKER_REBOUND,
83 
84 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85 
86 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
87 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88 
89 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
90 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
91 
92 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
93 						/* call for help after 10ms
94 						   (min two ticks) */
95 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
96 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
97 
98 	/*
99 	 * Rescue workers are used only on emergencies and shared by
100 	 * all cpus.  Give MIN_NICE.
101 	 */
102 	RESCUER_NICE_LEVEL	= MIN_NICE,
103 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 
105 	WQ_NAME_LEN		= 24,
106 };
107 
108 /*
109  * Structure fields follow one of the following exclusion rules.
110  *
111  * I: Modifiable by initialization/destruction paths and read-only for
112  *    everyone else.
113  *
114  * P: Preemption protected.  Disabling preemption is enough and should
115  *    only be modified and accessed from the local cpu.
116  *
117  * L: pool->lock protected.  Access with pool->lock held.
118  *
119  * X: During normal operation, modification requires pool->lock and should
120  *    be done only from local cpu.  Either disabling preemption on local
121  *    cpu or grabbing pool->lock is enough for read access.  If
122  *    POOL_DISASSOCIATED is set, it's identical to L.
123  *
124  * A: pool->attach_mutex protected.
125  *
126  * PL: wq_pool_mutex protected.
127  *
128  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129  *
130  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
131  *
132  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
133  *      sched-RCU for reads.
134  *
135  * WQ: wq->mutex protected.
136  *
137  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138  *
139  * MD: wq_mayday_lock protected.
140  */
141 
142 /* struct worker is defined in workqueue_internal.h */
143 
144 struct worker_pool {
145 	spinlock_t		lock;		/* the pool lock */
146 	int			cpu;		/* I: the associated cpu */
147 	int			node;		/* I: the associated node ID */
148 	int			id;		/* I: pool ID */
149 	unsigned int		flags;		/* X: flags */
150 
151 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
152 
153 	struct list_head	worklist;	/* L: list of pending works */
154 	int			nr_workers;	/* L: total number of workers */
155 
156 	/* nr_idle includes the ones off idle_list for rebinding */
157 	int			nr_idle;	/* L: currently idle ones */
158 
159 	struct list_head	idle_list;	/* X: list of idle workers */
160 	struct timer_list	idle_timer;	/* L: worker idle timeout */
161 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
162 
163 	/* a workers is either on busy_hash or idle_list, or the manager */
164 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 						/* L: hash of busy workers */
166 
167 	/* see manage_workers() for details on the two manager mutexes */
168 	struct mutex		manager_arb;	/* manager arbitration */
169 	struct worker		*manager;	/* L: purely informational */
170 	struct mutex		attach_mutex;	/* attach/detach exclusion */
171 	struct list_head	workers;	/* A: attached workers */
172 	struct completion	*detach_completion; /* all workers detached */
173 
174 	struct ida		worker_ida;	/* worker IDs for task name */
175 
176 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
178 	int			refcnt;		/* PL: refcnt for unbound pools */
179 
180 	/*
181 	 * The current concurrency level.  As it's likely to be accessed
182 	 * from other CPUs during try_to_wake_up(), put it in a separate
183 	 * cacheline.
184 	 */
185 	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 
187 	/*
188 	 * Destruction of pool is sched-RCU protected to allow dereferences
189 	 * from get_work_pool().
190 	 */
191 	struct rcu_head		rcu;
192 } ____cacheline_aligned_in_smp;
193 
194 /*
195  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
196  * of work_struct->data are used for flags and the remaining high bits
197  * point to the pwq; thus, pwqs need to be aligned at two's power of the
198  * number of flag bits.
199  */
200 struct pool_workqueue {
201 	struct worker_pool	*pool;		/* I: the associated pool */
202 	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 	int			work_color;	/* L: current color */
204 	int			flush_color;	/* L: flushing color */
205 	int			refcnt;		/* L: reference count */
206 	int			nr_in_flight[WORK_NR_COLORS];
207 						/* L: nr of in_flight works */
208 	int			nr_active;	/* L: nr of active works */
209 	int			max_active;	/* L: max active works */
210 	struct list_head	delayed_works;	/* L: delayed works */
211 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
213 
214 	/*
215 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
216 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
217 	 * itself is also sched-RCU protected so that the first pwq can be
218 	 * determined without grabbing wq->mutex.
219 	 */
220 	struct work_struct	unbound_release_work;
221 	struct rcu_head		rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223 
224 /*
225  * Structure used to wait for workqueue flush.
226  */
227 struct wq_flusher {
228 	struct list_head	list;		/* WQ: list of flushers */
229 	int			flush_color;	/* WQ: flush color waiting for */
230 	struct completion	done;		/* flush completion */
231 };
232 
233 struct wq_device;
234 
235 /*
236  * The externally visible workqueue.  It relays the issued work items to
237  * the appropriate worker_pool through its pool_workqueues.
238  */
239 struct workqueue_struct {
240 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241 	struct list_head	list;		/* PR: list of all workqueues */
242 
243 	struct mutex		mutex;		/* protects this wq */
244 	int			work_color;	/* WQ: current work color */
245 	int			flush_color;	/* WQ: current flush color */
246 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
248 	struct list_head	flusher_queue;	/* WQ: flush waiters */
249 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250 
251 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 	struct worker		*rescuer;	/* I: rescue worker */
253 
254 	int			nr_drainers;	/* WQ: drain in progress */
255 	int			saved_max_active; /* WQ: saved pwq max_active */
256 
257 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
258 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259 
260 #ifdef CONFIG_SYSFS
261 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267 
268 	/*
269 	 * Destruction of workqueue_struct is sched-RCU protected to allow
270 	 * walking the workqueues list without grabbing wq_pool_mutex.
271 	 * This is used to dump all workqueues from sysrq.
272 	 */
273 	struct rcu_head		rcu;
274 
275 	/* hot fields used during command issue, aligned to cacheline */
276 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280 
281 static struct kmem_cache *pwq_cache;
282 
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 					/* possible CPUs of each node */
285 
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288 
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292 
293 static bool wq_online;			/* can kworkers be created yet? */
294 
295 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
296 
297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299 
300 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
301 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
302 
303 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
304 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
305 
306 /* PL: allowable cpus for unbound wqs and work items */
307 static cpumask_var_t wq_unbound_cpumask;
308 
309 /* CPU where unbound work was last round robin scheduled from this CPU */
310 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
311 
312 /*
313  * Local execution of unbound work items is no longer guaranteed.  The
314  * following always forces round-robin CPU selection on unbound work items
315  * to uncover usages which depend on it.
316  */
317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
318 static bool wq_debug_force_rr_cpu = true;
319 #else
320 static bool wq_debug_force_rr_cpu = false;
321 #endif
322 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
323 
324 /* the per-cpu worker pools */
325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
326 
327 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
328 
329 /* PL: hash of all unbound pools keyed by pool->attrs */
330 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
331 
332 /* I: attributes used when instantiating standard unbound pools on demand */
333 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
334 
335 /* I: attributes used when instantiating ordered pools on demand */
336 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
337 
338 struct workqueue_struct *system_wq __read_mostly;
339 EXPORT_SYMBOL(system_wq);
340 struct workqueue_struct *system_highpri_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_highpri_wq);
342 struct workqueue_struct *system_long_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_long_wq);
344 struct workqueue_struct *system_unbound_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_unbound_wq);
346 struct workqueue_struct *system_freezable_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_freezable_wq);
348 struct workqueue_struct *system_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
350 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
352 
353 static int worker_thread(void *__worker);
354 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
355 
356 #define CREATE_TRACE_POINTS
357 #include <trace/events/workqueue.h>
358 
359 #define assert_rcu_or_pool_mutex()					\
360 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
361 			 !lockdep_is_held(&wq_pool_mutex),		\
362 			 "sched RCU or wq_pool_mutex should be held")
363 
364 #define assert_rcu_or_wq_mutex(wq)					\
365 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
366 			 !lockdep_is_held(&wq->mutex),			\
367 			 "sched RCU or wq->mutex should be held")
368 
369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
370 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
371 			 !lockdep_is_held(&wq->mutex) &&		\
372 			 !lockdep_is_held(&wq_pool_mutex),		\
373 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
374 
375 #define for_each_cpu_worker_pool(pool, cpu)				\
376 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
377 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378 	     (pool)++)
379 
380 /**
381  * for_each_pool - iterate through all worker_pools in the system
382  * @pool: iteration cursor
383  * @pi: integer used for iteration
384  *
385  * This must be called either with wq_pool_mutex held or sched RCU read
386  * locked.  If the pool needs to be used beyond the locking in effect, the
387  * caller is responsible for guaranteeing that the pool stays online.
388  *
389  * The if/else clause exists only for the lockdep assertion and can be
390  * ignored.
391  */
392 #define for_each_pool(pool, pi)						\
393 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
394 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
395 		else
396 
397 /**
398  * for_each_pool_worker - iterate through all workers of a worker_pool
399  * @worker: iteration cursor
400  * @pool: worker_pool to iterate workers of
401  *
402  * This must be called with @pool->attach_mutex.
403  *
404  * The if/else clause exists only for the lockdep assertion and can be
405  * ignored.
406  */
407 #define for_each_pool_worker(worker, pool)				\
408 	list_for_each_entry((worker), &(pool)->workers, node)		\
409 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
410 		else
411 
412 /**
413  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414  * @pwq: iteration cursor
415  * @wq: the target workqueue
416  *
417  * This must be called either with wq->mutex held or sched RCU read locked.
418  * If the pwq needs to be used beyond the locking in effect, the caller is
419  * responsible for guaranteeing that the pwq stays online.
420  *
421  * The if/else clause exists only for the lockdep assertion and can be
422  * ignored.
423  */
424 #define for_each_pwq(pwq, wq)						\
425 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
426 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
427 		else
428 
429 #ifdef CONFIG_DEBUG_OBJECTS_WORK
430 
431 static struct debug_obj_descr work_debug_descr;
432 
433 static void *work_debug_hint(void *addr)
434 {
435 	return ((struct work_struct *) addr)->func;
436 }
437 
438 static bool work_is_static_object(void *addr)
439 {
440 	struct work_struct *work = addr;
441 
442 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443 }
444 
445 /*
446  * fixup_init is called when:
447  * - an active object is initialized
448  */
449 static bool work_fixup_init(void *addr, enum debug_obj_state state)
450 {
451 	struct work_struct *work = addr;
452 
453 	switch (state) {
454 	case ODEBUG_STATE_ACTIVE:
455 		cancel_work_sync(work);
456 		debug_object_init(work, &work_debug_descr);
457 		return true;
458 	default:
459 		return false;
460 	}
461 }
462 
463 /*
464  * fixup_free is called when:
465  * - an active object is freed
466  */
467 static bool work_fixup_free(void *addr, enum debug_obj_state state)
468 {
469 	struct work_struct *work = addr;
470 
471 	switch (state) {
472 	case ODEBUG_STATE_ACTIVE:
473 		cancel_work_sync(work);
474 		debug_object_free(work, &work_debug_descr);
475 		return true;
476 	default:
477 		return false;
478 	}
479 }
480 
481 static struct debug_obj_descr work_debug_descr = {
482 	.name		= "work_struct",
483 	.debug_hint	= work_debug_hint,
484 	.is_static_object = work_is_static_object,
485 	.fixup_init	= work_fixup_init,
486 	.fixup_free	= work_fixup_free,
487 };
488 
489 static inline void debug_work_activate(struct work_struct *work)
490 {
491 	debug_object_activate(work, &work_debug_descr);
492 }
493 
494 static inline void debug_work_deactivate(struct work_struct *work)
495 {
496 	debug_object_deactivate(work, &work_debug_descr);
497 }
498 
499 void __init_work(struct work_struct *work, int onstack)
500 {
501 	if (onstack)
502 		debug_object_init_on_stack(work, &work_debug_descr);
503 	else
504 		debug_object_init(work, &work_debug_descr);
505 }
506 EXPORT_SYMBOL_GPL(__init_work);
507 
508 void destroy_work_on_stack(struct work_struct *work)
509 {
510 	debug_object_free(work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513 
514 void destroy_delayed_work_on_stack(struct delayed_work *work)
515 {
516 	destroy_timer_on_stack(&work->timer);
517 	debug_object_free(&work->work, &work_debug_descr);
518 }
519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520 
521 #else
522 static inline void debug_work_activate(struct work_struct *work) { }
523 static inline void debug_work_deactivate(struct work_struct *work) { }
524 #endif
525 
526 /**
527  * worker_pool_assign_id - allocate ID and assing it to @pool
528  * @pool: the pool pointer of interest
529  *
530  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531  * successfully, -errno on failure.
532  */
533 static int worker_pool_assign_id(struct worker_pool *pool)
534 {
535 	int ret;
536 
537 	lockdep_assert_held(&wq_pool_mutex);
538 
539 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 			GFP_KERNEL);
541 	if (ret >= 0) {
542 		pool->id = ret;
543 		return 0;
544 	}
545 	return ret;
546 }
547 
548 /**
549  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550  * @wq: the target workqueue
551  * @node: the node ID
552  *
553  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
554  * read locked.
555  * If the pwq needs to be used beyond the locking in effect, the caller is
556  * responsible for guaranteeing that the pwq stays online.
557  *
558  * Return: The unbound pool_workqueue for @node.
559  */
560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 						  int node)
562 {
563 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
564 
565 	/*
566 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 	 * delayed item is pending.  The plan is to keep CPU -> NODE
568 	 * mapping valid and stable across CPU on/offlines.  Once that
569 	 * happens, this workaround can be removed.
570 	 */
571 	if (unlikely(node == NUMA_NO_NODE))
572 		return wq->dfl_pwq;
573 
574 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575 }
576 
577 static unsigned int work_color_to_flags(int color)
578 {
579 	return color << WORK_STRUCT_COLOR_SHIFT;
580 }
581 
582 static int get_work_color(struct work_struct *work)
583 {
584 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
586 }
587 
588 static int work_next_color(int color)
589 {
590 	return (color + 1) % WORK_NR_COLORS;
591 }
592 
593 /*
594  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595  * contain the pointer to the queued pwq.  Once execution starts, the flag
596  * is cleared and the high bits contain OFFQ flags and pool ID.
597  *
598  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599  * and clear_work_data() can be used to set the pwq, pool or clear
600  * work->data.  These functions should only be called while the work is
601  * owned - ie. while the PENDING bit is set.
602  *
603  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604  * corresponding to a work.  Pool is available once the work has been
605  * queued anywhere after initialization until it is sync canceled.  pwq is
606  * available only while the work item is queued.
607  *
608  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609  * canceled.  While being canceled, a work item may have its PENDING set
610  * but stay off timer and worklist for arbitrarily long and nobody should
611  * try to steal the PENDING bit.
612  */
613 static inline void set_work_data(struct work_struct *work, unsigned long data,
614 				 unsigned long flags)
615 {
616 	WARN_ON_ONCE(!work_pending(work));
617 	atomic_long_set(&work->data, data | flags | work_static(work));
618 }
619 
620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 			 unsigned long extra_flags)
622 {
623 	set_work_data(work, (unsigned long)pwq,
624 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
625 }
626 
627 static void set_work_pool_and_keep_pending(struct work_struct *work,
628 					   int pool_id)
629 {
630 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 		      WORK_STRUCT_PENDING);
632 }
633 
634 static void set_work_pool_and_clear_pending(struct work_struct *work,
635 					    int pool_id)
636 {
637 	/*
638 	 * The following wmb is paired with the implied mb in
639 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 	 * here are visible to and precede any updates by the next PENDING
641 	 * owner.
642 	 */
643 	smp_wmb();
644 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
645 	/*
646 	 * The following mb guarantees that previous clear of a PENDING bit
647 	 * will not be reordered with any speculative LOADS or STORES from
648 	 * work->current_func, which is executed afterwards.  This possible
649 	 * reordering can lead to a missed execution on attempt to qeueue
650 	 * the same @work.  E.g. consider this case:
651 	 *
652 	 *   CPU#0                         CPU#1
653 	 *   ----------------------------  --------------------------------
654 	 *
655 	 * 1  STORE event_indicated
656 	 * 2  queue_work_on() {
657 	 * 3    test_and_set_bit(PENDING)
658 	 * 4 }                             set_..._and_clear_pending() {
659 	 * 5                                 set_work_data() # clear bit
660 	 * 6                                 smp_mb()
661 	 * 7                               work->current_func() {
662 	 * 8				      LOAD event_indicated
663 	 *				   }
664 	 *
665 	 * Without an explicit full barrier speculative LOAD on line 8 can
666 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
667 	 * CPU#0 observes the PENDING bit is still set and new execution of
668 	 * a @work is not queued in a hope, that CPU#1 will eventually
669 	 * finish the queued @work.  Meanwhile CPU#1 does not see
670 	 * event_indicated is set, because speculative LOAD was executed
671 	 * before actual STORE.
672 	 */
673 	smp_mb();
674 }
675 
676 static void clear_work_data(struct work_struct *work)
677 {
678 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
679 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
680 }
681 
682 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
683 {
684 	unsigned long data = atomic_long_read(&work->data);
685 
686 	if (data & WORK_STRUCT_PWQ)
687 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 	else
689 		return NULL;
690 }
691 
692 /**
693  * get_work_pool - return the worker_pool a given work was associated with
694  * @work: the work item of interest
695  *
696  * Pools are created and destroyed under wq_pool_mutex, and allows read
697  * access under sched-RCU read lock.  As such, this function should be
698  * called under wq_pool_mutex or with preemption disabled.
699  *
700  * All fields of the returned pool are accessible as long as the above
701  * mentioned locking is in effect.  If the returned pool needs to be used
702  * beyond the critical section, the caller is responsible for ensuring the
703  * returned pool is and stays online.
704  *
705  * Return: The worker_pool @work was last associated with.  %NULL if none.
706  */
707 static struct worker_pool *get_work_pool(struct work_struct *work)
708 {
709 	unsigned long data = atomic_long_read(&work->data);
710 	int pool_id;
711 
712 	assert_rcu_or_pool_mutex();
713 
714 	if (data & WORK_STRUCT_PWQ)
715 		return ((struct pool_workqueue *)
716 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
717 
718 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 	if (pool_id == WORK_OFFQ_POOL_NONE)
720 		return NULL;
721 
722 	return idr_find(&worker_pool_idr, pool_id);
723 }
724 
725 /**
726  * get_work_pool_id - return the worker pool ID a given work is associated with
727  * @work: the work item of interest
728  *
729  * Return: The worker_pool ID @work was last associated with.
730  * %WORK_OFFQ_POOL_NONE if none.
731  */
732 static int get_work_pool_id(struct work_struct *work)
733 {
734 	unsigned long data = atomic_long_read(&work->data);
735 
736 	if (data & WORK_STRUCT_PWQ)
737 		return ((struct pool_workqueue *)
738 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
739 
740 	return data >> WORK_OFFQ_POOL_SHIFT;
741 }
742 
743 static void mark_work_canceling(struct work_struct *work)
744 {
745 	unsigned long pool_id = get_work_pool_id(work);
746 
747 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
749 }
750 
751 static bool work_is_canceling(struct work_struct *work)
752 {
753 	unsigned long data = atomic_long_read(&work->data);
754 
755 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
756 }
757 
758 /*
759  * Policy functions.  These define the policies on how the global worker
760  * pools are managed.  Unless noted otherwise, these functions assume that
761  * they're being called with pool->lock held.
762  */
763 
764 static bool __need_more_worker(struct worker_pool *pool)
765 {
766 	return !atomic_read(&pool->nr_running);
767 }
768 
769 /*
770  * Need to wake up a worker?  Called from anything but currently
771  * running workers.
772  *
773  * Note that, because unbound workers never contribute to nr_running, this
774  * function will always return %true for unbound pools as long as the
775  * worklist isn't empty.
776  */
777 static bool need_more_worker(struct worker_pool *pool)
778 {
779 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
780 }
781 
782 /* Can I start working?  Called from busy but !running workers. */
783 static bool may_start_working(struct worker_pool *pool)
784 {
785 	return pool->nr_idle;
786 }
787 
788 /* Do I need to keep working?  Called from currently running workers. */
789 static bool keep_working(struct worker_pool *pool)
790 {
791 	return !list_empty(&pool->worklist) &&
792 		atomic_read(&pool->nr_running) <= 1;
793 }
794 
795 /* Do we need a new worker?  Called from manager. */
796 static bool need_to_create_worker(struct worker_pool *pool)
797 {
798 	return need_more_worker(pool) && !may_start_working(pool);
799 }
800 
801 /* Do we have too many workers and should some go away? */
802 static bool too_many_workers(struct worker_pool *pool)
803 {
804 	bool managing = mutex_is_locked(&pool->manager_arb);
805 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 	int nr_busy = pool->nr_workers - nr_idle;
807 
808 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
809 }
810 
811 /*
812  * Wake up functions.
813  */
814 
815 /* Return the first idle worker.  Safe with preemption disabled */
816 static struct worker *first_idle_worker(struct worker_pool *pool)
817 {
818 	if (unlikely(list_empty(&pool->idle_list)))
819 		return NULL;
820 
821 	return list_first_entry(&pool->idle_list, struct worker, entry);
822 }
823 
824 /**
825  * wake_up_worker - wake up an idle worker
826  * @pool: worker pool to wake worker from
827  *
828  * Wake up the first idle worker of @pool.
829  *
830  * CONTEXT:
831  * spin_lock_irq(pool->lock).
832  */
833 static void wake_up_worker(struct worker_pool *pool)
834 {
835 	struct worker *worker = first_idle_worker(pool);
836 
837 	if (likely(worker))
838 		wake_up_process(worker->task);
839 }
840 
841 /**
842  * wq_worker_waking_up - a worker is waking up
843  * @task: task waking up
844  * @cpu: CPU @task is waking up to
845  *
846  * This function is called during try_to_wake_up() when a worker is
847  * being awoken.
