xref: /openbmc/linux/kernel/workqueue.c (revision 35bf38dd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/sched/debug.h>
53 #include <linux/nmi.h>
54 #include <linux/kvm_para.h>
55 #include <linux/delay.h>
56 
57 #include "workqueue_internal.h"
58 
59 enum {
60 	/*
61 	 * worker_pool flags
62 	 *
63 	 * A bound pool is either associated or disassociated with its CPU.
64 	 * While associated (!DISASSOCIATED), all workers are bound to the
65 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
66 	 * is in effect.
67 	 *
68 	 * While DISASSOCIATED, the cpu may be offline and all workers have
69 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
70 	 * be executing on any CPU.  The pool behaves as an unbound one.
71 	 *
72 	 * Note that DISASSOCIATED should be flipped only while holding
73 	 * wq_pool_attach_mutex to avoid changing binding state while
74 	 * worker_attach_to_pool() is in progress.
75 	 */
76 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
77 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
78 
79 	/* worker flags */
80 	WORKER_DIE		= 1 << 1,	/* die die die */
81 	WORKER_IDLE		= 1 << 2,	/* is idle */
82 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
83 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
84 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
85 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
86 
87 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
88 				  WORKER_UNBOUND | WORKER_REBOUND,
89 
90 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
91 
92 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
93 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
94 
95 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
96 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
97 
98 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
99 						/* call for help after 10ms
100 						   (min two ticks) */
101 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
102 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
103 
104 	/*
105 	 * Rescue workers are used only on emergencies and shared by
106 	 * all cpus.  Give MIN_NICE.
107 	 */
108 	RESCUER_NICE_LEVEL	= MIN_NICE,
109 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
110 
111 	WQ_NAME_LEN		= 32,
112 };
113 
114 /*
115  * Structure fields follow one of the following exclusion rules.
116  *
117  * I: Modifiable by initialization/destruction paths and read-only for
118  *    everyone else.
119  *
120  * P: Preemption protected.  Disabling preemption is enough and should
121  *    only be modified and accessed from the local cpu.
122  *
123  * L: pool->lock protected.  Access with pool->lock held.
124  *
125  * K: Only modified by worker while holding pool->lock. Can be safely read by
126  *    self, while holding pool->lock or from IRQ context if %current is the
127  *    kworker.
128  *
129  * S: Only modified by worker self.
130  *
131  * A: wq_pool_attach_mutex protected.
132  *
133  * PL: wq_pool_mutex protected.
134  *
135  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
136  *
137  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
138  *
139  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
140  *      RCU for reads.
141  *
142  * WQ: wq->mutex protected.
143  *
144  * WR: wq->mutex protected for writes.  RCU protected for reads.
145  *
146  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
147  *     with READ_ONCE() without locking.
148  *
149  * MD: wq_mayday_lock protected.
150  *
151  * WD: Used internally by the watchdog.
152  */
153 
154 /* struct worker is defined in workqueue_internal.h */
155 
156 struct worker_pool {
157 	raw_spinlock_t		lock;		/* the pool lock */
158 	int			cpu;		/* I: the associated cpu */
159 	int			node;		/* I: the associated node ID */
160 	int			id;		/* I: pool ID */
161 	unsigned int		flags;		/* L: flags */
162 
163 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
164 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
165 
166 	/*
167 	 * The counter is incremented in a process context on the associated CPU
168 	 * w/ preemption disabled, and decremented or reset in the same context
169 	 * but w/ pool->lock held. The readers grab pool->lock and are
170 	 * guaranteed to see if the counter reached zero.
171 	 */
172 	int			nr_running;
173 
174 	struct list_head	worklist;	/* L: list of pending works */
175 
176 	int			nr_workers;	/* L: total number of workers */
177 	int			nr_idle;	/* L: currently idle workers */
178 
179 	struct list_head	idle_list;	/* L: list of idle workers */
180 	struct timer_list	idle_timer;	/* L: worker idle timeout */
181 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
182 
183 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
184 
185 	/* a workers is either on busy_hash or idle_list, or the manager */
186 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
187 						/* L: hash of busy workers */
188 
189 	struct worker		*manager;	/* L: purely informational */
190 	struct list_head	workers;	/* A: attached workers */
191 	struct list_head        dying_workers;  /* A: workers about to die */
192 	struct completion	*detach_completion; /* all workers detached */
193 
194 	struct ida		worker_ida;	/* worker IDs for task name */
195 
196 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
197 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
198 	int			refcnt;		/* PL: refcnt for unbound pools */
199 
200 	/*
201 	 * Destruction of pool is RCU protected to allow dereferences
202 	 * from get_work_pool().
203 	 */
204 	struct rcu_head		rcu;
205 };
206 
207 /*
208  * Per-pool_workqueue statistics. These can be monitored using
209  * tools/workqueue/wq_monitor.py.
210  */
211 enum pool_workqueue_stats {
212 	PWQ_STAT_STARTED,	/* work items started execution */
213 	PWQ_STAT_COMPLETED,	/* work items completed execution */
214 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
215 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
216 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
217 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
218 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
219 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
220 
221 	PWQ_NR_STATS,
222 };
223 
224 /*
225  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
226  * of work_struct->data are used for flags and the remaining high bits
227  * point to the pwq; thus, pwqs need to be aligned at two's power of the
228  * number of flag bits.
229  */
230 struct pool_workqueue {
231 	struct worker_pool	*pool;		/* I: the associated pool */
232 	struct workqueue_struct *wq;		/* I: the owning workqueue */
233 	int			work_color;	/* L: current color */
234 	int			flush_color;	/* L: flushing color */
235 	int			refcnt;		/* L: reference count */
236 	int			nr_in_flight[WORK_NR_COLORS];
237 						/* L: nr of in_flight works */
238 
239 	/*
240 	 * nr_active management and WORK_STRUCT_INACTIVE:
241 	 *
242 	 * When pwq->nr_active >= max_active, new work item is queued to
243 	 * pwq->inactive_works instead of pool->worklist and marked with
244 	 * WORK_STRUCT_INACTIVE.
245 	 *
246 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
247 	 * in pwq->nr_active and all work items in pwq->inactive_works are
248 	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
249 	 * work items are in pwq->inactive_works.  Some of them are ready to
250 	 * run in pool->worklist or worker->scheduled.  Those work itmes are
251 	 * only struct wq_barrier which is used for flush_work() and should
252 	 * not participate in pwq->nr_active.  For non-barrier work item, it
253 	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
254 	 */
255 	int			nr_active;	/* L: nr of active works */
256 	struct list_head	inactive_works;	/* L: inactive works */
257 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
258 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
259 
260 	u64			stats[PWQ_NR_STATS];
261 
262 	/*
263 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
264 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
265 	 * RCU protected so that the first pwq can be determined without
266 	 * grabbing wq->mutex.
267 	 */
268 	struct kthread_work	release_work;
269 	struct rcu_head		rcu;
270 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
271 
272 /*
273  * Structure used to wait for workqueue flush.
274  */
275 struct wq_flusher {
276 	struct list_head	list;		/* WQ: list of flushers */
277 	int			flush_color;	/* WQ: flush color waiting for */
278 	struct completion	done;		/* flush completion */
279 };
280 
281 struct wq_device;
282 
283 /*
284  * The externally visible workqueue.  It relays the issued work items to
285  * the appropriate worker_pool through its pool_workqueues.
286  */
287 struct workqueue_struct {
288 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
289 	struct list_head	list;		/* PR: list of all workqueues */
290 
291 	struct mutex		mutex;		/* protects this wq */
292 	int			work_color;	/* WQ: current work color */
293 	int			flush_color;	/* WQ: current flush color */
294 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
295 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
296 	struct list_head	flusher_queue;	/* WQ: flush waiters */
297 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
298 
299 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
300 	struct worker		*rescuer;	/* MD: rescue worker */
301 
302 	int			nr_drainers;	/* WQ: drain in progress */
303 	int			max_active;	/* WO: max active works */
304 	int			saved_max_active; /* WQ: saved max_active */
305 
306 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
307 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
308 
309 #ifdef CONFIG_SYSFS
310 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
311 #endif
312 #ifdef CONFIG_LOCKDEP
313 	char			*lock_name;
314 	struct lock_class_key	key;
315 	struct lockdep_map	lockdep_map;
316 #endif
317 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
318 
319 	/*
320 	 * Destruction of workqueue_struct is RCU protected to allow walking
321 	 * the workqueues list without grabbing wq_pool_mutex.
322 	 * This is used to dump all workqueues from sysrq.
323 	 */
324 	struct rcu_head		rcu;
325 
326 	/* hot fields used during command issue, aligned to cacheline */
327 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
328 	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
329 };
330 
331 static struct kmem_cache *pwq_cache;
332 
333 /*
334  * Each pod type describes how CPUs should be grouped for unbound workqueues.
335  * See the comment above workqueue_attrs->affn_scope.
336  */
337 struct wq_pod_type {
338 	int			nr_pods;	/* number of pods */
339 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
340 	int			*pod_node;	/* pod -> node */
341 	int			*cpu_pod;	/* cpu -> pod */
342 };
343 
344 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
345 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
346 
347 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
348 	[WQ_AFFN_DFL]			= "default",
349 	[WQ_AFFN_CPU]			= "cpu",
350 	[WQ_AFFN_SMT]			= "smt",
351 	[WQ_AFFN_CACHE]			= "cache",
352 	[WQ_AFFN_NUMA]			= "numa",
353 	[WQ_AFFN_SYSTEM]		= "system",
354 };
355 
356 /*
357  * Per-cpu work items which run for longer than the following threshold are
358  * automatically considered CPU intensive and excluded from concurrency
359  * management to prevent them from noticeably delaying other per-cpu work items.
360  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
361  * The actual value is initialized in wq_cpu_intensive_thresh_init().
362  */
363 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
364 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
365 
366 /* see the comment above the definition of WQ_POWER_EFFICIENT */
367 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
368 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
369 
370 static bool wq_online;			/* can kworkers be created yet? */
371 
372 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
373 static struct workqueue_attrs *wq_update_pod_attrs_buf;
374 
375 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
376 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
377 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
378 /* wait for manager to go away */
379 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
380 
381 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
382 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
383 
384 /* PL&A: allowable cpus for unbound wqs and work items */
385 static cpumask_var_t wq_unbound_cpumask;
386 
387 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
388 static struct cpumask wq_cmdline_cpumask __initdata;
389 
390 /* CPU where unbound work was last round robin scheduled from this CPU */
391 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
392 
393 /*
394  * Local execution of unbound work items is no longer guaranteed.  The
395  * following always forces round-robin CPU selection on unbound work items
396  * to uncover usages which depend on it.
397  */
398 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
399 static bool wq_debug_force_rr_cpu = true;
400 #else
401 static bool wq_debug_force_rr_cpu = false;
402 #endif
403 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
404 
405 /* the per-cpu worker pools */
406 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
407 
408 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
409 
410 /* PL: hash of all unbound pools keyed by pool->attrs */
411 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
412 
413 /* I: attributes used when instantiating standard unbound pools on demand */
414 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
415 
416 /* I: attributes used when instantiating ordered pools on demand */
417 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
418 
419 /*
420  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
421  * process context while holding a pool lock. Bounce to a dedicated kthread
422  * worker to avoid A-A deadlocks.
423  */
424 static struct kthread_worker *pwq_release_worker;
425 
426 struct workqueue_struct *system_wq __read_mostly;
427 EXPORT_SYMBOL(system_wq);
428 struct workqueue_struct *system_highpri_wq __read_mostly;
429 EXPORT_SYMBOL_GPL(system_highpri_wq);
430 struct workqueue_struct *system_long_wq __read_mostly;
431 EXPORT_SYMBOL_GPL(system_long_wq);
432 struct workqueue_struct *system_unbound_wq __read_mostly;
433 EXPORT_SYMBOL_GPL(system_unbound_wq);
434 struct workqueue_struct *system_freezable_wq __read_mostly;
435 EXPORT_SYMBOL_GPL(system_freezable_wq);
436 struct workqueue_struct *system_power_efficient_wq __read_mostly;
437 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
438 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
439 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
440 
441 static int worker_thread(void *__worker);
442 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
443 static void show_pwq(struct pool_workqueue *pwq);
444 static void show_one_worker_pool(struct worker_pool *pool);
445 
446 #define CREATE_TRACE_POINTS
447 #include <trace/events/workqueue.h>
448 
449 #define assert_rcu_or_pool_mutex()					\
450 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
451 			 !lockdep_is_held(&wq_pool_mutex),		\
452 			 "RCU or wq_pool_mutex should be held")
453 
454 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
455 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
456 			 !lockdep_is_held(&wq->mutex) &&		\
457 			 !lockdep_is_held(&wq_pool_mutex),		\
458 			 "RCU, wq->mutex or wq_pool_mutex should be held")
459 
460 #define for_each_cpu_worker_pool(pool, cpu)				\
461 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
462 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
463 	     (pool)++)
464 
465 /**
466  * for_each_pool - iterate through all worker_pools in the system
467  * @pool: iteration cursor
468  * @pi: integer used for iteration
469  *
470  * This must be called either with wq_pool_mutex held or RCU read
471  * locked.  If the pool needs to be used beyond the locking in effect, the
472  * caller is responsible for guaranteeing that the pool stays online.
473  *
474  * The if/else clause exists only for the lockdep assertion and can be
475  * ignored.
476  */
477 #define for_each_pool(pool, pi)						\
478 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
479 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
480 		else
481 
482 /**
483  * for_each_pool_worker - iterate through all workers of a worker_pool
484  * @worker: iteration cursor
485  * @pool: worker_pool to iterate workers of
486  *
487  * This must be called with wq_pool_attach_mutex.
488  *
489  * The if/else clause exists only for the lockdep assertion and can be
490  * ignored.
491  */
492 #define for_each_pool_worker(worker, pool)				\
493 	list_for_each_entry((worker), &(pool)->workers, node)		\
494 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
495 		else
496 
497 /**
498  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
499  * @pwq: iteration cursor
500  * @wq: the target workqueue
501  *
502  * This must be called either with wq->mutex held or RCU read locked.
503  * If the pwq needs to be used beyond the locking in effect, the caller is
504  * responsible for guaranteeing that the pwq stays online.
505  *
506  * The if/else clause exists only for the lockdep assertion and can be
507  * ignored.
508  */
509 #define for_each_pwq(pwq, wq)						\
510 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
511 				 lockdep_is_held(&(wq->mutex)))
512 
513 #ifdef CONFIG_DEBUG_OBJECTS_WORK
514 
515 static const struct debug_obj_descr work_debug_descr;
516 
517 static void *work_debug_hint(void *addr)
518 {
519 	return ((struct work_struct *) addr)->func;
520 }
521 
522 static bool work_is_static_object(void *addr)
523 {
524 	struct work_struct *work = addr;
525 
526 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
527 }
528 
529 /*
530  * fixup_init is called when:
531  * - an active object is initialized
532  */
533 static bool work_fixup_init(void *addr, enum debug_obj_state state)
534 {
535 	struct work_struct *work = addr;
536 
537 	switch (state) {
538 	case ODEBUG_STATE_ACTIVE:
539 		cancel_work_sync(work);
540 		debug_object_init(work, &work_debug_descr);
541 		return true;
542 	default:
543 		return false;
544 	}
545 }
546 
547 /*
548  * fixup_free is called when:
549  * - an active object is freed
550  */
551 static bool work_fixup_free(void *addr, enum debug_obj_state state)
552 {
553 	struct work_struct *work = addr;
554 
555 	switch (state) {
556 	case ODEBUG_STATE_ACTIVE:
557 		cancel_work_sync(work);
558 		debug_object_free(work, &work_debug_descr);
559 		return true;
560 	default:
561 		return false;
562 	}
563 }
564 
565 static const struct debug_obj_descr work_debug_descr = {
566 	.name		= "work_struct",
567 	.debug_hint	= work_debug_hint,
568 	.is_static_object = work_is_static_object,
569 	.fixup_init	= work_fixup_init,
570 	.fixup_free	= work_fixup_free,
571 };
572 
573 static inline void debug_work_activate(struct work_struct *work)
574 {
575 	debug_object_activate(work, &work_debug_descr);
576 }
577 
578 static inline void debug_work_deactivate(struct work_struct *work)
579 {
580 	debug_object_deactivate(work, &work_debug_descr);
581 }
582 
583 void __init_work(struct work_struct *work, int onstack)
584 {
585 	if (onstack)
586 		debug_object_init_on_stack(work, &work_debug_descr);
587 	else
588 		debug_object_init(work, &work_debug_descr);
589 }
590 EXPORT_SYMBOL_GPL(__init_work);
591 
592 void destroy_work_on_stack(struct work_struct *work)
593 {
594 	debug_object_free(work, &work_debug_descr);
595 }
596 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
597 
598 void destroy_delayed_work_on_stack(struct delayed_work *work)
599 {
600 	destroy_timer_on_stack(&work->timer);
601 	debug_object_free(&work->work, &work_debug_descr);
602 }
603 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
604 
605 #else
606 static inline void debug_work_activate(struct work_struct *work) { }
607 static inline void debug_work_deactivate(struct work_struct *work) { }
608 #endif
609 
610 /**
611  * worker_pool_assign_id - allocate ID and assign it to @pool
612  * @pool: the pool pointer of interest
613  *
614  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
615  * successfully, -errno on failure.
616  */
617 static int worker_pool_assign_id(struct worker_pool *pool)
618 {
619 	int ret;
620 
621 	lockdep_assert_held(&wq_pool_mutex);
622 
623 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
624 			GFP_KERNEL);
625 	if (ret >= 0) {
626 		pool->id = ret;
627 		return 0;
628 	}
629 	return ret;
630 }
631 
632 static unsigned int work_color_to_flags(int color)
633 {
634 	return color << WORK_STRUCT_COLOR_SHIFT;
635 }
636 
637 static int get_work_color(unsigned long work_data)
638 {
639 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
640 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
641 }
642 
643 static int work_next_color(int color)
644 {
645 	return (color + 1) % WORK_NR_COLORS;
646 }
647 
648 /*
649  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
650  * contain the pointer to the queued pwq.  Once execution starts, the flag
651  * is cleared and the high bits contain OFFQ flags and pool ID.
652  *
653  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
654  * and clear_work_data() can be used to set the pwq, pool or clear
655  * work->data.  These functions should only be called while the work is
656  * owned - ie. while the PENDING bit is set.
657  *
658  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
659  * corresponding to a work.  Pool is available once the work has been
660  * queued anywhere after initialization until it is sync canceled.  pwq is
661  * available only while the work item is queued.
662  *
663  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
664  * canceled.  While being canceled, a work item may have its PENDING set
665  * but stay off timer and worklist for arbitrarily long and nobody should
666  * try to steal the PENDING bit.
667  */
668 static inline void set_work_data(struct work_struct *work, unsigned long data,
669 				 unsigned long flags)
670 {
671 	WARN_ON_ONCE(!work_pending(work));
672 	atomic_long_set(&work->data, data | flags | work_static(work));
673 }
674 
675 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
676 			 unsigned long extra_flags)
677 {
678 	set_work_data(work, (unsigned long)pwq,
679 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
680 }
681 
682 static void set_work_pool_and_keep_pending(struct work_struct *work,
683 					   int pool_id)
684 {
685 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
686 		      WORK_STRUCT_PENDING);
687 }
688 
689 static void set_work_pool_and_clear_pending(struct work_struct *work,
690 					    int pool_id)
691 {
692 	/*
693 	 * The following wmb is paired with the implied mb in
694 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
695 	 * here are visible to and precede any updates by the next PENDING
696 	 * owner.
