1 /* 2 * linux/kernel/workqueue.c 3 * 4 * Generic mechanism for defining kernel helper threads for running 5 * arbitrary tasks in process context. 6 * 7 * Started by Ingo Molnar, Copyright (C) 2002 8 * 9 * Derived from the taskqueue/keventd code by: 10 * 11 * David Woodhouse <dwmw2@infradead.org> 12 * Andrew Morton <andrewm@uow.edu.au> 13 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 14 * Theodore Ts'o <tytso@mit.edu> 15 * 16 * Made to use alloc_percpu by Christoph Lameter. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/kernel.h> 21 #include <linux/sched.h> 22 #include <linux/init.h> 23 #include <linux/signal.h> 24 #include <linux/completion.h> 25 #include <linux/workqueue.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/notifier.h> 29 #include <linux/kthread.h> 30 #include <linux/hardirq.h> 31 #include <linux/mempolicy.h> 32 #include <linux/freezer.h> 33 #include <linux/kallsyms.h> 34 #include <linux/debug_locks.h> 35 #include <linux/lockdep.h> 36 37 /* 38 * The per-CPU workqueue (if single thread, we always use the first 39 * possible cpu). 40 */ 41 struct cpu_workqueue_struct { 42 43 spinlock_t lock; 44 45 struct list_head worklist; 46 wait_queue_head_t more_work; 47 struct work_struct *current_work; 48 49 struct workqueue_struct *wq; 50 struct task_struct *thread; 51 52 int run_depth; /* Detect run_workqueue() recursion depth */ 53 } ____cacheline_aligned; 54 55 /* 56 * The externally visible workqueue abstraction is an array of 57 * per-CPU workqueues: 58 */ 59 struct workqueue_struct { 60 struct cpu_workqueue_struct *cpu_wq; 61 struct list_head list; 62 const char *name; 63 int singlethread; 64 int freezeable; /* Freeze threads during suspend */ 65 #ifdef CONFIG_LOCKDEP 66 struct lockdep_map lockdep_map; 67 #endif 68 }; 69 70 /* Serializes the accesses to the list of workqueues. */ 71 static DEFINE_SPINLOCK(workqueue_lock); 72 static LIST_HEAD(workqueues); 73 74 static int singlethread_cpu __read_mostly; 75 static cpumask_t cpu_singlethread_map __read_mostly; 76 /* 77 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD 78 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work 79 * which comes in between can't use for_each_online_cpu(). We could 80 * use cpu_possible_map, the cpumask below is more a documentation 81 * than optimization. 82 */ 83 static cpumask_t cpu_populated_map __read_mostly; 84 85 /* If it's single threaded, it isn't in the list of workqueues. */ 86 static inline int is_single_threaded(struct workqueue_struct *wq) 87 { 88 return wq->singlethread; 89 } 90 91 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq) 92 { 93 return is_single_threaded(wq) 94 ? &cpu_singlethread_map : &cpu_populated_map; 95 } 96 97 static 98 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu) 99 { 100 if (unlikely(is_single_threaded(wq))) 101 cpu = singlethread_cpu; 102 return per_cpu_ptr(wq->cpu_wq, cpu); 103 } 104 105 /* 106 * Set the workqueue on which a work item is to be run 107 * - Must *only* be called if the pending flag is set 108 */ 109 static inline void set_wq_data(struct work_struct *work, 110 struct cpu_workqueue_struct *cwq) 111 { 112 unsigned long new; 113 114 BUG_ON(!work_pending(work)); 115 116 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING); 117 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work); 118 atomic_long_set(&work->data, new); 119 } 120 121 static inline 122 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work) 123 { 124 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK); 125 } 126 127 static void insert_work(struct cpu_workqueue_struct *cwq, 128 struct work_struct *work, struct list_head *head) 129 { 130 set_wq_data(work, cwq); 131 /* 132 * Ensure that we get the right work->data if we see the 133 * result of list_add() below, see try_to_grab_pending(). 