848  *
849  * CONTEXT:
850  * spin_lock_irq(rq->lock)
851  */
852 void wq_worker_waking_up(struct task_struct *task, int cpu)
853 {
854 	struct worker *worker = kthread_data(task);
855 
856 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
857 		WARN_ON_ONCE(worker->pool->cpu != cpu);
858 		atomic_inc(&worker->pool->nr_running);
859 	}
860 }
861 
862 /**
863  * wq_worker_sleeping - a worker is going to sleep
864  * @task: task going to sleep
865  *
866  * This function is called during schedule() when a busy worker is
867  * going to sleep.  Worker on the same cpu can be woken up by
868  * returning pointer to its task.
869  *
870  * CONTEXT:
871  * spin_lock_irq(rq->lock)
872  *
873  * Return:
874  * Worker task on @cpu to wake up, %NULL if none.
875  */
876 struct task_struct *wq_worker_sleeping(struct task_struct *task)
877 {
878 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
879 	struct worker_pool *pool;
880 
881 	/*
882 	 * Rescuers, which may not have all the fields set up like normal
883 	 * workers, also reach here, let's not access anything before
884 	 * checking NOT_RUNNING.
885 	 */
886 	if (worker->flags & WORKER_NOT_RUNNING)
887 		return NULL;
888 
889 	pool = worker->pool;
890 
891 	/* this can only happen on the local cpu */
892 	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
893 		return NULL;
894 
895 	/*
896 	 * The counterpart of the following dec_and_test, implied mb,
897 	 * worklist not empty test sequence is in insert_work().
898 	 * Please read comment there.
899 	 *
900 	 * NOT_RUNNING is clear.  This means that we're bound to and
901 	 * running on the local cpu w/ rq lock held and preemption
902 	 * disabled, which in turn means that none else could be
903 	 * manipulating idle_list, so dereferencing idle_list without pool
904 	 * lock is safe.
905 	 */
906 	if (atomic_dec_and_test(&pool->nr_running) &&
907 	    !list_empty(&pool->worklist))
908 		to_wakeup = first_idle_worker(pool);
909 	return to_wakeup ? to_wakeup->task : NULL;
910 }
911 
912 /**
913  * worker_set_flags - set worker flags and adjust nr_running accordingly
914  * @worker: self
915  * @flags: flags to set
916  *
917  * Set @flags in @worker->flags and adjust nr_running accordingly.
918  *
919  * CONTEXT:
920  * spin_lock_irq(pool->lock)
921  */
922 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
923 {
924 	struct worker_pool *pool = worker->pool;
925 
926 	WARN_ON_ONCE(worker->task != current);
927 
928 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
929 	if ((flags & WORKER_NOT_RUNNING) &&
930 	    !(worker->flags & WORKER_NOT_RUNNING)) {
931 		atomic_dec(&pool->nr_running);
932 	}
933 
934 	worker->flags |= flags;
935 }
936 
937 /**
938  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
939  * @worker: self
940  * @flags: flags to clear
941  *
942  * Clear @flags in @worker->flags and adjust nr_running accordingly.
943  *
944  * CONTEXT:
945  * spin_lock_irq(pool->lock)
946  */
947 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
948 {
949 	struct worker_pool *pool = worker->pool;
950 	unsigned int oflags = worker->flags;
951 
952 	WARN_ON_ONCE(worker->task != current);
953 
954 	worker->flags &= ~flags;
955 
956 	/*
957 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
958 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
959 	 * of multiple flags, not a single flag.
960 	 */
961 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
962 		if (!(worker->flags & WORKER_NOT_RUNNING))
963 			atomic_inc(&pool->nr_running);
964 }
965 
966 /**
967  * find_worker_executing_work - find worker which is executing a work
968  * @pool: pool of interest
969  * @work: work to find worker for
970  *
971  * Find a worker which is executing @work on @pool by searching
972  * @pool->busy_hash which is keyed by the address of @work.  For a worker
973  * to match, its current execution should match the address of @work and
974  * its work function.  This is to avoid unwanted dependency between
975  * unrelated work executions through a work item being recycled while still
976  * being executed.
977  *
978  * This is a bit tricky.  A work item may be freed once its execution
979  * starts and nothing prevents the freed area from being recycled for
980  * another work item.  If the same work item address ends up being reused
981  * before the original execution finishes, workqueue will identify the
982  * recycled work item as currently executing and make it wait until the
983  * current execution finishes, introducing an unwanted dependency.
984  *
985  * This function checks the work item address and work function to avoid
986  * false positives.  Note that this isn't complete as one may construct a
987  * work function which can introduce dependency onto itself through a
988  * recycled work item.  Well, if somebody wants to shoot oneself in the
989  * foot that badly, there's only so much we can do, and if such deadlock
990  * actually occurs, it should be easy to locate the culprit work function.
991  *
992  * CONTEXT:
993  * spin_lock_irq(pool->lock).
994  *
995  * Return:
996  * Pointer to worker which is executing @work if found, %NULL
997  * otherwise.
998  */
999 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000 						 struct work_struct *work)
1001 {
1002 	struct worker *worker;
1003 
1004 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1005 			       (unsigned long)work)
1006 		if (worker->current_work == work &&
1007 		    worker->current_func == work->func)
1008 			return worker;
1009 
1010 	return NULL;
1011 }
1012 
1013 /**
1014  * move_linked_works - move linked works to a list
1015  * @work: start of series of works to be scheduled
1016  * @head: target list to append @work to
1017  * @nextp: out parameter for nested worklist walking
1018  *
1019  * Schedule linked works starting from @work to @head.  Work series to
1020  * be scheduled starts at @work and includes any consecutive work with
1021  * WORK_STRUCT_LINKED set in its predecessor.
1022  *
1023  * If @nextp is not NULL, it's updated to point to the next work of
1024  * the last scheduled work.  This allows move_linked_works() to be
1025  * nested inside outer list_for_each_entry_safe().
1026  *
1027  * CONTEXT:
1028  * spin_lock_irq(pool->lock).
1029  */
1030 static void move_linked_works(struct work_struct *work, struct list_head *head,
1031 			      struct work_struct **nextp)
1032 {
1033 	struct work_struct *n;
1034 
1035 	/*
1036 	 * Linked worklist will always end before the end of the list,
1037 	 * use NULL for list head.
1038 	 */
1039 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1040 		list_move_tail(&work->entry, head);
1041 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042 			break;
1043 	}
1044 
1045 	/*
1046 	 * If we're already inside safe list traversal and have moved
1047 	 * multiple works to the scheduled queue, the next position
1048 	 * needs to be updated.
1049 	 */
1050 	if (nextp)
1051 		*nextp = n;
1052 }
1053 
1054 /**
1055  * get_pwq - get an extra reference on the specified pool_workqueue
1056  * @pwq: pool_workqueue to get
1057  *
1058  * Obtain an extra reference on @pwq.  The caller should guarantee that
1059  * @pwq has positive refcnt and be holding the matching pool->lock.
1060  */
1061 static void get_pwq(struct pool_workqueue *pwq)
1062 {
1063 	lockdep_assert_held(&pwq->pool->lock);
1064 	WARN_ON_ONCE(pwq->refcnt <= 0);
1065 	pwq->refcnt++;
1066 }
1067 
1068 /**
1069  * put_pwq - put a pool_workqueue reference
1070  * @pwq: pool_workqueue to put
1071  *
1072  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1073  * destruction.  The caller should be holding the matching pool->lock.
1074  */
1075 static void put_pwq(struct pool_workqueue *pwq)
1076 {
1077 	lockdep_assert_held(&pwq->pool->lock);
1078 	if (likely(--pwq->refcnt))
1079 		return;
1080 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081 		return;
1082 	/*
1083 	 * @pwq can't be released under pool->lock, bounce to
1084 	 * pwq_unbound_release_workfn().  This never recurses on the same
1085 	 * pool->lock as this path is taken only for unbound workqueues and
1086 	 * the release work item is scheduled on a per-cpu workqueue.  To
1087 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1088 	 * subclass of 1 in get_unbound_pool().
1089 	 */
1090 	schedule_work(&pwq->unbound_release_work);
1091 }
1092 
1093 /**
1094  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095  * @pwq: pool_workqueue to put (can be %NULL)
1096  *
1097  * put_pwq() with locking.  This function also allows %NULL @pwq.
1098  */
1099 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1100 {
1101 	if (pwq) {
1102 		/*
1103 		 * As both pwqs and pools are sched-RCU protected, the
1104 		 * following lock operations are safe.
1105 		 */
1106 		spin_lock_irq(&pwq->pool->lock);
1107 		put_pwq(pwq);
1108 		spin_unlock_irq(&pwq->pool->lock);
1109 	}
1110 }
1111 
1112 static void pwq_activate_delayed_work(struct work_struct *work)
1113 {
1114 	struct pool_workqueue *pwq = get_work_pwq(work);
1115 
1116 	trace_workqueue_activate_work(work);
1117 	if (list_empty(&pwq->pool->worklist))
1118 		pwq->pool->watchdog_ts = jiffies;
1119 	move_linked_works(work, &pwq->pool->worklist, NULL);
1120 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1121 	pwq->nr_active++;
1122 }
1123 
1124 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1125 {
1126 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1127 						    struct work_struct, entry);
1128 
1129 	pwq_activate_delayed_work(work);
1130 }
1131 
1132 /**
1133  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134  * @pwq: pwq of interest
1135  * @color: color of work which left the queue
1136  *
1137  * A work either has completed or is removed from pending queue,
1138  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1139  *
1140  * CONTEXT:
1141  * spin_lock_irq(pool->lock).
1142  */
1143 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1144 {
1145 	/* uncolored work items don't participate in flushing or nr_active */
1146 	if (color == WORK_NO_COLOR)
1147 		goto out_put;
1148 
1149 	pwq->nr_in_flight[color]--;
1150 
1151 	pwq->nr_active--;
1152 	if (!list_empty(&pwq->delayed_works)) {
1153 		/* one down, submit a delayed one */
1154 		if (pwq->nr_active < pwq->max_active)
1155 			pwq_activate_first_delayed(pwq);
1156 	}
1157 
1158 	/* is flush in progress and are we at the flushing tip? */
1159 	if (likely(pwq->flush_color != color))
1160 		goto out_put;
1161 
1162 	/* are there still in-flight works? */
1163 	if (pwq->nr_in_flight[color])
1164 		goto out_put;
1165 
1166 	/* this pwq is done, clear flush_color */
1167 	pwq->flush_color = -1;
1168 
1169 	/*
1170 	 * If this was the last pwq, wake up the first flusher.  It
1171 	 * will handle the rest.
1172 	 */
1173 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174 		complete(&pwq->wq->first_flusher->done);
1175 out_put:
1176 	put_pwq(pwq);
1177 }
1178 
1179 /**
1180  * try_to_grab_pending - steal work item from worklist and disable irq
1181  * @work: work item to steal
1182  * @is_dwork: @work is a delayed_work
1183  * @flags: place to store irq state
1184  *
1185  * Try to grab PENDING bit of @work.  This function can handle @work in any
1186  * stable state - idle, on timer or on worklist.
1187  *
1188  * Return:
1189  *  1		if @work was pending and we successfully stole PENDING
1190  *  0		if @work was idle and we claimed PENDING
1191  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1192  *  -ENOENT	if someone else is canceling @work, this state may persist
1193  *		for arbitrarily long
1194  *
1195  * Note:
1196  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1197  * interrupted while holding PENDING and @work off queue, irq must be
1198  * disabled on entry.  This, combined with delayed_work->timer being
1199  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1200  *
1201  * On successful return, >= 0, irq is disabled and the caller is
1202  * responsible for releasing it using local_irq_restore(*@flags).
1203  *
1204  * This function is safe to call from any context including IRQ handler.
1205  */
1206 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207 			       unsigned long *flags)
1208 {
1209 	struct worker_pool *pool;
1210 	struct pool_workqueue *pwq;
1211 
1212 	local_irq_save(*flags);
1213 
1214 	/* try to steal the timer if it exists */
1215 	if (is_dwork) {
1216 		struct delayed_work *dwork = to_delayed_work(work);
1217 
1218 		/*
1219 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1220 		 * guaranteed that the timer is not queued anywhere and not
1221 		 * running on the local CPU.
1222 		 */
1223 		if (likely(del_timer(&dwork->timer)))
1224 			return 1;
1225 	}
1226 
1227 	/* try to claim PENDING the normal way */
1228 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229 		return 0;
1230 
1231 	/*
1232 	 * The queueing is in progress, or it is already queued. Try to
1233 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1234 	 */
1235 	pool = get_work_pool(work);
1236 	if (!pool)
1237 		goto fail;
1238 
1239 	spin_lock(&pool->lock);
1240 	/*
1241 	 * work->data is guaranteed to point to pwq only while the work
1242 	 * item is queued on pwq->wq, and both updating work->data to point
1243 	 * to pwq on queueing and to pool on dequeueing are done under
1244 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1245 	 * points to pwq which is associated with a locked pool, the work
1246 	 * item is currently queued on that pool.
1247 	 */
1248 	pwq = get_work_pwq(work);
1249 	if (pwq && pwq->pool == pool) {
1250 		debug_work_deactivate(work);
1251 
1252 		/*
1253 		 * A delayed work item cannot be grabbed directly because
1254 		 * it might have linked NO_COLOR work items which, if left
1255 		 * on the delayed_list, will confuse pwq->nr_active
1256 		 * management later on and cause stall.  Make sure the work
1257 		 * item is activated before grabbing.
1258 		 */
1259 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1260 			pwq_activate_delayed_work(work);
1261 
1262 		list_del_init(&work->entry);
1263 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1264 
1265 		/* work->data points to pwq iff queued, point to pool */
1266 		set_work_pool_and_keep_pending(work, pool->id);
1267 
1268 		spin_unlock(&pool->lock);
1269 		return 1;
1270 	}
1271 	spin_unlock(&pool->lock);
1272 fail:
1273 	local_irq_restore(*flags);
1274 	if (work_is_canceling(work))
1275 		return -ENOENT;
1276 	cpu_relax();
1277 	return -EAGAIN;
1278 }
1279 
1280 /**
1281  * insert_work - insert a work into a pool
1282  * @pwq: pwq @work belongs to
1283  * @work: work to insert
1284  * @head: insertion point
1285  * @extra_flags: extra WORK_STRUCT_* flags to set
1286  *
1287  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1288  * work_struct flags.
1289  *
1290  * CONTEXT:
1291  * spin_lock_irq(pool->lock).
1292  */
1293 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294 			struct list_head *head, unsigned int extra_flags)
1295 {
1296 	struct worker_pool *pool = pwq->pool;
1297 
1298 	/* we own @work, set data and link */
1299 	set_work_pwq(work, pwq, extra_flags);
1300 	list_add_tail(&work->entry, head);
1301 	get_pwq(pwq);
1302 
1303 	/*
1304 	 * Ensure either wq_worker_sleeping() sees the above
1305 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1306 	 * around lazily while there are works to be processed.
1307 	 */
1308 	smp_mb();
1309 
1310 	if (__need_more_worker(pool))
1311 		wake_up_worker(pool);
1312 }
1313 
1314 /*
1315  * Test whether @work is being queued from another work executing on the
1316  * same workqueue.
1317  */
1318 static bool is_chained_work(struct workqueue_struct *wq)
1319 {
1320 	struct worker *worker;
1321 
1322 	worker = current_wq_worker();
1323 	/*
1324 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1325 	 * I'm @worker, it's safe to dereference it without locking.
1326 	 */
1327 	return worker && worker->current_pwq->wq == wq;
1328 }
1329 
1330 /*
1331  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1333  * avoid perturbing sensitive tasks.
1334  */
1335 static int wq_select_unbound_cpu(int cpu)
1336 {
1337 	static bool printed_dbg_warning;
1338 	int new_cpu;
1339 
1340 	if (likely(!wq_debug_force_rr_cpu)) {
1341 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342 			return cpu;
1343 	} else if (!printed_dbg_warning) {
1344 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345 		printed_dbg_warning = true;
1346 	}
1347 
1348 	if (cpumask_empty(wq_unbound_cpumask))
1349 		return cpu;
1350 
1351 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1354 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355 		if (unlikely(new_cpu >= nr_cpu_ids))
1356 			return cpu;
1357 	}
1358 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1359 
1360 	return new_cpu;
1361 }
1362 
1363 static void __queue_work(int cpu, struct workqueue_struct *wq,
1364 			 struct work_struct *work)
1365 {
1366 	struct pool_workqueue *pwq;
1367 	struct worker_pool *last_pool;
1368 	struct list_head *worklist;
1369 	unsigned int work_flags;
1370 	unsigned int req_cpu = cpu;
1371 
1372 	/*
1373 	 * While a work item is PENDING && off queue, a task trying to
1374 	 * steal the PENDING will busy-loop waiting for it to either get
1375 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1376 	 * happen with IRQ disabled.
1377 	 */
1378 	WARN_ON_ONCE(!irqs_disabled());
1379 
1380 	debug_work_activate(work);
1381 
1382 	/* if draining, only works from the same workqueue are allowed */
1383 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1384 	    WARN_ON_ONCE(!is_chained_work(wq)))
1385 		return;
1386 retry:
1387 	if (req_cpu == WORK_CPU_UNBOUND)
1388 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1389 
1390 	/* pwq which will be used unless @work is executing elsewhere */
1391 	if (!(wq->flags & WQ_UNBOUND))
1392 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1393 	else
1394 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1395 
1396 	/*
1397 	 * If @work was previously on a different pool, it might still be
1398 	 * running there, in which case the work needs to be queued on that
1399 	 * pool to guarantee non-reentrancy.
1400 	 */
1401 	last_pool = get_work_pool(work);
1402 	if (last_pool && last_pool != pwq->pool) {
1403 		struct worker *worker;
1404 
1405 		spin_lock(&last_pool->lock);
1406 
1407 		worker = find_worker_executing_work(last_pool, work);
1408 
1409 		if (worker && worker->current_pwq->wq == wq) {
1410 			pwq = worker->current_pwq;
1411 		} else {
1412 			/* meh... not running there, queue here */
1413 			spin_unlock(&last_pool->lock);
1414 			spin_lock(&pwq->pool->lock);
1415 		}
1416 	} else {
1417 		spin_lock(&pwq->pool->lock);
1418 	}
1419 
1420 	/*
1421 	 * pwq is determined and locked.  For unbound pools, we could have
1422 	 * raced with pwq release and it could already be dead.  If its
1423 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1424 	 * without another pwq replacing it in the numa_pwq_tbl or while
1425 	 * work items are executing on it, so the retrying is guaranteed to
1426 	 * make forward-progress.
1427 	 */
1428 	if (unlikely(!pwq->refcnt)) {
1429 		if (wq->flags & WQ_UNBOUND) {
1430 			spin_unlock(&pwq->pool->lock);
1431 			cpu_relax();
1432 			goto retry;
1433 		}
1434 		/* oops */
1435 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436 			  wq->name, cpu);
1437 	}
1438 
1439 	/* pwq determined, queue */
1440 	trace_workqueue_queue_work(req_cpu, pwq, work);
1441 
1442 	if (WARN_ON(!list_empty(&work->entry))) {
1443 		spin_unlock(&pwq->pool->lock);
1444 		return;
1445 	}
1446 
1447 	pwq->nr_in_flight[pwq->work_color]++;
1448 	work_flags = work_color_to_flags(pwq->work_color);
1449 
1450 	if (likely(pwq->nr_active < pwq->max_active)) {
1451 		trace_workqueue_activate_work(work);
1452 		pwq->nr_active++;
1453 		worklist = &pwq->pool->worklist;
1454 		if (list_empty(worklist))
1455 			pwq->pool->watchdog_ts = jiffies;
1456 	} else {
1457 		work_flags |= WORK_STRUCT_DELAYED;
1458 		worklist = &pwq->delayed_works;
1459 	}
1460 
1461 	insert_work(pwq, work, worklist, work_flags);
1462 
1463 	spin_unlock(&pwq->pool->lock);
1464 }
1465 
1466 /**
1467  * queue_work_on - queue work on specific cpu
1468  * @cpu: CPU number to execute work on
1469  * @wq: workqueue to use
1470  * @work: work to queue
1471  *
1472  * We queue the work to a specific CPU, the caller must ensure it
1473  * can't go away.
1474  *
1475  * Return: %false if @work was already on a queue, %true otherwise.
1476  */
1477 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478 		   struct work_struct *work)
1479 {
1480 	bool ret = false;
1481 	unsigned long flags;
1482 
1483 	local_irq_save(flags);
1484 
1485 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1486 		__queue_work(cpu, wq, work);
1487 		ret = true;
1488 	}
1489 
1490 	local_irq_restore(flags);
1491 	return ret;
1492 }
1493 EXPORT_SYMBOL(queue_work_on);
1494 
1495 void delayed_work_timer_fn(unsigned long __data)
1496 {
1497 	struct delayed_work *dwork = (struct delayed_work *)__data;
1498 
1499 	/* should have been called from irqsafe timer with irq already off */
1500 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1501 }
1502 EXPORT_SYMBOL(delayed_work_timer_fn);
1503 
1504 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505 				struct delayed_work *dwork, unsigned long delay)
1506 {
1507 	struct timer_list *timer = &dwork->timer;
1508 	struct work_struct *work = &dwork->work;
1509 
1510 	WARN_ON_ONCE(!wq);
1511 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1512 		     timer->data != (unsigned long)dwork);
1513 	WARN_ON_ONCE(timer_pending(timer));
1514 	WARN_ON_ONCE(!list_empty(&work->entry));
1515 
1516 	/*
1517 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1518 	 * both optimization and correctness.  The earliest @timer can
1519 	 * expire is on the closest next tick and delayed_work users depend
1520 	 * on that there's no such delay when @delay is 0.