697 	 */
698 	smp_wmb();
699 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
700 	/*
701 	 * The following mb guarantees that previous clear of a PENDING bit
702 	 * will not be reordered with any speculative LOADS or STORES from
703 	 * work->current_func, which is executed afterwards.  This possible
704 	 * reordering can lead to a missed execution on attempt to queue
705 	 * the same @work.  E.g. consider this case:
706 	 *
707 	 *   CPU#0                         CPU#1
708 	 *   ----------------------------  --------------------------------
709 	 *
710 	 * 1  STORE event_indicated
711 	 * 2  queue_work_on() {
712 	 * 3    test_and_set_bit(PENDING)
713 	 * 4 }                             set_..._and_clear_pending() {
714 	 * 5                                 set_work_data() # clear bit
715 	 * 6                                 smp_mb()
716 	 * 7                               work->current_func() {
717 	 * 8				      LOAD event_indicated
718 	 *				   }
719 	 *
720 	 * Without an explicit full barrier speculative LOAD on line 8 can
721 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
722 	 * CPU#0 observes the PENDING bit is still set and new execution of
723 	 * a @work is not queued in a hope, that CPU#1 will eventually
724 	 * finish the queued @work.  Meanwhile CPU#1 does not see
725 	 * event_indicated is set, because speculative LOAD was executed
726 	 * before actual STORE.
727 	 */
728 	smp_mb();
729 }
730 
731 static void clear_work_data(struct work_struct *work)
732 {
733 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
734 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
735 }
736 
737 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
738 {
739 	return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
740 }
741 
742 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
743 {
744 	unsigned long data = atomic_long_read(&work->data);
745 
746 	if (data & WORK_STRUCT_PWQ)
747 		return work_struct_pwq(data);
748 	else
749 		return NULL;
750 }
751 
752 /**
753  * get_work_pool - return the worker_pool a given work was associated with
754  * @work: the work item of interest
755  *
756  * Pools are created and destroyed under wq_pool_mutex, and allows read
757  * access under RCU read lock.  As such, this function should be
758  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
759  *
760  * All fields of the returned pool are accessible as long as the above
761  * mentioned locking is in effect.  If the returned pool needs to be used
762  * beyond the critical section, the caller is responsible for ensuring the
763  * returned pool is and stays online.
764  *
765  * Return: The worker_pool @work was last associated with.  %NULL if none.
766  */
767 static struct worker_pool *get_work_pool(struct work_struct *work)
768 {
769 	unsigned long data = atomic_long_read(&work->data);
770 	int pool_id;
771 
772 	assert_rcu_or_pool_mutex();
773 
774 	if (data & WORK_STRUCT_PWQ)
775 		return work_struct_pwq(data)->pool;
776 
777 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
778 	if (pool_id == WORK_OFFQ_POOL_NONE)
779 		return NULL;
780 
781 	return idr_find(&worker_pool_idr, pool_id);
782 }
783 
784 /**
785  * get_work_pool_id - return the worker pool ID a given work is associated with
786  * @work: the work item of interest
787  *
788  * Return: The worker_pool ID @work was last associated with.
789  * %WORK_OFFQ_POOL_NONE if none.
790  */
791 static int get_work_pool_id(struct work_struct *work)
792 {
793 	unsigned long data = atomic_long_read(&work->data);
794 
795 	if (data & WORK_STRUCT_PWQ)
796 		return work_struct_pwq(data)->pool->id;
797 
798 	return data >> WORK_OFFQ_POOL_SHIFT;
799 }
800 
801 static void mark_work_canceling(struct work_struct *work)
802 {
803 	unsigned long pool_id = get_work_pool_id(work);
804 
805 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
806 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
807 }
808 
809 static bool work_is_canceling(struct work_struct *work)
810 {
811 	unsigned long data = atomic_long_read(&work->data);
812 
813 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
814 }
815 
816 /*
817  * Policy functions.  These define the policies on how the global worker
818  * pools are managed.  Unless noted otherwise, these functions assume that
819  * they're being called with pool->lock held.
820  */
821 
822 /*
823  * Need to wake up a worker?  Called from anything but currently
824  * running workers.
825  *
826  * Note that, because unbound workers never contribute to nr_running, this
827  * function will always return %true for unbound pools as long as the
828  * worklist isn't empty.
829  */
830 static bool need_more_worker(struct worker_pool *pool)
831 {
832 	return !list_empty(&pool->worklist) && !pool->nr_running;
833 }
834 
835 /* Can I start working?  Called from busy but !running workers. */
836 static bool may_start_working(struct worker_pool *pool)
837 {
838 	return pool->nr_idle;
839 }
840 
841 /* Do I need to keep working?  Called from currently running workers. */
842 static bool keep_working(struct worker_pool *pool)
843 {
844 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
845 }
846 
847 /* Do we need a new worker?  Called from manager. */
848 static bool need_to_create_worker(struct worker_pool *pool)
849 {
850 	return need_more_worker(pool) && !may_start_working(pool);
851 }
852 
853 /* Do we have too many workers and should some go away? */
854 static bool too_many_workers(struct worker_pool *pool)
855 {
856 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
857 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
858 	int nr_busy = pool->nr_workers - nr_idle;
859 
860 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
861 }
862 
863 /**
864  * worker_set_flags - set worker flags and adjust nr_running accordingly
865  * @worker: self
866  * @flags: flags to set
867  *
868  * Set @flags in @worker->flags and adjust nr_running accordingly.
869  */
870 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
871 {
872 	struct worker_pool *pool = worker->pool;
873 
874 	lockdep_assert_held(&pool->lock);
875 
876 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
877 	if ((flags & WORKER_NOT_RUNNING) &&
878 	    !(worker->flags & WORKER_NOT_RUNNING)) {
879 		pool->nr_running--;
880 	}
881 
882 	worker->flags |= flags;
883 }
884 
885 /**
886  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
887  * @worker: self
888  * @flags: flags to clear
889  *
890  * Clear @flags in @worker->flags and adjust nr_running accordingly.
891  */
892 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
893 {
894 	struct worker_pool *pool = worker->pool;
895 	unsigned int oflags = worker->flags;
896 
897 	lockdep_assert_held(&pool->lock);
898 
899 	worker->flags &= ~flags;
900 
901 	/*
902 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
903 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
904 	 * of multiple flags, not a single flag.
905 	 */
906 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
907 		if (!(worker->flags & WORKER_NOT_RUNNING))
908 			pool->nr_running++;
909 }
910 
911 /* Return the first idle worker.  Called with pool->lock held. */
912 static struct worker *first_idle_worker(struct worker_pool *pool)
913 {
914 	if (unlikely(list_empty(&pool->idle_list)))
915 		return NULL;
916 
917 	return list_first_entry(&pool->idle_list, struct worker, entry);
918 }
919 
920 /**
921  * worker_enter_idle - enter idle state
922  * @worker: worker which is entering idle state
923  *
924  * @worker is entering idle state.  Update stats and idle timer if
925  * necessary.
926  *
927  * LOCKING:
928  * raw_spin_lock_irq(pool->lock).
929  */
930 static void worker_enter_idle(struct worker *worker)
931 {
932 	struct worker_pool *pool = worker->pool;
933 
934 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
935 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
936 			 (worker->hentry.next || worker->hentry.pprev)))
937 		return;
938 
939 	/* can't use worker_set_flags(), also called from create_worker() */
940 	worker->flags |= WORKER_IDLE;
941 	pool->nr_idle++;
942 	worker->last_active = jiffies;
943 
944 	/* idle_list is LIFO */
945 	list_add(&worker->entry, &pool->idle_list);
946 
947 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
948 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
949 
950 	/* Sanity check nr_running. */
951 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
952 }
953 
954 /**
955  * worker_leave_idle - leave idle state
956  * @worker: worker which is leaving idle state
957  *
958  * @worker is leaving idle state.  Update stats.
959  *
960  * LOCKING:
961  * raw_spin_lock_irq(pool->lock).
962  */
963 static void worker_leave_idle(struct worker *worker)
964 {
965 	struct worker_pool *pool = worker->pool;
966 
967 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
968 		return;
969 	worker_clr_flags(worker, WORKER_IDLE);
970 	pool->nr_idle--;
971 	list_del_init(&worker->entry);
972 }
973 
974 /**
975  * find_worker_executing_work - find worker which is executing a work
976  * @pool: pool of interest
977  * @work: work to find worker for
978  *
979  * Find a worker which is executing @work on @pool by searching
980  * @pool->busy_hash which is keyed by the address of @work.  For a worker
981  * to match, its current execution should match the address of @work and
982  * its work function.  This is to avoid unwanted dependency between
983  * unrelated work executions through a work item being recycled while still
984  * being executed.
985  *
986  * This is a bit tricky.  A work item may be freed once its execution
987  * starts and nothing prevents the freed area from being recycled for
988  * another work item.  If the same work item address ends up being reused
989  * before the original execution finishes, workqueue will identify the
990  * recycled work item as currently executing and make it wait until the
991  * current execution finishes, introducing an unwanted dependency.
992  *
993  * This function checks the work item address and work function to avoid
994  * false positives.  Note that this isn't complete as one may construct a
995  * work function which can introduce dependency onto itself through a
996  * recycled work item.  Well, if somebody wants to shoot oneself in the
997  * foot that badly, there's only so much we can do, and if such deadlock
998  * actually occurs, it should be easy to locate the culprit work function.
999  *
1000  * CONTEXT:
1001  * raw_spin_lock_irq(pool->lock).
1002  *
1003  * Return:
1004  * Pointer to worker which is executing @work if found, %NULL
1005  * otherwise.
1006  */
1007 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1008 						 struct work_struct *work)
1009 {
1010 	struct worker *worker;
1011 
1012 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1013 			       (unsigned long)work)
1014 		if (worker->current_work == work &&
1015 		    worker->current_func == work->func)
1016 			return worker;
1017 
1018 	return NULL;
1019 }
1020 
1021 /**
1022  * move_linked_works - move linked works to a list
1023  * @work: start of series of works to be scheduled
1024  * @head: target list to append @work to
1025  * @nextp: out parameter for nested worklist walking
1026  *
1027  * Schedule linked works starting from @work to @head. Work series to be
1028  * scheduled starts at @work and includes any consecutive work with
1029  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1030  * @nextp.
1031  *
1032  * CONTEXT:
1033  * raw_spin_lock_irq(pool->lock).
1034  */
1035 static void move_linked_works(struct work_struct *work, struct list_head *head,
1036 			      struct work_struct **nextp)
1037 {
1038 	struct work_struct *n;
1039 
1040 	/*
1041 	 * Linked worklist will always end before the end of the list,
1042 	 * use NULL for list head.
1043 	 */
1044 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1045 		list_move_tail(&work->entry, head);
1046 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1047 			break;
1048 	}
1049 
1050 	/*
1051 	 * If we're already inside safe list traversal and have moved
1052 	 * multiple works to the scheduled queue, the next position
1053 	 * needs to be updated.
1054 	 */
1055 	if (nextp)
1056 		*nextp = n;
1057 }
1058 
1059 /**
1060  * assign_work - assign a work item and its linked work items to a worker
1061  * @work: work to assign
1062  * @worker: worker to assign to
1063  * @nextp: out parameter for nested worklist walking
1064  *
1065  * Assign @work and its linked work items to @worker. If @work is already being
1066  * executed by another worker in the same pool, it'll be punted there.
1067  *
1068  * If @nextp is not NULL, it's updated to point to the next work of the last
1069  * scheduled work. This allows assign_work() to be nested inside
1070  * list_for_each_entry_safe().
1071  *
1072  * Returns %true if @work was successfully assigned to @worker. %false if @work
1073  * was punted to another worker already executing it.
1074  */
1075 static bool assign_work(struct work_struct *work, struct worker *worker,
1076 			struct work_struct **nextp)
1077 {
1078 	struct worker_pool *pool = worker->pool;
1079 	struct worker *collision;
1080 
1081 	lockdep_assert_held(&pool->lock);
1082 
1083 	/*
1084 	 * A single work shouldn't be executed concurrently by multiple workers.
1085 	 * __queue_work() ensures that @work doesn't jump to a different pool
1086 	 * while still running in the previous pool. Here, we should ensure that
1087 	 * @work is not executed concurrently by multiple workers from the same
1088 	 * pool. Check whether anyone is already processing the work. If so,
1089 	 * defer the work to the currently executing one.
1090 	 */
1091 	collision = find_worker_executing_work(pool, work);
1092 	if (unlikely(collision)) {
1093 		move_linked_works(work, &collision->scheduled, nextp);
1094 		return false;
1095 	}
1096 
1097 	move_linked_works(work, &worker->scheduled, nextp);
1098 	return true;
1099 }
1100 
1101 /**
1102  * kick_pool - wake up an idle worker if necessary
1103  * @pool: pool to kick
1104  *
1105  * @pool may have pending work items. Wake up worker if necessary. Returns
1106  * whether a worker was woken up.
1107  */
1108 static bool kick_pool(struct worker_pool *pool)
1109 {
1110 	struct worker *worker = first_idle_worker(pool);
1111 	struct task_struct *p;
1112 
1113 	lockdep_assert_held(&pool->lock);
1114 
1115 	if (!need_more_worker(pool) || !worker)
1116 		return false;
1117 
1118 	p = worker->task;
1119 
1120 #ifdef CONFIG_SMP
1121 	/*
1122 	 * Idle @worker is about to execute @work and waking up provides an
1123 	 * opportunity to migrate @worker at a lower cost by setting the task's
1124 	 * wake_cpu field. Let's see if we want to move @worker to improve
1125 	 * execution locality.
1126 	 *
1127 	 * We're waking the worker that went idle the latest and there's some
1128 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1129 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1130 	 * optimization and the race window is narrow, let's leave as-is for
1131 	 * now. If this becomes pronounced, we can skip over workers which are
1132 	 * still on cpu when picking an idle worker.
1133 	 *
1134 	 * If @pool has non-strict affinity, @worker might have ended up outside
1135 	 * its affinity scope. Repatriate.
1136 	 */
1137 	if (!pool->attrs->affn_strict &&
1138 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1139 		struct work_struct *work = list_first_entry(&pool->worklist,
1140 						struct work_struct, entry);
1141 		p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1142 		get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1143 	}
1144 #endif
1145 	wake_up_process(p);
1146 	return true;
1147 }
1148 
1149 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1150 
1151 /*
1152  * Concurrency-managed per-cpu work items that hog CPU for longer than
1153  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1154  * which prevents them from stalling other concurrency-managed work items. If a
1155  * work function keeps triggering this mechanism, it's likely that the work item
1156  * should be using an unbound workqueue instead.
1157  *
1158  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1159  * and report them so that they can be examined and converted to use unbound
1160  * workqueues as appropriate. To avoid flooding the console, each violating work
1161  * function is tracked and reported with exponential backoff.
1162  */
1163 #define WCI_MAX_ENTS 128
1164 
1165 struct wci_ent {
1166 	work_func_t		func;
1167 	atomic64_t		cnt;
1168 	struct hlist_node	hash_node;
1169 };
1170 
1171 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1172 static int wci_nr_ents;
1173 static DEFINE_RAW_SPINLOCK(wci_lock);
1174 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1175 
1176 static struct wci_ent *wci_find_ent(work_func_t func)
1177 {
1178 	struct wci_ent *ent;
1179 
1180 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1181 				   (unsigned long)func) {
1182 		if (ent->func == func)
1183 			return ent;
1184 	}
1185 	return NULL;
1186 }
1187 
1188 static void wq_cpu_intensive_report(work_func_t func)
1189 {
1190 	struct wci_ent *ent;
1191 
1192 restart:
1193 	ent = wci_find_ent(func);
1194 	if (ent) {
1195 		u64 cnt;
1196 
1197 		/*
1198 		 * Start reporting from the fourth time and back off
1199 		 * exponentially.
1200 		 */
1201 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1202 		if (cnt >= 4 && is_power_of_2(cnt))
1203 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1204 					ent->func, wq_cpu_intensive_thresh_us,
1205 					atomic64_read(&ent->cnt));
1206 		return;
1207 	}
1208 
1209 	/*
1210 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1211 	 * is exhausted, something went really wrong and we probably made enough
1212 	 * noise already.
1213 	 */
1214 	if (wci_nr_ents >= WCI_MAX_ENTS)
1215 		return;
1216 
1217 	raw_spin_lock(&wci_lock);
1218 
1219 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1220 		raw_spin_unlock(&wci_lock);
1221 		return;
1222 	}
1223 
1224 	if (wci_find_ent(func)) {
1225 		raw_spin_unlock(&wci_lock);
1226 		goto restart;
1227 	}
1228 
1229 	ent = &wci_ents[wci_nr_ents++];
1230 	ent->func = func;
1231 	atomic64_set(&ent->cnt, 1);
1232 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1233 
1234 	raw_spin_unlock(&wci_lock);
1235 }
1236 
1237 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1238 static void wq_cpu_intensive_report(work_func_t func) {}
1239 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1240 
1241 /**
1242  * wq_worker_running - a worker is running again
1243  * @task: task waking up
1244  *
1245  * This function is called when a worker returns from schedule()
1246  */
1247 void wq_worker_running(struct task_struct *task)
1248 {
1249 	struct worker *worker = kthread_data(task);
1250 
1251 	if (!READ_ONCE(worker->sleeping))
1252 		return;
1253 
1254 	/*
1255 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1256 	 * and the nr_running increment below, we may ruin the nr_running reset
1257 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1258 	 * pool. Protect against such race.
1259 	 */
1260 	preempt_disable();
1261 	if (!(worker->flags & WORKER_NOT_RUNNING))
1262 		worker->pool->nr_running++;
1263 	preempt_enable();
1264 
1265 	/*
1266 	 * CPU intensive auto-detection cares about how long a work item hogged
1267 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1268 	 */
1269 	worker->current_at = worker->task->se.sum_exec_runtime;
1270 
1271 	WRITE_ONCE(worker->sleeping, 0);
1272 }
1273 
1274 /**
1275  * wq_worker_sleeping - a worker is going to sleep
1276  * @task: task going to sleep
1277  *
1278  * This function is called from schedule() when a busy worker is
1279  * going to sleep.
1280  */
1281 void wq_worker_sleeping(struct task_struct *task)
1282 {
1283 	struct worker *worker = kthread_data(task);
1284 	struct worker_pool *pool;
1285 
1286 	/*
1287 	 * Rescuers, which may not have all the fields set up like normal
1288 	 * workers, also reach here, let's not access anything before
1289 	 * checking NOT_RUNNING.
1290 	 */
1291 	if (worker->flags & WORKER_NOT_RUNNING)
1292 		return;
1293 
1294 	pool = worker->pool;
1295 
1296 	/* Return if preempted before wq_worker_running() was reached */
1297 	if (READ_ONCE(worker->sleeping))
1298 		return;
1299 
1300 	WRITE_ONCE(worker->sleeping, 1);
1301 	raw_spin_lock_irq(&pool->lock);
1302 
1303 	/*
1304 	 * Recheck in case unbind_workers() preempted us. We don't
1305 	 * want to decrement nr_running after the worker is unbound
1306 	 * and nr_running has been reset.
1307 	 */
1308 	if (worker->flags & WORKER_NOT_RUNNING) {
1309 		raw_spin_unlock_irq(&pool->lock);
1310 		return;
1311 	}
1312 
1313 	pool->nr_running--;
1314 	if (kick_pool(pool))
1315 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1316 
1317 	raw_spin_unlock_irq(&pool->lock);
1318 }
1319 
1320 /**
1321  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1322  * @task: task currently running
1323  *
1324  * Called from scheduler_tick(). We're in the IRQ context and the current
1325  * worker's fields which follow the 'K' locking rule can be accessed safely.
