1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/sched/debug.h> 53 #include <linux/nmi.h> 54 #include <linux/kvm_para.h> 55 #include <linux/delay.h> 56 57 #include "workqueue_internal.h" 58 59 enum { 60 /* 61 * worker_pool flags 62 * 63 * A bound pool is either associated or disassociated with its CPU. 64 * While associated (!DISASSOCIATED), all workers are bound to the 65 * CPU and none has %WORKER_UNBOUND set and concurrency management 66 * is in effect. 67 * 68 * While DISASSOCIATED, the cpu may be offline and all workers have 69 * %WORKER_UNBOUND set and concurrency management disabled, and may 70 * be executing on any CPU. The pool behaves as an unbound one. 71 * 72 * Note that DISASSOCIATED should be flipped only while holding 73 * wq_pool_attach_mutex to avoid changing binding state while 74 * worker_attach_to_pool() is in progress. 75 */ 76 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 77 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 78 79 /* worker flags */ 80 WORKER_DIE = 1 << 1, /* die die die */ 81 WORKER_IDLE = 1 << 2, /* is idle */ 82 WORKER_PREP = 1 << 3, /* preparing to run works */ 83 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 84 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 85 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 86 87 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 88 WORKER_UNBOUND | WORKER_REBOUND, 89 90 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 91 92 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 93 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 94 95 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 96 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 97 98 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 99 /* call for help after 10ms 100 (min two ticks) */ 101 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 102 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 103 104 /* 105 * Rescue workers are used only on emergencies and shared by 106 * all cpus. Give MIN_NICE. 107 */ 108 RESCUER_NICE_LEVEL = MIN_NICE, 109 HIGHPRI_NICE_LEVEL = MIN_NICE, 110 111 WQ_NAME_LEN = 24, 112 }; 113 114 /* 115 * Structure fields follow one of the following exclusion rules. 116 * 117 * I: Modifiable by initialization/destruction paths and read-only for 118 * everyone else. 119 * 120 * P: Preemption protected. Disabling preemption is enough and should 121 * only be modified and accessed from the local cpu. 122 * 123 * L: pool->lock protected. Access with pool->lock held. 124 * 125 * X: During normal operation, modification requires pool->lock and should 126 * be done only from local cpu. Either disabling preemption on local 127 * cpu or grabbing pool->lock is enough for read access. If 128 * POOL_DISASSOCIATED is set, it's identical to L. 129 * 130 * K: Only modified by worker while holding pool->lock. Can be safely read by 131 * self, while holding pool->lock or from IRQ context if %current is the 132 * kworker. 133 * 134 * S: Only modified by worker self. 135 * 136 * A: wq_pool_attach_mutex protected. 137 * 138 * PL: wq_pool_mutex protected. 139 * 140 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 141 * 142 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 143 * 144 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 145 * RCU for reads. 146 * 147 * WQ: wq->mutex protected. 148 * 149 * WR: wq->mutex protected for writes. RCU protected for reads. 150 * 151 * MD: wq_mayday_lock protected. 152 * 153 * WD: Used internally by the watchdog. 154 */ 155 156 /* struct worker is defined in workqueue_internal.h */ 157 158 struct worker_pool { 159 raw_spinlock_t lock; /* the pool lock */ 160 int cpu; /* I: the associated cpu */ 161 int node; /* I: the associated node ID */ 162 int id; /* I: pool ID */ 163 unsigned int flags; /* X: flags */ 164 165 unsigned long watchdog_ts; /* L: watchdog timestamp */ 166 bool cpu_stall; /* WD: stalled cpu bound pool */ 167 168 /* 169 * The counter is incremented in a process context on the associated CPU 170 * w/ preemption disabled, and decremented or reset in the same context 171 * but w/ pool->lock held. The readers grab pool->lock and are 172 * guaranteed to see if the counter reached zero. 173 */ 174 int nr_running; 175 176 struct list_head worklist; /* L: list of pending works */ 177 178 int nr_workers; /* L: total number of workers */ 179 int nr_idle; /* L: currently idle workers */ 180 181 struct list_head idle_list; /* L: list of idle workers */ 182 struct timer_list idle_timer; /* L: worker idle timeout */ 183 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 184 185 struct timer_list mayday_timer; /* L: SOS timer for workers */ 186 187 /* a workers is either on busy_hash or idle_list, or the manager */ 188 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 189 /* L: hash of busy workers */ 190 191 struct worker *manager; /* L: purely informational */ 192 struct list_head workers; /* A: attached workers */ 193 struct list_head dying_workers; /* A: workers about to die */ 194 struct completion *detach_completion; /* all workers detached */ 195 196 struct ida worker_ida; /* worker IDs for task name */ 197 198 struct workqueue_attrs *attrs; /* I: worker attributes */ 199 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 200 int refcnt; /* PL: refcnt for unbound pools */ 201 202 /* 203 * Destruction of pool is RCU protected to allow dereferences 204 * from get_work_pool(). 205 */ 206 struct rcu_head rcu; 207 }; 208 209 /* 210 * Per-pool_workqueue statistics. These can be monitored using 211 * tools/workqueue/wq_monitor.py. 212 */ 213 enum pool_workqueue_stats { 214 PWQ_STAT_STARTED, /* work items started execution */ 215 PWQ_STAT_COMPLETED, /* work items completed execution */ 216 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 217 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 218 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 219 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 220 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 221 222 PWQ_NR_STATS, 223 }; 224 225 /* 226 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 227 * of work_struct->data are used for flags and the remaining high bits 228 * point to the pwq; thus, pwqs need to be aligned at two's power of the 229 * number of flag bits. 230 */ 231 struct pool_workqueue { 232 struct worker_pool *pool; /* I: the associated pool */ 233 struct workqueue_struct *wq; /* I: the owning workqueue */ 234 int work_color; /* L: current color */ 235 int flush_color; /* L: flushing color */ 236 int refcnt; /* L: reference count */ 237 int nr_in_flight[WORK_NR_COLORS]; 238 /* L: nr of in_flight works */ 239 240 /* 241 * nr_active management and WORK_STRUCT_INACTIVE: 242 * 243 * When pwq->nr_active >= max_active, new work item is queued to 244 * pwq->inactive_works instead of pool->worklist and marked with 245 * WORK_STRUCT_INACTIVE. 246 * 247 * All work items marked with WORK_STRUCT_INACTIVE do not participate 248 * in pwq->nr_active and all work items in pwq->inactive_works are 249 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE 250 * work items are in pwq->inactive_works. Some of them are ready to 251 * run in pool->worklist or worker->scheduled. Those work itmes are 252 * only struct wq_barrier which is used for flush_work() and should 253 * not participate in pwq->nr_active. For non-barrier work item, it 254 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 255 */ 256 int nr_active; /* L: nr of active works */ 257 int max_active; /* L: max active works */ 258 struct list_head inactive_works; /* L: inactive works */ 259 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 260 struct list_head mayday_node; /* MD: node on wq->maydays */ 261 262 u64 stats[PWQ_NR_STATS]; 263 264 /* 265 * Release of unbound pwq is punted to system_wq. See put_pwq() 266 * and pwq_unbound_release_workfn() for details. pool_workqueue 267 * itself is also RCU protected so that the first pwq can be 268 * determined without grabbing wq->mutex. 269 */ 270 struct work_struct unbound_release_work; 271 struct rcu_head rcu; 272 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 273 274 /* 275 * Structure used to wait for workqueue flush. 276 */ 277 struct wq_flusher { 278 struct list_head list; /* WQ: list of flushers */ 279 int flush_color; /* WQ: flush color waiting for */ 280 struct completion done; /* flush completion */ 281 }; 282 283 struct wq_device; 284 285 /* 286 * The externally visible workqueue. It relays the issued work items to 287 * the appropriate worker_pool through its pool_workqueues. 288 */ 289 struct workqueue_struct { 290 struct list_head pwqs; /* WR: all pwqs of this wq */ 291 struct list_head list; /* PR: list of all workqueues */ 292 293 struct mutex mutex; /* protects this wq */ 294 int work_color; /* WQ: current work color */ 295 int flush_color; /* WQ: current flush color */ 296 atomic_t nr_pwqs_to_flush; /* flush in progress */ 297 struct wq_flusher *first_flusher; /* WQ: first flusher */ 298 struct list_head flusher_queue; /* WQ: flush waiters */ 299 struct list_head flusher_overflow; /* WQ: flush overflow list */ 300 301 struct list_head maydays; /* MD: pwqs requesting rescue */ 302 struct worker *rescuer; /* MD: rescue worker */ 303 304 int nr_drainers; /* WQ: drain in progress */ 305 int saved_max_active; /* WQ: saved pwq max_active */ 306 307 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 308 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 309 310 #ifdef CONFIG_SYSFS 311 struct wq_device *wq_dev; /* I: for sysfs interface */ 312 #endif 313 #ifdef CONFIG_LOCKDEP 314 char *lock_name; 315 struct lock_class_key key; 316 struct lockdep_map lockdep_map; 317 #endif 318 char name[WQ_NAME_LEN]; /* I: workqueue name */ 319 320 /* 321 * Destruction of workqueue_struct is RCU protected to allow walking 322 * the workqueues list without grabbing wq_pool_mutex. 323 * This is used to dump all workqueues from sysrq. 324 */ 325 struct rcu_head rcu; 326 327 /* hot fields used during command issue, aligned to cacheline */ 328 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 329 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 330 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 331 }; 332 333 static struct kmem_cache *pwq_cache; 334 335 static cpumask_var_t *wq_numa_possible_cpumask; 336 /* possible CPUs of each node */ 337 338 /* 339 * Per-cpu work items which run for longer than the following threshold are 340 * automatically considered CPU intensive and excluded from concurrency 341 * management to prevent them from noticeably delaying other per-cpu work items. 342 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 343 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 344 */ 345 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 346 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 347 348 static bool wq_disable_numa; 349 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 350 351 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 352 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 353 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 354 355 static bool wq_online; /* can kworkers be created yet? */ 356 357 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 358 359 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 360 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 361 362 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 363 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 364 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 365 /* wait for manager to go away */ 366 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 367 368 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 369 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 370 371 /* PL&A: allowable cpus for unbound wqs and work items */ 372 static cpumask_var_t wq_unbound_cpumask; 373 374 /* CPU where unbound work was last round robin scheduled from this CPU */ 375 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 376 377 /* 378 * Local execution of unbound work items is no longer guaranteed. The 379 * following always forces round-robin CPU selection on unbound work items 380 * to uncover usages which depend on it. 381 */ 382 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 383 static bool wq_debug_force_rr_cpu = true; 384 #else 385 static bool wq_debug_force_rr_cpu = false; 386 #endif 387 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 388 389 /* the per-cpu worker pools */ 390 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 391 392 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 393 394 /* PL: hash of all unbound pools keyed by pool->attrs */ 395 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 396 397 /* I: attributes used when instantiating standard unbound pools on demand */ 398 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 399 400 /* I: attributes used when instantiating ordered pools on demand */ 401 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 402 403 struct workqueue_struct *system_wq __read_mostly; 404 EXPORT_SYMBOL(system_wq); 405 struct workqueue_struct *system_highpri_wq __read_mostly; 406 EXPORT_SYMBOL_GPL(system_highpri_wq); 407 struct workqueue_struct *system_long_wq __read_mostly; 408 EXPORT_SYMBOL_GPL(system_long_wq); 409 struct workqueue_struct *system_unbound_wq __read_mostly; 410 EXPORT_SYMBOL_GPL(system_unbound_wq); 411 struct workqueue_struct *system_freezable_wq __read_mostly; 412 EXPORT_SYMBOL_GPL(system_freezable_wq); 413 struct workqueue_struct *system_power_efficient_wq __read_mostly; 414 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 415 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 416 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 417 418 static int worker_thread(void *__worker); 419 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 420 static void show_pwq(struct pool_workqueue *pwq); 421 static void show_one_worker_pool(struct worker_pool *pool); 422 423 #define CREATE_TRACE_POINTS 424 #include <trace/events/workqueue.h> 425 426 #define assert_rcu_or_pool_mutex() \ 427 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 428 !lockdep_is_held(&wq_pool_mutex), \ 429 "RCU or wq_pool_mutex should be held") 430 431 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 432 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 433 !lockdep_is_held(&wq->mutex) && \ 434 !lockdep_is_held(&wq_pool_mutex), \ 435 "RCU, wq->mutex or wq_pool_mutex should be held") 436 437 #define for_each_cpu_worker_pool(pool, cpu) \ 438 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 439 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 440 (pool)++) 441 442 /** 443 * for_each_pool - iterate through all worker_pools in the system 444 * @pool: iteration cursor 445 * @pi: integer used for iteration 446 * 447 * This must be called either with wq_pool_mutex held or RCU read 448 * locked. If the pool needs to be used beyond the locking in effect, the 449 * caller is responsible for guaranteeing that the pool stays online. 450 * 451 * The if/else clause exists only for the lockdep assertion and can be 452 * ignored. 453 */ 454 #define for_each_pool(pool, pi) \ 455 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 456 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 457 else 458 459 /** 460 * for_each_pool_worker - iterate through all workers of a worker_pool 461 * @worker: iteration cursor 462 * @pool: worker_pool to iterate workers of 463 * 464 * This must be called with wq_pool_attach_mutex. 465 * 466 * The if/else clause exists only for the lockdep assertion and can be 467 * ignored. 468 */ 469 #define for_each_pool_worker(worker, pool) \ 470 list_for_each_entry((worker), &(pool)->workers, node) \ 471 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 472 else 473 474 /** 475 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 476 * @pwq: iteration cursor 477 * @wq: the target workqueue 478 * 479 * This must be called either with wq->mutex held or RCU read locked. 480 * If the pwq needs to be used beyond the locking in effect, the caller is 481 * responsible for guaranteeing that the pwq stays online. 482 * 483 * The if/else clause exists only for the lockdep assertion and can be 484 * ignored. 485 */ 486 #define for_each_pwq(pwq, wq) \ 487 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 488 lockdep_is_held(&(wq->mutex))) 489 490 #ifdef CONFIG_DEBUG_OBJECTS_WORK 491 492 static const struct debug_obj_descr work_debug_descr; 493 494 static void *work_debug_hint(void *addr) 495 { 496 return ((struct work_struct *) addr)->func; 497 } 498 499 static bool work_is_static_object(void *addr) 500 { 501 struct work_struct *work = addr; 502 503 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 504 } 505 506 /* 507 * fixup_init is called when: 508 * - an active object is initialized 509 */ 510 static bool work_fixup_init(void *addr, enum debug_obj_state state) 511 { 512 struct work_struct *work = addr; 513 514 switch (state) { 515 case ODEBUG_STATE_ACTIVE: 516 cancel_work_sync(work); 517 debug_object_init(work, &work_debug_descr); 518 return true; 519 default: 520 return false; 521 } 522 } 523 524 /* 525 * fixup_free is called when: 526 * - an active object is freed 527 */ 528 static bool work_fixup_free(void *addr, enum debug_obj_state state) 529 { 530 struct work_struct *work = addr; 531 532 switch (state) { 533 case ODEBUG_STATE_ACTIVE: 534 cancel_work_sync(work); 535 debug_object_free(work, &work_debug_descr); 536 return true; 537 default: 538 return false; 539 } 540 } 541 542 static const struct debug_obj_descr work_debug_descr = { 543 .name = "work_struct", 544 .debug_hint = work_debug_hint, 545 .is_static_object = work_is_static_object, 546 .fixup_init = work_fixup_init, 547 .fixup_free = work_fixup_free, 548 }; 549 550 static inline void debug_work_activate(struct work_struct *work) 551 { 552 debug_object_activate(work, &work_debug_descr); 553 } 554 555 static inline void debug_work_deactivate(struct work_struct *work) 556 { 557 debug_object_deactivate(work, &work_debug_descr); 558 } 559 560 void __init_work(struct work_struct *work, int onstack) 561 { 562 if (onstack) 563 debug_object_init_on_stack(work, &work_debug_descr); 564 else 565 debug_object_init(work, &work_debug_descr); 566 } 567 EXPORT_SYMBOL_GPL(__init_work); 568 569 void destroy_work_on_stack(struct work_struct *work) 570 { 571 debug_object_free(work, &work_debug_descr); 572 } 573 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 574 575 void destroy_delayed_work_on_stack(struct delayed_work *work) 576 { 577 destroy_timer_on_stack(&work->timer); 578 debug_object_free(&work->work, &work_debug_descr); 579 } 580 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 581 582 #else 583 static inline void debug_work_activate(struct work_struct *work) { } 584 static inline void debug_work_deactivate(struct work_struct *work) { } 585 #endif 586 587 /** 588 * worker_pool_assign_id - allocate ID and assign it to @pool 589 * @pool: the pool pointer of interest 590 * 591 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 592 * successfully, -errno on failure. 593 */ 594 static int worker_pool_assign_id(struct worker_pool *pool) 595 { 596 int ret; 597 598 lockdep_assert_held(&wq_pool_mutex); 599 600 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 601 GFP_KERNEL); 602 if (ret >= 0) { 603 pool->id = ret; 604 return 0; 605 } 606 return ret; 607 } 608 609 /** 610 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 611 * @wq: the target workqueue 612 * @node: the node ID 613 * 614 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 615 * read locked. 616 * If the pwq needs to be used beyond the locking in effect, the caller is 617 * responsible for guaranteeing that the pwq stays online. 618 * 619 * Return: The unbound pool_workqueue for @node. 620 */ 621 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 622 int node) 623 { 624 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 625 626 /* 627 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 628 * delayed item is pending. The plan is to keep CPU -> NODE 629 * mapping valid and stable across CPU on/offlines. Once that 630 * happens, this workaround can be removed. 631 */ 632 if (unlikely(node == NUMA_NO_NODE)) 633 return wq->dfl_pwq; 634 635 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 636 } 637 638 static unsigned int work_color_to_flags(int color) 639 { 640 return color << WORK_STRUCT_COLOR_SHIFT; 641 } 642 643 static int get_work_color(unsigned long work_data) 644 { 645 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 646 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 647 } 648 649 static int work_next_color(int color) 650 { 651 return (color + 1) % WORK_NR_COLORS; 652 } 653 654 /* 655 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 656 * contain the pointer to the queued pwq. Once execution starts, the flag 657 * is cleared and the high bits contain OFFQ flags and pool ID. 658 * 659 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 660 * and clear_work_data() can be used to set the pwq, pool or clear 661 * work->data. These functions should only be called while the work is 662 * owned - ie. while the PENDING bit is set. 663 * 664 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 665 * corresponding to a work. Pool is available once the work has been 666 * queued anywhere after initialization until it is sync canceled. pwq is 667 * available only while the work item is queued. 668 * 669 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 670 * canceled. While being canceled, a work item may have its PENDING set 671 * but stay off timer and worklist for arbitrarily long and nobody should 672 * try to steal the PENDING bit. 673 */ 674 static inline void set_work_data(struct work_struct *work, unsigned long data, 675 unsigned long flags) 676 { 677 WARN_ON_ONCE(!work_pending(work)); 678 atomic_long_set(&work->data, data | flags | work_static(work)); 679 } 680 681 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 682 unsigned long extra_flags) 683 { 684 set_work_data(work, (unsigned long)pwq, 685 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 686 } 687 688 static void set_work_pool_and_keep_pending(struct work_struct *work, 689 int pool_id) 690 { 691 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 692 WORK_STRUCT_PENDING); 693 } 694 695 static void set_work_pool_and_clear_pending(struct work_struct *work, 696 int pool_id) 697 { 698 /* 699 * The following wmb is paired with the implied mb in 700 * test_and_set_bit(PENDING) and ensures all updates to @work made 701 * here are visible to and precede any updates by the next PENDING 702 * owner. 703 */ 704 smp_wmb(); 705 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 706 /* 707 * The following mb guarantees that previous clear of a PENDING bit 708 * will not be reordered with any speculative LOADS or STORES from 709 * work->current_func, which is executed afterwards. This possible 710 * reordering can lead to a missed execution on attempt to queue 711 * the same @work. E.g. consider this case: 712 * 713 * CPU#0 CPU#1 714 * ---------------------------- -------------------------------- 715 * 716 * 1 STORE event_indicated 717 * 2 queue_work_on() { 718 * 3 test_and_set_bit(PENDING) 719 * 4 } set_..._and_clear_pending() { 720 * 5 set_work_data() # clear bit 721 * 6 smp_mb() 722 * 7 work->current_func() { 723 * 8 LOAD event_indicated 724 * } 725 * 726 * Without an explicit full barrier speculative LOAD on line 8 can 727 * be executed before CPU#0 does STORE on line 1. If that happens, 728 * CPU#0 observes the PENDING bit is still set and new execution of 729 * a @work is not queued in a hope, that CPU#1 will eventually 730 * finish the queued @work. Meanwhile CPU#1 does not see 731 * event_indicated is set, because speculative LOAD was executed 732 * before actual STORE. 733 */ 734 smp_mb(); 735 } 736 737 static void clear_work_data(struct work_struct *work) 738 { 739 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 740 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 741 } 742 743 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 744 { 745 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK); 746 } 747 748 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 749 { 750 unsigned long data = atomic_long_read(&work->data); 751 752 if (data & WORK_STRUCT_PWQ) 753 return work_struct_pwq(data); 754 else 755 return NULL; 756 } 757 758 /** 759 * get_work_pool - return the worker_pool a given work was associated with 760 * @work: the work item of interest 761 * 762 * Pools are created and destroyed under wq_pool_mutex, and allows read 763 * access under RCU read lock. As such, this function should be 764 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 765 * 766 * All fields of the returned pool are accessible as long as the above 767 * mentioned locking is in effect. If the returned pool needs to be used 768 * beyond the critical section, the caller is responsible for ensuring the 769 * returned pool is and stays online. 