1521 	 */
1522 	if (!delay) {
1523 		__queue_work(cpu, wq, &dwork->work);
1524 		return;
1525 	}
1526 
1527 	dwork->wq = wq;
1528 	dwork->cpu = cpu;
1529 	timer->expires = jiffies + delay;
1530 
1531 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1532 		add_timer_on(timer, cpu);
1533 	else
1534 		add_timer(timer);
1535 }
1536 
1537 /**
1538  * queue_delayed_work_on - queue work on specific CPU after delay
1539  * @cpu: CPU number to execute work on
1540  * @wq: workqueue to use
1541  * @dwork: work to queue
1542  * @delay: number of jiffies to wait before queueing
1543  *
1544  * Return: %false if @work was already on a queue, %true otherwise.  If
1545  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1546  * execution.
1547  */
1548 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1549 			   struct delayed_work *dwork, unsigned long delay)
1550 {
1551 	struct work_struct *work = &dwork->work;
1552 	bool ret = false;
1553 	unsigned long flags;
1554 
1555 	/* read the comment in __queue_work() */
1556 	local_irq_save(flags);
1557 
1558 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1559 		__queue_delayed_work(cpu, wq, dwork, delay);
1560 		ret = true;
1561 	}
1562 
1563 	local_irq_restore(flags);
1564 	return ret;
1565 }
1566 EXPORT_SYMBOL(queue_delayed_work_on);
1567 
1568 /**
1569  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1570  * @cpu: CPU number to execute work on
1571  * @wq: workqueue to use
1572  * @dwork: work to queue
1573  * @delay: number of jiffies to wait before queueing
1574  *
1575  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1576  * modify @dwork's timer so that it expires after @delay.  If @delay is
1577  * zero, @work is guaranteed to be scheduled immediately regardless of its
1578  * current state.
1579  *
1580  * Return: %false if @dwork was idle and queued, %true if @dwork was
1581  * pending and its timer was modified.
1582  *
1583  * This function is safe to call from any context including IRQ handler.
1584  * See try_to_grab_pending() for details.
1585  */
1586 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1587 			 struct delayed_work *dwork, unsigned long delay)
1588 {
1589 	unsigned long flags;
1590 	int ret;
1591 
1592 	do {
1593 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1594 	} while (unlikely(ret == -EAGAIN));
1595 
1596 	if (likely(ret >= 0)) {
1597 		__queue_delayed_work(cpu, wq, dwork, delay);
1598 		local_irq_restore(flags);
1599 	}
1600 
1601 	/* -ENOENT from try_to_grab_pending() becomes %true */
1602 	return ret;
1603 }
1604 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1605 
1606 /**
1607  * worker_enter_idle - enter idle state
1608  * @worker: worker which is entering idle state
1609  *
1610  * @worker is entering idle state.  Update stats and idle timer if
1611  * necessary.
1612  *
1613  * LOCKING:
1614  * spin_lock_irq(pool->lock).
1615  */
1616 static void worker_enter_idle(struct worker *worker)
1617 {
1618 	struct worker_pool *pool = worker->pool;
1619 
1620 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1621 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1622 			 (worker->hentry.next || worker->hentry.pprev)))
1623 		return;
1624 
1625 	/* can't use worker_set_flags(), also called from create_worker() */
1626 	worker->flags |= WORKER_IDLE;
1627 	pool->nr_idle++;
1628 	worker->last_active = jiffies;
1629 
1630 	/* idle_list is LIFO */
1631 	list_add(&worker->entry, &pool->idle_list);
1632 
1633 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1634 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1635 
1636 	/*
1637 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1638 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1639 	 * nr_running, the warning may trigger spuriously.  Check iff
1640 	 * unbind is not in progress.
1641 	 */
1642 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1643 		     pool->nr_workers == pool->nr_idle &&
1644 		     atomic_read(&pool->nr_running));
1645 }
1646 
1647 /**
1648  * worker_leave_idle - leave idle state
1649  * @worker: worker which is leaving idle state
1650  *
1651  * @worker is leaving idle state.  Update stats.
1652  *
1653  * LOCKING:
1654  * spin_lock_irq(pool->lock).
1655  */
1656 static void worker_leave_idle(struct worker *worker)
1657 {
1658 	struct worker_pool *pool = worker->pool;
1659 
1660 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1661 		return;
1662 	worker_clr_flags(worker, WORKER_IDLE);
1663 	pool->nr_idle--;
1664 	list_del_init(&worker->entry);
1665 }
1666 
1667 static struct worker *alloc_worker(int node)
1668 {
1669 	struct worker *worker;
1670 
1671 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1672 	if (worker) {
1673 		INIT_LIST_HEAD(&worker->entry);
1674 		INIT_LIST_HEAD(&worker->scheduled);
1675 		INIT_LIST_HEAD(&worker->node);
1676 		/* on creation a worker is in !idle && prep state */
1677 		worker->flags = WORKER_PREP;
1678 	}
1679 	return worker;
1680 }
1681 
1682 /**
1683  * worker_attach_to_pool() - attach a worker to a pool
1684  * @worker: worker to be attached
1685  * @pool: the target pool
1686  *
1687  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1688  * cpu-binding of @worker are kept coordinated with the pool across
1689  * cpu-[un]hotplugs.
1690  */
1691 static void worker_attach_to_pool(struct worker *worker,
1692 				   struct worker_pool *pool)
1693 {
1694 	mutex_lock(&pool->attach_mutex);
1695 
1696 	/*
1697 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1698 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1699 	 */
1700 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1701 
1702 	/*
1703 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1704 	 * stable across this function.  See the comments above the
1705 	 * flag definition for details.
1706 	 */
1707 	if (pool->flags & POOL_DISASSOCIATED)
1708 		worker->flags |= WORKER_UNBOUND;
1709 
1710 	list_add_tail(&worker->node, &pool->workers);
1711 
1712 	mutex_unlock(&pool->attach_mutex);
1713 }
1714 
1715 /**
1716  * worker_detach_from_pool() - detach a worker from its pool
1717  * @worker: worker which is attached to its pool
1718  * @pool: the pool @worker is attached to
1719  *
1720  * Undo the attaching which had been done in worker_attach_to_pool().  The
1721  * caller worker shouldn't access to the pool after detached except it has
1722  * other reference to the pool.
1723  */
1724 static void worker_detach_from_pool(struct worker *worker,
1725 				    struct worker_pool *pool)
1726 {
1727 	struct completion *detach_completion = NULL;
1728 
1729 	mutex_lock(&pool->attach_mutex);
1730 	list_del(&worker->node);
1731 	if (list_empty(&pool->workers))
1732 		detach_completion = pool->detach_completion;
1733 	mutex_unlock(&pool->attach_mutex);
1734 
1735 	/* clear leftover flags without pool->lock after it is detached */
1736 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1737 
1738 	if (detach_completion)
1739 		complete(detach_completion);
1740 }
1741 
1742 /**
1743  * create_worker - create a new workqueue worker
1744  * @pool: pool the new worker will belong to
1745  *
1746  * Create and start a new worker which is attached to @pool.
1747  *
1748  * CONTEXT:
1749  * Might sleep.  Does GFP_KERNEL allocations.
1750  *
1751  * Return:
1752  * Pointer to the newly created worker.
1753  */
1754 static struct worker *create_worker(struct worker_pool *pool)
1755 {
1756 	struct worker *worker = NULL;
1757 	int id = -1;
1758 	char id_buf[16];
1759 
1760 	/* ID is needed to determine kthread name */
1761 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1762 	if (id < 0)
1763 		goto fail;
1764 
1765 	worker = alloc_worker(pool->node);
1766 	if (!worker)
1767 		goto fail;
1768 
1769 	worker->pool = pool;
1770 	worker->id = id;
1771 
1772 	if (pool->cpu >= 0)
1773 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1774 			 pool->attrs->nice < 0  ? "H" : "");
1775 	else
1776 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1777 
1778 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1779 					      "kworker/%s", id_buf);
1780 	if (IS_ERR(worker->task))
1781 		goto fail;
1782 
1783 	set_user_nice(worker->task, pool->attrs->nice);
1784 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1785 
1786 	/* successful, attach the worker to the pool */
1787 	worker_attach_to_pool(worker, pool);
1788 
1789 	/* start the newly created worker */
1790 	spin_lock_irq(&pool->lock);
1791 	worker->pool->nr_workers++;
1792 	worker_enter_idle(worker);
1793 	wake_up_process(worker->task);
1794 	spin_unlock_irq(&pool->lock);
1795 
1796 	return worker;
1797 
1798 fail:
1799 	if (id >= 0)
1800 		ida_simple_remove(&pool->worker_ida, id);
1801 	kfree(worker);
1802 	return NULL;
1803 }
1804 
1805 /**
1806  * destroy_worker - destroy a workqueue worker
1807  * @worker: worker to be destroyed
1808  *
1809  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1810  * be idle.
1811  *
1812  * CONTEXT:
1813  * spin_lock_irq(pool->lock).
1814  */
1815 static void destroy_worker(struct worker *worker)
1816 {
1817 	struct worker_pool *pool = worker->pool;
1818 
1819 	lockdep_assert_held(&pool->lock);
1820 
1821 	/* sanity check frenzy */
1822 	if (WARN_ON(worker->current_work) ||
1823 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1824 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1825 		return;
1826 
1827 	pool->nr_workers--;
1828 	pool->nr_idle--;
1829 
1830 	list_del_init(&worker->entry);
1831 	worker->flags |= WORKER_DIE;
1832 	wake_up_process(worker->task);
1833 }
1834 
1835 static void idle_worker_timeout(unsigned long __pool)
1836 {
1837 	struct worker_pool *pool = (void *)__pool;
1838 
1839 	spin_lock_irq(&pool->lock);
1840 
1841 	while (too_many_workers(pool)) {
1842 		struct worker *worker;
1843 		unsigned long expires;
1844 
1845 		/* idle_list is kept in LIFO order, check the last one */
1846 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1847 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1848 
1849 		if (time_before(jiffies, expires)) {
1850 			mod_timer(&pool->idle_timer, expires);
1851 			break;
1852 		}
1853 
1854 		destroy_worker(worker);
1855 	}
1856 
1857 	spin_unlock_irq(&pool->lock);
1858 }
1859 
1860 static void send_mayday(struct work_struct *work)
1861 {
1862 	struct pool_workqueue *pwq = get_work_pwq(work);
1863 	struct workqueue_struct *wq = pwq->wq;
1864 
1865 	lockdep_assert_held(&wq_mayday_lock);
1866 
1867 	if (!wq->rescuer)
1868 		return;
1869 
1870 	/* mayday mayday mayday */
1871 	if (list_empty(&pwq->mayday_node)) {
1872 		/*
1873 		 * If @pwq is for an unbound wq, its base ref may be put at
1874 		 * any time due to an attribute change.  Pin @pwq until the
1875 		 * rescuer is done with it.
1876 		 */
1877 		get_pwq(pwq);
1878 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1879 		wake_up_process(wq->rescuer->task);
1880 	}
1881 }
1882 
1883 static void pool_mayday_timeout(unsigned long __pool)
1884 {
1885 	struct worker_pool *pool = (void *)__pool;
1886 	struct work_struct *work;
1887 
1888 	spin_lock_irq(&pool->lock);
1889 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1890 
1891 	if (need_to_create_worker(pool)) {
1892 		/*
1893 		 * We've been trying to create a new worker but
1894 		 * haven't been successful.  We might be hitting an
1895 		 * allocation deadlock.  Send distress signals to
1896 		 * rescuers.
1897 		 */
1898 		list_for_each_entry(work, &pool->worklist, entry)
1899 			send_mayday(work);
1900 	}
1901 
1902 	spin_unlock(&wq_mayday_lock);
1903 	spin_unlock_irq(&pool->lock);
1904 
1905 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1906 }
1907 
1908 /**
1909  * maybe_create_worker - create a new worker if necessary
1910  * @pool: pool to create a new worker for
1911  *
1912  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1913  * have at least one idle worker on return from this function.  If
1914  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1915  * sent to all rescuers with works scheduled on @pool to resolve
1916  * possible allocation deadlock.
1917  *
1918  * On return, need_to_create_worker() is guaranteed to be %false and
1919  * may_start_working() %true.
1920  *
1921  * LOCKING:
1922  * spin_lock_irq(pool->lock) which may be released and regrabbed
1923  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1924  * manager.
1925  */
1926 static void maybe_create_worker(struct worker_pool *pool)
1927 __releases(&pool->lock)
1928 __acquires(&pool->lock)
1929 {
1930 restart:
1931 	spin_unlock_irq(&pool->lock);
1932 
1933 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1934 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1935 
1936 	while (true) {
1937 		if (create_worker(pool) || !need_to_create_worker(pool))
1938 			break;
1939 
1940 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1941 
1942 		if (!need_to_create_worker(pool))
1943 			break;
1944 	}
1945 
1946 	del_timer_sync(&pool->mayday_timer);
1947 	spin_lock_irq(&pool->lock);
1948 	/*
1949 	 * This is necessary even after a new worker was just successfully
1950 	 * created as @pool->lock was dropped and the new worker might have
1951 	 * already become busy.
1952 	 */
1953 	if (need_to_create_worker(pool))
1954 		goto restart;
1955 }
1956 
1957 /**
1958  * manage_workers - manage worker pool
1959  * @worker: self
1960  *
1961  * Assume the manager role and manage the worker pool @worker belongs
1962  * to.  At any given time, there can be only zero or one manager per
1963  * pool.  The exclusion is handled automatically by this function.
1964  *
1965  * The caller can safely start processing works on false return.  On
1966  * true return, it's guaranteed that need_to_create_worker() is false
1967  * and may_start_working() is true.
1968  *
1969  * CONTEXT:
1970  * spin_lock_irq(pool->lock) which may be released and regrabbed
1971  * multiple times.  Does GFP_KERNEL allocations.
1972  *
1973  * Return:
1974  * %false if the pool doesn't need management and the caller can safely
1975  * start processing works, %true if management function was performed and
1976  * the conditions that the caller verified before calling the function may
1977  * no longer be true.
1978  */
1979 static bool manage_workers(struct worker *worker)
1980 {
1981 	struct worker_pool *pool = worker->pool;
1982 
1983 	/*
1984 	 * Anyone who successfully grabs manager_arb wins the arbitration
1985 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
1986 	 * failure while holding pool->lock reliably indicates that someone
1987 	 * else is managing the pool and the worker which failed trylock
1988 	 * can proceed to executing work items.  This means that anyone
1989 	 * grabbing manager_arb is responsible for actually performing
1990 	 * manager duties.  If manager_arb is grabbed and released without
1991 	 * actual management, the pool may stall indefinitely.
1992 	 */
1993 	if (!mutex_trylock(&pool->manager_arb))
1994 		return false;
1995 	pool->manager = worker;
1996 
1997 	maybe_create_worker(pool);
1998 
1999 	pool->manager = NULL;
2000 	mutex_unlock(&pool->manager_arb);
2001 	return true;
2002 }
2003 
2004 /**
2005  * process_one_work - process single work
2006  * @worker: self
2007  * @work: work to process
2008  *
2009  * Process @work.  This function contains all the logics necessary to
2010  * process a single work including synchronization against and
2011  * interaction with other workers on the same cpu, queueing and
2012  * flushing.  As long as context requirement is met, any worker can
2013  * call this function to process a work.
2014  *
2015  * CONTEXT:
2016  * spin_lock_irq(pool->lock) which is released and regrabbed.
2017  */
2018 static void process_one_work(struct worker *worker, struct work_struct *work)
2019 __releases(&pool->lock)
2020 __acquires(&pool->lock)
2021 {
2022 	struct pool_workqueue *pwq = get_work_pwq(work);
2023 	struct worker_pool *pool = worker->pool;
2024 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2025 	int work_color;
2026 	struct worker *collision;
2027 #ifdef CONFIG_LOCKDEP
2028 	/*
2029 	 * It is permissible to free the struct work_struct from
2030 	 * inside the function that is called from it, this we need to
2031 	 * take into account for lockdep too.  To avoid bogus "held
2032 	 * lock freed" warnings as well as problems when looking into
2033 	 * work->lockdep_map, make a copy and use that here.
2034 	 */
2035 	struct lockdep_map lockdep_map;
2036 
2037 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2038 #endif
2039 	/* ensure we're on the correct CPU */
2040 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2041 		     raw_smp_processor_id() != pool->cpu);
2042 
2043 	/*
2044 	 * A single work shouldn't be executed concurrently by
2045 	 * multiple workers on a single cpu.  Check whether anyone is
2046 	 * already processing the work.  If so, defer the work to the
2047 	 * currently executing one.
2048 	 */
2049 	collision = find_worker_executing_work(pool, work);
2050 	if (unlikely(collision)) {
2051 		move_linked_works(work, &collision->scheduled, NULL);
2052 		return;
2053 	}
2054 
2055 	/* claim and dequeue */
2056 	debug_work_deactivate(work);
2057 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2058 	worker->current_work = work;
2059 	worker->current_func = work->func;
2060 	worker->current_pwq = pwq;
2061 	work_color = get_work_color(work);
2062 
2063 	list_del_init(&work->entry);
2064 
2065 	/*
2066 	 * CPU intensive works don't participate in concurrency management.
2067 	 * They're the scheduler's responsibility.  This takes @worker out
2068 	 * of concurrency management and the next code block will chain
2069 	 * execution of the pending work items.
2070 	 */
2071 	if (unlikely(cpu_intensive))
2072 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2073 
2074 	/*
2075 	 * Wake up another worker if necessary.  The condition is always
2076 	 * false for normal per-cpu workers since nr_running would always
2077 	 * be >= 1 at this point.  This is used to chain execution of the
2078 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2079 	 * UNBOUND and CPU_INTENSIVE ones.
2080 	 */
2081 	if (need_more_worker(pool))
2082 		wake_up_worker(pool);
2083 
2084 	/*
2085 	 * Record the last pool and clear PENDING which should be the last
2086 	 * update to @work.  Also, do this inside @pool->lock so that
2087 	 * PENDING and queued state changes happen together while IRQ is
2088 	 * disabled.
2089 	 */
2090 	set_work_pool_and_clear_pending(work, pool->id);
2091 
2092 	spin_unlock_irq(&pool->lock);
2093 
2094 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2095 	lock_map_acquire(&lockdep_map);
2096 	trace_workqueue_execute_start(work);
2097 	worker->current_func(work);
2098 	/*
2099 	 * While we must be careful to not use "work" after this, the trace
2100 	 * point will only record its address.
2101 	 */
2102 	trace_workqueue_execute_end(work);
2103 	lock_map_release(&lockdep_map);
2104 	lock_map_release(&pwq->wq->lockdep_map);
2105 
2106 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2107 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2108 		       "     last function: %pf\n",
2109 		       current->comm, preempt_count(), task_pid_nr(current),
2110 		       worker->current_func);
2111 		debug_show_held_locks(current);
2112 		dump_stack();
2113 	}
2114 
2115 	/*
2116 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2117 	 * kernels, where a requeueing work item waiting for something to
2118 	 * happen could deadlock with stop_machine as such work item could
2119 	 * indefinitely requeue itself while all other CPUs are trapped in
2120 	 * stop_machine. At the same time, report a quiescent RCU state so
2121 	 * the same condition doesn't freeze RCU.
2122 	 */
2123 	cond_resched_rcu_qs();
2124 
2125 	spin_lock_irq(&pool->lock);
2126 
2127 	/* clear cpu intensive status */
2128 	if (unlikely(cpu_intensive))
2129 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2130 
2131 	/* we're done with it, release */
2132 	hash_del(&worker->hentry);
2133 	worker->current_work = NULL;
2134 	worker->current_func = NULL;
2135 	worker->current_pwq = NULL;
2136 	worker->desc_valid = false;
2137 	pwq_dec_nr_in_flight(pwq, work_color);
2138 }
2139 
2140 /**
2141  * process_scheduled_works - process scheduled works
2142  * @worker: self
2143  *
2144  * Process all scheduled works.  Please note that the scheduled list
2145  * may change while processing a work, so this function repeatedly
2146  * fetches a work from the top and executes it.
2147  *
2148  * CONTEXT:
2149  * spin_lock_irq(pool->lock) which may be released and regrabbed
2150  * multiple times.
2151  */
2152 static void process_scheduled_works(struct worker *worker)
2153 {
2154 	while (!list_empty(&worker->scheduled)) {
2155 		struct work_struct *work = list_first_entry(&worker->scheduled,
2156 						struct work_struct, entry);
2157 		process_one_work(worker, work);
2158 	}
2159 }
2160 
2161 /**
2162  * worker_thread - the worker thread function
2163  * @__worker: self
2164  *
2165  * The worker thread function.  All workers belong to a worker_pool -
2166  * either a per-cpu one or dynamic unbound one.  These workers process all
2167  * work items regardless of their specific target workqueue.  The only
2168  * exception is work items which belong to workqueues with a rescuer which
2169  * will be explained in rescuer_thread().