1326  */
1327 void wq_worker_tick(struct task_struct *task)
1328 {
1329 	struct worker *worker = kthread_data(task);
1330 	struct pool_workqueue *pwq = worker->current_pwq;
1331 	struct worker_pool *pool = worker->pool;
1332 
1333 	if (!pwq)
1334 		return;
1335 
1336 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1337 
1338 	if (!wq_cpu_intensive_thresh_us)
1339 		return;
1340 
1341 	/*
1342 	 * If the current worker is concurrency managed and hogged the CPU for
1343 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1344 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1345 	 *
1346 	 * Set @worker->sleeping means that @worker is in the process of
1347 	 * switching out voluntarily and won't be contributing to
1348 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1349 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1350 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1351 	 * We probably want to make this prettier in the future.
1352 	 */
1353 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1354 	    worker->task->se.sum_exec_runtime - worker->current_at <
1355 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1356 		return;
1357 
1358 	raw_spin_lock(&pool->lock);
1359 
1360 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1361 	wq_cpu_intensive_report(worker->current_func);
1362 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1363 
1364 	if (kick_pool(pool))
1365 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1366 
1367 	raw_spin_unlock(&pool->lock);
1368 }
1369 
1370 /**
1371  * wq_worker_last_func - retrieve worker's last work function
1372  * @task: Task to retrieve last work function of.
1373  *
1374  * Determine the last function a worker executed. This is called from
1375  * the scheduler to get a worker's last known identity.
1376  *
1377  * CONTEXT:
1378  * raw_spin_lock_irq(rq->lock)
1379  *
1380  * This function is called during schedule() when a kworker is going
1381  * to sleep. It's used by psi to identify aggregation workers during
1382  * dequeuing, to allow periodic aggregation to shut-off when that
1383  * worker is the last task in the system or cgroup to go to sleep.
1384  *
1385  * As this function doesn't involve any workqueue-related locking, it
1386  * only returns stable values when called from inside the scheduler's
1387  * queuing and dequeuing paths, when @task, which must be a kworker,
1388  * is guaranteed to not be processing any works.
1389  *
1390  * Return:
1391  * The last work function %current executed as a worker, NULL if it
1392  * hasn't executed any work yet.
1393  */
1394 work_func_t wq_worker_last_func(struct task_struct *task)
1395 {
1396 	struct worker *worker = kthread_data(task);
1397 
1398 	return worker->last_func;
1399 }
1400 
1401 /**
1402  * get_pwq - get an extra reference on the specified pool_workqueue
1403  * @pwq: pool_workqueue to get
1404  *
1405  * Obtain an extra reference on @pwq.  The caller should guarantee that
1406  * @pwq has positive refcnt and be holding the matching pool->lock.
1407  */
1408 static void get_pwq(struct pool_workqueue *pwq)
1409 {
1410 	lockdep_assert_held(&pwq->pool->lock);
1411 	WARN_ON_ONCE(pwq->refcnt <= 0);
1412 	pwq->refcnt++;
1413 }
1414 
1415 /**
1416  * put_pwq - put a pool_workqueue reference
1417  * @pwq: pool_workqueue to put
1418  *
1419  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1420  * destruction.  The caller should be holding the matching pool->lock.
1421  */
1422 static void put_pwq(struct pool_workqueue *pwq)
1423 {
1424 	lockdep_assert_held(&pwq->pool->lock);
1425 	if (likely(--pwq->refcnt))
1426 		return;
1427 	/*
1428 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1429 	 * kthread_worker to avoid A-A deadlocks.
1430 	 */
1431 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1432 }
1433 
1434 /**
1435  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1436  * @pwq: pool_workqueue to put (can be %NULL)
1437  *
1438  * put_pwq() with locking.  This function also allows %NULL @pwq.
1439  */
1440 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1441 {
1442 	if (pwq) {
1443 		/*
1444 		 * As both pwqs and pools are RCU protected, the
1445 		 * following lock operations are safe.
1446 		 */
1447 		raw_spin_lock_irq(&pwq->pool->lock);
1448 		put_pwq(pwq);
1449 		raw_spin_unlock_irq(&pwq->pool->lock);
1450 	}
1451 }
1452 
1453 static void pwq_activate_inactive_work(struct work_struct *work)
1454 {
1455 	struct pool_workqueue *pwq = get_work_pwq(work);
1456 
1457 	trace_workqueue_activate_work(work);
1458 	if (list_empty(&pwq->pool->worklist))
1459 		pwq->pool->watchdog_ts = jiffies;
1460 	move_linked_works(work, &pwq->pool->worklist, NULL);
1461 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1462 	pwq->nr_active++;
1463 }
1464 
1465 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1466 {
1467 	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1468 						    struct work_struct, entry);
1469 
1470 	pwq_activate_inactive_work(work);
1471 }
1472 
1473 /**
1474  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1475  * @pwq: pwq of interest
1476  * @work_data: work_data of work which left the queue
1477  *
1478  * A work either has completed or is removed from pending queue,
1479  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1480  *
1481  * CONTEXT:
1482  * raw_spin_lock_irq(pool->lock).
1483  */
1484 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1485 {
1486 	int color = get_work_color(work_data);
1487 
1488 	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1489 		pwq->nr_active--;
1490 		if (!list_empty(&pwq->inactive_works)) {
1491 			/* one down, submit an inactive one */
1492 			if (pwq->nr_active < READ_ONCE(pwq->wq->max_active))
1493 				pwq_activate_first_inactive(pwq);
1494 		}
1495 	}
1496 
1497 	pwq->nr_in_flight[color]--;
1498 
1499 	/* is flush in progress and are we at the flushing tip? */
1500 	if (likely(pwq->flush_color != color))
1501 		goto out_put;
1502 
1503 	/* are there still in-flight works? */
1504 	if (pwq->nr_in_flight[color])
1505 		goto out_put;
1506 
1507 	/* this pwq is done, clear flush_color */
1508 	pwq->flush_color = -1;
1509 
1510 	/*
1511 	 * If this was the last pwq, wake up the first flusher.  It
1512 	 * will handle the rest.
1513 	 */
1514 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1515 		complete(&pwq->wq->first_flusher->done);
1516 out_put:
1517 	put_pwq(pwq);
1518 }
1519 
1520 /**
1521  * try_to_grab_pending - steal work item from worklist and disable irq
1522  * @work: work item to steal
1523  * @is_dwork: @work is a delayed_work
1524  * @flags: place to store irq state
1525  *
1526  * Try to grab PENDING bit of @work.  This function can handle @work in any
1527  * stable state - idle, on timer or on worklist.
1528  *
1529  * Return:
1530  *
1531  *  ========	================================================================
1532  *  1		if @work was pending and we successfully stole PENDING
1533  *  0		if @work was idle and we claimed PENDING
1534  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1535  *  -ENOENT	if someone else is canceling @work, this state may persist
1536  *		for arbitrarily long
1537  *  ========	================================================================
1538  *
1539  * Note:
1540  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1541  * interrupted while holding PENDING and @work off queue, irq must be
1542  * disabled on entry.  This, combined with delayed_work->timer being
1543  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1544  *
1545  * On successful return, >= 0, irq is disabled and the caller is
1546  * responsible for releasing it using local_irq_restore(*@flags).
1547  *
1548  * This function is safe to call from any context including IRQ handler.
1549  */
1550 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1551 			       unsigned long *flags)
1552 {
1553 	struct worker_pool *pool;
1554 	struct pool_workqueue *pwq;
1555 
1556 	local_irq_save(*flags);
1557 
1558 	/* try to steal the timer if it exists */
1559 	if (is_dwork) {
1560 		struct delayed_work *dwork = to_delayed_work(work);
1561 
1562 		/*
1563 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1564 		 * guaranteed that the timer is not queued anywhere and not
1565 		 * running on the local CPU.
1566 		 */
1567 		if (likely(del_timer(&dwork->timer)))
1568 			return 1;
1569 	}
1570 
1571 	/* try to claim PENDING the normal way */
1572 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1573 		return 0;
1574 
1575 	rcu_read_lock();
1576 	/*
1577 	 * The queueing is in progress, or it is already queued. Try to
1578 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1579 	 */
1580 	pool = get_work_pool(work);
1581 	if (!pool)
1582 		goto fail;
1583 
1584 	raw_spin_lock(&pool->lock);
1585 	/*
1586 	 * work->data is guaranteed to point to pwq only while the work
1587 	 * item is queued on pwq->wq, and both updating work->data to point
1588 	 * to pwq on queueing and to pool on dequeueing are done under
1589 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1590 	 * points to pwq which is associated with a locked pool, the work
1591 	 * item is currently queued on that pool.
1592 	 */
1593 	pwq = get_work_pwq(work);
1594 	if (pwq && pwq->pool == pool) {
1595 		debug_work_deactivate(work);
1596 
1597 		/*
1598 		 * A cancelable inactive work item must be in the
1599 		 * pwq->inactive_works since a queued barrier can't be
1600 		 * canceled (see the comments in insert_wq_barrier()).
1601 		 *
1602 		 * An inactive work item cannot be grabbed directly because
1603 		 * it might have linked barrier work items which, if left
1604 		 * on the inactive_works list, will confuse pwq->nr_active
1605 		 * management later on and cause stall.  Make sure the work
1606 		 * item is activated before grabbing.
1607 		 */
1608 		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1609 			pwq_activate_inactive_work(work);
1610 
1611 		list_del_init(&work->entry);
1612 		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1613 
1614 		/* work->data points to pwq iff queued, point to pool */
1615 		set_work_pool_and_keep_pending(work, pool->id);
1616 
1617 		raw_spin_unlock(&pool->lock);
1618 		rcu_read_unlock();
1619 		return 1;
1620 	}
1621 	raw_spin_unlock(&pool->lock);
1622 fail:
1623 	rcu_read_unlock();
1624 	local_irq_restore(*flags);
1625 	if (work_is_canceling(work))
1626 		return -ENOENT;
1627 	cpu_relax();
1628 	return -EAGAIN;
1629 }
1630 
1631 /**
1632  * insert_work - insert a work into a pool
1633  * @pwq: pwq @work belongs to
1634  * @work: work to insert
1635  * @head: insertion point
1636  * @extra_flags: extra WORK_STRUCT_* flags to set
1637  *
1638  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1639  * work_struct flags.
1640  *
1641  * CONTEXT:
1642  * raw_spin_lock_irq(pool->lock).
1643  */
1644 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1645 			struct list_head *head, unsigned int extra_flags)
1646 {
1647 	debug_work_activate(work);
1648 
1649 	/* record the work call stack in order to print it in KASAN reports */
1650 	kasan_record_aux_stack_noalloc(work);
1651 
1652 	/* we own @work, set data and link */
1653 	set_work_pwq(work, pwq, extra_flags);
1654 	list_add_tail(&work->entry, head);
1655 	get_pwq(pwq);
1656 }
1657 
1658 /*
1659  * Test whether @work is being queued from another work executing on the
1660  * same workqueue.
1661  */
1662 static bool is_chained_work(struct workqueue_struct *wq)
1663 {
1664 	struct worker *worker;
1665 
1666 	worker = current_wq_worker();
1667 	/*
1668 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1669 	 * I'm @worker, it's safe to dereference it without locking.
1670 	 */
1671 	return worker && worker->current_pwq->wq == wq;
1672 }
1673 
1674 /*
1675  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1676  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1677  * avoid perturbing sensitive tasks.
1678  */
1679 static int wq_select_unbound_cpu(int cpu)
1680 {
1681 	int new_cpu;
1682 
1683 	if (likely(!wq_debug_force_rr_cpu)) {
1684 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1685 			return cpu;
1686 	} else {
1687 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
1688 	}
1689 
1690 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1691 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1692 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1693 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1694 		if (unlikely(new_cpu >= nr_cpu_ids))
1695 			return cpu;
1696 	}
1697 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1698 
1699 	return new_cpu;
1700 }
1701 
1702 static void __queue_work(int cpu, struct workqueue_struct *wq,
1703 			 struct work_struct *work)
1704 {
1705 	struct pool_workqueue *pwq;
1706 	struct worker_pool *last_pool, *pool;
1707 	unsigned int work_flags;
1708 	unsigned int req_cpu = cpu;
1709 
1710 	/*
1711 	 * While a work item is PENDING && off queue, a task trying to
1712 	 * steal the PENDING will busy-loop waiting for it to either get
1713 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1714 	 * happen with IRQ disabled.
1715 	 */
1716 	lockdep_assert_irqs_disabled();
1717 
1718 
1719 	/*
1720 	 * For a draining wq, only works from the same workqueue are
1721 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
1722 	 * queues a new work item to a wq after destroy_workqueue(wq).
1723 	 */
1724 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1725 		     WARN_ON_ONCE(!is_chained_work(wq))))
1726 		return;
1727 	rcu_read_lock();
1728 retry:
1729 	/* pwq which will be used unless @work is executing elsewhere */
1730 	if (req_cpu == WORK_CPU_UNBOUND) {
1731 		if (wq->flags & WQ_UNBOUND)
1732 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1733 		else
1734 			cpu = raw_smp_processor_id();
1735 	}
1736 
1737 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
1738 	pool = pwq->pool;
1739 
1740 	/*
1741 	 * If @work was previously on a different pool, it might still be
1742 	 * running there, in which case the work needs to be queued on that
1743 	 * pool to guarantee non-reentrancy.
1744 	 */
1745 	last_pool = get_work_pool(work);
1746 	if (last_pool && last_pool != pool) {
1747 		struct worker *worker;
1748 
1749 		raw_spin_lock(&last_pool->lock);
1750 
1751 		worker = find_worker_executing_work(last_pool, work);
1752 
1753 		if (worker && worker->current_pwq->wq == wq) {
1754 			pwq = worker->current_pwq;
1755 			pool = pwq->pool;
1756 			WARN_ON_ONCE(pool != last_pool);
1757 		} else {
1758 			/* meh... not running there, queue here */
1759 			raw_spin_unlock(&last_pool->lock);
1760 			raw_spin_lock(&pool->lock);
1761 		}
1762 	} else {
1763 		raw_spin_lock(&pool->lock);
1764 	}
1765 
1766 	/*
1767 	 * pwq is determined and locked. For unbound pools, we could have raced
1768 	 * with pwq release and it could already be dead. If its refcnt is zero,
1769 	 * repeat pwq selection. Note that unbound pwqs never die without
1770 	 * another pwq replacing it in cpu_pwq or while work items are executing
1771 	 * on it, so the retrying is guaranteed to make forward-progress.
1772 	 */
1773 	if (unlikely(!pwq->refcnt)) {
1774 		if (wq->flags & WQ_UNBOUND) {
1775 			raw_spin_unlock(&pool->lock);
1776 			cpu_relax();
1777 			goto retry;
1778 		}
1779 		/* oops */
1780 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1781 			  wq->name, cpu);
1782 	}
1783 
1784 	/* pwq determined, queue */
1785 	trace_workqueue_queue_work(req_cpu, pwq, work);
1786 
1787 	if (WARN_ON(!list_empty(&work->entry)))
1788 		goto out;
1789 
1790 	pwq->nr_in_flight[pwq->work_color]++;
1791 	work_flags = work_color_to_flags(pwq->work_color);
1792 
1793 	/*
1794 	 * Limit the number of concurrently active work items to max_active.
1795 	 * @work must also queue behind existing inactive work items to maintain
1796 	 * ordering when max_active changes. See wq_adjust_max_active().
1797 	 */
1798 	if (list_empty(&pwq->inactive_works) &&
1799 	    pwq->nr_active < READ_ONCE(pwq->wq->max_active)) {
1800 		if (list_empty(&pool->worklist))
1801 			pool->watchdog_ts = jiffies;
1802 
1803 		trace_workqueue_activate_work(work);
1804 		pwq->nr_active++;
1805 		insert_work(pwq, work, &pool->worklist, work_flags);
1806 		kick_pool(pool);
1807 	} else {
1808 		work_flags |= WORK_STRUCT_INACTIVE;
1809 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
1810 	}
1811 
1812 out:
1813 	raw_spin_unlock(&pool->lock);
1814 	rcu_read_unlock();
1815 }
1816 
1817 /**
1818  * queue_work_on - queue work on specific cpu
1819  * @cpu: CPU number to execute work on
1820  * @wq: workqueue to use
1821  * @work: work to queue
1822  *
1823  * We queue the work to a specific CPU, the caller must ensure it
1824  * can't go away.  Callers that fail to ensure that the specified
1825  * CPU cannot go away will execute on a randomly chosen CPU.
1826  * But note well that callers specifying a CPU that never has been
1827  * online will get a splat.
1828  *
1829  * Return: %false if @work was already on a queue, %true otherwise.
1830  */
1831 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1832 		   struct work_struct *work)
1833 {
1834 	bool ret = false;
1835 	unsigned long flags;
1836 
1837 	local_irq_save(flags);
1838 
1839 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1840 		__queue_work(cpu, wq, work);
1841 		ret = true;
1842 	}
1843 
1844 	local_irq_restore(flags);
1845 	return ret;
1846 }
1847 EXPORT_SYMBOL(queue_work_on);
1848 
1849 /**
1850  * select_numa_node_cpu - Select a CPU based on NUMA node
1851  * @node: NUMA node ID that we want to select a CPU from
1852  *
1853  * This function will attempt to find a "random" cpu available on a given
1854  * node. If there are no CPUs available on the given node it will return
1855  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1856  * available CPU if we need to schedule this work.
1857  */
1858 static int select_numa_node_cpu(int node)
1859 {
1860 	int cpu;
1861 
1862 	/* Delay binding to CPU if node is not valid or online */
1863 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1864 		return WORK_CPU_UNBOUND;
1865 
1866 	/* Use local node/cpu if we are already there */
1867 	cpu = raw_smp_processor_id();
1868 	if (node == cpu_to_node(cpu))
1869 		return cpu;
1870 
1871 	/* Use "random" otherwise know as "first" online CPU of node */
1872 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1873 
1874 	/* If CPU is valid return that, otherwise just defer */
1875 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1876 }
1877 
1878 /**
1879  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1880  * @node: NUMA node that we are targeting the work for
1881  * @wq: workqueue to use
1882  * @work: work to queue
1883  *
1884  * We queue the work to a "random" CPU within a given NUMA node. The basic
1885  * idea here is to provide a way to somehow associate work with a given
1886  * NUMA node.
1887  *
1888  * This function will only make a best effort attempt at getting this onto
1889  * the right NUMA node. If no node is requested or the requested node is
1890  * offline then we just fall back to standard queue_work behavior.
1891  *
1892  * Currently the "random" CPU ends up being the first available CPU in the
1893  * intersection of cpu_online_mask and the cpumask of the node, unless we
1894  * are running on the node. In that case we just use the current CPU.
1895  *
1896  * Return: %false if @work was already on a queue, %true otherwise.
1897  */
1898 bool queue_work_node(int node, struct workqueue_struct *wq,
1899 		     struct work_struct *work)
1900 {
1901 	unsigned long flags;
1902 	bool ret = false;
1903 
1904 	/*
1905 	 * This current implementation is specific to unbound workqueues.
1906 	 * Specifically we only return the first available CPU for a given
1907 	 * node instead of cycling through individual CPUs within the node.
1908 	 *
1909 	 * If this is used with a per-cpu workqueue then the logic in
1910 	 * workqueue_select_cpu_near would need to be updated to allow for
1911 	 * some round robin type logic.
