1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 45 #include "workqueue_sched.h" 46 47 enum { 48 /* global_cwq flags */ 49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */ 51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */ 53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */ 54 55 /* worker flags */ 56 WORKER_STARTED = 1 << 0, /* started */ 57 WORKER_DIE = 1 << 1, /* die die die */ 58 WORKER_IDLE = 1 << 2, /* is idle */ 59 WORKER_PREP = 1 << 3, /* preparing to run works */ 60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */ 61 WORKER_REBIND = 1 << 5, /* mom is home, come back */ 62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 64 65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND | 66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND, 67 68 /* gcwq->trustee_state */ 69 TRUSTEE_START = 0, /* start */ 70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */ 71 TRUSTEE_BUTCHER = 2, /* butcher workers */ 72 TRUSTEE_RELEASE = 3, /* release workers */ 73 TRUSTEE_DONE = 4, /* trustee is done */ 74 75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER, 77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1, 78 79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 81 82 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 83 /* call for help after 10ms 84 (min two ticks) */ 85 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 86 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 87 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */ 88 89 /* 90 * Rescue workers are used only on emergencies and shared by 91 * all cpus. Give -20. 92 */ 93 RESCUER_NICE_LEVEL = -20, 94 }; 95 96 /* 97 * Structure fields follow one of the following exclusion rules. 98 * 99 * I: Modifiable by initialization/destruction paths and read-only for 100 * everyone else. 101 * 102 * P: Preemption protected. Disabling preemption is enough and should 103 * only be modified and accessed from the local cpu. 104 * 105 * L: gcwq->lock protected. Access with gcwq->lock held. 106 * 107 * X: During normal operation, modification requires gcwq->lock and 108 * should be done only from local cpu. Either disabling preemption 109 * on local cpu or grabbing gcwq->lock is enough for read access. 110 * If GCWQ_DISASSOCIATED is set, it's identical to L. 111 * 112 * F: wq->flush_mutex protected. 113 * 114 * W: workqueue_lock protected. 115 */ 116 117 struct global_cwq; 118 119 /* 120 * The poor guys doing the actual heavy lifting. All on-duty workers 121 * are either serving the manager role, on idle list or on busy hash. 122 */ 123 struct worker { 124 /* on idle list while idle, on busy hash table while busy */ 125 union { 126 struct list_head entry; /* L: while idle */ 127 struct hlist_node hentry; /* L: while busy */ 128 }; 129 130 struct work_struct *current_work; /* L: work being processed */ 131 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */ 132 struct list_head scheduled; /* L: scheduled works */ 133 struct task_struct *task; /* I: worker task */ 134 struct global_cwq *gcwq; /* I: the associated gcwq */ 135 /* 64 bytes boundary on 64bit, 32 on 32bit */ 136 unsigned long last_active; /* L: last active timestamp */ 137 unsigned int flags; /* X: flags */ 138 int id; /* I: worker id */ 139 struct work_struct rebind_work; /* L: rebind worker to cpu */ 140 }; 141 142 /* 143 * Global per-cpu workqueue. There's one and only one for each cpu 144 * and all works are queued and processed here regardless of their 145 * target workqueues. 146 */ 147 struct global_cwq { 148 spinlock_t lock; /* the gcwq lock */ 149 struct list_head worklist; /* L: list of pending works */ 150 unsigned int cpu; /* I: the associated cpu */ 151 unsigned int flags; /* L: GCWQ_* flags */ 152 153 int nr_workers; /* L: total number of workers */ 154 int nr_idle; /* L: currently idle ones */ 155 156 /* workers are chained either in the idle_list or busy_hash */ 157 struct list_head idle_list; /* X: list of idle workers */ 158 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE]; 159 /* L: hash of busy workers */ 160 161 struct timer_list idle_timer; /* L: worker idle timeout */ 162 struct timer_list mayday_timer; /* L: SOS timer for dworkers */ 163 164 struct ida worker_ida; /* L: for worker IDs */ 165 166 struct task_struct *trustee; /* L: for gcwq shutdown */ 167 unsigned int trustee_state; /* L: trustee state */ 168 wait_queue_head_t trustee_wait; /* trustee wait */ 169 struct worker *first_idle; /* L: first idle worker */ 170 } ____cacheline_aligned_in_smp; 171 172 /* 173 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of 174 * work_struct->data are used for flags and thus cwqs need to be 175 * aligned at two's power of the number of flag bits. 176 */ 177 struct cpu_workqueue_struct { 178 struct global_cwq *gcwq; /* I: the associated gcwq */ 179 struct workqueue_struct *wq; /* I: the owning workqueue */ 180 int work_color; /* L: current color */ 181 int flush_color; /* L: flushing color */ 182 int nr_in_flight[WORK_NR_COLORS]; 183 /* L: nr of in_flight works */ 184 int nr_active; /* L: nr of active works */ 185 int max_active; /* L: max active works */ 186 struct list_head delayed_works; /* L: delayed works */ 187 }; 188 189 /* 190 * Structure used to wait for workqueue flush. 191 */ 192 struct wq_flusher { 193 struct list_head list; /* F: list of flushers */ 194 int flush_color; /* F: flush color waiting for */ 195 struct completion done; /* flush completion */ 196 }; 197 198 /* 199 * All cpumasks are assumed to be always set on UP and thus can't be 200 * used to determine whether there's something to be done. 201 */ 202 #ifdef CONFIG_SMP 203 typedef cpumask_var_t mayday_mask_t; 204 #define mayday_test_and_set_cpu(cpu, mask) \ 205 cpumask_test_and_set_cpu((cpu), (mask)) 206 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) 207 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) 208 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) 209 #define free_mayday_mask(mask) free_cpumask_var((mask)) 210 #else 211 typedef unsigned long mayday_mask_t; 212 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) 213 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) 214 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) 215 #define alloc_mayday_mask(maskp, gfp) true 216 #define free_mayday_mask(mask) do { } while (0) 217 #endif 218 219 /* 220 * The externally visible workqueue abstraction is an array of 221 * per-CPU workqueues: 222 */ 223 struct workqueue_struct { 224 unsigned int flags; /* I: WQ_* flags */ 225 union { 226 struct cpu_workqueue_struct __percpu *pcpu; 227 struct cpu_workqueue_struct *single; 228 unsigned long v; 229 } cpu_wq; /* I: cwq's */ 230 struct list_head list; /* W: list of all workqueues */ 231 232 struct mutex flush_mutex; /* protects wq flushing */ 233 int work_color; /* F: current work color */ 234 int flush_color; /* F: current flush color */ 235 atomic_t nr_cwqs_to_flush; /* flush in progress */ 236 struct wq_flusher *first_flusher; /* F: first flusher */ 237 struct list_head flusher_queue; /* F: flush waiters */ 238 struct list_head flusher_overflow; /* F: flush overflow list */ 239 240 mayday_mask_t mayday_mask; /* cpus requesting rescue */ 241 struct worker *rescuer; /* I: rescue worker */ 242 243 int saved_max_active; /* W: saved cwq max_active */ 244 const char *name; /* I: workqueue name */ 245 #ifdef CONFIG_LOCKDEP 246 struct lockdep_map lockdep_map; 247 #endif 248 }; 249 250 struct workqueue_struct *system_wq __read_mostly; 251 struct workqueue_struct *system_long_wq __read_mostly; 252 struct workqueue_struct *system_nrt_wq __read_mostly; 253 struct workqueue_struct *system_unbound_wq __read_mostly; 254 EXPORT_SYMBOL_GPL(system_wq); 255 EXPORT_SYMBOL_GPL(system_long_wq); 256 EXPORT_SYMBOL_GPL(system_nrt_wq); 257 EXPORT_SYMBOL_GPL(system_unbound_wq); 258 259 #define CREATE_TRACE_POINTS 260 #include <trace/events/workqueue.h> 261 262 #define for_each_busy_worker(worker, i, pos, gcwq) \ 263 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \ 264 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry) 265 266 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask, 267 unsigned int sw) 268 { 269 if (cpu < nr_cpu_ids) { 270 if (sw & 1) { 271 cpu = cpumask_next(cpu, mask); 272 if (cpu < nr_cpu_ids) 273 return cpu; 274 } 275 if (sw & 2) 276 return WORK_CPU_UNBOUND; 277 } 278 return WORK_CPU_NONE; 279 } 280 281 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, 282 struct workqueue_struct *wq) 283 { 284 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); 285 } 286 287 /* 288 * CPU iterators 289 * 290 * An extra gcwq is defined for an invalid cpu number 291 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any 292 * specific CPU. The following iterators are similar to 293 * for_each_*_cpu() iterators but also considers the unbound gcwq. 294 * 295 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND 296 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND 297 * for_each_cwq_cpu() : possible CPUs for bound workqueues, 298 * WORK_CPU_UNBOUND for unbound workqueues 299 */ 300 #define for_each_gcwq_cpu(cpu) \ 301 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \ 302 (cpu) < WORK_CPU_NONE; \ 303 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3)) 304 305 #define for_each_online_gcwq_cpu(cpu) \ 306 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \ 307 (cpu) < WORK_CPU_NONE; \ 308 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3)) 309 310 #define for_each_cwq_cpu(cpu, wq) \ 311 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \ 312 (cpu) < WORK_CPU_NONE; \ 313 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq))) 314 315 #ifdef CONFIG_DEBUG_OBJECTS_WORK 316 317 static struct debug_obj_descr work_debug_descr; 318 319 /* 320 * fixup_init is called when: 321 * - an active object is initialized 322 */ 323 static int work_fixup_init(void *addr, enum debug_obj_state state) 324 { 325 struct work_struct *work = addr; 326 327 switch (state) { 328 case ODEBUG_STATE_ACTIVE: 329 cancel_work_sync(work); 330 debug_object_init(work, &work_debug_descr); 331 return 1; 332 default: 333 return 0; 334 } 335 } 336 337 /* 338 * fixup_activate is called when: 339 * - an active object is activated 340 * - an unknown object is activated (might be a statically initialized object) 341 */ 342 static int work_fixup_activate(void *addr, enum debug_obj_state state) 343 { 344 struct work_struct *work = addr; 345 346 switch (state) { 347 348 case ODEBUG_STATE_NOTAVAILABLE: 349 /* 350 * This is not really a fixup. The work struct was 351 * statically initialized. We just make sure that it 352 * is tracked in the object tracker. 353 */ 354 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 355 debug_object_init(work, &work_debug_descr); 356 debug_object_activate(work, &work_debug_descr); 357 return 0; 358 } 359 WARN_ON_ONCE(1); 360 return 0; 361 362 case ODEBUG_STATE_ACTIVE: 363 WARN_ON(1); 364 365 default: 366 return 0; 367 } 368 } 369 370 /* 371 * fixup_free is called when: 372 * - an active object is freed 373 */ 374 static int work_fixup_free(void *addr, enum debug_obj_state state) 375 { 376 struct work_struct *work = addr; 377 378 switch (state) { 379 case ODEBUG_STATE_ACTIVE: 380 cancel_work_sync(work); 381 debug_object_free(work, &work_debug_descr); 382 return 1; 383 default: 384 return 0; 385 } 386 } 387 388 static struct debug_obj_descr work_debug_descr = { 389 .name = "work_struct", 390 .fixup_init = work_fixup_init, 391 .fixup_activate = work_fixup_activate, 392 .fixup_free = work_fixup_free, 393 }; 394 395 static inline void debug_work_activate(struct work_struct *work) 396 { 397 debug_object_activate(work, &work_debug_descr); 398 } 399 400 static inline void debug_work_deactivate(struct work_struct *work) 401 { 402 debug_object_deactivate(work, &work_debug_descr); 403 } 404 405 void __init_work(struct work_struct *work, int onstack) 406 { 407 if (onstack) 408 debug_object_init_on_stack(work, &work_debug_descr); 409 else 410 debug_object_init(work, &work_debug_descr); 411 } 412 EXPORT_SYMBOL_GPL(__init_work); 413 414 void destroy_work_on_stack(struct work_struct *work) 415 { 416 debug_object_free(work, &work_debug_descr); 417 } 418 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 419 420 #else 421 static inline void debug_work_activate(struct work_struct *work) { } 422 static inline void debug_work_deactivate(struct work_struct *work) { } 423 #endif 424 425 /* Serializes the accesses to the list of workqueues. */ 426 static DEFINE_SPINLOCK(workqueue_lock); 427 static LIST_HEAD(workqueues); 428 static bool workqueue_freezing; /* W: have wqs started freezing? */ 429 430 /* 431 * The almighty global cpu workqueues. nr_running is the only field 432 * which is expected to be used frequently by other cpus via 433 * try_to_wake_up(). Put it in a separate cacheline. 434 */ 435 static DEFINE_PER_CPU(struct global_cwq, global_cwq); 436 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running); 437 438 /* 439 * Global cpu workqueue and nr_running counter for unbound gcwq. The 440 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its 441 * workers have WORKER_UNBOUND set. 442 */ 443 static struct global_cwq unbound_global_cwq; 444 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */ 445 446 static int worker_thread(void *__worker); 447 448 static struct global_cwq *get_gcwq(unsigned int cpu) 449 { 450 if (cpu != WORK_CPU_UNBOUND) 451 return &per_cpu(global_cwq, cpu); 452 else 453 return &unbound_global_cwq; 454 } 455 456 static atomic_t *get_gcwq_nr_running(unsigned int cpu) 457 { 458 if (cpu != WORK_CPU_UNBOUND) 459 return &per_cpu(gcwq_nr_running, cpu); 460 else 461 return &unbound_gcwq_nr_running; 462 } 463 464 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu, 465 struct workqueue_struct *wq) 466 { 467 if (!