770 * 771 * Return: The worker_pool @work was last associated with. %NULL if none. 772 */ 773 static struct worker_pool *get_work_pool(struct work_struct *work) 774 { 775 unsigned long data = atomic_long_read(&work->data); 776 int pool_id; 777 778 assert_rcu_or_pool_mutex(); 779 780 if (data & WORK_STRUCT_PWQ) 781 return work_struct_pwq(data)->pool; 782 783 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 784 if (pool_id == WORK_OFFQ_POOL_NONE) 785 return NULL; 786 787 return idr_find(&worker_pool_idr, pool_id); 788 } 789 790 /** 791 * get_work_pool_id - return the worker pool ID a given work is associated with 792 * @work: the work item of interest 793 * 794 * Return: The worker_pool ID @work was last associated with. 795 * %WORK_OFFQ_POOL_NONE if none. 796 */ 797 static int get_work_pool_id(struct work_struct *work) 798 { 799 unsigned long data = atomic_long_read(&work->data); 800 801 if (data & WORK_STRUCT_PWQ) 802 return work_struct_pwq(data)->pool->id; 803 804 return data >> WORK_OFFQ_POOL_SHIFT; 805 } 806 807 static void mark_work_canceling(struct work_struct *work) 808 { 809 unsigned long pool_id = get_work_pool_id(work); 810 811 pool_id <<= WORK_OFFQ_POOL_SHIFT; 812 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 813 } 814 815 static bool work_is_canceling(struct work_struct *work) 816 { 817 unsigned long data = atomic_long_read(&work->data); 818 819 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 820 } 821 822 /* 823 * Policy functions. These define the policies on how the global worker 824 * pools are managed. Unless noted otherwise, these functions assume that 825 * they're being called with pool->lock held. 826 */ 827 828 static bool __need_more_worker(struct worker_pool *pool) 829 { 830 return !pool->nr_running; 831 } 832 833 /* 834 * Need to wake up a worker? Called from anything but currently 835 * running workers. 836 * 837 * Note that, because unbound workers never contribute to nr_running, this 838 * function will always return %true for unbound pools as long as the 839 * worklist isn't empty. 840 */ 841 static bool need_more_worker(struct worker_pool *pool) 842 { 843 return !list_empty(&pool->worklist) && __need_more_worker(pool); 844 } 845 846 /* Can I start working? Called from busy but !running workers. */ 847 static bool may_start_working(struct worker_pool *pool) 848 { 849 return pool->nr_idle; 850 } 851 852 /* Do I need to keep working? Called from currently running workers. */ 853 static bool keep_working(struct worker_pool *pool) 854 { 855 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 856 } 857 858 /* Do we need a new worker? Called from manager. */ 859 static bool need_to_create_worker(struct worker_pool *pool) 860 { 861 return need_more_worker(pool) && !may_start_working(pool); 862 } 863 864 /* Do we have too many workers and should some go away? */ 865 static bool too_many_workers(struct worker_pool *pool) 866 { 867 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 868 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 869 int nr_busy = pool->nr_workers - nr_idle; 870 871 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 872 } 873 874 /* 875 * Wake up functions. 876 */ 877 878 /* Return the first idle worker. Called with pool->lock held. */ 879 static struct worker *first_idle_worker(struct worker_pool *pool) 880 { 881 if (unlikely(list_empty(&pool->idle_list))) 882 return NULL; 883 884 return list_first_entry(&pool->idle_list, struct worker, entry); 885 } 886 887 /** 888 * wake_up_worker - wake up an idle worker 889 * @pool: worker pool to wake worker from 890 * 891 * Wake up the first idle worker of @pool. 892 * 893 * CONTEXT: 894 * raw_spin_lock_irq(pool->lock). 895 */ 896 static void wake_up_worker(struct worker_pool *pool) 897 { 898 struct worker *worker = first_idle_worker(pool); 899 900 if (likely(worker)) 901 wake_up_process(worker->task); 902 } 903 904 /** 905 * worker_set_flags - set worker flags and adjust nr_running accordingly 906 * @worker: self 907 * @flags: flags to set 908 * 909 * Set @flags in @worker->flags and adjust nr_running accordingly. 910 * 911 * CONTEXT: 912 * raw_spin_lock_irq(pool->lock) 913 */ 914 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 915 { 916 struct worker_pool *pool = worker->pool; 917 918 WARN_ON_ONCE(worker->task != current); 919 920 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 921 if ((flags & WORKER_NOT_RUNNING) && 922 !(worker->flags & WORKER_NOT_RUNNING)) { 923 pool->nr_running--; 924 } 925 926 worker->flags |= flags; 927 } 928 929 /** 930 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 931 * @worker: self 932 * @flags: flags to clear 933 * 934 * Clear @flags in @worker->flags and adjust nr_running accordingly. 935 * 936 * CONTEXT: 937 * raw_spin_lock_irq(pool->lock) 938 */ 939 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 940 { 941 struct worker_pool *pool = worker->pool; 942 unsigned int oflags = worker->flags; 943 944 WARN_ON_ONCE(worker->task != current); 945 946 worker->flags &= ~flags; 947 948 /* 949 * If transitioning out of NOT_RUNNING, increment nr_running. Note 950 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 951 * of multiple flags, not a single flag. 952 */ 953 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 954 if (!(worker->flags & WORKER_NOT_RUNNING)) 955 pool->nr_running++; 956 } 957 958 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 959 960 /* 961 * Concurrency-managed per-cpu work items that hog CPU for longer than 962 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 963 * which prevents them from stalling other concurrency-managed work items. If a 964 * work function keeps triggering this mechanism, it's likely that the work item 965 * should be using an unbound workqueue instead. 966 * 967 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 968 * and report them so that they can be examined and converted to use unbound 969 * workqueues as appropriate. To avoid flooding the console, each violating work 970 * function is tracked and reported with exponential backoff. 971 */ 972 #define WCI_MAX_ENTS 128 973 974 struct wci_ent { 975 work_func_t func; 976 atomic64_t cnt; 977 struct hlist_node hash_node; 978 }; 979 980 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 981 static int wci_nr_ents; 982 static DEFINE_RAW_SPINLOCK(wci_lock); 983 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 984 985 static struct wci_ent *wci_find_ent(work_func_t func) 986 { 987 struct wci_ent *ent; 988 989 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 990 (unsigned long)func) { 991 if (ent->func == func) 992 return ent; 993 } 994 return NULL; 995 } 996 997 static void wq_cpu_intensive_report(work_func_t func) 998 { 999 struct wci_ent *ent; 1000 1001 restart: 1002 ent = wci_find_ent(func); 1003 if (ent) { 1004 u64 cnt; 1005 1006 /* 1007 * Start reporting from the fourth time and back off 1008 * exponentially. 1009 */ 1010 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1011 if (cnt >= 4 && is_power_of_2(cnt)) 1012 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1013 ent->func, wq_cpu_intensive_thresh_us, 1014 atomic64_read(&ent->cnt)); 1015 return; 1016 } 1017 1018 /* 1019 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1020 * is exhausted, something went really wrong and we probably made enough 1021 * noise already. 1022 */ 1023 if (wci_nr_ents >= WCI_MAX_ENTS) 1024 return; 1025 1026 raw_spin_lock(&wci_lock); 1027 1028 if (wci_nr_ents >= WCI_MAX_ENTS) { 1029 raw_spin_unlock(&wci_lock); 1030 return; 1031 } 1032 1033 if (wci_find_ent(func)) { 1034 raw_spin_unlock(&wci_lock); 1035 goto restart; 1036 } 1037 1038 ent = &wci_ents[wci_nr_ents++]; 1039 ent->func = func; 1040 atomic64_set(&ent->cnt, 1); 1041 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1042 1043 raw_spin_unlock(&wci_lock); 1044 } 1045 1046 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1047 static void wq_cpu_intensive_report(work_func_t func) {} 1048 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1049 1050 /** 1051 * wq_worker_running - a worker is running again 1052 * @task: task waking up 1053 * 1054 * This function is called when a worker returns from schedule() 1055 */ 1056 void wq_worker_running(struct task_struct *task) 1057 { 1058 struct worker *worker = kthread_data(task); 1059 1060 if (!READ_ONCE(worker->sleeping)) 1061 return; 1062 1063 /* 1064 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1065 * and the nr_running increment below, we may ruin the nr_running reset 1066 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1067 * pool. Protect against such race. 1068 */ 1069 preempt_disable(); 1070 if (!(worker->flags & WORKER_NOT_RUNNING)) 1071 worker->pool->nr_running++; 1072 preempt_enable(); 1073 1074 /* 1075 * CPU intensive auto-detection cares about how long a work item hogged 1076 * CPU without sleeping. Reset the starting timestamp on wakeup. 1077 */ 1078 worker->current_at = worker->task->se.sum_exec_runtime; 1079 1080 WRITE_ONCE(worker->sleeping, 0); 1081 } 1082 1083 /** 1084 * wq_worker_sleeping - a worker is going to sleep 1085 * @task: task going to sleep 1086 * 1087 * This function is called from schedule() when a busy worker is 1088 * going to sleep. 1089 */ 1090 void wq_worker_sleeping(struct task_struct *task) 1091 { 1092 struct worker *worker = kthread_data(task); 1093 struct worker_pool *pool; 1094 1095 /* 1096 * Rescuers, which may not have all the fields set up like normal 1097 * workers, also reach here, let's not access anything before 1098 * checking NOT_RUNNING. 1099 */ 1100 if (worker->flags & WORKER_NOT_RUNNING) 1101 return; 1102 1103 pool = worker->pool; 1104 1105 /* Return if preempted before wq_worker_running() was reached */ 1106 if (READ_ONCE(worker->sleeping)) 1107 return; 1108 1109 WRITE_ONCE(worker->sleeping, 1); 1110 raw_spin_lock_irq(&pool->lock); 1111 1112 /* 1113 * Recheck in case unbind_workers() preempted us. We don't 1114 * want to decrement nr_running after the worker is unbound 1115 * and nr_running has been reset. 1116 */ 1117 if (worker->flags & WORKER_NOT_RUNNING) { 1118 raw_spin_unlock_irq(&pool->lock); 1119 return; 1120 } 1121 1122 pool->nr_running--; 1123 if (need_more_worker(pool)) { 1124 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1125 wake_up_worker(pool); 1126 } 1127 raw_spin_unlock_irq(&pool->lock); 1128 } 1129 1130 /** 1131 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1132 * @task: task currently running 1133 * 1134 * Called from scheduler_tick(). We're in the IRQ context and the current 1135 * worker's fields which follow the 'K' locking rule can be accessed safely. 1136 */ 1137 void wq_worker_tick(struct task_struct *task) 1138 { 1139 struct worker *worker = kthread_data(task); 1140 struct pool_workqueue *pwq = worker->current_pwq; 1141 struct worker_pool *pool = worker->pool; 1142 1143 if (!pwq) 1144 return; 1145 1146 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1147 1148 if (!wq_cpu_intensive_thresh_us) 1149 return; 1150 1151 /* 1152 * If the current worker is concurrency managed and hogged the CPU for 1153 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1154 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1155 * 1156 * Set @worker->sleeping means that @worker is in the process of 1157 * switching out voluntarily and won't be contributing to 1158 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1159 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1160 * double decrements. The task is releasing the CPU anyway. Let's skip. 1161 * We probably want to make this prettier in the future. 1162 */ 1163 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1164 worker->task->se.sum_exec_runtime - worker->current_at < 1165 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1166 return; 1167 1168 raw_spin_lock(&pool->lock); 1169 1170 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1171 wq_cpu_intensive_report(worker->current_func); 1172 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1173 1174 if (need_more_worker(pool)) { 1175 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1176 wake_up_worker(pool); 1177 } 1178 1179 raw_spin_unlock(&pool->lock); 1180 } 1181 1182 /** 1183 * wq_worker_last_func - retrieve worker's last work function 1184 * @task: Task to retrieve last work function of. 1185 * 1186 * Determine the last function a worker executed. This is called from 1187 * the scheduler to get a worker's last known identity. 1188 * 1189 * CONTEXT: 1190 * raw_spin_lock_irq(rq->lock) 1191 * 1192 * This function is called during schedule() when a kworker is going 1193 * to sleep. It's used by psi to identify aggregation workers during 1194 * dequeuing, to allow periodic aggregation to shut-off when that 1195 * worker is the last task in the system or cgroup to go to sleep. 1196 * 1197 * As this function doesn't involve any workqueue-related locking, it 1198 * only returns stable values when called from inside the scheduler's 1199 * queuing and dequeuing paths, when @task, which must be a kworker, 1200 * is guaranteed to not be processing any works. 1201 * 1202 * Return: 1203 * The last work function %current executed as a worker, NULL if it 1204 * hasn't executed any work yet. 1205 */ 1206 work_func_t wq_worker_last_func(struct task_struct *task) 1207 { 1208 struct worker *worker = kthread_data(task); 1209 1210 return worker->last_func; 1211 } 1212 1213 /** 1214 * find_worker_executing_work - find worker which is executing a work 1215 * @pool: pool of interest 1216 * @work: work to find worker for 1217 * 1218 * Find a worker which is executing @work on @pool by searching 1219 * @pool->busy_hash which is keyed by the address of @work. For a worker 1220 * to match, its current execution should match the address of @work and 1221 * its work function. This is to avoid unwanted dependency between 1222 * unrelated work executions through a work item being recycled while still 1223 * being executed. 1224 * 1225 * This is a bit tricky. A work item may be freed once its execution 1226 * starts and nothing prevents the freed area from being recycled for 1227 * another work item. If the same work item address ends up being reused 1228 * before the original execution finishes, workqueue will identify the 1229 * recycled work item as currently executing and make it wait until the 1230 * current execution finishes, introducing an unwanted dependency. 1231 * 1232 * This function checks the work item address and work function to avoid 1233 * false positives. Note that this isn't complete as one may construct a 1234 * work function which can introduce dependency onto itself through a 1235 * recycled work item. Well, if somebody wants to shoot oneself in the 1236 * foot that badly, there's only so much we can do, and if such deadlock 1237 * actually occurs, it should be easy to locate the culprit work function. 1238 * 1239 * CONTEXT: 1240 * raw_spin_lock_irq(pool->lock). 1241 * 1242 * Return: 1243 * Pointer to worker which is executing @work if found, %NULL 1244 * otherwise. 1245 */ 1246 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1247 struct work_struct *work) 1248 { 1249 struct worker *worker; 1250 1251 hash_for_each_possible(pool->busy_hash, worker, hentry, 1252 (unsigned long)work) 1253 if (worker->current_work == work && 1254 worker->current_func == work->func) 1255 return worker; 1256 1257 return NULL; 1258 } 1259 1260 /** 1261 * move_linked_works - move linked works to a list 1262 * @work: start of series of works to be scheduled 1263 * @head: target list to append @work to 1264 * @nextp: out parameter for nested worklist walking 1265 * 1266 * Schedule linked works starting from @work to @head. Work series to 1267 * be scheduled starts at @work and includes any consecutive work with 1268 * WORK_STRUCT_LINKED set in its predecessor. 1269 * 1270 * If @nextp is not NULL, it's updated to point to the next work of 1271 * the last scheduled work. This allows move_linked_works() to be 1272 * nested inside outer list_for_each_entry_safe(). 1273 * 1274 * CONTEXT: 1275 * raw_spin_lock_irq(pool->lock). 1276 */ 1277 static void move_linked_works(struct work_struct *work, struct list_head *head, 1278 struct work_struct **nextp) 1279 { 1280 struct work_struct *n; 1281 1282 /* 1283 * Linked worklist will always end before the end of the list, 1284 * use NULL for list head. 1285 */ 1286 list_for_each_entry_safe_from(work, n, NULL, entry) { 1287 list_move_tail(&work->entry, head); 1288 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1289 break; 1290 } 1291 1292 /* 1293 * If we're already inside safe list traversal and have moved 1294 * multiple works to the scheduled queue, the next position 1295 * needs to be updated. 1296 */ 1297 if (nextp) 1298 *nextp = n; 1299 } 1300 1301 /** 1302 * get_pwq - get an extra reference on the specified pool_workqueue 1303 * @pwq: pool_workqueue to get 1304 * 1305 * Obtain an extra reference on @pwq. The caller should guarantee that 1306 * @pwq has positive refcnt and be holding the matching pool->lock. 1307 */ 1308 static void get_pwq(struct pool_workqueue *pwq) 1309 { 1310 lockdep_assert_held(&pwq->pool->lock); 1311 WARN_ON_ONCE(pwq->refcnt <= 0); 1312 pwq->refcnt++; 1313 } 1314 1315 /** 1316 * put_pwq - put a pool_workqueue reference 1317 * @pwq: pool_workqueue to put 1318 * 1319 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1320 * destruction. The caller should be holding the matching pool->lock. 1321 */ 1322 static void put_pwq(struct pool_workqueue *pwq) 1323 { 1324 lockdep_assert_held(&pwq->pool->lock); 1325 if (likely(--pwq->refcnt)) 1326 return; 1327 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1328 return; 1329 /* 1330 * @pwq can't be released under pool->lock, bounce to 1331 * pwq_unbound_release_workfn(). This never recurses on the same 1332 * pool->lock as this path is taken only for unbound workqueues and 1333 * the release work item is scheduled on a per-cpu workqueue. To 1334 * avoid lockdep warning, unbound pool->locks are given lockdep 1335 * subclass of 1 in get_unbound_pool(). 1336 */ 1337 schedule_work(&pwq->unbound_release_work); 1338 } 1339 1340 /** 1341 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1342 * @pwq: pool_workqueue to put (can be %NULL) 1343 * 1344 * put_pwq() with locking. This function also allows %NULL @pwq. 1345 */ 1346 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1347 { 1348 if (pwq) { 1349 /* 1350 * As both pwqs and pools are RCU protected, the 1351 * following lock operations are safe. 1352 */ 1353 raw_spin_lock_irq(&pwq->pool->lock); 1354 put_pwq(pwq); 1355 raw_spin_unlock_irq(&pwq->pool->lock); 1356 } 1357 } 1358 1359 static void pwq_activate_inactive_work(struct work_struct *work) 1360 { 1361 struct pool_workqueue *pwq = get_work_pwq(work); 1362 1363 trace_workqueue_activate_work(work); 1364 if (list_empty(&pwq->pool->worklist)) 1365 pwq->pool->watchdog_ts = jiffies; 1366 move_linked_works(work, &pwq->pool->worklist, NULL); 1367 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work)); 1368 pwq->nr_active++; 1369 } 1370 1371 static void pwq_activate_first_inactive(struct pool_workqueue *pwq) 1372 { 1373 struct work_struct *work = list_first_entry(&pwq->inactive_works, 1374 struct work_struct, entry); 1375 1376 pwq_activate_inactive_work(work); 1377 } 1378 1379 /** 1380 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1381 * @pwq: pwq of interest 1382 * @work_data: work_data of work which left the queue 1383 * 1384 * A work either has completed or is removed from pending queue, 1385 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1386 * 1387 * CONTEXT: 1388 * raw_spin_lock_irq(pool->lock). 1389 */ 1390 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1391 { 1392 int color = get_work_color(work_data); 1393 1394 if (!(work_data & WORK_STRUCT_INACTIVE)) { 1395 pwq->nr_active--; 1396 if (!list_empty(&pwq->inactive_works)) { 1397 /* one down, submit an inactive one */ 1398 if (pwq->nr_active < pwq->max_active) 1399 pwq_activate_first_inactive(pwq); 1400 } 1401 } 1402 1403 pwq->nr_in_flight[color]--; 1404 1405 /* is flush in progress and are we at the flushing tip? */ 1406 if (likely(pwq->flush_color != color)) 1407 goto out_put; 1408 1409 /* are there still in-flight works? */ 1410 if (pwq->nr_in_flight[color]) 1411 goto out_put; 1412 1413 /* this pwq is done, clear flush_color */ 1414 pwq->flush_color = -1; 1415 1416 /* 1417 * If this was the last pwq, wake up the first flusher. It 1418 * will handle the rest. 1419 */ 1420 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1421 complete(&pwq->wq->first_flusher->done); 1422 out_put: 1423 put_pwq(pwq); 1424 } 1425 1426 /** 1427 * try_to_grab_pending - steal work item from worklist and disable irq 1428 * @work: work item to steal 1429 * @is_dwork: @work is a delayed_work 1430 * @flags: place to store irq state 1431 * 1432 * Try to grab PENDING bit of @work. This function can handle @work in any 1433 * stable state - idle, on timer or on worklist. 1434 * 1435 * Return: 1436 * 1437 * ======== ================================================================ 1438 * 1 if @work was pending and we successfully stole PENDING 1439 * 0 if @work was idle and we claimed PENDING 1440 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1441 * -ENOENT if someone else is canceling @work, this state may persist 1442 * for arbitrarily long 1443 * ======== ================================================================ 1444 * 1445 * Note: 1446 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1447 * interrupted while holding PENDING and @work off queue, irq must be 1448 * disabled on entry. This, combined with delayed_work->timer being 1449 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1450 * 1451 * On successful return, >= 0, irq is disabled and the caller is 1452 * responsible for releasing it using local_irq_restore(*@flags). 1453 * 1454 * This function is safe to call from any context including IRQ handler. 1455 */ 1456 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1457 unsigned long *flags) 1458 { 1459 struct worker_pool *pool; 1460 struct pool_workqueue *pwq; 1461 1462 local_irq_save(*flags); 1463 1464 /* try to steal the timer if it exists */ 1465 if (is_dwork) { 1466 struct delayed_work *dwork = to_delayed_work(work); 1467 1468 /* 1469 * dwork->timer is irqsafe. If del_timer() fails, it's 1470 * guaranteed that the timer is not queued anywhere and not 1471 * running on the local CPU. 1472 */ 1473 if (likely(del_timer(&dwork->timer))) 1474 return 1; 1475 } 1476 1477 /* try to claim PENDING the normal way */ 1478 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1479 return 0; 1480 1481 rcu_read_lock(); 1482 /* 1483 * The queueing is in progress, or it is already queued. Try to 1484 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1485 */ 1486 pool = get_work_pool(work); 1487 if (!pool) 1488 goto fail; 1489 1490 raw_spin_lock(&pool->lock); 1491 /* 1492 * work->data is guaranteed to point to pwq only while the work 1493 * item is queued on pwq->wq, and both updating work->data to point 1494 * to pwq on queueing and to pool on dequeueing are done under 1495 * pwq->pool->lock. This in turn guarantees that, if work->data 1496 * points to pwq which is associated with a locked pool, the work 1497 * item is currently queued on that pool. 1498 */ 1499 pwq = get_work_pwq(work); 1500 if (pwq && pwq->pool == pool) { 1501 debug_work_deactivate(work); 1502 1503 /* 1504 * A cancelable inactive work item must be in the 1505 * pwq->inactive_works since a queued barrier can't be 1506 * canceled (see the comments in insert_wq_barrier()). 1507 * 1508 * An inactive work item cannot be grabbed directly because 1509 * it might have linked barrier work items which, if left 1510 * on the inactive_works list, will confuse pwq->nr_active 1511 * management later on and cause stall. Make sure the work 1512 * item is activated before grabbing. 1513 */ 1514 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE) 1515 pwq_activate_inactive_work(work); 1516 1517 list_del_init(&work->entry); 1518 pwq_dec_nr_in_flight(pwq, *work_data_bits(work)); 1519 1520 /* work->data points to pwq iff queued, point to pool */ 1521 set_work_pool_and_keep_pending(work, pool->id); 1522 1523 raw_spin_unlock(&pool->lock); 1524 rcu_read_unlock(); 1525 return 1; 1526 } 1527 raw_spin_unlock(&pool->lock); 1528 fail: 1529 rcu_read_unlock(); 1530 local_irq_restore(*flags); 1531 if (work_is_canceling(work)) 1532 return -ENOENT; 1533 cpu_relax(); 1534 return -EAGAIN; 1535 } 1536 1537 /** 1538 * insert_work - insert a work into a pool 1539 * @pwq: pwq @work belongs to 1540 * @work: work to insert 1541 * @head: insertion point 1542 * @extra_flags: extra WORK_STRUCT_* flags to set 1543 * 1544 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1545 * work_struct flags. 1546 * 1547 * CONTEXT: 1548 * raw_spin_lock_irq(pool->lock). 1549 */ 1550 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1551 struct list_head *head, unsigned int extra_flags) 1552 { 1553 struct worker_pool *pool = pwq->pool; 1554 1555 /* record the work call stack in order to print it in KASAN reports */ 1556 kasan_record_aux_stack_noalloc(work); 1557 1558 /* we own @work, set data and link */ 1559 set_work_pwq(work, pwq, extra_flags); 1560 list_add_tail(&work->entry, head); 1561 get_pwq(pwq); 1562 1563 if (__need_more_worker(pool)) 1564 wake_up_worker(pool); 1565 } 1566 1567 /* 1568 * Test whether @work is being queued from another work executing on the 1569 * same workqueue. 1570 */ 1571 static bool is_chained_work(struct workqueue_struct *wq) 1572 { 1573 struct worker *worker; 1574 1575 worker = current_wq_worker(); 1576 /* 1577 * Return %true iff I'm a worker executing a work item on @wq. If 1578 * I'm @worker, it's safe to dereference it without locking. 