1912 	 */
1913 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1914 
1915 	local_irq_save(flags);
1916 
1917 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1918 		int cpu = select_numa_node_cpu(node);
1919 
1920 		__queue_work(cpu, wq, work);
1921 		ret = true;
1922 	}
1923 
1924 	local_irq_restore(flags);
1925 	return ret;
1926 }
1927 EXPORT_SYMBOL_GPL(queue_work_node);
1928 
1929 void delayed_work_timer_fn(struct timer_list *t)
1930 {
1931 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1932 
1933 	/* should have been called from irqsafe timer with irq already off */
1934 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1935 }
1936 EXPORT_SYMBOL(delayed_work_timer_fn);
1937 
1938 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1939 				struct delayed_work *dwork, unsigned long delay)
1940 {
1941 	struct timer_list *timer = &dwork->timer;
1942 	struct work_struct *work = &dwork->work;
1943 
1944 	WARN_ON_ONCE(!wq);
1945 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1946 	WARN_ON_ONCE(timer_pending(timer));
1947 	WARN_ON_ONCE(!list_empty(&work->entry));
1948 
1949 	/*
1950 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1951 	 * both optimization and correctness.  The earliest @timer can
1952 	 * expire is on the closest next tick and delayed_work users depend
1953 	 * on that there's no such delay when @delay is 0.
1954 	 */
1955 	if (!delay) {
1956 		__queue_work(cpu, wq, &dwork->work);
1957 		return;
1958 	}
1959 
1960 	dwork->wq = wq;
1961 	dwork->cpu = cpu;
1962 	timer->expires = jiffies + delay;
1963 
1964 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1965 		add_timer_on(timer, cpu);
1966 	else
1967 		add_timer(timer);
1968 }
1969 
1970 /**
1971  * queue_delayed_work_on - queue work on specific CPU after delay
1972  * @cpu: CPU number to execute work on
1973  * @wq: workqueue to use
1974  * @dwork: work to queue
1975  * @delay: number of jiffies to wait before queueing
1976  *
1977  * Return: %false if @work was already on a queue, %true otherwise.  If
1978  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1979  * execution.
1980  */
1981 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1982 			   struct delayed_work *dwork, unsigned long delay)
1983 {
1984 	struct work_struct *work = &dwork->work;
1985 	bool ret = false;
1986 	unsigned long flags;
1987 
1988 	/* read the comment in __queue_work() */
1989 	local_irq_save(flags);
1990 
1991 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1992 		__queue_delayed_work(cpu, wq, dwork, delay);
1993 		ret = true;
1994 	}
1995 
1996 	local_irq_restore(flags);
1997 	return ret;
1998 }
1999 EXPORT_SYMBOL(queue_delayed_work_on);
2000 
2001 /**
2002  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2003  * @cpu: CPU number to execute work on
2004  * @wq: workqueue to use
2005  * @dwork: work to queue
2006  * @delay: number of jiffies to wait before queueing
2007  *
2008  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2009  * modify @dwork's timer so that it expires after @delay.  If @delay is
2010  * zero, @work is guaranteed to be scheduled immediately regardless of its
2011  * current state.
2012  *
2013  * Return: %false if @dwork was idle and queued, %true if @dwork was
2014  * pending and its timer was modified.
2015  *
2016  * This function is safe to call from any context including IRQ handler.
2017  * See try_to_grab_pending() for details.
2018  */
2019 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2020 			 struct delayed_work *dwork, unsigned long delay)
2021 {
2022 	unsigned long flags;
2023 	int ret;
2024 
2025 	do {
2026 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2027 	} while (unlikely(ret == -EAGAIN));
2028 
2029 	if (likely(ret >= 0)) {
2030 		__queue_delayed_work(cpu, wq, dwork, delay);
2031 		local_irq_restore(flags);
2032 	}
2033 
2034 	/* -ENOENT from try_to_grab_pending() becomes %true */
2035 	return ret;
2036 }
2037 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2038 
2039 static void rcu_work_rcufn(struct rcu_head *rcu)
2040 {
2041 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2042 
2043 	/* read the comment in __queue_work() */
2044 	local_irq_disable();
2045 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2046 	local_irq_enable();
2047 }
2048 
2049 /**
2050  * queue_rcu_work - queue work after a RCU grace period
2051  * @wq: workqueue to use
2052  * @rwork: work to queue
2053  *
2054  * Return: %false if @rwork was already pending, %true otherwise.  Note
2055  * that a full RCU grace period is guaranteed only after a %true return.
2056  * While @rwork is guaranteed to be executed after a %false return, the
2057  * execution may happen before a full RCU grace period has passed.
2058  */
2059 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2060 {
2061 	struct work_struct *work = &rwork->work;
2062 
2063 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2064 		rwork->wq = wq;
2065 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2066 		return true;
2067 	}
2068 
2069 	return false;
2070 }
2071 EXPORT_SYMBOL(queue_rcu_work);
2072 
2073 static struct worker *alloc_worker(int node)
2074 {
2075 	struct worker *worker;
2076 
2077 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2078 	if (worker) {
2079 		INIT_LIST_HEAD(&worker->entry);
2080 		INIT_LIST_HEAD(&worker->scheduled);
2081 		INIT_LIST_HEAD(&worker->node);
2082 		/* on creation a worker is in !idle && prep state */
2083 		worker->flags = WORKER_PREP;
2084 	}
2085 	return worker;
2086 }
2087 
2088 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2089 {
2090 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2091 		return pool->attrs->__pod_cpumask;
2092 	else
2093 		return pool->attrs->cpumask;
2094 }
2095 
2096 /**
2097  * worker_attach_to_pool() - attach a worker to a pool
2098  * @worker: worker to be attached
2099  * @pool: the target pool
2100  *
2101  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2102  * cpu-binding of @worker are kept coordinated with the pool across
2103  * cpu-[un]hotplugs.
2104  */
2105 static void worker_attach_to_pool(struct worker *worker,
2106 				   struct worker_pool *pool)
2107 {
2108 	mutex_lock(&wq_pool_attach_mutex);
2109 
2110 	/*
2111 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
2112 	 * stable across this function.  See the comments above the flag
2113 	 * definition for details.
2114 	 */
2115 	if (pool->flags & POOL_DISASSOCIATED)
2116 		worker->flags |= WORKER_UNBOUND;
2117 	else
2118 		kthread_set_per_cpu(worker->task, pool->cpu);
2119 
2120 	if (worker->rescue_wq)
2121 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2122 
2123 	list_add_tail(&worker->node, &pool->workers);
2124 	worker->pool = pool;
2125 
2126 	mutex_unlock(&wq_pool_attach_mutex);
2127 }
2128 
2129 /**
2130  * worker_detach_from_pool() - detach a worker from its pool
2131  * @worker: worker which is attached to its pool
2132  *
2133  * Undo the attaching which had been done in worker_attach_to_pool().  The
2134  * caller worker shouldn't access to the pool after detached except it has
2135  * other reference to the pool.
2136  */
2137 static void worker_detach_from_pool(struct worker *worker)
2138 {
2139 	struct worker_pool *pool = worker->pool;
2140 	struct completion *detach_completion = NULL;
2141 
2142 	mutex_lock(&wq_pool_attach_mutex);
2143 
2144 	kthread_set_per_cpu(worker->task, -1);
2145 	list_del(&worker->node);
2146 	worker->pool = NULL;
2147 
2148 	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2149 		detach_completion = pool->detach_completion;
2150 	mutex_unlock(&wq_pool_attach_mutex);
2151 
2152 	/* clear leftover flags without pool->lock after it is detached */
2153 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2154 
2155 	if (detach_completion)
2156 		complete(detach_completion);
2157 }
2158 
2159 /**
2160  * create_worker - create a new workqueue worker
2161  * @pool: pool the new worker will belong to
2162  *
2163  * Create and start a new worker which is attached to @pool.
2164  *
2165  * CONTEXT:
2166  * Might sleep.  Does GFP_KERNEL allocations.
2167  *
2168  * Return:
2169  * Pointer to the newly created worker.
2170  */
2171 static struct worker *create_worker(struct worker_pool *pool)
2172 {
2173 	struct worker *worker;
2174 	int id;
2175 	char id_buf[23];
2176 
2177 	/* ID is needed to determine kthread name */
2178 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2179 	if (id < 0) {
2180 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2181 			    ERR_PTR(id));
2182 		return NULL;
2183 	}
2184 
2185 	worker = alloc_worker(pool->node);
2186 	if (!worker) {
2187 		pr_err_once("workqueue: Failed to allocate a worker\n");
2188 		goto fail;
2189 	}
2190 
2191 	worker->id = id;
2192 
2193 	if (pool->cpu >= 0)
2194 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2195 			 pool->attrs->nice < 0  ? "H" : "");
2196 	else
2197 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2198 
2199 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
2200 					      "kworker/%s", id_buf);
2201 	if (IS_ERR(worker->task)) {
2202 		if (PTR_ERR(worker->task) == -EINTR) {
2203 			pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2204 			       id_buf);
2205 		} else {
2206 			pr_err_once("workqueue: Failed to create a worker thread: %pe",
2207 				    worker->task);
2208 		}
2209 		goto fail;
2210 	}
2211 
2212 	set_user_nice(worker->task, pool->attrs->nice);
2213 	kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2214 
2215 	/* successful, attach the worker to the pool */
2216 	worker_attach_to_pool(worker, pool);
2217 
2218 	/* start the newly created worker */
2219 	raw_spin_lock_irq(&pool->lock);
2220 
2221 	worker->pool->nr_workers++;
2222 	worker_enter_idle(worker);
2223 	kick_pool(pool);
2224 
2225 	/*
2226 	 * @worker is waiting on a completion in kthread() and will trigger hung
2227 	 * check if not woken up soon. As kick_pool() might not have waken it
2228 	 * up, wake it up explicitly once more.
2229 	 */
2230 	wake_up_process(worker->task);
2231 
2232 	raw_spin_unlock_irq(&pool->lock);
2233 
2234 	return worker;
2235 
2236 fail:
2237 	ida_free(&pool->worker_ida, id);
2238 	kfree(worker);
2239 	return NULL;
2240 }
2241 
2242 static void unbind_worker(struct worker *worker)
2243 {
2244 	lockdep_assert_held(&wq_pool_attach_mutex);
2245 
2246 	kthread_set_per_cpu(worker->task, -1);
2247 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2248 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2249 	else
2250 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2251 }
2252 
2253 static void wake_dying_workers(struct list_head *cull_list)
2254 {
2255 	struct worker *worker, *tmp;
2256 
2257 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2258 		list_del_init(&worker->entry);
2259 		unbind_worker(worker);
2260 		/*
2261 		 * If the worker was somehow already running, then it had to be
2262 		 * in pool->idle_list when set_worker_dying() happened or we
2263 		 * wouldn't have gotten here.
2264 		 *
2265 		 * Thus, the worker must either have observed the WORKER_DIE
2266 		 * flag, or have set its state to TASK_IDLE. Either way, the
2267 		 * below will be observed by the worker and is safe to do
2268 		 * outside of pool->lock.
2269 		 */
2270 		wake_up_process(worker->task);
2271 	}
2272 }
2273 
2274 /**
2275  * set_worker_dying - Tag a worker for destruction
2276  * @worker: worker to be destroyed
2277  * @list: transfer worker away from its pool->idle_list and into list
2278  *
2279  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2280  * should be idle.
2281  *
2282  * CONTEXT:
2283  * raw_spin_lock_irq(pool->lock).
2284  */
2285 static void set_worker_dying(struct worker *worker, struct list_head *list)
2286 {
2287 	struct worker_pool *pool = worker->pool;
2288 
2289 	lockdep_assert_held(&pool->lock);
2290 	lockdep_assert_held(&wq_pool_attach_mutex);
2291 
2292 	/* sanity check frenzy */
2293 	if (WARN_ON(worker->current_work) ||
2294 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2295 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2296 		return;
2297 
2298 	pool->nr_workers--;
2299 	pool->nr_idle--;
2300 
2301 	worker->flags |= WORKER_DIE;
2302 
2303 	list_move(&worker->entry, list);
2304 	list_move(&worker->node, &pool->dying_workers);
2305 }
2306 
2307 /**
2308  * idle_worker_timeout - check if some idle workers can now be deleted.
2309  * @t: The pool's idle_timer that just expired
2310  *
2311  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2312  * worker_leave_idle(), as a worker flicking between idle and active while its
2313  * pool is at the too_many_workers() tipping point would cause too much timer
2314  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2315  * it expire and re-evaluate things from there.
2316  */
2317 static void idle_worker_timeout(struct timer_list *t)
2318 {
2319 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2320 	bool do_cull = false;
2321 
2322 	if (work_pending(&pool->idle_cull_work))
2323 		return;
2324 
2325 	raw_spin_lock_irq(&pool->lock);
2326 
2327 	if (too_many_workers(pool)) {
2328 		struct worker *worker;
2329 		unsigned long expires;
2330 
2331 		/* idle_list is kept in LIFO order, check the last one */
2332 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2333 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2334 		do_cull = !time_before(jiffies, expires);
2335 
2336 		if (!do_cull)
2337 			mod_timer(&pool->idle_timer, expires);
2338 	}
2339 	raw_spin_unlock_irq(&pool->lock);
2340 
2341 	if (do_cull)
2342 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2343 }
2344 
2345 /**
2346  * idle_cull_fn - cull workers that have been idle for too long.
2347  * @work: the pool's work for handling these idle workers
2348  *
2349  * This goes through a pool's idle workers and gets rid of those that have been
2350  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2351  *
2352  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2353  * culled, so this also resets worker affinity. This requires a sleepable
2354  * context, hence the split between timer callback and work item.
2355  */
2356 static void idle_cull_fn(struct work_struct *work)
2357 {
2358 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2359 	LIST_HEAD(cull_list);
2360 
2361 	/*
2362 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2363 	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2364 	 * path. This is required as a previously-preempted worker could run after
2365 	 * set_worker_dying() has happened but before wake_dying_workers() did.
2366 	 */
2367 	mutex_lock(&wq_pool_attach_mutex);
2368 	raw_spin_lock_irq(&pool->lock);
2369 
2370 	while (too_many_workers(pool)) {
2371 		struct worker *worker;
2372 		unsigned long expires;
2373 
2374 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2375 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2376 
2377 		if (time_before(jiffies, expires)) {
2378 			mod_timer(&pool->idle_timer, expires);
2379 			break;
2380 		}
2381 
2382 		set_worker_dying(worker, &cull_list);
2383 	}
2384 
2385 	raw_spin_unlock_irq(&pool->lock);
2386 	wake_dying_workers(&cull_list);
2387 	mutex_unlock(&wq_pool_attach_mutex);
2388 }
2389 
2390 static void send_mayday(struct work_struct *work)
2391 {
2392 	struct pool_workqueue *pwq = get_work_pwq(work);
2393 	struct workqueue_struct *wq = pwq->wq;
2394 
2395 	lockdep_assert_held(&wq_mayday_lock);
2396 
2397 	if (!wq->rescuer)
2398 		return;
2399 
2400 	/* mayday mayday mayday */
2401 	if (list_empty(&pwq->mayday_node)) {
2402 		/*
2403 		 * If @pwq is for an unbound wq, its base ref may be put at
2404 		 * any time due to an attribute change.  Pin @pwq until the
2405 		 * rescuer is done with it.
2406 		 */
2407 		get_pwq(pwq);
2408 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2409 		wake_up_process(wq->rescuer->task);
2410 		pwq->stats[PWQ_STAT_MAYDAY]++;
2411 	}
2412 }
2413 
2414 static void pool_mayday_timeout(struct timer_list *t)
2415 {
2416 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2417 	struct work_struct *work;
2418 
2419 	raw_spin_lock_irq(&pool->lock);
2420 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2421 
2422 	if (need_to_create_worker(pool)) {
2423 		/*
2424 		 * We've been trying to create a new worker but
2425 		 * haven't been successful.  We might be hitting an
2426 		 * allocation deadlock.  Send distress signals to
2427 		 * rescuers.
2428 		 */
2429 		list_for_each_entry(work, &pool->worklist, entry)
2430 			send_mayday(work);
2431 	}
2432 
2433 	raw_spin_unlock(&wq_mayday_lock);
2434 	raw_spin_unlock_irq(&pool->lock);
2435 
2436 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2437 }
2438 
2439 /**
2440  * maybe_create_worker - create a new worker if necessary
2441  * @pool: pool to create a new worker for
2442  *
2443  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2444  * have at least one idle worker on return from this function.  If
2445  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2446  * sent to all rescuers with works scheduled on @pool to resolve
2447  * possible allocation deadlock.
2448  *
2449  * On return, need_to_create_worker() is guaranteed to be %false and
2450  * may_start_working() %true.
2451  *
2452  * LOCKING:
2453  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2454  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2455  * manager.
2456  */
2457 static void maybe_create_worker(struct worker_pool *pool)
2458 __releases(&pool->lock)
2459 __acquires(&pool->lock)
2460 {
2461 restart:
2462 	raw_spin_unlock_irq(&pool->lock);
2463 
2464 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2465 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2466 
2467 	while (true) {
2468 		if (create_worker(pool) || !need_to_create_worker(pool))
2469 			break;
2470 
2471 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2472 
2473 		if (!need_to_create_worker(pool))
2474 			break;
2475 	}
2476 
2477 	del_timer_sync(&pool->mayday_timer);
2478 	raw_spin_lock_irq(&pool->lock);
2479 	/*
2480 	 * This is necessary even after a new worker was just successfully
2481 	 * created as @pool->lock was dropped and the new worker might have
2482 	 * already become busy.
2483 	 */
2484 	if (need_to_create_worker(pool))
2485 		goto restart;
2486 }
2487 
2488 /**
2489  * manage_workers - manage worker pool
2490  * @worker: self
2491  *
2492  * Assume the manager role and manage the worker pool @worker belongs
2493  * to.  At any given time, there can be only zero or one manager per
2494  * pool.  The exclusion is handled automatically by this function.
2495  *
2496  * The caller can safely start processing works on false return.  On
2497  * true return, it's guaranteed that need_to_create_worker() is false
2498  * and may_start_working() is true.
2499  *
2500  * CONTEXT:
2501  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2502  * multiple times.  Does GFP_KERNEL allocations.
2503  *
2504  * Return:
2505  * %false if the pool doesn't need management and the caller can safely
2506  * start processing works, %true if management function was performed and
2507  * the conditions that the caller verified before calling the function may
2508  * no longer be true.
2509  */
2510 static bool manage_workers(struct worker *worker)
2511 {
2512 	struct worker_pool *pool = worker->pool;
2513 
2514 	if (pool->flags & POOL_MANAGER_ACTIVE)
2515 		return false;
2516 
2517 	pool->flags |= POOL_MANAGER_ACTIVE;
2518 	pool->manager = worker;
2519 
2520 	maybe_create_worker(pool);
2521 
2522 	pool->manager = NULL;
2523 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2524 	rcuwait_wake_up(&manager_wait);
2525 	return true;
2526 }
2527 
2528 /**
2529  * process_one_work - process single work
2530  * @worker: self
2531  * @work: work to process
2532  *
2533  * Process @work.  This function contains all the logics necessary to
2534  * process a single work including synchronization against and
2535  * interaction with other workers on the same cpu, queueing and
2536  * flushing.  As long as context requirement is met, any worker can
2537  * call this function to process a work.
2538  *
2539  * CONTEXT:
2540  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2541  */
2542 static void process_one_work(struct worker *worker, struct work_struct *work)
2543 __releases(&pool->lock)
2544 __acquires(&pool->lock)
2545 {
2546 	struct pool_workqueue *pwq = get_work_pwq(work);
2547 	struct worker_pool *pool = worker->pool;
2548 	unsigned long work_data;
2549 #ifdef CONFIG_LOCKDEP
2550 	/*
2551 	 * It is permissible to free the struct work_struct from
2552 	 * inside the function that is called from it, this we need to
2553 	 * take into account for lockdep too.  To avoid bogus "held
2554 	 * lock freed" warnings as well as problems when looking into
2555 	 * work->lockdep_map, make a copy and use that here.