134 */ 135 smp_wmb(); 136 list_add_tail(&work->entry, head); 137 wake_up(&cwq->more_work); 138 } 139 140 static void __queue_work(struct cpu_workqueue_struct *cwq, 141 struct work_struct *work) 142 { 143 unsigned long flags; 144 145 spin_lock_irqsave(&cwq->lock, flags); 146 insert_work(cwq, work, &cwq->worklist); 147 spin_unlock_irqrestore(&cwq->lock, flags); 148 } 149 150 /** 151 * queue_work - queue work on a workqueue 152 * @wq: workqueue to use 153 * @work: work to queue 154 * 155 * Returns 0 if @work was already on a queue, non-zero otherwise. 156 * 157 * We queue the work to the CPU on which it was submitted, but if the CPU dies 158 * it can be processed by another CPU. 159 */ 160 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 161 { 162 int ret; 163 164 ret = queue_work_on(get_cpu(), wq, work); 165 put_cpu(); 166 167 return ret; 168 } 169 EXPORT_SYMBOL_GPL(queue_work); 170 171 /** 172 * queue_work_on - queue work on specific cpu 173 * @cpu: CPU number to execute work on 174 * @wq: workqueue to use 175 * @work: work to queue 176 * 177 * Returns 0 if @work was already on a queue, non-zero otherwise. 178 * 179 * We queue the work to a specific CPU, the caller must ensure it 180 * can't go away. 181 */ 182 int 183 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) 184 { 185 int ret = 0; 186 187 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 188 BUG_ON(!list_empty(&work->entry)); 189 __queue_work(wq_per_cpu(wq, cpu), work); 190 ret = 1; 191 } 192 return ret; 193 } 194 EXPORT_SYMBOL_GPL(queue_work_on); 195 196 static void delayed_work_timer_fn(unsigned long __data) 197 { 198 struct delayed_work *dwork = (struct delayed_work *)__data; 199 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work); 200 struct workqueue_struct *wq = cwq->wq; 201 202 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work); 203 } 204 205 /** 206 * queue_delayed_work - queue work on a workqueue after delay 207 * @wq: workqueue to use 208 * @dwork: delayable work to queue 209 * @delay: number of jiffies to wait before queueing 210 * 211 * Returns 0 if @work was already on a queue, non-zero otherwise. 212 */ 213 int queue_delayed_work(struct workqueue_struct *wq, 214 struct delayed_work *dwork, unsigned long delay) 215 { 216 if (delay == 0) 217 return queue_work(wq, &dwork->work); 218 219 return queue_delayed_work_on(-1, wq, dwork, delay); 220 } 221 EXPORT_SYMBOL_GPL(queue_delayed_work); 222 223 /** 224 * queue_delayed_work_on - queue work on specific CPU after delay 225 * @cpu: CPU number to execute work on 226 * @wq: workqueue to use 227 * @dwork: work to queue 228 * @delay: number of jiffies to wait before queueing 229 * 230 * Returns 0 if @work was already on a queue, non-zero otherwise. 231 */ 232 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 233 struct delayed_work *dwork, unsigned long delay) 234 { 235 int ret = 0; 236 struct timer_list *timer = &dwork->timer; 237 struct work_struct *work = &dwork->work; 238 239 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 240 BUG_ON(timer_pending(timer)); 241 BUG_ON(!list_empty(&work->entry)); 242 243 timer_stats_timer_set_start_info(&dwork->timer); 244 245 /* This stores cwq for the moment, for the timer_fn */ 246 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id())); 247 timer->expires = jiffies + delay; 248 timer->data = (unsigned long)dwork; 249 timer->function = delayed_work_timer_fn; 250 251 if (unlikely(cpu >= 0)) 252 add_timer_on(timer, cpu); 253 else 254 add_timer(timer); 255 ret = 1; 256 } 257 return ret; 258 } 259 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 260 261 static void run_workqueue(struct cpu_workqueue_struct *cwq) 262 { 263 spin_lock_irq(&cwq->lock); 264 cwq->run_depth++; 265 if (cwq->run_depth > 3) { 266 /* morton gets to eat his hat */ 267 