2170  *
2171  * Return: 0
2172  */
2173 static int worker_thread(void *__worker)
2174 {
2175 	struct worker *worker = __worker;
2176 	struct worker_pool *pool = worker->pool;
2177 
2178 	/* tell the scheduler that this is a workqueue worker */
2179 	worker->task->flags |= PF_WQ_WORKER;
2180 woke_up:
2181 	spin_lock_irq(&pool->lock);
2182 
2183 	/* am I supposed to die? */
2184 	if (unlikely(worker->flags & WORKER_DIE)) {
2185 		spin_unlock_irq(&pool->lock);
2186 		WARN_ON_ONCE(!list_empty(&worker->entry));
2187 		worker->task->flags &= ~PF_WQ_WORKER;
2188 
2189 		set_task_comm(worker->task, "kworker/dying");
2190 		ida_simple_remove(&pool->worker_ida, worker->id);
2191 		worker_detach_from_pool(worker, pool);
2192 		kfree(worker);
2193 		return 0;
2194 	}
2195 
2196 	worker_leave_idle(worker);
2197 recheck:
2198 	/* no more worker necessary? */
2199 	if (!need_more_worker(pool))
2200 		goto sleep;
2201 
2202 	/* do we need to manage? */
2203 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2204 		goto recheck;
2205 
2206 	/*
2207 	 * ->scheduled list can only be filled while a worker is
2208 	 * preparing to process a work or actually processing it.
2209 	 * Make sure nobody diddled with it while I was sleeping.
2210 	 */
2211 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2212 
2213 	/*
2214 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2215 	 * worker or that someone else has already assumed the manager
2216 	 * role.  This is where @worker starts participating in concurrency
2217 	 * management if applicable and concurrency management is restored
2218 	 * after being rebound.  See rebind_workers() for details.
2219 	 */
2220 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2221 
2222 	do {
2223 		struct work_struct *work =
2224 			list_first_entry(&pool->worklist,
2225 					 struct work_struct, entry);
2226 
2227 		pool->watchdog_ts = jiffies;
2228 
2229 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2230 			/* optimization path, not strictly necessary */
2231 			process_one_work(worker, work);
2232 			if (unlikely(!list_empty(&worker->scheduled)))
2233 				process_scheduled_works(worker);
2234 		} else {
2235 			move_linked_works(work, &worker->scheduled, NULL);
2236 			process_scheduled_works(worker);
2237 		}
2238 	} while (keep_working(pool));
2239 
2240 	worker_set_flags(worker, WORKER_PREP);
2241 sleep:
2242 	/*
2243 	 * pool->lock is held and there's no work to process and no need to
2244 	 * manage, sleep.  Workers are woken up only while holding
2245 	 * pool->lock or from local cpu, so setting the current state
2246 	 * before releasing pool->lock is enough to prevent losing any
2247 	 * event.
2248 	 */
2249 	worker_enter_idle(worker);
2250 	__set_current_state(TASK_INTERRUPTIBLE);
2251 	spin_unlock_irq(&pool->lock);
2252 	schedule();
2253 	goto woke_up;
2254 }
2255 
2256 /**
2257  * rescuer_thread - the rescuer thread function
2258  * @__rescuer: self
2259  *
2260  * Workqueue rescuer thread function.  There's one rescuer for each
2261  * workqueue which has WQ_MEM_RECLAIM set.
2262  *
2263  * Regular work processing on a pool may block trying to create a new
2264  * worker which uses GFP_KERNEL allocation which has slight chance of
2265  * developing into deadlock if some works currently on the same queue
2266  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2267  * the problem rescuer solves.
2268  *
2269  * When such condition is possible, the pool summons rescuers of all
2270  * workqueues which have works queued on the pool and let them process
2271  * those works so that forward progress can be guaranteed.
2272  *
2273  * This should happen rarely.
2274  *
2275  * Return: 0
2276  */
2277 static int rescuer_thread(void *__rescuer)
2278 {
2279 	struct worker *rescuer = __rescuer;
2280 	struct workqueue_struct *wq = rescuer->rescue_wq;
2281 	struct list_head *scheduled = &rescuer->scheduled;
2282 	bool should_stop;
2283 
2284 	set_user_nice(current, RESCUER_NICE_LEVEL);
2285 
2286 	/*
2287 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2288 	 * doesn't participate in concurrency management.
2289 	 */
2290 	rescuer->task->flags |= PF_WQ_WORKER;
2291 repeat:
2292 	set_current_state(TASK_INTERRUPTIBLE);
2293 
2294 	/*
2295 	 * By the time the rescuer is requested to stop, the workqueue
2296 	 * shouldn't have any work pending, but @wq->maydays may still have
2297 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2298 	 * all the work items before the rescuer got to them.  Go through
2299 	 * @wq->maydays processing before acting on should_stop so that the
2300 	 * list is always empty on exit.
2301 	 */
2302 	should_stop = kthread_should_stop();
2303 
2304 	/* see whether any pwq is asking for help */
2305 	spin_lock_irq(&wq_mayday_lock);
2306 
2307 	while (!list_empty(&wq->maydays)) {
2308 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2309 					struct pool_workqueue, mayday_node);
2310 		struct worker_pool *pool = pwq->pool;
2311 		struct work_struct *work, *n;
2312 		bool first = true;
2313 
2314 		__set_current_state(TASK_RUNNING);
2315 		list_del_init(&pwq->mayday_node);
2316 
2317 		spin_unlock_irq(&wq_mayday_lock);
2318 
2319 		worker_attach_to_pool(rescuer, pool);
2320 
2321 		spin_lock_irq(&pool->lock);
2322 		rescuer->pool = pool;
2323 
2324 		/*
2325 		 * Slurp in all works issued via this workqueue and
2326 		 * process'em.
2327 		 */
2328 		WARN_ON_ONCE(!list_empty(scheduled));
2329 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2330 			if (get_work_pwq(work) == pwq) {
2331 				if (first)
2332 					pool->watchdog_ts = jiffies;
2333 				move_linked_works(work, scheduled, &n);
2334 			}
2335 			first = false;
2336 		}
2337 
2338 		if (!list_empty(scheduled)) {
2339 			process_scheduled_works(rescuer);
2340 
2341 			/*
2342 			 * The above execution of rescued work items could
2343 			 * have created more to rescue through
2344 			 * pwq_activate_first_delayed() or chained
2345 			 * queueing.  Let's put @pwq back on mayday list so
2346 			 * that such back-to-back work items, which may be
2347 			 * being used to relieve memory pressure, don't
2348 			 * incur MAYDAY_INTERVAL delay inbetween.
2349 			 */
2350 			if (need_to_create_worker(pool)) {
2351 				spin_lock(&wq_mayday_lock);
2352 				get_pwq(pwq);
2353 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2354 				spin_unlock(&wq_mayday_lock);
2355 			}
2356 		}
2357 
2358 		/*
2359 		 * Put the reference grabbed by send_mayday().  @pool won't
2360 		 * go away while we're still attached to it.
2361 		 */
2362 		put_pwq(pwq);
2363 
2364 		/*
2365 		 * Leave this pool.  If need_more_worker() is %true, notify a
2366 		 * regular worker; otherwise, we end up with 0 concurrency
2367 		 * and stalling the execution.
2368 		 */
2369 		if (need_more_worker(pool))
2370 			wake_up_worker(pool);
2371 
2372 		rescuer->pool = NULL;
2373 		spin_unlock_irq(&pool->lock);
2374 
2375 		worker_detach_from_pool(rescuer, pool);
2376 
2377 		spin_lock_irq(&wq_mayday_lock);
2378 	}
2379 
2380 	spin_unlock_irq(&wq_mayday_lock);
2381 
2382 	if (should_stop) {
2383 		__set_current_state(TASK_RUNNING);
2384 		rescuer->task->flags &= ~PF_WQ_WORKER;
2385 		return 0;
2386 	}
2387 
2388 	/* rescuers should never participate in concurrency management */
2389 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2390 	schedule();
2391 	goto repeat;
2392 }
2393 
2394 /**
2395  * check_flush_dependency - check for flush dependency sanity
2396  * @target_wq: workqueue being flushed
2397  * @target_work: work item being flushed (NULL for workqueue flushes)
2398  *
2399  * %current is trying to flush the whole @target_wq or @target_work on it.
2400  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2401  * reclaiming memory or running on a workqueue which doesn't have
2402  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2403  * a deadlock.
2404  */
2405 static void check_flush_dependency(struct workqueue_struct *target_wq,
2406 				   struct work_struct *target_work)
2407 {
2408 	work_func_t target_func = target_work ? target_work->func : NULL;
2409 	struct worker *worker;
2410 
2411 	if (target_wq->flags & WQ_MEM_RECLAIM)
2412 		return;
2413 
2414 	worker = current_wq_worker();
2415 
2416 	WARN_ONCE(current->flags & PF_MEMALLOC,
2417 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2418 		  current->pid, current->comm, target_wq->name, target_func);
2419 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2420 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2421 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2422 		  worker->current_pwq->wq->name, worker->current_func,
2423 		  target_wq->name, target_func);
2424 }
2425 
2426 struct wq_barrier {
2427 	struct work_struct	work;
2428 	struct completion	done;
2429 	struct task_struct	*task;	/* purely informational */
2430 };
2431 
2432 static void wq_barrier_func(struct work_struct *work)
2433 {
2434 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2435 	complete(&barr->done);
2436 }
2437 
2438 /**
2439  * insert_wq_barrier - insert a barrier work
2440  * @pwq: pwq to insert barrier into
2441  * @barr: wq_barrier to insert
2442  * @target: target work to attach @barr to
2443  * @worker: worker currently executing @target, NULL if @target is not executing
2444  *
2445  * @barr is linked to @target such that @barr is completed only after
2446  * @target finishes execution.  Please note that the ordering
2447  * guarantee is observed only with respect to @target and on the local
2448  * cpu.
2449  *
2450  * Currently, a queued barrier can't be canceled.  This is because
2451  * try_to_grab_pending() can't determine whether the work to be
2452  * grabbed is at the head of the queue and thus can't clear LINKED
2453  * flag of the previous work while there must be a valid next work
2454  * after a work with LINKED flag set.
2455  *
2456  * Note that when @worker is non-NULL, @target may be modified
2457  * underneath us, so we can't reliably determine pwq from @target.
2458  *
2459  * CONTEXT:
2460  * spin_lock_irq(pool->lock).
2461  */
2462 static void insert_wq_barrier(struct pool_workqueue *pwq,
2463 			      struct wq_barrier *barr,
2464 			      struct work_struct *target, struct worker *worker)
2465 {
2466 	struct list_head *head;
2467 	unsigned int linked = 0;
2468 
2469 	/*
2470 	 * debugobject calls are safe here even with pool->lock locked
2471 	 * as we know for sure that this will not trigger any of the
2472 	 * checks and call back into the fixup functions where we
2473 	 * might deadlock.
2474 	 */
2475 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2476 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2477 	init_completion(&barr->done);
2478 	barr->task = current;
2479 
2480 	/*
2481 	 * If @target is currently being executed, schedule the
2482 	 * barrier to the worker; otherwise, put it after @target.
2483 	 */
2484 	if (worker)
2485 		head = worker->scheduled.next;
2486 	else {
2487 		unsigned long *bits = work_data_bits(target);
2488 
2489 		head = target->entry.next;
2490 		/* there can already be other linked works, inherit and set */
2491 		linked = *bits & WORK_STRUCT_LINKED;
2492 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2493 	}
2494 
2495 	debug_work_activate(&barr->work);
2496 	insert_work(pwq, &barr->work, head,
2497 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2498 }
2499 
2500 /**
2501  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2502  * @wq: workqueue being flushed
2503  * @flush_color: new flush color, < 0 for no-op
2504  * @work_color: new work color, < 0 for no-op
2505  *
2506  * Prepare pwqs for workqueue flushing.
2507  *
2508  * If @flush_color is non-negative, flush_color on all pwqs should be
2509  * -1.  If no pwq has in-flight commands at the specified color, all
2510  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2511  * has in flight commands, its pwq->flush_color is set to
2512  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2513  * wakeup logic is armed and %true is returned.
2514  *
2515  * The caller should have initialized @wq->first_flusher prior to
2516  * calling this function with non-negative @flush_color.  If
2517  * @flush_color is negative, no flush color update is done and %false
2518  * is returned.
2519  *
2520  * If @work_color is non-negative, all pwqs should have the same
2521  * work_color which is previous to @work_color and all will be
2522  * advanced to @work_color.
2523  *
2524  * CONTEXT:
2525  * mutex_lock(wq->mutex).
2526  *
2527  * Return:
2528  * %true if @flush_color >= 0 and there's something to flush.  %false
2529  * otherwise.
2530  */
2531 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2532 				      int flush_color, int work_color)
2533 {
2534 	bool wait = false;
2535 	struct pool_workqueue *pwq;
2536 
2537 	if (flush_color >= 0) {
2538 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2539 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2540 	}
2541 
2542 	for_each_pwq(pwq, wq) {
2543 		struct worker_pool *pool = pwq->pool;
2544 
2545 		spin_lock_irq(&pool->lock);
2546 
2547 		if (flush_color >= 0) {
2548 			WARN_ON_ONCE(pwq->flush_color != -1);
2549 
2550 			if (pwq->nr_in_flight[flush_color]) {
2551 				pwq->flush_color = flush_color;
2552 				atomic_inc(&wq->nr_pwqs_to_flush);
2553 				wait = true;
2554 			}
2555 		}
2556 
2557 		if (work_color >= 0) {
2558 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2559 			pwq->work_color = work_color;
2560 		}
2561 
2562 		spin_unlock_irq(&pool->lock);
2563 	}
2564 
2565 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2566 		complete(&wq->first_flusher->done);
2567 
2568 	return wait;
2569 }
2570 
2571 /**
2572  * flush_workqueue - ensure that any scheduled work has run to completion.
2573  * @wq: workqueue to flush
2574  *
2575  * This function sleeps until all work items which were queued on entry
2576  * have finished execution, but it is not livelocked by new incoming ones.
2577  */
2578 void flush_workqueue(struct workqueue_struct *wq)
2579 {
2580 	struct wq_flusher this_flusher = {
2581 		.list = LIST_HEAD_INIT(this_flusher.list),
2582 		.flush_color = -1,
2583 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2584 	};
2585 	int next_color;
2586 
2587 	if (WARN_ON(!wq_online))
2588 		return;
2589 
2590 	lock_map_acquire(&wq->lockdep_map);
2591 	lock_map_release(&wq->lockdep_map);
2592 
2593 	mutex_lock(&wq->mutex);
2594 
2595 	/*
2596 	 * Start-to-wait phase
2597 	 */
2598 	next_color = work_next_color(wq->work_color);
2599 
2600 	if (next_color != wq->flush_color) {
2601 		/*
2602 		 * Color space is not full.  The current work_color
2603 		 * becomes our flush_color and work_color is advanced
2604 		 * by one.
2605 		 */
2606 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2607 		this_flusher.flush_color = wq->work_color;
2608 		wq->work_color = next_color;
2609 
2610 		if (!wq->first_flusher) {
2611 			/* no flush in progress, become the first flusher */
2612 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2613 
2614 			wq->first_flusher = &this_flusher;
2615 
2616 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2617 						       wq->work_color)) {
2618 				/* nothing to flush, done */
2619 				wq->flush_color = next_color;
2620 				wq->first_flusher = NULL;
2621 				goto out_unlock;
2622 			}
2623 		} else {
2624 			/* wait in queue */
2625 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2626 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2627 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2628 		}
2629 	} else {
2630 		/*
2631 		 * Oops, color space is full, wait on overflow queue.
2632 		 * The next flush completion will assign us
2633 		 * flush_color and transfer to flusher_queue.
2634 		 */
2635 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2636 	}
2637 
2638 	check_flush_dependency(wq, NULL);
2639 
2640 	mutex_unlock(&wq->mutex);
2641 
2642 	wait_for_completion(&this_flusher.done);
2643 
2644 	/*
2645 	 * Wake-up-and-cascade phase
2646 	 *
2647 	 * First flushers are responsible for cascading flushes and
2648 	 * handling overflow.  Non-first flushers can simply return.
2649 	 */
2650 	if (wq->first_flusher != &this_flusher)
2651 		return;
2652 
2653 	mutex_lock(&wq->mutex);
2654 
2655 	/* we might have raced, check again with mutex held */
2656 	if (wq->first_flusher != &this_flusher)
2657 		goto out_unlock;
2658 
2659 	wq->first_flusher = NULL;
2660 
2661 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2662 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2663 
2664 	while (true) {
2665 		struct wq_flusher *next, *tmp;
2666 
2667 		/* complete all the flushers sharing the current flush color */
2668 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2669 			if (next->flush_color != wq->flush_color)
2670 				break;
2671 			list_del_init(&next->list);
2672 			complete(&next->done);
2673 		}
2674 
2675 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2676 			     wq->flush_color != work_next_color(wq->work_color));
2677 
2678 		/* this flush_color is finished, advance by one */
2679 		wq->flush_color = work_next_color(wq->flush_color);
2680 
2681 		/* one color has been freed, handle overflow queue */
2682 		if (!list_empty(&wq->flusher_overflow)) {
2683 			/*
2684 			 * Assign the same color to all overflowed
2685 			 * flushers, advance work_color and append to
2686 			 * flusher_queue.  This is the start-to-wait
2687 			 * phase for these overflowed flushers.
2688 			 */
2689 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2690 				tmp->flush_color = wq->work_color;
2691 
2692 			wq->work_color = work_next_color(wq->work_color);
2693 
2694 			list_splice_tail_init(&wq->flusher_overflow,
2695 					      &wq->flusher_queue);
2696 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2697 		}
2698 
2699 		if (list_empty(&wq->flusher_queue)) {
2700 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2701 			break;
2702 		}
2703 
2704 		/*
2705 		 * Need to flush more colors.  Make the next flusher
2706 		 * the new first flusher and arm pwqs.
2707 		 */
2708 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2709 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2710 
2711 		list_del_init(&next->list);
2712 		wq->first_flusher = next;
2713 
2714 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2715 			break;
2716 
2717 		/*
2718 		 * Meh... this color is already done, clear first
2719 		 * flusher and repeat cascading.
2720 		 */
2721 		wq->first_flusher = NULL;
2722 	}
2723 
2724 out_unlock:
2725 	mutex_unlock(&wq->mutex);
2726 }
2727 EXPORT_SYMBOL(flush_workqueue);
2728 
2729 /**
2730  * drain_workqueue - drain a workqueue
2731  * @wq: workqueue to drain
2732  *
2733  * Wait until the workqueue becomes empty.  While draining is in progress,
2734  * only chain queueing is allowed.  IOW, only currently pending or running
2735  * work items on @wq can queue further work items on it.  @wq is flushed
2736  * repeatedly until it becomes empty.  The number of flushing is determined
2737  * by the depth of chaining and should be relatively short.  Whine if it
2738  * takes too long.
2739  */
2740 void drain_workqueue(struct workqueue_struct *wq)
2741 {
2742 	unsigned int flush_cnt = 0;
2743 	struct pool_workqueue *pwq;
2744 
2745 	/*
2746 	 * __queue_work() needs to test whether there are drainers, is much
2747 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2748 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2749 	 */
2750 	mutex_lock(&wq->mutex);
2751 	if (!wq->nr_drainers++)
2752 		wq->flags |= __WQ_DRAINING;
2753 	mutex_unlock(&wq->mutex);
2754 reflush:
2755 	flush_workqueue(wq);
2756 
2757 	mutex_lock(&wq->mutex);
2758 
2759 	for_each_pwq(pwq, wq) {
2760 		bool drained;
2761 
2762 		spin_lock_irq(&pwq->pool->lock);
2763 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2764 		spin_unlock_irq(&pwq->pool->lock);
2765 
2766 		if (drained)
2767 			continue;
2768 
2769 		if (++flush_cnt == 10 ||
2770 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2771 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2772 				wq->name, flush_cnt);
2773 
2774 		mutex_unlock(&wq->mutex);
2775 		goto reflush;
2776 	}
2777 
2778 	if (!--wq->nr_drainers)
2779 		wq->flags &= ~__WQ_DRAINING;
2780 	mutex_unlock(&wq->mutex);
2781 }
2782 EXPORT_SYMBOL_GPL(drain_workqueue);
2783 
2784 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2785 {
2786 	struct worker *worker = NULL;
2787 	struct worker_pool *pool;
2788 	struct pool_workqueue *pwq;
2789 
2790 	might_sleep();
2791 
2792 	local_irq_disable();
2793 	pool = get_work_pool(work);
2794 	if (!pool) {
2795 		local_irq_enable();
2796 		return false;
2797 	}
2798 
2799 	spin_lock(&pool->lock);
2800 	/* see the comment in try_to_grab_pending() with the same code */
2801 	pwq = get_work_pwq(work);
2802 	if (pwq) {
2803 		if (unlikely(pwq->pool != pool))
2804 			goto already_gone;
2805 	} else {
2806 		worker = find_worker_executing_work(pool, work);
2807 		if (!worker)
2808 			goto already_gone;
2809 		pwq = worker->current_pwq;
2810 	}
2811 
2812 	check_flush_dependency(pwq->wq, work);
2813 
2814 	insert_wq_barrier(pwq, barr, work, worker);
2815 	spin_unlock_irq(&pool->lock);
2816 
2817 	/*
2818 	 * If @max_active is 1 or rescuer is in use, flushing another work
2819 	 * item on the same workqueue may lead to deadlock.  Make sure the
2820 	 * flusher is not running on the same workqueue by verifying write
2821 	 * access.
2822 	 */
2823 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2824 		lock_map_acquire(&pwq->wq->lockdep_map);
2825 	else
2826 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2827 	lock_map_release(&pwq->wq->lockdep_map);
2828 
2829 	return true;
2830 already_gone:
2831 	spin_unlock_irq(&pool->lock);
2832 	return false;
2833 }
2834 
2835 /**
2836  * flush_work - wait for a work to finish executing the last queueing instance
2837  * @work: the work to flush
2838  *
2839  * Wait until @work has finished execution.  @work is guaranteed to be idle
2840  * on return if it hasn't been requeued since flush started.