(wq->flags & WQ_UNBOUND)) { 468 if (likely(cpu < nr_cpu_ids)) { 469 #ifdef CONFIG_SMP 470 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu); 471 #else 472 return wq->cpu_wq.single; 473 #endif 474 } 475 } else if (likely(cpu == WORK_CPU_UNBOUND)) 476 return wq->cpu_wq.single; 477 return NULL; 478 } 479 480 static unsigned int work_color_to_flags(int color) 481 { 482 return color << WORK_STRUCT_COLOR_SHIFT; 483 } 484 485 static int get_work_color(struct work_struct *work) 486 { 487 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 488 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 489 } 490 491 static int work_next_color(int color) 492 { 493 return (color + 1) % WORK_NR_COLORS; 494 } 495 496 /* 497 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the 498 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is 499 * cleared and the work data contains the cpu number it was last on. 500 * 501 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the 502 * cwq, cpu or clear work->data. These functions should only be 503 * called while the work is owned - ie. while the PENDING bit is set. 504 * 505 * get_work_[g]cwq() can be used to obtain the gcwq or cwq 506 * corresponding to a work. gcwq is available once the work has been 507 * queued anywhere after initialization. cwq is available only from 508 * queueing until execution starts. 509 */ 510 static inline void set_work_data(struct work_struct *work, unsigned long data, 511 unsigned long flags) 512 { 513 BUG_ON(!work_pending(work)); 514 atomic_long_set(&work->data, data | flags | work_static(work)); 515 } 516 517 static void set_work_cwq(struct work_struct *work, 518 struct cpu_workqueue_struct *cwq, 519 unsigned long extra_flags) 520 { 521 set_work_data(work, (unsigned long)cwq, 522 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags); 523 } 524 525 static void set_work_cpu(struct work_struct *work, unsigned int cpu) 526 { 527 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING); 528 } 529 530 static void clear_work_data(struct work_struct *work) 531 { 532 set_work_data(work, WORK_STRUCT_NO_CPU, 0); 533 } 534 535 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work) 536 { 537 unsigned long data = atomic_long_read(&work->data); 538 539 if (data & WORK_STRUCT_CWQ) 540 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 541 else 542 return NULL; 543 } 544 545 static struct global_cwq *get_work_gcwq(struct work_struct *work) 546 { 547 unsigned long data = atomic_long_read(&work->data); 548 unsigned int cpu; 549 550 if (data & WORK_STRUCT_CWQ) 551 return ((struct cpu_workqueue_struct *) 552 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq; 553 554 cpu = data >> WORK_STRUCT_FLAG_BITS; 555 if (cpu == WORK_CPU_NONE) 556 return NULL; 557 558 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND); 559 return get_gcwq(cpu); 560 } 561 562 /* 563 * Policy functions. These define the policies on how the global 564 * worker pool is managed. Unless noted otherwise, these functions 565 * assume that they're being called with gcwq->lock held. 566 */ 567 568 static bool __need_more_worker(struct global_cwq *gcwq) 569 { 570 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) || 571 gcwq->flags & GCWQ_HIGHPRI_PENDING; 572 } 573 574 /* 575 * Need to wake up a worker? Called from anything but currently 576 * running workers. 577 */ 578 static bool need_more_worker(struct global_cwq *gcwq) 579 { 580 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq); 581 } 582 583 /* Can I start working? Called from busy but !running workers. */ 584 static bool may_start_working(struct global_cwq *gcwq) 585 { 586 return gcwq->nr_idle; 587 } 588 589 /* Do I need to keep working? Called from currently running workers. */ 590 static bool keep_working(struct global_cwq *gcwq) 591 { 592 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 593 594 return !list_empty(&gcwq->worklist) && 595 (atomic_read(nr_running) <= 1 || 596 gcwq->flags & GCWQ_HIGHPRI_PENDING); 597 } 598 599 /* Do we need a new worker? Called from manager. */ 600 static bool need_to_create_worker(struct global_cwq *gcwq) 601 { 602 return need_more_worker(gcwq) && !may_start_working(gcwq); 603 } 604 605 /* Do I need to be the manager? */ 606 static bool need_to_manage_workers(struct global_cwq *gcwq) 607 { 608 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS; 609 } 610 611 /* Do we have too many workers and should some go away? */ 612 static bool too_many_workers(struct global_cwq *gcwq) 613 { 614 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS; 615 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */ 616 int nr_busy = gcwq->nr_workers - nr_idle; 617 618 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 619 } 620 621 /* 622 * Wake up functions. 623 */ 624 625 /* Return the first worker. Safe with preemption disabled */ 626 static struct worker *first_worker(struct global_cwq *gcwq) 627 { 628 if (unlikely(list_empty(&gcwq->idle_list))) 629 return NULL; 630 631 return list_first_entry(&gcwq->idle_list, struct worker, entry); 632 } 633 634 /** 635 * wake_up_worker - wake up an idle worker 636 * @gcwq: gcwq to wake worker for 637 * 638 * Wake up the first idle worker of @gcwq. 639 * 640 * CONTEXT: 641 * spin_lock_irq(gcwq->lock). 642 */ 643 static void wake_up_worker(struct global_cwq *gcwq) 644 { 645 struct worker *worker = first_worker(gcwq); 646 647 if (likely(worker)) 648 wake_up_process(worker->task); 649 } 650 651 /** 652 * wq_worker_waking_up - a worker is waking up 653 * @task: task waking up 654 * @cpu: CPU @task is waking up to 655 * 656 * This function is called during try_to_wake_up() when a worker is 657 * being awoken. 658 * 659 * CONTEXT: 660 * spin_lock_irq(rq->lock) 661 */ 662 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) 663 { 664 struct worker *worker = kthread_data(task); 665 666 if (!(worker->flags & WORKER_NOT_RUNNING)) 667 atomic_inc(get_gcwq_nr_running(cpu)); 668 } 669 670 /** 671 * wq_worker_sleeping - a worker is going to sleep 672 * @task: task going to sleep 673 * @cpu: CPU in question, must be the current CPU number 674 * 675 * This function is called during schedule() when a busy worker is 676 * going to sleep. Worker on the same cpu can be woken up by 677 * returning pointer to its task. 678 * 679 * CONTEXT: 680 * spin_lock_irq(rq->lock) 681 * 682 * RETURNS: 683 * Worker task on @cpu to wake up, %NULL if none. 684 */ 685 struct task_struct *wq_worker_sleeping(struct task_struct *task, 686 unsigned int cpu) 687 { 688 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 689 struct global_cwq *gcwq = get_gcwq(cpu); 690 atomic_t *nr_running = get_gcwq_nr_running(cpu); 691 692 if (worker->flags & WORKER_NOT_RUNNING) 693 return NULL; 694 695 /* this can only happen on the local cpu */ 696 BUG_ON(cpu != raw_smp_processor_id()); 697 698 /* 699 * The counterpart of the following dec_and_test, implied mb, 700 * worklist not empty test sequence is in insert_work(). 701 * Please read comment there. 702 * 703 * NOT_RUNNING is clear. This means that trustee is not in 704 * charge and we're running on the local cpu w/ rq lock held 705 * and preemption disabled, which in turn means that none else 706 * could be manipulating idle_list, so dereferencing idle_list 707 * without gcwq lock is safe. 708 */ 709 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist)) 710 to_wakeup = first_worker(gcwq); 711 return to_wakeup ? to_wakeup->task : NULL; 712 } 713 714 /** 715 * worker_set_flags - set worker flags and adjust nr_running accordingly 716 * @worker: self 717 * @flags: flags to set 718 * @wakeup: wakeup an idle worker if necessary 719 * 720 * Set @flags in @worker->flags and adjust nr_running accordingly. If 721 * nr_running becomes zero and @wakeup is %true, an idle worker is 722 * woken up. 723 * 724 * CONTEXT: 725 * spin_lock_irq(gcwq->lock) 726 */ 727 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 728 bool wakeup) 729 { 730 struct global_cwq *gcwq = worker->gcwq; 731 732 WARN_ON_ONCE(worker->task != current); 733 734 /* 735 * If transitioning into NOT_RUNNING, adjust nr_running and 736 * wake up an idle worker as necessary if requested by 737 * @wakeup. 738 */ 739 if ((flags & WORKER_NOT_RUNNING) && 740 !(worker->flags & WORKER_NOT_RUNNING)) { 741 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 742 743 if (wakeup) { 744 if (atomic_dec_and_test(nr_running) && 745 !list_empty(&gcwq->worklist)) 746 wake_up_worker(gcwq); 747 } else 748 atomic_dec(nr_running); 749 } 750 751 worker->flags |= flags; 752 } 753 754 /** 755 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 756 * @worker: self 757 * @flags: flags to clear 758 * 759 * Clear @flags in @worker->flags and adjust nr_running accordingly. 760 * 761 * CONTEXT: 762 * spin_lock_irq(gcwq->lock) 763 */ 764 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 765 { 766 struct global_cwq *gcwq = worker->gcwq; 767 unsigned int oflags = worker->flags; 768 769 WARN_ON_ONCE(worker->task != current); 770 771 worker->flags &= ~flags; 772 773 /* 774 * If transitioning out of NOT_RUNNING, increment nr_running. Note 775 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 776 * of multiple flags, not a single flag. 777 */ 778 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 779 if (!(worker->flags & WORKER_NOT_RUNNING)) 780 atomic_inc(get_gcwq_nr_running(gcwq->cpu)); 781 } 782 783 /** 784 * busy_worker_head - return the busy hash head for a work 785 * @gcwq: gcwq of interest 786 * @work: work to be hashed 787 * 788 * Return hash head of @gcwq for @work. 789 * 790 * CONTEXT: 791 * spin_lock_irq(gcwq->lock). 792 * 793 * RETURNS: 794 * Pointer to the hash head. 795 */ 796 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq, 797 struct work_struct *work) 798 { 799 const int base_shift = ilog2(sizeof(struct work_struct)); 800 unsigned long v = (unsigned long)work; 801 802 /* simple shift and fold hash, do we need something better? */ 803 v >>= base_shift; 804 v += v >> BUSY_WORKER_HASH_ORDER; 805 v &= BUSY_WORKER_HASH_MASK; 806 807 return &gcwq->busy_hash[v]; 808 } 809 810 /** 811 * __find_worker_executing_work - find worker which is executing a work 812 * @gcwq: gcwq of interest 813 * @bwh: hash head as returned by busy_worker_head() 814 * @work: work to find worker for 815 * 816 * Find a worker which is executing @work on @gcwq. @bwh should be 817 * the hash head obtained by calling busy_worker_head() with the same 818 * work. 819 * 820 * CONTEXT: 821 * spin_lock_irq(gcwq->lock). 822 * 823 * RETURNS: 824 * Pointer to worker which is executing @work if found, NULL 825 * otherwise. 826 */ 827 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq, 828 struct hlist_head *bwh, 829 struct work_struct *work) 830 { 831 struct worker *worker; 832 struct hlist_node *tmp; 833 834 hlist_for_each_entry(worker, tmp, bwh, hentry) 835 if (worker->current_work == work) 836 return worker; 837 return NULL; 838 } 839 840 /** 841 * find_worker_executing_work - find worker which is executing a work 842 * @gcwq: gcwq of interest 843 * @work: work to find worker for 844 * 845 * Find a worker which is executing @work on @gcwq. This function is 846 * identical to __find_worker_executing_work() except that this 847 * function calculates @bwh itself. 848 * 849 * CONTEXT: 850 * spin_lock_irq(gcwq->lock). 851 * 852 * RETURNS: 853 * Pointer to worker which is executing @work if found, NULL 854 * otherwise. 855 */ 856 static struct worker *find_worker_executing_work(struct global_cwq *gcwq, 857 struct work_struct *work) 858 { 859 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work), 860 work); 861 } 862 863 /** 864 * gcwq_determine_ins_pos - find insertion position 865 * @gcwq: gcwq of interest 866 * @cwq: cwq a work is being queued for 867 * 868 * A work for @cwq is about to be queued on @gcwq, determine insertion 869 * position for the work. If @cwq is for HIGHPRI wq, the work is 870 * queued at the head of the queue but in FIFO order with respect to 871 * other HIGHPRI works; otherwise, at the end of the queue. This 872 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that 873 * there are HIGHPRI works pending. 874 * 875 * CONTEXT: 876 * spin_lock_irq(gcwq->lock). 877 * 878 * RETURNS: 879 * Pointer to inserstion position. 880 */ 881 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq, 882 struct cpu_workqueue_struct *cwq) 883 { 884 struct work_struct *twork; 885 886 if (likely(!(cwq->wq->flags & WQ_HIGHPRI))) 887 return &gcwq->worklist; 888 889 list_for_each_entry(twork, &gcwq->worklist, entry) { 890 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork); 891 892 if (!(tcwq->wq->flags & WQ_HIGHPRI)) 893 break; 894 } 895 896 gcwq->flags |= GCWQ_HIGHPRI_PENDING; 897 return &twork->entry; 898 } 899 900 /** 901 * insert_work - insert a work into gcwq 902 * @cwq: cwq @work belongs to 903 * @work: work to insert 904 * @head: insertion point 905 * @extra_flags: extra WORK_STRUCT_* flags to set 906 * 907 * Insert @work which belongs to @cwq into @gcwq after @head. 908 * @extra_flags is or'd to work_struct flags. 909 * 910 * CONTEXT: 911 * spin_lock_irq(gcwq->lock). 912 */ 913 static void insert_work(struct cpu_workqueue_struct *cwq, 914 struct work_struct *work, struct list_head *head, 915 unsigned int extra_flags) 916 { 917 struct global_cwq *gcwq = cwq->gcwq; 918 919 /* we own @work, set data and link */ 920 set_work_cwq(work, cwq, extra_flags); 921 922 /* 923 * Ensure that we get the right work->data if we see the 924 * result of list_add() below, see try_to_grab_pending(). 925 */ 926 smp_wmb(); 927 928 list_add_tail(&work->entry, head); 929 930 /* 931 * Ensure either worker_sched_deactivated() sees the above 932 * list_add_tail() or we see zero nr_running to avoid workers 933 * lying around lazily while there are works to be processed. 934 */ 935 smp_mb(); 936 937 if (__need_more_worker(gcwq)) 938 wake_up_worker(gcwq); 939 } 940 941 /* 942 * Test whether @work is being queued from another work executing on the 943 * same workqueue. This is rather expensive and should only be used from 944 * cold paths. 945 */ 946 static bool is_chained_work(struct workqueue_struct *wq) 947 { 948 unsigned long flags; 949 unsigned int cpu; 950 951 for_each_gcwq_cpu(cpu) { 952 struct global_cwq *gcwq = get_gcwq(cpu); 953 struct worker *worker; 954 struct hlist_node *pos; 955 int i; 956 957 spin_lock_irqsave(&gcwq->lock, flags); 958 for_each_busy_worker(worker, i, pos, gcwq) { 959 if (worker->task != current) 960 continue; 961 spin_unlock_irqrestore(&gcwq->lock, flags); 962 /* 963 * I'm @worker, no locking necessary. See if @work 964 * is headed to the same workqueue. 