2556 	 */
2557 	struct lockdep_map lockdep_map;
2558 
2559 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2560 #endif
2561 	/* ensure we're on the correct CPU */
2562 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2563 		     raw_smp_processor_id() != pool->cpu);
2564 
2565 	/* claim and dequeue */
2566 	debug_work_deactivate(work);
2567 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2568 	worker->current_work = work;
2569 	worker->current_func = work->func;
2570 	worker->current_pwq = pwq;
2571 	worker->current_at = worker->task->se.sum_exec_runtime;
2572 	work_data = *work_data_bits(work);
2573 	worker->current_color = get_work_color(work_data);
2574 
2575 	/*
2576 	 * Record wq name for cmdline and debug reporting, may get
2577 	 * overridden through set_worker_desc().
2578 	 */
2579 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2580 
2581 	list_del_init(&work->entry);
2582 
2583 	/*
2584 	 * CPU intensive works don't participate in concurrency management.
2585 	 * They're the scheduler's responsibility.  This takes @worker out
2586 	 * of concurrency management and the next code block will chain
2587 	 * execution of the pending work items.
2588 	 */
2589 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
2590 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2591 
2592 	/*
2593 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
2594 	 * since nr_running would always be >= 1 at this point. This is used to
2595 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
2596 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
2597 	 */
2598 	kick_pool(pool);
2599 
2600 	/*
2601 	 * Record the last pool and clear PENDING which should be the last
2602 	 * update to @work.  Also, do this inside @pool->lock so that
2603 	 * PENDING and queued state changes happen together while IRQ is
2604 	 * disabled.
2605 	 */
2606 	set_work_pool_and_clear_pending(work, pool->id);
2607 
2608 	pwq->stats[PWQ_STAT_STARTED]++;
2609 	raw_spin_unlock_irq(&pool->lock);
2610 
2611 	lock_map_acquire(&pwq->wq->lockdep_map);
2612 	lock_map_acquire(&lockdep_map);
2613 	/*
2614 	 * Strictly speaking we should mark the invariant state without holding
2615 	 * any locks, that is, before these two lock_map_acquire()'s.
2616 	 *
2617 	 * However, that would result in:
2618 	 *
2619 	 *   A(W1)
2620 	 *   WFC(C)
2621 	 *		A(W1)
2622 	 *		C(C)
2623 	 *
2624 	 * Which would create W1->C->W1 dependencies, even though there is no
2625 	 * actual deadlock possible. There are two solutions, using a
2626 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2627 	 * hit the lockdep limitation on recursive locks, or simply discard
2628 	 * these locks.
2629 	 *
2630 	 * AFAICT there is no possible deadlock scenario between the
2631 	 * flush_work() and complete() primitives (except for single-threaded
2632 	 * workqueues), so hiding them isn't a problem.
2633 	 */
2634 	lockdep_invariant_state(true);
2635 	trace_workqueue_execute_start(work);
2636 	worker->current_func(work);
2637 	/*
2638 	 * While we must be careful to not use "work" after this, the trace
2639 	 * point will only record its address.
2640 	 */
2641 	trace_workqueue_execute_end(work, worker->current_func);
2642 	pwq->stats[PWQ_STAT_COMPLETED]++;
2643 	lock_map_release(&lockdep_map);
2644 	lock_map_release(&pwq->wq->lockdep_map);
2645 
2646 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2647 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2648 		       "     last function: %ps\n",
2649 		       current->comm, preempt_count(), task_pid_nr(current),
2650 		       worker->current_func);
2651 		debug_show_held_locks(current);
2652 		dump_stack();
2653 	}
2654 
2655 	/*
2656 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2657 	 * kernels, where a requeueing work item waiting for something to
2658 	 * happen could deadlock with stop_machine as such work item could
2659 	 * indefinitely requeue itself while all other CPUs are trapped in
2660 	 * stop_machine. At the same time, report a quiescent RCU state so
2661 	 * the same condition doesn't freeze RCU.
2662 	 */
2663 	cond_resched();
2664 
2665 	raw_spin_lock_irq(&pool->lock);
2666 
2667 	/*
2668 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
2669 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
2670 	 * wq_cpu_intensive_thresh_us. Clear it.
2671 	 */
2672 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2673 
2674 	/* tag the worker for identification in schedule() */
2675 	worker->last_func = worker->current_func;
2676 
2677 	/* we're done with it, release */
2678 	hash_del(&worker->hentry);
2679 	worker->current_work = NULL;
2680 	worker->current_func = NULL;
2681 	worker->current_pwq = NULL;
2682 	worker->current_color = INT_MAX;
2683 	pwq_dec_nr_in_flight(pwq, work_data);
2684 }
2685 
2686 /**
2687  * process_scheduled_works - process scheduled works
2688  * @worker: self
2689  *
2690  * Process all scheduled works.  Please note that the scheduled list
2691  * may change while processing a work, so this function repeatedly
2692  * fetches a work from the top and executes it.
2693  *
2694  * CONTEXT:
2695  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2696  * multiple times.
2697  */
2698 static void process_scheduled_works(struct worker *worker)
2699 {
2700 	struct work_struct *work;
2701 	bool first = true;
2702 
2703 	while ((work = list_first_entry_or_null(&worker->scheduled,
2704 						struct work_struct, entry))) {
2705 		if (first) {
2706 			worker->pool->watchdog_ts = jiffies;
2707 			first = false;
2708 		}
2709 		process_one_work(worker, work);
2710 	}
2711 }
2712 
2713 static void set_pf_worker(bool val)
2714 {
2715 	mutex_lock(&wq_pool_attach_mutex);
2716 	if (val)
2717 		current->flags |= PF_WQ_WORKER;
2718 	else
2719 		current->flags &= ~PF_WQ_WORKER;
2720 	mutex_unlock(&wq_pool_attach_mutex);
2721 }
2722 
2723 /**
2724  * worker_thread - the worker thread function
2725  * @__worker: self
2726  *
2727  * The worker thread function.  All workers belong to a worker_pool -
2728  * either a per-cpu one or dynamic unbound one.  These workers process all
2729  * work items regardless of their specific target workqueue.  The only
2730  * exception is work items which belong to workqueues with a rescuer which
2731  * will be explained in rescuer_thread().
2732  *
2733  * Return: 0
2734  */
2735 static int worker_thread(void *__worker)
2736 {
2737 	struct worker *worker = __worker;
2738 	struct worker_pool *pool = worker->pool;
2739 
2740 	/* tell the scheduler that this is a workqueue worker */
2741 	set_pf_worker(true);
2742 woke_up:
2743 	raw_spin_lock_irq(&pool->lock);
2744 
2745 	/* am I supposed to die? */
2746 	if (unlikely(worker->flags & WORKER_DIE)) {
2747 		raw_spin_unlock_irq(&pool->lock);
2748 		set_pf_worker(false);
2749 
2750 		set_task_comm(worker->task, "kworker/dying");
2751 		ida_free(&pool->worker_ida, worker->id);
2752 		worker_detach_from_pool(worker);
2753 		WARN_ON_ONCE(!list_empty(&worker->entry));
2754 		kfree(worker);
2755 		return 0;
2756 	}
2757 
2758 	worker_leave_idle(worker);
2759 recheck:
2760 	/* no more worker necessary? */
2761 	if (!need_more_worker(pool))
2762 		goto sleep;
2763 
2764 	/* do we need to manage? */
2765 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2766 		goto recheck;
2767 
2768 	/*
2769 	 * ->scheduled list can only be filled while a worker is
2770 	 * preparing to process a work or actually processing it.
2771 	 * Make sure nobody diddled with it while I was sleeping.
2772 	 */
2773 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2774 
2775 	/*
2776 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2777 	 * worker or that someone else has already assumed the manager
2778 	 * role.  This is where @worker starts participating in concurrency
2779 	 * management if applicable and concurrency management is restored
2780 	 * after being rebound.  See rebind_workers() for details.
2781 	 */
2782 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2783 
2784 	do {
2785 		struct work_struct *work =
2786 			list_first_entry(&pool->worklist,
2787 					 struct work_struct, entry);
2788 
2789 		if (assign_work(work, worker, NULL))
2790 			process_scheduled_works(worker);
2791 	} while (keep_working(pool));
2792 
2793 	worker_set_flags(worker, WORKER_PREP);
2794 sleep:
2795 	/*
2796 	 * pool->lock is held and there's no work to process and no need to
2797 	 * manage, sleep.  Workers are woken up only while holding
2798 	 * pool->lock or from local cpu, so setting the current state
2799 	 * before releasing pool->lock is enough to prevent losing any
2800 	 * event.
2801 	 */
2802 	worker_enter_idle(worker);
2803 	__set_current_state(TASK_IDLE);
2804 	raw_spin_unlock_irq(&pool->lock);
2805 	schedule();
2806 	goto woke_up;
2807 }
2808 
2809 /**
2810  * rescuer_thread - the rescuer thread function
2811  * @__rescuer: self
2812  *
2813  * Workqueue rescuer thread function.  There's one rescuer for each
2814  * workqueue which has WQ_MEM_RECLAIM set.
2815  *
2816  * Regular work processing on a pool may block trying to create a new
2817  * worker which uses GFP_KERNEL allocation which has slight chance of
2818  * developing into deadlock if some works currently on the same queue
2819  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2820  * the problem rescuer solves.
2821  *
2822  * When such condition is possible, the pool summons rescuers of all
2823  * workqueues which have works queued on the pool and let them process
2824  * those works so that forward progress can be guaranteed.
2825  *
2826  * This should happen rarely.
2827  *
2828  * Return: 0
2829  */
2830 static int rescuer_thread(void *__rescuer)
2831 {
2832 	struct worker *rescuer = __rescuer;
2833 	struct workqueue_struct *wq = rescuer->rescue_wq;
2834 	bool should_stop;
2835 
2836 	set_user_nice(current, RESCUER_NICE_LEVEL);
2837 
2838 	/*
2839 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2840 	 * doesn't participate in concurrency management.
2841 	 */
2842 	set_pf_worker(true);
2843 repeat:
2844 	set_current_state(TASK_IDLE);
2845 
2846 	/*
2847 	 * By the time the rescuer is requested to stop, the workqueue
2848 	 * shouldn't have any work pending, but @wq->maydays may still have
2849 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2850 	 * all the work items before the rescuer got to them.  Go through
2851 	 * @wq->maydays processing before acting on should_stop so that the
2852 	 * list is always empty on exit.
2853 	 */
2854 	should_stop = kthread_should_stop();
2855 
2856 	/* see whether any pwq is asking for help */
2857 	raw_spin_lock_irq(&wq_mayday_lock);
2858 
2859 	while (!list_empty(&wq->maydays)) {
2860 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2861 					struct pool_workqueue, mayday_node);
2862 		struct worker_pool *pool = pwq->pool;
2863 		struct work_struct *work, *n;
2864 
2865 		__set_current_state(TASK_RUNNING);
2866 		list_del_init(&pwq->mayday_node);
2867 
2868 		raw_spin_unlock_irq(&wq_mayday_lock);
2869 
2870 		worker_attach_to_pool(rescuer, pool);
2871 
2872 		raw_spin_lock_irq(&pool->lock);
2873 
2874 		/*
2875 		 * Slurp in all works issued via this workqueue and
2876 		 * process'em.
2877 		 */
2878 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2879 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2880 			if (get_work_pwq(work) == pwq &&
2881 			    assign_work(work, rescuer, &n))
2882 				pwq->stats[PWQ_STAT_RESCUED]++;
2883 		}
2884 
2885 		if (!list_empty(&rescuer->scheduled)) {
2886 			process_scheduled_works(rescuer);
2887 
2888 			/*
2889 			 * The above execution of rescued work items could
2890 			 * have created more to rescue through
2891 			 * pwq_activate_first_inactive() or chained
2892 			 * queueing.  Let's put @pwq back on mayday list so
2893 			 * that such back-to-back work items, which may be
2894 			 * being used to relieve memory pressure, don't
2895 			 * incur MAYDAY_INTERVAL delay inbetween.
2896 			 */
2897 			if (pwq->nr_active && need_to_create_worker(pool)) {
2898 				raw_spin_lock(&wq_mayday_lock);
2899 				/*
2900 				 * Queue iff we aren't racing destruction
2901 				 * and somebody else hasn't queued it already.
2902 				 */
2903 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2904 					get_pwq(pwq);
2905 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2906 				}
2907 				raw_spin_unlock(&wq_mayday_lock);
2908 			}
2909 		}
2910 
2911 		/*
2912 		 * Put the reference grabbed by send_mayday().  @pool won't
2913 		 * go away while we're still attached to it.
2914 		 */
2915 		put_pwq(pwq);
2916 
2917 		/*
2918 		 * Leave this pool. Notify regular workers; otherwise, we end up
2919 		 * with 0 concurrency and stalling the execution.
2920 		 */
2921 		kick_pool(pool);
2922 
2923 		raw_spin_unlock_irq(&pool->lock);
2924 
2925 		worker_detach_from_pool(rescuer);
2926 
2927 		raw_spin_lock_irq(&wq_mayday_lock);
2928 	}
2929 
2930 	raw_spin_unlock_irq(&wq_mayday_lock);
2931 
2932 	if (should_stop) {
2933 		__set_current_state(TASK_RUNNING);
2934 		set_pf_worker(false);
2935 		return 0;
2936 	}
2937 
2938 	/* rescuers should never participate in concurrency management */
2939 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2940 	schedule();
2941 	goto repeat;
2942 }
2943 
2944 /**
2945  * check_flush_dependency - check for flush dependency sanity
2946  * @target_wq: workqueue being flushed
2947  * @target_work: work item being flushed (NULL for workqueue flushes)
2948  *
2949  * %current is trying to flush the whole @target_wq or @target_work on it.
2950  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2951  * reclaiming memory or running on a workqueue which doesn't have
2952  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2953  * a deadlock.
2954  */
2955 static void check_flush_dependency(struct workqueue_struct *target_wq,
2956 				   struct work_struct *target_work)
2957 {
2958 	work_func_t target_func = target_work ? target_work->func : NULL;
2959 	struct worker *worker;
2960 
2961 	if (target_wq->flags & WQ_MEM_RECLAIM)
2962 		return;
2963 
2964 	worker = current_wq_worker();
2965 
2966 	WARN_ONCE(current->flags & PF_MEMALLOC,
2967 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2968 		  current->pid, current->comm, target_wq->name, target_func);
2969 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2970 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2971 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2972 		  worker->current_pwq->wq->name, worker->current_func,
2973 		  target_wq->name, target_func);
2974 }
2975 
2976 struct wq_barrier {
2977 	struct work_struct	work;
2978 	struct completion	done;
2979 	struct task_struct	*task;	/* purely informational */
2980 };
2981 
2982 static void wq_barrier_func(struct work_struct *work)
2983 {
2984 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2985 	complete(&barr->done);
2986 }
2987 
2988 /**
2989  * insert_wq_barrier - insert a barrier work
2990  * @pwq: pwq to insert barrier into
2991  * @barr: wq_barrier to insert
2992  * @target: target work to attach @barr to
2993  * @worker: worker currently executing @target, NULL if @target is not executing
2994  *
2995  * @barr is linked to @target such that @barr is completed only after
2996  * @target finishes execution.  Please note that the ordering
2997  * guarantee is observed only with respect to @target and on the local
2998  * cpu.
2999  *
3000  * Currently, a queued barrier can't be canceled.  This is because
3001  * try_to_grab_pending() can't determine whether the work to be
3002  * grabbed is at the head of the queue and thus can't clear LINKED
3003  * flag of the previous work while there must be a valid next work
3004  * after a work with LINKED flag set.
3005  *
3006  * Note that when @worker is non-NULL, @target may be modified
3007  * underneath us, so we can't reliably determine pwq from @target.
3008  *
3009  * CONTEXT:
3010  * raw_spin_lock_irq(pool->lock).
3011  */
3012 static void insert_wq_barrier(struct pool_workqueue *pwq,
3013 			      struct wq_barrier *barr,
3014 			      struct work_struct *target, struct worker *worker)
3015 {
3016 	unsigned int work_flags = 0;
3017 	unsigned int work_color;
3018 	struct list_head *head;
3019 
3020 	/*
3021 	 * debugobject calls are safe here even with pool->lock locked
3022 	 * as we know for sure that this will not trigger any of the
3023 	 * checks and call back into the fixup functions where we
3024 	 * might deadlock.
3025 	 */
3026 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
3027 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3028 
3029 	init_completion_map(&barr->done, &target->lockdep_map);
3030 
3031 	barr->task = current;
3032 
3033 	/* The barrier work item does not participate in pwq->nr_active. */
3034 	work_flags |= WORK_STRUCT_INACTIVE;
3035 
3036 	/*
3037 	 * If @target is currently being executed, schedule the
3038 	 * barrier to the worker; otherwise, put it after @target.
3039 	 */
3040 	if (worker) {
3041 		head = worker->scheduled.next;
3042 		work_color = worker->current_color;
3043 	} else {
3044 		unsigned long *bits = work_data_bits(target);
3045 
3046 		head = target->entry.next;
3047 		/* there can already be other linked works, inherit and set */
3048 		work_flags |= *bits & WORK_STRUCT_LINKED;
3049 		work_color = get_work_color(*bits);
3050 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3051 	}
3052 
3053 	pwq->nr_in_flight[work_color]++;
3054 	work_flags |= work_color_to_flags(work_color);
3055 
3056 	insert_work(pwq, &barr->work, head, work_flags);
3057 }
3058 
3059 /**
3060  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3061  * @wq: workqueue being flushed
3062  * @flush_color: new flush color, < 0 for no-op
3063  * @work_color: new work color, < 0 for no-op
3064  *
3065  * Prepare pwqs for workqueue flushing.
3066  *
3067  * If @flush_color is non-negative, flush_color on all pwqs should be
3068  * -1.  If no pwq has in-flight commands at the specified color, all
3069  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3070  * has in flight commands, its pwq->flush_color is set to
3071  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3072  * wakeup logic is armed and %true is returned.
3073  *
3074  * The caller should have initialized @wq->first_flusher prior to
3075  * calling this function with non-negative @flush_color.  If
3076  * @flush_color is negative, no flush color update is done and %false
3077  * is returned.
3078  *
3079  * If @work_color is non-negative, all pwqs should have the same
3080  * work_color which is previous to @work_color and all will be
3081  * advanced to @work_color.
3082  *
3083  * CONTEXT:
3084  * mutex_lock(wq->mutex).
3085  *
3086  * Return:
3087  * %true if @flush_color >= 0 and there's something to flush.  %false
3088  * otherwise.
3089  */
3090 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3091 				      int flush_color, int work_color)
3092 {
3093 	bool wait = false;
3094 	struct pool_workqueue *pwq;
3095 
3096 	if (flush_color >= 0) {
3097 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3098 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3099 	}
3100 
3101 	for_each_pwq(pwq, wq) {
3102 		struct worker_pool *pool = pwq->pool;
3103 
3104 		raw_spin_lock_irq(&pool->lock);
3105 
3106 		if (flush_color >= 0) {
3107 			WARN_ON_ONCE(pwq->flush_color != -1);
3108 
3109 			if (pwq->nr_in_flight[flush_color]) {
3110 				pwq->flush_color = flush_color;
3111 				atomic_inc(&wq->nr_pwqs_to_flush);
3112 				wait = true;
3113 			}
3114 		}
3115 
3116 		if (work_color >= 0) {
3117 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3118 			pwq->work_color = work_color;
3119 		}
3120 
3121 		raw_spin_unlock_irq(&pool->lock);
3122 	}
3123 
3124 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3125 		complete(&wq->first_flusher->done);
3126 
3127 	return wait;
3128 }
3129 
3130 /**
3131  * __flush_workqueue - ensure that any scheduled work has run to completion.