2841  *
2842  * Return:
2843  * %true if flush_work() waited for the work to finish execution,
2844  * %false if it was already idle.
2845  */
2846 bool flush_work(struct work_struct *work)
2847 {
2848 	struct wq_barrier barr;
2849 
2850 	if (WARN_ON(!wq_online))
2851 		return false;
2852 
2853 	lock_map_acquire(&work->lockdep_map);
2854 	lock_map_release(&work->lockdep_map);
2855 
2856 	if (start_flush_work(work, &barr)) {
2857 		wait_for_completion(&barr.done);
2858 		destroy_work_on_stack(&barr.work);
2859 		return true;
2860 	} else {
2861 		return false;
2862 	}
2863 }
2864 EXPORT_SYMBOL_GPL(flush_work);
2865 
2866 struct cwt_wait {
2867 	wait_queue_entry_t		wait;
2868 	struct work_struct	*work;
2869 };
2870 
2871 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2872 {
2873 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2874 
2875 	if (cwait->work != key)
2876 		return 0;
2877 	return autoremove_wake_function(wait, mode, sync, key);
2878 }
2879 
2880 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2881 {
2882 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2883 	unsigned long flags;
2884 	int ret;
2885 
2886 	do {
2887 		ret = try_to_grab_pending(work, is_dwork, &flags);
2888 		/*
2889 		 * If someone else is already canceling, wait for it to
2890 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2891 		 * because we may get scheduled between @work's completion
2892 		 * and the other canceling task resuming and clearing
2893 		 * CANCELING - flush_work() will return false immediately
2894 		 * as @work is no longer busy, try_to_grab_pending() will
2895 		 * return -ENOENT as @work is still being canceled and the
2896 		 * other canceling task won't be able to clear CANCELING as
2897 		 * we're hogging the CPU.
2898 		 *
2899 		 * Let's wait for completion using a waitqueue.  As this
2900 		 * may lead to the thundering herd problem, use a custom
2901 		 * wake function which matches @work along with exclusive
2902 		 * wait and wakeup.
2903 		 */
2904 		if (unlikely(ret == -ENOENT)) {
2905 			struct cwt_wait cwait;
2906 
2907 			init_wait(&cwait.wait);
2908 			cwait.wait.func = cwt_wakefn;
2909 			cwait.work = work;
2910 
2911 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2912 						  TASK_UNINTERRUPTIBLE);
2913 			if (work_is_canceling(work))
2914 				schedule();
2915 			finish_wait(&cancel_waitq, &cwait.wait);
2916 		}
2917 	} while (unlikely(ret < 0));
2918 
2919 	/* tell other tasks trying to grab @work to back off */
2920 	mark_work_canceling(work);
2921 	local_irq_restore(flags);
2922 
2923 	/*
2924 	 * This allows canceling during early boot.  We know that @work
2925 	 * isn't executing.
2926 	 */
2927 	if (wq_online)
2928 		flush_work(work);
2929 
2930 	clear_work_data(work);
2931 
2932 	/*
2933 	 * Paired with prepare_to_wait() above so that either
2934 	 * waitqueue_active() is visible here or !work_is_canceling() is
2935 	 * visible there.
2936 	 */
2937 	smp_mb();
2938 	if (waitqueue_active(&cancel_waitq))
2939 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2940 
2941 	return ret;
2942 }
2943 
2944 /**
2945  * cancel_work_sync - cancel a work and wait for it to finish
2946  * @work: the work to cancel
2947  *
2948  * Cancel @work and wait for its execution to finish.  This function
2949  * can be used even if the work re-queues itself or migrates to
2950  * another workqueue.  On return from this function, @work is
2951  * guaranteed to be not pending or executing on any CPU.
2952  *
2953  * cancel_work_sync(&delayed_work->work) must not be used for
2954  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2955  *
2956  * The caller must ensure that the workqueue on which @work was last
2957  * queued can't be destroyed before this function returns.
2958  *
2959  * Return:
2960  * %true if @work was pending, %false otherwise.
2961  */
2962 bool cancel_work_sync(struct work_struct *work)
2963 {
2964 	return __cancel_work_timer(work, false);
2965 }
2966 EXPORT_SYMBOL_GPL(cancel_work_sync);
2967 
2968 /**
2969  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2970  * @dwork: the delayed work to flush
2971  *
2972  * Delayed timer is cancelled and the pending work is queued for
2973  * immediate execution.  Like flush_work(), this function only
2974  * considers the last queueing instance of @dwork.
2975  *
2976  * Return:
2977  * %true if flush_work() waited for the work to finish execution,
2978  * %false if it was already idle.
2979  */
2980 bool flush_delayed_work(struct delayed_work *dwork)
2981 {
2982 	local_irq_disable();
2983 	if (del_timer_sync(&dwork->timer))
2984 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2985 	local_irq_enable();
2986 	return flush_work(&dwork->work);
2987 }
2988 EXPORT_SYMBOL(flush_delayed_work);
2989 
2990 static bool __cancel_work(struct work_struct *work, bool is_dwork)
2991 {
2992 	unsigned long flags;
2993 	int ret;
2994 
2995 	do {
2996 		ret = try_to_grab_pending(work, is_dwork, &flags);
2997 	} while (unlikely(ret == -EAGAIN));
2998 
2999 	if (unlikely(ret < 0))
3000 		return false;
3001 
3002 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3003 	local_irq_restore(flags);
3004 	return ret;
3005 }
3006 
3007 /*
3008  * See cancel_delayed_work()
3009  */
3010 bool cancel_work(struct work_struct *work)
3011 {
3012 	return __cancel_work(work, false);
3013 }
3014 
3015 /**
3016  * cancel_delayed_work - cancel a delayed work
3017  * @dwork: delayed_work to cancel
3018  *
3019  * Kill off a pending delayed_work.
3020  *
3021  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3022  * pending.
3023  *
3024  * Note:
3025  * The work callback function may still be running on return, unless
3026  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3027  * use cancel_delayed_work_sync() to wait on it.
3028  *
3029  * This function is safe to call from any context including IRQ handler.
3030  */
3031 bool cancel_delayed_work(struct delayed_work *dwork)
3032 {
3033 	return __cancel_work(&dwork->work, true);
3034 }
3035 EXPORT_SYMBOL(cancel_delayed_work);
3036 
3037 /**
3038  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3039  * @dwork: the delayed work cancel
3040  *
3041  * This is cancel_work_sync() for delayed works.
3042  *
3043  * Return:
3044  * %true if @dwork was pending, %false otherwise.
3045  */
3046 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3047 {
3048 	return __cancel_work_timer(&dwork->work, true);
3049 }
3050 EXPORT_SYMBOL(cancel_delayed_work_sync);
3051 
3052 /**
3053  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3054  * @func: the function to call
3055  *
3056  * schedule_on_each_cpu() executes @func on each online CPU using the
3057  * system workqueue and blocks until all CPUs have completed.
3058  * schedule_on_each_cpu() is very slow.
3059  *
3060  * Return:
3061  * 0 on success, -errno on failure.
3062  */
3063 int schedule_on_each_cpu(work_func_t func)
3064 {
3065 	int cpu;
3066 	struct work_struct __percpu *works;
3067 
3068 	works = alloc_percpu(struct work_struct);
3069 	if (!works)
3070 		return -ENOMEM;
3071 
3072 	get_online_cpus();
3073 
3074 	for_each_online_cpu(cpu) {
3075 		struct work_struct *work = per_cpu_ptr(works, cpu);
3076 
3077 		INIT_WORK(work, func);
3078 		schedule_work_on(cpu, work);
3079 	}
3080 
3081 	for_each_online_cpu(cpu)
3082 		flush_work(per_cpu_ptr(works, cpu));
3083 
3084 	put_online_cpus();
3085 	free_percpu(works);
3086 	return 0;
3087 }
3088 
3089 /**
3090  * execute_in_process_context - reliably execute the routine with user context
3091  * @fn:		the function to execute
3092  * @ew:		guaranteed storage for the execute work structure (must
3093  *		be available when the work executes)
3094  *
3095  * Executes the function immediately if process context is available,
3096  * otherwise schedules the function for delayed execution.
3097  *
3098  * Return:	0 - function was executed
3099  *		1 - function was scheduled for execution
3100  */
3101 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3102 {
3103 	if (!in_interrupt()) {
3104 		fn(&ew->work);
3105 		return 0;
3106 	}
3107 
3108 	INIT_WORK(&ew->work, fn);
3109 	schedule_work(&ew->work);
3110 
3111 	return 1;
3112 }
3113 EXPORT_SYMBOL_GPL(execute_in_process_context);
3114 
3115 /**
3116  * free_workqueue_attrs - free a workqueue_attrs
3117  * @attrs: workqueue_attrs to free
3118  *
3119  * Undo alloc_workqueue_attrs().
3120  */
3121 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3122 {
3123 	if (attrs) {
3124 		free_cpumask_var(attrs->cpumask);
3125 		kfree(attrs);
3126 	}
3127 }
3128 
3129 /**
3130  * alloc_workqueue_attrs - allocate a workqueue_attrs
3131  * @gfp_mask: allocation mask to use
3132  *
3133  * Allocate a new workqueue_attrs, initialize with default settings and
3134  * return it.
3135  *
3136  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3137  */
3138 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3139 {
3140 	struct workqueue_attrs *attrs;
3141 
3142 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3143 	if (!attrs)
3144 		goto fail;
3145 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3146 		goto fail;
3147 
3148 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3149 	return attrs;
3150 fail:
3151 	free_workqueue_attrs(attrs);
3152 	return NULL;
3153 }
3154 
3155 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3156 				 const struct workqueue_attrs *from)
3157 {
3158 	to->nice = from->nice;
3159 	cpumask_copy(to->cpumask, from->cpumask);
3160 	/*
3161 	 * Unlike hash and equality test, this function doesn't ignore
3162 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3163 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3164 	 */
3165 	to->no_numa = from->no_numa;
3166 }
3167 
3168 /* hash value of the content of @attr */
3169 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3170 {
3171 	u32 hash = 0;
3172 
3173 	hash = jhash_1word(attrs->nice, hash);
3174 	hash = jhash(cpumask_bits(attrs->cpumask),
3175 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3176 	return hash;
3177 }
3178 
3179 /* content equality test */
3180 static bool wqattrs_equal(const struct workqueue_attrs *a,
3181 			  const struct workqueue_attrs *b)
3182 {
3183 	if (a->nice != b->nice)
3184 		return false;
3185 	if (!cpumask_equal(a->cpumask, b->cpumask))
3186 		return false;
3187 	return true;
3188 }
3189 
3190 /**
3191  * init_worker_pool - initialize a newly zalloc'd worker_pool
3192  * @pool: worker_pool to initialize
3193  *
3194  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3195  *
3196  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3197  * inside @pool proper are initialized and put_unbound_pool() can be called
3198  * on @pool safely to release it.
3199  */
3200 static int init_worker_pool(struct worker_pool *pool)
3201 {
3202 	spin_lock_init(&pool->lock);
3203 	pool->id = -1;
3204 	pool->cpu = -1;
3205 	pool->node = NUMA_NO_NODE;
3206 	pool->flags |= POOL_DISASSOCIATED;
3207 	pool->watchdog_ts = jiffies;
3208 	INIT_LIST_HEAD(&pool->worklist);
3209 	INIT_LIST_HEAD(&pool->idle_list);
3210 	hash_init(pool->busy_hash);
3211 
3212 	setup_deferrable_timer(&pool->idle_timer, idle_worker_timeout,
3213 			       (unsigned long)pool);
3214 
3215 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3216 		    (unsigned long)pool);
3217 
3218 	mutex_init(&pool->manager_arb);
3219 	mutex_init(&pool->attach_mutex);
3220 	INIT_LIST_HEAD(&pool->workers);
3221 
3222 	ida_init(&pool->worker_ida);
3223 	INIT_HLIST_NODE(&pool->hash_node);
3224 	pool->refcnt = 1;
3225 
3226 	/* shouldn't fail above this point */
3227 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3228 	if (!pool->attrs)
3229 		return -ENOMEM;
3230 	return 0;
3231 }
3232 
3233 static void rcu_free_wq(struct rcu_head *rcu)
3234 {
3235 	struct workqueue_struct *wq =
3236 		container_of(rcu, struct workqueue_struct, rcu);
3237 
3238 	if (!(wq->flags & WQ_UNBOUND))
3239 		free_percpu(wq->cpu_pwqs);
3240 	else
3241 		free_workqueue_attrs(wq->unbound_attrs);
3242 
3243 	kfree(wq->rescuer);
3244 	kfree(wq);
3245 }
3246 
3247 static void rcu_free_pool(struct rcu_head *rcu)
3248 {
3249 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3250 
3251 	ida_destroy(&pool->worker_ida);
3252 	free_workqueue_attrs(pool->attrs);
3253 	kfree(pool);
3254 }
3255 
3256 /**
3257  * put_unbound_pool - put a worker_pool
3258  * @pool: worker_pool to put
3259  *
3260  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3261  * safe manner.  get_unbound_pool() calls this function on its failure path
3262  * and this function should be able to release pools which went through,
3263  * successfully or not, init_worker_pool().
3264  *
3265  * Should be called with wq_pool_mutex held.
3266  */
3267 static void put_unbound_pool(struct worker_pool *pool)
3268 {
3269 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3270 	struct worker *worker;
3271 
3272 	lockdep_assert_held(&wq_pool_mutex);
3273 
3274 	if (--pool->refcnt)
3275 		return;
3276 
3277 	/* sanity checks */
3278 	if (WARN_ON(!(pool->cpu < 0)) ||
3279 	    WARN_ON(!list_empty(&pool->worklist)))
3280 		return;
3281 
3282 	/* release id and unhash */
3283 	if (pool->id >= 0)
3284 		idr_remove(&worker_pool_idr, pool->id);
3285 	hash_del(&pool->hash_node);
3286 
3287 	/*
3288 	 * Become the manager and destroy all workers.  Grabbing
3289 	 * manager_arb prevents @pool's workers from blocking on
3290 	 * attach_mutex.
3291 	 */
3292 	mutex_lock(&pool->manager_arb);
3293 
3294 	spin_lock_irq(&pool->lock);
3295 	while ((worker = first_idle_worker(pool)))
3296 		destroy_worker(worker);
3297 	WARN_ON(pool->nr_workers || pool->nr_idle);
3298 	spin_unlock_irq(&pool->lock);
3299 
3300 	mutex_lock(&pool->attach_mutex);
3301 	if (!list_empty(&pool->workers))
3302 		pool->detach_completion = &detach_completion;
3303 	mutex_unlock(&pool->attach_mutex);
3304 
3305 	if (pool->detach_completion)
3306 		wait_for_completion(pool->detach_completion);
3307 
3308 	mutex_unlock(&pool->manager_arb);
3309 
3310 	/* shut down the timers */
3311 	del_timer_sync(&pool->idle_timer);
3312 	del_timer_sync(&pool->mayday_timer);
3313 
3314 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3315 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3316 }
3317 
3318 /**
3319  * get_unbound_pool - get a worker_pool with the specified attributes
3320  * @attrs: the attributes of the worker_pool to get
3321  *
3322  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3323  * reference count and return it.  If there already is a matching
3324  * worker_pool, it will be used; otherwise, this function attempts to
3325  * create a new one.
3326  *
3327  * Should be called with wq_pool_mutex held.
3328  *
3329  * Return: On success, a worker_pool with the same attributes as @attrs.
3330  * On failure, %NULL.
3331  */
3332 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3333 {
3334 	u32 hash = wqattrs_hash(attrs);
3335 	struct worker_pool *pool;
3336 	int node;
3337 	int target_node = NUMA_NO_NODE;
3338 
3339 	lockdep_assert_held(&wq_pool_mutex);
3340 
3341 	/* do we already have a matching pool? */
3342 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3343 		if (wqattrs_equal(pool->attrs, attrs)) {
3344 			pool->refcnt++;
3345 			return pool;
3346 		}
3347 	}
3348 
3349 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3350 	if (wq_numa_enabled) {
3351 		for_each_node(node) {
3352 			if (cpumask_subset(attrs->cpumask,
3353 					   wq_numa_possible_cpumask[node])) {
3354 				target_node = node;
3355 				break;
3356 			}
3357 		}
3358 	}
3359 
3360 	/* nope, create a new one */
3361 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3362 	if (!pool || init_worker_pool(pool) < 0)
3363 		goto fail;
3364 
3365 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3366 	copy_workqueue_attrs(pool->attrs, attrs);
3367 	pool->node = target_node;
3368 
3369 	/*
3370 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3371 	 * 'struct workqueue_attrs' comments for detail.
3372 	 */
3373 	pool->attrs->no_numa = false;
3374 
3375 	if (worker_pool_assign_id(pool) < 0)
3376 		goto fail;
3377 
3378 	/* create and start the initial worker */
3379 	if (wq_online && !create_worker(pool))
3380 		goto fail;
3381 
3382 	/* install */
3383 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3384 
3385 	return pool;
3386 fail:
3387 	if (pool)
3388 		put_unbound_pool(pool);
3389 	return NULL;
3390 }
3391 
3392 static void rcu_free_pwq(struct rcu_head *rcu)
3393 {
3394 	kmem_cache_free(pwq_cache,
3395 			container_of(rcu, struct pool_workqueue, rcu));
3396 }
3397 
3398 /*
3399  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3400  * and needs to be destroyed.
3401  */
3402 static void pwq_unbound_release_workfn(struct work_struct *work)
3403 {
3404 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3405 						  unbound_release_work);
3406 	struct workqueue_struct *wq = pwq->wq;
3407 	struct worker_pool *pool = pwq->pool;
3408 	bool is_last;
3409 
3410 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3411 		return;
3412 
3413 	mutex_lock(&wq->mutex);
3414 	list_del_rcu(&pwq->pwqs_node);
3415 	is_last = list_empty(&wq->pwqs);
3416 	mutex_unlock(&wq->mutex);
3417 
3418 	mutex_lock(&wq_pool_mutex);
3419 	put_unbound_pool(pool);
3420 	mutex_unlock(&wq_pool_mutex);
3421 
3422 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3423 
3424 	/*
3425 	 * If we're the last pwq going away, @wq is already dead and no one
3426 	 * is gonna access it anymore.  Schedule RCU free.
3427 	 */
3428 	if (is_last)
3429 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3430 }
3431 
3432 /**
3433  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3434  * @pwq: target pool_workqueue
3435  *
3436  * If @pwq isn't freezing, set @pwq->max_active to the associated
3437  * workqueue's saved_max_active and activate delayed work items
3438  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3439  */
3440 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3441 {
3442 	struct workqueue_struct *wq = pwq->wq;
3443 	bool freezable = wq->flags & WQ_FREEZABLE;
3444 	unsigned long flags;
3445 
3446 	/* for @wq->saved_max_active */
3447 	lockdep_assert_held(&wq->mutex);
3448 
3449 	/* fast exit for non-freezable wqs */
3450 	if (!freezable && pwq->max_active == wq->saved_max_active)
3451 		return;
3452 
3453 	/* this function can be called during early boot w/ irq disabled */
3454 	spin_lock_irqsave(&pwq->pool->lock, flags);
3455 
3456 	/*
3457 	 * During [un]freezing, the caller is responsible for ensuring that
3458 	 * this function is called at least once after @workqueue_freezing
3459 	 * is updated and visible.
3460 	 */
3461 	if (!freezable || !workqueue_freezing) {
3462 		pwq->max_active = wq->saved_max_active;
3463 
3464 		while (!list_empty(&pwq->delayed_works) &&
3465 		       pwq->nr_active < pwq->max_active)
3466 			pwq_activate_first_delayed(pwq);
3467 
3468 		/*
3469 		 * Need to kick a worker after thawed or an unbound wq's
3470 		 * max_active is bumped.  It's a slow path.  Do it always.
3471 		 */
3472 		wake_up_worker(pwq->pool);
3473 	} else {
3474 		pwq->max_active = 0;
3475 	}
3476 
3477 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3478 }
3479 
3480 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3481 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3482 		     struct worker_pool *pool)
3483 {
3484 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3485 
3486 	memset(pwq, 0, sizeof(*pwq));
3487 
3488 	pwq->pool = pool;
3489 	pwq->wq = wq;
3490 	pwq->flush_color = -1;
3491 	pwq->refcnt = 1;
3492 	INIT_LIST_HEAD(&pwq->delayed_works);
3493 	INIT_LIST_HEAD(&pwq->pwqs_node);
3494 	INIT_LIST_HEAD(&pwq->mayday_node);
3495 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3496 }
3497 
3498 /* sync @pwq with the current state of its associated wq and link it */
3499 static void link_pwq(struct pool_workqueue *pwq)
3500 {
3501 	struct workqueue_struct *wq = pwq->wq;
3502 
3503 	lockdep_assert_held(&wq->mutex);
3504 
3505 	/* may be called multiple times, ignore if already linked */
3506 	if (!list_empty(&pwq->pwqs_node))
3507 		return;
3508 
3509 	/* set the matching work_color */
3510 	pwq->work_color = wq->work_color;
3511 
3512 	/* sync max_active to the current setting */
3513 	pwq_adjust_max_active(pwq);
3514 
3515 	/* link in @pwq */
3516 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3517 }
3518 
3519 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3520 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3521 					const struct workqueue_attrs *attrs)
3522 {
3523 	struct worker_pool *pool;
3524 	struct pool_workqueue *pwq;
3525 
3526 	lockdep_assert_held(&wq_pool_mutex);
3527 
3528 	pool = get_unbound_pool(attrs);
3529 	if (!pool)
3530 		return NULL;
3531 
3532 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3533 	if (!pwq) {
3534 		put_unbound_pool(pool);
3535 		return NULL;
3536 	}
3537 
3538 	init_pwq(pwq, wq, pool);
3539 	return pwq;
3540 }
3541 
3542 /**
3543  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3544  * @attrs: the wq_attrs of the default pwq of the target workqueue
3545  * @node: the target NUMA node
3546  * @cpu_going_down: if >= 0, the CPU to consider as offline
3547  * @cpumask: outarg, the resulting cpumask
3548  *
3549  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3550  * @cpu_going_down is >= 0, that cpu is considered offline during
3551  * calculation.  The result is stored in @cpumask.