965 */ 966 return worker->current_cwq->wq == wq; 967 } 968 spin_unlock_irqrestore(&gcwq->lock, flags); 969 } 970 return false; 971 } 972 973 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, 974 struct work_struct *work) 975 { 976 struct global_cwq *gcwq; 977 struct cpu_workqueue_struct *cwq; 978 struct list_head *worklist; 979 unsigned int work_flags; 980 unsigned long flags; 981 982 debug_work_activate(work); 983 984 /* if dying, only works from the same workqueue are allowed */ 985 if (unlikely(wq->flags & WQ_DYING) && 986 WARN_ON_ONCE(!is_chained_work(wq))) 987 return; 988 989 /* determine gcwq to use */ 990 if (!(wq->flags & WQ_UNBOUND)) { 991 struct global_cwq *last_gcwq; 992 993 if (unlikely(cpu == WORK_CPU_UNBOUND)) 994 cpu = raw_smp_processor_id(); 995 996 /* 997 * It's multi cpu. If @wq is non-reentrant and @work 998 * was previously on a different cpu, it might still 999 * be running there, in which case the work needs to 1000 * be queued on that cpu to guarantee non-reentrance. 1001 */ 1002 gcwq = get_gcwq(cpu); 1003 if (wq->flags & WQ_NON_REENTRANT && 1004 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { 1005 struct worker *worker; 1006 1007 spin_lock_irqsave(&last_gcwq->lock, flags); 1008 1009 worker = find_worker_executing_work(last_gcwq, work); 1010 1011 if (worker && worker->current_cwq->wq == wq) 1012 gcwq = last_gcwq; 1013 else { 1014 /* meh... not running there, queue here */ 1015 spin_unlock_irqrestore(&last_gcwq->lock, flags); 1016 spin_lock_irqsave(&gcwq->lock, flags); 1017 } 1018 } else 1019 spin_lock_irqsave(&gcwq->lock, flags); 1020 } else { 1021 gcwq = get_gcwq(WORK_CPU_UNBOUND); 1022 spin_lock_irqsave(&gcwq->lock, flags); 1023 } 1024 1025 /* gcwq determined, get cwq and queue */ 1026 cwq = get_cwq(gcwq->cpu, wq); 1027 trace_workqueue_queue_work(cpu, cwq, work); 1028 1029 BUG_ON(!list_empty(&work->entry)); 1030 1031 cwq->nr_in_flight[cwq->work_color]++; 1032 work_flags = work_color_to_flags(cwq->work_color); 1033 1034 if (likely(cwq->nr_active < cwq->max_active)) { 1035 trace_workqueue_activate_work(work); 1036 cwq->nr_active++; 1037 worklist = gcwq_determine_ins_pos(gcwq, cwq); 1038 } else { 1039 work_flags |= WORK_STRUCT_DELAYED; 1040 worklist = &cwq->delayed_works; 1041 } 1042 1043 insert_work(cwq, work, worklist, work_flags); 1044 1045 spin_unlock_irqrestore(&gcwq->lock, flags); 1046 } 1047 1048 /** 1049 * queue_work - queue work on a workqueue 1050 * @wq: workqueue to use 1051 * @work: work to queue 1052 * 1053 * Returns 0 if @work was already on a queue, non-zero otherwise. 1054 * 1055 * We queue the work to the CPU on which it was submitted, but if the CPU dies 1056 * it can be processed by another CPU. 1057 */ 1058 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 1059 { 1060 int ret; 1061 1062 ret = queue_work_on(get_cpu(), wq, work); 1063 put_cpu(); 1064 1065 return ret; 1066 } 1067 EXPORT_SYMBOL_GPL(queue_work); 1068 1069 /** 1070 * queue_work_on - queue work on specific cpu 1071 * @cpu: CPU number to execute work on 1072 * @wq: workqueue to use 1073 * @work: work to queue 1074 * 1075 * Returns 0 if @work was already on a queue, non-zero otherwise. 1076 * 1077 * We queue the work to a specific CPU, the caller must ensure it 1078 * can't go away. 1079 */ 1080 int 1081 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) 1082 { 1083 int ret = 0; 1084 1085 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1086 __queue_work(cpu, wq, work); 1087 ret = 1; 1088 } 1089 return ret; 1090 } 1091 EXPORT_SYMBOL_GPL(queue_work_on); 1092 1093 static void delayed_work_timer_fn(unsigned long __data) 1094 { 1095 struct delayed_work *dwork = (struct delayed_work *)__data; 1096 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work); 1097 1098 __queue_work(smp_processor_id(), cwq->wq, &dwork->work); 1099 } 1100 1101 /** 1102 * queue_delayed_work - queue work on a workqueue after delay 1103 * @wq: workqueue to use 1104 * @dwork: delayable work to queue 1105 * @delay: number of jiffies to wait before queueing 1106 * 1107 * Returns 0 if @work was already on a queue, non-zero otherwise. 1108 */ 1109 int queue_delayed_work(struct workqueue_struct *wq, 1110 struct delayed_work *dwork, unsigned long delay) 1111 { 1112 if (delay == 0) 1113 return queue_work(wq, &dwork->work); 1114 1115 return queue_delayed_work_on(-1, wq, dwork, delay); 1116 } 1117 EXPORT_SYMBOL_GPL(queue_delayed_work); 1118 1119 /** 1120 * queue_delayed_work_on - queue work on specific CPU after delay 1121 * @cpu: CPU number to execute work on 1122 * @wq: workqueue to use 1123 * @dwork: work to queue 1124 * @delay: number of jiffies to wait before queueing 1125 * 1126 * Returns 0 if @work was already on a queue, non-zero otherwise. 1127 */ 1128 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1129 struct delayed_work *dwork, unsigned long delay) 1130 { 1131 int ret = 0; 1132 struct timer_list *timer = &dwork->timer; 1133 struct work_struct *work = &dwork->work; 1134 1135 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1136 unsigned int lcpu; 1137 1138 BUG_ON(timer_pending(timer)); 1139 BUG_ON(!list_empty(&work->entry)); 1140 1141 timer_stats_timer_set_start_info(&dwork->timer); 1142 1143 /* 1144 * This stores cwq for the moment, for the timer_fn. 1145 * Note that the work's gcwq is preserved to allow 1146 * reentrance detection for delayed works. 1147 */ 1148 if (!(wq->flags & WQ_UNBOUND)) { 1149 struct global_cwq *gcwq = get_work_gcwq(work); 1150 1151 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND) 1152 lcpu = gcwq->cpu; 1153 else 1154 lcpu = raw_smp_processor_id(); 1155 } else 1156 lcpu = WORK_CPU_UNBOUND; 1157 1158 set_work_cwq(work, get_cwq(lcpu, wq), 0); 1159 1160 timer->expires = jiffies + delay; 1161 timer->data = (unsigned long)dwork; 1162 timer->function = delayed_work_timer_fn; 1163 1164 if (unlikely(cpu >= 0)) 1165 add_timer_on(timer, cpu); 1166 else 1167 add_timer(timer); 1168 ret = 1; 1169 } 1170 return ret; 1171 } 1172 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 1173 1174 /** 1175 * worker_enter_idle - enter idle state 1176 * @worker: worker which is entering idle state 1177 * 1178 * @worker is entering idle state. Update stats and idle timer if 1179 * necessary. 1180 * 1181 * LOCKING: 1182 * spin_lock_irq(gcwq->lock). 1183 */ 1184 static void worker_enter_idle(struct worker *worker) 1185 { 1186 struct global_cwq *gcwq = worker->gcwq; 1187 1188 BUG_ON(worker->flags & WORKER_IDLE); 1189 BUG_ON(!list_empty(&worker->entry) && 1190 (worker->hentry.next || worker->hentry.pprev)); 1191 1192 /* can't use worker_set_flags(), also called from start_worker() */ 1193 worker->flags |= WORKER_IDLE; 1194 gcwq->nr_idle++; 1195 worker->last_active = jiffies; 1196 1197 /* idle_list is LIFO */ 1198 list_add(&worker->entry, &gcwq->idle_list); 1199 1200 if (likely(!(worker->flags & WORKER_ROGUE))) { 1201 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer)) 1202 mod_timer(&gcwq->idle_timer, 1203 jiffies + IDLE_WORKER_TIMEOUT); 1204 } else 1205 wake_up_all(&gcwq->trustee_wait); 1206 1207 /* sanity check nr_running */ 1208 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle && 1209 atomic_read(get_gcwq_nr_running(gcwq->cpu))); 1210 } 1211 1212 /** 1213 * worker_leave_idle - leave idle state 1214 * @worker: worker which is leaving idle state 1215 * 1216 * @worker is leaving idle state. Update stats. 1217 * 1218 * LOCKING: 1219 * spin_lock_irq(gcwq->lock). 1220 */ 1221 static void worker_leave_idle(struct worker *worker) 1222 { 1223 struct global_cwq *gcwq = worker->gcwq; 1224 1225 BUG_ON(!(worker->flags & WORKER_IDLE)); 1226 worker_clr_flags(worker, WORKER_IDLE); 1227 gcwq->nr_idle--; 1228 list_del_init(&worker->entry); 1229 } 1230 1231 /** 1232 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq 1233 * @worker: self 1234 * 1235 * Works which are scheduled while the cpu is online must at least be 1236 * scheduled to a worker which is bound to the cpu so that if they are 1237 * flushed from cpu callbacks while cpu is going down, they are 1238 * guaranteed to execute on the cpu. 1239 * 1240 * This function is to be used by rogue workers and rescuers to bind 1241 * themselves to the target cpu and may race with cpu going down or 1242 * coming online. kthread_bind() can't be used because it may put the 1243 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1244 * verbatim as it's best effort and blocking and gcwq may be 1245 * [dis]associated in the meantime. 1246 * 1247 * This function tries set_cpus_allowed() and locks gcwq and verifies 1248 * the binding against GCWQ_DISASSOCIATED which is set during 1249 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters 1250 * idle state or fetches works without dropping lock, it can guarantee 1251 * the scheduling requirement described in the first paragraph. 1252 * 1253 * CONTEXT: 1254 * Might sleep. Called without any lock but returns with gcwq->lock 1255 * held. 1256 * 1257 * RETURNS: 1258 * %true if the associated gcwq is online (@worker is successfully 1259 * bound), %false if offline. 1260 */ 1261 static bool worker_maybe_bind_and_lock(struct worker *worker) 1262 __acquires(&gcwq->lock) 1263 { 1264 struct global_cwq *gcwq = worker->gcwq; 1265 struct task_struct *task = worker->task; 1266 1267 while (true) { 1268 /* 1269 * The following call may fail, succeed or succeed 1270 * without actually migrating the task to the cpu if 1271 * it races with cpu hotunplug operation. Verify 1272 * against GCWQ_DISASSOCIATED. 1273 */ 1274 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) 1275 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu)); 1276 1277 spin_lock_irq(&gcwq->lock); 1278 if (gcwq->flags & GCWQ_DISASSOCIATED) 1279 return false; 1280 if (task_cpu(task) == gcwq->cpu && 1281 cpumask_equal(¤t->cpus_allowed, 1282 get_cpu_mask(gcwq->cpu))) 1283 return true; 1284 spin_unlock_irq(&gcwq->lock); 1285 1286 /* CPU has come up inbetween, retry migration */ 1287 cpu_relax(); 1288 } 1289 } 1290 1291 /* 1292 * Function for worker->rebind_work used to rebind rogue busy workers 1293 * to the associated cpu which is coming back online. This is 1294 * scheduled by cpu up but can race with other cpu hotplug operations 1295 * and may be executed twice without intervening cpu down. 1296 */ 1297 static void worker_rebind_fn(struct work_struct *work) 1298 { 1299 struct worker *worker = container_of(work, struct worker, rebind_work); 1300 struct global_cwq *gcwq = worker->gcwq; 1301 1302 if (worker_maybe_bind_and_lock(worker)) 1303 worker_clr_flags(worker, WORKER_REBIND); 1304 1305 spin_unlock_irq(&gcwq->lock); 1306 } 1307 1308 static struct worker *alloc_worker(void) 1309 { 1310 struct worker *worker; 1311 1312 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1313 if (worker) { 1314 INIT_LIST_HEAD(&worker->entry); 1315 INIT_LIST_HEAD(&worker->scheduled); 1316 INIT_WORK(&worker->rebind_work, worker_rebind_fn); 1317 /* on creation a worker is in !idle && prep state */ 1318 worker->flags = WORKER_PREP; 1319 } 1320 return worker; 1321 } 1322 1323 /** 1324 * create_worker - create a new workqueue worker 1325 * @gcwq: gcwq the new worker will belong to 1326 * @bind: whether to set affinity to @cpu or not 1327 * 1328 * Create a new worker which is bound to @gcwq. The returned worker 1329 * can be started by calling start_worker() or destroyed using 1330 * destroy_worker(). 1331 * 1332 * CONTEXT: 1333 * Might sleep. Does GFP_KERNEL allocations. 1334 * 1335 * RETURNS: 1336 * Pointer to the newly created worker. 1337 */ 1338 static struct worker *create_worker(struct global_cwq *gcwq, bool bind) 1339 { 1340 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND; 1341 struct worker *worker = NULL; 1342 int id = -1; 1343 1344 spin_lock_irq(&gcwq->lock); 1345 while (ida_get_new(&gcwq->worker_ida, &id)) { 1346 spin_unlock_irq(&gcwq->lock); 1347 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL)) 1348 goto fail; 1349 spin_lock_irq(&gcwq->lock); 1350 } 1351 spin_unlock_irq(&gcwq->lock); 1352 1353 worker = alloc_worker(); 1354 if (!worker) 1355 goto fail; 1356 1357 worker->gcwq = gcwq; 1358 worker->id = id; 1359 1360 if (!on_unbound_cpu) 1361 worker->task = kthread_create(worker_thread, worker, 1362 "kworker/%u:%d", gcwq->cpu, id); 1363 else 1364 worker->task = kthread_create(worker_thread, worker, 1365 "kworker/u:%d", id); 1366 if (IS_ERR(worker->task)) 1367 goto fail; 1368 1369 /* 1370 * A rogue worker will become a regular one if CPU comes 1371 * online later on. Make sure every worker has 1372 * PF_THREAD_BOUND set. 1373 */ 1374 if (bind && !on_unbound_cpu) 1375 kthread_bind(worker->task, gcwq->cpu); 1376 else { 1377 worker->task->flags |= PF_THREAD_BOUND; 1378 if (on_unbound_cpu) 1379 worker->flags |= WORKER_UNBOUND; 1380 } 1381 1382 return worker; 1383 fail: 1384 if (id >= 0) { 1385 spin_lock_irq(&gcwq->lock); 1386 ida_remove(&gcwq->worker_ida, id); 1387 spin_unlock_irq(&gcwq->lock); 1388 } 1389 kfree(worker); 1390 return NULL; 1391 } 1392 1393 /** 1394 * start_worker - start a newly created worker 1395 * @worker: worker to start 1396 * 1397 * Make the gcwq aware of @worker and start it. 1398 * 1399 * CONTEXT: 1400 * spin_lock_irq(gcwq->lock). 1401 */ 1402 static void start_worker(struct worker *worker) 1403 { 1404 worker->flags |= WORKER_STARTED; 1405 worker->gcwq->nr_workers++; 1406 worker_enter_idle(worker); 1407 wake_up_process(worker->task); 1408 } 1409 1410 /** 1411 * destroy_worker - destroy a workqueue worker 1412 * @worker: worker to be destroyed 1413 * 1414 * Destroy @worker and adjust @gcwq stats accordingly. 1415 * 1416 * CONTEXT: 1417 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1418 */ 1419 static void destroy_worker(struct worker *worker) 1420 { 1421 struct global_cwq *gcwq = worker->gcwq; 1422 int id = worker->id; 1423 1424 /* sanity check frenzy */ 1425 BUG_ON(worker->current_work); 1426 BUG_ON(!list_empty(&worker->scheduled)); 1427 1428 if (worker->flags & WORKER_STARTED) 1429 gcwq->nr_workers--; 1430 if (worker->flags & WORKER_IDLE) 1431 gcwq->nr_idle--; 1432 1433 list_del_init(&worker->entry); 1434 worker->flags |= WORKER_DIE; 1435 1436 spin_unlock_irq(&gcwq->lock); 1437 1438 kthread_stop(worker->task); 1439 kfree(worker); 1440 1441 spin_lock_irq(&gcwq->lock); 1442 ida_remove(&gcwq->worker_ida, id); 1443 } 1444 1445 static void idle_worker_timeout(unsigned long __gcwq) 1446 { 1447 struct global_cwq *gcwq = (void *)__gcwq; 1448 1449 spin_lock_irq(&gcwq->lock); 1450 1451 if (too_many_workers(gcwq)) { 1452 struct worker *worker; 1453 unsigned long expires; 1454 1455 /* idle_list is kept in LIFO order, check the last one */ 1456 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1457 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1458 1459 if (time_before(jiffies, expires)) 1460 mod_timer(&gcwq->idle_timer, expires); 1461 else { 1462 /* it's been idle for too long, wake up manager */ 1463 gcwq->flags |= GCWQ_MANAGE_WORKERS; 1464 wake_up_worker(gcwq); 1465 } 1466 } 1467 1468 spin_unlock_irq(&gcwq->lock); 1469 } 1470 1471 static bool send_mayday(struct work_struct *work) 1472 { 1473 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1474 struct workqueue_struct *wq = cwq->wq; 1475 unsigned int cpu; 1476 1477 if (!