1579 */ 1580 return worker && worker->current_pwq->wq == wq; 1581 } 1582 1583 /* 1584 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1585 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1586 * avoid perturbing sensitive tasks. 1587 */ 1588 static int wq_select_unbound_cpu(int cpu) 1589 { 1590 int new_cpu; 1591 1592 if (likely(!wq_debug_force_rr_cpu)) { 1593 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1594 return cpu; 1595 } else { 1596 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1597 } 1598 1599 if (cpumask_empty(wq_unbound_cpumask)) 1600 return cpu; 1601 1602 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1603 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1604 if (unlikely(new_cpu >= nr_cpu_ids)) { 1605 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1606 if (unlikely(new_cpu >= nr_cpu_ids)) 1607 return cpu; 1608 } 1609 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1610 1611 return new_cpu; 1612 } 1613 1614 static void __queue_work(int cpu, struct workqueue_struct *wq, 1615 struct work_struct *work) 1616 { 1617 struct pool_workqueue *pwq; 1618 struct worker_pool *last_pool; 1619 struct list_head *worklist; 1620 unsigned int work_flags; 1621 unsigned int req_cpu = cpu; 1622 1623 /* 1624 * While a work item is PENDING && off queue, a task trying to 1625 * steal the PENDING will busy-loop waiting for it to either get 1626 * queued or lose PENDING. Grabbing PENDING and queueing should 1627 * happen with IRQ disabled. 1628 */ 1629 lockdep_assert_irqs_disabled(); 1630 1631 1632 /* 1633 * For a draining wq, only works from the same workqueue are 1634 * allowed. The __WQ_DESTROYING helps to spot the issue that 1635 * queues a new work item to a wq after destroy_workqueue(wq). 1636 */ 1637 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 1638 WARN_ON_ONCE(!is_chained_work(wq)))) 1639 return; 1640 rcu_read_lock(); 1641 retry: 1642 /* pwq which will be used unless @work is executing elsewhere */ 1643 if (wq->flags & WQ_UNBOUND) { 1644 if (req_cpu == WORK_CPU_UNBOUND) 1645 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1646 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1647 } else { 1648 if (req_cpu == WORK_CPU_UNBOUND) 1649 cpu = raw_smp_processor_id(); 1650 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1651 } 1652 1653 /* 1654 * If @work was previously on a different pool, it might still be 1655 * running there, in which case the work needs to be queued on that 1656 * pool to guarantee non-reentrancy. 1657 */ 1658 last_pool = get_work_pool(work); 1659 if (last_pool && last_pool != pwq->pool) { 1660 struct worker *worker; 1661 1662 raw_spin_lock(&last_pool->lock); 1663 1664 worker = find_worker_executing_work(last_pool, work); 1665 1666 if (worker && worker->current_pwq->wq == wq) { 1667 pwq = worker->current_pwq; 1668 } else { 1669 /* meh... not running there, queue here */ 1670 raw_spin_unlock(&last_pool->lock); 1671 raw_spin_lock(&pwq->pool->lock); 1672 } 1673 } else { 1674 raw_spin_lock(&pwq->pool->lock); 1675 } 1676 1677 /* 1678 * pwq is determined and locked. For unbound pools, we could have 1679 * raced with pwq release and it could already be dead. If its 1680 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1681 * without another pwq replacing it in the numa_pwq_tbl or while 1682 * work items are executing on it, so the retrying is guaranteed to 1683 * make forward-progress. 1684 */ 1685 if (unlikely(!pwq->refcnt)) { 1686 if (wq->flags & WQ_UNBOUND) { 1687 raw_spin_unlock(&pwq->pool->lock); 1688 cpu_relax(); 1689 goto retry; 1690 } 1691 /* oops */ 1692 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1693 wq->name, cpu); 1694 } 1695 1696 /* pwq determined, queue */ 1697 trace_workqueue_queue_work(req_cpu, pwq, work); 1698 1699 if (WARN_ON(!list_empty(&work->entry))) 1700 goto out; 1701 1702 pwq->nr_in_flight[pwq->work_color]++; 1703 work_flags = work_color_to_flags(pwq->work_color); 1704 1705 if (likely(pwq->nr_active < pwq->max_active)) { 1706 trace_workqueue_activate_work(work); 1707 pwq->nr_active++; 1708 worklist = &pwq->pool->worklist; 1709 if (list_empty(worklist)) 1710 pwq->pool->watchdog_ts = jiffies; 1711 } else { 1712 work_flags |= WORK_STRUCT_INACTIVE; 1713 worklist = &pwq->inactive_works; 1714 } 1715 1716 debug_work_activate(work); 1717 insert_work(pwq, work, worklist, work_flags); 1718 1719 out: 1720 raw_spin_unlock(&pwq->pool->lock); 1721 rcu_read_unlock(); 1722 } 1723 1724 /** 1725 * queue_work_on - queue work on specific cpu 1726 * @cpu: CPU number to execute work on 1727 * @wq: workqueue to use 1728 * @work: work to queue 1729 * 1730 * We queue the work to a specific CPU, the caller must ensure it 1731 * can't go away. Callers that fail to ensure that the specified 1732 * CPU cannot go away will execute on a randomly chosen CPU. 1733 * But note well that callers specifying a CPU that never has been 1734 * online will get a splat. 1735 * 1736 * Return: %false if @work was already on a queue, %true otherwise. 1737 */ 1738 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1739 struct work_struct *work) 1740 { 1741 bool ret = false; 1742 unsigned long flags; 1743 1744 local_irq_save(flags); 1745 1746 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1747 __queue_work(cpu, wq, work); 1748 ret = true; 1749 } 1750 1751 local_irq_restore(flags); 1752 return ret; 1753 } 1754 EXPORT_SYMBOL(queue_work_on); 1755 1756 /** 1757 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1758 * @node: NUMA node ID that we want to select a CPU from 1759 * 1760 * This function will attempt to find a "random" cpu available on a given 1761 * node. If there are no CPUs available on the given node it will return 1762 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1763 * available CPU if we need to schedule this work. 1764 */ 1765 static int workqueue_select_cpu_near(int node) 1766 { 1767 int cpu; 1768 1769 /* No point in doing this if NUMA isn't enabled for workqueues */ 1770 if (!wq_numa_enabled) 1771 return WORK_CPU_UNBOUND; 1772 1773 /* Delay binding to CPU if node is not valid or online */ 1774 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1775 return WORK_CPU_UNBOUND; 1776 1777 /* Use local node/cpu if we are already there */ 1778 cpu = raw_smp_processor_id(); 1779 if (node == cpu_to_node(cpu)) 1780 return cpu; 1781 1782 /* Use "random" otherwise know as "first" online CPU of node */ 1783 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1784 1785 /* If CPU is valid return that, otherwise just defer */ 1786 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1787 } 1788 1789 /** 1790 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1791 * @node: NUMA node that we are targeting the work for 1792 * @wq: workqueue to use 1793 * @work: work to queue 1794 * 1795 * We queue the work to a "random" CPU within a given NUMA node. The basic 1796 * idea here is to provide a way to somehow associate work with a given 1797 * NUMA node. 1798 * 1799 * This function will only make a best effort attempt at getting this onto 1800 * the right NUMA node. If no node is requested or the requested node is 1801 * offline then we just fall back to standard queue_work behavior. 1802 * 1803 * Currently the "random" CPU ends up being the first available CPU in the 1804 * intersection of cpu_online_mask and the cpumask of the node, unless we 1805 * are running on the node. In that case we just use the current CPU. 1806 * 1807 * Return: %false if @work was already on a queue, %true otherwise. 1808 */ 1809 bool queue_work_node(int node, struct workqueue_struct *wq, 1810 struct work_struct *work) 1811 { 1812 unsigned long flags; 1813 bool ret = false; 1814 1815 /* 1816 * This current implementation is specific to unbound workqueues. 1817 * Specifically we only return the first available CPU for a given 1818 * node instead of cycling through individual CPUs within the node. 1819 * 1820 * If this is used with a per-cpu workqueue then the logic in 1821 * workqueue_select_cpu_near would need to be updated to allow for 1822 * some round robin type logic. 1823 */ 1824 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1825 1826 local_irq_save(flags); 1827 1828 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1829 int cpu = workqueue_select_cpu_near(node); 1830 1831 __queue_work(cpu, wq, work); 1832 ret = true; 1833 } 1834 1835 local_irq_restore(flags); 1836 return ret; 1837 } 1838 EXPORT_SYMBOL_GPL(queue_work_node); 1839 1840 void delayed_work_timer_fn(struct timer_list *t) 1841 { 1842 struct delayed_work *dwork = from_timer(dwork, t, timer); 1843 1844 /* should have been called from irqsafe timer with irq already off */ 1845 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1846 } 1847 EXPORT_SYMBOL(delayed_work_timer_fn); 1848 1849 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1850 struct delayed_work *dwork, unsigned long delay) 1851 { 1852 struct timer_list *timer = &dwork->timer; 1853 struct work_struct *work = &dwork->work; 1854 1855 WARN_ON_ONCE(!wq); 1856 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1857 WARN_ON_ONCE(timer_pending(timer)); 1858 WARN_ON_ONCE(!list_empty(&work->entry)); 1859 1860 /* 1861 * If @delay is 0, queue @dwork->work immediately. This is for 1862 * both optimization and correctness. The earliest @timer can 1863 * expire is on the closest next tick and delayed_work users depend 1864 * on that there's no such delay when @delay is 0. 1865 */ 1866 if (!delay) { 1867 __queue_work(cpu, wq, &dwork->work); 1868 return; 1869 } 1870 1871 dwork->wq = wq; 1872 dwork->cpu = cpu; 1873 timer->expires = jiffies + delay; 1874 1875 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1876 add_timer_on(timer, cpu); 1877 else 1878 add_timer(timer); 1879 } 1880 1881 /** 1882 * queue_delayed_work_on - queue work on specific CPU after delay 1883 * @cpu: CPU number to execute work on 1884 * @wq: workqueue to use 1885 * @dwork: work to queue 1886 * @delay: number of jiffies to wait before queueing 1887 * 1888 * Return: %false if @work was already on a queue, %true otherwise. If 1889 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1890 * execution. 1891 */ 1892 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1893 struct delayed_work *dwork, unsigned long delay) 1894 { 1895 struct work_struct *work = &dwork->work; 1896 bool ret = false; 1897 unsigned long flags; 1898 1899 /* read the comment in __queue_work() */ 1900 local_irq_save(flags); 1901 1902 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1903 __queue_delayed_work(cpu, wq, dwork, delay); 1904 ret = true; 1905 } 1906 1907 local_irq_restore(flags); 1908 return ret; 1909 } 1910 EXPORT_SYMBOL(queue_delayed_work_on); 1911 1912 /** 1913 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1914 * @cpu: CPU number to execute work on 1915 * @wq: workqueue to use 1916 * @dwork: work to queue 1917 * @delay: number of jiffies to wait before queueing 1918 * 1919 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1920 * modify @dwork's timer so that it expires after @delay. If @delay is 1921 * zero, @work is guaranteed to be scheduled immediately regardless of its 1922 * current state. 1923 * 1924 * Return: %false if @dwork was idle and queued, %true if @dwork was 1925 * pending and its timer was modified. 1926 * 1927 * This function is safe to call from any context including IRQ handler. 1928 * See try_to_grab_pending() for details. 1929 */ 1930 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1931 struct delayed_work *dwork, unsigned long delay) 1932 { 1933 unsigned long flags; 1934 int ret; 1935 1936 do { 1937 ret = try_to_grab_pending(&dwork->work, true, &flags); 1938 } while (unlikely(ret == -EAGAIN)); 1939 1940 if (likely(ret >= 0)) { 1941 __queue_delayed_work(cpu, wq, dwork, delay); 1942 local_irq_restore(flags); 1943 } 1944 1945 /* -ENOENT from try_to_grab_pending() becomes %true */ 1946 return ret; 1947 } 1948 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1949 1950 static void rcu_work_rcufn(struct rcu_head *rcu) 1951 { 1952 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1953 1954 /* read the comment in __queue_work() */ 1955 local_irq_disable(); 1956 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1957 local_irq_enable(); 1958 } 1959 1960 /** 1961 * queue_rcu_work - queue work after a RCU grace period 1962 * @wq: workqueue to use 1963 * @rwork: work to queue 1964 * 1965 * Return: %false if @rwork was already pending, %true otherwise. Note 1966 * that a full RCU grace period is guaranteed only after a %true return. 1967 * While @rwork is guaranteed to be executed after a %false return, the 1968 * execution may happen before a full RCU grace period has passed. 1969 */ 1970 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1971 { 1972 struct work_struct *work = &rwork->work; 1973 1974 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1975 rwork->wq = wq; 1976 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 1977 return true; 1978 } 1979 1980 return false; 1981 } 1982 EXPORT_SYMBOL(queue_rcu_work); 1983 1984 /** 1985 * worker_enter_idle - enter idle state 1986 * @worker: worker which is entering idle state 1987 * 1988 * @worker is entering idle state. Update stats and idle timer if 1989 * necessary. 1990 * 1991 * LOCKING: 1992 * raw_spin_lock_irq(pool->lock). 1993 */ 1994 static void worker_enter_idle(struct worker *worker) 1995 { 1996 struct worker_pool *pool = worker->pool; 1997 1998 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1999 WARN_ON_ONCE(!list_empty(&worker->entry) && 2000 (worker->hentry.next || worker->hentry.pprev))) 2001 return; 2002 2003 /* can't use worker_set_flags(), also called from create_worker() */ 2004 worker->flags |= WORKER_IDLE; 2005 pool->nr_idle++; 2006 worker->last_active = jiffies; 2007 2008 /* idle_list is LIFO */ 2009 list_add(&worker->entry, &pool->idle_list); 2010 2011 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 2012 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 2013 2014 /* Sanity check nr_running. */ 2015 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 2016 } 2017 2018 /** 2019 * worker_leave_idle - leave idle state 2020 * @worker: worker which is leaving idle state 2021 * 2022 * @worker is leaving idle state. Update stats. 2023 * 2024 * LOCKING: 2025 * raw_spin_lock_irq(pool->lock). 2026 */ 2027 static void worker_leave_idle(struct worker *worker) 2028 { 2029 struct worker_pool *pool = worker->pool; 2030 2031 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 2032 return; 2033 worker_clr_flags(worker, WORKER_IDLE); 2034 pool->nr_idle--; 2035 list_del_init(&worker->entry); 2036 } 2037 2038 static struct worker *alloc_worker(int node) 2039 { 2040 struct worker *worker; 2041 2042 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2043 if (worker) { 2044 INIT_LIST_HEAD(&worker->entry); 2045 INIT_LIST_HEAD(&worker->scheduled); 2046 INIT_LIST_HEAD(&worker->node); 2047 /* on creation a worker is in !idle && prep state */ 2048 worker->flags = WORKER_PREP; 2049 } 2050 return worker; 2051 } 2052 2053 /** 2054 * worker_attach_to_pool() - attach a worker to a pool 2055 * @worker: worker to be attached 2056 * @pool: the target pool 2057 * 2058 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2059 * cpu-binding of @worker are kept coordinated with the pool across 2060 * cpu-[un]hotplugs. 2061 */ 2062 static void worker_attach_to_pool(struct worker *worker, 2063 struct worker_pool *pool) 2064 { 2065 mutex_lock(&wq_pool_attach_mutex); 2066 2067 /* 2068 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 2069 * stable across this function. See the comments above the flag 2070 * definition for details. 2071 */ 2072 if (pool->flags & POOL_DISASSOCIATED) 2073 worker->flags |= WORKER_UNBOUND; 2074 else 2075 kthread_set_per_cpu(worker->task, pool->cpu); 2076 2077 if (worker->rescue_wq) 2078 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 2079 2080 list_add_tail(&worker->node, &pool->workers); 2081 worker->pool = pool; 2082 2083 mutex_unlock(&wq_pool_attach_mutex); 2084 } 2085 2086 /** 2087 * worker_detach_from_pool() - detach a worker from its pool 2088 * @worker: worker which is attached to its pool 2089 * 2090 * Undo the attaching which had been done in worker_attach_to_pool(). The 2091 * caller worker shouldn't access to the pool after detached except it has 2092 * other reference to the pool. 2093 */ 2094 static void worker_detach_from_pool(struct worker *worker) 2095 { 2096 struct worker_pool *pool = worker->pool; 2097 struct completion *detach_completion = NULL; 2098 2099 mutex_lock(&wq_pool_attach_mutex); 2100 2101 kthread_set_per_cpu(worker->task, -1); 2102 list_del(&worker->node); 2103 worker->pool = NULL; 2104 2105 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers)) 2106 detach_completion = pool->detach_completion; 2107 mutex_unlock(&wq_pool_attach_mutex); 2108 2109 /* clear leftover flags without pool->lock after it is detached */ 2110 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2111 2112 if (detach_completion) 2113 complete(detach_completion); 2114 } 2115 2116 /** 2117 * create_worker - create a new workqueue worker 2118 * @pool: pool the new worker will belong to 2119 * 2120 * Create and start a new worker which is attached to @pool. 2121 * 2122 * CONTEXT: 2123 * Might sleep. Does GFP_KERNEL allocations. 2124 * 2125 * Return: 2126 * Pointer to the newly created worker. 2127 */ 2128 static struct worker *create_worker(struct worker_pool *pool) 2129 { 2130 struct worker *worker; 2131 int id; 2132 char id_buf[16]; 2133 2134 /* ID is needed to determine kthread name */ 2135 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2136 if (id < 0) { 2137 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2138 ERR_PTR(id)); 2139 return NULL; 2140 } 2141 2142 worker = alloc_worker(pool->node); 2143 if (!worker) { 2144 pr_err_once("workqueue: Failed to allocate a worker\n"); 2145 goto fail; 2146 } 2147 2148 worker->id = id; 2149 2150 if (pool->cpu >= 0) 2151 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 2152 pool->attrs->nice < 0 ? "H" : ""); 2153 else 2154 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 2155 2156 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 2157 "kworker/%s", id_buf); 2158 if (IS_ERR(worker->task)) { 2159 if (PTR_ERR(worker->task) == -EINTR) { 2160 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", 2161 id_buf); 2162 } else { 2163 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2164 worker->task); 2165 } 2166 goto fail; 2167 } 2168 2169 set_user_nice(worker->task, pool->attrs->nice); 2170 kthread_bind_mask(worker->task, pool->attrs->cpumask); 2171 2172 /* successful, attach the worker to the pool */ 2173 worker_attach_to_pool(worker, pool); 2174 2175 /* start the newly created worker */ 2176 raw_spin_lock_irq(&pool->lock); 2177 worker->pool->nr_workers++; 2178 worker_enter_idle(worker); 2179 wake_up_process(worker->task); 2180 raw_spin_unlock_irq(&pool->lock); 2181 2182 return worker; 2183 2184 fail: 2185 ida_free(&pool->worker_ida, id); 2186 kfree(worker); 2187 return NULL; 2188 } 2189 2190 static void unbind_worker(struct worker *worker) 2191 { 2192 lockdep_assert_held(&wq_pool_attach_mutex); 2193 2194 kthread_set_per_cpu(worker->task, -1); 2195 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2196 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2197 else 2198 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2199 } 2200 2201 static void wake_dying_workers(struct list_head *cull_list) 2202 { 2203 struct worker *worker, *tmp; 2204 2205 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2206 list_del_init(&worker->entry); 2207 unbind_worker(worker); 2208 /* 2209 * If the worker was somehow already running, then it had to be 2210 * in pool->idle_list when set_worker_dying() happened or we 2211 * wouldn't have gotten here. 2212 * 2213 * Thus, the worker must either have observed the WORKER_DIE 2214 * flag, or have set its state to TASK_IDLE. Either way, the 2215 * below will be observed by the worker and is safe to do 2216 * outside of pool->lock. 2217 */ 2218 wake_up_process(worker->task); 2219 } 2220 } 2221 2222 /** 2223 * set_worker_dying - Tag a worker for destruction 2224 * @worker: worker to be destroyed 2225 * @list: transfer worker away from its pool->idle_list and into list 2226 * 2227 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2228 * should be idle. 2229 * 2230 * CONTEXT: 2231 * raw_spin_lock_irq(pool->lock). 2232 */ 2233 static void set_worker_dying(struct worker *worker, struct list_head *list) 2234 { 2235 struct worker_pool *pool = worker->pool; 2236 2237 lockdep_assert_held(&pool->lock); 2238 lockdep_assert_held(&wq_pool_attach_mutex); 2239 2240 /* sanity check frenzy */ 2241 if (WARN_ON(worker->current_work) || 2242 WARN_ON(!list_empty(&worker->scheduled)) || 2243 WARN_ON(!(worker->flags & WORKER_IDLE))) 2244 return; 2245 2246 pool->nr_workers--; 2247 pool->nr_idle--; 2248 2249 worker->flags |= WORKER_DIE; 2250 2251 list_move(&worker->entry, list); 2252 list_move(&worker->node, &pool->dying_workers); 2253 } 2254 2255 /** 2256 * idle_worker_timeout - check if some idle workers can now be deleted. 2257 * @t: The pool's idle_timer that just expired 2258 * 2259 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2260 * worker_leave_idle(), as a worker flicking between idle and active while its 2261 * pool is at the too_many_workers() tipping point would cause too much timer 2262 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2263 * it expire and re-evaluate things from there. 2264 */ 2265 static void idle_worker_timeout(struct timer_list *t) 2266 { 2267 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2268 bool do_cull = false; 2269 2270 if (work_pending(&pool->idle_cull_work)) 2271 return; 2272 2273 raw_spin_lock_irq(&pool->lock); 2274 2275 if (too_many_workers(pool)) { 2276 struct worker *worker; 2277 unsigned long expires; 2278 2279 /* idle_list is kept in LIFO order, check the last one */ 2280 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2281 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2282 do_cull = !time_before(jiffies, expires); 2283 2284 if (!do_cull) 2285 mod_timer(&pool->idle_timer, expires); 2286 } 2287 raw_spin_unlock_irq(&pool->lock); 2288 2289 if (do_cull) 2290 queue_work(system_unbound_wq, &pool->idle_cull_work); 2291 } 2292 2293 /** 2294 * idle_cull_fn - cull workers that have been idle for too long. 2295 * @work: the pool's work for handling these idle workers 2296 * 2297 * This goes through a pool's idle workers and gets rid of those that have been 2298 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2299 * 2300 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2301 * culled, so this also resets worker affinity. This requires a sleepable 2302 * context, hence the split between timer callback and work item. 2303 */ 2304 static void idle_cull_fn(struct work_struct *work) 2305 { 2306 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2307 struct list_head cull_list; 2308 2309 INIT_LIST_HEAD(&cull_list); 2310 /* 2311 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2312 * cannot proceed beyong worker_detach_from_pool() in its self-destruct 2313 * path. This is required as a previously-preempted worker could run after 2314 * set_worker_dying() has happened but before wake_dying_workers() did. 2315 */ 2316 mutex_lock(&wq_pool_attach_mutex); 2317 raw_spin_lock_irq(&pool->lock); 2318 2319 while (too_many_workers(pool)) { 2320 struct worker *worker; 2321 unsigned long expires; 2322 2323 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2324 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2325 2326 if (time_before(jiffies, expires)) { 2327 mod_timer(&pool->idle_timer, expires); 2328 break; 2329 } 2330 2331 set_worker_dying(worker, &cull_list); 2332 } 2333 2334 raw_spin_unlock_irq(&pool->lock); 2335 wake_dying_workers(&cull_list); 2336 mutex_unlock(&wq_pool_attach_mutex); 2337 } 2338 2339 static void send_mayday(struct work_struct *work) 2340 { 2341 struct pool_workqueue *pwq = get_work_pwq(work); 2342 struct workqueue_struct *wq = pwq->wq; 2343 2344 lockdep_assert_held(&wq_mayday_lock); 2345 2346 if (!wq->rescuer) 2347 return; 2348 2349 /* mayday mayday mayday */ 2350 if (list_empty(&pwq->mayday_node)) { 2351 /* 2352 * If @pwq is for an unbound wq, its base ref may be put at 2353 * any time due to an attribute change. Pin @pwq until the 2354 * rescuer is done with it. 2355 */ 2356 get_pwq(pwq); 2357 list_add_tail(&pwq->mayday_node, &wq->maydays); 2358 wake_up_process(wq->rescuer->task); 2359 pwq->stats[PWQ_STAT_MAYDAY]++; 2360 } 2361 } 2362 2363 static void pool_mayday_timeout(struct timer_list *t) 2364 { 2365 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2366 struct work_struct *work; 2367 2368 raw_spin_lock_irq(&pool->lock); 2369 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2370 2371 if (need_to_create_worker(pool)) { 2372 /* 2373 * We've been trying to create a new worker but 2374 * haven't been successful. We might be hitting an 2375 * allocation deadlock. Send distress signals to 2376 * rescuers. 