printk("%s: recursion depth exceeded: %d\n", 268 __func__, cwq->run_depth); 269 dump_stack(); 270 } 271 while (!list_empty(&cwq->worklist)) { 272 struct work_struct *work = list_entry(cwq->worklist.next, 273 struct work_struct, entry); 274 work_func_t f = work->func; 275 #ifdef CONFIG_LOCKDEP 276 /* 277 * It is permissible to free the struct work_struct 278 * from inside the function that is called from it, 279 * this we need to take into account for lockdep too. 280 * To avoid bogus "held lock freed" warnings as well 281 * as problems when looking into work->lockdep_map, 282 * make a copy and use that here. 283 */ 284 struct lockdep_map lockdep_map = work->lockdep_map; 285 #endif 286 287 cwq->current_work = work; 288 list_del_init(cwq->worklist.next); 289 spin_unlock_irq(&cwq->lock); 290 291 BUG_ON(get_wq_data(work) != cwq); 292 work_clear_pending(work); 293 lock_map_acquire(&cwq->wq->lockdep_map); 294 lock_map_acquire(&lockdep_map); 295 f(work); 296 lock_map_release(&lockdep_map); 297 lock_map_release(&cwq->wq->lockdep_map); 298 299 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 300 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 301 "%s/0x%08x/%d\n", 302 current->comm, preempt_count(), 303 task_pid_nr(current)); 304 printk(KERN_ERR " last function: "); 305 print_symbol("%s\n", (unsigned long)f); 306 debug_show_held_locks(current); 307 dump_stack(); 308 } 309 310 spin_lock_irq(&cwq->lock); 311 cwq->current_work = NULL; 312 } 313 cwq->run_depth--; 314 spin_unlock_irq(&cwq->lock); 315 } 316 317 static int worker_thread(void *__cwq) 318 { 319 struct cpu_workqueue_struct *cwq = __cwq; 320 DEFINE_WAIT(wait); 321 322 if (cwq->wq->freezeable) 323 set_freezable(); 324 325 set_user_nice(current, -5); 326 327 for (;;) { 328 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); 329 if (!freezing(current) && 330 !kthread_should_stop() && 331 list_empty(&cwq->worklist)) 332 schedule(); 333 finish_wait(&cwq->more_work, &wait); 334 335 try_to_freeze(); 336 337 if (kthread_should_stop()) 338 break; 339 340 run_workqueue(cwq); 341 } 342 343 return 0; 344 } 345 346 struct wq_barrier { 347 struct work_struct work; 348 struct completion done; 349 }; 350 351 static void wq_barrier_func(struct work_struct *work) 352 { 353 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 354 complete(&barr->done); 355 } 356 357 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 358 struct wq_barrier *barr, struct list_head *head) 359 { 360 INIT_WORK(&barr->work, wq_barrier_func); 361 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work)); 362 363 init_completion(&barr->done); 364 365 insert_work(cwq, &barr->work, head); 366 } 367 368 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) 369 { 370 int active; 371 372 if (cwq->thread == current) { 373 /* 374 * Probably keventd trying to flush its own queue. So simply run 375 * it by hand rather than deadlocking. 376 */ 377 run_workqueue(cwq); 378 active = 1; 379 } else { 380 struct wq_barrier barr; 381 382 active = 0; 383 spin_lock_irq(&cwq->lock); 384 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) { 385 insert_wq_barrier(cwq, &barr, &cwq->worklist); 386 active = 1; 387 } 388 spin_unlock_irq(&cwq->lock); 389 390 if (active) 391 wait_for_completion(&barr.done); 392 } 393 394 return active; 395 } 396 397 /** 398 * flush_workqueue - ensure that any scheduled work has run to completion. 399 * @wq: workqueue to flush 400 * 401 * Forces execution of the workqueue and blocks until its completion. 402 * This is typically used in driver shutdown handlers. 