3552  *
3553  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3554  * enabled and @node has online CPUs requested by @attrs, the returned
3555  * cpumask is the intersection of the possible CPUs of @node and
3556  * @attrs->cpumask.
3557  *
3558  * The caller is responsible for ensuring that the cpumask of @node stays
3559  * stable.
3560  *
3561  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3562  * %false if equal.
3563  */
3564 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3565 				 int cpu_going_down, cpumask_t *cpumask)
3566 {
3567 	if (!wq_numa_enabled || attrs->no_numa)
3568 		goto use_dfl;
3569 
3570 	/* does @node have any online CPUs @attrs wants? */
3571 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3572 	if (cpu_going_down >= 0)
3573 		cpumask_clear_cpu(cpu_going_down, cpumask);
3574 
3575 	if (cpumask_empty(cpumask))
3576 		goto use_dfl;
3577 
3578 	/* yeap, return possible CPUs in @node that @attrs wants */
3579 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3580 	return !cpumask_equal(cpumask, attrs->cpumask);
3581 
3582 use_dfl:
3583 	cpumask_copy(cpumask, attrs->cpumask);
3584 	return false;
3585 }
3586 
3587 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3588 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3589 						   int node,
3590 						   struct pool_workqueue *pwq)
3591 {
3592 	struct pool_workqueue *old_pwq;
3593 
3594 	lockdep_assert_held(&wq_pool_mutex);
3595 	lockdep_assert_held(&wq->mutex);
3596 
3597 	/* link_pwq() can handle duplicate calls */
3598 	link_pwq(pwq);
3599 
3600 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3601 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3602 	return old_pwq;
3603 }
3604 
3605 /* context to store the prepared attrs & pwqs before applying */
3606 struct apply_wqattrs_ctx {
3607 	struct workqueue_struct	*wq;		/* target workqueue */
3608 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3609 	struct list_head	list;		/* queued for batching commit */
3610 	struct pool_workqueue	*dfl_pwq;
3611 	struct pool_workqueue	*pwq_tbl[];
3612 };
3613 
3614 /* free the resources after success or abort */
3615 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3616 {
3617 	if (ctx) {
3618 		int node;
3619 
3620 		for_each_node(node)
3621 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3622 		put_pwq_unlocked(ctx->dfl_pwq);
3623 
3624 		free_workqueue_attrs(ctx->attrs);
3625 
3626 		kfree(ctx);
3627 	}
3628 }
3629 
3630 /* allocate the attrs and pwqs for later installation */
3631 static struct apply_wqattrs_ctx *
3632 apply_wqattrs_prepare(struct workqueue_struct *wq,
3633 		      const struct workqueue_attrs *attrs)
3634 {
3635 	struct apply_wqattrs_ctx *ctx;
3636 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3637 	int node;
3638 
3639 	lockdep_assert_held(&wq_pool_mutex);
3640 
3641 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3642 		      GFP_KERNEL);
3643 
3644 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3645 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3646 	if (!ctx || !new_attrs || !tmp_attrs)
3647 		goto out_free;
3648 
3649 	/*
3650 	 * Calculate the attrs of the default pwq.
3651 	 * If the user configured cpumask doesn't overlap with the
3652 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3653 	 */
3654 	copy_workqueue_attrs(new_attrs, attrs);
3655 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3656 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3657 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3658 
3659 	/*
3660 	 * We may create multiple pwqs with differing cpumasks.  Make a
3661 	 * copy of @new_attrs which will be modified and used to obtain
3662 	 * pools.
3663 	 */
3664 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3665 
3666 	/*
3667 	 * If something goes wrong during CPU up/down, we'll fall back to
3668 	 * the default pwq covering whole @attrs->cpumask.  Always create
3669 	 * it even if we don't use it immediately.
3670 	 */
3671 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3672 	if (!ctx->dfl_pwq)
3673 		goto out_free;
3674 
3675 	for_each_node(node) {
3676 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3677 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3678 			if (!ctx->pwq_tbl[node])
3679 				goto out_free;
3680 		} else {
3681 			ctx->dfl_pwq->refcnt++;
3682 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3683 		}
3684 	}
3685 
3686 	/* save the user configured attrs and sanitize it. */
3687 	copy_workqueue_attrs(new_attrs, attrs);
3688 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3689 	ctx->attrs = new_attrs;
3690 
3691 	ctx->wq = wq;
3692 	free_workqueue_attrs(tmp_attrs);
3693 	return ctx;
3694 
3695 out_free:
3696 	free_workqueue_attrs(tmp_attrs);
3697 	free_workqueue_attrs(new_attrs);
3698 	apply_wqattrs_cleanup(ctx);
3699 	return NULL;
3700 }
3701 
3702 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3703 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3704 {
3705 	int node;
3706 
3707 	/* all pwqs have been created successfully, let's install'em */
3708 	mutex_lock(&ctx->wq->mutex);
3709 
3710 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3711 
3712 	/* save the previous pwq and install the new one */
3713 	for_each_node(node)
3714 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3715 							  ctx->pwq_tbl[node]);
3716 
3717 	/* @dfl_pwq might not have been used, ensure it's linked */
3718 	link_pwq(ctx->dfl_pwq);
3719 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3720 
3721 	mutex_unlock(&ctx->wq->mutex);
3722 }
3723 
3724 static void apply_wqattrs_lock(void)
3725 {
3726 	/* CPUs should stay stable across pwq creations and installations */
3727 	get_online_cpus();
3728 	mutex_lock(&wq_pool_mutex);
3729 }
3730 
3731 static void apply_wqattrs_unlock(void)
3732 {
3733 	mutex_unlock(&wq_pool_mutex);
3734 	put_online_cpus();
3735 }
3736 
3737 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3738 					const struct workqueue_attrs *attrs)
3739 {
3740 	struct apply_wqattrs_ctx *ctx;
3741 
3742 	/* only unbound workqueues can change attributes */
3743 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3744 		return -EINVAL;
3745 
3746 	/* creating multiple pwqs breaks ordering guarantee */
3747 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3748 		return -EINVAL;
3749 
3750 	ctx = apply_wqattrs_prepare(wq, attrs);
3751 	if (!ctx)
3752 		return -ENOMEM;
3753 
3754 	/* the ctx has been prepared successfully, let's commit it */
3755 	apply_wqattrs_commit(ctx);
3756 	apply_wqattrs_cleanup(ctx);
3757 
3758 	return 0;
3759 }
3760 
3761 /**
3762  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3763  * @wq: the target workqueue
3764  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3765  *
3766  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3767  * machines, this function maps a separate pwq to each NUMA node with
3768  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3769  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3770  * items finish.  Note that a work item which repeatedly requeues itself
3771  * back-to-back will stay on its current pwq.
3772  *
3773  * Performs GFP_KERNEL allocations.
3774  *
3775  * Return: 0 on success and -errno on failure.
3776  */
3777 int apply_workqueue_attrs(struct workqueue_struct *wq,
3778 			  const struct workqueue_attrs *attrs)
3779 {
3780 	int ret;
3781 
3782 	apply_wqattrs_lock();
3783 	ret = apply_workqueue_attrs_locked(wq, attrs);
3784 	apply_wqattrs_unlock();
3785 
3786 	return ret;
3787 }
3788 
3789 /**
3790  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3791  * @wq: the target workqueue
3792  * @cpu: the CPU coming up or going down
3793  * @online: whether @cpu is coming up or going down
3794  *
3795  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3796  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3797  * @wq accordingly.
3798  *
3799  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3800  * falls back to @wq->dfl_pwq which may not be optimal but is always
3801  * correct.
3802  *
3803  * Note that when the last allowed CPU of a NUMA node goes offline for a
3804  * workqueue with a cpumask spanning multiple nodes, the workers which were
3805  * already executing the work items for the workqueue will lose their CPU
3806  * affinity and may execute on any CPU.  This is similar to how per-cpu
3807  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3808  * affinity, it's the user's responsibility to flush the work item from
3809  * CPU_DOWN_PREPARE.
3810  */
3811 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3812 				   bool online)
3813 {
3814 	int node = cpu_to_node(cpu);
3815 	int cpu_off = online ? -1 : cpu;
3816 	struct pool_workqueue *old_pwq = NULL, *pwq;
3817 	struct workqueue_attrs *target_attrs;
3818 	cpumask_t *cpumask;
3819 
3820 	lockdep_assert_held(&wq_pool_mutex);
3821 
3822 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3823 	    wq->unbound_attrs->no_numa)
3824 		return;
3825 
3826 	/*
3827 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3828 	 * Let's use a preallocated one.  The following buf is protected by
3829 	 * CPU hotplug exclusion.
3830 	 */
3831 	target_attrs = wq_update_unbound_numa_attrs_buf;
3832 	cpumask = target_attrs->cpumask;
3833 
3834 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3835 	pwq = unbound_pwq_by_node(wq, node);
3836 
3837 	/*
3838 	 * Let's determine what needs to be done.  If the target cpumask is
3839 	 * different from the default pwq's, we need to compare it to @pwq's
3840 	 * and create a new one if they don't match.  If the target cpumask
3841 	 * equals the default pwq's, the default pwq should be used.
3842 	 */
3843 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3844 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3845 			return;
3846 	} else {
3847 		goto use_dfl_pwq;
3848 	}
3849 
3850 	/* create a new pwq */
3851 	pwq = alloc_unbound_pwq(wq, target_attrs);
3852 	if (!pwq) {
3853 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3854 			wq->name);
3855 		goto use_dfl_pwq;
3856 	}
3857 
3858 	/* Install the new pwq. */
3859 	mutex_lock(&wq->mutex);
3860 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3861 	goto out_unlock;
3862 
3863 use_dfl_pwq:
3864 	mutex_lock(&wq->mutex);
3865 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3866 	get_pwq(wq->dfl_pwq);
3867 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3868 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3869 out_unlock:
3870 	mutex_unlock(&wq->mutex);
3871 	put_pwq_unlocked(old_pwq);
3872 }
3873 
3874 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3875 {
3876 	bool highpri = wq->flags & WQ_HIGHPRI;
3877 	int cpu, ret;
3878 
3879 	if (!(wq->flags & WQ_UNBOUND)) {
3880 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3881 		if (!wq->cpu_pwqs)
3882 			return -ENOMEM;
3883 
3884 		for_each_possible_cpu(cpu) {
3885 			struct pool_workqueue *pwq =
3886 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3887 			struct worker_pool *cpu_pools =
3888 				per_cpu(cpu_worker_pools, cpu);
3889 
3890 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3891 
3892 			mutex_lock(&wq->mutex);
3893 			link_pwq(pwq);
3894 			mutex_unlock(&wq->mutex);
3895 		}
3896 		return 0;
3897 	} else if (wq->flags & __WQ_ORDERED) {
3898 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3899 		/* there should only be single pwq for ordering guarantee */
3900 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3901 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3902 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3903 		return ret;
3904 	} else {
3905 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3906 	}
3907 }
3908 
3909 static int wq_clamp_max_active(int max_active, unsigned int flags,
3910 			       const char *name)
3911 {
3912 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3913 
3914 	if (max_active < 1 || max_active > lim)
3915 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3916 			max_active, name, 1, lim);
3917 
3918 	return clamp_val(max_active, 1, lim);
3919 }
3920 
3921 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3922 					       unsigned int flags,
3923 					       int max_active,
3924 					       struct lock_class_key *key,
3925 					       const char *lock_name, ...)
3926 {
3927 	size_t tbl_size = 0;
3928 	va_list args;
3929 	struct workqueue_struct *wq;
3930 	struct pool_workqueue *pwq;
3931 
3932 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3933 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3934 		flags |= WQ_UNBOUND;
3935 
3936 	/* allocate wq and format name */
3937 	if (flags & WQ_UNBOUND)
3938 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3939 
3940 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3941 	if (!wq)
3942 		return NULL;
3943 
3944 	if (flags & WQ_UNBOUND) {
3945 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3946 		if (!wq->unbound_attrs)
3947 			goto err_free_wq;
3948 	}
3949 
3950 	va_start(args, lock_name);
3951 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3952 	va_end(args);
3953 
3954 	max_active = max_active ?: WQ_DFL_ACTIVE;
3955 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3956 
3957 	/* init wq */
3958 	wq->flags = flags;
3959 	wq->saved_max_active = max_active;
3960 	mutex_init(&wq->mutex);
3961 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3962 	INIT_LIST_HEAD(&wq->pwqs);
3963 	INIT_LIST_HEAD(&wq->flusher_queue);
3964 	INIT_LIST_HEAD(&wq->flusher_overflow);
3965 	INIT_LIST_HEAD(&wq->maydays);
3966 
3967 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3968 	INIT_LIST_HEAD(&wq->list);
3969 
3970 	if (alloc_and_link_pwqs(wq) < 0)
3971 		goto err_free_wq;
3972 
3973 	/*
3974 	 * Workqueues which may be used during memory reclaim should
3975 	 * have a rescuer to guarantee forward progress.
3976 	 */
3977 	if (flags & WQ_MEM_RECLAIM) {
3978 		struct worker *rescuer;
3979 
3980 		rescuer = alloc_worker(NUMA_NO_NODE);
3981 		if (!rescuer)
3982 			goto err_destroy;
3983 
3984 		rescuer->rescue_wq = wq;
3985 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3986 					       wq->name);
3987 		if (IS_ERR(rescuer->task)) {
3988 			kfree(rescuer);
3989 			goto err_destroy;
3990 		}
3991 
3992 		wq->rescuer = rescuer;
3993 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3994 		wake_up_process(rescuer->task);
3995 	}
3996 
3997 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3998 		goto err_destroy;
3999 
4000 	/*
4001 	 * wq_pool_mutex protects global freeze state and workqueues list.
4002 	 * Grab it, adjust max_active and add the new @wq to workqueues
4003 	 * list.
4004 	 */
4005 	mutex_lock(&wq_pool_mutex);
4006 
4007 	mutex_lock(&wq->mutex);
4008 	for_each_pwq(pwq, wq)
4009 		pwq_adjust_max_active(pwq);
4010 	mutex_unlock(&wq->mutex);
4011 
4012 	list_add_tail_rcu(&wq->list, &workqueues);
4013 
4014 	mutex_unlock(&wq_pool_mutex);
4015 
4016 	return wq;
4017 
4018 err_free_wq:
4019 	free_workqueue_attrs(wq->unbound_attrs);
4020 	kfree(wq);
4021 	return NULL;
4022 err_destroy:
4023 	destroy_workqueue(wq);
4024 	return NULL;
4025 }
4026 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4027 
4028 /**
4029  * destroy_workqueue - safely terminate a workqueue
4030  * @wq: target workqueue
4031  *
4032  * Safely destroy a workqueue. All work currently pending will be done first.
4033  */
4034 void destroy_workqueue(struct workqueue_struct *wq)
4035 {
4036 	struct pool_workqueue *pwq;
4037 	int node;
4038 
4039 	/* drain it before proceeding with destruction */
4040 	drain_workqueue(wq);
4041 
4042 	/* sanity checks */
4043 	mutex_lock(&wq->mutex);
4044 	for_each_pwq(pwq, wq) {
4045 		int i;
4046 
4047 		for (i = 0; i < WORK_NR_COLORS; i++) {
4048 			if (WARN_ON(pwq->nr_in_flight[i])) {
4049 				mutex_unlock(&wq->mutex);
4050 				show_workqueue_state();
4051 				return;
4052 			}
4053 		}
4054 
4055 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4056 		    WARN_ON(pwq->nr_active) ||
4057 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4058 			mutex_unlock(&wq->mutex);
4059 			show_workqueue_state();
4060 			return;
4061 		}
4062 	}
4063 	mutex_unlock(&wq->mutex);
4064 
4065 	/*
4066 	 * wq list is used to freeze wq, remove from list after
4067 	 * flushing is complete in case freeze races us.
4068 	 */
4069 	mutex_lock(&wq_pool_mutex);
4070 	list_del_rcu(&wq->list);
4071 	mutex_unlock(&wq_pool_mutex);
4072 
4073 	workqueue_sysfs_unregister(wq);
4074 
4075 	if (wq->rescuer)
4076 		kthread_stop(wq->rescuer->task);
4077 
4078 	if (!(wq->flags & WQ_UNBOUND)) {
4079 		/*
4080 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4081 		 * schedule RCU free.
4082 		 */
4083 		call_rcu_sched(&wq->rcu, rcu_free_wq);
4084 	} else {
4085 		/*
4086 		 * We're the sole accessor of @wq at this point.  Directly
4087 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4088 		 * @wq will be freed when the last pwq is released.
4089 		 */
4090 		for_each_node(node) {
4091 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4092 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4093 			put_pwq_unlocked(pwq);
4094 		}
4095 
4096 		/*
4097 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4098 		 * put.  Don't access it afterwards.
4099 		 */
4100 		pwq = wq->dfl_pwq;
4101 		wq->dfl_pwq = NULL;
4102 		put_pwq_unlocked(pwq);
4103 	}
4104 }
4105 EXPORT_SYMBOL_GPL(destroy_workqueue);
4106 
4107 /**
4108  * workqueue_set_max_active - adjust max_active of a workqueue
4109  * @wq: target workqueue
4110  * @max_active: new max_active value.
4111  *
4112  * Set max_active of @wq to @max_active.
4113  *
4114  * CONTEXT:
4115  * Don't call from IRQ context.
4116  */
4117 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4118 {
4119 	struct pool_workqueue *pwq;
4120 
4121 	/* disallow meddling with max_active for ordered workqueues */
4122 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4123 		return;
4124 
4125 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4126 
4127 	mutex_lock(&wq->mutex);
4128 
4129 	wq->saved_max_active = max_active;
4130 
4131 	for_each_pwq(pwq, wq)
4132 		pwq_adjust_max_active(pwq);
4133 
4134 	mutex_unlock(&wq->mutex);
4135 }
4136 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4137 
4138 /**
4139  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4140  *
4141  * Determine whether %current is a workqueue rescuer.  Can be used from
4142  * work functions to determine whether it's being run off the rescuer task.
4143  *
4144  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4145  */
4146 bool current_is_workqueue_rescuer(void)
4147 {
4148 	struct worker *worker = current_wq_worker();
4149 
4150 	return worker && worker->rescue_wq;
4151 }
4152 
4153 /**
4154  * workqueue_congested - test whether a workqueue is congested
4155  * @cpu: CPU in question
4156  * @wq: target workqueue
4157  *
4158  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4159  * no synchronization around this function and the test result is
4160  * unreliable and only useful as advisory hints or for debugging.
4161  *
4162  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4163  * Note that both per-cpu and unbound workqueues may be associated with
4164  * multiple pool_workqueues which have separate congested states.  A
4165  * workqueue being congested on one CPU doesn't mean the workqueue is also
4166  * contested on other CPUs / NUMA nodes.
4167  *
4168  * Return:
4169  * %true if congested, %false otherwise.
4170  */
4171 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4172 {
4173 	struct pool_workqueue *pwq;
4174 	bool ret;
4175 
4176 	rcu_read_lock_sched();
4177 
4178 	if (cpu == WORK_CPU_UNBOUND)
4179 		cpu = smp_processor_id();
4180 
4181 	if (!(wq->flags & WQ_UNBOUND))
4182 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4183 	else
4184 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4185 
4186 	ret = !list_empty(&pwq->delayed_works);
4187 	rcu_read_unlock_sched();
4188 
4189 	return ret;
4190 }
4191 EXPORT_SYMBOL_GPL(workqueue_congested);
4192 
4193 /**
4194  * work_busy - test whether a work is currently pending or running
4195  * @work: the work to be tested
4196  *
4197  * Test whether @work is currently pending or running.  There is no
4198  * synchronization around this function and the test result is
4199  * unreliable and only useful as advisory hints or for debugging.
4200  *
4201  * Return:
4202  * OR'd bitmask of WORK_BUSY_* bits.
4203  */
4204 unsigned int work_busy(struct work_struct *work)
4205 {
4206 	struct worker_pool *pool;
4207 	unsigned long flags;
4208 	unsigned int ret = 0;
4209 
4210 	if (work_pending(work))
4211 		ret |= WORK_BUSY_PENDING;
4212 
4213 	local_irq_save(flags);
4214 	pool = get_work_pool(work);
4215 	if (pool) {
4216 		spin_lock(&pool->lock);
4217 		if (find_worker_executing_work(pool, work))
4218 			ret |= WORK_BUSY_RUNNING;
4219 		spin_unlock(&pool->lock);
4220 	}
4221 	local_irq_restore(flags);
4222 
4223 	return ret;
4224 }
4225 EXPORT_SYMBOL_GPL(work_busy);
4226 
4227 /**
4228  * set_worker_desc - set description for the current work item
4229  * @fmt: printf-style format string
4230  * @...: arguments for the format string
4231  *
4232  * This function can be called by a running work function to describe what
4233  * the work item is about.  If the worker task gets dumped, this
4234  * information will be printed out together to help debugging.  The
4235  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4236  */
4237 void set_worker_desc(const char *fmt, ...)