3132  * @wq: workqueue to flush
3133  *
3134  * This function sleeps until all work items which were queued on entry
3135  * have finished execution, but it is not livelocked by new incoming ones.
3136  */
3137 void __flush_workqueue(struct workqueue_struct *wq)
3138 {
3139 	struct wq_flusher this_flusher = {
3140 		.list = LIST_HEAD_INIT(this_flusher.list),
3141 		.flush_color = -1,
3142 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3143 	};
3144 	int next_color;
3145 
3146 	if (WARN_ON(!wq_online))
3147 		return;
3148 
3149 	lock_map_acquire(&wq->lockdep_map);
3150 	lock_map_release(&wq->lockdep_map);
3151 
3152 	mutex_lock(&wq->mutex);
3153 
3154 	/*
3155 	 * Start-to-wait phase
3156 	 */
3157 	next_color = work_next_color(wq->work_color);
3158 
3159 	if (next_color != wq->flush_color) {
3160 		/*
3161 		 * Color space is not full.  The current work_color
3162 		 * becomes our flush_color and work_color is advanced
3163 		 * by one.
3164 		 */
3165 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3166 		this_flusher.flush_color = wq->work_color;
3167 		wq->work_color = next_color;
3168 
3169 		if (!wq->first_flusher) {
3170 			/* no flush in progress, become the first flusher */
3171 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3172 
3173 			wq->first_flusher = &this_flusher;
3174 
3175 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3176 						       wq->work_color)) {
3177 				/* nothing to flush, done */
3178 				wq->flush_color = next_color;
3179 				wq->first_flusher = NULL;
3180 				goto out_unlock;
3181 			}
3182 		} else {
3183 			/* wait in queue */
3184 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3185 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3186 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3187 		}
3188 	} else {
3189 		/*
3190 		 * Oops, color space is full, wait on overflow queue.
3191 		 * The next flush completion will assign us
3192 		 * flush_color and transfer to flusher_queue.
3193 		 */
3194 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3195 	}
3196 
3197 	check_flush_dependency(wq, NULL);
3198 
3199 	mutex_unlock(&wq->mutex);
3200 
3201 	wait_for_completion(&this_flusher.done);
3202 
3203 	/*
3204 	 * Wake-up-and-cascade phase
3205 	 *
3206 	 * First flushers are responsible for cascading flushes and
3207 	 * handling overflow.  Non-first flushers can simply return.
3208 	 */
3209 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3210 		return;
3211 
3212 	mutex_lock(&wq->mutex);
3213 
3214 	/* we might have raced, check again with mutex held */
3215 	if (wq->first_flusher != &this_flusher)
3216 		goto out_unlock;
3217 
3218 	WRITE_ONCE(wq->first_flusher, NULL);
3219 
3220 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3221 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3222 
3223 	while (true) {
3224 		struct wq_flusher *next, *tmp;
3225 
3226 		/* complete all the flushers sharing the current flush color */
3227 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3228 			if (next->flush_color != wq->flush_color)
3229 				break;
3230 			list_del_init(&next->list);
3231 			complete(&next->done);
3232 		}
3233 
3234 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3235 			     wq->flush_color != work_next_color(wq->work_color));
3236 
3237 		/* this flush_color is finished, advance by one */
3238 		wq->flush_color = work_next_color(wq->flush_color);
3239 
3240 		/* one color has been freed, handle overflow queue */
3241 		if (!list_empty(&wq->flusher_overflow)) {
3242 			/*
3243 			 * Assign the same color to all overflowed
3244 			 * flushers, advance work_color and append to
3245 			 * flusher_queue.  This is the start-to-wait
3246 			 * phase for these overflowed flushers.
3247 			 */
3248 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
3249 				tmp->flush_color = wq->work_color;
3250 
3251 			wq->work_color = work_next_color(wq->work_color);
3252 
3253 			list_splice_tail_init(&wq->flusher_overflow,
3254 					      &wq->flusher_queue);
3255 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3256 		}
3257 
3258 		if (list_empty(&wq->flusher_queue)) {
3259 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
3260 			break;
3261 		}
3262 
3263 		/*
3264 		 * Need to flush more colors.  Make the next flusher
3265 		 * the new first flusher and arm pwqs.
3266 		 */
3267 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
3268 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
3269 
3270 		list_del_init(&next->list);
3271 		wq->first_flusher = next;
3272 
3273 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3274 			break;
3275 
3276 		/*
3277 		 * Meh... this color is already done, clear first
3278 		 * flusher and repeat cascading.
3279 		 */
3280 		wq->first_flusher = NULL;
3281 	}
3282 
3283 out_unlock:
3284 	mutex_unlock(&wq->mutex);
3285 }
3286 EXPORT_SYMBOL(__flush_workqueue);
3287 
3288 /**
3289  * drain_workqueue - drain a workqueue
3290  * @wq: workqueue to drain
3291  *
3292  * Wait until the workqueue becomes empty.  While draining is in progress,
3293  * only chain queueing is allowed.  IOW, only currently pending or running
3294  * work items on @wq can queue further work items on it.  @wq is flushed
3295  * repeatedly until it becomes empty.  The number of flushing is determined
3296  * by the depth of chaining and should be relatively short.  Whine if it
3297  * takes too long.
3298  */
3299 void drain_workqueue(struct workqueue_struct *wq)
3300 {
3301 	unsigned int flush_cnt = 0;
3302 	struct pool_workqueue *pwq;
3303 
3304 	/*
3305 	 * __queue_work() needs to test whether there are drainers, is much
3306 	 * hotter than drain_workqueue() and already looks at @wq->flags.
3307 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3308 	 */
3309 	mutex_lock(&wq->mutex);
3310 	if (!wq->nr_drainers++)
3311 		wq->flags |= __WQ_DRAINING;
3312 	mutex_unlock(&wq->mutex);
3313 reflush:
3314 	__flush_workqueue(wq);
3315 
3316 	mutex_lock(&wq->mutex);
3317 
3318 	for_each_pwq(pwq, wq) {
3319 		bool drained;
3320 
3321 		raw_spin_lock_irq(&pwq->pool->lock);
3322 		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3323 		raw_spin_unlock_irq(&pwq->pool->lock);
3324 
3325 		if (drained)
3326 			continue;
3327 
3328 		if (++flush_cnt == 10 ||
3329 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3330 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3331 				wq->name, __func__, flush_cnt);
3332 
3333 		mutex_unlock(&wq->mutex);
3334 		goto reflush;
3335 	}
3336 
3337 	if (!--wq->nr_drainers)
3338 		wq->flags &= ~__WQ_DRAINING;
3339 	mutex_unlock(&wq->mutex);
3340 }
3341 EXPORT_SYMBOL_GPL(drain_workqueue);
3342 
3343 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3344 			     bool from_cancel)
3345 {
3346 	struct worker *worker = NULL;
3347 	struct worker_pool *pool;
3348 	struct pool_workqueue *pwq;
3349 
3350 	might_sleep();
3351 
3352 	rcu_read_lock();
3353 	pool = get_work_pool(work);
3354 	if (!pool) {
3355 		rcu_read_unlock();
3356 		return false;
3357 	}
3358 
3359 	raw_spin_lock_irq(&pool->lock);
3360 	/* see the comment in try_to_grab_pending() with the same code */
3361 	pwq = get_work_pwq(work);
3362 	if (pwq) {
3363 		if (unlikely(pwq->pool != pool))
3364 			goto already_gone;
3365 	} else {
3366 		worker = find_worker_executing_work(pool, work);
3367 		if (!worker)
3368 			goto already_gone;
3369 		pwq = worker->current_pwq;
3370 	}
3371 
3372 	check_flush_dependency(pwq->wq, work);
3373 
3374 	insert_wq_barrier(pwq, barr, work, worker);
3375 	raw_spin_unlock_irq(&pool->lock);
3376 
3377 	/*
3378 	 * Force a lock recursion deadlock when using flush_work() inside a
3379 	 * single-threaded or rescuer equipped workqueue.
3380 	 *
3381 	 * For single threaded workqueues the deadlock happens when the work
3382 	 * is after the work issuing the flush_work(). For rescuer equipped
3383 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3384 	 * forward progress.
3385 	 */
3386 	if (!from_cancel &&
3387 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3388 		lock_map_acquire(&pwq->wq->lockdep_map);
3389 		lock_map_release(&pwq->wq->lockdep_map);
3390 	}
3391 	rcu_read_unlock();
3392 	return true;
3393 already_gone:
3394 	raw_spin_unlock_irq(&pool->lock);
3395 	rcu_read_unlock();
3396 	return false;
3397 }
3398 
3399 static bool __flush_work(struct work_struct *work, bool from_cancel)
3400 {
3401 	struct wq_barrier barr;
3402 
3403 	if (WARN_ON(!wq_online))
3404 		return false;
3405 
3406 	if (WARN_ON(!work->func))
3407 		return false;
3408 
3409 	lock_map_acquire(&work->lockdep_map);
3410 	lock_map_release(&work->lockdep_map);
3411 
3412 	if (start_flush_work(work, &barr, from_cancel)) {
3413 		wait_for_completion(&barr.done);
3414 		destroy_work_on_stack(&barr.work);
3415 		return true;
3416 	} else {
3417 		return false;
3418 	}
3419 }
3420 
3421 /**
3422  * flush_work - wait for a work to finish executing the last queueing instance
3423  * @work: the work to flush
3424  *
3425  * Wait until @work has finished execution.  @work is guaranteed to be idle
3426  * on return if it hasn't been requeued since flush started.
3427  *
3428  * Return:
3429  * %true if flush_work() waited for the work to finish execution,
3430  * %false if it was already idle.
3431  */
3432 bool flush_work(struct work_struct *work)
3433 {
3434 	return __flush_work(work, false);
3435 }
3436 EXPORT_SYMBOL_GPL(flush_work);
3437 
3438 struct cwt_wait {
3439 	wait_queue_entry_t		wait;
3440 	struct work_struct	*work;
3441 };
3442 
3443 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3444 {
3445 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3446 
3447 	if (cwait->work != key)
3448 		return 0;
3449 	return autoremove_wake_function(wait, mode, sync, key);
3450 }
3451 
3452 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3453 {
3454 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3455 	unsigned long flags;
3456 	int ret;
3457 
3458 	do {
3459 		ret = try_to_grab_pending(work, is_dwork, &flags);
3460 		/*
3461 		 * If someone else is already canceling, wait for it to
3462 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3463 		 * because we may get scheduled between @work's completion
3464 		 * and the other canceling task resuming and clearing
3465 		 * CANCELING - flush_work() will return false immediately
3466 		 * as @work is no longer busy, try_to_grab_pending() will
3467 		 * return -ENOENT as @work is still being canceled and the
3468 		 * other canceling task won't be able to clear CANCELING as
3469 		 * we're hogging the CPU.
3470 		 *
3471 		 * Let's wait for completion using a waitqueue.  As this
3472 		 * may lead to the thundering herd problem, use a custom
3473 		 * wake function which matches @work along with exclusive
3474 		 * wait and wakeup.
3475 		 */
3476 		if (unlikely(ret == -ENOENT)) {
3477 			struct cwt_wait cwait;
3478 
3479 			init_wait(&cwait.wait);
3480 			cwait.wait.func = cwt_wakefn;
3481 			cwait.work = work;
3482 
3483 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3484 						  TASK_UNINTERRUPTIBLE);
3485 			if (work_is_canceling(work))
3486 				schedule();
3487 			finish_wait(&cancel_waitq, &cwait.wait);
3488 		}
3489 	} while (unlikely(ret < 0));
3490 
3491 	/* tell other tasks trying to grab @work to back off */
3492 	mark_work_canceling(work);
3493 	local_irq_restore(flags);
3494 
3495 	/*
3496 	 * This allows canceling during early boot.  We know that @work
3497 	 * isn't executing.
3498 	 */
3499 	if (wq_online)
3500 		__flush_work(work, true);
3501 
3502 	clear_work_data(work);
3503 
3504 	/*
3505 	 * Paired with prepare_to_wait() above so that either
3506 	 * waitqueue_active() is visible here or !work_is_canceling() is
3507 	 * visible there.
3508 	 */
3509 	smp_mb();
3510 	if (waitqueue_active(&cancel_waitq))
3511 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3512 
3513 	return ret;
3514 }
3515 
3516 /**
3517  * cancel_work_sync - cancel a work and wait for it to finish
3518  * @work: the work to cancel
3519  *
3520  * Cancel @work and wait for its execution to finish.  This function
3521  * can be used even if the work re-queues itself or migrates to
3522  * another workqueue.  On return from this function, @work is
3523  * guaranteed to be not pending or executing on any CPU.
3524  *
3525  * cancel_work_sync(&delayed_work->work) must not be used for
3526  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3527  *
3528  * The caller must ensure that the workqueue on which @work was last
3529  * queued can't be destroyed before this function returns.
3530  *
3531  * Return:
3532  * %true if @work was pending, %false otherwise.
3533  */
3534 bool cancel_work_sync(struct work_struct *work)
3535 {
3536 	return __cancel_work_timer(work, false);
3537 }
3538 EXPORT_SYMBOL_GPL(cancel_work_sync);
3539 
3540 /**
3541  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3542  * @dwork: the delayed work to flush
3543  *
3544  * Delayed timer is cancelled and the pending work is queued for
3545  * immediate execution.  Like flush_work(), this function only
3546  * considers the last queueing instance of @dwork.
3547  *
3548  * Return:
3549  * %true if flush_work() waited for the work to finish execution,
3550  * %false if it was already idle.
3551  */
3552 bool flush_delayed_work(struct delayed_work *dwork)
3553 {
3554 	local_irq_disable();
3555 	if (del_timer_sync(&dwork->timer))
3556 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3557 	local_irq_enable();
3558 	return flush_work(&dwork->work);
3559 }
3560 EXPORT_SYMBOL(flush_delayed_work);
3561 
3562 /**
3563  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3564  * @rwork: the rcu work to flush
3565  *
3566  * Return:
3567  * %true if flush_rcu_work() waited for the work to finish execution,
3568  * %false if it was already idle.
3569  */
3570 bool flush_rcu_work(struct rcu_work *rwork)
3571 {
3572 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3573 		rcu_barrier();
3574 		flush_work(&rwork->work);
3575 		return true;
3576 	} else {
3577 		return flush_work(&rwork->work);
3578 	}
3579 }
3580 EXPORT_SYMBOL(flush_rcu_work);
3581 
3582 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3583 {
3584 	unsigned long flags;
3585 	int ret;
3586 
3587 	do {
3588 		ret = try_to_grab_pending(work, is_dwork, &flags);
3589 	} while (unlikely(ret == -EAGAIN));
3590 
3591 	if (unlikely(ret < 0))
3592 		return false;
3593 
3594 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3595 	local_irq_restore(flags);
3596 	return ret;
3597 }
3598 
3599 /*
3600  * See cancel_delayed_work()
3601  */
3602 bool cancel_work(struct work_struct *work)
3603 {
3604 	return __cancel_work(work, false);
3605 }
3606 EXPORT_SYMBOL(cancel_work);
3607 
3608 /**
3609  * cancel_delayed_work - cancel a delayed work
3610  * @dwork: delayed_work to cancel
3611  *
3612  * Kill off a pending delayed_work.
3613  *
3614  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3615  * pending.
3616  *
3617  * Note:
3618  * The work callback function may still be running on return, unless
3619  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3620  * use cancel_delayed_work_sync() to wait on it.
3621  *
3622  * This function is safe to call from any context including IRQ handler.
3623  */
3624 bool cancel_delayed_work(struct delayed_work *dwork)
3625 {
3626 	return __cancel_work(&dwork->work, true);
3627 }
3628 EXPORT_SYMBOL(cancel_delayed_work);
3629 
3630 /**
3631  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3632  * @dwork: the delayed work cancel
3633  *
3634  * This is cancel_work_sync() for delayed works.
3635  *
3636  * Return:
3637  * %true if @dwork was pending, %false otherwise.
3638  */
3639 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3640 {
3641 	return __cancel_work_timer(&dwork->work, true);
3642 }
3643 EXPORT_SYMBOL(cancel_delayed_work_sync);
3644 
3645 /**
3646  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3647  * @func: the function to call
3648  *
3649  * schedule_on_each_cpu() executes @func on each online CPU using the
3650  * system workqueue and blocks until all CPUs have completed.
3651  * schedule_on_each_cpu() is very slow.
3652  *
3653  * Return:
3654  * 0 on success, -errno on failure.
3655  */
3656 int schedule_on_each_cpu(work_func_t func)
3657 {
3658 	int cpu;
3659 	struct work_struct __percpu *works;
3660 
3661 	works = alloc_percpu(struct work_struct);
3662 	if (!works)
3663 		return -ENOMEM;
3664 
3665 	cpus_read_lock();
3666 
3667 	for_each_online_cpu(cpu) {
3668 		struct work_struct *work = per_cpu_ptr(works, cpu);
3669 
3670 		INIT_WORK(work, func);
3671 		schedule_work_on(cpu, work);
3672 	}
3673 
3674 	for_each_online_cpu(cpu)
3675 		flush_work(per_cpu_ptr(works, cpu));
3676 
3677 	cpus_read_unlock();
3678 	free_percpu(works);
3679 	return 0;
3680 }
3681 
3682 /**
3683  * execute_in_process_context - reliably execute the routine with user context
3684  * @fn:		the function to execute
3685  * @ew:		guaranteed storage for the execute work structure (must
3686  *		be available when the work executes)
3687  *
3688  * Executes the function immediately if process context is available,
3689  * otherwise schedules the function for delayed execution.
3690  *
3691  * Return:	0 - function was executed
3692  *		1 - function was scheduled for execution
3693  */
3694 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3695 {
3696 	if (!in_interrupt()) {
3697 		fn(&ew->work);
3698 		return 0;
3699 	}
3700 
3701 	INIT_WORK(&ew->work, fn);
3702 	schedule_work(&ew->work);
3703 
3704 	return 1;
3705 }
3706 EXPORT_SYMBOL_GPL(execute_in_process_context);
3707 
3708 /**
3709  * free_workqueue_attrs - free a workqueue_attrs
3710  * @attrs: workqueue_attrs to free
3711  *
3712  * Undo alloc_workqueue_attrs().
3713  */
3714 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3715 {
3716 	if (attrs) {
3717 		free_cpumask_var(attrs->cpumask);
3718 		free_cpumask_var(attrs->__pod_cpumask);
3719 		kfree(attrs);
3720 	}
3721 }
3722 
3723 /**
3724  * alloc_workqueue_attrs - allocate a workqueue_attrs
3725  *
3726  * Allocate a new workqueue_attrs, initialize with default settings and
3727  * return it.
3728  *
3729  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3730  */
3731 struct workqueue_attrs *alloc_workqueue_attrs(void)
3732 {
3733 	struct workqueue_attrs *attrs;
3734 
3735 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3736 	if (!attrs)
3737 		goto fail;
3738 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3739 		goto fail;
3740 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
3741 		goto fail;
3742 
3743 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3744 	attrs->affn_scope = WQ_AFFN_DFL;
3745 	return attrs;
3746 fail:
3747 	free_workqueue_attrs(attrs);
3748 	return NULL;
3749 }
3750 
3751 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3752 				 const struct workqueue_attrs *from)
3753 {
3754 	to->nice = from->nice;
3755 	cpumask_copy(to->cpumask, from->cpumask);
3756 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
3757 	to->affn_strict = from->affn_strict;
3758 
3759 	/*
3760 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
3761 	 * fields as copying is used for both pool and wq attrs. Instead,
3762 	 * get_unbound_pool() explicitly clears the fields.