403 * 404 * We sleep until all works which were queued on entry have been handled, 405 * but we are not livelocked by new incoming ones. 406 * 407 * This function used to run the workqueues itself. Now we just wait for the 408 * helper threads to do it. 409 */ 410 void flush_workqueue(struct workqueue_struct *wq) 411 { 412 const cpumask_t *cpu_map = wq_cpu_map(wq); 413 int cpu; 414 415 might_sleep(); 416 lock_map_acquire(&wq->lockdep_map); 417 lock_map_release(&wq->lockdep_map); 418 for_each_cpu_mask_nr(cpu, *cpu_map) 419 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu)); 420 } 421 EXPORT_SYMBOL_GPL(flush_workqueue); 422 423 /** 424 * flush_work - block until a work_struct's callback has terminated 425 * @work: the work which is to be flushed 426 * 427 * Returns false if @work has already terminated. 428 * 429 * It is expected that, prior to calling flush_work(), the caller has 430 * arranged for the work to not be requeued, otherwise it doesn't make 431 * sense to use this function. 432 */ 433 int flush_work(struct work_struct *work) 434 { 435 struct cpu_workqueue_struct *cwq; 436 struct list_head *prev; 437 struct wq_barrier barr; 438 439 might_sleep(); 440 cwq = get_wq_data(work); 441 if (!cwq) 442 return 0; 443 444 lock_map_acquire(&cwq->wq->lockdep_map); 445 lock_map_release(&cwq->wq->lockdep_map); 446 447 prev = NULL; 448 spin_lock_irq(&cwq->lock); 449 if (!list_empty(&work->entry)) { 450 /* 451 * See the comment near try_to_grab_pending()->smp_rmb(). 452 * If it was re-queued under us we are not going to wait. 453 */ 454 smp_rmb(); 455 if (unlikely(cwq != get_wq_data(work))) 456 goto out; 457 prev = &work->entry; 458 } else { 459 if (cwq->current_work != work) 460 goto out; 461 prev = &cwq->worklist; 462 } 463 insert_wq_barrier(cwq, &barr, prev->next); 464 out: 465 spin_unlock_irq(&cwq->lock); 466 if (!prev) 467 return 0; 468 469 wait_for_completion(&barr.done); 470 return 1; 471 } 472 EXPORT_SYMBOL_GPL(flush_work); 473 474 /* 475 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 476 * so this work can't be re-armed in any way. 477 */ 478 static int try_to_grab_pending(struct work_struct *work) 479 { 480 struct cpu_workqueue_struct *cwq; 481 int ret = -1; 482 483 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) 484 return 0; 485 486 /* 487 * The queueing is in progress, or it is already queued. Try to 488 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 489 */ 490 491 cwq = get_wq_data(work); 492 if (!cwq) 493 return ret; 494 495 spin_lock_irq(&cwq->lock); 496 if (!list_empty(&work->entry)) { 497 /* 498 * This work is queued, but perhaps we locked the wrong cwq. 499 * In that case we must see the new value after rmb(), see 500 * insert_work()->wmb(). 501 */ 502 smp_rmb(); 503 if (cwq == get_wq_data(work)) { 504 list_del_init(&work->entry); 505 ret = 1; 506 } 507 } 508 spin_unlock_irq(&cwq->lock); 509 510 return ret; 511 } 512 513 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq, 514 struct work_struct *work) 515 { 516 struct wq_barrier barr; 517 int running = 0; 518 519 spin_lock_irq(&cwq->lock); 520 if (unlikely(cwq->current_work == work)) { 521 insert_wq_barrier(cwq, &barr, cwq->worklist.next); 522 running = 1; 523 } 524 spin_unlock_irq(&cwq->lock); 525 526 if (unlikely(running)) 527 wait_for_completion(&barr.done); 528 } 529 530 static void wait_on_work(struct work_struct *work) 531 { 532 struct cpu_workqueue_struct *cwq; 533 struct workqueue_struct *wq; 534 const cpumask_t *cpu_map; 535 int cpu; 536 537 might_sleep(); 538 539 lock_map_acquire(&work->lockdep_map); 540 lock_map_release(&work->lockdep_map); 541 542 cwq = get_wq_data(work); 543 if (!cwq) 544 return; 545 546 wq = cwq->wq; 547 cpu_map = wq_cpu_map(wq); 548 549 for_each_cpu_mask_nr(cpu, *cpu_map) 550 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work); 551 } 552 553 static int __cancel_work_timer(struct work_struct *work, 554 struct timer_list* timer) 555 { 556 int ret; 557 558 do { 559 ret = (timer && likely(del_timer(timer))); 560 if (!ret) 561 ret = try_to_grab_pending(work); 562 wait_on_work(work); 563 } while (unlikely(ret < 0)); 564 565 work_clear_pending(work); 566 return ret; 567 } 568 569 /** 570 * cancel_work_sync - block until a work_struct's callback has terminated 571 * @work: the work which is to be flushed 572 * 573 * Returns true if @work was pending. 