4238 {
4239 	struct worker *worker = current_wq_worker();
4240 	va_list args;
4241 
4242 	if (worker) {
4243 		va_start(args, fmt);
4244 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4245 		va_end(args);
4246 		worker->desc_valid = true;
4247 	}
4248 }
4249 
4250 /**
4251  * print_worker_info - print out worker information and description
4252  * @log_lvl: the log level to use when printing
4253  * @task: target task
4254  *
4255  * If @task is a worker and currently executing a work item, print out the
4256  * name of the workqueue being serviced and worker description set with
4257  * set_worker_desc() by the currently executing work item.
4258  *
4259  * This function can be safely called on any task as long as the
4260  * task_struct itself is accessible.  While safe, this function isn't
4261  * synchronized and may print out mixups or garbages of limited length.
4262  */
4263 void print_worker_info(const char *log_lvl, struct task_struct *task)
4264 {
4265 	work_func_t *fn = NULL;
4266 	char name[WQ_NAME_LEN] = { };
4267 	char desc[WORKER_DESC_LEN] = { };
4268 	struct pool_workqueue *pwq = NULL;
4269 	struct workqueue_struct *wq = NULL;
4270 	bool desc_valid = false;
4271 	struct worker *worker;
4272 
4273 	if (!(task->flags & PF_WQ_WORKER))
4274 		return;
4275 
4276 	/*
4277 	 * This function is called without any synchronization and @task
4278 	 * could be in any state.  Be careful with dereferences.
4279 	 */
4280 	worker = kthread_probe_data(task);
4281 
4282 	/*
4283 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4284 	 * the original last '\0' in case the original contains garbage.
4285 	 */
4286 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4287 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4288 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4289 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4290 
4291 	/* copy worker description */
4292 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4293 	if (desc_valid)
4294 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4295 
4296 	if (fn || name[0] || desc[0]) {
4297 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4298 		if (desc[0])
4299 			pr_cont(" (%s)", desc);
4300 		pr_cont("\n");
4301 	}
4302 }
4303 
4304 static void pr_cont_pool_info(struct worker_pool *pool)
4305 {
4306 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4307 	if (pool->node != NUMA_NO_NODE)
4308 		pr_cont(" node=%d", pool->node);
4309 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4310 }
4311 
4312 static void pr_cont_work(bool comma, struct work_struct *work)
4313 {
4314 	if (work->func == wq_barrier_func) {
4315 		struct wq_barrier *barr;
4316 
4317 		barr = container_of(work, struct wq_barrier, work);
4318 
4319 		pr_cont("%s BAR(%d)", comma ? "," : "",
4320 			task_pid_nr(barr->task));
4321 	} else {
4322 		pr_cont("%s %pf", comma ? "," : "", work->func);
4323 	}
4324 }
4325 
4326 static void show_pwq(struct pool_workqueue *pwq)
4327 {
4328 	struct worker_pool *pool = pwq->pool;
4329 	struct work_struct *work;
4330 	struct worker *worker;
4331 	bool has_in_flight = false, has_pending = false;
4332 	int bkt;
4333 
4334 	pr_info("  pwq %d:", pool->id);
4335 	pr_cont_pool_info(pool);
4336 
4337 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4338 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4339 
4340 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4341 		if (worker->current_pwq == pwq) {
4342 			has_in_flight = true;
4343 			break;
4344 		}
4345 	}
4346 	if (has_in_flight) {
4347 		bool comma = false;
4348 
4349 		pr_info("    in-flight:");
4350 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4351 			if (worker->current_pwq != pwq)
4352 				continue;
4353 
4354 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4355 				task_pid_nr(worker->task),
4356 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4357 				worker->current_func);
4358 			list_for_each_entry(work, &worker->scheduled, entry)
4359 				pr_cont_work(false, work);
4360 			comma = true;
4361 		}
4362 		pr_cont("\n");
4363 	}
4364 
4365 	list_for_each_entry(work, &pool->worklist, entry) {
4366 		if (get_work_pwq(work) == pwq) {
4367 			has_pending = true;
4368 			break;
4369 		}
4370 	}
4371 	if (has_pending) {
4372 		bool comma = false;
4373 
4374 		pr_info("    pending:");
4375 		list_for_each_entry(work, &pool->worklist, entry) {
4376 			if (get_work_pwq(work) != pwq)
4377 				continue;
4378 
4379 			pr_cont_work(comma, work);
4380 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4381 		}
4382 		pr_cont("\n");
4383 	}
4384 
4385 	if (!list_empty(&pwq->delayed_works)) {
4386 		bool comma = false;
4387 
4388 		pr_info("    delayed:");
4389 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4390 			pr_cont_work(comma, work);
4391 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4392 		}
4393 		pr_cont("\n");
4394 	}
4395 }
4396 
4397 /**
4398  * show_workqueue_state - dump workqueue state
4399  *
4400  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4401  * all busy workqueues and pools.
4402  */
4403 void show_workqueue_state(void)
4404 {
4405 	struct workqueue_struct *wq;
4406 	struct worker_pool *pool;
4407 	unsigned long flags;
4408 	int pi;
4409 
4410 	rcu_read_lock_sched();
4411 
4412 	pr_info("Showing busy workqueues and worker pools:\n");
4413 
4414 	list_for_each_entry_rcu(wq, &workqueues, list) {
4415 		struct pool_workqueue *pwq;
4416 		bool idle = true;
4417 
4418 		for_each_pwq(pwq, wq) {
4419 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4420 				idle = false;
4421 				break;
4422 			}
4423 		}
4424 		if (idle)
4425 			continue;
4426 
4427 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4428 
4429 		for_each_pwq(pwq, wq) {
4430 			spin_lock_irqsave(&pwq->pool->lock, flags);
4431 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4432 				show_pwq(pwq);
4433 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4434 		}
4435 	}
4436 
4437 	for_each_pool(pool, pi) {
4438 		struct worker *worker;
4439 		bool first = true;
4440 
4441 		spin_lock_irqsave(&pool->lock, flags);
4442 		if (pool->nr_workers == pool->nr_idle)
4443 			goto next_pool;
4444 
4445 		pr_info("pool %d:", pool->id);
4446 		pr_cont_pool_info(pool);
4447 		pr_cont(" hung=%us workers=%d",
4448 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4449 			pool->nr_workers);
4450 		if (pool->manager)
4451 			pr_cont(" manager: %d",
4452 				task_pid_nr(pool->manager->task));
4453 		list_for_each_entry(worker, &pool->idle_list, entry) {
4454 			pr_cont(" %s%d", first ? "idle: " : "",
4455 				task_pid_nr(worker->task));
4456 			first = false;
4457 		}
4458 		pr_cont("\n");
4459 	next_pool:
4460 		spin_unlock_irqrestore(&pool->lock, flags);
4461 	}
4462 
4463 	rcu_read_unlock_sched();
4464 }
4465 
4466 /*
4467  * CPU hotplug.
4468  *
4469  * There are two challenges in supporting CPU hotplug.  Firstly, there
4470  * are a lot of assumptions on strong associations among work, pwq and
4471  * pool which make migrating pending and scheduled works very
4472  * difficult to implement without impacting hot paths.  Secondly,
4473  * worker pools serve mix of short, long and very long running works making
4474  * blocked draining impractical.
4475  *
4476  * This is solved by allowing the pools to be disassociated from the CPU
4477  * running as an unbound one and allowing it to be reattached later if the
4478  * cpu comes back online.
4479  */
4480 
4481 static void wq_unbind_fn(struct work_struct *work)
4482 {
4483 	int cpu = smp_processor_id();
4484 	struct worker_pool *pool;
4485 	struct worker *worker;
4486 
4487 	for_each_cpu_worker_pool(pool, cpu) {
4488 		mutex_lock(&pool->attach_mutex);
4489 		spin_lock_irq(&pool->lock);
4490 
4491 		/*
4492 		 * We've blocked all attach/detach operations. Make all workers
4493 		 * unbound and set DISASSOCIATED.  Before this, all workers
4494 		 * except for the ones which are still executing works from
4495 		 * before the last CPU down must be on the cpu.  After
4496 		 * this, they may become diasporas.
4497 		 */
4498 		for_each_pool_worker(worker, pool)
4499 			worker->flags |= WORKER_UNBOUND;
4500 
4501 		pool->flags |= POOL_DISASSOCIATED;
4502 
4503 		spin_unlock_irq(&pool->lock);
4504 		mutex_unlock(&pool->attach_mutex);
4505 
4506 		/*
4507 		 * Call schedule() so that we cross rq->lock and thus can
4508 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4509 		 * This is necessary as scheduler callbacks may be invoked
4510 		 * from other cpus.
4511 		 */
4512 		schedule();
4513 
4514 		/*
4515 		 * Sched callbacks are disabled now.  Zap nr_running.
4516 		 * After this, nr_running stays zero and need_more_worker()
4517 		 * and keep_working() are always true as long as the
4518 		 * worklist is not empty.  This pool now behaves as an
4519 		 * unbound (in terms of concurrency management) pool which
4520 		 * are served by workers tied to the pool.
4521 		 */
4522 		atomic_set(&pool->nr_running, 0);
4523 
4524 		/*
4525 		 * With concurrency management just turned off, a busy
4526 		 * worker blocking could lead to lengthy stalls.  Kick off
4527 		 * unbound chain execution of currently pending work items.
4528 		 */
4529 		spin_lock_irq(&pool->lock);
4530 		wake_up_worker(pool);
4531 		spin_unlock_irq(&pool->lock);
4532 	}
4533 }
4534 
4535 /**
4536  * rebind_workers - rebind all workers of a pool to the associated CPU
4537  * @pool: pool of interest
4538  *
4539  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4540  */
4541 static void rebind_workers(struct worker_pool *pool)
4542 {
4543 	struct worker *worker;
4544 
4545 	lockdep_assert_held(&pool->attach_mutex);
4546 
4547 	/*
4548 	 * Restore CPU affinity of all workers.  As all idle workers should
4549 	 * be on the run-queue of the associated CPU before any local
4550 	 * wake-ups for concurrency management happen, restore CPU affinity
4551 	 * of all workers first and then clear UNBOUND.  As we're called
4552 	 * from CPU_ONLINE, the following shouldn't fail.
4553 	 */
4554 	for_each_pool_worker(worker, pool)
4555 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4556 						  pool->attrs->cpumask) < 0);
4557 
4558 	spin_lock_irq(&pool->lock);
4559 
4560 	/*
4561 	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4562 	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4563 	 * being reworked and this can go away in time.
4564 	 */
4565 	if (!(pool->flags & POOL_DISASSOCIATED)) {
4566 		spin_unlock_irq(&pool->lock);
4567 		return;
4568 	}
4569 
4570 	pool->flags &= ~POOL_DISASSOCIATED;
4571 
4572 	for_each_pool_worker(worker, pool) {
4573 		unsigned int worker_flags = worker->flags;
4574 
4575 		/*
4576 		 * A bound idle worker should actually be on the runqueue
4577 		 * of the associated CPU for local wake-ups targeting it to
4578 		 * work.  Kick all idle workers so that they migrate to the
4579 		 * associated CPU.  Doing this in the same loop as
4580 		 * replacing UNBOUND with REBOUND is safe as no worker will
4581 		 * be bound before @pool->lock is released.
4582 		 */
4583 		if (worker_flags & WORKER_IDLE)
4584 			wake_up_process(worker->task);
4585 
4586 		/*
4587 		 * We want to clear UNBOUND but can't directly call
4588 		 * worker_clr_flags() or adjust nr_running.  Atomically
4589 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4590 		 * @worker will clear REBOUND using worker_clr_flags() when
4591 		 * it initiates the next execution cycle thus restoring
4592 		 * concurrency management.  Note that when or whether
4593 		 * @worker clears REBOUND doesn't affect correctness.
4594 		 *
4595 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4596 		 * tested without holding any lock in
4597 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4598 		 * fail incorrectly leading to premature concurrency
4599 		 * management operations.
4600 		 */
4601 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4602 		worker_flags |= WORKER_REBOUND;
4603 		worker_flags &= ~WORKER_UNBOUND;
4604 		ACCESS_ONCE(worker->flags) = worker_flags;
4605 	}
4606 
4607 	spin_unlock_irq(&pool->lock);
4608 }
4609 
4610 /**
4611  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4612  * @pool: unbound pool of interest
4613  * @cpu: the CPU which is coming up
4614  *
4615  * An unbound pool may end up with a cpumask which doesn't have any online
4616  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4617  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4618  * online CPU before, cpus_allowed of all its workers should be restored.
4619  */
4620 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4621 {
4622 	static cpumask_t cpumask;
4623 	struct worker *worker;
4624 
4625 	lockdep_assert_held(&pool->attach_mutex);
4626 
4627 	/* is @cpu allowed for @pool? */
4628 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4629 		return;
4630 
4631 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4632 
4633 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4634 	for_each_pool_worker(worker, pool)
4635 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4636 }
4637 
4638 int workqueue_prepare_cpu(unsigned int cpu)
4639 {
4640 	struct worker_pool *pool;
4641 
4642 	for_each_cpu_worker_pool(pool, cpu) {
4643 		if (pool->nr_workers)
4644 			continue;
4645 		if (!create_worker(pool))
4646 			return -ENOMEM;
4647 	}
4648 	return 0;
4649 }
4650 
4651 int workqueue_online_cpu(unsigned int cpu)
4652 {
4653 	struct worker_pool *pool;
4654 	struct workqueue_struct *wq;
4655 	int pi;
4656 
4657 	mutex_lock(&wq_pool_mutex);
4658 
4659 	for_each_pool(pool, pi) {
4660 		mutex_lock(&pool->attach_mutex);
4661 
4662 		if (pool->cpu == cpu)
4663 			rebind_workers(pool);
4664 		else if (pool->cpu < 0)
4665 			restore_unbound_workers_cpumask(pool, cpu);
4666 
4667 		mutex_unlock(&pool->attach_mutex);
4668 	}
4669 
4670 	/* update NUMA affinity of unbound workqueues */
4671 	list_for_each_entry(wq, &workqueues, list)
4672 		wq_update_unbound_numa(wq, cpu, true);
4673 
4674 	mutex_unlock(&wq_pool_mutex);
4675 	return 0;
4676 }
4677 
4678 int workqueue_offline_cpu(unsigned int cpu)
4679 {
4680 	struct work_struct unbind_work;
4681 	struct workqueue_struct *wq;
4682 
4683 	/* unbinding per-cpu workers should happen on the local CPU */
4684 	INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4685 	queue_work_on(cpu, system_highpri_wq, &unbind_work);
4686 
4687 	/* update NUMA affinity of unbound workqueues */
4688 	mutex_lock(&wq_pool_mutex);
4689 	list_for_each_entry(wq, &workqueues, list)
4690 		wq_update_unbound_numa(wq, cpu, false);
4691 	mutex_unlock(&wq_pool_mutex);
4692 
4693 	/* wait for per-cpu unbinding to finish */
4694 	flush_work(&unbind_work);
4695 	destroy_work_on_stack(&unbind_work);
4696 	return 0;
4697 }
4698 
4699 #ifdef CONFIG_SMP
4700 
4701 struct work_for_cpu {
4702 	struct work_struct work;
4703 	long (*fn)(void *);
4704 	void *arg;
4705 	long ret;
4706 };
4707 
4708 static void work_for_cpu_fn(struct work_struct *work)
4709 {
4710 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4711 
4712 	wfc->ret = wfc->fn(wfc->arg);
4713 }
4714 
4715 /**
4716  * work_on_cpu - run a function in thread context on a particular cpu
4717  * @cpu: the cpu to run on
4718  * @fn: the function to run
4719  * @arg: the function arg
4720  *
4721  * It is up to the caller to ensure that the cpu doesn't go offline.
4722  * The caller must not hold any locks which would prevent @fn from completing.
4723  *
4724  * Return: The value @fn returns.
4725  */
4726 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4727 {
4728 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4729 
4730 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4731 	schedule_work_on(cpu, &wfc.work);
4732 	flush_work(&wfc.work);
4733 	destroy_work_on_stack(&wfc.work);
4734 	return wfc.ret;
4735 }
4736 EXPORT_SYMBOL_GPL(work_on_cpu);
4737 
4738 /**
4739  * work_on_cpu_safe - run a function in thread context on a particular cpu
4740  * @cpu: the cpu to run on
4741  * @fn:  the function to run
4742  * @arg: the function argument
4743  *
4744  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4745  * any locks which would prevent @fn from completing.
4746  *
4747  * Return: The value @fn returns.
4748  */
4749 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4750 {
4751 	long ret = -ENODEV;
4752 
4753 	get_online_cpus();
4754 	if (cpu_online(cpu))
4755 		ret = work_on_cpu(cpu, fn, arg);
4756 	put_online_cpus();
4757 	return ret;
4758 }
4759 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4760 #endif /* CONFIG_SMP */
4761 
4762 #ifdef CONFIG_FREEZER
4763 
4764 /**
4765  * freeze_workqueues_begin - begin freezing workqueues
4766  *
4767  * Start freezing workqueues.  After this function returns, all freezable
4768  * workqueues will queue new works to their delayed_works list instead of
4769  * pool->worklist.
4770  *
4771  * CONTEXT:
4772  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4773  */
4774 void freeze_workqueues_begin(void)
4775 {
4776 	struct workqueue_struct *wq;
4777 	struct pool_workqueue *pwq;
4778 
4779 	mutex_lock(&wq_pool_mutex);
4780 
4781 	WARN_ON_ONCE(workqueue_freezing);
4782 	workqueue_freezing = true;
4783 
4784 	list_for_each_entry(wq, &workqueues, list) {
4785 		mutex_lock(&wq->mutex);
4786 		for_each_pwq(pwq, wq)
4787 			pwq_adjust_max_active(pwq);
4788 		mutex_unlock(&wq->mutex);
4789 	}
4790 
4791 	mutex_unlock(&wq_pool_mutex);
4792 }
4793 
4794 /**
4795  * freeze_workqueues_busy - are freezable workqueues still busy?
4796  *
4797  * Check whether freezing is complete.  This function must be called
4798  * between freeze_workqueues_begin() and thaw_workqueues().
4799  *
4800  * CONTEXT:
4801  * Grabs and releases wq_pool_mutex.
4802  *
4803  * Return:
4804  * %true if some freezable workqueues are still busy.  %false if freezing
4805  * is complete.
4806  */
4807 bool freeze_workqueues_busy(void)
4808 {
4809 	bool busy = false;
4810 	struct workqueue_struct *wq;
4811 	struct pool_workqueue *pwq;
4812 
4813 	mutex_lock(&wq_pool_mutex);
4814 
4815 	WARN_ON_ONCE(!workqueue_freezing);
4816 
4817 	list_for_each_entry(wq, &workqueues, list) {
4818 		if (!(wq->flags & WQ_FREEZABLE))
4819 			continue;
4820 		/*
4821 		 * nr_active is monotonically decreasing.  It's safe
4822 		 * to peek without lock.
4823 		 */
4824 		rcu_read_lock_sched();
4825 		for_each_pwq(pwq, wq) {
4826 			WARN_ON_ONCE(pwq->nr_active < 0);
4827 			if (pwq->nr_active) {
4828 				busy = true;
4829 				rcu_read_unlock_sched();
4830 				goto out_unlock;
4831 			}
4832 		}
4833 		rcu_read_unlock_sched();
4834 	}
4835 out_unlock:
4836 	mutex_unlock(&wq_pool_mutex);
4837 	return busy;
4838 }
4839 
4840 /**
4841  * thaw_workqueues - thaw workqueues
4842  *
4843  * Thaw workqueues.  Normal queueing is restored and all collected
4844  * frozen works are transferred to their respective pool worklists.
4845  *
4846  * CONTEXT:
4847  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4848  */
4849 void thaw_workqueues(void)
4850 {
4851 	struct workqueue_struct *wq;
4852 	struct pool_workqueue *pwq;
4853 
4854 	mutex_lock(&wq_pool_mutex);
4855 
4856 	if (!workqueue_freezing)
4857 		goto out_unlock;
4858 
4859 	workqueue_freezing = false;
4860 
4861 	/* restore max_active and repopulate worklist */
4862 	list_for_each_entry(wq, &workqueues, list) {
4863 		mutex_lock(&wq->mutex);
4864 		for_each_pwq(pwq, wq)
4865 			pwq_adjust_max_active(pwq);
4866 		mutex_unlock(&wq->mutex);
4867 	}
4868 
4869 out_unlock:
4870 	mutex_unlock(&wq_pool_mutex);
4871 }
4872 #endif /* CONFIG_FREEZER */
4873 
4874 static int workqueue_apply_unbound_cpumask(void)
4875 {
4876 	LIST_HEAD(ctxs);
4877 	int ret = 0;
4878 	struct workqueue_struct *wq;
4879 	struct apply_wqattrs_ctx *ctx, *n;
4880 
4881 	lockdep_assert_held(&wq_pool_mutex);
4882 
4883 	list_for_each_entry(wq, &workqueues, list) {
4884 		if (!(wq->flags & WQ_UNBOUND))
4885 			continue;
4886 		/* creating multiple pwqs breaks ordering guarantee */
4887 		if (wq->flags & __WQ_ORDERED)
4888 			continue;
4889 
4890 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4891 		if (!ctx) {
4892 			ret = -ENOMEM;
4893 			break;
4894 		}
4895 
4896 		list_add_tail(&ctx->list, &ctxs);
4897 	}
4898 
4899 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4900 		if (!ret)
4901 			apply_wqattrs_commit(ctx);
4902 		apply_wqattrs_cleanup(ctx);
4903 	}
4904 
4905 	return ret;
4906 }
4907 
4908 /**
4909  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4910  *  @cpumask: the cpumask to set
4911  *
4912  *  The low-level workqueues cpumask is a global cpumask that limits
4913  *  the affinity of all unbound workqueues.  This function check the @cpumask
4914  *  and apply it to all unbound workqueues and updates all pwqs of them.