2377 */ 2378 list_for_each_entry(work, &pool->worklist, entry) 2379 send_mayday(work); 2380 } 2381 2382 raw_spin_unlock(&wq_mayday_lock); 2383 raw_spin_unlock_irq(&pool->lock); 2384 2385 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2386 } 2387 2388 /** 2389 * maybe_create_worker - create a new worker if necessary 2390 * @pool: pool to create a new worker for 2391 * 2392 * Create a new worker for @pool if necessary. @pool is guaranteed to 2393 * have at least one idle worker on return from this function. If 2394 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2395 * sent to all rescuers with works scheduled on @pool to resolve 2396 * possible allocation deadlock. 2397 * 2398 * On return, need_to_create_worker() is guaranteed to be %false and 2399 * may_start_working() %true. 2400 * 2401 * LOCKING: 2402 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2403 * multiple times. Does GFP_KERNEL allocations. Called only from 2404 * manager. 2405 */ 2406 static void maybe_create_worker(struct worker_pool *pool) 2407 __releases(&pool->lock) 2408 __acquires(&pool->lock) 2409 { 2410 restart: 2411 raw_spin_unlock_irq(&pool->lock); 2412 2413 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2414 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2415 2416 while (true) { 2417 if (create_worker(pool) || !need_to_create_worker(pool)) 2418 break; 2419 2420 schedule_timeout_interruptible(CREATE_COOLDOWN); 2421 2422 if (!need_to_create_worker(pool)) 2423 break; 2424 } 2425 2426 del_timer_sync(&pool->mayday_timer); 2427 raw_spin_lock_irq(&pool->lock); 2428 /* 2429 * This is necessary even after a new worker was just successfully 2430 * created as @pool->lock was dropped and the new worker might have 2431 * already become busy. 2432 */ 2433 if (need_to_create_worker(pool)) 2434 goto restart; 2435 } 2436 2437 /** 2438 * manage_workers - manage worker pool 2439 * @worker: self 2440 * 2441 * Assume the manager role and manage the worker pool @worker belongs 2442 * to. At any given time, there can be only zero or one manager per 2443 * pool. The exclusion is handled automatically by this function. 2444 * 2445 * The caller can safely start processing works on false return. On 2446 * true return, it's guaranteed that need_to_create_worker() is false 2447 * and may_start_working() is true. 2448 * 2449 * CONTEXT: 2450 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2451 * multiple times. Does GFP_KERNEL allocations. 2452 * 2453 * Return: 2454 * %false if the pool doesn't need management and the caller can safely 2455 * start processing works, %true if management function was performed and 2456 * the conditions that the caller verified before calling the function may 2457 * no longer be true. 2458 */ 2459 static bool manage_workers(struct worker *worker) 2460 { 2461 struct worker_pool *pool = worker->pool; 2462 2463 if (pool->flags & POOL_MANAGER_ACTIVE) 2464 return false; 2465 2466 pool->flags |= POOL_MANAGER_ACTIVE; 2467 pool->manager = worker; 2468 2469 maybe_create_worker(pool); 2470 2471 pool->manager = NULL; 2472 pool->flags &= ~POOL_MANAGER_ACTIVE; 2473 rcuwait_wake_up(&manager_wait); 2474 return true; 2475 } 2476 2477 /** 2478 * process_one_work - process single work 2479 * @worker: self 2480 * @work: work to process 2481 * 2482 * Process @work. This function contains all the logics necessary to 2483 * process a single work including synchronization against and 2484 * interaction with other workers on the same cpu, queueing and 2485 * flushing. As long as context requirement is met, any worker can 2486 * call this function to process a work. 2487 * 2488 * CONTEXT: 2489 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2490 */ 2491 static void process_one_work(struct worker *worker, struct work_struct *work) 2492 __releases(&pool->lock) 2493 __acquires(&pool->lock) 2494 { 2495 struct pool_workqueue *pwq = get_work_pwq(work); 2496 struct worker_pool *pool = worker->pool; 2497 unsigned long work_data; 2498 struct worker *collision; 2499 #ifdef CONFIG_LOCKDEP 2500 /* 2501 * It is permissible to free the struct work_struct from 2502 * inside the function that is called from it, this we need to 2503 * take into account for lockdep too. To avoid bogus "held 2504 * lock freed" warnings as well as problems when looking into 2505 * work->lockdep_map, make a copy and use that here. 2506 */ 2507 struct lockdep_map lockdep_map; 2508 2509 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2510 #endif 2511 /* ensure we're on the correct CPU */ 2512 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2513 raw_smp_processor_id() != pool->cpu); 2514 2515 /* 2516 * A single work shouldn't be executed concurrently by 2517 * multiple workers on a single cpu. Check whether anyone is 2518 * already processing the work. If so, defer the work to the 2519 * currently executing one. 2520 */ 2521 collision = find_worker_executing_work(pool, work); 2522 if (unlikely(collision)) { 2523 move_linked_works(work, &collision->scheduled, NULL); 2524 return; 2525 } 2526 2527 /* claim and dequeue */ 2528 debug_work_deactivate(work); 2529 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2530 worker->current_work = work; 2531 worker->current_func = work->func; 2532 worker->current_pwq = pwq; 2533 worker->current_at = worker->task->se.sum_exec_runtime; 2534 work_data = *work_data_bits(work); 2535 worker->current_color = get_work_color(work_data); 2536 2537 /* 2538 * Record wq name for cmdline and debug reporting, may get 2539 * overridden through set_worker_desc(). 2540 */ 2541 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2542 2543 list_del_init(&work->entry); 2544 2545 /* 2546 * CPU intensive works don't participate in concurrency management. 2547 * They're the scheduler's responsibility. This takes @worker out 2548 * of concurrency management and the next code block will chain 2549 * execution of the pending work items. 2550 */ 2551 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 2552 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2553 2554 /* 2555 * Wake up another worker if necessary. The condition is always 2556 * false for normal per-cpu workers since nr_running would always 2557 * be >= 1 at this point. This is used to chain execution of the 2558 * pending work items for WORKER_NOT_RUNNING workers such as the 2559 * UNBOUND and CPU_INTENSIVE ones. 2560 */ 2561 if (need_more_worker(pool)) 2562 wake_up_worker(pool); 2563 2564 /* 2565 * Record the last pool and clear PENDING which should be the last 2566 * update to @work. Also, do this inside @pool->lock so that 2567 * PENDING and queued state changes happen together while IRQ is 2568 * disabled. 2569 */ 2570 set_work_pool_and_clear_pending(work, pool->id); 2571 2572 raw_spin_unlock_irq(&pool->lock); 2573 2574 lock_map_acquire(&pwq->wq->lockdep_map); 2575 lock_map_acquire(&lockdep_map); 2576 /* 2577 * Strictly speaking we should mark the invariant state without holding 2578 * any locks, that is, before these two lock_map_acquire()'s. 2579 * 2580 * However, that would result in: 2581 * 2582 * A(W1) 2583 * WFC(C) 2584 * A(W1) 2585 * C(C) 2586 * 2587 * Which would create W1->C->W1 dependencies, even though there is no 2588 * actual deadlock possible. There are two solutions, using a 2589 * read-recursive acquire on the work(queue) 'locks', but this will then 2590 * hit the lockdep limitation on recursive locks, or simply discard 2591 * these locks. 2592 * 2593 * AFAICT there is no possible deadlock scenario between the 2594 * flush_work() and complete() primitives (except for single-threaded 2595 * workqueues), so hiding them isn't a problem. 2596 */ 2597 lockdep_invariant_state(true); 2598 pwq->stats[PWQ_STAT_STARTED]++; 2599 trace_workqueue_execute_start(work); 2600 worker->current_func(work); 2601 /* 2602 * While we must be careful to not use "work" after this, the trace 2603 * point will only record its address. 2604 */ 2605 trace_workqueue_execute_end(work, worker->current_func); 2606 pwq->stats[PWQ_STAT_COMPLETED]++; 2607 lock_map_release(&lockdep_map); 2608 lock_map_release(&pwq->wq->lockdep_map); 2609 2610 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2611 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2612 " last function: %ps\n", 2613 current->comm, preempt_count(), task_pid_nr(current), 2614 worker->current_func); 2615 debug_show_held_locks(current); 2616 dump_stack(); 2617 } 2618 2619 /* 2620 * The following prevents a kworker from hogging CPU on !PREEMPTION 2621 * kernels, where a requeueing work item waiting for something to 2622 * happen could deadlock with stop_machine as such work item could 2623 * indefinitely requeue itself while all other CPUs are trapped in 2624 * stop_machine. At the same time, report a quiescent RCU state so 2625 * the same condition doesn't freeze RCU. 2626 */ 2627 cond_resched(); 2628 2629 raw_spin_lock_irq(&pool->lock); 2630 2631 /* 2632 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 2633 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 2634 * wq_cpu_intensive_thresh_us. Clear it. 2635 */ 2636 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2637 2638 /* tag the worker for identification in schedule() */ 2639 worker->last_func = worker->current_func; 2640 2641 /* we're done with it, release */ 2642 hash_del(&worker->hentry); 2643 worker->current_work = NULL; 2644 worker->current_func = NULL; 2645 worker->current_pwq = NULL; 2646 worker->current_color = INT_MAX; 2647 pwq_dec_nr_in_flight(pwq, work_data); 2648 } 2649 2650 /** 2651 * process_scheduled_works - process scheduled works 2652 * @worker: self 2653 * 2654 * Process all scheduled works. Please note that the scheduled list 2655 * may change while processing a work, so this function repeatedly 2656 * fetches a work from the top and executes it. 2657 * 2658 * CONTEXT: 2659 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2660 * multiple times. 2661 */ 2662 static void process_scheduled_works(struct worker *worker) 2663 { 2664 while (!list_empty(&worker->scheduled)) { 2665 struct work_struct *work = list_first_entry(&worker->scheduled, 2666 struct work_struct, entry); 2667 process_one_work(worker, work); 2668 } 2669 } 2670 2671 static void set_pf_worker(bool val) 2672 { 2673 mutex_lock(&wq_pool_attach_mutex); 2674 if (val) 2675 current->flags |= PF_WQ_WORKER; 2676 else 2677 current->flags &= ~PF_WQ_WORKER; 2678 mutex_unlock(&wq_pool_attach_mutex); 2679 } 2680 2681 /** 2682 * worker_thread - the worker thread function 2683 * @__worker: self 2684 * 2685 * The worker thread function. All workers belong to a worker_pool - 2686 * either a per-cpu one or dynamic unbound one. These workers process all 2687 * work items regardless of their specific target workqueue. The only 2688 * exception is work items which belong to workqueues with a rescuer which 2689 * will be explained in rescuer_thread(). 2690 * 2691 * Return: 0 2692 */ 2693 static int worker_thread(void *__worker) 2694 { 2695 struct worker *worker = __worker; 2696 struct worker_pool *pool = worker->pool; 2697 2698 /* tell the scheduler that this is a workqueue worker */ 2699 set_pf_worker(true); 2700 woke_up: 2701 raw_spin_lock_irq(&pool->lock); 2702 2703 /* am I supposed to die? */ 2704 if (unlikely(worker->flags & WORKER_DIE)) { 2705 raw_spin_unlock_irq(&pool->lock); 2706 set_pf_worker(false); 2707 2708 set_task_comm(worker->task, "kworker/dying"); 2709 ida_free(&pool->worker_ida, worker->id); 2710 worker_detach_from_pool(worker); 2711 WARN_ON_ONCE(!list_empty(&worker->entry)); 2712 kfree(worker); 2713 return 0; 2714 } 2715 2716 worker_leave_idle(worker); 2717 recheck: 2718 /* no more worker necessary? */ 2719 if (!need_more_worker(pool)) 2720 goto sleep; 2721 2722 /* do we need to manage? */ 2723 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2724 goto recheck; 2725 2726 /* 2727 * ->scheduled list can only be filled while a worker is 2728 * preparing to process a work or actually processing it. 2729 * Make sure nobody diddled with it while I was sleeping. 2730 */ 2731 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2732 2733 /* 2734 * Finish PREP stage. We're guaranteed to have at least one idle 2735 * worker or that someone else has already assumed the manager 2736 * role. This is where @worker starts participating in concurrency 2737 * management if applicable and concurrency management is restored 2738 * after being rebound. See rebind_workers() for details. 2739 */ 2740 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2741 2742 do { 2743 struct work_struct *work = 2744 list_first_entry(&pool->worklist, 2745 struct work_struct, entry); 2746 2747 pool->watchdog_ts = jiffies; 2748 2749 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2750 /* optimization path, not strictly necessary */ 2751 process_one_work(worker, work); 2752 if (unlikely(!list_empty(&worker->scheduled))) 2753 process_scheduled_works(worker); 2754 } else { 2755 move_linked_works(work, &worker->scheduled, NULL); 2756 process_scheduled_works(worker); 2757 } 2758 } while (keep_working(pool)); 2759 2760 worker_set_flags(worker, WORKER_PREP); 2761 sleep: 2762 /* 2763 * pool->lock is held and there's no work to process and no need to 2764 * manage, sleep. Workers are woken up only while holding 2765 * pool->lock or from local cpu, so setting the current state 2766 * before releasing pool->lock is enough to prevent losing any 2767 * event. 2768 */ 2769 worker_enter_idle(worker); 2770 __set_current_state(TASK_IDLE); 2771 raw_spin_unlock_irq(&pool->lock); 2772 schedule(); 2773 goto woke_up; 2774 } 2775 2776 /** 2777 * rescuer_thread - the rescuer thread function 2778 * @__rescuer: self 2779 * 2780 * Workqueue rescuer thread function. There's one rescuer for each 2781 * workqueue which has WQ_MEM_RECLAIM set. 2782 * 2783 * Regular work processing on a pool may block trying to create a new 2784 * worker which uses GFP_KERNEL allocation which has slight chance of 2785 * developing into deadlock if some works currently on the same queue 2786 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2787 * the problem rescuer solves. 2788 * 2789 * When such condition is possible, the pool summons rescuers of all 2790 * workqueues which have works queued on the pool and let them process 2791 * those works so that forward progress can be guaranteed. 2792 * 2793 * This should happen rarely. 2794 * 2795 * Return: 0 2796 */ 2797 static int rescuer_thread(void *__rescuer) 2798 { 2799 struct worker *rescuer = __rescuer; 2800 struct workqueue_struct *wq = rescuer->rescue_wq; 2801 struct list_head *scheduled = &rescuer->scheduled; 2802 bool should_stop; 2803 2804 set_user_nice(current, RESCUER_NICE_LEVEL); 2805 2806 /* 2807 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2808 * doesn't participate in concurrency management. 2809 */ 2810 set_pf_worker(true); 2811 repeat: 2812 set_current_state(TASK_IDLE); 2813 2814 /* 2815 * By the time the rescuer is requested to stop, the workqueue 2816 * shouldn't have any work pending, but @wq->maydays may still have 2817 * pwq(s) queued. This can happen by non-rescuer workers consuming 2818 * all the work items before the rescuer got to them. Go through 2819 * @wq->maydays processing before acting on should_stop so that the 2820 * list is always empty on exit. 2821 */ 2822 should_stop = kthread_should_stop(); 2823 2824 /* see whether any pwq is asking for help */ 2825 raw_spin_lock_irq(&wq_mayday_lock); 2826 2827 while (!list_empty(&wq->maydays)) { 2828 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2829 struct pool_workqueue, mayday_node); 2830 struct worker_pool *pool = pwq->pool; 2831 struct work_struct *work, *n; 2832 bool first = true; 2833 2834 __set_current_state(TASK_RUNNING); 2835 list_del_init(&pwq->mayday_node); 2836 2837 raw_spin_unlock_irq(&wq_mayday_lock); 2838 2839 worker_attach_to_pool(rescuer, pool); 2840 2841 raw_spin_lock_irq(&pool->lock); 2842 2843 /* 2844 * Slurp in all works issued via this workqueue and 2845 * process'em. 2846 */ 2847 WARN_ON_ONCE(!list_empty(scheduled)); 2848 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2849 if (get_work_pwq(work) == pwq) { 2850 if (first) 2851 pool->watchdog_ts = jiffies; 2852 move_linked_works(work, scheduled, &n); 2853 pwq->stats[PWQ_STAT_RESCUED]++; 2854 } 2855 first = false; 2856 } 2857 2858 if (!list_empty(scheduled)) { 2859 process_scheduled_works(rescuer); 2860 2861 /* 2862 * The above execution of rescued work items could 2863 * have created more to rescue through 2864 * pwq_activate_first_inactive() or chained 2865 * queueing. Let's put @pwq back on mayday list so 2866 * that such back-to-back work items, which may be 2867 * being used to relieve memory pressure, don't 2868 * incur MAYDAY_INTERVAL delay inbetween. 2869 */ 2870 if (pwq->nr_active && need_to_create_worker(pool)) { 2871 raw_spin_lock(&wq_mayday_lock); 2872 /* 2873 * Queue iff we aren't racing destruction 2874 * and somebody else hasn't queued it already. 2875 */ 2876 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2877 get_pwq(pwq); 2878 list_add_tail(&pwq->mayday_node, &wq->maydays); 2879 } 2880 raw_spin_unlock(&wq_mayday_lock); 2881 } 2882 } 2883 2884 /* 2885 * Put the reference grabbed by send_mayday(). @pool won't 2886 * go away while we're still attached to it. 2887 */ 2888 put_pwq(pwq); 2889 2890 /* 2891 * Leave this pool. If need_more_worker() is %true, notify a 2892 * regular worker; otherwise, we end up with 0 concurrency 2893 * and stalling the execution. 2894 */ 2895 if (need_more_worker(pool)) 2896 wake_up_worker(pool); 2897 2898 raw_spin_unlock_irq(&pool->lock); 2899 2900 worker_detach_from_pool(rescuer); 2901 2902 raw_spin_lock_irq(&wq_mayday_lock); 2903 } 2904 2905 raw_spin_unlock_irq(&wq_mayday_lock); 2906 2907 if (should_stop) { 2908 __set_current_state(TASK_RUNNING); 2909 set_pf_worker(false); 2910 return 0; 2911 } 2912 2913 /* rescuers should never participate in concurrency management */ 2914 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2915 schedule(); 2916 goto repeat; 2917 } 2918 2919 /** 2920 * check_flush_dependency - check for flush dependency sanity 2921 * @target_wq: workqueue being flushed 2922 * @target_work: work item being flushed (NULL for workqueue flushes) 2923 * 2924 * %current is trying to flush the whole @target_wq or @target_work on it. 2925 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2926 * reclaiming memory or running on a workqueue which doesn't have 2927 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2928 * a deadlock. 2929 */ 2930 static void check_flush_dependency(struct workqueue_struct *target_wq, 2931 struct work_struct *target_work) 2932 { 2933 work_func_t target_func = target_work ? target_work->func : NULL; 2934 struct worker *worker; 2935 2936 if (target_wq->flags & WQ_MEM_RECLAIM) 2937 return; 2938 2939 worker = current_wq_worker(); 2940 2941 WARN_ONCE(current->flags & PF_MEMALLOC, 2942 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2943 current->pid, current->comm, target_wq->name, target_func); 2944 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2945 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2946 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2947 worker->current_pwq->wq->name, worker->current_func, 2948 target_wq->name, target_func); 2949 } 2950 2951 struct wq_barrier { 2952 struct work_struct work; 2953 struct completion done; 2954 struct task_struct *task; /* purely informational */ 2955 }; 2956 2957 static void wq_barrier_func(struct work_struct *work) 2958 { 2959 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2960 complete(&barr->done); 2961 } 2962 2963 /** 2964 * insert_wq_barrier - insert a barrier work 2965 * @pwq: pwq to insert barrier into 2966 * @barr: wq_barrier to insert 2967 * @target: target work to attach @barr to 2968 * @worker: worker currently executing @target, NULL if @target is not executing 2969 * 2970 * @barr is linked to @target such that @barr is completed only after 2971 * @target finishes execution. Please note that the ordering 2972 * guarantee is observed only with respect to @target and on the local 2973 * cpu. 2974 * 2975 * Currently, a queued barrier can't be canceled. This is because 2976 * try_to_grab_pending() can't determine whether the work to be 2977 * grabbed is at the head of the queue and thus can't clear LINKED 2978 * flag of the previous work while there must be a valid next work 2979 * after a work with LINKED flag set. 2980 * 2981 * Note that when @worker is non-NULL, @target may be modified 2982 * underneath us, so we can't reliably determine pwq from @target. 2983 * 2984 * CONTEXT: 2985 * raw_spin_lock_irq(pool->lock). 2986 */ 2987 static void insert_wq_barrier(struct pool_workqueue *pwq, 2988 struct wq_barrier *barr, 2989 struct work_struct *target, struct worker *worker) 2990 { 2991 unsigned int work_flags = 0; 2992 unsigned int work_color; 2993 struct list_head *head; 2994 2995 /* 2996 * debugobject calls are safe here even with pool->lock locked 2997 * as we know for sure that this will not trigger any of the 2998 * checks and call back into the fixup functions where we 2999 * might deadlock. 3000 */ 3001 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 3002 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3003 3004 init_completion_map(&barr->done, &target->lockdep_map); 3005 3006 barr->task = current; 3007 3008 /* The barrier work item does not participate in pwq->nr_active. */ 3009 work_flags |= WORK_STRUCT_INACTIVE; 3010 3011 /* 3012 * If @target is currently being executed, schedule the 3013 * barrier to the worker; otherwise, put it after @target. 3014 */ 3015 if (worker) { 3016 head = worker->scheduled.next; 3017 work_color = worker->current_color; 3018 } else { 3019 unsigned long *bits = work_data_bits(target); 3020 3021 head = target->entry.next; 3022 /* there can already be other linked works, inherit and set */ 3023 work_flags |= *bits & WORK_STRUCT_LINKED; 3024 work_color = get_work_color(*bits); 3025 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3026 } 3027 3028 pwq->nr_in_flight[work_color]++; 3029 work_flags |= work_color_to_flags(work_color); 3030 3031 debug_work_activate(&barr->work); 3032 insert_work(pwq, &barr->work, head, work_flags); 3033 } 3034 3035 /** 3036 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3037 * @wq: workqueue being flushed 3038 * @flush_color: new flush color, < 0 for no-op 3039 * @work_color: new work color, < 0 for no-op 3040 * 3041 * Prepare pwqs for workqueue flushing. 3042 * 3043 * If @flush_color is non-negative, flush_color on all pwqs should be 3044 * -1. If no pwq has in-flight commands at the specified color, all 3045 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3046 * has in flight commands, its pwq->flush_color is set to 3047 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3048 * wakeup logic is armed and %true is returned. 3049 * 3050 * The caller should have initialized @wq->first_flusher prior to 3051 * calling this function with non-negative @flush_color. If 3052 * @flush_color is negative, no flush color update is done and %false 3053 * is returned. 3054 * 3055 * If @work_color is non-negative, all pwqs should have the same 3056 * work_color which is previous to @work_color and all will be 3057 * advanced to @work_color. 3058 * 3059 * CONTEXT: 3060 * mutex_lock(wq->mutex). 3061 * 3062 * Return: 3063 * %true if @flush_color >= 0 and there's something to flush. %false 3064 * otherwise. 3065 */ 3066 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3067 int flush_color, int work_color) 3068 { 3069 bool wait = false; 3070 struct pool_workqueue *pwq; 3071 3072 if (flush_color >= 0) { 3073 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3074 atomic_set(&wq->nr_pwqs_to_flush, 1); 3075 } 3076 3077 for_each_pwq(pwq, wq) { 3078 struct worker_pool *pool = pwq->pool; 3079 3080 raw_spin_lock_irq(&pool->lock); 3081 3082 if (flush_color >= 0) { 3083 WARN_ON_ONCE(pwq->flush_color != -1); 3084 3085 if (pwq->nr_in_flight[flush_color]) { 3086 pwq->flush_color = flush_color; 3087 atomic_inc(&wq->nr_pwqs_to_flush); 3088 wait = true; 3089 } 3090 } 3091 3092 if (work_color >= 0) { 3093 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3094 pwq->work_color = work_color; 3095 } 3096 3097 raw_spin_unlock_irq(&pool->lock); 3098 } 3099 3100 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3101 complete(&wq->first_flusher->done); 3102 3103 return wait; 3104 } 3105 3106 /** 3107 * __flush_workqueue - ensure that any scheduled work has run to completion. 3108 * @wq: workqueue to flush 3109 * 3110 * This function sleeps until all work items which were queued on entry 3111 * have finished execution, but it is not livelocked by new incoming ones. 3112 */ 3113 void __flush_workqueue(struct workqueue_struct *wq) 3114 { 3115 struct wq_flusher this_flusher = { 3116 .list = LIST_HEAD_INIT(this_flusher.list), 3117 .flush_color = -1, 3118 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 3119 }; 3120 int next_color; 3121 3122 if (WARN_ON(!wq_online)) 3123 return; 3124 3125 lock_map_acquire(&wq->lockdep_map); 3126 lock_map_release(&wq->lockdep_map); 3127 3128 mutex_lock(&wq->mutex); 3129 3130 /* 3131 * Start-to-wait phase 3132 */ 3133 next_color = work_next_color(wq->work_color); 3134 3135 if (next_color != wq->flush_color) { 3136 /* 3137 * Color space is not full. The current work_color 3138 * becomes our flush_color and work_color is advanced 3139 * by one. 3140 */ 3141 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3142 this_flusher.flush_color = wq->work_color; 3143 wq->work_color = next_color; 3144 3145 if (!wq->first_flusher) { 3146 /* no flush in progress, become the first flusher */ 3147 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3148 3149 wq->first_flusher = &this_flusher; 3150 3151 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3152 wq->work_color)) { 3153 /* nothing to flush, done */ 3154 wq->flush_color = next_color; 3155 wq->first_flusher = NULL; 3156 goto out_unlock; 3157 } 3158 } else { 3159 /* wait in queue */ 3160 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3161 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3162 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3163 } 3164 } else { 3165 /* 3166 * Oops, color space is full, wait on overflow queue. 