574 * 575 * cancel_work_sync() will cancel the work if it is queued. If the work's 576 * callback appears to be running, cancel_work_sync() will block until it 577 * has completed. 578 * 579 * It is possible to use this function if the work re-queues itself. It can 580 * cancel the work even if it migrates to another workqueue, however in that 581 * case it only guarantees that work->func() has completed on the last queued 582 * workqueue. 583 * 584 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not 585 * pending, otherwise it goes into a busy-wait loop until the timer expires. 586 * 587 * The caller must ensure that workqueue_struct on which this work was last 588 * queued can't be destroyed before this function returns. 589 */ 590 int cancel_work_sync(struct work_struct *work) 591 { 592 return __cancel_work_timer(work, NULL); 593 } 594 EXPORT_SYMBOL_GPL(cancel_work_sync); 595 596 /** 597 * cancel_delayed_work_sync - reliably kill off a delayed work. 598 * @dwork: the delayed work struct 599 * 600 * Returns true if @dwork was pending. 601 * 602 * It is possible to use this function if @dwork rearms itself via queue_work() 603 * or queue_delayed_work(). See also the comment for cancel_work_sync(). 604 */ 605 int cancel_delayed_work_sync(struct delayed_work *dwork) 606 { 607 return __cancel_work_timer(&dwork->work, &dwork->timer); 608 } 609 EXPORT_SYMBOL(cancel_delayed_work_sync); 610 611 static struct workqueue_struct *keventd_wq __read_mostly; 612 613 /** 614 * schedule_work - put work task in global workqueue 615 * @work: job to be done 616 * 617 * This puts a job in the kernel-global workqueue. 618 */ 619 int schedule_work(struct work_struct *work) 620 { 621 return queue_work(keventd_wq, work); 622 } 623 EXPORT_SYMBOL(schedule_work); 624 625 /* 626 * schedule_work_on - put work task on a specific cpu 627 * @cpu: cpu to put the work task on 628 * @work: job to be done 629 * 630 * This puts a job on a specific cpu 631 */ 632 int schedule_work_on(int cpu, struct work_struct *work) 633 { 634 return queue_work_on(cpu, keventd_wq, work); 635 } 636 EXPORT_SYMBOL(schedule_work_on); 637 638 /** 639 * schedule_delayed_work - put work task in global workqueue after delay 640 * @dwork: job to be done 641 * @delay: number of jiffies to wait or 0 for immediate execution 642 * 643 * After waiting for a given time this puts a job in the kernel-global 644 * workqueue. 645 */ 646 int schedule_delayed_work(struct delayed_work *dwork, 647 unsigned long delay) 648 { 649 return queue_delayed_work(keventd_wq, dwork, delay); 650 } 651 EXPORT_SYMBOL(schedule_delayed_work); 652 653 /** 654 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 655 * @cpu: cpu to use 656 * @dwork: job to be done 657 * @delay: number of jiffies to wait 658 * 659 * After waiting for a given time this puts a job in the kernel-global 660 * workqueue on the specified CPU. 661 */ 662 int schedule_delayed_work_on(int cpu, 663 struct delayed_work *dwork, unsigned long delay) 664 { 665 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); 666 } 667 EXPORT_SYMBOL(schedule_delayed_work_on); 668 669 /** 670 * schedule_on_each_cpu - call a function on each online CPU from keventd 671 * @func: the function to call 672 * 673 * Returns zero on success. 674 * Returns -ve errno on failure. 