(wq->flags & WQ_RESCUER)) 1478 return false; 1479 1480 /* mayday mayday mayday */ 1481 cpu = cwq->gcwq->cpu; 1482 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ 1483 if (cpu == WORK_CPU_UNBOUND) 1484 cpu = 0; 1485 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) 1486 wake_up_process(wq->rescuer->task); 1487 return true; 1488 } 1489 1490 static void gcwq_mayday_timeout(unsigned long __gcwq) 1491 { 1492 struct global_cwq *gcwq = (void *)__gcwq; 1493 struct work_struct *work; 1494 1495 spin_lock_irq(&gcwq->lock); 1496 1497 if (need_to_create_worker(gcwq)) { 1498 /* 1499 * We've been trying to create a new worker but 1500 * haven't been successful. We might be hitting an 1501 * allocation deadlock. Send distress signals to 1502 * rescuers. 1503 */ 1504 list_for_each_entry(work, &gcwq->worklist, entry) 1505 send_mayday(work); 1506 } 1507 1508 spin_unlock_irq(&gcwq->lock); 1509 1510 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL); 1511 } 1512 1513 /** 1514 * maybe_create_worker - create a new worker if necessary 1515 * @gcwq: gcwq to create a new worker for 1516 * 1517 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to 1518 * have at least one idle worker on return from this function. If 1519 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1520 * sent to all rescuers with works scheduled on @gcwq to resolve 1521 * possible allocation deadlock. 1522 * 1523 * On return, need_to_create_worker() is guaranteed to be false and 1524 * may_start_working() true. 1525 * 1526 * LOCKING: 1527 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1528 * multiple times. Does GFP_KERNEL allocations. Called only from 1529 * manager. 1530 * 1531 * RETURNS: 1532 * false if no action was taken and gcwq->lock stayed locked, true 1533 * otherwise. 1534 */ 1535 static bool maybe_create_worker(struct global_cwq *gcwq) 1536 __releases(&gcwq->lock) 1537 __acquires(&gcwq->lock) 1538 { 1539 if (!need_to_create_worker(gcwq)) 1540 return false; 1541 restart: 1542 spin_unlock_irq(&gcwq->lock); 1543 1544 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1545 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1546 1547 while (true) { 1548 struct worker *worker; 1549 1550 worker = create_worker(gcwq, true); 1551 if (worker) { 1552 del_timer_sync(&gcwq->mayday_timer); 1553 spin_lock_irq(&gcwq->lock); 1554 start_worker(worker); 1555 BUG_ON(need_to_create_worker(gcwq)); 1556 return true; 1557 } 1558 1559 if (!need_to_create_worker(gcwq)) 1560 break; 1561 1562 __set_current_state(TASK_INTERRUPTIBLE); 1563 schedule_timeout(CREATE_COOLDOWN); 1564 1565 if (!need_to_create_worker(gcwq)) 1566 break; 1567 } 1568 1569 del_timer_sync(&gcwq->mayday_timer); 1570 spin_lock_irq(&gcwq->lock); 1571 if (need_to_create_worker(gcwq)) 1572 goto restart; 1573 return true; 1574 } 1575 1576 /** 1577 * maybe_destroy_worker - destroy workers which have been idle for a while 1578 * @gcwq: gcwq to destroy workers for 1579 * 1580 * Destroy @gcwq workers which have been idle for longer than 1581 * IDLE_WORKER_TIMEOUT. 1582 * 1583 * LOCKING: 1584 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1585 * multiple times. Called only from manager. 1586 * 1587 * RETURNS: 1588 * false if no action was taken and gcwq->lock stayed locked, true 1589 * otherwise. 1590 */ 1591 static bool maybe_destroy_workers(struct global_cwq *gcwq) 1592 { 1593 bool ret = false; 1594 1595 while (too_many_workers(gcwq)) { 1596 struct worker *worker; 1597 unsigned long expires; 1598 1599 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1600 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1601 1602 if (time_before(jiffies, expires)) { 1603 mod_timer(&gcwq->idle_timer, expires); 1604 break; 1605 } 1606 1607 destroy_worker(worker); 1608 ret = true; 1609 } 1610 1611 return ret; 1612 } 1613 1614 /** 1615 * manage_workers - manage worker pool 1616 * @worker: self 1617 * 1618 * Assume the manager role and manage gcwq worker pool @worker belongs 1619 * to. At any given time, there can be only zero or one manager per 1620 * gcwq. The exclusion is handled automatically by this function. 1621 * 1622 * The caller can safely start processing works on false return. On 1623 * true return, it's guaranteed that need_to_create_worker() is false 1624 * and may_start_working() is true. 1625 * 1626 * CONTEXT: 1627 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1628 * multiple times. Does GFP_KERNEL allocations. 1629 * 1630 * RETURNS: 1631 * false if no action was taken and gcwq->lock stayed locked, true if 1632 * some action was taken. 1633 */ 1634 static bool manage_workers(struct worker *worker) 1635 { 1636 struct global_cwq *gcwq = worker->gcwq; 1637 bool ret = false; 1638 1639 if (gcwq->flags & GCWQ_MANAGING_WORKERS) 1640 return ret; 1641 1642 gcwq->flags &= ~GCWQ_MANAGE_WORKERS; 1643 gcwq->flags |= GCWQ_MANAGING_WORKERS; 1644 1645 /* 1646 * Destroy and then create so that may_start_working() is true 1647 * on return. 1648 */ 1649 ret |= maybe_destroy_workers(gcwq); 1650 ret |= maybe_create_worker(gcwq); 1651 1652 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 1653 1654 /* 1655 * The trustee might be waiting to take over the manager 1656 * position, tell it we're done. 1657 */ 1658 if (unlikely(gcwq->trustee)) 1659 wake_up_all(&gcwq->trustee_wait); 1660 1661 return ret; 1662 } 1663 1664 /** 1665 * move_linked_works - move linked works to a list 1666 * @work: start of series of works to be scheduled 1667 * @head: target list to append @work to 1668 * @nextp: out paramter for nested worklist walking 1669 * 1670 * Schedule linked works starting from @work to @head. Work series to 1671 * be scheduled starts at @work and includes any consecutive work with 1672 * WORK_STRUCT_LINKED set in its predecessor. 1673 * 1674 * If @nextp is not NULL, it's updated to point to the next work of 1675 * the last scheduled work. This allows move_linked_works() to be 1676 * nested inside outer list_for_each_entry_safe(). 1677 * 1678 * CONTEXT: 1679 * spin_lock_irq(gcwq->lock). 1680 */ 1681 static void move_linked_works(struct work_struct *work, struct list_head *head, 1682 struct work_struct **nextp) 1683 { 1684 struct work_struct *n; 1685 1686 /* 1687 * Linked worklist will always end before the end of the list, 1688 * use NULL for list head. 1689 */ 1690 list_for_each_entry_safe_from(work, n, NULL, entry) { 1691 list_move_tail(&work->entry, head); 1692 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1693 break; 1694 } 1695 1696 /* 1697 * If we're already inside safe list traversal and have moved 1698 * multiple works to the scheduled queue, the next position 1699 * needs to be updated. 1700 */ 1701 if (nextp) 1702 *nextp = n; 1703 } 1704 1705 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq) 1706 { 1707 struct work_struct *work = list_first_entry(&cwq->delayed_works, 1708 struct work_struct, entry); 1709 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq); 1710 1711 trace_workqueue_activate_work(work); 1712 move_linked_works(work, pos, NULL); 1713 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1714 cwq->nr_active++; 1715 } 1716 1717 /** 1718 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight 1719 * @cwq: cwq of interest 1720 * @color: color of work which left the queue 1721 * @delayed: for a delayed work 1722 * 1723 * A work either has completed or is removed from pending queue, 1724 * decrement nr_in_flight of its cwq and handle workqueue flushing. 1725 * 1726 * CONTEXT: 1727 * spin_lock_irq(gcwq->lock). 1728 */ 1729 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color, 1730 bool delayed) 1731 { 1732 /* ignore uncolored works */ 1733 if (color == WORK_NO_COLOR) 1734 return; 1735 1736 cwq->nr_in_flight[color]--; 1737 1738 if (!delayed) { 1739 cwq->nr_active--; 1740 if (!list_empty(&cwq->delayed_works)) { 1741 /* one down, submit a delayed one */ 1742 if (cwq->nr_active < cwq->max_active) 1743 cwq_activate_first_delayed(cwq); 1744 } 1745 } 1746 1747 /* is flush in progress and are we at the flushing tip? */ 1748 if (likely(cwq->flush_color != color)) 1749 return; 1750 1751 /* are there still in-flight works? */ 1752 if (cwq->nr_in_flight[color]) 1753 return; 1754 1755 /* this cwq is done, clear flush_color */ 1756 cwq->flush_color = -1; 1757 1758 /* 1759 * If this was the last cwq, wake up the first flusher. It 1760 * will handle the rest. 1761 */ 1762 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush)) 1763 complete(&cwq->wq->first_flusher->done); 1764 } 1765 1766 /** 1767 * process_one_work - process single work 1768 * @worker: self 1769 * @work: work to process 1770 * 1771 * Process @work. This function contains all the logics necessary to 1772 * process a single work including synchronization against and 1773 * interaction with other workers on the same cpu, queueing and 1774 * flushing. As long as context requirement is met, any worker can 1775 * call this function to process a work. 1776 * 1777 * CONTEXT: 1778 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1779 */ 1780 static void process_one_work(struct worker *worker, struct work_struct *work) 1781 __releases(&gcwq->lock) 1782 __acquires(&gcwq->lock) 1783 { 1784 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1785 struct global_cwq *gcwq = cwq->gcwq; 1786 struct hlist_head *bwh = busy_worker_head(gcwq, work); 1787 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE; 1788 work_func_t f = work->func; 1789 int work_color; 1790 struct worker *collision; 1791 #ifdef CONFIG_LOCKDEP 1792 /* 1793 * It is permissible to free the struct work_struct from 1794 * inside the function that is called from it, this we need to 1795 * take into account for lockdep too. To avoid bogus "held 1796 * lock freed" warnings as well as problems when looking into 1797 * work->lockdep_map, make a copy and use that here. 1798 */ 1799 struct lockdep_map lockdep_map = work->lockdep_map; 1800 #endif 1801 /* 1802 * A single work shouldn't be executed concurrently by 1803 * multiple workers on a single cpu. Check whether anyone is 1804 * already processing the work. If so, defer the work to the 1805 * currently executing one. 1806 */ 1807 collision = __find_worker_executing_work(gcwq, bwh, work); 1808 if (unlikely(collision)) { 1809 move_linked_works(work, &collision->scheduled, NULL); 1810 return; 1811 } 1812 1813 /* claim and process */ 1814 debug_work_deactivate(work); 1815 hlist_add_head(&worker->hentry, bwh); 1816 worker->current_work = work; 1817 worker->current_cwq = cwq; 1818 work_color = get_work_color(work); 1819 1820 /* record the current cpu number in the work data and dequeue */ 1821 set_work_cpu(work, gcwq->cpu); 1822 list_del_init(&work->entry); 1823 1824 /* 1825 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI, 1826 * wake up another worker; otherwise, clear HIGHPRI_PENDING. 1827 */ 1828 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) { 1829 struct work_struct *nwork = list_first_entry(&gcwq->worklist, 1830 struct work_struct, entry); 1831 1832 if (!list_empty(&gcwq->worklist) && 1833 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI) 1834 wake_up_worker(gcwq); 1835 else 1836 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING; 1837 } 1838 1839 /* 1840 * CPU intensive works don't participate in concurrency 1841 * management. They're the scheduler's responsibility. 1842 */ 1843 if (unlikely(cpu_intensive)) 1844 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 1845 1846 spin_unlock_irq(&gcwq->lock); 1847 1848 work_clear_pending(work); 1849 lock_map_acquire_read(&cwq->wq->lockdep_map); 1850 lock_map_acquire(&lockdep_map); 1851 trace_workqueue_execute_start(work); 1852 f(work); 1853 /* 1854 * While we must be careful to not use "work" after this, the trace 1855 * point will only record its address. 1856 */ 1857 trace_workqueue_execute_end(work); 1858 lock_map_release(&lockdep_map); 1859 lock_map_release(&cwq->wq->lockdep_map); 1860 1861 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 1862 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 1863 "%s/0x%08x/%d\n", 1864 current->comm, preempt_count(), task_pid_nr(current)); 1865 printk(KERN_ERR " last function: "); 1866 print_symbol("%s\n", (unsigned long)f); 1867 debug_show_held_locks(current); 1868 dump_stack(); 1869 } 1870 1871 spin_lock_irq(&gcwq->lock); 1872 1873 /* clear cpu intensive status */ 1874 if (unlikely(cpu_intensive)) 1875 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 1876 1877 /* we're done with it, release */ 1878 hlist_del_init(&worker->hentry); 1879 worker->current_work = NULL; 1880 worker->current_cwq = NULL; 1881 cwq_dec_nr_in_flight(cwq, work_color, false); 1882 } 1883 1884 /** 1885 * process_scheduled_works - process scheduled works 1886 * @worker: self 1887 * 1888 * Process all scheduled works. Please note that the scheduled list 1889 * may change while processing a work, so this function repeatedly 1890 * fetches a work from the top and executes it. 1891 * 1892 * CONTEXT: 1893 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1894 * multiple times. 1895 */ 1896 static void process_scheduled_works(struct worker *worker) 1897 { 1898 while (!list_empty(&worker->scheduled)) { 1899 struct work_struct *work = list_first_entry(&worker->scheduled, 1900 struct work_struct, entry); 1901 process_one_work(worker, work); 1902 } 1903 } 1904 1905 /** 1906 * worker_thread - the worker thread function 1907 * @__worker: self 1908 * 1909 * The gcwq worker thread function. There's a single dynamic pool of 1910 * these per each cpu. These workers process all works regardless of 1911 * their specific target workqueue. The only exception is works which 1912 * belong to workqueues with a rescuer which will be explained in 1913 * rescuer_thread(). 