3167 * The next flush completion will assign us 3168 * flush_color and transfer to flusher_queue. 3169 */ 3170 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3171 } 3172 3173 check_flush_dependency(wq, NULL); 3174 3175 mutex_unlock(&wq->mutex); 3176 3177 wait_for_completion(&this_flusher.done); 3178 3179 /* 3180 * Wake-up-and-cascade phase 3181 * 3182 * First flushers are responsible for cascading flushes and 3183 * handling overflow. Non-first flushers can simply return. 3184 */ 3185 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3186 return; 3187 3188 mutex_lock(&wq->mutex); 3189 3190 /* we might have raced, check again with mutex held */ 3191 if (wq->first_flusher != &this_flusher) 3192 goto out_unlock; 3193 3194 WRITE_ONCE(wq->first_flusher, NULL); 3195 3196 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3197 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3198 3199 while (true) { 3200 struct wq_flusher *next, *tmp; 3201 3202 /* complete all the flushers sharing the current flush color */ 3203 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3204 if (next->flush_color != wq->flush_color) 3205 break; 3206 list_del_init(&next->list); 3207 complete(&next->done); 3208 } 3209 3210 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 3211 wq->flush_color != work_next_color(wq->work_color)); 3212 3213 /* this flush_color is finished, advance by one */ 3214 wq->flush_color = work_next_color(wq->flush_color); 3215 3216 /* one color has been freed, handle overflow queue */ 3217 if (!list_empty(&wq->flusher_overflow)) { 3218 /* 3219 * Assign the same color to all overflowed 3220 * flushers, advance work_color and append to 3221 * flusher_queue. This is the start-to-wait 3222 * phase for these overflowed flushers. 3223 */ 3224 list_for_each_entry(tmp, &wq->flusher_overflow, list) 3225 tmp->flush_color = wq->work_color; 3226 3227 wq->work_color = work_next_color(wq->work_color); 3228 3229 list_splice_tail_init(&wq->flusher_overflow, 3230 &wq->flusher_queue); 3231 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3232 } 3233 3234 if (list_empty(&wq->flusher_queue)) { 3235 WARN_ON_ONCE(wq->flush_color != wq->work_color); 3236 break; 3237 } 3238 3239 /* 3240 * Need to flush more colors. Make the next flusher 3241 * the new first flusher and arm pwqs. 3242 */ 3243 WARN_ON_ONCE(wq->flush_color == wq->work_color); 3244 WARN_ON_ONCE(wq->flush_color != next->flush_color); 3245 3246 list_del_init(&next->list); 3247 wq->first_flusher = next; 3248 3249 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 3250 break; 3251 3252 /* 3253 * Meh... this color is already done, clear first 3254 * flusher and repeat cascading. 3255 */ 3256 wq->first_flusher = NULL; 3257 } 3258 3259 out_unlock: 3260 mutex_unlock(&wq->mutex); 3261 } 3262 EXPORT_SYMBOL(__flush_workqueue); 3263 3264 /** 3265 * drain_workqueue - drain a workqueue 3266 * @wq: workqueue to drain 3267 * 3268 * Wait until the workqueue becomes empty. While draining is in progress, 3269 * only chain queueing is allowed. IOW, only currently pending or running 3270 * work items on @wq can queue further work items on it. @wq is flushed 3271 * repeatedly until it becomes empty. The number of flushing is determined 3272 * by the depth of chaining and should be relatively short. Whine if it 3273 * takes too long. 3274 */ 3275 void drain_workqueue(struct workqueue_struct *wq) 3276 { 3277 unsigned int flush_cnt = 0; 3278 struct pool_workqueue *pwq; 3279 3280 /* 3281 * __queue_work() needs to test whether there are drainers, is much 3282 * hotter than drain_workqueue() and already looks at @wq->flags. 3283 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 3284 */ 3285 mutex_lock(&wq->mutex); 3286 if (!wq->nr_drainers++) 3287 wq->flags |= __WQ_DRAINING; 3288 mutex_unlock(&wq->mutex); 3289 reflush: 3290 __flush_workqueue(wq); 3291 3292 mutex_lock(&wq->mutex); 3293 3294 for_each_pwq(pwq, wq) { 3295 bool drained; 3296 3297 raw_spin_lock_irq(&pwq->pool->lock); 3298 drained = !pwq->nr_active && list_empty(&pwq->inactive_works); 3299 raw_spin_unlock_irq(&pwq->pool->lock); 3300 3301 if (drained) 3302 continue; 3303 3304 if (++flush_cnt == 10 || 3305 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 3306 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 3307 wq->name, __func__, flush_cnt); 3308 3309 mutex_unlock(&wq->mutex); 3310 goto reflush; 3311 } 3312 3313 if (!--wq->nr_drainers) 3314 wq->flags &= ~__WQ_DRAINING; 3315 mutex_unlock(&wq->mutex); 3316 } 3317 EXPORT_SYMBOL_GPL(drain_workqueue); 3318 3319 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 3320 bool from_cancel) 3321 { 3322 struct worker *worker = NULL; 3323 struct worker_pool *pool; 3324 struct pool_workqueue *pwq; 3325 3326 might_sleep(); 3327 3328 rcu_read_lock(); 3329 pool = get_work_pool(work); 3330 if (!pool) { 3331 rcu_read_unlock(); 3332 return false; 3333 } 3334 3335 raw_spin_lock_irq(&pool->lock); 3336 /* see the comment in try_to_grab_pending() with the same code */ 3337 pwq = get_work_pwq(work); 3338 if (pwq) { 3339 if (unlikely(pwq->pool != pool)) 3340 goto already_gone; 3341 } else { 3342 worker = find_worker_executing_work(pool, work); 3343 if (!worker) 3344 goto already_gone; 3345 pwq = worker->current_pwq; 3346 } 3347 3348 check_flush_dependency(pwq->wq, work); 3349 3350 insert_wq_barrier(pwq, barr, work, worker); 3351 raw_spin_unlock_irq(&pool->lock); 3352 3353 /* 3354 * Force a lock recursion deadlock when using flush_work() inside a 3355 * single-threaded or rescuer equipped workqueue. 3356 * 3357 * For single threaded workqueues the deadlock happens when the work 3358 * is after the work issuing the flush_work(). For rescuer equipped 3359 * workqueues the deadlock happens when the rescuer stalls, blocking 3360 * forward progress. 3361 */ 3362 if (!from_cancel && 3363 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3364 lock_map_acquire(&pwq->wq->lockdep_map); 3365 lock_map_release(&pwq->wq->lockdep_map); 3366 } 3367 rcu_read_unlock(); 3368 return true; 3369 already_gone: 3370 raw_spin_unlock_irq(&pool->lock); 3371 rcu_read_unlock(); 3372 return false; 3373 } 3374 3375 static bool __flush_work(struct work_struct *work, bool from_cancel) 3376 { 3377 struct wq_barrier barr; 3378 3379 if (WARN_ON(!wq_online)) 3380 return false; 3381 3382 if (WARN_ON(!work->func)) 3383 return false; 3384 3385 lock_map_acquire(&work->lockdep_map); 3386 lock_map_release(&work->lockdep_map); 3387 3388 if (start_flush_work(work, &barr, from_cancel)) { 3389 wait_for_completion(&barr.done); 3390 destroy_work_on_stack(&barr.work); 3391 return true; 3392 } else { 3393 return false; 3394 } 3395 } 3396 3397 /** 3398 * flush_work - wait for a work to finish executing the last queueing instance 3399 * @work: the work to flush 3400 * 3401 * Wait until @work has finished execution. @work is guaranteed to be idle 3402 * on return if it hasn't been requeued since flush started. 3403 * 3404 * Return: 3405 * %true if flush_work() waited for the work to finish execution, 3406 * %false if it was already idle. 3407 */ 3408 bool flush_work(struct work_struct *work) 3409 { 3410 return __flush_work(work, false); 3411 } 3412 EXPORT_SYMBOL_GPL(flush_work); 3413 3414 struct cwt_wait { 3415 wait_queue_entry_t wait; 3416 struct work_struct *work; 3417 }; 3418 3419 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3420 { 3421 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3422 3423 if (cwait->work != key) 3424 return 0; 3425 return autoremove_wake_function(wait, mode, sync, key); 3426 } 3427 3428 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3429 { 3430 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3431 unsigned long flags; 3432 int ret; 3433 3434 do { 3435 ret = try_to_grab_pending(work, is_dwork, &flags); 3436 /* 3437 * If someone else is already canceling, wait for it to 3438 * finish. flush_work() doesn't work for PREEMPT_NONE 3439 * because we may get scheduled between @work's completion 3440 * and the other canceling task resuming and clearing 3441 * CANCELING - flush_work() will return false immediately 3442 * as @work is no longer busy, try_to_grab_pending() will 3443 * return -ENOENT as @work is still being canceled and the 3444 * other canceling task won't be able to clear CANCELING as 3445 * we're hogging the CPU. 3446 * 3447 * Let's wait for completion using a waitqueue. As this 3448 * may lead to the thundering herd problem, use a custom 3449 * wake function which matches @work along with exclusive 3450 * wait and wakeup. 3451 */ 3452 if (unlikely(ret == -ENOENT)) { 3453 struct cwt_wait cwait; 3454 3455 init_wait(&cwait.wait); 3456 cwait.wait.func = cwt_wakefn; 3457 cwait.work = work; 3458 3459 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3460 TASK_UNINTERRUPTIBLE); 3461 if (work_is_canceling(work)) 3462 schedule(); 3463 finish_wait(&cancel_waitq, &cwait.wait); 3464 } 3465 } while (unlikely(ret < 0)); 3466 3467 /* tell other tasks trying to grab @work to back off */ 3468 mark_work_canceling(work); 3469 local_irq_restore(flags); 3470 3471 /* 3472 * This allows canceling during early boot. We know that @work 3473 * isn't executing. 3474 */ 3475 if (wq_online) 3476 __flush_work(work, true); 3477 3478 clear_work_data(work); 3479 3480 /* 3481 * Paired with prepare_to_wait() above so that either 3482 * waitqueue_active() is visible here or !work_is_canceling() is 3483 * visible there. 3484 */ 3485 smp_mb(); 3486 if (waitqueue_active(&cancel_waitq)) 3487 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3488 3489 return ret; 3490 } 3491 3492 /** 3493 * cancel_work_sync - cancel a work and wait for it to finish 3494 * @work: the work to cancel 3495 * 3496 * Cancel @work and wait for its execution to finish. This function 3497 * can be used even if the work re-queues itself or migrates to 3498 * another workqueue. On return from this function, @work is 3499 * guaranteed to be not pending or executing on any CPU. 3500 * 3501 * cancel_work_sync(&delayed_work->work) must not be used for 3502 * delayed_work's. Use cancel_delayed_work_sync() instead. 3503 * 3504 * The caller must ensure that the workqueue on which @work was last 3505 * queued can't be destroyed before this function returns. 3506 * 3507 * Return: 3508 * %true if @work was pending, %false otherwise. 3509 */ 3510 bool cancel_work_sync(struct work_struct *work) 3511 { 3512 return __cancel_work_timer(work, false); 3513 } 3514 EXPORT_SYMBOL_GPL(cancel_work_sync); 3515 3516 /** 3517 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3518 * @dwork: the delayed work to flush 3519 * 3520 * Delayed timer is cancelled and the pending work is queued for 3521 * immediate execution. Like flush_work(), this function only 3522 * considers the last queueing instance of @dwork. 3523 * 3524 * Return: 3525 * %true if flush_work() waited for the work to finish execution, 3526 * %false if it was already idle. 3527 */ 3528 bool flush_delayed_work(struct delayed_work *dwork) 3529 { 3530 local_irq_disable(); 3531 if (del_timer_sync(&dwork->timer)) 3532 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3533 local_irq_enable(); 3534 return flush_work(&dwork->work); 3535 } 3536 EXPORT_SYMBOL(flush_delayed_work); 3537 3538 /** 3539 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3540 * @rwork: the rcu work to flush 3541 * 3542 * Return: 3543 * %true if flush_rcu_work() waited for the work to finish execution, 3544 * %false if it was already idle. 3545 */ 3546 bool flush_rcu_work(struct rcu_work *rwork) 3547 { 3548 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3549 rcu_barrier(); 3550 flush_work(&rwork->work); 3551 return true; 3552 } else { 3553 return flush_work(&rwork->work); 3554 } 3555 } 3556 EXPORT_SYMBOL(flush_rcu_work); 3557 3558 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3559 { 3560 unsigned long flags; 3561 int ret; 3562 3563 do { 3564 ret = try_to_grab_pending(work, is_dwork, &flags); 3565 } while (unlikely(ret == -EAGAIN)); 3566 3567 if (unlikely(ret < 0)) 3568 return false; 3569 3570 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3571 local_irq_restore(flags); 3572 return ret; 3573 } 3574 3575 /* 3576 * See cancel_delayed_work() 3577 */ 3578 bool cancel_work(struct work_struct *work) 3579 { 3580 return __cancel_work(work, false); 3581 } 3582 EXPORT_SYMBOL(cancel_work); 3583 3584 /** 3585 * cancel_delayed_work - cancel a delayed work 3586 * @dwork: delayed_work to cancel 3587 * 3588 * Kill off a pending delayed_work. 3589 * 3590 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3591 * pending. 3592 * 3593 * Note: 3594 * The work callback function may still be running on return, unless 3595 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3596 * use cancel_delayed_work_sync() to wait on it. 3597 * 3598 * This function is safe to call from any context including IRQ handler. 3599 */ 3600 bool cancel_delayed_work(struct delayed_work *dwork) 3601 { 3602 return __cancel_work(&dwork->work, true); 3603 } 3604 EXPORT_SYMBOL(cancel_delayed_work); 3605 3606 /** 3607 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3608 * @dwork: the delayed work cancel 3609 * 3610 * This is cancel_work_sync() for delayed works. 3611 * 3612 * Return: 3613 * %true if @dwork was pending, %false otherwise. 3614 */ 3615 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3616 { 3617 return __cancel_work_timer(&dwork->work, true); 3618 } 3619 EXPORT_SYMBOL(cancel_delayed_work_sync); 3620 3621 /** 3622 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3623 * @func: the function to call 3624 * 3625 * schedule_on_each_cpu() executes @func on each online CPU using the 3626 * system workqueue and blocks until all CPUs have completed. 3627 * schedule_on_each_cpu() is very slow. 3628 * 3629 * Return: 3630 * 0 on success, -errno on failure. 3631 */ 3632 int schedule_on_each_cpu(work_func_t func) 3633 { 3634 int cpu; 3635 struct work_struct __percpu *works; 3636 3637 works = alloc_percpu(struct work_struct); 3638 if (!works) 3639 return -ENOMEM; 3640 3641 cpus_read_lock(); 3642 3643 for_each_online_cpu(cpu) { 3644 struct work_struct *work = per_cpu_ptr(works, cpu); 3645 3646 INIT_WORK(work, func); 3647 schedule_work_on(cpu, work); 3648 } 3649 3650 for_each_online_cpu(cpu) 3651 flush_work(per_cpu_ptr(works, cpu)); 3652 3653 cpus_read_unlock(); 3654 free_percpu(works); 3655 return 0; 3656 } 3657 3658 /** 3659 * execute_in_process_context - reliably execute the routine with user context 3660 * @fn: the function to execute 3661 * @ew: guaranteed storage for the execute work structure (must 3662 * be available when the work executes) 3663 * 3664 * Executes the function immediately if process context is available, 3665 * otherwise schedules the function for delayed execution. 3666 * 3667 * Return: 0 - function was executed 3668 * 1 - function was scheduled for execution 3669 */ 3670 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3671 { 3672 if (!in_interrupt()) { 3673 fn(&ew->work); 3674 return 0; 3675 } 3676 3677 INIT_WORK(&ew->work, fn); 3678 schedule_work(&ew->work); 3679 3680 return 1; 3681 } 3682 EXPORT_SYMBOL_GPL(execute_in_process_context); 3683 3684 /** 3685 * free_workqueue_attrs - free a workqueue_attrs 3686 * @attrs: workqueue_attrs to free 3687 * 3688 * Undo alloc_workqueue_attrs(). 3689 */ 3690 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3691 { 3692 if (attrs) { 3693 free_cpumask_var(attrs->cpumask); 3694 kfree(attrs); 3695 } 3696 } 3697 3698 /** 3699 * alloc_workqueue_attrs - allocate a workqueue_attrs 3700 * 3701 * Allocate a new workqueue_attrs, initialize with default settings and 3702 * return it. 3703 * 3704 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3705 */ 3706 struct workqueue_attrs *alloc_workqueue_attrs(void) 3707 { 3708 struct workqueue_attrs *attrs; 3709 3710 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3711 if (!attrs) 3712 goto fail; 3713 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3714 goto fail; 3715 3716 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3717 return attrs; 3718 fail: 3719 free_workqueue_attrs(attrs); 3720 return NULL; 3721 } 3722 3723 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3724 const struct workqueue_attrs *from) 3725 { 3726 to->nice = from->nice; 3727 cpumask_copy(to->cpumask, from->cpumask); 3728 /* 3729 * Unlike hash and equality test, this function doesn't ignore 3730 * ->no_numa as it is used for both pool and wq attrs. Instead, 3731 * get_unbound_pool() explicitly clears ->no_numa after copying. 3732 */ 3733 to->no_numa = from->no_numa; 3734 } 3735 3736 /* hash value of the content of @attr */ 3737 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3738 { 3739 u32 hash = 0; 3740 3741 hash = jhash_1word(attrs->nice, hash); 3742 hash = jhash(cpumask_bits(attrs->cpumask), 3743 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3744 return hash; 3745 } 3746 3747 /* content equality test */ 3748 static bool wqattrs_equal(const struct workqueue_attrs *a, 3749 const struct workqueue_attrs *b) 3750 { 3751 if (a->nice != b->nice) 3752 return false; 3753 if (!cpumask_equal(a->cpumask, b->cpumask)) 3754 return false; 3755 return true; 3756 } 3757 3758 /** 3759 * init_worker_pool - initialize a newly zalloc'd worker_pool 3760 * @pool: worker_pool to initialize 3761 * 3762 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3763 * 3764 * Return: 0 on success, -errno on failure. Even on failure, all fields 3765 * inside @pool proper are initialized and put_unbound_pool() can be called 3766 * on @pool safely to release it. 3767 */ 3768 static int init_worker_pool(struct worker_pool *pool) 3769 { 3770 raw_spin_lock_init(&pool->lock); 3771 pool->id = -1; 3772 pool->cpu = -1; 3773 pool->node = NUMA_NO_NODE; 3774 pool->flags |= POOL_DISASSOCIATED; 3775 pool->watchdog_ts = jiffies; 3776 INIT_LIST_HEAD(&pool->worklist); 3777 INIT_LIST_HEAD(&pool->idle_list); 3778 hash_init(pool->busy_hash); 3779 3780 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3781 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 3782 3783 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3784 3785 INIT_LIST_HEAD(&pool->workers); 3786 INIT_LIST_HEAD(&pool->dying_workers); 3787 3788 ida_init(&pool->worker_ida); 3789 INIT_HLIST_NODE(&pool->hash_node); 3790 pool->refcnt = 1; 3791 3792 /* shouldn't fail above this point */ 3793 pool->attrs = alloc_workqueue_attrs(); 3794 if (!pool->attrs) 3795 return -ENOMEM; 3796 return 0; 3797 } 3798 3799 #ifdef CONFIG_LOCKDEP 3800 static void wq_init_lockdep(struct workqueue_struct *wq) 3801 { 3802 char *lock_name; 3803 3804 lockdep_register_key(&wq->key); 3805 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3806 if (!lock_name) 3807 lock_name = wq->name; 3808 3809 wq->lock_name = lock_name; 3810 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3811 } 3812 3813 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3814 { 3815 lockdep_unregister_key(&wq->key); 3816 } 3817 3818 static void wq_free_lockdep(struct workqueue_struct *wq) 3819 { 3820 if (wq->lock_name != wq->name) 3821 kfree(wq->lock_name); 3822 } 3823 #else 3824 static void wq_init_lockdep(struct workqueue_struct *wq) 3825 { 3826 } 3827 3828 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3829 { 3830 } 3831 3832 static void wq_free_lockdep(struct workqueue_struct *wq) 3833 { 3834 } 3835 #endif 3836 3837 static void rcu_free_wq(struct rcu_head *rcu) 3838 { 3839 struct workqueue_struct *wq = 3840 container_of(rcu, struct workqueue_struct, rcu); 3841 3842 wq_free_lockdep(wq); 3843 3844 if (!(wq->flags & WQ_UNBOUND)) 3845 free_percpu(wq->cpu_pwqs); 3846 else 3847 free_workqueue_attrs(wq->unbound_attrs); 3848 3849 kfree(wq); 3850 } 3851 3852 static void rcu_free_pool(struct rcu_head *rcu) 3853 { 3854 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3855 3856 ida_destroy(&pool->worker_ida); 3857 free_workqueue_attrs(pool->attrs); 3858 kfree(pool); 3859 } 3860 3861 /** 3862 * put_unbound_pool - put a worker_pool 3863 * @pool: worker_pool to put 3864 * 3865 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3866 * safe manner. get_unbound_pool() calls this function on its failure path 3867 * and this function should be able to release pools which went through, 3868 * successfully or not, init_worker_pool(). 3869 * 3870 * Should be called with wq_pool_mutex held. 3871 */ 3872 static void put_unbound_pool(struct worker_pool *pool) 3873 { 3874 DECLARE_COMPLETION_ONSTACK(detach_completion); 3875 struct list_head cull_list; 3876 struct worker *worker; 3877 3878 INIT_LIST_HEAD(&cull_list); 3879 3880 lockdep_assert_held(&wq_pool_mutex); 3881 3882 if (--pool->refcnt) 3883 return; 3884 3885 /* sanity checks */ 3886 if (WARN_ON(!(pool->cpu < 0)) || 3887 WARN_ON(!list_empty(&pool->worklist))) 3888 return; 3889 3890 /* release id and unhash */ 3891 if (pool->id >= 0) 3892 idr_remove(&worker_pool_idr, pool->id); 3893 hash_del(&pool->hash_node); 3894 3895 /* 3896 * Become the manager and destroy all workers. This prevents 3897 * @pool's workers from blocking on attach_mutex. We're the last 3898 * manager and @pool gets freed with the flag set. 3899 * 3900 * Having a concurrent manager is quite unlikely to happen as we can 3901 * only get here with 3902 * pwq->refcnt == pool->refcnt == 0 3903 * which implies no work queued to the pool, which implies no worker can 3904 * become the manager. However a worker could have taken the role of 3905 * manager before the refcnts dropped to 0, since maybe_create_worker() 3906 * drops pool->lock 3907 */ 3908 while (true) { 3909 rcuwait_wait_event(&manager_wait, 3910 !(pool->flags & POOL_MANAGER_ACTIVE), 3911 TASK_UNINTERRUPTIBLE); 3912 3913 mutex_lock(&wq_pool_attach_mutex); 3914 raw_spin_lock_irq(&pool->lock); 3915 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 3916 pool->flags |= POOL_MANAGER_ACTIVE; 3917 break; 3918 } 3919 raw_spin_unlock_irq(&pool->lock); 3920 mutex_unlock(&wq_pool_attach_mutex); 3921 } 3922 3923 while ((worker = first_idle_worker(pool))) 3924 set_worker_dying(worker, &cull_list); 3925 WARN_ON(pool->nr_workers || pool->nr_idle); 3926 raw_spin_unlock_irq(&pool->lock); 3927 3928 wake_dying_workers(&cull_list); 3929 3930 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers)) 3931 pool->detach_completion = &detach_completion; 3932 mutex_unlock(&wq_pool_attach_mutex); 3933 3934 if (pool->detach_completion) 3935 wait_for_completion(pool->detach_completion); 3936 3937 /* shut down the timers */ 3938 del_timer_sync(&pool->idle_timer); 3939 cancel_work_sync(&pool->idle_cull_work); 3940 del_timer_sync(&pool->mayday_timer); 3941 3942 /* RCU protected to allow dereferences from get_work_pool() */ 3943 call_rcu(&pool->rcu, rcu_free_pool); 3944 } 3945 3946 /** 3947 * get_unbound_pool - get a worker_pool with the specified attributes 3948 * @attrs: the attributes of the worker_pool to get 3949 * 3950 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3951 * reference count and return it. If there already is a matching 3952 * worker_pool, it will be used; otherwise, this function attempts to 3953 * create a new one. 3954 * 3955 * Should be called with wq_pool_mutex held. 3956 * 3957 * Return: On success, a worker_pool with the same attributes as @attrs. 3958 * On failure, %NULL. 3959 */ 3960 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3961 { 3962 u32 hash = wqattrs_hash(attrs); 3963 struct worker_pool *pool; 3964 int node; 3965 int target_node = NUMA_NO_NODE; 3966 3967 lockdep_assert_held(&wq_pool_mutex); 3968 3969 /* do we already have a matching pool? */ 3970 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3971 if (wqattrs_equal(pool->attrs, attrs)) { 3972 pool->refcnt++; 3973 return pool; 3974 } 3975 } 3976 3977 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3978 if (wq_numa_enabled) { 3979 for_each_node(node) { 3980 if (cpumask_subset(attrs->cpumask, 3981 wq_numa_possible_cpumask[node])) { 3982 target_node = node; 3983 break; 3984 } 3985 } 3986 } 3987 3988 /* nope, create a new one */ 3989 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3990 if (!pool || init_worker_pool(pool) < 0) 3991 goto fail; 3992 3993 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3994 copy_workqueue_attrs(pool->attrs, attrs); 3995 pool->node = target_node; 3996 3997 /* 3998 * no_numa isn't a worker_pool attribute, always clear it. See 3999 * 'struct workqueue_attrs' comments for detail. 4000 */ 4001 pool->attrs->no_numa = false; 4002 4003 if (worker_pool_assign_id(pool) < 0) 4004 goto fail; 4005 4006 /* create and start the initial worker */ 4007 if (wq_online && !create_worker(pool)) 4008 goto fail; 4009 4010 /* install */ 4011 hash_add(unbound_pool_hash, &pool->hash_node, hash); 4012 4013 return pool; 4014 fail: 4015 if (pool) 4016 put_unbound_pool(pool); 4017 return NULL; 4018 } 4019 4020 static void rcu_free_pwq(struct rcu_head *rcu) 4021 { 4022 kmem_cache_free(pwq_cache, 4023 container_of(rcu, struct pool_workqueue, rcu)); 4024 } 4025 4026 /* 4027 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 4028 * and needs to be destroyed. 