3763 	 */
3764 	to->affn_scope = from->affn_scope;
3765 	to->ordered = from->ordered;
3766 }
3767 
3768 /*
3769  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
3770  * comments in 'struct workqueue_attrs' definition.
3771  */
3772 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
3773 {
3774 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
3775 	attrs->ordered = false;
3776 }
3777 
3778 /* hash value of the content of @attr */
3779 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3780 {
3781 	u32 hash = 0;
3782 
3783 	hash = jhash_1word(attrs->nice, hash);
3784 	hash = jhash(cpumask_bits(attrs->cpumask),
3785 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3786 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
3787 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3788 	hash = jhash_1word(attrs->affn_strict, hash);
3789 	return hash;
3790 }
3791 
3792 /* content equality test */
3793 static bool wqattrs_equal(const struct workqueue_attrs *a,
3794 			  const struct workqueue_attrs *b)
3795 {
3796 	if (a->nice != b->nice)
3797 		return false;
3798 	if (!cpumask_equal(a->cpumask, b->cpumask))
3799 		return false;
3800 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
3801 		return false;
3802 	if (a->affn_strict != b->affn_strict)
3803 		return false;
3804 	return true;
3805 }
3806 
3807 /* Update @attrs with actually available CPUs */
3808 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
3809 				      const cpumask_t *unbound_cpumask)
3810 {
3811 	/*
3812 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
3813 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
3814 	 * @unbound_cpumask.
3815 	 */
3816 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
3817 	if (unlikely(cpumask_empty(attrs->cpumask)))
3818 		cpumask_copy(attrs->cpumask, unbound_cpumask);
3819 }
3820 
3821 /* find wq_pod_type to use for @attrs */
3822 static const struct wq_pod_type *
3823 wqattrs_pod_type(const struct workqueue_attrs *attrs)
3824 {
3825 	enum wq_affn_scope scope;
3826 	struct wq_pod_type *pt;
3827 
3828 	/* to synchronize access to wq_affn_dfl */
3829 	lockdep_assert_held(&wq_pool_mutex);
3830 
3831 	if (attrs->affn_scope == WQ_AFFN_DFL)
3832 		scope = wq_affn_dfl;
3833 	else
3834 		scope = attrs->affn_scope;
3835 
3836 	pt = &wq_pod_types[scope];
3837 
3838 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
3839 	    likely(pt->nr_pods))
3840 		return pt;
3841 
3842 	/*
3843 	 * Before workqueue_init_topology(), only SYSTEM is available which is
3844 	 * initialized in workqueue_init_early().
3845 	 */
3846 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
3847 	BUG_ON(!pt->nr_pods);
3848 	return pt;
3849 }
3850 
3851 /**
3852  * init_worker_pool - initialize a newly zalloc'd worker_pool
3853  * @pool: worker_pool to initialize
3854  *
3855  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3856  *
3857  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3858  * inside @pool proper are initialized and put_unbound_pool() can be called
3859  * on @pool safely to release it.
3860  */
3861 static int init_worker_pool(struct worker_pool *pool)
3862 {
3863 	raw_spin_lock_init(&pool->lock);
3864 	pool->id = -1;
3865 	pool->cpu = -1;
3866 	pool->node = NUMA_NO_NODE;
3867 	pool->flags |= POOL_DISASSOCIATED;
3868 	pool->watchdog_ts = jiffies;
3869 	INIT_LIST_HEAD(&pool->worklist);
3870 	INIT_LIST_HEAD(&pool->idle_list);
3871 	hash_init(pool->busy_hash);
3872 
3873 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3874 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
3875 
3876 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3877 
3878 	INIT_LIST_HEAD(&pool->workers);
3879 	INIT_LIST_HEAD(&pool->dying_workers);
3880 
3881 	ida_init(&pool->worker_ida);
3882 	INIT_HLIST_NODE(&pool->hash_node);
3883 	pool->refcnt = 1;
3884 
3885 	/* shouldn't fail above this point */
3886 	pool->attrs = alloc_workqueue_attrs();
3887 	if (!pool->attrs)
3888 		return -ENOMEM;
3889 
3890 	wqattrs_clear_for_pool(pool->attrs);
3891 
3892 	return 0;
3893 }
3894 
3895 #ifdef CONFIG_LOCKDEP
3896 static void wq_init_lockdep(struct workqueue_struct *wq)
3897 {
3898 	char *lock_name;
3899 
3900 	lockdep_register_key(&wq->key);
3901 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3902 	if (!lock_name)
3903 		lock_name = wq->name;
3904 
3905 	wq->lock_name = lock_name;
3906 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3907 }
3908 
3909 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3910 {
3911 	lockdep_unregister_key(&wq->key);
3912 }
3913 
3914 static void wq_free_lockdep(struct workqueue_struct *wq)
3915 {
3916 	if (wq->lock_name != wq->name)
3917 		kfree(wq->lock_name);
3918 }
3919 #else
3920 static void wq_init_lockdep(struct workqueue_struct *wq)
3921 {
3922 }
3923 
3924 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3925 {
3926 }
3927 
3928 static void wq_free_lockdep(struct workqueue_struct *wq)
3929 {
3930 }
3931 #endif
3932 
3933 static void rcu_free_wq(struct rcu_head *rcu)
3934 {
3935 	struct workqueue_struct *wq =
3936 		container_of(rcu, struct workqueue_struct, rcu);
3937 
3938 	wq_free_lockdep(wq);
3939 	free_percpu(wq->cpu_pwq);
3940 	free_workqueue_attrs(wq->unbound_attrs);
3941 	kfree(wq);
3942 }
3943 
3944 static void rcu_free_pool(struct rcu_head *rcu)
3945 {
3946 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3947 
3948 	ida_destroy(&pool->worker_ida);
3949 	free_workqueue_attrs(pool->attrs);
3950 	kfree(pool);
3951 }
3952 
3953 /**
3954  * put_unbound_pool - put a worker_pool
3955  * @pool: worker_pool to put
3956  *
3957  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3958  * safe manner.  get_unbound_pool() calls this function on its failure path
3959  * and this function should be able to release pools which went through,
3960  * successfully or not, init_worker_pool().
3961  *
3962  * Should be called with wq_pool_mutex held.
3963  */
3964 static void put_unbound_pool(struct worker_pool *pool)
3965 {
3966 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3967 	struct worker *worker;
3968 	LIST_HEAD(cull_list);
3969 
3970 	lockdep_assert_held(&wq_pool_mutex);
3971 
3972 	if (--pool->refcnt)
3973 		return;
3974 
3975 	/* sanity checks */
3976 	if (WARN_ON(!(pool->cpu < 0)) ||
3977 	    WARN_ON(!list_empty(&pool->worklist)))
3978 		return;
3979 
3980 	/* release id and unhash */
3981 	if (pool->id >= 0)
3982 		idr_remove(&worker_pool_idr, pool->id);
3983 	hash_del(&pool->hash_node);
3984 
3985 	/*
3986 	 * Become the manager and destroy all workers.  This prevents
3987 	 * @pool's workers from blocking on attach_mutex.  We're the last
3988 	 * manager and @pool gets freed with the flag set.
3989 	 *
3990 	 * Having a concurrent manager is quite unlikely to happen as we can
3991 	 * only get here with
3992 	 *   pwq->refcnt == pool->refcnt == 0
3993 	 * which implies no work queued to the pool, which implies no worker can
3994 	 * become the manager. However a worker could have taken the role of
3995 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
3996 	 * drops pool->lock
3997 	 */
3998 	while (true) {
3999 		rcuwait_wait_event(&manager_wait,
4000 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4001 				   TASK_UNINTERRUPTIBLE);
4002 
4003 		mutex_lock(&wq_pool_attach_mutex);
4004 		raw_spin_lock_irq(&pool->lock);
4005 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4006 			pool->flags |= POOL_MANAGER_ACTIVE;
4007 			break;
4008 		}
4009 		raw_spin_unlock_irq(&pool->lock);
4010 		mutex_unlock(&wq_pool_attach_mutex);
4011 	}
4012 
4013 	while ((worker = first_idle_worker(pool)))
4014 		set_worker_dying(worker, &cull_list);
4015 	WARN_ON(pool->nr_workers || pool->nr_idle);
4016 	raw_spin_unlock_irq(&pool->lock);
4017 
4018 	wake_dying_workers(&cull_list);
4019 
4020 	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4021 		pool->detach_completion = &detach_completion;
4022 	mutex_unlock(&wq_pool_attach_mutex);
4023 
4024 	if (pool->detach_completion)
4025 		wait_for_completion(pool->detach_completion);
4026 
4027 	/* shut down the timers */
4028 	del_timer_sync(&pool->idle_timer);
4029 	cancel_work_sync(&pool->idle_cull_work);
4030 	del_timer_sync(&pool->mayday_timer);
4031 
4032 	/* RCU protected to allow dereferences from get_work_pool() */
4033 	call_rcu(&pool->rcu, rcu_free_pool);
4034 }
4035 
4036 /**
4037  * get_unbound_pool - get a worker_pool with the specified attributes
4038  * @attrs: the attributes of the worker_pool to get
4039  *
4040  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4041  * reference count and return it.  If there already is a matching
4042  * worker_pool, it will be used; otherwise, this function attempts to
4043  * create a new one.
4044  *
4045  * Should be called with wq_pool_mutex held.
4046  *
4047  * Return: On success, a worker_pool with the same attributes as @attrs.
4048  * On failure, %NULL.
4049  */
4050 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4051 {
4052 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4053 	u32 hash = wqattrs_hash(attrs);
4054 	struct worker_pool *pool;
4055 	int pod, node = NUMA_NO_NODE;
4056 
4057 	lockdep_assert_held(&wq_pool_mutex);
4058 
4059 	/* do we already have a matching pool? */
4060 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4061 		if (wqattrs_equal(pool->attrs, attrs)) {
4062 			pool->refcnt++;
4063 			return pool;
4064 		}
4065 	}
4066 
4067 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4068 	for (pod = 0; pod < pt->nr_pods; pod++) {
4069 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4070 			node = pt->pod_node[pod];
4071 			break;
4072 		}
4073 	}
4074 
4075 	/* nope, create a new one */
4076 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4077 	if (!pool || init_worker_pool(pool) < 0)
4078 		goto fail;
4079 
4080 	pool->node = node;
4081 	copy_workqueue_attrs(pool->attrs, attrs);
4082 	wqattrs_clear_for_pool(pool->attrs);
4083 
4084 	if (worker_pool_assign_id(pool) < 0)
4085 		goto fail;
4086 
4087 	/* create and start the initial worker */
4088 	if (wq_online && !create_worker(pool))
4089 		goto fail;
4090 
4091 	/* install */
4092 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4093 
4094 	return pool;
4095 fail:
4096 	if (pool)
4097 		put_unbound_pool(pool);
4098 	return NULL;
4099 }
4100 
4101 static void rcu_free_pwq(struct rcu_head *rcu)
4102 {
4103 	kmem_cache_free(pwq_cache,
4104 			container_of(rcu, struct pool_workqueue, rcu));
4105 }
4106 
4107 /*
4108  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4109  * refcnt and needs to be destroyed.
4110  */
4111 static void pwq_release_workfn(struct kthread_work *work)
4112 {
4113 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4114 						  release_work);
4115 	struct workqueue_struct *wq = pwq->wq;
4116 	struct worker_pool *pool = pwq->pool;
4117 	bool is_last = false;
4118 
4119 	/*
4120 	 * When @pwq is not linked, it doesn't hold any reference to the
4121 	 * @wq, and @wq is invalid to access.
4122 	 */
4123 	if (!list_empty(&pwq->pwqs_node)) {
4124 		mutex_lock(&wq->mutex);
4125 		list_del_rcu(&pwq->pwqs_node);
4126 		is_last = list_empty(&wq->pwqs);
4127 		mutex_unlock(&wq->mutex);
4128 	}
4129 
4130 	if (wq->flags & WQ_UNBOUND) {
4131 		mutex_lock(&wq_pool_mutex);
4132 		put_unbound_pool(pool);
4133 		mutex_unlock(&wq_pool_mutex);
4134 	}
4135 
4136 	call_rcu(&pwq->rcu, rcu_free_pwq);
4137 
4138 	/*
4139 	 * If we're the last pwq going away, @wq is already dead and no one
4140 	 * is gonna access it anymore.  Schedule RCU free.
4141 	 */
4142 	if (is_last) {
4143 		wq_unregister_lockdep(wq);
4144 		call_rcu(&wq->rcu, rcu_free_wq);
4145 	}
4146 }
4147 
4148 /* initialize newly allocated @pwq which is associated with @wq and @pool */
4149 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4150 		     struct worker_pool *pool)
4151 {
4152 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
4153 
4154 	memset(pwq, 0, sizeof(*pwq));
4155 
4156 	pwq->pool = pool;
4157 	pwq->wq = wq;
4158 	pwq->flush_color = -1;
4159 	pwq->refcnt = 1;
4160 	INIT_LIST_HEAD(&pwq->inactive_works);
4161 	INIT_LIST_HEAD(&pwq->pwqs_node);
4162 	INIT_LIST_HEAD(&pwq->mayday_node);
4163 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
4164 }
4165 
4166 /* sync @pwq with the current state of its associated wq and link it */
4167 static void link_pwq(struct pool_workqueue *pwq)
4168 {
4169 	struct workqueue_struct *wq = pwq->wq;
4170 
4171 	lockdep_assert_held(&wq->mutex);
4172 
4173 	/* may be called multiple times, ignore if already linked */
4174 	if (!list_empty(&pwq->pwqs_node))
4175 		return;
4176 
4177 	/* set the matching work_color */
4178 	pwq->work_color = wq->work_color;
4179 
4180 	/* link in @pwq */
4181 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4182 }
4183 
4184 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4185 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4186 					const struct workqueue_attrs *attrs)
4187 {
4188 	struct worker_pool *pool;
4189 	struct pool_workqueue *pwq;
4190 
4191 	lockdep_assert_held(&wq_pool_mutex);
4192 
4193 	pool = get_unbound_pool(attrs);
4194 	if (!pool)
4195 		return NULL;
4196 
4197 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4198 	if (!pwq) {
4199 		put_unbound_pool(pool);
4200 		return NULL;
4201 	}
4202 
4203 	init_pwq(pwq, wq, pool);
4204 	return pwq;
4205 }
4206 
4207 /**
4208  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
4209  * @attrs: the wq_attrs of the default pwq of the target workqueue
4210  * @cpu: the target CPU
4211  * @cpu_going_down: if >= 0, the CPU to consider as offline
4212  *
4213  * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4214  * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
4215  * The result is stored in @attrs->__pod_cpumask.
4216  *
4217  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4218  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4219  * intersection of the possible CPUs of @pod and @attrs->cpumask.
4220  *
4221  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
4222  */
4223 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4224 				int cpu_going_down)
4225 {
4226 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4227 	int pod = pt->cpu_pod[cpu];
4228 
4229 	/* does @pod have any online CPUs @attrs wants? */
4230 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
4231 	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
4232 	if (cpu_going_down >= 0)
4233 		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
4234 
4235 	if (cpumask_empty(attrs->__pod_cpumask)) {
4236 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
4237 		return;
4238 	}
4239 
4240 	/* yeap, return possible CPUs in @pod that @attrs wants */
4241 	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
4242 
4243 	if (cpumask_empty(attrs->__pod_cpumask))
4244 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4245 				"possible intersect\n");
4246 }
4247 
4248 /* install @pwq into @wq's cpu_pwq and return the old pwq */
4249 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4250 					int cpu, struct pool_workqueue *pwq)
4251 {
4252 	struct pool_workqueue *old_pwq;
4253 
4254 	lockdep_assert_held(&wq_pool_mutex);
4255 	lockdep_assert_held(&wq->mutex);
4256 
4257 	/* link_pwq() can handle duplicate calls */
4258 	link_pwq(pwq);
4259 
4260 	old_pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4261 	rcu_assign_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu), pwq);
4262 	return old_pwq;
4263 }
4264 
4265 /* context to store the prepared attrs & pwqs before applying */
4266 struct apply_wqattrs_ctx {
4267 	struct workqueue_struct	*wq;		/* target workqueue */
4268 	struct workqueue_attrs	*attrs;		/* attrs to apply */
4269 	struct list_head	list;		/* queued for batching commit */
4270 	struct pool_workqueue	*dfl_pwq;
4271 	struct pool_workqueue	*pwq_tbl[];
4272 };
4273 
4274 /* free the resources after success or abort */
4275 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4276 {
4277 	if (ctx) {
4278 		int cpu;
4279 
4280 		for_each_possible_cpu(cpu)
4281 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
4282 		put_pwq_unlocked(ctx->dfl_pwq);
4283 
4284 		free_workqueue_attrs(ctx->attrs);
4285 
4286 		kfree(ctx);
4287 	}
4288 }
4289 
4290 /* allocate the attrs and pwqs for later installation */
4291 static struct apply_wqattrs_ctx *
4292 apply_wqattrs_prepare(struct workqueue_struct *wq,
4293 		      const struct workqueue_attrs *attrs,
4294 		      const cpumask_var_t unbound_cpumask)
4295 {
4296 	struct apply_wqattrs_ctx *ctx;
4297 	struct workqueue_attrs *new_attrs;
4298 	int cpu;
4299 
4300 	lockdep_assert_held(&wq_pool_mutex);
4301 
4302 	if (WARN_ON(attrs->affn_scope < 0 ||
4303 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4304 		return ERR_PTR(-EINVAL);
4305 
4306 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
4307 
4308 	new_attrs = alloc_workqueue_attrs();
4309 	if (!ctx || !new_attrs)
4310 		goto out_free;
4311 
4312 	/*
4313 	 * If something goes wrong during CPU up/down, we'll fall back to
4314 	 * the default pwq covering whole @attrs->cpumask.  Always create
4315 	 * it even if we don't use it immediately.