1914 */ 1915 static int worker_thread(void *__worker) 1916 { 1917 struct worker *worker = __worker; 1918 struct global_cwq *gcwq = worker->gcwq; 1919 1920 /* tell the scheduler that this is a workqueue worker */ 1921 worker->task->flags |= PF_WQ_WORKER; 1922 woke_up: 1923 spin_lock_irq(&gcwq->lock); 1924 1925 /* DIE can be set only while we're idle, checking here is enough */ 1926 if (worker->flags & WORKER_DIE) { 1927 spin_unlock_irq(&gcwq->lock); 1928 worker->task->flags &= ~PF_WQ_WORKER; 1929 return 0; 1930 } 1931 1932 worker_leave_idle(worker); 1933 recheck: 1934 /* no more worker necessary? */ 1935 if (!need_more_worker(gcwq)) 1936 goto sleep; 1937 1938 /* do we need to manage? */ 1939 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker)) 1940 goto recheck; 1941 1942 /* 1943 * ->scheduled list can only be filled while a worker is 1944 * preparing to process a work or actually processing it. 1945 * Make sure nobody diddled with it while I was sleeping. 1946 */ 1947 BUG_ON(!list_empty(&worker->scheduled)); 1948 1949 /* 1950 * When control reaches this point, we're guaranteed to have 1951 * at least one idle worker or that someone else has already 1952 * assumed the manager role. 1953 */ 1954 worker_clr_flags(worker, WORKER_PREP); 1955 1956 do { 1957 struct work_struct *work = 1958 list_first_entry(&gcwq->worklist, 1959 struct work_struct, entry); 1960 1961 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 1962 /* optimization path, not strictly necessary */ 1963 process_one_work(worker, work); 1964 if (unlikely(!list_empty(&worker->scheduled))) 1965 process_scheduled_works(worker); 1966 } else { 1967 move_linked_works(work, &worker->scheduled, NULL); 1968 process_scheduled_works(worker); 1969 } 1970 } while (keep_working(gcwq)); 1971 1972 worker_set_flags(worker, WORKER_PREP, false); 1973 sleep: 1974 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker)) 1975 goto recheck; 1976 1977 /* 1978 * gcwq->lock is held and there's no work to process and no 1979 * need to manage, sleep. Workers are woken up only while 1980 * holding gcwq->lock or from local cpu, so setting the 1981 * current state before releasing gcwq->lock is enough to 1982 * prevent losing any event. 1983 */ 1984 worker_enter_idle(worker); 1985 __set_current_state(TASK_INTERRUPTIBLE); 1986 spin_unlock_irq(&gcwq->lock); 1987 schedule(); 1988 goto woke_up; 1989 } 1990 1991 /** 1992 * rescuer_thread - the rescuer thread function 1993 * @__wq: the associated workqueue 1994 * 1995 * Workqueue rescuer thread function. There's one rescuer for each 1996 * workqueue which has WQ_RESCUER set. 1997 * 1998 * Regular work processing on a gcwq may block trying to create a new 1999 * worker which uses GFP_KERNEL allocation which has slight chance of 2000 * developing into deadlock if some works currently on the same queue 2001 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2002 * the problem rescuer solves. 2003 * 2004 * When such condition is possible, the gcwq summons rescuers of all 2005 * workqueues which have works queued on the gcwq and let them process 2006 * those works so that forward progress can be guaranteed. 2007 * 2008 * This should happen rarely. 2009 */ 2010 static int rescuer_thread(void *__wq) 2011 { 2012 struct workqueue_struct *wq = __wq; 2013 struct worker *rescuer = wq->rescuer; 2014 struct list_head *scheduled = &rescuer->scheduled; 2015 bool is_unbound = wq->flags & WQ_UNBOUND; 2016 unsigned int cpu; 2017 2018 set_user_nice(current, RESCUER_NICE_LEVEL); 2019 repeat: 2020 set_current_state(TASK_INTERRUPTIBLE); 2021 2022 if (kthread_should_stop()) 2023 return 0; 2024 2025 /* 2026 * See whether any cpu is asking for help. Unbounded 2027 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. 2028 */ 2029 for_each_mayday_cpu(cpu, wq->mayday_mask) { 2030 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; 2031 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq); 2032 struct global_cwq *gcwq = cwq->gcwq; 2033 struct work_struct *work, *n; 2034 2035 __set_current_state(TASK_RUNNING); 2036 mayday_clear_cpu(cpu, wq->mayday_mask); 2037 2038 /* migrate to the target cpu if possible */ 2039 rescuer->gcwq = gcwq; 2040 worker_maybe_bind_and_lock(rescuer); 2041 2042 /* 2043 * Slurp in all works issued via this workqueue and 2044 * process'em. 2045 */ 2046 BUG_ON(!list_empty(&rescuer->scheduled)); 2047 list_for_each_entry_safe(work, n, &gcwq->worklist, entry) 2048 if (get_work_cwq(work) == cwq) 2049 move_linked_works(work, scheduled, &n); 2050 2051 process_scheduled_works(rescuer); 2052 2053 /* 2054 * Leave this gcwq. If keep_working() is %true, notify a 2055 * regular worker; otherwise, we end up with 0 concurrency 2056 * and stalling the execution. 2057 */ 2058 if (keep_working(gcwq)) 2059 wake_up_worker(gcwq); 2060 2061 spin_unlock_irq(&gcwq->lock); 2062 } 2063 2064 schedule(); 2065 goto repeat; 2066 } 2067 2068 struct wq_barrier { 2069 struct work_struct work; 2070 struct completion done; 2071 }; 2072 2073 static void wq_barrier_func(struct work_struct *work) 2074 { 2075 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2076 complete(&barr->done); 2077 } 2078 2079 /** 2080 * insert_wq_barrier - insert a barrier work 2081 * @cwq: cwq to insert barrier into 2082 * @barr: wq_barrier to insert 2083 * @target: target work to attach @barr to 2084 * @worker: worker currently executing @target, NULL if @target is not executing 2085 * 2086 * @barr is linked to @target such that @barr is completed only after 2087 * @target finishes execution. Please note that the ordering 2088 * guarantee is observed only with respect to @target and on the local 2089 * cpu. 2090 * 2091 * Currently, a queued barrier can't be canceled. This is because 2092 * try_to_grab_pending() can't determine whether the work to be 2093 * grabbed is at the head of the queue and thus can't clear LINKED 2094 * flag of the previous work while there must be a valid next work 2095 * after a work with LINKED flag set. 2096 * 2097 * Note that when @worker is non-NULL, @target may be modified 2098 * underneath us, so we can't reliably determine cwq from @target. 2099 * 2100 * CONTEXT: 2101 * spin_lock_irq(gcwq->lock). 2102 */ 2103 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 2104 struct wq_barrier *barr, 2105 struct work_struct *target, struct worker *worker) 2106 { 2107 struct list_head *head; 2108 unsigned int linked = 0; 2109 2110 /* 2111 * debugobject calls are safe here even with gcwq->lock locked 2112 * as we know for sure that this will not trigger any of the 2113 * checks and call back into the fixup functions where we 2114 * might deadlock. 2115 */ 2116 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2117 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2118 init_completion(&barr->done); 2119 2120 /* 2121 * If @target is currently being executed, schedule the 2122 * barrier to the worker; otherwise, put it after @target. 2123 */ 2124 if (worker) 2125 head = worker->scheduled.next; 2126 else { 2127 unsigned long *bits = work_data_bits(target); 2128 2129 head = target->entry.next; 2130 /* there can already be other linked works, inherit and set */ 2131 linked = *bits & WORK_STRUCT_LINKED; 2132 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2133 } 2134 2135 debug_work_activate(&barr->work); 2136 insert_work(cwq, &barr->work, head, 2137 work_color_to_flags(WORK_NO_COLOR) | linked); 2138 } 2139 2140 /** 2141 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing 2142 * @wq: workqueue being flushed 2143 * @flush_color: new flush color, < 0 for no-op 2144 * @work_color: new work color, < 0 for no-op 2145 * 2146 * Prepare cwqs for workqueue flushing. 2147 * 2148 * If @flush_color is non-negative, flush_color on all cwqs should be 2149 * -1. If no cwq has in-flight commands at the specified color, all 2150 * cwq->flush_color's stay at -1 and %false is returned. If any cwq 2151 * has in flight commands, its cwq->flush_color is set to 2152 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq 2153 * wakeup logic is armed and %true is returned. 2154 * 2155 * The caller should have initialized @wq->first_flusher prior to 2156 * calling this function with non-negative @flush_color. If 2157 * @flush_color is negative, no flush color update is done and %false 2158 * is returned. 2159 * 2160 * If @work_color is non-negative, all cwqs should have the same 2161 * work_color which is previous to @work_color and all will be 2162 * advanced to @work_color. 2163 * 2164 * CONTEXT: 2165 * mutex_lock(wq->flush_mutex). 2166 * 2167 * RETURNS: 2168 * %true if @flush_color >= 0 and there's something to flush. %false 2169 * otherwise. 2170 */ 2171 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq, 2172 int flush_color, int work_color) 2173 { 2174 bool wait = false; 2175 unsigned int cpu; 2176 2177 if (flush_color >= 0) { 2178 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush)); 2179 atomic_set(&wq->nr_cwqs_to_flush, 1); 2180 } 2181 2182 for_each_cwq_cpu(cpu, wq) { 2183 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2184 struct global_cwq *gcwq = cwq->gcwq; 2185 2186 spin_lock_irq(&gcwq->lock); 2187 2188 if (flush_color >= 0) { 2189 BUG_ON(cwq->flush_color != -1); 2190 2191 if (cwq->nr_in_flight[flush_color]) { 2192 cwq->flush_color = flush_color; 2193 atomic_inc(&wq->nr_cwqs_to_flush); 2194 wait = true; 2195 } 2196 } 2197 2198 if (work_color >= 0) { 2199 BUG_ON(work_color != work_next_color(cwq->work_color)); 2200 cwq->work_color = work_color; 2201 } 2202 2203 spin_unlock_irq(&gcwq->lock); 2204 } 2205 2206 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush)) 2207 complete(&wq->first_flusher->done); 2208 2209 return wait; 2210 } 2211 2212 /** 2213 * flush_workqueue - ensure that any scheduled work has run to completion. 2214 * @wq: workqueue to flush 2215 * 2216 * Forces execution of the workqueue and blocks until its completion. 2217 * This is typically used in driver shutdown handlers. 2218 * 2219 * We sleep until all works which were queued on entry have been handled, 2220 * but we are not livelocked by new incoming ones. 2221 */ 2222 void flush_workqueue(struct workqueue_struct *wq) 2223 { 2224 struct wq_flusher this_flusher = { 2225 .list = LIST_HEAD_INIT(this_flusher.list), 2226 .flush_color = -1, 2227 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2228 }; 2229 int next_color; 2230 2231 lock_map_acquire(&wq->lockdep_map); 2232 lock_map_release(&wq->lockdep_map); 2233 2234 mutex_lock(&wq->flush_mutex); 2235 2236 /* 2237 * Start-to-wait phase 2238 */ 2239 next_color = work_next_color(wq->work_color); 2240 2241 if (next_color != wq->flush_color) { 2242 /* 2243 * Color space is not full. The current work_color 2244 * becomes our flush_color and work_color is advanced 2245 * by one. 2246 */ 2247 BUG_ON(!list_empty(&wq->flusher_overflow)); 2248 this_flusher.flush_color = wq->work_color; 2249 wq->work_color = next_color; 2250 2251 if (!wq->first_flusher) { 2252 /* no flush in progress, become the first flusher */ 2253 BUG_ON(wq->flush_color != this_flusher.flush_color); 2254 2255 wq->first_flusher = &this_flusher; 2256 2257 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color, 2258 wq->work_color)) { 2259 /* nothing to flush, done */ 2260 wq->flush_color = next_color; 2261 wq->first_flusher = NULL; 2262 goto out_unlock; 2263 } 2264 } else { 2265 /* wait in queue */ 2266 BUG_ON(wq->flush_color == this_flusher.flush_color); 2267 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2268 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2269 } 2270 } else { 2271 /* 2272 * Oops, color space is full, wait on overflow queue. 2273 * The next flush completion will assign us 2274 * flush_color and transfer to flusher_queue. 2275 */ 2276 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2277 } 2278 2279 mutex_unlock(&wq->flush_mutex); 2280 2281 wait_for_completion(&this_flusher.done); 2282 2283 /* 2284 * Wake-up-and-cascade phase 2285 * 2286 * First flushers are responsible for cascading flushes and 2287 * handling overflow. Non-first flushers can simply return. 2288 */ 2289 if (wq->first_flusher != &this_flusher) 2290 return; 2291 2292 mutex_lock(&wq->flush_mutex); 2293 2294 /* we might have raced, check again with mutex held */ 2295 if (wq->first_flusher != &this_flusher) 2296 goto out_unlock; 2297 2298 wq->first_flusher = NULL; 2299 2300 BUG_ON(!list_empty(&this_flusher.list)); 2301 BUG_ON(wq->flush_color != this_flusher.flush_color); 2302 2303 while (true) { 2304 struct wq_flusher *next, *tmp; 2305 2306 /* complete all the flushers sharing the current flush color */ 2307 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2308 if (next->flush_color != wq->flush_color) 2309 break; 2310 list_del_init(&next->list); 2311 complete(&next->done); 2312 } 2313 2314 BUG_ON(!list_empty(&wq->flusher_overflow) && 2315 wq->flush_color != work_next_color(wq->work_color)); 2316 2317 /* this flush_color is finished, advance by one */ 2318 wq->flush_color = work_next_color(wq->flush_color); 2319 2320 /* one color has been freed, handle overflow queue */ 2321 if (!list_empty(&wq->flusher_overflow)) { 2322 /* 2323 * Assign the same color to all overflowed 2324 * flushers, advance work_color and append to 2325 * flusher_queue. This is the start-to-wait 2326 * phase for these overflowed flushers. 2327 */ 2328 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2329 tmp->flush_color = wq->work_color; 2330 2331 wq->work_color = work_next_color(wq->work_color); 2332 2333 list_splice_tail_init(&wq->flusher_overflow, 2334 &wq->flusher_queue); 2335 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2336 } 2337 2338 if (list_empty(&wq->flusher_queue)) { 2339 BUG_ON(wq->flush_color != wq->work_color); 2340 break; 2341 } 2342 2343 /* 2344 * Need to flush more colors. Make the next flusher 2345 * the new first flusher and arm cwqs. 2346 */ 2347 BUG_ON(wq->flush_color == wq->work_color); 2348 BUG_ON(wq->flush_color != next->flush_color); 2349 2350 list_del_init(&next->list); 2351 wq->first_flusher = next; 2352 2353 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1)) 2354 break; 2355 2356 /* 2357 * Meh... this color is already done, clear first 2358 * flusher and repeat cascading. 