4029 */ 4030 static void pwq_unbound_release_workfn(struct work_struct *work) 4031 { 4032 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 4033 unbound_release_work); 4034 struct workqueue_struct *wq = pwq->wq; 4035 struct worker_pool *pool = pwq->pool; 4036 bool is_last = false; 4037 4038 /* 4039 * when @pwq is not linked, it doesn't hold any reference to the 4040 * @wq, and @wq is invalid to access. 4041 */ 4042 if (!list_empty(&pwq->pwqs_node)) { 4043 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 4044 return; 4045 4046 mutex_lock(&wq->mutex); 4047 list_del_rcu(&pwq->pwqs_node); 4048 is_last = list_empty(&wq->pwqs); 4049 mutex_unlock(&wq->mutex); 4050 } 4051 4052 mutex_lock(&wq_pool_mutex); 4053 put_unbound_pool(pool); 4054 mutex_unlock(&wq_pool_mutex); 4055 4056 call_rcu(&pwq->rcu, rcu_free_pwq); 4057 4058 /* 4059 * If we're the last pwq going away, @wq is already dead and no one 4060 * is gonna access it anymore. Schedule RCU free. 4061 */ 4062 if (is_last) { 4063 wq_unregister_lockdep(wq); 4064 call_rcu(&wq->rcu, rcu_free_wq); 4065 } 4066 } 4067 4068 /** 4069 * pwq_adjust_max_active - update a pwq's max_active to the current setting 4070 * @pwq: target pool_workqueue 4071 * 4072 * If @pwq isn't freezing, set @pwq->max_active to the associated 4073 * workqueue's saved_max_active and activate inactive work items 4074 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 4075 */ 4076 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 4077 { 4078 struct workqueue_struct *wq = pwq->wq; 4079 bool freezable = wq->flags & WQ_FREEZABLE; 4080 unsigned long flags; 4081 4082 /* for @wq->saved_max_active */ 4083 lockdep_assert_held(&wq->mutex); 4084 4085 /* fast exit for non-freezable wqs */ 4086 if (!freezable && pwq->max_active == wq->saved_max_active) 4087 return; 4088 4089 /* this function can be called during early boot w/ irq disabled */ 4090 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 4091 4092 /* 4093 * During [un]freezing, the caller is responsible for ensuring that 4094 * this function is called at least once after @workqueue_freezing 4095 * is updated and visible. 4096 */ 4097 if (!freezable || !workqueue_freezing) { 4098 bool kick = false; 4099 4100 pwq->max_active = wq->saved_max_active; 4101 4102 while (!list_empty(&pwq->inactive_works) && 4103 pwq->nr_active < pwq->max_active) { 4104 pwq_activate_first_inactive(pwq); 4105 kick = true; 4106 } 4107 4108 /* 4109 * Need to kick a worker after thawed or an unbound wq's 4110 * max_active is bumped. In realtime scenarios, always kicking a 4111 * worker will cause interference on the isolated cpu cores, so 4112 * let's kick iff work items were activated. 4113 */ 4114 if (kick) 4115 wake_up_worker(pwq->pool); 4116 } else { 4117 pwq->max_active = 0; 4118 } 4119 4120 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 4121 } 4122 4123 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 4124 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 4125 struct worker_pool *pool) 4126 { 4127 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 4128 4129 memset(pwq, 0, sizeof(*pwq)); 4130 4131 pwq->pool = pool; 4132 pwq->wq = wq; 4133 pwq->flush_color = -1; 4134 pwq->refcnt = 1; 4135 INIT_LIST_HEAD(&pwq->inactive_works); 4136 INIT_LIST_HEAD(&pwq->pwqs_node); 4137 INIT_LIST_HEAD(&pwq->mayday_node); 4138 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 4139 } 4140 4141 /* sync @pwq with the current state of its associated wq and link it */ 4142 static void link_pwq(struct pool_workqueue *pwq) 4143 { 4144 struct workqueue_struct *wq = pwq->wq; 4145 4146 lockdep_assert_held(&wq->mutex); 4147 4148 /* may be called multiple times, ignore if already linked */ 4149 if (!list_empty(&pwq->pwqs_node)) 4150 return; 4151 4152 /* set the matching work_color */ 4153 pwq->work_color = wq->work_color; 4154 4155 /* sync max_active to the current setting */ 4156 pwq_adjust_max_active(pwq); 4157 4158 /* link in @pwq */ 4159 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 4160 } 4161 4162 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 4163 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 4164 const struct workqueue_attrs *attrs) 4165 { 4166 struct worker_pool *pool; 4167 struct pool_workqueue *pwq; 4168 4169 lockdep_assert_held(&wq_pool_mutex); 4170 4171 pool = get_unbound_pool(attrs); 4172 if (!pool) 4173 return NULL; 4174 4175 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 4176 if (!pwq) { 4177 put_unbound_pool(pool); 4178 return NULL; 4179 } 4180 4181 init_pwq(pwq, wq, pool); 4182 return pwq; 4183 } 4184 4185 /** 4186 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 4187 * @attrs: the wq_attrs of the default pwq of the target workqueue 4188 * @node: the target NUMA node 4189 * @cpu_going_down: if >= 0, the CPU to consider as offline 4190 * @cpumask: outarg, the resulting cpumask 4191 * 4192 * Calculate the cpumask a workqueue with @attrs should use on @node. If 4193 * @cpu_going_down is >= 0, that cpu is considered offline during 4194 * calculation. The result is stored in @cpumask. 4195 * 4196 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 4197 * enabled and @node has online CPUs requested by @attrs, the returned 4198 * cpumask is the intersection of the possible CPUs of @node and 4199 * @attrs->cpumask. 4200 * 4201 * The caller is responsible for ensuring that the cpumask of @node stays 4202 * stable. 4203 * 4204 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 4205 * %false if equal. 4206 */ 4207 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 4208 int cpu_going_down, cpumask_t *cpumask) 4209 { 4210 if (!wq_numa_enabled || attrs->no_numa) 4211 goto use_dfl; 4212 4213 /* does @node have any online CPUs @attrs wants? */ 4214 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 4215 if (cpu_going_down >= 0) 4216 cpumask_clear_cpu(cpu_going_down, cpumask); 4217 4218 if (cpumask_empty(cpumask)) 4219 goto use_dfl; 4220 4221 /* yeap, return possible CPUs in @node that @attrs wants */ 4222 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 4223 4224 if (cpumask_empty(cpumask)) { 4225 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 4226 "possible intersect\n"); 4227 return false; 4228 } 4229 4230 return !cpumask_equal(cpumask, attrs->cpumask); 4231 4232 use_dfl: 4233 cpumask_copy(cpumask, attrs->cpumask); 4234 return false; 4235 } 4236 4237 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 4238 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 4239 int node, 4240 struct pool_workqueue *pwq) 4241 { 4242 struct pool_workqueue *old_pwq; 4243 4244 lockdep_assert_held(&wq_pool_mutex); 4245 lockdep_assert_held(&wq->mutex); 4246 4247 /* link_pwq() can handle duplicate calls */ 4248 link_pwq(pwq); 4249 4250 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4251 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 4252 return old_pwq; 4253 } 4254 4255 /* context to store the prepared attrs & pwqs before applying */ 4256 struct apply_wqattrs_ctx { 4257 struct workqueue_struct *wq; /* target workqueue */ 4258 struct workqueue_attrs *attrs; /* attrs to apply */ 4259 struct list_head list; /* queued for batching commit */ 4260 struct pool_workqueue *dfl_pwq; 4261 struct pool_workqueue *pwq_tbl[]; 4262 }; 4263 4264 /* free the resources after success or abort */ 4265 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 4266 { 4267 if (ctx) { 4268 int node; 4269 4270 for_each_node(node) 4271 put_pwq_unlocked(ctx->pwq_tbl[node]); 4272 put_pwq_unlocked(ctx->dfl_pwq); 4273 4274 free_workqueue_attrs(ctx->attrs); 4275 4276 kfree(ctx); 4277 } 4278 } 4279 4280 /* allocate the attrs and pwqs for later installation */ 4281 static struct apply_wqattrs_ctx * 4282 apply_wqattrs_prepare(struct workqueue_struct *wq, 4283 const struct workqueue_attrs *attrs, 4284 const cpumask_var_t unbound_cpumask) 4285 { 4286 struct apply_wqattrs_ctx *ctx; 4287 struct workqueue_attrs *new_attrs, *tmp_attrs; 4288 int node; 4289 4290 lockdep_assert_held(&wq_pool_mutex); 4291 4292 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 4293 4294 new_attrs = alloc_workqueue_attrs(); 4295 tmp_attrs = alloc_workqueue_attrs(); 4296 if (!ctx || !new_attrs || !tmp_attrs) 4297 goto out_free; 4298 4299 /* 4300 * Calculate the attrs of the default pwq with unbound_cpumask 4301 * which is wq_unbound_cpumask or to set to wq_unbound_cpumask. 4302 * If the user configured cpumask doesn't overlap with the 4303 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 4304 */ 4305 copy_workqueue_attrs(new_attrs, attrs); 4306 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask); 4307 if (unlikely(cpumask_empty(new_attrs->cpumask))) 4308 cpumask_copy(new_attrs->cpumask, unbound_cpumask); 4309 4310 /* 4311 * We may create multiple pwqs with differing cpumasks. Make a 4312 * copy of @new_attrs which will be modified and used to obtain 4313 * pools. 4314 */ 4315 copy_workqueue_attrs(tmp_attrs, new_attrs); 4316 4317 /* 4318 * If something goes wrong during CPU up/down, we'll fall back to 4319 * the default pwq covering whole @attrs->cpumask. Always create 4320 * it even if we don't use it immediately. 4321 */ 4322 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 4323 if (!ctx->dfl_pwq) 4324 goto out_free; 4325 4326 for_each_node(node) { 4327 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 4328 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 4329 if (!ctx->pwq_tbl[node]) 4330 goto out_free; 4331 } else { 4332 ctx->dfl_pwq->refcnt++; 4333 ctx->pwq_tbl[node] = ctx->dfl_pwq; 4334 } 4335 } 4336 4337 /* save the user configured attrs and sanitize it. */ 4338 copy_workqueue_attrs(new_attrs, attrs); 4339 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 4340 ctx->attrs = new_attrs; 4341 4342 ctx->wq = wq; 4343 free_workqueue_attrs(tmp_attrs); 4344 return ctx; 4345 4346 out_free: 4347 free_workqueue_attrs(tmp_attrs); 4348 free_workqueue_attrs(new_attrs); 4349 apply_wqattrs_cleanup(ctx); 4350 return NULL; 4351 } 4352 4353 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 4354 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 4355 { 4356 int node; 4357 4358 /* all pwqs have been created successfully, let's install'em */ 4359 mutex_lock(&ctx->wq->mutex); 4360 4361 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 4362 4363 /* save the previous pwq and install the new one */ 4364 for_each_node(node) 4365 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 4366 ctx->pwq_tbl[node]); 4367 4368 /* @dfl_pwq might not have been used, ensure it's linked */ 4369 link_pwq(ctx->dfl_pwq); 4370 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 4371 4372 mutex_unlock(&ctx->wq->mutex); 4373 } 4374 4375 static void apply_wqattrs_lock(void) 4376 { 4377 /* CPUs should stay stable across pwq creations and installations */ 4378 cpus_read_lock(); 4379 mutex_lock(&wq_pool_mutex); 4380 } 4381 4382 static void apply_wqattrs_unlock(void) 4383 { 4384 mutex_unlock(&wq_pool_mutex); 4385 cpus_read_unlock(); 4386 } 4387 4388 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4389 const struct workqueue_attrs *attrs) 4390 { 4391 struct apply_wqattrs_ctx *ctx; 4392 4393 /* only unbound workqueues can change attributes */ 4394 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4395 return -EINVAL; 4396 4397 /* creating multiple pwqs breaks ordering guarantee */ 4398 if (!list_empty(&wq->pwqs)) { 4399 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4400 return -EINVAL; 4401 4402 wq->flags &= ~__WQ_ORDERED; 4403 } 4404 4405 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 4406 if (!ctx) 4407 return -ENOMEM; 4408 4409 /* the ctx has been prepared successfully, let's commit it */ 4410 apply_wqattrs_commit(ctx); 4411 apply_wqattrs_cleanup(ctx); 4412 4413 return 0; 4414 } 4415 4416 /** 4417 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4418 * @wq: the target workqueue 4419 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4420 * 4421 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4422 * machines, this function maps a separate pwq to each NUMA node with 4423 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4424 * NUMA node it was issued on. Older pwqs are released as in-flight work 4425 * items finish. Note that a work item which repeatedly requeues itself 4426 * back-to-back will stay on its current pwq. 4427 * 4428 * Performs GFP_KERNEL allocations. 4429 * 4430 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 4431 * 4432 * Return: 0 on success and -errno on failure. 4433 */ 4434 int apply_workqueue_attrs(struct workqueue_struct *wq, 4435 const struct workqueue_attrs *attrs) 4436 { 4437 int ret; 4438 4439 lockdep_assert_cpus_held(); 4440 4441 mutex_lock(&wq_pool_mutex); 4442 ret = apply_workqueue_attrs_locked(wq, attrs); 4443 mutex_unlock(&wq_pool_mutex); 4444 4445 return ret; 4446 } 4447 4448 /** 4449 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4450 * @wq: the target workqueue 4451 * @cpu: the CPU coming up or going down 4452 * @online: whether @cpu is coming up or going down 4453 * 4454 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4455 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4456 * @wq accordingly. 4457 * 4458 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4459 * falls back to @wq->dfl_pwq which may not be optimal but is always 4460 * correct. 4461 * 4462 * Note that when the last allowed CPU of a NUMA node goes offline for a 4463 * workqueue with a cpumask spanning multiple nodes, the workers which were 4464 * already executing the work items for the workqueue will lose their CPU 4465 * affinity and may execute on any CPU. This is similar to how per-cpu 4466 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4467 * affinity, it's the user's responsibility to flush the work item from 4468 * CPU_DOWN_PREPARE. 4469 */ 4470 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4471 bool online) 4472 { 4473 int node = cpu_to_node(cpu); 4474 int cpu_off = online ? -1 : cpu; 4475 struct pool_workqueue *old_pwq = NULL, *pwq; 4476 struct workqueue_attrs *target_attrs; 4477 cpumask_t *cpumask; 4478 4479 lockdep_assert_held(&wq_pool_mutex); 4480 4481 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4482 wq->unbound_attrs->no_numa) 4483 return; 4484 4485 /* 4486 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4487 * Let's use a preallocated one. The following buf is protected by 4488 * CPU hotplug exclusion. 4489 */ 4490 target_attrs = wq_update_unbound_numa_attrs_buf; 4491 cpumask = target_attrs->cpumask; 4492 4493 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4494 pwq = unbound_pwq_by_node(wq, node); 4495 4496 /* 4497 * Let's determine what needs to be done. If the target cpumask is 4498 * different from the default pwq's, we need to compare it to @pwq's 4499 * and create a new one if they don't match. If the target cpumask 4500 * equals the default pwq's, the default pwq should be used. 4501 */ 4502 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4503 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4504 return; 4505 } else { 4506 goto use_dfl_pwq; 4507 } 4508 4509 /* create a new pwq */ 4510 pwq = alloc_unbound_pwq(wq, target_attrs); 4511 if (!pwq) { 4512 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4513 wq->name); 4514 goto use_dfl_pwq; 4515 } 4516 4517 /* Install the new pwq. */ 4518 mutex_lock(&wq->mutex); 4519 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4520 goto out_unlock; 4521 4522 use_dfl_pwq: 4523 mutex_lock(&wq->mutex); 4524 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); 4525 get_pwq(wq->dfl_pwq); 4526 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4527 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4528 out_unlock: 4529 mutex_unlock(&wq->mutex); 4530 put_pwq_unlocked(old_pwq); 4531 } 4532 4533 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4534 { 4535 bool highpri = wq->flags & WQ_HIGHPRI; 4536 int cpu, ret; 4537 4538 if (!(wq->flags & WQ_UNBOUND)) { 4539 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4540 if (!wq->cpu_pwqs) 4541 return -ENOMEM; 4542 4543 for_each_possible_cpu(cpu) { 4544 struct pool_workqueue *pwq = 4545 per_cpu_ptr(wq->cpu_pwqs, cpu); 4546 struct worker_pool *cpu_pools = 4547 per_cpu(cpu_worker_pools, cpu); 4548 4549 init_pwq(pwq, wq, &cpu_pools[highpri]); 4550 4551 mutex_lock(&wq->mutex); 4552 link_pwq(pwq); 4553 mutex_unlock(&wq->mutex); 4554 } 4555 return 0; 4556 } 4557 4558 cpus_read_lock(); 4559 if (wq->flags & __WQ_ORDERED) { 4560 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4561 /* there should only be single pwq for ordering guarantee */ 4562 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4563 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4564 "ordering guarantee broken for workqueue %s\n", wq->name); 4565 } else { 4566 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4567 } 4568 cpus_read_unlock(); 4569 4570 return ret; 4571 } 4572 4573 static int wq_clamp_max_active(int max_active, unsigned int flags, 4574 const char *name) 4575 { 4576 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4577 4578 if (max_active < 1 || max_active > lim) 4579 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4580 max_active, name, 1, lim); 4581 4582 return clamp_val(max_active, 1, lim); 4583 } 4584 4585 /* 4586 * Workqueues which may be used during memory reclaim should have a rescuer 4587 * to guarantee forward progress. 4588 */ 4589 static int init_rescuer(struct workqueue_struct *wq) 4590 { 4591 struct worker *rescuer; 4592 int ret; 4593 4594 if (!(wq->flags & WQ_MEM_RECLAIM)) 4595 return 0; 4596 4597 rescuer = alloc_worker(NUMA_NO_NODE); 4598 if (!rescuer) { 4599 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 4600 wq->name); 4601 return -ENOMEM; 4602 } 4603 4604 rescuer->rescue_wq = wq; 4605 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4606 if (IS_ERR(rescuer->task)) { 4607 ret = PTR_ERR(rescuer->task); 4608 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 4609 wq->name, ERR_PTR(ret)); 4610 kfree(rescuer); 4611 return ret; 4612 } 4613 4614 wq->rescuer = rescuer; 4615 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4616 wake_up_process(rescuer->task); 4617 4618 return 0; 4619 } 4620 4621 __printf(1, 4) 4622 struct workqueue_struct *alloc_workqueue(const char *fmt, 4623 unsigned int flags, 4624 int max_active, ...) 4625 { 4626 size_t tbl_size = 0; 4627 va_list args; 4628 struct workqueue_struct *wq; 4629 struct pool_workqueue *pwq; 4630 4631 /* 4632 * Unbound && max_active == 1 used to imply ordered, which is no 4633 * longer the case on NUMA machines due to per-node pools. While 4634 * alloc_ordered_workqueue() is the right way to create an ordered 4635 * workqueue, keep the previous behavior to avoid subtle breakages 4636 * on NUMA. 4637 */ 4638 if ((flags & WQ_UNBOUND) && max_active == 1) 4639 flags |= __WQ_ORDERED; 4640 4641 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4642 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4643 flags |= WQ_UNBOUND; 4644 4645 /* allocate wq and format name */ 4646 if (flags & WQ_UNBOUND) 4647 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4648 4649 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4650 if (!wq) 4651 return NULL; 4652 4653 if (flags & WQ_UNBOUND) { 4654 wq->unbound_attrs = alloc_workqueue_attrs(); 4655 if (!wq->unbound_attrs) 4656 goto err_free_wq; 4657 } 4658 4659 va_start(args, max_active); 4660 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4661 va_end(args); 4662 4663 max_active = max_active ?: WQ_DFL_ACTIVE; 4664 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4665 4666 /* init wq */ 4667 wq->flags = flags; 4668 wq->saved_max_active = max_active; 4669 mutex_init(&wq->mutex); 4670 atomic_set(&wq->nr_pwqs_to_flush, 0); 4671 INIT_LIST_HEAD(&wq->pwqs); 4672 INIT_LIST_HEAD(&wq->flusher_queue); 4673 INIT_LIST_HEAD(&wq->flusher_overflow); 4674 INIT_LIST_HEAD(&wq->maydays); 4675 4676 wq_init_lockdep(wq); 4677 INIT_LIST_HEAD(&wq->list); 4678 4679 if (alloc_and_link_pwqs(wq) < 0) 4680 goto err_unreg_lockdep; 4681 4682 if (wq_online && init_rescuer(wq) < 0) 4683 goto err_destroy; 4684 4685 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4686 goto err_destroy; 4687 4688 /* 4689 * wq_pool_mutex protects global freeze state and workqueues list. 4690 * Grab it, adjust max_active and add the new @wq to workqueues 4691 * list. 4692 */ 4693 mutex_lock(&wq_pool_mutex); 4694 4695 mutex_lock(&wq->mutex); 4696 for_each_pwq(pwq, wq) 4697 pwq_adjust_max_active(pwq); 4698 mutex_unlock(&wq->mutex); 4699 4700 list_add_tail_rcu(&wq->list, &workqueues); 4701 4702 mutex_unlock(&wq_pool_mutex); 4703 4704 return wq; 4705 4706 err_unreg_lockdep: 4707 wq_unregister_lockdep(wq); 4708 wq_free_lockdep(wq); 4709 err_free_wq: 4710 free_workqueue_attrs(wq->unbound_attrs); 4711 kfree(wq); 4712 return NULL; 4713 err_destroy: 4714 destroy_workqueue(wq); 4715 return NULL; 4716 } 4717 EXPORT_SYMBOL_GPL(alloc_workqueue); 4718 4719 static bool pwq_busy(struct pool_workqueue *pwq) 4720 { 4721 int i; 4722 4723 for (i = 0; i < WORK_NR_COLORS; i++) 4724 if (pwq->nr_in_flight[i]) 4725 return true; 4726 4727 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4728 return true; 4729 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) 4730 return true; 4731 4732 return false; 4733 } 4734 4735 /** 4736 * destroy_workqueue - safely terminate a workqueue 4737 * @wq: target workqueue 4738 * 4739 * Safely destroy a workqueue. All work currently pending will be done first. 4740 */ 4741 void destroy_workqueue(struct workqueue_struct *wq) 4742 { 4743 struct pool_workqueue *pwq; 4744 int node; 4745 4746 /* 4747 * Remove it from sysfs first so that sanity check failure doesn't 4748 * lead to sysfs name conflicts. 4749 */ 4750 workqueue_sysfs_unregister(wq); 4751 4752 /* mark the workqueue destruction is in progress */ 4753 mutex_lock(&wq->mutex); 4754 wq->flags |= __WQ_DESTROYING; 4755 mutex_unlock(&wq->mutex); 4756 4757 /* drain it before proceeding with destruction */ 4758 drain_workqueue(wq); 4759 4760 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4761 if (wq->rescuer) { 4762 struct worker *rescuer = wq->rescuer; 4763 4764 /* this prevents new queueing */ 4765 raw_spin_lock_irq(&wq_mayday_lock); 4766 wq->rescuer = NULL; 4767 raw_spin_unlock_irq(&wq_mayday_lock); 4768 4769 /* rescuer will empty maydays list before exiting */ 4770 kthread_stop(rescuer->task); 4771 kfree(rescuer); 4772 } 4773 4774 /* 4775 * Sanity checks - grab all the locks so that we wait for all 4776 * in-flight operations which may do put_pwq(). 4777 */ 4778 mutex_lock(&wq_pool_mutex); 4779 mutex_lock(&wq->mutex); 4780 for_each_pwq(pwq, wq) { 4781 raw_spin_lock_irq(&pwq->pool->lock); 4782 if (WARN_ON(pwq_busy(pwq))) { 4783 pr_warn("%s: %s has the following busy pwq\n", 4784 __func__, wq->name); 4785 show_pwq(pwq); 4786 raw_spin_unlock_irq(&pwq->pool->lock); 4787 mutex_unlock(&wq->mutex); 4788 mutex_unlock(&wq_pool_mutex); 4789 show_one_workqueue(wq); 4790 return; 4791 } 4792 raw_spin_unlock_irq(&pwq->pool->lock); 4793 } 4794 mutex_unlock(&wq->mutex); 4795 4796 /* 4797 * wq list is used to freeze wq, remove from list after 4798 * flushing is complete in case freeze races us. 4799 */ 4800 list_del_rcu(&wq->list); 4801 mutex_unlock(&wq_pool_mutex); 4802 4803 if (!(wq->flags & WQ_UNBOUND)) { 4804 wq_unregister_lockdep(wq); 4805 /* 4806 * The base ref is never dropped on per-cpu pwqs. Directly 4807 * schedule RCU free. 4808 */ 4809 call_rcu(&wq->rcu, rcu_free_wq); 4810 } else { 4811 /* 4812 * We're the sole accessor of @wq at this point. Directly 4813 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4814 * @wq will be freed when the last pwq is released. 4815 */ 4816 for_each_node(node) { 4817 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4818 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4819 put_pwq_unlocked(pwq); 4820 } 4821 4822 /* 4823 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4824 * put. Don't access it afterwards. 4825 */ 4826 pwq = wq->dfl_pwq; 4827 wq->dfl_pwq = NULL; 4828 put_pwq_unlocked(pwq); 4829 } 4830 } 4831 EXPORT_SYMBOL_GPL(destroy_workqueue); 4832 4833 /** 4834 * workqueue_set_max_active - adjust max_active of a workqueue 4835 * @wq: target workqueue 4836 * @max_active: new max_active value. 4837 * 4838 * Set max_active of @wq to @max_active. 4839 * 4840 * CONTEXT: 4841 * Don't call from IRQ context. 