675 * 676 * schedule_on_each_cpu() is very slow. 677 */ 678 int schedule_on_each_cpu(work_func_t func) 679 { 680 int cpu; 681 struct work_struct *works; 682 683 works = alloc_percpu(struct work_struct); 684 if (!works) 685 return -ENOMEM; 686 687 get_online_cpus(); 688 for_each_online_cpu(cpu) { 689 struct work_struct *work = per_cpu_ptr(works, cpu); 690 691 INIT_WORK(work, func); 692 schedule_work_on(cpu, work); 693 } 694 for_each_online_cpu(cpu) 695 flush_work(per_cpu_ptr(works, cpu)); 696 put_online_cpus(); 697 free_percpu(works); 698 return 0; 699 } 700 701 void flush_scheduled_work(void) 702 { 703 flush_workqueue(keventd_wq); 704 } 705 EXPORT_SYMBOL(flush_scheduled_work); 706 707 /** 708 * execute_in_process_context - reliably execute the routine with user context 709 * @fn: the function to execute 710 * @ew: guaranteed storage for the execute work structure (must 711 * be available when the work executes) 712 * 713 * Executes the function immediately if process context is available, 714 * otherwise schedules the function for delayed execution. 715 * 716 * Returns: 0 - function was executed 717 * 1 - function was scheduled for execution 718 */ 719 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 720 { 721 if (!in_interrupt()) { 722 fn(&ew->work); 723 return 0; 724 } 725 726 INIT_WORK(&ew->work, fn); 727 schedule_work(&ew->work); 728 729 return 1; 730 } 731 EXPORT_SYMBOL_GPL(execute_in_process_context); 732 733 int keventd_up(void) 734 { 735 return keventd_wq != NULL; 736 } 737 738 int current_is_keventd(void) 739 { 740 struct cpu_workqueue_struct *cwq; 741 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */ 742 int ret = 0; 743 744 BUG_ON(!keventd_wq); 745 746 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu); 747 if (current == cwq->thread) 748 ret = 1; 749 750 return ret; 751 752 } 753 754 static struct cpu_workqueue_struct * 755 init_cpu_workqueue(struct workqueue_struct *wq, int cpu) 756 { 757 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu); 758 759 cwq->wq = wq; 760 spin_lock_init(&cwq->lock); 761 INIT_LIST_HEAD(&cwq->worklist); 762 init_waitqueue_head(&cwq->more_work); 763 764 return cwq; 765 } 766 767 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 768 { 769 struct workqueue_struct *wq = cwq->wq; 770 const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d"; 771 struct task_struct *p; 772 773 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu); 774 /* 775 * Nobody can add the work_struct to this cwq, 776 * if (caller is __create_workqueue) 777 * nobody should see this wq 778 * else // caller is CPU_UP_PREPARE 779 * cpu is not on cpu_online_map 780 * so we can abort safely. 781 */ 782 if (IS_ERR(p)) 783 return PTR_ERR(p); 784 785 cwq->thread = p; 786 787 return 0; 788 } 789 790 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 791 { 792 struct task_struct *p = cwq->thread; 793 794 if (p != NULL) { 795 if (cpu >= 0) 796 kthread_bind(p, cpu); 797 wake_up_process(p); 798 } 799 } 800 801 struct workqueue_struct *__create_workqueue_key(const char *name, 802 int singlethread, 803 int freezeable, 804 struct lock_class_key *key, 805 const char *lock_name) 806 { 807 struct workqueue_struct *wq; 808 struct cpu_workqueue_struct *cwq; 809 int err = 0, cpu; 810 811 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 812 if (!wq) 813 return NULL; 814 815 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct); 816 if (!wq->cpu_wq) { 817 kfree(wq); 818 return NULL; 819 } 820 821 wq->name = name; 822 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 823 wq->singlethread = singlethread; 824 wq->freezeable = freezeable; 825 INIT_LIST_HEAD(&wq->list); 826 827 if (singlethread) { 828 cwq = init_cpu_workqueue(wq, singlethread_cpu); 829 err = create_workqueue_thread(cwq, singlethread_cpu); 830 start_workqueue_thread(cwq, -1); 831 } else { 832 cpu_maps_update_begin(); 833 /* 834 * We must place this wq on list even if the code below fails. 