2359 */ 2360 wq->first_flusher = NULL; 2361 } 2362 2363 out_unlock: 2364 mutex_unlock(&wq->flush_mutex); 2365 } 2366 EXPORT_SYMBOL_GPL(flush_workqueue); 2367 2368 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2369 bool wait_executing) 2370 { 2371 struct worker *worker = NULL; 2372 struct global_cwq *gcwq; 2373 struct cpu_workqueue_struct *cwq; 2374 2375 might_sleep(); 2376 gcwq = get_work_gcwq(work); 2377 if (!gcwq) 2378 return false; 2379 2380 spin_lock_irq(&gcwq->lock); 2381 if (!list_empty(&work->entry)) { 2382 /* 2383 * See the comment near try_to_grab_pending()->smp_rmb(). 2384 * If it was re-queued to a different gcwq under us, we 2385 * are not going to wait. 2386 */ 2387 smp_rmb(); 2388 cwq = get_work_cwq(work); 2389 if (unlikely(!cwq || gcwq != cwq->gcwq)) 2390 goto already_gone; 2391 } else if (wait_executing) { 2392 worker = find_worker_executing_work(gcwq, work); 2393 if (!worker) 2394 goto already_gone; 2395 cwq = worker->current_cwq; 2396 } else 2397 goto already_gone; 2398 2399 insert_wq_barrier(cwq, barr, work, worker); 2400 spin_unlock_irq(&gcwq->lock); 2401 2402 /* 2403 * If @max_active is 1 or rescuer is in use, flushing another work 2404 * item on the same workqueue may lead to deadlock. Make sure the 2405 * flusher is not running on the same workqueue by verifying write 2406 * access. 2407 */ 2408 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER) 2409 lock_map_acquire(&cwq->wq->lockdep_map); 2410 else 2411 lock_map_acquire_read(&cwq->wq->lockdep_map); 2412 lock_map_release(&cwq->wq->lockdep_map); 2413 2414 return true; 2415 already_gone: 2416 spin_unlock_irq(&gcwq->lock); 2417 return false; 2418 } 2419 2420 /** 2421 * flush_work - wait for a work to finish executing the last queueing instance 2422 * @work: the work to flush 2423 * 2424 * Wait until @work has finished execution. This function considers 2425 * only the last queueing instance of @work. If @work has been 2426 * enqueued across different CPUs on a non-reentrant workqueue or on 2427 * multiple workqueues, @work might still be executing on return on 2428 * some of the CPUs from earlier queueing. 2429 * 2430 * If @work was queued only on a non-reentrant, ordered or unbound 2431 * workqueue, @work is guaranteed to be idle on return if it hasn't 2432 * been requeued since flush started. 2433 * 2434 * RETURNS: 2435 * %true if flush_work() waited for the work to finish execution, 2436 * %false if it was already idle. 2437 */ 2438 bool flush_work(struct work_struct *work) 2439 { 2440 struct wq_barrier barr; 2441 2442 if (start_flush_work(work, &barr, true)) { 2443 wait_for_completion(&barr.done); 2444 destroy_work_on_stack(&barr.work); 2445 return true; 2446 } else 2447 return false; 2448 } 2449 EXPORT_SYMBOL_GPL(flush_work); 2450 2451 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work) 2452 { 2453 struct wq_barrier barr; 2454 struct worker *worker; 2455 2456 spin_lock_irq(&gcwq->lock); 2457 2458 worker = find_worker_executing_work(gcwq, work); 2459 if (unlikely(worker)) 2460 insert_wq_barrier(worker->current_cwq, &barr, work, worker); 2461 2462 spin_unlock_irq(&gcwq->lock); 2463 2464 if (unlikely(worker)) { 2465 wait_for_completion(&barr.done); 2466 destroy_work_on_stack(&barr.work); 2467 return true; 2468 } else 2469 return false; 2470 } 2471 2472 static bool wait_on_work(struct work_struct *work) 2473 { 2474 bool ret = false; 2475 int cpu; 2476 2477 might_sleep(); 2478 2479 lock_map_acquire(&work->lockdep_map); 2480 lock_map_release(&work->lockdep_map); 2481 2482 for_each_gcwq_cpu(cpu) 2483 ret |= wait_on_cpu_work(get_gcwq(cpu), work); 2484 return ret; 2485 } 2486 2487 /** 2488 * flush_work_sync - wait until a work has finished execution 2489 * @work: the work to flush 2490 * 2491 * Wait until @work has finished execution. On return, it's 2492 * guaranteed that all queueing instances of @work which happened 2493 * before this function is called are finished. In other words, if 2494 * @work hasn't been requeued since this function was called, @work is 2495 * guaranteed to be idle on return. 2496 * 2497 * RETURNS: 2498 * %true if flush_work_sync() waited for the work to finish execution, 2499 * %false if it was already idle. 2500 */ 2501 bool flush_work_sync(struct work_struct *work) 2502 { 2503 struct wq_barrier barr; 2504 bool pending, waited; 2505 2506 /* we'll wait for executions separately, queue barr only if pending */ 2507 pending = start_flush_work(work, &barr, false); 2508 2509 /* wait for executions to finish */ 2510 waited = wait_on_work(work); 2511 2512 /* wait for the pending one */ 2513 if (pending) { 2514 wait_for_completion(&barr.done); 2515 destroy_work_on_stack(&barr.work); 2516 } 2517 2518 return pending || waited; 2519 } 2520 EXPORT_SYMBOL_GPL(flush_work_sync); 2521 2522 /* 2523 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 2524 * so this work can't be re-armed in any way. 2525 */ 2526 static int try_to_grab_pending(struct work_struct *work) 2527 { 2528 struct global_cwq *gcwq; 2529 int ret = -1; 2530 2531 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2532 return 0; 2533 2534 /* 2535 * The queueing is in progress, or it is already queued. Try to 2536 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2537 */ 2538 gcwq = get_work_gcwq(work); 2539 if (!gcwq) 2540 return ret; 2541 2542 spin_lock_irq(&gcwq->lock); 2543 if (!list_empty(&work->entry)) { 2544 /* 2545 * This work is queued, but perhaps we locked the wrong gcwq. 2546 * In that case we must see the new value after rmb(), see 2547 * insert_work()->wmb(). 2548 */ 2549 smp_rmb(); 2550 if (gcwq == get_work_gcwq(work)) { 2551 debug_work_deactivate(work); 2552 list_del_init(&work->entry); 2553 cwq_dec_nr_in_flight(get_work_cwq(work), 2554 get_work_color(work), 2555 *work_data_bits(work) & WORK_STRUCT_DELAYED); 2556 ret = 1; 2557 } 2558 } 2559 spin_unlock_irq(&gcwq->lock); 2560 2561 return ret; 2562 } 2563 2564 static bool __cancel_work_timer(struct work_struct *work, 2565 struct timer_list* timer) 2566 { 2567 int ret; 2568 2569 do { 2570 ret = (timer && likely(del_timer(timer))); 2571 if (!ret) 2572 ret = try_to_grab_pending(work); 2573 wait_on_work(work); 2574 } while (unlikely(ret < 0)); 2575 2576 clear_work_data(work); 2577 return ret; 2578 } 2579 2580 /** 2581 * cancel_work_sync - cancel a work and wait for it to finish 2582 * @work: the work to cancel 2583 * 2584 * Cancel @work and wait for its execution to finish. This function 2585 * can be used even if the work re-queues itself or migrates to 2586 * another workqueue. On return from this function, @work is 2587 * guaranteed to be not pending or executing on any CPU. 2588 * 2589 * cancel_work_sync(&delayed_work->work) must not be used for 2590 * delayed_work's. Use cancel_delayed_work_sync() instead. 2591 * 2592 * The caller must ensure that the workqueue on which @work was last 2593 * queued can't be destroyed before this function returns. 2594 * 2595 * RETURNS: 2596 * %true if @work was pending, %false otherwise. 2597 */ 2598 bool cancel_work_sync(struct work_struct *work) 2599 { 2600 return __cancel_work_timer(work, NULL); 2601 } 2602 EXPORT_SYMBOL_GPL(cancel_work_sync); 2603 2604 /** 2605 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2606 * @dwork: the delayed work to flush 2607 * 2608 * Delayed timer is cancelled and the pending work is queued for 2609 * immediate execution. Like flush_work(), this function only 2610 * considers the last queueing instance of @dwork. 2611 * 2612 * RETURNS: 2613 * %true if flush_work() waited for the work to finish execution, 2614 * %false if it was already idle. 2615 */ 2616 bool flush_delayed_work(struct delayed_work *dwork) 2617 { 2618 if (del_timer_sync(&dwork->timer)) 2619 __queue_work(raw_smp_processor_id(), 2620 get_work_cwq(&dwork->work)->wq, &dwork->work); 2621 return flush_work(&dwork->work); 2622 } 2623 EXPORT_SYMBOL(flush_delayed_work); 2624 2625 /** 2626 * flush_delayed_work_sync - wait for a dwork to finish 2627 * @dwork: the delayed work to flush 2628 * 2629 * Delayed timer is cancelled and the pending work is queued for 2630 * execution immediately. Other than timer handling, its behavior 2631 * is identical to flush_work_sync(). 2632 * 2633 * RETURNS: 2634 * %true if flush_work_sync() waited for the work to finish execution, 2635 * %false if it was already idle. 2636 */ 2637 bool flush_delayed_work_sync(struct delayed_work *dwork) 2638 { 2639 if (del_timer_sync(&dwork->timer)) 2640 __queue_work(raw_smp_processor_id(), 2641 get_work_cwq(&dwork->work)->wq, &dwork->work); 2642 return flush_work_sync(&dwork->work); 2643 } 2644 EXPORT_SYMBOL(flush_delayed_work_sync); 2645 2646 /** 2647 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2648 * @dwork: the delayed work cancel 2649 * 2650 * This is cancel_work_sync() for delayed works. 2651 * 2652 * RETURNS: 2653 * %true if @dwork was pending, %false otherwise. 2654 */ 2655 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2656 { 2657 return __cancel_work_timer(&dwork->work, &dwork->timer); 2658 } 2659 EXPORT_SYMBOL(cancel_delayed_work_sync); 2660 2661 /** 2662 * schedule_work - put work task in global workqueue 2663 * @work: job to be done 2664 * 2665 * Returns zero if @work was already on the kernel-global workqueue and 2666 * non-zero otherwise. 2667 * 2668 * This puts a job in the kernel-global workqueue if it was not already 2669 * queued and leaves it in the same position on the kernel-global 2670 * workqueue otherwise. 2671 */ 2672 int schedule_work(struct work_struct *work) 2673 { 2674 return queue_work(system_wq, work); 2675 } 2676 EXPORT_SYMBOL(schedule_work); 2677 2678 /* 2679 * schedule_work_on - put work task on a specific cpu 2680 * @cpu: cpu to put the work task on 2681 * @work: job to be done 2682 * 2683 * This puts a job on a specific cpu 2684 */ 2685 int schedule_work_on(int cpu, struct work_struct *work) 2686 { 2687 return queue_work_on(cpu, system_wq, work); 2688 } 2689 EXPORT_SYMBOL(schedule_work_on); 2690 2691 /** 2692 * schedule_delayed_work - put work task in global workqueue after delay 2693 * @dwork: job to be done 2694 * @delay: number of jiffies to wait or 0 for immediate execution 2695 * 2696 * After waiting for a given time this puts a job in the kernel-global 2697 * workqueue. 2698 */ 2699 int schedule_delayed_work(struct delayed_work *dwork, 2700 unsigned long delay) 2701 { 2702 return queue_delayed_work(system_wq, dwork, delay); 2703 } 2704 EXPORT_SYMBOL(schedule_delayed_work); 2705 2706 /** 2707 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 2708 * @cpu: cpu to use 2709 * @dwork: job to be done 2710 * @delay: number of jiffies to wait 2711 * 2712 * After waiting for a given time this puts a job in the kernel-global 2713 * workqueue on the specified CPU. 2714 */ 2715 int schedule_delayed_work_on(int cpu, 2716 struct delayed_work *dwork, unsigned long delay) 2717 { 2718 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 2719 } 2720 EXPORT_SYMBOL(schedule_delayed_work_on); 2721 2722 /** 2723 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2724 * @func: the function to call 2725 * 2726 * schedule_on_each_cpu() executes @func on each online CPU using the 2727 * system workqueue and blocks until all CPUs have completed. 2728 * schedule_on_each_cpu() is very slow. 2729 * 2730 * RETURNS: 2731 * 0 on success, -errno on failure. 2732 */ 2733 int schedule_on_each_cpu(work_func_t func) 2734 { 2735 int cpu; 2736 struct work_struct __percpu *works; 2737 2738 works = alloc_percpu(struct work_struct); 2739 if (!works) 2740 return -ENOMEM; 2741 2742 get_online_cpus(); 2743 2744 for_each_online_cpu(cpu) { 2745 struct work_struct *work = per_cpu_ptr(works, cpu); 2746 2747 INIT_WORK(work, func); 2748 schedule_work_on(cpu, work); 2749 } 2750 2751 for_each_online_cpu(cpu) 2752 flush_work(per_cpu_ptr(works, cpu)); 2753 2754 put_online_cpus(); 2755 free_percpu(works); 2756 return 0; 2757 } 2758 2759 /** 2760 * flush_scheduled_work - ensure that any scheduled work has run to completion. 2761 * 2762 * Forces execution of the kernel-global workqueue and blocks until its 2763 * completion. 2764 * 2765 * Think twice before calling this function! It's very easy to get into 2766 * trouble if you don't take great care. Either of the following situations 2767 * will lead to deadlock: 2768 * 2769 * One of the work items currently on the workqueue needs to acquire 2770 * a lock held by your code or its caller. 2771 * 2772 * Your code is running in the context of a work routine. 2773 * 2774 * They will be detected by lockdep when they occur, but the first might not 2775 * occur very often. It depends on what work items are on the workqueue and 2776 * what locks they need, which you have no control over. 2777 * 2778 * In most situations flushing the entire workqueue is overkill; you merely 2779 * need to know that a particular work item isn't queued and isn't running. 2780 * In such cases you should use cancel_delayed_work_sync() or 2781 * cancel_work_sync() instead. 2782 */ 2783 void flush_scheduled_work(void) 2784 { 2785 flush_workqueue(system_wq); 2786 } 2787 EXPORT_SYMBOL(flush_scheduled_work); 2788 2789 /** 2790 * execute_in_process_context - reliably execute the routine with user context 2791 * @fn: the function to execute 2792 * @ew: guaranteed storage for the execute work structure (must 2793 * be available when the work executes) 2794 * 2795 * Executes the function immediately if process context is available, 2796 * otherwise schedules the function for delayed execution. 2797 * 2798 * Returns: 0 - function was executed 2799 * 1 - function was scheduled for execution 2800 */ 2801 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2802 { 2803 if (!in_interrupt()) { 2804 fn(&ew->work); 2805 return 0; 2806 } 2807 2808 INIT_WORK(&ew->work, fn); 2809 schedule_work(&ew->work); 2810 2811 return 1; 2812 } 2813 EXPORT_SYMBOL_GPL(execute_in_process_context); 2814 2815 int keventd_up(void) 2816 { 2817 return system_wq != NULL; 2818 } 2819 2820 static int alloc_cwqs(struct workqueue_struct *wq) 2821 { 2822 /* 2823 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. 