4842 */ 4843 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4844 { 4845 struct pool_workqueue *pwq; 4846 4847 /* disallow meddling with max_active for ordered workqueues */ 4848 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4849 return; 4850 4851 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4852 4853 mutex_lock(&wq->mutex); 4854 4855 wq->flags &= ~__WQ_ORDERED; 4856 wq->saved_max_active = max_active; 4857 4858 for_each_pwq(pwq, wq) 4859 pwq_adjust_max_active(pwq); 4860 4861 mutex_unlock(&wq->mutex); 4862 } 4863 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4864 4865 /** 4866 * current_work - retrieve %current task's work struct 4867 * 4868 * Determine if %current task is a workqueue worker and what it's working on. 4869 * Useful to find out the context that the %current task is running in. 4870 * 4871 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4872 */ 4873 struct work_struct *current_work(void) 4874 { 4875 struct worker *worker = current_wq_worker(); 4876 4877 return worker ? worker->current_work : NULL; 4878 } 4879 EXPORT_SYMBOL(current_work); 4880 4881 /** 4882 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4883 * 4884 * Determine whether %current is a workqueue rescuer. Can be used from 4885 * work functions to determine whether it's being run off the rescuer task. 4886 * 4887 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4888 */ 4889 bool current_is_workqueue_rescuer(void) 4890 { 4891 struct worker *worker = current_wq_worker(); 4892 4893 return worker && worker->rescue_wq; 4894 } 4895 4896 /** 4897 * workqueue_congested - test whether a workqueue is congested 4898 * @cpu: CPU in question 4899 * @wq: target workqueue 4900 * 4901 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4902 * no synchronization around this function and the test result is 4903 * unreliable and only useful as advisory hints or for debugging. 4904 * 4905 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4906 * Note that both per-cpu and unbound workqueues may be associated with 4907 * multiple pool_workqueues which have separate congested states. A 4908 * workqueue being congested on one CPU doesn't mean the workqueue is also 4909 * contested on other CPUs / NUMA nodes. 4910 * 4911 * Return: 4912 * %true if congested, %false otherwise. 4913 */ 4914 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4915 { 4916 struct pool_workqueue *pwq; 4917 bool ret; 4918 4919 rcu_read_lock(); 4920 preempt_disable(); 4921 4922 if (cpu == WORK_CPU_UNBOUND) 4923 cpu = smp_processor_id(); 4924 4925 if (!(wq->flags & WQ_UNBOUND)) 4926 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4927 else 4928 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4929 4930 ret = !list_empty(&pwq->inactive_works); 4931 preempt_enable(); 4932 rcu_read_unlock(); 4933 4934 return ret; 4935 } 4936 EXPORT_SYMBOL_GPL(workqueue_congested); 4937 4938 /** 4939 * work_busy - test whether a work is currently pending or running 4940 * @work: the work to be tested 4941 * 4942 * Test whether @work is currently pending or running. There is no 4943 * synchronization around this function and the test result is 4944 * unreliable and only useful as advisory hints or for debugging. 4945 * 4946 * Return: 4947 * OR'd bitmask of WORK_BUSY_* bits. 4948 */ 4949 unsigned int work_busy(struct work_struct *work) 4950 { 4951 struct worker_pool *pool; 4952 unsigned long flags; 4953 unsigned int ret = 0; 4954 4955 if (work_pending(work)) 4956 ret |= WORK_BUSY_PENDING; 4957 4958 rcu_read_lock(); 4959 pool = get_work_pool(work); 4960 if (pool) { 4961 raw_spin_lock_irqsave(&pool->lock, flags); 4962 if (find_worker_executing_work(pool, work)) 4963 ret |= WORK_BUSY_RUNNING; 4964 raw_spin_unlock_irqrestore(&pool->lock, flags); 4965 } 4966 rcu_read_unlock(); 4967 4968 return ret; 4969 } 4970 EXPORT_SYMBOL_GPL(work_busy); 4971 4972 /** 4973 * set_worker_desc - set description for the current work item 4974 * @fmt: printf-style format string 4975 * @...: arguments for the format string 4976 * 4977 * This function can be called by a running work function to describe what 4978 * the work item is about. If the worker task gets dumped, this 4979 * information will be printed out together to help debugging. The 4980 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4981 */ 4982 void set_worker_desc(const char *fmt, ...) 4983 { 4984 struct worker *worker = current_wq_worker(); 4985 va_list args; 4986 4987 if (worker) { 4988 va_start(args, fmt); 4989 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4990 va_end(args); 4991 } 4992 } 4993 EXPORT_SYMBOL_GPL(set_worker_desc); 4994 4995 /** 4996 * print_worker_info - print out worker information and description 4997 * @log_lvl: the log level to use when printing 4998 * @task: target task 4999 * 5000 * If @task is a worker and currently executing a work item, print out the 5001 * name of the workqueue being serviced and worker description set with 5002 * set_worker_desc() by the currently executing work item. 5003 * 5004 * This function can be safely called on any task as long as the 5005 * task_struct itself is accessible. While safe, this function isn't 5006 * synchronized and may print out mixups or garbages of limited length. 5007 */ 5008 void print_worker_info(const char *log_lvl, struct task_struct *task) 5009 { 5010 work_func_t *fn = NULL; 5011 char name[WQ_NAME_LEN] = { }; 5012 char desc[WORKER_DESC_LEN] = { }; 5013 struct pool_workqueue *pwq = NULL; 5014 struct workqueue_struct *wq = NULL; 5015 struct worker *worker; 5016 5017 if (!(task->flags & PF_WQ_WORKER)) 5018 return; 5019 5020 /* 5021 * This function is called without any synchronization and @task 5022 * could be in any state. Be careful with dereferences. 5023 */ 5024 worker = kthread_probe_data(task); 5025 5026 /* 5027 * Carefully copy the associated workqueue's workfn, name and desc. 5028 * Keep the original last '\0' in case the original is garbage. 5029 */ 5030 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 5031 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 5032 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 5033 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 5034 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 5035 5036 if (fn || name[0] || desc[0]) { 5037 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 5038 if (strcmp(name, desc)) 5039 pr_cont(" (%s)", desc); 5040 pr_cont("\n"); 5041 } 5042 } 5043 5044 static void pr_cont_pool_info(struct worker_pool *pool) 5045 { 5046 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 5047 if (pool->node != NUMA_NO_NODE) 5048 pr_cont(" node=%d", pool->node); 5049 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 5050 } 5051 5052 struct pr_cont_work_struct { 5053 bool comma; 5054 work_func_t func; 5055 long ctr; 5056 }; 5057 5058 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 5059 { 5060 if (!pcwsp->ctr) 5061 goto out_record; 5062 if (func == pcwsp->func) { 5063 pcwsp->ctr++; 5064 return; 5065 } 5066 if (pcwsp->ctr == 1) 5067 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 5068 else 5069 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 5070 pcwsp->ctr = 0; 5071 out_record: 5072 if ((long)func == -1L) 5073 return; 5074 pcwsp->comma = comma; 5075 pcwsp->func = func; 5076 pcwsp->ctr = 1; 5077 } 5078 5079 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 5080 { 5081 if (work->func == wq_barrier_func) { 5082 struct wq_barrier *barr; 5083 5084 barr = container_of(work, struct wq_barrier, work); 5085 5086 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 5087 pr_cont("%s BAR(%d)", comma ? "," : "", 5088 task_pid_nr(barr->task)); 5089 } else { 5090 if (!comma) 5091 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 5092 pr_cont_work_flush(comma, work->func, pcwsp); 5093 } 5094 } 5095 5096 static void show_pwq(struct pool_workqueue *pwq) 5097 { 5098 struct pr_cont_work_struct pcws = { .ctr = 0, }; 5099 struct worker_pool *pool = pwq->pool; 5100 struct work_struct *work; 5101 struct worker *worker; 5102 bool has_in_flight = false, has_pending = false; 5103 int bkt; 5104 5105 pr_info(" pwq %d:", pool->id); 5106 pr_cont_pool_info(pool); 5107 5108 pr_cont(" active=%d/%d refcnt=%d%s\n", 5109 pwq->nr_active, pwq->max_active, pwq->refcnt, 5110 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 5111 5112 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 5113 if (worker->current_pwq == pwq) { 5114 has_in_flight = true; 5115 break; 5116 } 5117 } 5118 if (has_in_flight) { 5119 bool comma = false; 5120 5121 pr_info(" in-flight:"); 5122 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 5123 if (worker->current_pwq != pwq) 5124 continue; 5125 5126 pr_cont("%s %d%s:%ps", comma ? "," : "", 5127 task_pid_nr(worker->task), 5128 worker->rescue_wq ? "(RESCUER)" : "", 5129 worker->current_func); 5130 list_for_each_entry(work, &worker->scheduled, entry) 5131 pr_cont_work(false, work, &pcws); 5132 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5133 comma = true; 5134 } 5135 pr_cont("\n"); 5136 } 5137 5138 list_for_each_entry(work, &pool->worklist, entry) { 5139 if (get_work_pwq(work) == pwq) { 5140 has_pending = true; 5141 break; 5142 } 5143 } 5144 if (has_pending) { 5145 bool comma = false; 5146 5147 pr_info(" pending:"); 5148 list_for_each_entry(work, &pool->worklist, entry) { 5149 if (get_work_pwq(work) != pwq) 5150 continue; 5151 5152 pr_cont_work(comma, work, &pcws); 5153 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 5154 } 5155 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5156 pr_cont("\n"); 5157 } 5158 5159 if (!list_empty(&pwq->inactive_works)) { 5160 bool comma = false; 5161 5162 pr_info(" inactive:"); 5163 list_for_each_entry(work, &pwq->inactive_works, entry) { 5164 pr_cont_work(comma, work, &pcws); 5165 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 5166 } 5167 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5168 pr_cont("\n"); 5169 } 5170 } 5171 5172 /** 5173 * show_one_workqueue - dump state of specified workqueue 5174 * @wq: workqueue whose state will be printed 5175 */ 5176 void show_one_workqueue(struct workqueue_struct *wq) 5177 { 5178 struct pool_workqueue *pwq; 5179 bool idle = true; 5180 unsigned long flags; 5181 5182 for_each_pwq(pwq, wq) { 5183 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 5184 idle = false; 5185 break; 5186 } 5187 } 5188 if (idle) /* Nothing to print for idle workqueue */ 5189 return; 5190 5191 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 5192 5193 for_each_pwq(pwq, wq) { 5194 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 5195 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 5196 /* 5197 * Defer printing to avoid deadlocks in console 5198 * drivers that queue work while holding locks 5199 * also taken in their write paths. 5200 */ 5201 printk_deferred_enter(); 5202 show_pwq(pwq); 5203 printk_deferred_exit(); 5204 } 5205 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 5206 /* 5207 * We could be printing a lot from atomic context, e.g. 5208 * sysrq-t -> show_all_workqueues(). Avoid triggering 5209 * hard lockup. 5210 */ 5211 touch_nmi_watchdog(); 5212 } 5213 5214 } 5215 5216 /** 5217 * show_one_worker_pool - dump state of specified worker pool 5218 * @pool: worker pool whose state will be printed 5219 */ 5220 static void show_one_worker_pool(struct worker_pool *pool) 5221 { 5222 struct worker *worker; 5223 bool first = true; 5224 unsigned long flags; 5225 unsigned long hung = 0; 5226 5227 raw_spin_lock_irqsave(&pool->lock, flags); 5228 if (pool->nr_workers == pool->nr_idle) 5229 goto next_pool; 5230 5231 /* How long the first pending work is waiting for a worker. */ 5232 if (!list_empty(&pool->worklist)) 5233 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 5234 5235 /* 5236 * Defer printing to avoid deadlocks in console drivers that 5237 * queue work while holding locks also taken in their write 5238 * paths. 5239 */ 5240 printk_deferred_enter(); 5241 pr_info("pool %d:", pool->id); 5242 pr_cont_pool_info(pool); 5243 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 5244 if (pool->manager) 5245 pr_cont(" manager: %d", 5246 task_pid_nr(pool->manager->task)); 5247 list_for_each_entry(worker, &pool->idle_list, entry) { 5248 pr_cont(" %s%d", first ? "idle: " : "", 5249 task_pid_nr(worker->task)); 5250 first = false; 5251 } 5252 pr_cont("\n"); 5253 printk_deferred_exit(); 5254 next_pool: 5255 raw_spin_unlock_irqrestore(&pool->lock, flags); 5256 /* 5257 * We could be printing a lot from atomic context, e.g. 5258 * sysrq-t -> show_all_workqueues(). Avoid triggering 5259 * hard lockup. 5260 */ 5261 touch_nmi_watchdog(); 5262 5263 } 5264 5265 /** 5266 * show_all_workqueues - dump workqueue state 5267 * 5268 * Called from a sysrq handler and prints out all busy workqueues and pools. 5269 */ 5270 void show_all_workqueues(void) 5271 { 5272 struct workqueue_struct *wq; 5273 struct worker_pool *pool; 5274 int pi; 5275 5276 rcu_read_lock(); 5277 5278 pr_info("Showing busy workqueues and worker pools:\n"); 5279 5280 list_for_each_entry_rcu(wq, &workqueues, list) 5281 show_one_workqueue(wq); 5282 5283 for_each_pool(pool, pi) 5284 show_one_worker_pool(pool); 5285 5286 rcu_read_unlock(); 5287 } 5288 5289 /** 5290 * show_freezable_workqueues - dump freezable workqueue state 5291 * 5292 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 5293 * still busy. 5294 */ 5295 void show_freezable_workqueues(void) 5296 { 5297 struct workqueue_struct *wq; 5298 5299 rcu_read_lock(); 5300 5301 pr_info("Showing freezable workqueues that are still busy:\n"); 5302 5303 list_for_each_entry_rcu(wq, &workqueues, list) { 5304 if (!(wq->flags & WQ_FREEZABLE)) 5305 continue; 5306 show_one_workqueue(wq); 5307 } 5308 5309 rcu_read_unlock(); 5310 } 5311 5312 /* used to show worker information through /proc/PID/{comm,stat,status} */ 5313 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 5314 { 5315 int off; 5316 5317 /* always show the actual comm */ 5318 off = strscpy(buf, task->comm, size); 5319 if (off < 0) 5320 return; 5321 5322 /* stabilize PF_WQ_WORKER and worker pool association */ 5323 mutex_lock(&wq_pool_attach_mutex); 5324 5325 if (task->flags & PF_WQ_WORKER) { 5326 struct worker *worker = kthread_data(task); 5327 struct worker_pool *pool = worker->pool; 5328 5329 if (pool) { 5330 raw_spin_lock_irq(&pool->lock); 5331 /* 5332 * ->desc tracks information (wq name or 5333 * set_worker_desc()) for the latest execution. If 5334 * current, prepend '+', otherwise '-'. 5335 */ 5336 if (worker->desc[0] != '\0') { 5337 if (worker->current_work) 5338 scnprintf(buf + off, size - off, "+%s", 5339 worker->desc); 5340 else 5341 scnprintf(buf + off, size - off, "-%s", 5342 worker->desc); 5343 } 5344 raw_spin_unlock_irq(&pool->lock); 5345 } 5346 } 5347 5348 mutex_unlock(&wq_pool_attach_mutex); 5349 } 5350 5351 #ifdef CONFIG_SMP 5352 5353 /* 5354 * CPU hotplug. 5355 * 5356 * There are two challenges in supporting CPU hotplug. Firstly, there 5357 * are a lot of assumptions on strong associations among work, pwq and 5358 * pool which make migrating pending and scheduled works very 5359 * difficult to implement without impacting hot paths. Secondly, 5360 * worker pools serve mix of short, long and very long running works making 5361 * blocked draining impractical. 5362 * 5363 * This is solved by allowing the pools to be disassociated from the CPU 5364 * running as an unbound one and allowing it to be reattached later if the 5365 * cpu comes back online. 5366 */ 5367 5368 static void unbind_workers(int cpu) 5369 { 5370 struct worker_pool *pool; 5371 struct worker *worker; 5372 5373 for_each_cpu_worker_pool(pool, cpu) { 5374 mutex_lock(&wq_pool_attach_mutex); 5375 raw_spin_lock_irq(&pool->lock); 5376 5377 /* 5378 * We've blocked all attach/detach operations. Make all workers 5379 * unbound and set DISASSOCIATED. Before this, all workers 5380 * must be on the cpu. After this, they may become diasporas. 5381 * And the preemption disabled section in their sched callbacks 5382 * are guaranteed to see WORKER_UNBOUND since the code here 5383 * is on the same cpu. 5384 */ 5385 for_each_pool_worker(worker, pool) 5386 worker->flags |= WORKER_UNBOUND; 5387 5388 pool->flags |= POOL_DISASSOCIATED; 5389 5390 /* 5391 * The handling of nr_running in sched callbacks are disabled 5392 * now. Zap nr_running. After this, nr_running stays zero and 5393 * need_more_worker() and keep_working() are always true as 5394 * long as the worklist is not empty. This pool now behaves as 5395 * an unbound (in terms of concurrency management) pool which 5396 * are served by workers tied to the pool. 5397 */ 5398 pool->nr_running = 0; 5399 5400 /* 5401 * With concurrency management just turned off, a busy 5402 * worker blocking could lead to lengthy stalls. Kick off 5403 * unbound chain execution of currently pending work items. 5404 */ 5405 wake_up_worker(pool); 5406 5407 raw_spin_unlock_irq(&pool->lock); 5408 5409 for_each_pool_worker(worker, pool) 5410 unbind_worker(worker); 5411 5412 mutex_unlock(&wq_pool_attach_mutex); 5413 } 5414 } 5415 5416 /** 5417 * rebind_workers - rebind all workers of a pool to the associated CPU 5418 * @pool: pool of interest 5419 * 5420 * @pool->cpu is coming online. Rebind all workers to the CPU. 5421 */ 5422 static void rebind_workers(struct worker_pool *pool) 5423 { 5424 struct worker *worker; 5425 5426 lockdep_assert_held(&wq_pool_attach_mutex); 5427 5428 /* 5429 * Restore CPU affinity of all workers. As all idle workers should 5430 * be on the run-queue of the associated CPU before any local 5431 * wake-ups for concurrency management happen, restore CPU affinity 5432 * of all workers first and then clear UNBOUND. As we're called 5433 * from CPU_ONLINE, the following shouldn't fail. 5434 */ 5435 for_each_pool_worker(worker, pool) { 5436 kthread_set_per_cpu(worker->task, pool->cpu); 5437 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 5438 pool->attrs->cpumask) < 0); 5439 } 5440 5441 raw_spin_lock_irq(&pool->lock); 5442 5443 pool->flags &= ~POOL_DISASSOCIATED; 5444 5445 for_each_pool_worker(worker, pool) { 5446 unsigned int worker_flags = worker->flags; 5447 5448 /* 5449 * We want to clear UNBOUND but can't directly call 5450 * worker_clr_flags() or adjust nr_running. Atomically 5451 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 5452 * @worker will clear REBOUND using worker_clr_flags() when 5453 * it initiates the next execution cycle thus restoring 5454 * concurrency management. Note that when or whether 5455 * @worker clears REBOUND doesn't affect correctness. 5456 * 5457 * WRITE_ONCE() is necessary because @worker->flags may be 5458 * tested without holding any lock in 5459 * wq_worker_running(). Without it, NOT_RUNNING test may 5460 * fail incorrectly leading to premature concurrency 5461 * management operations. 5462 */ 5463 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 5464 worker_flags |= WORKER_REBOUND; 5465 worker_flags &= ~WORKER_UNBOUND; 5466 WRITE_ONCE(worker->flags, worker_flags); 5467 } 5468 5469 raw_spin_unlock_irq(&pool->lock); 5470 } 5471 5472 /** 5473 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 5474 * @pool: unbound pool of interest 5475 * @cpu: the CPU which is coming up 5476 * 5477 * An unbound pool may end up with a cpumask which doesn't have any online 5478 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5479 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5480 * online CPU before, cpus_allowed of all its workers should be restored. 5481 */ 5482 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5483 { 5484 static cpumask_t cpumask; 5485 struct worker *worker; 5486 5487 lockdep_assert_held(&wq_pool_attach_mutex); 5488 5489 /* is @cpu allowed for @pool? */ 5490 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5491 return; 5492 5493 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5494 5495 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5496 for_each_pool_worker(worker, pool) 5497 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5498 } 5499 5500 int workqueue_prepare_cpu(unsigned int cpu) 5501 { 5502 struct worker_pool *pool; 5503 5504 for_each_cpu_worker_pool(pool, cpu) { 5505 if (pool->nr_workers) 5506 continue; 5507 if (!create_worker(pool)) 5508 return -ENOMEM; 5509 } 5510 return 0; 5511 } 5512 5513 int workqueue_online_cpu(unsigned int cpu) 5514 { 5515 struct worker_pool *pool; 5516 struct workqueue_struct *wq; 5517 int pi; 5518 5519 mutex_lock(&wq_pool_mutex); 5520 5521 for_each_pool(pool, pi) { 5522 mutex_lock(&wq_pool_attach_mutex); 5523 5524 if (pool->cpu == cpu) 5525 rebind_workers(pool); 5526 else if (pool->cpu < 0) 5527 restore_unbound_workers_cpumask(pool, cpu); 5528 5529 mutex_unlock(&wq_pool_attach_mutex); 5530 } 5531 5532 /* update NUMA affinity of unbound workqueues */ 5533 list_for_each_entry(wq, &workqueues, list) 5534 wq_update_unbound_numa(wq, cpu, true); 5535 5536 mutex_unlock(&wq_pool_mutex); 5537 return 0; 5538 } 5539 5540 int workqueue_offline_cpu(unsigned int cpu) 5541 { 5542 struct workqueue_struct *wq; 5543 5544 /* unbinding per-cpu workers should happen on the local CPU */ 5545 if (WARN_ON(cpu != smp_processor_id())) 5546 return -1; 5547 5548 unbind_workers(cpu); 5549 5550 /* update NUMA affinity of unbound workqueues */ 5551 mutex_lock(&wq_pool_mutex); 5552 list_for_each_entry(wq, &workqueues, list) 5553 wq_update_unbound_numa(wq, cpu, false); 5554 mutex_unlock(&wq_pool_mutex); 5555 5556 return 0; 5557 } 5558 5559 struct work_for_cpu { 5560 struct work_struct work; 5561 long (*fn)(void *); 5562 void *arg; 5563 long ret; 5564 }; 5565 5566 static void work_for_cpu_fn(struct work_struct *work) 5567 { 5568 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5569 5570 wfc->ret = wfc->fn(wfc->arg); 5571 } 5572 5573 /** 5574 * work_on_cpu - run a function in thread context on a particular cpu 5575 * @cpu: the cpu to run on 5576 * @fn: the function to run 5577 * @arg: the function arg 5578 * 5579 * It is up to the caller to ensure that the cpu doesn't go offline. 5580 * The caller must not hold any locks which would prevent @fn from completing. 5581 * 5582 * Return: The value @fn returns. 5583 */ 5584 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5585 { 5586 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5587 5588 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5589 schedule_work_on(cpu, &wfc.work); 5590 flush_work(&wfc.work); 5591 destroy_work_on_stack(&wfc.work); 5592 return wfc.ret; 5593 } 5594 EXPORT_SYMBOL_GPL(work_on_cpu); 5595 5596 /** 5597 * work_on_cpu_safe - run a function in thread context on a particular cpu 5598 * @cpu: the cpu to run on 5599 * @fn: the function to run 5600 * @arg: the function argument 5601 * 5602 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5603 * any locks which would prevent @fn from completing. 5604 * 5605 * Return: The value @fn returns. 5606 */ 5607 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5608 { 5609 long ret = -ENODEV; 5610 5611 cpus_read_lock(); 5612 if (cpu_online(cpu)) 5613 ret = work_on_cpu(cpu, fn, arg); 5614 cpus_read_unlock(); 5615 return ret; 5616 } 5617 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5618 #endif /* CONFIG_SMP */ 5619 5620 #ifdef CONFIG_FREEZER 5621 5622 /** 5623 * freeze_workqueues_begin - begin freezing workqueues 5624 * 5625 * Start freezing workqueues. After this function returns, all freezable 5626 * workqueues will queue new works to their inactive_works list instead of 5627 * pool->worklist. 5628 * 5629 * CONTEXT: 5630 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5631 */ 5632 void freeze_workqueues_begin(void) 5633 { 5634 struct workqueue_struct *wq; 5635 struct pool_workqueue *pwq; 5636 5637 mutex_lock(&wq_pool_mutex); 5638 5639 WARN_ON_ONCE(workqueue_freezing); 5640 workqueue_freezing = true; 5641 5642 list_for_each_entry(wq, &workqueues, list) { 5643 mutex_lock(&wq->mutex); 5644 for_each_pwq(pwq, wq) 5645 pwq_adjust_max_active(pwq); 5646 mutex_unlock(&wq->mutex); 5647 } 5648 5649 mutex_unlock(&wq_pool_mutex); 5650 } 5651 5652 /** 5653 * freeze_workqueues_busy - are freezable workqueues still busy? 5654 * 5655 * Check whether freezing is complete. This function must be called 5656 * between freeze_workqueues_begin() and thaw_workqueues(). 5657 * 5658 * CONTEXT: 5659 * Grabs and releases wq_pool_mutex. 5660 * 5661 * Return: 5662 * %true if some freezable workqueues are still busy. %false if freezing 5663 * is complete. 5664 */ 5665 bool freeze_workqueues_busy(void) 5666 { 5667 bool busy = false; 5668 struct workqueue_struct *wq; 5669 struct pool_workqueue *pwq; 5670 5671 mutex_lock(&wq_pool_mutex); 5672 5673 WARN_ON_ONCE(!workqueue_freezing); 5674 5675 list_for_each_entry(wq, &workqueues, list) { 5676 if (!(wq->flags & WQ_FREEZABLE)) 5677 continue; 5678 /* 5679 * nr_active is monotonically decreasing. It's safe 5680 * to peek without lock. 5681 */ 5682 rcu_read_lock(); 5683 for_each_pwq(pwq, wq) { 5684 WARN_ON_ONCE(pwq->nr_active < 0); 5685 if (pwq->nr_active) { 5686 busy = true; 5687 rcu_read_unlock(); 5688 goto out_unlock; 5689 } 5690 } 5691 rcu_read_unlock(); 5692 } 5693 out_unlock: 5694 mutex_unlock(&wq_pool_mutex); 5695 return busy; 5696 } 5697 5698 /** 5699 * thaw_workqueues - thaw workqueues 5700 * 5701 * Thaw workqueues. Normal queueing is restored and all collected 5702 * frozen works are transferred to their respective pool worklists. 5703 * 5704 * CONTEXT: 5705 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5706 */ 5707 void thaw_workqueues(void) 5708 { 5709 struct workqueue_struct *wq; 5710 struct pool_workqueue *pwq; 5711 5712 mutex_lock(&wq_pool_mutex); 5713 5714 if (!workqueue_freezing) 5715 goto out_unlock; 5716 5717 workqueue_freezing = false; 5718 5719 /* restore max_active and repopulate worklist */ 5720 list_for_each_entry(wq, &workqueues, list) { 5721 mutex_lock(&wq->mutex); 5722 for_each_pwq(pwq, wq) 5723 pwq_adjust_max_active(pwq); 5724 mutex_unlock(&wq->mutex); 5725 } 5726 5727 out_unlock: 5728 mutex_unlock(&wq_pool_mutex); 5729 } 5730 #endif /* CONFIG_FREEZER */ 5731 5732 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 5733 { 5734 LIST_HEAD(ctxs); 5735 int ret = 0; 5736 struct workqueue_struct *wq; 5737 struct apply_wqattrs_ctx *ctx, *n; 5738 5739 lockdep_assert_held(&wq_pool_mutex); 5740 5741 list_for_each_entry(wq, &workqueues, list) { 5742 if (!