835 * cpu_down(cpu) can remove cpu from cpu_populated_map before 836 * destroy_workqueue() takes the lock, in that case we leak 837 * cwq[cpu]->thread. 838 */ 839 spin_lock(&workqueue_lock); 840 list_add(&wq->list, &workqueues); 841 spin_unlock(&workqueue_lock); 842 /* 843 * We must initialize cwqs for each possible cpu even if we 844 * are going to call destroy_workqueue() finally. Otherwise 845 * cpu_up() can hit the uninitialized cwq once we drop the 846 * lock. 847 */ 848 for_each_possible_cpu(cpu) { 849 cwq = init_cpu_workqueue(wq, cpu); 850 if (err || !cpu_online(cpu)) 851 continue; 852 err = create_workqueue_thread(cwq, cpu); 853 start_workqueue_thread(cwq, cpu); 854 } 855 cpu_maps_update_done(); 856 } 857 858 if (err) { 859 destroy_workqueue(wq); 860 wq = NULL; 861 } 862 return wq; 863 } 864 EXPORT_SYMBOL_GPL(__create_workqueue_key); 865 866 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq) 867 { 868 /* 869 * Our caller is either destroy_workqueue() or CPU_POST_DEAD, 870 * cpu_add_remove_lock protects cwq->thread. 871 */ 872 if (cwq->thread == NULL) 873 return; 874 875 lock_map_acquire(&cwq->wq->lockdep_map); 876 lock_map_release(&cwq->wq->lockdep_map); 877 878 flush_cpu_workqueue(cwq); 879 /* 880 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty, 881 * a concurrent flush_workqueue() can insert a barrier after us. 882 * However, in that case run_workqueue() won't return and check 883 * kthread_should_stop() until it flushes all work_struct's. 884 * When ->worklist becomes empty it is safe to exit because no 885 * more work_structs can be queued on this cwq: flush_workqueue 886 * checks list_empty(), and a "normal" queue_work() can't use 887 * a dead CPU. 888 */ 889 kthread_stop(cwq->thread); 890 cwq->thread = NULL; 891 } 892 893 /** 894 * destroy_workqueue - safely terminate a workqueue 895 * @wq: target workqueue 896 * 897 * Safely destroy a workqueue. All work currently pending will be done first. 898 */ 899 void destroy_workqueue(struct workqueue_struct *wq) 900 { 901 const cpumask_t *cpu_map = wq_cpu_map(wq); 902 int cpu; 903 904 cpu_maps_update_begin(); 905 spin_lock(&workqueue_lock); 906 list_del(&wq->list); 907 spin_unlock(&workqueue_lock); 908 909 for_each_cpu_mask_nr(cpu, *cpu_map) 910 cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu)); 911 cpu_maps_update_done(); 912 913 free_percpu(wq->cpu_wq); 914 kfree(wq); 915 } 916 EXPORT_SYMBOL_GPL(destroy_workqueue); 917 918 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 919 unsigned long action, 920 void *hcpu) 921 { 922 unsigned int cpu = (unsigned long)hcpu; 923 struct cpu_workqueue_struct *cwq; 924 struct workqueue_struct *wq; 925 int ret = NOTIFY_OK; 926 927 action &= ~CPU_TASKS_FROZEN; 928 929 switch (action) { 930 case CPU_UP_PREPARE: 931 cpu_set(cpu, cpu_populated_map); 932 } 933 undo: 934 list_for_each_entry(wq, &workqueues, list) { 935 cwq = per_cpu_ptr(wq->cpu_wq, cpu); 936 937 switch (action) { 938 case CPU_UP_PREPARE: 939 if (!create_workqueue_thread(cwq, cpu)) 940 break; 941 printk(KERN_ERR "workqueue [%s] for %i failed\n", 942 wq->name, cpu); 943 action = CPU_UP_CANCELED; 944 ret = NOTIFY_BAD; 945 goto undo; 946 947 case CPU_ONLINE: 948 start_workqueue_thread(cwq, cpu); 949 break; 950 951 case CPU_UP_CANCELED: 952 start_workqueue_thread(cwq, -1); 953 case CPU_POST_DEAD: 954 cleanup_workqueue_thread(cwq); 955 break; 956 } 957 } 958 959 switch (action) { 960 case CPU_UP_CANCELED: 961 case CPU_POST_DEAD: 962 cpu_clear(cpu, cpu_populated_map); 963 } 964 965 return ret; 966 } 967 968 void __init init_workqueues(void) 969 { 970 cpu_populated_map = cpu_online_map; 971 singlethread_cpu = first_cpu(cpu_possible_map); 972 cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu); 973 hotcpu_notifier(workqueue_cpu_callback, 0); 974 keventd_wq = create_workqueue("events"); 975 BUG_ON(!keventd_wq); 976 } 977