2824 * Make sure that the alignment isn't lower than that of 2825 * unsigned long long. 2826 */ 2827 const size_t size = sizeof(struct cpu_workqueue_struct); 2828 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, 2829 __alignof__(unsigned long long)); 2830 #ifdef CONFIG_SMP 2831 bool percpu = !(wq->flags & WQ_UNBOUND); 2832 #else 2833 bool percpu = false; 2834 #endif 2835 2836 if (percpu) 2837 wq->cpu_wq.pcpu = __alloc_percpu(size, align); 2838 else { 2839 void *ptr; 2840 2841 /* 2842 * Allocate enough room to align cwq and put an extra 2843 * pointer at the end pointing back to the originally 2844 * allocated pointer which will be used for free. 2845 */ 2846 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); 2847 if (ptr) { 2848 wq->cpu_wq.single = PTR_ALIGN(ptr, align); 2849 *(void **)(wq->cpu_wq.single + 1) = ptr; 2850 } 2851 } 2852 2853 /* just in case, make sure it's actually aligned 2854 * - this is affected by PERCPU() alignment in vmlinux.lds.S 2855 */ 2856 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align)); 2857 return wq->cpu_wq.v ? 0 : -ENOMEM; 2858 } 2859 2860 static void free_cwqs(struct workqueue_struct *wq) 2861 { 2862 #ifdef CONFIG_SMP 2863 bool percpu = !(wq->flags & WQ_UNBOUND); 2864 #else 2865 bool percpu = false; 2866 #endif 2867 2868 if (percpu) 2869 free_percpu(wq->cpu_wq.pcpu); 2870 else if (wq->cpu_wq.single) { 2871 /* the pointer to free is stored right after the cwq */ 2872 kfree(*(void **)(wq->cpu_wq.single + 1)); 2873 } 2874 } 2875 2876 static int wq_clamp_max_active(int max_active, unsigned int flags, 2877 const char *name) 2878 { 2879 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 2880 2881 if (max_active < 1 || max_active > lim) 2882 printk(KERN_WARNING "workqueue: max_active %d requested for %s " 2883 "is out of range, clamping between %d and %d\n", 2884 max_active, name, 1, lim); 2885 2886 return clamp_val(max_active, 1, lim); 2887 } 2888 2889 struct workqueue_struct *__alloc_workqueue_key(const char *name, 2890 unsigned int flags, 2891 int max_active, 2892 struct lock_class_key *key, 2893 const char *lock_name) 2894 { 2895 struct workqueue_struct *wq; 2896 unsigned int cpu; 2897 2898 /* 2899 * Workqueues which may be used during memory reclaim should 2900 * have a rescuer to guarantee forward progress. 2901 */ 2902 if (flags & WQ_MEM_RECLAIM) 2903 flags |= WQ_RESCUER; 2904 2905 /* 2906 * Unbound workqueues aren't concurrency managed and should be 2907 * dispatched to workers immediately. 2908 */ 2909 if (flags & WQ_UNBOUND) 2910 flags |= WQ_HIGHPRI; 2911 2912 max_active = max_active ?: WQ_DFL_ACTIVE; 2913 max_active = wq_clamp_max_active(max_active, flags, name); 2914 2915 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 2916 if (!wq) 2917 goto err; 2918 2919 wq->flags = flags; 2920 wq->saved_max_active = max_active; 2921 mutex_init(&wq->flush_mutex); 2922 atomic_set(&wq->nr_cwqs_to_flush, 0); 2923 INIT_LIST_HEAD(&wq->flusher_queue); 2924 INIT_LIST_HEAD(&wq->flusher_overflow); 2925 2926 wq->name = name; 2927 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 2928 INIT_LIST_HEAD(&wq->list); 2929 2930 if (alloc_cwqs(wq) < 0) 2931 goto err; 2932 2933 for_each_cwq_cpu(cpu, wq) { 2934 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2935 struct global_cwq *gcwq = get_gcwq(cpu); 2936 2937 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK); 2938 cwq->gcwq = gcwq; 2939 cwq->wq = wq; 2940 cwq->flush_color = -1; 2941 cwq->max_active = max_active; 2942 INIT_LIST_HEAD(&cwq->delayed_works); 2943 } 2944 2945 if (flags & WQ_RESCUER) { 2946 struct worker *rescuer; 2947 2948 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) 2949 goto err; 2950 2951 wq->rescuer = rescuer = alloc_worker(); 2952 if (!rescuer) 2953 goto err; 2954 2955 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name); 2956 if (IS_ERR(rescuer->task)) 2957 goto err; 2958 2959 rescuer->task->flags |= PF_THREAD_BOUND; 2960 wake_up_process(rescuer->task); 2961 } 2962 2963 /* 2964 * workqueue_lock protects global freeze state and workqueues 2965 * list. Grab it, set max_active accordingly and add the new 2966 * workqueue to workqueues list. 2967 */ 2968 spin_lock(&workqueue_lock); 2969 2970 if (workqueue_freezing && wq->flags & WQ_FREEZABLE) 2971 for_each_cwq_cpu(cpu, wq) 2972 get_cwq(cpu, wq)->max_active = 0; 2973 2974 list_add(&wq->list, &workqueues); 2975 2976 spin_unlock(&workqueue_lock); 2977 2978 return wq; 2979 err: 2980 if (wq) { 2981 free_cwqs(wq); 2982 free_mayday_mask(wq->mayday_mask); 2983 kfree(wq->rescuer); 2984 kfree(wq); 2985 } 2986 return NULL; 2987 } 2988 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 2989 2990 /** 2991 * destroy_workqueue - safely terminate a workqueue 2992 * @wq: target workqueue 2993 * 2994 * Safely destroy a workqueue. All work currently pending will be done first. 2995 */ 2996 void destroy_workqueue(struct workqueue_struct *wq) 2997 { 2998 unsigned int flush_cnt = 0; 2999 unsigned int cpu; 3000 3001 /* 3002 * Mark @wq dying and drain all pending works. Once WQ_DYING is 3003 * set, only chain queueing is allowed. IOW, only currently 3004 * pending or running work items on @wq can queue further work 3005 * items on it. @wq is flushed repeatedly until it becomes empty. 3006 * The number of flushing is detemined by the depth of chaining and 3007 * should be relatively short. Whine if it takes too long. 3008 */ 3009 wq->flags |= WQ_DYING; 3010 reflush: 3011 flush_workqueue(wq); 3012 3013 for_each_cwq_cpu(cpu, wq) { 3014 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3015 3016 if (!cwq->nr_active && list_empty(&cwq->delayed_works)) 3017 continue; 3018 3019 if (++flush_cnt == 10 || 3020 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 3021 printk(KERN_WARNING "workqueue %s: flush on " 3022 "destruction isn't complete after %u tries\n", 3023 wq->name, flush_cnt); 3024 goto reflush; 3025 } 3026 3027 /* 3028 * wq list is used to freeze wq, remove from list after 3029 * flushing is complete in case freeze races us. 3030 */ 3031 spin_lock(&workqueue_lock); 3032 list_del(&wq->list); 3033 spin_unlock(&workqueue_lock); 3034 3035 /* sanity check */ 3036 for_each_cwq_cpu(cpu, wq) { 3037 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3038 int i; 3039 3040 for (i = 0; i < WORK_NR_COLORS; i++) 3041 BUG_ON(cwq->nr_in_flight[i]); 3042 BUG_ON(cwq->nr_active); 3043 BUG_ON(!list_empty(&cwq->delayed_works)); 3044 } 3045 3046 if (wq->flags & WQ_RESCUER) { 3047 kthread_stop(wq->rescuer->task); 3048 free_mayday_mask(wq->mayday_mask); 3049 kfree(wq->rescuer); 3050 } 3051 3052 free_cwqs(wq); 3053 kfree(wq); 3054 } 3055 EXPORT_SYMBOL_GPL(destroy_workqueue); 3056 3057 /** 3058 * workqueue_set_max_active - adjust max_active of a workqueue 3059 * @wq: target workqueue 3060 * @max_active: new max_active value. 3061 * 3062 * Set max_active of @wq to @max_active. 3063 * 3064 * CONTEXT: 3065 * Don't call from IRQ context. 3066 */ 3067 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 3068 { 3069 unsigned int cpu; 3070 3071 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 3072 3073 spin_lock(&workqueue_lock); 3074 3075 wq->saved_max_active = max_active; 3076 3077 for_each_cwq_cpu(cpu, wq) { 3078 struct global_cwq *gcwq = get_gcwq(cpu); 3079 3080 spin_lock_irq(&gcwq->lock); 3081 3082 if (!(wq->flags & WQ_FREEZABLE) || 3083 !(gcwq->flags & GCWQ_FREEZING)) 3084 get_cwq(gcwq->cpu, wq)->max_active = max_active; 3085 3086 spin_unlock_irq(&gcwq->lock); 3087 } 3088 3089 spin_unlock(&workqueue_lock); 3090 } 3091 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 3092 3093 /** 3094 * workqueue_congested - test whether a workqueue is congested 3095 * @cpu: CPU in question 3096 * @wq: target workqueue 3097 * 3098 * Test whether @wq's cpu workqueue for @cpu is congested. There is 3099 * no synchronization around this function and the test result is 3100 * unreliable and only useful as advisory hints or for debugging. 3101 * 3102 * RETURNS: 3103 * %true if congested, %false otherwise. 3104 */ 3105 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) 3106 { 3107 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3108 3109 return !list_empty(&cwq->delayed_works); 3110 } 3111 EXPORT_SYMBOL_GPL(workqueue_congested); 3112 3113 /** 3114 * work_cpu - return the last known associated cpu for @work 3115 * @work: the work of interest 3116 * 3117 * RETURNS: 3118 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise. 3119 */ 3120 unsigned int work_cpu(struct work_struct *work) 3121 { 3122 struct global_cwq *gcwq = get_work_gcwq(work); 3123 3124 return gcwq ? gcwq->cpu : WORK_CPU_NONE; 3125 } 3126 EXPORT_SYMBOL_GPL(work_cpu); 3127 3128 /** 3129 * work_busy - test whether a work is currently pending or running 3130 * @work: the work to be tested 3131 * 3132 * Test whether @work is currently pending or running. There is no 3133 * synchronization around this function and the test result is 3134 * unreliable and only useful as advisory hints or for debugging. 3135 * Especially for reentrant wqs, the pending state might hide the 3136 * running state. 3137 * 3138 * RETURNS: 3139 * OR'd bitmask of WORK_BUSY_* bits. 3140 */ 3141 unsigned int work_busy(struct work_struct *work) 3142 { 3143 struct global_cwq *gcwq = get_work_gcwq(work); 3144 unsigned long flags; 3145 unsigned int ret = 0; 3146 3147 if (!gcwq) 3148 return false; 3149 3150 spin_lock_irqsave(&gcwq->lock, flags); 3151 3152 if (work_pending(work)) 3153 ret |= WORK_BUSY_PENDING; 3154 if (find_worker_executing_work(gcwq, work)) 3155 ret |= WORK_BUSY_RUNNING; 3156 3157 spin_unlock_irqrestore(&gcwq->lock, flags); 3158 3159 return ret; 3160 } 3161 EXPORT_SYMBOL_GPL(work_busy); 3162 3163 /* 3164 * CPU hotplug. 3165 * 3166 * There are two challenges in supporting CPU hotplug. Firstly, there 3167 * are a lot of assumptions on strong associations among work, cwq and 3168 * gcwq which make migrating pending and scheduled works very 3169 * difficult to implement without impacting hot paths. Secondly, 3170 * gcwqs serve mix of short, long and very long running works making 3171 * blocked draining impractical. 3172 * 3173 * This is solved by allowing a gcwq to be detached from CPU, running 3174 * it with unbound (rogue) workers and allowing it to be reattached 3175 * later if the cpu comes back online. A separate thread is created 3176 * to govern a gcwq in such state and is called the trustee of the 3177 * gcwq. 3178 * 3179 * Trustee states and their descriptions. 3180 * 3181 * START Command state used on startup. On CPU_DOWN_PREPARE, a 3182 * new trustee is started with this state. 3183 * 3184 * IN_CHARGE Once started, trustee will enter this state after 3185 * assuming the manager role and making all existing 3186 * workers rogue. DOWN_PREPARE waits for trustee to 3187 * enter this state. After reaching IN_CHARGE, trustee 3188 * tries to execute the pending worklist until it's empty 3189 * and the state is set to BUTCHER, or the state is set 3190 * to RELEASE. 3191 * 3192 * BUTCHER Command state which is set by the cpu callback after 3193 * the cpu has went down. Once this state is set trustee 3194 * knows that there will be no new works on the worklist 3195 * and once the worklist is empty it can proceed to 3196 * killing idle workers. 3197 * 3198 * RELEASE Command state which is set by the cpu callback if the 3199 * cpu down has been canceled or it has come online 3200 * again. After recognizing this state, trustee stops 3201 * trying to drain or butcher and clears ROGUE, rebinds 3202 * all remaining workers back to the cpu and releases 3203 * manager role. 3204 * 3205 * DONE Trustee will enter this state after BUTCHER or RELEASE 3206 * is complete. 3207 * 3208 * trustee CPU draining 3209 * took over down complete 3210 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE 3211 * | | ^ 3212 * | CPU is back online v return workers | 3213 * ----------------> RELEASE -------------- 3214 */ 3215 3216 /** 3217 * trustee_wait_event_timeout - timed event wait for trustee 3218 * @cond: condition to wait for 3219 * @timeout: timeout in jiffies 3220 * 3221 * wait_event_timeout() for trustee to use. Handles locking and 3222 * checks for RELEASE request. 3223 * 3224 * CONTEXT: 3225 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3226 * multiple times. To be used by trustee. 3227 * 3228 * RETURNS: 3229 * Positive indicating left time if @cond is satisfied, 0 if timed 3230 * out, -1 if canceled. 3231 */ 3232 #define trustee_wait_event_timeout(cond, timeout) ({ \ 3233 long __ret = (timeout); \ 3234 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \ 3235 __ret) { \ 3236 spin_unlock_irq(&gcwq->lock); \ 3237 __wait_event_timeout(gcwq->trustee_wait, (cond) || \ 3238 (gcwq->trustee_state == TRUSTEE_RELEASE), \ 3239 __ret); \ 3240 spin_lock_irq(&gcwq->lock); \ 3241 } \ 3242 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \ 3243 }) 3244 3245 /** 3246 * trustee_wait_event - event wait for trustee 3247 * @cond: condition to wait for 3248 * 3249 * wait_event() for trustee to use. Automatically handles locking and 3250 * checks for CANCEL request. 3251 * 3252 * CONTEXT: 3253 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3254 * multiple times. To be used by trustee. 3255 * 3256 * RETURNS: 3257 * 0 if @cond is satisfied, -1 if canceled. 3258 */ 3259 #define trustee_wait_event(cond) ({ \ 3260 long __ret1; \ 3261 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\ 3262 __ret1 < 0 ? -1 : 0; \ 3263 }) 3264 3265 static int __cpuinit trustee_thread(void *__gcwq) 3266 { 3267 struct global_cwq *gcwq = __gcwq; 3268 struct worker *worker; 3269 struct work_struct *work; 3270 struct hlist_node *pos; 3271 long rc; 3272 int i; 3273 3274 BUG_ON(gcwq->cpu != smp_processor_id()); 3275 3276 spin_lock_irq(&gcwq->lock); 3277 /* 3278 * Claim the manager position and make all workers rogue. 3279 * Trustee must be bound to the target cpu and can't be 3280 * cancelled. 3281 */ 3282 BUG_ON(gcwq->cpu != smp_processor_id()); 3283 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS)); 3284 BUG_ON(rc < 0); 3285 3286 gcwq->flags |= GCWQ_MANAGING_WORKERS; 3287 3288 list_for_each_entry(worker, &gcwq->idle_list, entry) 3289 worker->flags |= WORKER_ROGUE; 3290 3291 for_each_busy_worker(worker, i, pos, gcwq) 3292 worker->flags |= WORKER_ROGUE; 3293 3294 /* 3295 * Call schedule() so that we cross rq->lock and thus can 3296 * guarantee sched callbacks see the rogue flag. This is 3297 * necessary as scheduler callbacks may be invoked from other 3298 * cpus. 3299 */ 3300 spin_unlock_irq(&gcwq->lock); 3301 schedule(); 3302 spin_lock_irq(&gcwq->lock); 3303 3304 /* 3305 * Sched callbacks are disabled now. Zap nr_running. After 3306 * this, nr_running stays zero and need_more_worker() and 3307 * keep_working() are always true as long as the worklist is 3308 * not empty. 