(wq->flags & WQ_UNBOUND)) 5743 continue; 5744 /* creating multiple pwqs breaks ordering guarantee */ 5745 if (wq->flags & __WQ_ORDERED) 5746 continue; 5747 5748 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 5749 if (!ctx) { 5750 ret = -ENOMEM; 5751 break; 5752 } 5753 5754 list_add_tail(&ctx->list, &ctxs); 5755 } 5756 5757 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5758 if (!ret) 5759 apply_wqattrs_commit(ctx); 5760 apply_wqattrs_cleanup(ctx); 5761 } 5762 5763 if (!ret) { 5764 mutex_lock(&wq_pool_attach_mutex); 5765 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 5766 mutex_unlock(&wq_pool_attach_mutex); 5767 } 5768 return ret; 5769 } 5770 5771 /** 5772 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5773 * @cpumask: the cpumask to set 5774 * 5775 * The low-level workqueues cpumask is a global cpumask that limits 5776 * the affinity of all unbound workqueues. This function check the @cpumask 5777 * and apply it to all unbound workqueues and updates all pwqs of them. 5778 * 5779 * Return: 0 - Success 5780 * -EINVAL - Invalid @cpumask 5781 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5782 */ 5783 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5784 { 5785 int ret = -EINVAL; 5786 5787 /* 5788 * Not excluding isolated cpus on purpose. 5789 * If the user wishes to include them, we allow that. 5790 */ 5791 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5792 if (!cpumask_empty(cpumask)) { 5793 apply_wqattrs_lock(); 5794 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 5795 ret = 0; 5796 goto out_unlock; 5797 } 5798 5799 ret = workqueue_apply_unbound_cpumask(cpumask); 5800 5801 out_unlock: 5802 apply_wqattrs_unlock(); 5803 } 5804 5805 return ret; 5806 } 5807 5808 #ifdef CONFIG_SYSFS 5809 /* 5810 * Workqueues with WQ_SYSFS flag set is visible to userland via 5811 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5812 * following attributes. 5813 * 5814 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5815 * max_active RW int : maximum number of in-flight work items 5816 * 5817 * Unbound workqueues have the following extra attributes. 5818 * 5819 * pool_ids RO int : the associated pool IDs for each node 5820 * nice RW int : nice value of the workers 5821 * cpumask RW mask : bitmask of allowed CPUs for the workers 5822 * numa RW bool : whether enable NUMA affinity 5823 */ 5824 struct wq_device { 5825 struct workqueue_struct *wq; 5826 struct device dev; 5827 }; 5828 5829 static struct workqueue_struct *dev_to_wq(struct device *dev) 5830 { 5831 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5832 5833 return wq_dev->wq; 5834 } 5835 5836 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5837 char *buf) 5838 { 5839 struct workqueue_struct *wq = dev_to_wq(dev); 5840 5841 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5842 } 5843 static DEVICE_ATTR_RO(per_cpu); 5844 5845 static ssize_t max_active_show(struct device *dev, 5846 struct device_attribute *attr, char *buf) 5847 { 5848 struct workqueue_struct *wq = dev_to_wq(dev); 5849 5850 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5851 } 5852 5853 static ssize_t max_active_store(struct device *dev, 5854 struct device_attribute *attr, const char *buf, 5855 size_t count) 5856 { 5857 struct workqueue_struct *wq = dev_to_wq(dev); 5858 int val; 5859 5860 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5861 return -EINVAL; 5862 5863 workqueue_set_max_active(wq, val); 5864 return count; 5865 } 5866 static DEVICE_ATTR_RW(max_active); 5867 5868 static struct attribute *wq_sysfs_attrs[] = { 5869 &dev_attr_per_cpu.attr, 5870 &dev_attr_max_active.attr, 5871 NULL, 5872 }; 5873 ATTRIBUTE_GROUPS(wq_sysfs); 5874 5875 static ssize_t wq_pool_ids_show(struct device *dev, 5876 struct device_attribute *attr, char *buf) 5877 { 5878 struct workqueue_struct *wq = dev_to_wq(dev); 5879 const char *delim = ""; 5880 int node, written = 0; 5881 5882 cpus_read_lock(); 5883 rcu_read_lock(); 5884 for_each_node(node) { 5885 written += scnprintf(buf + written, PAGE_SIZE - written, 5886 "%s%d:%d", delim, node, 5887 unbound_pwq_by_node(wq, node)->pool->id); 5888 delim = " "; 5889 } 5890 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5891 rcu_read_unlock(); 5892 cpus_read_unlock(); 5893 5894 return written; 5895 } 5896 5897 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5898 char *buf) 5899 { 5900 struct workqueue_struct *wq = dev_to_wq(dev); 5901 int written; 5902 5903 mutex_lock(&wq->mutex); 5904 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5905 mutex_unlock(&wq->mutex); 5906 5907 return written; 5908 } 5909 5910 /* prepare workqueue_attrs for sysfs store operations */ 5911 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5912 { 5913 struct workqueue_attrs *attrs; 5914 5915 lockdep_assert_held(&wq_pool_mutex); 5916 5917 attrs = alloc_workqueue_attrs(); 5918 if (!attrs) 5919 return NULL; 5920 5921 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5922 return attrs; 5923 } 5924 5925 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5926 const char *buf, size_t count) 5927 { 5928 struct workqueue_struct *wq = dev_to_wq(dev); 5929 struct workqueue_attrs *attrs; 5930 int ret = -ENOMEM; 5931 5932 apply_wqattrs_lock(); 5933 5934 attrs = wq_sysfs_prep_attrs(wq); 5935 if (!attrs) 5936 goto out_unlock; 5937 5938 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5939 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5940 ret = apply_workqueue_attrs_locked(wq, attrs); 5941 else 5942 ret = -EINVAL; 5943 5944 out_unlock: 5945 apply_wqattrs_unlock(); 5946 free_workqueue_attrs(attrs); 5947 return ret ?: count; 5948 } 5949 5950 static ssize_t wq_cpumask_show(struct device *dev, 5951 struct device_attribute *attr, char *buf) 5952 { 5953 struct workqueue_struct *wq = dev_to_wq(dev); 5954 int written; 5955 5956 mutex_lock(&wq->mutex); 5957 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5958 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5959 mutex_unlock(&wq->mutex); 5960 return written; 5961 } 5962 5963 static ssize_t wq_cpumask_store(struct device *dev, 5964 struct device_attribute *attr, 5965 const char *buf, size_t count) 5966 { 5967 struct workqueue_struct *wq = dev_to_wq(dev); 5968 struct workqueue_attrs *attrs; 5969 int ret = -ENOMEM; 5970 5971 apply_wqattrs_lock(); 5972 5973 attrs = wq_sysfs_prep_attrs(wq); 5974 if (!attrs) 5975 goto out_unlock; 5976 5977 ret = cpumask_parse(buf, attrs->cpumask); 5978 if (!ret) 5979 ret = apply_workqueue_attrs_locked(wq, attrs); 5980 5981 out_unlock: 5982 apply_wqattrs_unlock(); 5983 free_workqueue_attrs(attrs); 5984 return ret ?: count; 5985 } 5986 5987 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5988 char *buf) 5989 { 5990 struct workqueue_struct *wq = dev_to_wq(dev); 5991 int written; 5992 5993 mutex_lock(&wq->mutex); 5994 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5995 !wq->unbound_attrs->no_numa); 5996 mutex_unlock(&wq->mutex); 5997 5998 return written; 5999 } 6000 6001 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 6002 const char *buf, size_t count) 6003 { 6004 struct workqueue_struct *wq = dev_to_wq(dev); 6005 struct workqueue_attrs *attrs; 6006 int v, ret = -ENOMEM; 6007 6008 apply_wqattrs_lock(); 6009 6010 attrs = wq_sysfs_prep_attrs(wq); 6011 if (!attrs) 6012 goto out_unlock; 6013 6014 ret = -EINVAL; 6015 if (sscanf(buf, "%d", &v) == 1) { 6016 attrs->no_numa = !v; 6017 ret = apply_workqueue_attrs_locked(wq, attrs); 6018 } 6019 6020 out_unlock: 6021 apply_wqattrs_unlock(); 6022 free_workqueue_attrs(attrs); 6023 return ret ?: count; 6024 } 6025 6026 static struct device_attribute wq_sysfs_unbound_attrs[] = { 6027 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 6028 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 6029 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 6030 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 6031 __ATTR_NULL, 6032 }; 6033 6034 static struct bus_type wq_subsys = { 6035 .name = "workqueue", 6036 .dev_groups = wq_sysfs_groups, 6037 }; 6038 6039 static ssize_t wq_unbound_cpumask_show(struct device *dev, 6040 struct device_attribute *attr, char *buf) 6041 { 6042 int written; 6043 6044 mutex_lock(&wq_pool_mutex); 6045 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 6046 cpumask_pr_args(wq_unbound_cpumask)); 6047 mutex_unlock(&wq_pool_mutex); 6048 6049 return written; 6050 } 6051 6052 static ssize_t wq_unbound_cpumask_store(struct device *dev, 6053 struct device_attribute *attr, const char *buf, size_t count) 6054 { 6055 cpumask_var_t cpumask; 6056 int ret; 6057 6058 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6059 return -ENOMEM; 6060 6061 ret = cpumask_parse(buf, cpumask); 6062 if (!ret) 6063 ret = workqueue_set_unbound_cpumask(cpumask); 6064 6065 free_cpumask_var(cpumask); 6066 return ret ? ret : count; 6067 } 6068 6069 static struct device_attribute wq_sysfs_cpumask_attr = 6070 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 6071 wq_unbound_cpumask_store); 6072 6073 static int __init wq_sysfs_init(void) 6074 { 6075 struct device *dev_root; 6076 int err; 6077 6078 err = subsys_virtual_register(&wq_subsys, NULL); 6079 if (err) 6080 return err; 6081 6082 dev_root = bus_get_dev_root(&wq_subsys); 6083 if (dev_root) { 6084 err = device_create_file(dev_root, &wq_sysfs_cpumask_attr); 6085 put_device(dev_root); 6086 } 6087 return err; 6088 } 6089 core_initcall(wq_sysfs_init); 6090 6091 static void wq_device_release(struct device *dev) 6092 { 6093 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6094 6095 kfree(wq_dev); 6096 } 6097 6098 /** 6099 * workqueue_sysfs_register - make a workqueue visible in sysfs 6100 * @wq: the workqueue to register 6101 * 6102 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 6103 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 6104 * which is the preferred method. 6105 * 6106 * Workqueue user should use this function directly iff it wants to apply 6107 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 6108 * apply_workqueue_attrs() may race against userland updating the 6109 * attributes. 6110 * 6111 * Return: 0 on success, -errno on failure. 6112 */ 6113 int workqueue_sysfs_register(struct workqueue_struct *wq) 6114 { 6115 struct wq_device *wq_dev; 6116 int ret; 6117 6118 /* 6119 * Adjusting max_active or creating new pwqs by applying 6120 * attributes breaks ordering guarantee. Disallow exposing ordered 6121 * workqueues. 6122 */ 6123 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 6124 return -EINVAL; 6125 6126 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 6127 if (!wq_dev) 6128 return -ENOMEM; 6129 6130 wq_dev->wq = wq; 6131 wq_dev->dev.bus = &wq_subsys; 6132 wq_dev->dev.release = wq_device_release; 6133 dev_set_name(&wq_dev->dev, "%s", wq->name); 6134 6135 /* 6136 * unbound_attrs are created separately. Suppress uevent until 6137 * everything is ready. 6138 */ 6139 dev_set_uevent_suppress(&wq_dev->dev, true); 6140 6141 ret = device_register(&wq_dev->dev); 6142 if (ret) { 6143 put_device(&wq_dev->dev); 6144 wq->wq_dev = NULL; 6145 return ret; 6146 } 6147 6148 if (wq->flags & WQ_UNBOUND) { 6149 struct device_attribute *attr; 6150 6151 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 6152 ret = device_create_file(&wq_dev->dev, attr); 6153 if (ret) { 6154 device_unregister(&wq_dev->dev); 6155 wq->wq_dev = NULL; 6156 return ret; 6157 } 6158 } 6159 } 6160 6161 dev_set_uevent_suppress(&wq_dev->dev, false); 6162 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 6163 return 0; 6164 } 6165 6166 /** 6167 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 6168 * @wq: the workqueue to unregister 6169 * 6170 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 6171 */ 6172 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 6173 { 6174 struct wq_device *wq_dev = wq->wq_dev; 6175 6176 if (!wq->wq_dev) 6177 return; 6178 6179 wq->wq_dev = NULL; 6180 device_unregister(&wq_dev->dev); 6181 } 6182 #else /* CONFIG_SYSFS */ 6183 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 6184 #endif /* CONFIG_SYSFS */ 6185 6186 /* 6187 * Workqueue watchdog. 6188 * 6189 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 6190 * flush dependency, a concurrency managed work item which stays RUNNING 6191 * indefinitely. Workqueue stalls can be very difficult to debug as the 6192 * usual warning mechanisms don't trigger and internal workqueue state is 6193 * largely opaque. 6194 * 6195 * Workqueue watchdog monitors all worker pools periodically and dumps 6196 * state if some pools failed to make forward progress for a while where 6197 * forward progress is defined as the first item on ->worklist changing. 6198 * 6199 * This mechanism is controlled through the kernel parameter 6200 * "workqueue.watchdog_thresh" which can be updated at runtime through the 6201 * corresponding sysfs parameter file. 6202 */ 6203 #ifdef CONFIG_WQ_WATCHDOG 6204 6205 static unsigned long wq_watchdog_thresh = 30; 6206 static struct timer_list wq_watchdog_timer; 6207 6208 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 6209 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 6210 6211 /* 6212 * Show workers that might prevent the processing of pending work items. 6213 * The only candidates are CPU-bound workers in the running state. 6214 * Pending work items should be handled by another idle worker 6215 * in all other situations. 6216 */ 6217 static void show_cpu_pool_hog(struct worker_pool *pool) 6218 { 6219 struct worker *worker; 6220 unsigned long flags; 6221 int bkt; 6222 6223 raw_spin_lock_irqsave(&pool->lock, flags); 6224 6225 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6226 if (task_is_running(worker->task)) { 6227 /* 6228 * Defer printing to avoid deadlocks in console 6229 * drivers that queue work while holding locks 6230 * also taken in their write paths. 6231 */ 6232 printk_deferred_enter(); 6233 6234 pr_info("pool %d:\n", pool->id); 6235 sched_show_task(worker->task); 6236 6237 printk_deferred_exit(); 6238 } 6239 } 6240 6241 raw_spin_unlock_irqrestore(&pool->lock, flags); 6242 } 6243 6244 static void show_cpu_pools_hogs(void) 6245 { 6246 struct worker_pool *pool; 6247 int pi; 6248 6249 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 6250 6251 rcu_read_lock(); 6252 6253 for_each_pool(pool, pi) { 6254 if (pool->cpu_stall) 6255 show_cpu_pool_hog(pool); 6256 6257 } 6258 6259 rcu_read_unlock(); 6260 } 6261 6262 static void wq_watchdog_reset_touched(void) 6263 { 6264 int cpu; 6265 6266 wq_watchdog_touched = jiffies; 6267 for_each_possible_cpu(cpu) 6268 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 6269 } 6270 6271 static void wq_watchdog_timer_fn(struct timer_list *unused) 6272 { 6273 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 6274 bool lockup_detected = false; 6275 bool cpu_pool_stall = false; 6276 unsigned long now = jiffies; 6277 struct worker_pool *pool; 6278 int pi; 6279 6280 if (!thresh) 6281 return; 6282 6283 rcu_read_lock(); 6284 6285 for_each_pool(pool, pi) { 6286 unsigned long pool_ts, touched, ts; 6287 6288 pool->cpu_stall = false; 6289 if (list_empty(&pool->worklist)) 6290 continue; 6291 6292 /* 6293 * If a virtual machine is stopped by the host it can look to 6294 * the watchdog like a stall. 6295 */ 6296 kvm_check_and_clear_guest_paused(); 6297 6298 /* get the latest of pool and touched timestamps */ 6299 if (pool->cpu >= 0) 6300 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 6301 else 6302 touched = READ_ONCE(wq_watchdog_touched); 6303 pool_ts = READ_ONCE(pool->watchdog_ts); 6304 6305 if (time_after(pool_ts, touched)) 6306 ts = pool_ts; 6307 else 6308 ts = touched; 6309 6310 /* did we stall? */ 6311 if (time_after(now, ts + thresh)) { 6312 lockup_detected = true; 6313 if (pool->cpu >= 0) { 6314 pool->cpu_stall = true; 6315 cpu_pool_stall = true; 6316 } 6317 pr_emerg("BUG: workqueue lockup - pool"); 6318 pr_cont_pool_info(pool); 6319 pr_cont(" stuck for %us!\n", 6320 jiffies_to_msecs(now - pool_ts) / 1000); 6321 } 6322 6323 6324 } 6325 6326 rcu_read_unlock(); 6327 6328 if (lockup_detected) 6329 show_all_workqueues(); 6330 6331 if (cpu_pool_stall) 6332 show_cpu_pools_hogs(); 6333 6334 wq_watchdog_reset_touched(); 6335 mod_timer(&wq_watchdog_timer, jiffies + thresh); 6336 } 6337 6338 notrace void wq_watchdog_touch(int cpu) 6339 { 6340 if (cpu >= 0) 6341 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 6342 6343 wq_watchdog_touched = jiffies; 6344 } 6345 6346 static void wq_watchdog_set_thresh(unsigned long thresh) 6347 { 6348 wq_watchdog_thresh = 0; 6349 del_timer_sync(&wq_watchdog_timer); 6350 6351 if (thresh) { 6352 wq_watchdog_thresh = thresh; 6353 wq_watchdog_reset_touched(); 6354 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 6355 } 6356 } 6357 6358 static int wq_watchdog_param_set_thresh(const char *val, 6359 const struct kernel_param *kp) 6360 { 6361 unsigned long thresh; 6362 int ret; 6363 6364 ret = kstrtoul(val, 0, &thresh); 6365 if (ret) 6366 return ret; 6367 6368 if (system_wq) 6369 wq_watchdog_set_thresh(thresh); 6370 else 6371 wq_watchdog_thresh = thresh; 6372 6373 return 0; 6374 } 6375 6376 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 6377 .set = wq_watchdog_param_set_thresh, 6378 .get = param_get_ulong, 6379 }; 6380 6381 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 6382 0644); 6383 6384 static void wq_watchdog_init(void) 6385 { 6386 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 6387 wq_watchdog_set_thresh(wq_watchdog_thresh); 6388 } 6389 6390 #else /* CONFIG_WQ_WATCHDOG */ 6391 6392 static inline void wq_watchdog_init(void) { } 6393 6394 #endif /* CONFIG_WQ_WATCHDOG */ 6395 6396 static void __init wq_numa_init(void) 6397 { 6398 cpumask_var_t *tbl; 6399 int node, cpu; 6400 6401 if (num_possible_nodes() <= 1) 6402 return; 6403 6404 if (wq_disable_numa) { 6405 pr_info("workqueue: NUMA affinity support disabled\n"); 6406 return; 6407 } 6408 6409 for_each_possible_cpu(cpu) { 6410 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) { 6411 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 6412 return; 6413 } 6414 } 6415 6416 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 6417 BUG_ON(!wq_update_unbound_numa_attrs_buf); 6418 6419 /* 6420 * We want masks of possible CPUs of each node which isn't readily 6421 * available. Build one from cpu_to_node() which should have been 6422 * fully initialized by now. 6423 */ 6424 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 6425 BUG_ON(!tbl); 6426 6427 for_each_node(node) 6428 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 6429 node_online(node) ? node : NUMA_NO_NODE)); 6430 6431 for_each_possible_cpu(cpu) { 6432 node = cpu_to_node(cpu); 6433 cpumask_set_cpu(cpu, tbl[node]); 6434 } 6435 6436 wq_numa_possible_cpumask = tbl; 6437 wq_numa_enabled = true; 6438 } 6439 6440 /** 6441 * workqueue_init_early - early init for workqueue subsystem 6442 * 6443 * This is the first half of two-staged workqueue subsystem initialization 6444 * and invoked as soon as the bare basics - memory allocation, cpumasks and 6445 * idr are up. It sets up all the data structures and system workqueues 6446 * and allows early boot code to create workqueues and queue/cancel work 6447 * items. Actual work item execution starts only after kthreads can be 6448 * created and scheduled right before early initcalls. 6449 */ 6450 void __init workqueue_init_early(void) 6451 { 6452 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 6453 int i, cpu; 6454 6455 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 6456 6457 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 6458 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ)); 6459 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN)); 6460 6461 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 6462 6463 /* initialize CPU pools */ 6464 for_each_possible_cpu(cpu) { 6465 struct worker_pool *pool; 6466 6467 i = 0; 6468 for_each_cpu_worker_pool(pool, cpu) { 6469 BUG_ON(init_worker_pool(pool)); 6470 pool->cpu = cpu; 6471 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 6472 pool->attrs->nice = std_nice[i++]; 6473 pool->node = cpu_to_node(cpu); 6474 6475 /* alloc pool ID */ 6476 mutex_lock(&wq_pool_mutex); 6477 BUG_ON(worker_pool_assign_id(pool)); 6478 mutex_unlock(&wq_pool_mutex); 6479 } 6480 } 6481 6482 /* create default unbound and ordered wq attrs */ 6483 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 6484 struct workqueue_attrs *attrs; 6485 6486 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6487 attrs->nice = std_nice[i]; 6488 unbound_std_wq_attrs[i] = attrs; 6489 6490 /* 6491 * An ordered wq should have only one pwq as ordering is 6492 * guaranteed by max_active which is enforced by pwqs. 6493 * Turn off NUMA so that dfl_pwq is used for all nodes. 6494 */ 6495 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6496 attrs->nice = std_nice[i]; 6497 attrs->no_numa = true; 6498 ordered_wq_attrs[i] = attrs; 6499 } 6500 6501 system_wq = alloc_workqueue("events", 0, 0); 6502 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 6503 system_long_wq = alloc_workqueue("events_long", 0, 0); 6504 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 6505 WQ_UNBOUND_MAX_ACTIVE); 6506 system_freezable_wq = alloc_workqueue("events_freezable", 6507 WQ_FREEZABLE, 0); 6508 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 6509 WQ_POWER_EFFICIENT, 0); 6510 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 6511 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 6512 0); 6513 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 6514 !system_unbound_wq || !system_freezable_wq || 6515 !system_power_efficient_wq || 6516 !system_freezable_power_efficient_wq); 6517 } 6518 6519 static void __init wq_cpu_intensive_thresh_init(void) 6520 { 6521 unsigned long thresh; 6522 unsigned long bogo; 6523 6524 /* if the user set it to a specific value, keep it */ 6525 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 6526 return; 6527 6528 /* 6529 * The default of 10ms is derived from the fact that most modern (as of 6530 * 2023) processors can do a lot in 10ms and that it's just below what 6531 * most consider human-perceivable. However, the kernel also runs on a 6532 * lot slower CPUs including microcontrollers where the threshold is way 6533 * too low. 6534 * 6535 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 6536 * This is by no means accurate but it doesn't have to be. The mechanism 6537 * is still useful even when the threshold is fully scaled up. Also, as 6538 * the reports would usually be applicable to everyone, some machines 6539 * operating on longer thresholds won't significantly diminish their 6540 * usefulness. 6541 */ 6542 thresh = 10 * USEC_PER_MSEC; 6543 6544 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 6545 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 6546 if (bogo < 4000) 6547 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 6548 6549 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 6550 loops_per_jiffy, bogo, thresh); 6551 6552 wq_cpu_intensive_thresh_us = thresh; 6553 } 6554 6555 /** 6556 * workqueue_init - bring workqueue subsystem fully online 6557 * 6558 * This is the latter half of two-staged workqueue subsystem initialization 6559 * and invoked as soon as kthreads can be created and scheduled. 6560 * Workqueues have been created and work items queued on them, but there 6561 * are no kworkers executing the work items yet. Populate the worker pools 6562 * with the initial workers and enable future kworker creations. 6563 */ 6564 void __init workqueue_init(void) 6565 { 6566 struct workqueue_struct *wq; 6567 struct worker_pool *pool; 6568 int cpu, bkt; 6569 6570 wq_cpu_intensive_thresh_init(); 6571 6572 /* 6573 * It'd be simpler to initialize NUMA in workqueue_init_early() but 6574 * CPU to node mapping may not be available that early on some 6575 * archs such as power and arm64. As per-cpu pools created 6576 * previously could be missing node hint and unbound pools NUMA 6577 * affinity, fix them up. 6578 * 6579 * Also, while iterating workqueues, create rescuers if requested. 6580 */ 6581 wq_numa_init(); 6582 6583 mutex_lock(&wq_pool_mutex); 6584 6585 for_each_possible_cpu(cpu) { 6586 for_each_cpu_worker_pool(pool, cpu) { 6587 pool->node = cpu_to_node(cpu); 6588 } 6589 } 6590 6591 list_for_each_entry(wq, &workqueues, list) { 6592 wq_update_unbound_numa(wq, smp_processor_id(), true); 6593 WARN(init_rescuer(wq), 6594 "workqueue: failed to create early rescuer for %s", 6595 wq->name); 6596 } 6597 6598 mutex_unlock(&wq_pool_mutex); 6599 6600 /* create the initial workers */ 6601 for_each_online_cpu(cpu) { 6602 for_each_cpu_worker_pool(pool, cpu) { 6603 pool->flags &= ~POOL_DISASSOCIATED; 6604 BUG_ON(!create_worker(pool)); 6605 } 6606 } 6607 6608 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6609 BUG_ON(!create_worker(pool)); 6610 6611 wq_online = true; 6612 wq_watchdog_init(); 6613 } 6614 6615 /* 6616 * Despite the naming, this is a no-op function which is here only for avoiding 6617 * link error. Since compile-time warning may fail to catch, we will need to 6618 * emit run-time warning from __flush_workqueue(). 6619 */ 6620 void __warn_flushing_systemwide_wq(void) { } 6621 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 6622