4915  *
4916  *  Retun:	0	- Success
4917  *  		-EINVAL	- Invalid @cpumask
4918  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4919  */
4920 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4921 {
4922 	int ret = -EINVAL;
4923 	cpumask_var_t saved_cpumask;
4924 
4925 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4926 		return -ENOMEM;
4927 
4928 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4929 	if (!cpumask_empty(cpumask)) {
4930 		apply_wqattrs_lock();
4931 
4932 		/* save the old wq_unbound_cpumask. */
4933 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4934 
4935 		/* update wq_unbound_cpumask at first and apply it to wqs. */
4936 		cpumask_copy(wq_unbound_cpumask, cpumask);
4937 		ret = workqueue_apply_unbound_cpumask();
4938 
4939 		/* restore the wq_unbound_cpumask when failed. */
4940 		if (ret < 0)
4941 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4942 
4943 		apply_wqattrs_unlock();
4944 	}
4945 
4946 	free_cpumask_var(saved_cpumask);
4947 	return ret;
4948 }
4949 
4950 #ifdef CONFIG_SYSFS
4951 /*
4952  * Workqueues with WQ_SYSFS flag set is visible to userland via
4953  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4954  * following attributes.
4955  *
4956  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4957  *  max_active	RW int	: maximum number of in-flight work items
4958  *
4959  * Unbound workqueues have the following extra attributes.
4960  *
4961  *  id		RO int	: the associated pool ID
4962  *  nice	RW int	: nice value of the workers
4963  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4964  */
4965 struct wq_device {
4966 	struct workqueue_struct		*wq;
4967 	struct device			dev;
4968 };
4969 
4970 static struct workqueue_struct *dev_to_wq(struct device *dev)
4971 {
4972 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4973 
4974 	return wq_dev->wq;
4975 }
4976 
4977 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4978 			    char *buf)
4979 {
4980 	struct workqueue_struct *wq = dev_to_wq(dev);
4981 
4982 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4983 }
4984 static DEVICE_ATTR_RO(per_cpu);
4985 
4986 static ssize_t max_active_show(struct device *dev,
4987 			       struct device_attribute *attr, char *buf)
4988 {
4989 	struct workqueue_struct *wq = dev_to_wq(dev);
4990 
4991 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4992 }
4993 
4994 static ssize_t max_active_store(struct device *dev,
4995 				struct device_attribute *attr, const char *buf,
4996 				size_t count)
4997 {
4998 	struct workqueue_struct *wq = dev_to_wq(dev);
4999 	int val;
5000 
5001 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5002 		return -EINVAL;
5003 
5004 	workqueue_set_max_active(wq, val);
5005 	return count;
5006 }
5007 static DEVICE_ATTR_RW(max_active);
5008 
5009 static struct attribute *wq_sysfs_attrs[] = {
5010 	&dev_attr_per_cpu.attr,
5011 	&dev_attr_max_active.attr,
5012 	NULL,
5013 };
5014 ATTRIBUTE_GROUPS(wq_sysfs);
5015 
5016 static ssize_t wq_pool_ids_show(struct device *dev,
5017 				struct device_attribute *attr, char *buf)
5018 {
5019 	struct workqueue_struct *wq = dev_to_wq(dev);
5020 	const char *delim = "";
5021 	int node, written = 0;
5022 
5023 	rcu_read_lock_sched();
5024 	for_each_node(node) {
5025 		written += scnprintf(buf + written, PAGE_SIZE - written,
5026 				     "%s%d:%d", delim, node,
5027 				     unbound_pwq_by_node(wq, node)->pool->id);
5028 		delim = " ";
5029 	}
5030 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5031 	rcu_read_unlock_sched();
5032 
5033 	return written;
5034 }
5035 
5036 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5037 			    char *buf)
5038 {
5039 	struct workqueue_struct *wq = dev_to_wq(dev);
5040 	int written;
5041 
5042 	mutex_lock(&wq->mutex);
5043 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5044 	mutex_unlock(&wq->mutex);
5045 
5046 	return written;
5047 }
5048 
5049 /* prepare workqueue_attrs for sysfs store operations */
5050 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5051 {
5052 	struct workqueue_attrs *attrs;
5053 
5054 	lockdep_assert_held(&wq_pool_mutex);
5055 
5056 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5057 	if (!attrs)
5058 		return NULL;
5059 
5060 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5061 	return attrs;
5062 }
5063 
5064 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5065 			     const char *buf, size_t count)
5066 {
5067 	struct workqueue_struct *wq = dev_to_wq(dev);
5068 	struct workqueue_attrs *attrs;
5069 	int ret = -ENOMEM;
5070 
5071 	apply_wqattrs_lock();
5072 
5073 	attrs = wq_sysfs_prep_attrs(wq);
5074 	if (!attrs)
5075 		goto out_unlock;
5076 
5077 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5078 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5079 		ret = apply_workqueue_attrs_locked(wq, attrs);
5080 	else
5081 		ret = -EINVAL;
5082 
5083 out_unlock:
5084 	apply_wqattrs_unlock();
5085 	free_workqueue_attrs(attrs);
5086 	return ret ?: count;
5087 }
5088 
5089 static ssize_t wq_cpumask_show(struct device *dev,
5090 			       struct device_attribute *attr, char *buf)
5091 {
5092 	struct workqueue_struct *wq = dev_to_wq(dev);
5093 	int written;
5094 
5095 	mutex_lock(&wq->mutex);
5096 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5097 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5098 	mutex_unlock(&wq->mutex);
5099 	return written;
5100 }
5101 
5102 static ssize_t wq_cpumask_store(struct device *dev,
5103 				struct device_attribute *attr,
5104 				const char *buf, size_t count)
5105 {
5106 	struct workqueue_struct *wq = dev_to_wq(dev);
5107 	struct workqueue_attrs *attrs;
5108 	int ret = -ENOMEM;
5109 
5110 	apply_wqattrs_lock();
5111 
5112 	attrs = wq_sysfs_prep_attrs(wq);
5113 	if (!attrs)
5114 		goto out_unlock;
5115 
5116 	ret = cpumask_parse(buf, attrs->cpumask);
5117 	if (!ret)
5118 		ret = apply_workqueue_attrs_locked(wq, attrs);
5119 
5120 out_unlock:
5121 	apply_wqattrs_unlock();
5122 	free_workqueue_attrs(attrs);
5123 	return ret ?: count;
5124 }
5125 
5126 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5127 			    char *buf)
5128 {
5129 	struct workqueue_struct *wq = dev_to_wq(dev);
5130 	int written;
5131 
5132 	mutex_lock(&wq->mutex);
5133 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5134 			    !wq->unbound_attrs->no_numa);
5135 	mutex_unlock(&wq->mutex);
5136 
5137 	return written;
5138 }
5139 
5140 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5141 			     const char *buf, size_t count)
5142 {
5143 	struct workqueue_struct *wq = dev_to_wq(dev);
5144 	struct workqueue_attrs *attrs;
5145 	int v, ret = -ENOMEM;
5146 
5147 	apply_wqattrs_lock();
5148 
5149 	attrs = wq_sysfs_prep_attrs(wq);
5150 	if (!attrs)
5151 		goto out_unlock;
5152 
5153 	ret = -EINVAL;
5154 	if (sscanf(buf, "%d", &v) == 1) {
5155 		attrs->no_numa = !v;
5156 		ret = apply_workqueue_attrs_locked(wq, attrs);
5157 	}
5158 
5159 out_unlock:
5160 	apply_wqattrs_unlock();
5161 	free_workqueue_attrs(attrs);
5162 	return ret ?: count;
5163 }
5164 
5165 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5166 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5167 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5168 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5169 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5170 	__ATTR_NULL,
5171 };
5172 
5173 static struct bus_type wq_subsys = {
5174 	.name				= "workqueue",
5175 	.dev_groups			= wq_sysfs_groups,
5176 };
5177 
5178 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5179 		struct device_attribute *attr, char *buf)
5180 {
5181 	int written;
5182 
5183 	mutex_lock(&wq_pool_mutex);
5184 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5185 			    cpumask_pr_args(wq_unbound_cpumask));
5186 	mutex_unlock(&wq_pool_mutex);
5187 
5188 	return written;
5189 }
5190 
5191 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5192 		struct device_attribute *attr, const char *buf, size_t count)
5193 {
5194 	cpumask_var_t cpumask;
5195 	int ret;
5196 
5197 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5198 		return -ENOMEM;
5199 
5200 	ret = cpumask_parse(buf, cpumask);
5201 	if (!ret)
5202 		ret = workqueue_set_unbound_cpumask(cpumask);
5203 
5204 	free_cpumask_var(cpumask);
5205 	return ret ? ret : count;
5206 }
5207 
5208 static struct device_attribute wq_sysfs_cpumask_attr =
5209 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5210 	       wq_unbound_cpumask_store);
5211 
5212 static int __init wq_sysfs_init(void)
5213 {
5214 	int err;
5215 
5216 	err = subsys_virtual_register(&wq_subsys, NULL);
5217 	if (err)
5218 		return err;
5219 
5220 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5221 }
5222 core_initcall(wq_sysfs_init);
5223 
5224 static void wq_device_release(struct device *dev)
5225 {
5226 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5227 
5228 	kfree(wq_dev);
5229 }
5230 
5231 /**
5232  * workqueue_sysfs_register - make a workqueue visible in sysfs
5233  * @wq: the workqueue to register
5234  *
5235  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5236  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5237  * which is the preferred method.
5238  *
5239  * Workqueue user should use this function directly iff it wants to apply
5240  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5241  * apply_workqueue_attrs() may race against userland updating the
5242  * attributes.
5243  *
5244  * Return: 0 on success, -errno on failure.
5245  */
5246 int workqueue_sysfs_register(struct workqueue_struct *wq)
5247 {
5248 	struct wq_device *wq_dev;
5249 	int ret;
5250 
5251 	/*
5252 	 * Adjusting max_active or creating new pwqs by applying
5253 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5254 	 * workqueues.
5255 	 */
5256 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5257 		return -EINVAL;
5258 
5259 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5260 	if (!wq_dev)
5261 		return -ENOMEM;
5262 
5263 	wq_dev->wq = wq;
5264 	wq_dev->dev.bus = &wq_subsys;
5265 	wq_dev->dev.release = wq_device_release;
5266 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5267 
5268 	/*
5269 	 * unbound_attrs are created separately.  Suppress uevent until
5270 	 * everything is ready.
5271 	 */
5272 	dev_set_uevent_suppress(&wq_dev->dev, true);
5273 
5274 	ret = device_register(&wq_dev->dev);
5275 	if (ret) {
5276 		kfree(wq_dev);
5277 		wq->wq_dev = NULL;
5278 		return ret;
5279 	}
5280 
5281 	if (wq->flags & WQ_UNBOUND) {
5282 		struct device_attribute *attr;
5283 
5284 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5285 			ret = device_create_file(&wq_dev->dev, attr);
5286 			if (ret) {
5287 				device_unregister(&wq_dev->dev);
5288 				wq->wq_dev = NULL;
5289 				return ret;
5290 			}
5291 		}
5292 	}
5293 
5294 	dev_set_uevent_suppress(&wq_dev->dev, false);
5295 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5296 	return 0;
5297 }
5298 
5299 /**
5300  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5301  * @wq: the workqueue to unregister
5302  *
5303  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5304  */
5305 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5306 {
5307 	struct wq_device *wq_dev = wq->wq_dev;
5308 
5309 	if (!wq->wq_dev)
5310 		return;
5311 
5312 	wq->wq_dev = NULL;
5313 	device_unregister(&wq_dev->dev);
5314 }
5315 #else	/* CONFIG_SYSFS */
5316 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5317 #endif	/* CONFIG_SYSFS */
5318 
5319 /*
5320  * Workqueue watchdog.
5321  *
5322  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5323  * flush dependency, a concurrency managed work item which stays RUNNING
5324  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5325  * usual warning mechanisms don't trigger and internal workqueue state is
5326  * largely opaque.
5327  *
5328  * Workqueue watchdog monitors all worker pools periodically and dumps
5329  * state if some pools failed to make forward progress for a while where
5330  * forward progress is defined as the first item on ->worklist changing.
5331  *
5332  * This mechanism is controlled through the kernel parameter
5333  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5334  * corresponding sysfs parameter file.
5335  */
5336 #ifdef CONFIG_WQ_WATCHDOG
5337 
5338 static void wq_watchdog_timer_fn(unsigned long data);
5339 
5340 static unsigned long wq_watchdog_thresh = 30;
5341 static struct timer_list wq_watchdog_timer =
5342 	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5343 
5344 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5345 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5346 
5347 static void wq_watchdog_reset_touched(void)
5348 {
5349 	int cpu;
5350 
5351 	wq_watchdog_touched = jiffies;
5352 	for_each_possible_cpu(cpu)
5353 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5354 }
5355 
5356 static void wq_watchdog_timer_fn(unsigned long data)
5357 {
5358 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5359 	bool lockup_detected = false;
5360 	struct worker_pool *pool;
5361 	int pi;
5362 
5363 	if (!thresh)
5364 		return;
5365 
5366 	rcu_read_lock();
5367 
5368 	for_each_pool(pool, pi) {
5369 		unsigned long pool_ts, touched, ts;
5370 
5371 		if (list_empty(&pool->worklist))
5372 			continue;
5373 
5374 		/* get the latest of pool and touched timestamps */
5375 		pool_ts = READ_ONCE(pool->watchdog_ts);
5376 		touched = READ_ONCE(wq_watchdog_touched);
5377 
5378 		if (time_after(pool_ts, touched))
5379 			ts = pool_ts;
5380 		else
5381 			ts = touched;
5382 
5383 		if (pool->cpu >= 0) {
5384 			unsigned long cpu_touched =
5385 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5386 						  pool->cpu));
5387 			if (time_after(cpu_touched, ts))
5388 				ts = cpu_touched;
5389 		}
5390 
5391 		/* did we stall? */
5392 		if (time_after(jiffies, ts + thresh)) {
5393 			lockup_detected = true;
5394 			pr_emerg("BUG: workqueue lockup - pool");
5395 			pr_cont_pool_info(pool);
5396 			pr_cont(" stuck for %us!\n",
5397 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5398 		}
5399 	}
5400 
5401 	rcu_read_unlock();
5402 
5403 	if (lockup_detected)
5404 		show_workqueue_state();
5405 
5406 	wq_watchdog_reset_touched();
5407 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5408 }
5409 
5410 void wq_watchdog_touch(int cpu)
5411 {
5412 	if (cpu >= 0)
5413 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5414 	else
5415 		wq_watchdog_touched = jiffies;
5416 }
5417 
5418 static void wq_watchdog_set_thresh(unsigned long thresh)
5419 {
5420 	wq_watchdog_thresh = 0;
5421 	del_timer_sync(&wq_watchdog_timer);
5422 
5423 	if (thresh) {
5424 		wq_watchdog_thresh = thresh;
5425 		wq_watchdog_reset_touched();
5426 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5427 	}
5428 }
5429 
5430 static int wq_watchdog_param_set_thresh(const char *val,
5431 					const struct kernel_param *kp)
5432 {
5433 	unsigned long thresh;
5434 	int ret;
5435 
5436 	ret = kstrtoul(val, 0, &thresh);
5437 	if (ret)
5438 		return ret;
5439 
5440 	if (system_wq)
5441 		wq_watchdog_set_thresh(thresh);
5442 	else
5443 		wq_watchdog_thresh = thresh;
5444 
5445 	return 0;
5446 }
5447 
5448 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5449 	.set	= wq_watchdog_param_set_thresh,
5450 	.get	= param_get_ulong,
5451 };
5452 
5453 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5454 		0644);
5455 
5456 static void wq_watchdog_init(void)
5457 {
5458 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5459 }
5460 
5461 #else	/* CONFIG_WQ_WATCHDOG */
5462 
5463 static inline void wq_watchdog_init(void) { }
5464 
5465 #endif	/* CONFIG_WQ_WATCHDOG */
5466 
5467 static void __init wq_numa_init(void)
5468 {
5469 	cpumask_var_t *tbl;
5470 	int node, cpu;
5471 
5472 	if (num_possible_nodes() <= 1)
5473 		return;
5474 
5475 	if (wq_disable_numa) {
5476 		pr_info("workqueue: NUMA affinity support disabled\n");
5477 		return;
5478 	}
5479 
5480 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5481 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5482 
5483 	/*
5484 	 * We want masks of possible CPUs of each node which isn't readily
5485 	 * available.  Build one from cpu_to_node() which should have been
5486 	 * fully initialized by now.
5487 	 */
5488 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5489 	BUG_ON(!tbl);
5490 
5491 	for_each_node(node)
5492 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5493 				node_online(node) ? node : NUMA_NO_NODE));
5494 
5495 	for_each_possible_cpu(cpu) {
5496 		node = cpu_to_node(cpu);
5497 		if (WARN_ON(node == NUMA_NO_NODE)) {
5498 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5499 			/* happens iff arch is bonkers, let's just proceed */
5500 			return;
5501 		}
5502 		cpumask_set_cpu(cpu, tbl[node]);
5503 	}
5504 
5505 	wq_numa_possible_cpumask = tbl;
5506 	wq_numa_enabled = true;
5507 }
5508 
5509 /**
5510  * workqueue_init_early - early init for workqueue subsystem
5511  *
5512  * This is the first half of two-staged workqueue subsystem initialization
5513  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5514  * idr are up.  It sets up all the data structures and system workqueues
5515  * and allows early boot code to create workqueues and queue/cancel work
5516  * items.  Actual work item execution starts only after kthreads can be
5517  * created and scheduled right before early initcalls.
5518  */
5519 int __init workqueue_init_early(void)
5520 {
5521 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5522 	int i, cpu;
5523 
5524 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5525 
5526 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5527 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5528 
5529 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5530 
5531 	/* initialize CPU pools */
5532 	for_each_possible_cpu(cpu) {
5533 		struct worker_pool *pool;
5534 
5535 		i = 0;
5536 		for_each_cpu_worker_pool(pool, cpu) {
5537 			BUG_ON(init_worker_pool(pool));
5538 			pool->cpu = cpu;
5539 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5540 			pool->attrs->nice = std_nice[i++];
5541 			pool->node = cpu_to_node(cpu);
5542 
5543 			/* alloc pool ID */
5544 			mutex_lock(&wq_pool_mutex);
5545 			BUG_ON(worker_pool_assign_id(pool));
5546 			mutex_unlock(&wq_pool_mutex);
5547 		}
5548 	}
5549 
5550 	/* create default unbound and ordered wq attrs */
5551 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5552 		struct workqueue_attrs *attrs;
5553 
5554 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5555 		attrs->nice = std_nice[i];
5556 		unbound_std_wq_attrs[i] = attrs;
5557 
5558 		/*
5559 		 * An ordered wq should have only one pwq as ordering is
5560 		 * guaranteed by max_active which is enforced by pwqs.
5561 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5562 		 */
5563 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5564 		attrs->nice = std_nice[i];
5565 		attrs->no_numa = true;
5566 		ordered_wq_attrs[i] = attrs;
5567 	}
5568 
5569 	system_wq = alloc_workqueue("events", 0, 0);
5570 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5571 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5572 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5573 					    WQ_UNBOUND_MAX_ACTIVE);
5574 	system_freezable_wq = alloc_workqueue("events_freezable",
5575 					      WQ_FREEZABLE, 0);
5576 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5577 					      WQ_POWER_EFFICIENT, 0);
5578 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5579 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5580 					      0);
5581 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5582 	       !system_unbound_wq || !system_freezable_wq ||
5583 	       !system_power_efficient_wq ||
5584 	       !system_freezable_power_efficient_wq);
5585 
5586 	return 0;
5587 }
5588 
5589 /**
5590  * workqueue_init - bring workqueue subsystem fully online
5591  *
5592  * This is the latter half of two-staged workqueue subsystem initialization
5593  * and invoked as soon as kthreads can be created and scheduled.
5594  * Workqueues have been created and work items queued on them, but there
5595  * are no kworkers executing the work items yet.  Populate the worker pools
5596  * with the initial workers and enable future kworker creations.
5597  */
5598 int __init workqueue_init(void)
5599 {
5600 	struct workqueue_struct *wq;
5601 	struct worker_pool *pool;
5602 	int cpu, bkt;
5603 
5604 	/*
5605 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5606 	 * CPU to node mapping may not be available that early on some
5607 	 * archs such as power and arm64.  As per-cpu pools created
5608 	 * previously could be missing node hint and unbound pools NUMA
5609 	 * affinity, fix them up.
5610 	 */
5611 	wq_numa_init();
5612 
5613 	mutex_lock(&wq_pool_mutex);
5614 
5615 	for_each_possible_cpu(cpu) {
5616 		for_each_cpu_worker_pool(pool, cpu) {
5617 			pool->node = cpu_to_node(cpu);
5618 		}
5619 	}
5620 
5621 	list_for_each_entry(wq, &workqueues, list)
5622 		wq_update_unbound_numa(wq, smp_processor_id(), true);
5623 
5624 	mutex_unlock(&wq_pool_mutex);
5625 
5626 	/* create the initial workers */
5627 	for_each_online_cpu(cpu) {
5628 		for_each_cpu_worker_pool(pool, cpu) {
5629 			pool->flags &= ~POOL_DISASSOCIATED;
5630 			BUG_ON(!create_worker(pool));
5631 		}
5632 	}
5633 
5634 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5635 		BUG_ON(!create_worker(pool));
5636 
5637 	wq_online = true;
5638 	wq_watchdog_init();
5639 
5640 	return 0;
5641 }
5642