3309 */ 3310 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0); 3311 3312 spin_unlock_irq(&gcwq->lock); 3313 del_timer_sync(&gcwq->idle_timer); 3314 spin_lock_irq(&gcwq->lock); 3315 3316 /* 3317 * We're now in charge. Notify and proceed to drain. We need 3318 * to keep the gcwq running during the whole CPU down 3319 * procedure as other cpu hotunplug callbacks may need to 3320 * flush currently running tasks. 3321 */ 3322 gcwq->trustee_state = TRUSTEE_IN_CHARGE; 3323 wake_up_all(&gcwq->trustee_wait); 3324 3325 /* 3326 * The original cpu is in the process of dying and may go away 3327 * anytime now. When that happens, we and all workers would 3328 * be migrated to other cpus. Try draining any left work. We 3329 * want to get it over with ASAP - spam rescuers, wake up as 3330 * many idlers as necessary and create new ones till the 3331 * worklist is empty. Note that if the gcwq is frozen, there 3332 * may be frozen works in freezable cwqs. Don't declare 3333 * completion while frozen. 3334 */ 3335 while (gcwq->nr_workers != gcwq->nr_idle || 3336 gcwq->flags & GCWQ_FREEZING || 3337 gcwq->trustee_state == TRUSTEE_IN_CHARGE) { 3338 int nr_works = 0; 3339 3340 list_for_each_entry(work, &gcwq->worklist, entry) { 3341 send_mayday(work); 3342 nr_works++; 3343 } 3344 3345 list_for_each_entry(worker, &gcwq->idle_list, entry) { 3346 if (!nr_works--) 3347 break; 3348 wake_up_process(worker->task); 3349 } 3350 3351 if (need_to_create_worker(gcwq)) { 3352 spin_unlock_irq(&gcwq->lock); 3353 worker = create_worker(gcwq, false); 3354 spin_lock_irq(&gcwq->lock); 3355 if (worker) { 3356 worker->flags |= WORKER_ROGUE; 3357 start_worker(worker); 3358 } 3359 } 3360 3361 /* give a breather */ 3362 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0) 3363 break; 3364 } 3365 3366 /* 3367 * Either all works have been scheduled and cpu is down, or 3368 * cpu down has already been canceled. Wait for and butcher 3369 * all workers till we're canceled. 3370 */ 3371 do { 3372 rc = trustee_wait_event(!list_empty(&gcwq->idle_list)); 3373 while (!list_empty(&gcwq->idle_list)) 3374 destroy_worker(list_first_entry(&gcwq->idle_list, 3375 struct worker, entry)); 3376 } while (gcwq->nr_workers && rc >= 0); 3377 3378 /* 3379 * At this point, either draining has completed and no worker 3380 * is left, or cpu down has been canceled or the cpu is being 3381 * brought back up. There shouldn't be any idle one left. 3382 * Tell the remaining busy ones to rebind once it finishes the 3383 * currently scheduled works by scheduling the rebind_work. 3384 */ 3385 WARN_ON(!list_empty(&gcwq->idle_list)); 3386 3387 for_each_busy_worker(worker, i, pos, gcwq) { 3388 struct work_struct *rebind_work = &worker->rebind_work; 3389 3390 /* 3391 * Rebind_work may race with future cpu hotplug 3392 * operations. Use a separate flag to mark that 3393 * rebinding is scheduled. 3394 */ 3395 worker->flags |= WORKER_REBIND; 3396 worker->flags &= ~WORKER_ROGUE; 3397 3398 /* queue rebind_work, wq doesn't matter, use the default one */ 3399 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, 3400 work_data_bits(rebind_work))) 3401 continue; 3402 3403 debug_work_activate(rebind_work); 3404 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work, 3405 worker->scheduled.next, 3406 work_color_to_flags(WORK_NO_COLOR)); 3407 } 3408 3409 /* relinquish manager role */ 3410 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 3411 3412 /* notify completion */ 3413 gcwq->trustee = NULL; 3414 gcwq->trustee_state = TRUSTEE_DONE; 3415 wake_up_all(&gcwq->trustee_wait); 3416 spin_unlock_irq(&gcwq->lock); 3417 return 0; 3418 } 3419 3420 /** 3421 * wait_trustee_state - wait for trustee to enter the specified state 3422 * @gcwq: gcwq the trustee of interest belongs to 3423 * @state: target state to wait for 3424 * 3425 * Wait for the trustee to reach @state. DONE is already matched. 3426 * 3427 * CONTEXT: 3428 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3429 * multiple times. To be used by cpu_callback. 3430 */ 3431 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state) 3432 __releases(&gcwq->lock) 3433 __acquires(&gcwq->lock) 3434 { 3435 if (!(gcwq->trustee_state == state || 3436 gcwq->trustee_state == TRUSTEE_DONE)) { 3437 spin_unlock_irq(&gcwq->lock); 3438 __wait_event(gcwq->trustee_wait, 3439 gcwq->trustee_state == state || 3440 gcwq->trustee_state == TRUSTEE_DONE); 3441 spin_lock_irq(&gcwq->lock); 3442 } 3443 } 3444 3445 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 3446 unsigned long action, 3447 void *hcpu) 3448 { 3449 unsigned int cpu = (unsigned long)hcpu; 3450 struct global_cwq *gcwq = get_gcwq(cpu); 3451 struct task_struct *new_trustee = NULL; 3452 struct worker *uninitialized_var(new_worker); 3453 unsigned long flags; 3454 3455 action &= ~CPU_TASKS_FROZEN; 3456 3457 switch (action) { 3458 case CPU_DOWN_PREPARE: 3459 new_trustee = kthread_create(trustee_thread, gcwq, 3460 "workqueue_trustee/%d\n", cpu); 3461 if (IS_ERR(new_trustee)) 3462 return notifier_from_errno(PTR_ERR(new_trustee)); 3463 kthread_bind(new_trustee, cpu); 3464 /* fall through */ 3465 case CPU_UP_PREPARE: 3466 BUG_ON(gcwq->first_idle); 3467 new_worker = create_worker(gcwq, false); 3468 if (!new_worker) { 3469 if (new_trustee) 3470 kthread_stop(new_trustee); 3471 return NOTIFY_BAD; 3472 } 3473 } 3474 3475 /* some are called w/ irq disabled, don't disturb irq status */ 3476 spin_lock_irqsave(&gcwq->lock, flags); 3477 3478 switch (action) { 3479 case CPU_DOWN_PREPARE: 3480 /* initialize trustee and tell it to acquire the gcwq */ 3481 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE); 3482 gcwq->trustee = new_trustee; 3483 gcwq->trustee_state = TRUSTEE_START; 3484 wake_up_process(gcwq->trustee); 3485 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE); 3486 /* fall through */ 3487 case CPU_UP_PREPARE: 3488 BUG_ON(gcwq->first_idle); 3489 gcwq->first_idle = new_worker; 3490 break; 3491 3492 case CPU_DYING: 3493 /* 3494 * Before this, the trustee and all workers except for 3495 * the ones which are still executing works from 3496 * before the last CPU down must be on the cpu. After 3497 * this, they'll all be diasporas. 3498 */ 3499 gcwq->flags |= GCWQ_DISASSOCIATED; 3500 break; 3501 3502 case CPU_POST_DEAD: 3503 gcwq->trustee_state = TRUSTEE_BUTCHER; 3504 /* fall through */ 3505 case CPU_UP_CANCELED: 3506 destroy_worker(gcwq->first_idle); 3507 gcwq->first_idle = NULL; 3508 break; 3509 3510 case CPU_DOWN_FAILED: 3511 case CPU_ONLINE: 3512 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3513 if (gcwq->trustee_state != TRUSTEE_DONE) { 3514 gcwq->trustee_state = TRUSTEE_RELEASE; 3515 wake_up_process(gcwq->trustee); 3516 wait_trustee_state(gcwq, TRUSTEE_DONE); 3517 } 3518 3519 /* 3520 * Trustee is done and there might be no worker left. 3521 * Put the first_idle in and request a real manager to 3522 * take a look. 3523 */ 3524 spin_unlock_irq(&gcwq->lock); 3525 kthread_bind(gcwq->first_idle->task, cpu); 3526 spin_lock_irq(&gcwq->lock); 3527 gcwq->flags |= GCWQ_MANAGE_WORKERS; 3528 start_worker(gcwq->first_idle); 3529 gcwq->first_idle = NULL; 3530 break; 3531 } 3532 3533 spin_unlock_irqrestore(&gcwq->lock, flags); 3534 3535 return notifier_from_errno(0); 3536 } 3537 3538 #ifdef CONFIG_SMP 3539 3540 struct work_for_cpu { 3541 struct completion completion; 3542 long (*fn)(void *); 3543 void *arg; 3544 long ret; 3545 }; 3546 3547 static int do_work_for_cpu(void *_wfc) 3548 { 3549 struct work_for_cpu *wfc = _wfc; 3550 wfc->ret = wfc->fn(wfc->arg); 3551 complete(&wfc->completion); 3552 return 0; 3553 } 3554 3555 /** 3556 * work_on_cpu - run a function in user context on a particular cpu 3557 * @cpu: the cpu to run on 3558 * @fn: the function to run 3559 * @arg: the function arg 3560 * 3561 * This will return the value @fn returns. 3562 * It is up to the caller to ensure that the cpu doesn't go offline. 3563 * The caller must not hold any locks which would prevent @fn from completing. 3564 */ 3565 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 3566 { 3567 struct task_struct *sub_thread; 3568 struct work_for_cpu wfc = { 3569 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion), 3570 .fn = fn, 3571 .arg = arg, 3572 }; 3573 3574 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu"); 3575 if (IS_ERR(sub_thread)) 3576 return PTR_ERR(sub_thread); 3577 kthread_bind(sub_thread, cpu); 3578 wake_up_process(sub_thread); 3579 wait_for_completion(&wfc.completion); 3580 return wfc.ret; 3581 } 3582 EXPORT_SYMBOL_GPL(work_on_cpu); 3583 #endif /* CONFIG_SMP */ 3584 3585 #ifdef CONFIG_FREEZER 3586 3587 /** 3588 * freeze_workqueues_begin - begin freezing workqueues 3589 * 3590 * Start freezing workqueues. After this function returns, all freezable 3591 * workqueues will queue new works to their frozen_works list instead of 3592 * gcwq->worklist. 3593 * 3594 * CONTEXT: 3595 * Grabs and releases workqueue_lock and gcwq->lock's. 3596 */ 3597 void freeze_workqueues_begin(void) 3598 { 3599 unsigned int cpu; 3600 3601 spin_lock(&workqueue_lock); 3602 3603 BUG_ON(workqueue_freezing); 3604 workqueue_freezing = true; 3605 3606 for_each_gcwq_cpu(cpu) { 3607 struct global_cwq *gcwq = get_gcwq(cpu); 3608 struct workqueue_struct *wq; 3609 3610 spin_lock_irq(&gcwq->lock); 3611 3612 BUG_ON(gcwq->flags & GCWQ_FREEZING); 3613 gcwq->flags |= GCWQ_FREEZING; 3614 3615 list_for_each_entry(wq, &workqueues, list) { 3616 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3617 3618 if (cwq && wq->flags & WQ_FREEZABLE) 3619 cwq->max_active = 0; 3620 } 3621 3622 spin_unlock_irq(&gcwq->lock); 3623 } 3624 3625 spin_unlock(&workqueue_lock); 3626 } 3627 3628 /** 3629 * freeze_workqueues_busy - are freezable workqueues still busy? 3630 * 3631 * Check whether freezing is complete. This function must be called 3632 * between freeze_workqueues_begin() and thaw_workqueues(). 3633 * 3634 * CONTEXT: 3635 * Grabs and releases workqueue_lock. 3636 * 3637 * RETURNS: 3638 * %true if some freezable workqueues are still busy. %false if freezing 3639 * is complete. 3640 */ 3641 bool freeze_workqueues_busy(void) 3642 { 3643 unsigned int cpu; 3644 bool busy = false; 3645 3646 spin_lock(&workqueue_lock); 3647 3648 BUG_ON(!workqueue_freezing); 3649 3650 for_each_gcwq_cpu(cpu) { 3651 struct workqueue_struct *wq; 3652 /* 3653 * nr_active is monotonically decreasing. It's safe 3654 * to peek without lock. 3655 */ 3656 list_for_each_entry(wq, &workqueues, list) { 3657 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3658 3659 if (!cwq || !(wq->flags & WQ_FREEZABLE)) 3660 continue; 3661 3662 BUG_ON(cwq->nr_active < 0); 3663 if (cwq->nr_active) { 3664 busy = true; 3665 goto out_unlock; 3666 } 3667 } 3668 } 3669 out_unlock: 3670 spin_unlock(&workqueue_lock); 3671 return busy; 3672 } 3673 3674 /** 3675 * thaw_workqueues - thaw workqueues 3676 * 3677 * Thaw workqueues. Normal queueing is restored and all collected 3678 * frozen works are transferred to their respective gcwq worklists. 3679 * 3680 * CONTEXT: 3681 * Grabs and releases workqueue_lock and gcwq->lock's. 3682 */ 3683 void thaw_workqueues(void) 3684 { 3685 unsigned int cpu; 3686 3687 spin_lock(&workqueue_lock); 3688 3689 if (!workqueue_freezing) 3690 goto out_unlock; 3691 3692 for_each_gcwq_cpu(cpu) { 3693 struct global_cwq *gcwq = get_gcwq(cpu); 3694 struct workqueue_struct *wq; 3695 3696 spin_lock_irq(&gcwq->lock); 3697 3698 BUG_ON(!(gcwq->flags & GCWQ_FREEZING)); 3699 gcwq->flags &= ~GCWQ_FREEZING; 3700 3701 list_for_each_entry(wq, &workqueues, list) { 3702 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3703 3704 if (!cwq || !(wq->flags & WQ_FREEZABLE)) 3705 continue; 3706 3707 /* restore max_active and repopulate worklist */ 3708 cwq->max_active = wq->saved_max_active; 3709 3710 while (!list_empty(&cwq->delayed_works) && 3711 cwq->nr_active < cwq->max_active) 3712 cwq_activate_first_delayed(cwq); 3713 } 3714 3715 wake_up_worker(gcwq); 3716 3717 spin_unlock_irq(&gcwq->lock); 3718 } 3719 3720 workqueue_freezing = false; 3721 out_unlock: 3722 spin_unlock(&workqueue_lock); 3723 } 3724 #endif /* CONFIG_FREEZER */ 3725 3726 static int __init init_workqueues(void) 3727 { 3728 unsigned int cpu; 3729 int i; 3730 3731 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE); 3732 3733 /* initialize gcwqs */ 3734 for_each_gcwq_cpu(cpu) { 3735 struct global_cwq *gcwq = get_gcwq(cpu); 3736 3737 spin_lock_init(&gcwq->lock); 3738 INIT_LIST_HEAD(&gcwq->worklist); 3739 gcwq->cpu = cpu; 3740 gcwq->flags |= GCWQ_DISASSOCIATED; 3741 3742 INIT_LIST_HEAD(&gcwq->idle_list); 3743 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) 3744 INIT_HLIST_HEAD(&gcwq->busy_hash[i]); 3745 3746 init_timer_deferrable(&gcwq->idle_timer); 3747 gcwq->idle_timer.function = idle_worker_timeout; 3748 gcwq->idle_timer.data = (unsigned long)gcwq; 3749 3750 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout, 3751 (unsigned long)gcwq); 3752 3753 ida_init(&gcwq->worker_ida); 3754 3755 gcwq->trustee_state = TRUSTEE_DONE; 3756 init_waitqueue_head(&gcwq->trustee_wait); 3757 } 3758 3759 /* create the initial worker */ 3760 for_each_online_gcwq_cpu(cpu) { 3761 struct global_cwq *gcwq = get_gcwq(cpu); 3762 struct worker *worker; 3763 3764 if (cpu != WORK_CPU_UNBOUND) 3765 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3766 worker = create_worker(gcwq, true); 3767 BUG_ON(!worker); 3768 spin_lock_irq(&gcwq->lock); 3769 start_worker(worker); 3770 spin_unlock_irq(&gcwq->lock); 3771 } 3772 3773 system_wq = alloc_workqueue("events", 0, 0); 3774 system_long_wq = alloc_workqueue("events_long", 0, 0); 3775 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0); 3776 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 3777 WQ_UNBOUND_MAX_ACTIVE); 3778 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq || 3779 !system_unbound_wq); 3780 return 0; 3781 } 3782 early_initcall(init_workqueues); 3783