4316 	 */
4317 	copy_workqueue_attrs(new_attrs, attrs);
4318 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
4319 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4320 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4321 	if (!ctx->dfl_pwq)
4322 		goto out_free;
4323 
4324 	for_each_possible_cpu(cpu) {
4325 		if (new_attrs->ordered) {
4326 			ctx->dfl_pwq->refcnt++;
4327 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4328 		} else {
4329 			wq_calc_pod_cpumask(new_attrs, cpu, -1);
4330 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
4331 			if (!ctx->pwq_tbl[cpu])
4332 				goto out_free;
4333 		}
4334 	}
4335 
4336 	/* save the user configured attrs and sanitize it. */
4337 	copy_workqueue_attrs(new_attrs, attrs);
4338 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4339 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4340 	ctx->attrs = new_attrs;
4341 
4342 	ctx->wq = wq;
4343 	return ctx;
4344 
4345 out_free:
4346 	free_workqueue_attrs(new_attrs);
4347 	apply_wqattrs_cleanup(ctx);
4348 	return ERR_PTR(-ENOMEM);
4349 }
4350 
4351 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4352 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4353 {
4354 	int cpu;
4355 
4356 	/* all pwqs have been created successfully, let's install'em */
4357 	mutex_lock(&ctx->wq->mutex);
4358 
4359 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4360 
4361 	/* save the previous pwq and install the new one */
4362 	for_each_possible_cpu(cpu)
4363 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
4364 							ctx->pwq_tbl[cpu]);
4365 
4366 	/* @dfl_pwq might not have been used, ensure it's linked */
4367 	link_pwq(ctx->dfl_pwq);
4368 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4369 
4370 	mutex_unlock(&ctx->wq->mutex);
4371 }
4372 
4373 static void apply_wqattrs_lock(void)
4374 {
4375 	/* CPUs should stay stable across pwq creations and installations */
4376 	cpus_read_lock();
4377 	mutex_lock(&wq_pool_mutex);
4378 }
4379 
4380 static void apply_wqattrs_unlock(void)
4381 {
4382 	mutex_unlock(&wq_pool_mutex);
4383 	cpus_read_unlock();
4384 }
4385 
4386 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4387 					const struct workqueue_attrs *attrs)
4388 {
4389 	struct apply_wqattrs_ctx *ctx;
4390 
4391 	/* only unbound workqueues can change attributes */
4392 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4393 		return -EINVAL;
4394 
4395 	/* creating multiple pwqs breaks ordering guarantee */
4396 	if (!list_empty(&wq->pwqs)) {
4397 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4398 			return -EINVAL;
4399 
4400 		wq->flags &= ~__WQ_ORDERED;
4401 	}
4402 
4403 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4404 	if (IS_ERR(ctx))
4405 		return PTR_ERR(ctx);
4406 
4407 	/* the ctx has been prepared successfully, let's commit it */
4408 	apply_wqattrs_commit(ctx);
4409 	apply_wqattrs_cleanup(ctx);
4410 
4411 	return 0;
4412 }
4413 
4414 /**
4415  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4416  * @wq: the target workqueue
4417  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4418  *
4419  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
4420  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
4421  * work items are affine to the pod it was issued on. Older pwqs are released as
4422  * in-flight work items finish. Note that a work item which repeatedly requeues
4423  * itself back-to-back will stay on its current pwq.
4424  *
4425  * Performs GFP_KERNEL allocations.
4426  *
4427  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4428  *
4429  * Return: 0 on success and -errno on failure.
4430  */
4431 int apply_workqueue_attrs(struct workqueue_struct *wq,
4432 			  const struct workqueue_attrs *attrs)
4433 {
4434 	int ret;
4435 
4436 	lockdep_assert_cpus_held();
4437 
4438 	mutex_lock(&wq_pool_mutex);
4439 	ret = apply_workqueue_attrs_locked(wq, attrs);
4440 	mutex_unlock(&wq_pool_mutex);
4441 
4442 	return ret;
4443 }
4444 
4445 /**
4446  * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4447  * @wq: the target workqueue
4448  * @cpu: the CPU to update pool association for
4449  * @hotplug_cpu: the CPU coming up or going down
4450  * @online: whether @cpu is coming up or going down
4451  *
4452  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4453  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
4454  * @wq accordingly.
4455  *
4456  *
4457  * If pod affinity can't be adjusted due to memory allocation failure, it falls
4458  * back to @wq->dfl_pwq which may not be optimal but is always correct.
4459  *
4460  * Note that when the last allowed CPU of a pod goes offline for a workqueue
4461  * with a cpumask spanning multiple pods, the workers which were already
4462  * executing the work items for the workqueue will lose their CPU affinity and
4463  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
4464  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
4465  * responsibility to flush the work item from CPU_DOWN_PREPARE.
4466  */
4467 static void wq_update_pod(struct workqueue_struct *wq, int cpu,
4468 			  int hotplug_cpu, bool online)
4469 {
4470 	int off_cpu = online ? -1 : hotplug_cpu;
4471 	struct pool_workqueue *old_pwq = NULL, *pwq;
4472 	struct workqueue_attrs *target_attrs;
4473 
4474 	lockdep_assert_held(&wq_pool_mutex);
4475 
4476 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4477 		return;
4478 
4479 	/*
4480 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4481 	 * Let's use a preallocated one.  The following buf is protected by
4482 	 * CPU hotplug exclusion.
4483 	 */
4484 	target_attrs = wq_update_pod_attrs_buf;
4485 
4486 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4487 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4488 
4489 	/* nothing to do if the target cpumask matches the current pwq */
4490 	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
4491 	pwq = rcu_dereference_protected(*per_cpu_ptr(wq->cpu_pwq, cpu),
4492 					lockdep_is_held(&wq_pool_mutex));
4493 	if (wqattrs_equal(target_attrs, pwq->pool->attrs))
4494 		return;
4495 
4496 	/* create a new pwq */
4497 	pwq = alloc_unbound_pwq(wq, target_attrs);
4498 	if (!pwq) {
4499 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
4500 			wq->name);
4501 		goto use_dfl_pwq;
4502 	}
4503 
4504 	/* Install the new pwq. */
4505 	mutex_lock(&wq->mutex);
4506 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
4507 	goto out_unlock;
4508 
4509 use_dfl_pwq:
4510 	mutex_lock(&wq->mutex);
4511 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4512 	get_pwq(wq->dfl_pwq);
4513 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4514 	old_pwq = install_unbound_pwq(wq, cpu, wq->dfl_pwq);
4515 out_unlock:
4516 	mutex_unlock(&wq->mutex);
4517 	put_pwq_unlocked(old_pwq);
4518 }
4519 
4520 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4521 {
4522 	bool highpri = wq->flags & WQ_HIGHPRI;
4523 	int cpu, ret;
4524 
4525 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
4526 	if (!wq->cpu_pwq)
4527 		goto enomem;
4528 
4529 	if (!(wq->flags & WQ_UNBOUND)) {
4530 		for_each_possible_cpu(cpu) {
4531 			struct pool_workqueue **pwq_p =
4532 				per_cpu_ptr(wq->cpu_pwq, cpu);
4533 			struct worker_pool *pool =
4534 				&(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]);
4535 
4536 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
4537 						       pool->node);
4538 			if (!*pwq_p)
4539 				goto enomem;
4540 
4541 			init_pwq(*pwq_p, wq, pool);
4542 
4543 			mutex_lock(&wq->mutex);
4544 			link_pwq(*pwq_p);
4545 			mutex_unlock(&wq->mutex);
4546 		}
4547 		return 0;
4548 	}
4549 
4550 	cpus_read_lock();
4551 	if (wq->flags & __WQ_ORDERED) {
4552 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4553 		/* there should only be single pwq for ordering guarantee */
4554 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4555 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4556 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4557 	} else {
4558 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4559 	}
4560 	cpus_read_unlock();
4561 
4562 	/* for unbound pwq, flush the pwq_release_worker ensures that the
4563 	 * pwq_release_workfn() completes before calling kfree(wq).
4564 	 */
4565 	if (ret)
4566 		kthread_flush_worker(pwq_release_worker);
4567 
4568 	return ret;
4569 
4570 enomem:
4571 	if (wq->cpu_pwq) {
4572 		for_each_possible_cpu(cpu) {
4573 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4574 
4575 			if (pwq)
4576 				kmem_cache_free(pwq_cache, pwq);
4577 		}
4578 		free_percpu(wq->cpu_pwq);
4579 		wq->cpu_pwq = NULL;
4580 	}
4581 	return -ENOMEM;
4582 }
4583 
4584 static int wq_clamp_max_active(int max_active, unsigned int flags,
4585 			       const char *name)
4586 {
4587 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
4588 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4589 			max_active, name, 1, WQ_MAX_ACTIVE);
4590 
4591 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
4592 }
4593 
4594 /*
4595  * Workqueues which may be used during memory reclaim should have a rescuer
4596  * to guarantee forward progress.
4597  */
4598 static int init_rescuer(struct workqueue_struct *wq)
4599 {
4600 	struct worker *rescuer;
4601 	int ret;
4602 
4603 	if (!(wq->flags & WQ_MEM_RECLAIM))
4604 		return 0;
4605 
4606 	rescuer = alloc_worker(NUMA_NO_NODE);
4607 	if (!rescuer) {
4608 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
4609 		       wq->name);
4610 		return -ENOMEM;
4611 	}
4612 
4613 	rescuer->rescue_wq = wq;
4614 	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
4615 	if (IS_ERR(rescuer->task)) {
4616 		ret = PTR_ERR(rescuer->task);
4617 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
4618 		       wq->name, ERR_PTR(ret));
4619 		kfree(rescuer);
4620 		return ret;
4621 	}
4622 
4623 	wq->rescuer = rescuer;
4624 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4625 	wake_up_process(rescuer->task);
4626 
4627 	return 0;
4628 }
4629 
4630 /**
4631  * wq_adjust_max_active - update a wq's max_active to the current setting
4632  * @wq: target workqueue
4633  *
4634  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
4635  * activate inactive work items accordingly. If @wq is freezing, clear
4636  * @wq->max_active to zero.
4637  */
4638 static void wq_adjust_max_active(struct workqueue_struct *wq)
4639 {
4640 	struct pool_workqueue *pwq;
4641 
4642 	lockdep_assert_held(&wq->mutex);
4643 
4644 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
4645 		WRITE_ONCE(wq->max_active, 0);
4646 		return;
4647 	}
4648 
4649 	if (wq->max_active == wq->saved_max_active)
4650 		return;
4651 
4652 	/*
4653 	 * Update @wq->max_active and then kick inactive work items if more
4654 	 * active work items are allowed. This doesn't break work item ordering
4655 	 * because new work items are always queued behind existing inactive
4656 	 * work items if there are any.
4657 	 */
4658 	WRITE_ONCE(wq->max_active, wq->saved_max_active);
4659 
4660 	for_each_pwq(pwq, wq) {
4661 		unsigned long flags;
4662 
4663 		/* this function can be called during early boot w/ irq disabled */
4664 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4665 
4666 		while (!list_empty(&pwq->inactive_works) &&
4667 		       pwq->nr_active < wq->max_active)
4668 			pwq_activate_first_inactive(pwq);
4669 
4670 		kick_pool(pwq->pool);
4671 
4672 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4673 	}
4674 }
4675 
4676 __printf(1, 4)
4677 struct workqueue_struct *alloc_workqueue(const char *fmt,
4678 					 unsigned int flags,
4679 					 int max_active, ...)
4680 {
4681 	va_list args;
4682 	struct workqueue_struct *wq;
4683 	int len;
4684 
4685 	/*
4686 	 * Unbound && max_active == 1 used to imply ordered, which is no longer
4687 	 * the case on many machines due to per-pod pools. While
4688 	 * alloc_ordered_workqueue() is the right way to create an ordered
4689 	 * workqueue, keep the previous behavior to avoid subtle breakages.
4690 	 */
4691 	if ((flags & WQ_UNBOUND) && max_active == 1)
4692 		flags |= __WQ_ORDERED;
4693 
4694 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4695 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4696 		flags |= WQ_UNBOUND;
4697 
4698 	/* allocate wq and format name */
4699 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
4700 	if (!wq)
4701 		return NULL;
4702 
4703 	if (flags & WQ_UNBOUND) {
4704 		wq->unbound_attrs = alloc_workqueue_attrs();
4705 		if (!wq->unbound_attrs)
4706 			goto err_free_wq;
4707 	}
4708 
4709 	va_start(args, max_active);
4710 	len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4711 	va_end(args);
4712 
4713 	if (len >= WQ_NAME_LEN)
4714 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", wq->name);
4715 
4716 	max_active = max_active ?: WQ_DFL_ACTIVE;
4717 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4718 
4719 	/* init wq */
4720 	wq->flags = flags;
4721 	wq->max_active = max_active;
4722 	wq->saved_max_active = max_active;
4723 	mutex_init(&wq->mutex);
4724 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4725 	INIT_LIST_HEAD(&wq->pwqs);
4726 	INIT_LIST_HEAD(&wq->flusher_queue);
4727 	INIT_LIST_HEAD(&wq->flusher_overflow);
4728 	INIT_LIST_HEAD(&wq->maydays);
4729 
4730 	wq_init_lockdep(wq);
4731 	INIT_LIST_HEAD(&wq->list);
4732 
4733 	if (alloc_and_link_pwqs(wq) < 0)
4734 		goto err_unreg_lockdep;
4735 
4736 	if (wq_online && init_rescuer(wq) < 0)
4737 		goto err_destroy;
4738 
4739 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4740 		goto err_destroy;
4741 
4742 	/*
4743 	 * wq_pool_mutex protects global freeze state and workqueues list.
4744 	 * Grab it, adjust max_active and add the new @wq to workqueues
4745 	 * list.
4746 	 */
4747 	mutex_lock(&wq_pool_mutex);
4748 
4749 	mutex_lock(&wq->mutex);
4750 	wq_adjust_max_active(wq);
4751 	mutex_unlock(&wq->mutex);
4752 
4753 	list_add_tail_rcu(&wq->list, &workqueues);
4754 
4755 	mutex_unlock(&wq_pool_mutex);
4756 
4757 	return wq;
4758 
4759 err_unreg_lockdep:
4760 	wq_unregister_lockdep(wq);
4761 	wq_free_lockdep(wq);
4762 err_free_wq:
4763 	free_workqueue_attrs(wq->unbound_attrs);
4764 	kfree(wq);
4765 	return NULL;
4766 err_destroy:
4767 	destroy_workqueue(wq);
4768 	return NULL;
4769 }
4770 EXPORT_SYMBOL_GPL(alloc_workqueue);
4771 
4772 static bool pwq_busy(struct pool_workqueue *pwq)
4773 {
4774 	int i;
4775 
4776 	for (i = 0; i < WORK_NR_COLORS; i++)
4777 		if (pwq->nr_in_flight[i])
4778 			return true;
4779 
4780 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4781 		return true;
4782 	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4783 		return true;
4784 
4785 	return false;
4786 }
4787 
4788 /**
4789  * destroy_workqueue - safely terminate a workqueue
4790  * @wq: target workqueue
4791  *
4792  * Safely destroy a workqueue. All work currently pending will be done first.
4793  */
4794 void destroy_workqueue(struct workqueue_struct *wq)
4795 {
4796 	struct pool_workqueue *pwq;
4797 	int cpu;
4798 
4799 	/*
4800 	 * Remove it from sysfs first so that sanity check failure doesn't
4801 	 * lead to sysfs name conflicts.
4802 	 */
4803 	workqueue_sysfs_unregister(wq);
4804 
4805 	/* mark the workqueue destruction is in progress */
4806 	mutex_lock(&wq->mutex);
4807 	wq->flags |= __WQ_DESTROYING;
4808 	mutex_unlock(&wq->mutex);
4809 
4810 	/* drain it before proceeding with destruction */
4811 	drain_workqueue(wq);
4812 
4813 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4814 	if (wq->rescuer) {
4815 		struct worker *rescuer = wq->rescuer;
4816 
4817 		/* this prevents new queueing */
4818 		raw_spin_lock_irq(&wq_mayday_lock);
4819 		wq->rescuer = NULL;
4820 		raw_spin_unlock_irq(&wq_mayday_lock);
4821 
4822 		/* rescuer will empty maydays list before exiting */
4823 		kthread_stop(rescuer->task);
4824 		kfree(rescuer);
4825 	}
4826 
4827 	/*
4828 	 * Sanity checks - grab all the locks so that we wait for all
4829 	 * in-flight operations which may do put_pwq().
4830 	 */
4831 	mutex_lock(&wq_pool_mutex);
4832 	mutex_lock(&wq->mutex);
4833 	for_each_pwq(pwq, wq) {
4834 		raw_spin_lock_irq(&pwq->pool->lock);
4835 		if (WARN_ON(pwq_busy(pwq))) {
4836 			pr_warn("%s: %s has the following busy pwq\n",
4837 				__func__, wq->name);
4838 			show_pwq(pwq);
4839 			raw_spin_unlock_irq(&pwq->pool->lock);
4840 			mutex_unlock(&wq->mutex);
4841 			mutex_unlock(&wq_pool_mutex);
4842 			show_one_workqueue(wq);
4843 			return;
4844 		}
4845 		raw_spin_unlock_irq(&pwq->pool->lock);
4846 	}
4847 	mutex_unlock(&wq->mutex);
4848 
4849 	/*
4850 	 * wq list is used to freeze wq, remove from list after
4851 	 * flushing is complete in case freeze races us.
4852 	 */
4853 	list_del_rcu(&wq->list);
4854 	mutex_unlock(&wq_pool_mutex);
4855 
4856 	/*
4857 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
4858 	 * to put the base refs. @wq will be auto-destroyed from the last
4859 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
4860 	 */
4861 	rcu_read_lock();
4862 
4863 	for_each_possible_cpu(cpu) {
4864 		pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4865 		RCU_INIT_POINTER(*per_cpu_ptr(wq->cpu_pwq, cpu), NULL);
4866 		put_pwq_unlocked(pwq);
4867 	}
4868 
4869 	put_pwq_unlocked(wq->dfl_pwq);
4870 	wq->dfl_pwq = NULL;
4871 
4872 	rcu_read_unlock();
4873 }
4874 EXPORT_SYMBOL_GPL(destroy_workqueue);
4875 
4876 /**
4877  * workqueue_set_max_active - adjust max_active of a workqueue
4878  * @wq: target workqueue
4879  * @max_active: new max_active value.
4880  *
4881  * Set max_active of @wq to @max_active.
4882  *
4883  * CONTEXT:
4884  * Don't call from IRQ context.
4885  */
4886 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4887 {
4888 	/* disallow meddling with max_active for ordered workqueues */
4889 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4890 		return;
4891 
4892 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4893 
4894 	mutex_lock(&wq->mutex);
4895 
4896 	wq->flags &= ~__WQ_ORDERED;
4897 	wq->saved_max_active = max_active;
4898 	wq_adjust_max_active(wq);
4899 
4900 	mutex_unlock(&wq->mutex);
4901 }
4902 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4903 
4904 /**
4905  * current_work - retrieve %current task's work struct
4906  *
4907  * Determine if %current task is a workqueue worker and what it's working on.
4908  * Useful to find out the context that the %current task is running in.
4909  *
4910  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4911  */
4912 struct work_struct *current_work(void)
4913 {
4914 	struct worker *worker = current_wq_worker();
4915 
4916 	return worker ? worker->current_work : NULL;
4917 }
4918 EXPORT_SYMBOL(current_work);
4919 
4920 /**
4921  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4922  *
4923  * Determine whether %current is a workqueue rescuer.  Can be used from
4924  * work functions to determine whether it's being run off the rescuer task.
4925  *
4926  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4927  */
4928 bool current_is_workqueue_rescuer(void)
4929 {
4930 	struct worker *worker = current_wq_worker();
4931 
4932 	return worker && worker->rescue_wq;
4933 }
4934 
4935 /**
4936  * workqueue_congested - test whether a workqueue is congested
4937  * @cpu: CPU in question
4938  * @wq: target workqueue
4939  *
4940  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4941  * no synchronization around this function and the test result is
4942  * unreliable and only useful as advisory hints or for debugging.
4943  *
4944  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4945  *
4946  * With the exception of ordered workqueues, all workqueues have per-cpu
4947  * pool_workqueues, each with its own congested state. A workqueue being
4948  * congested on one CPU doesn't mean that the workqueue is contested on any
4949  * other CPUs.
4950  *
4951  * Return:
4952  * %true if congested, %false otherwise.
4953  */
4954 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4955 {
4956 	struct pool_workqueue *pwq;
4957 	bool ret;
4958 
4959 	rcu_read_lock();
4960 	preempt_disable();
4961 
4962 	if (cpu == WORK_CPU_UNBOUND)
4963 		cpu = smp_processor_id();
4964 
4965 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4966 	ret = !list_empty(&pwq->inactive_works);
4967 
4968 	preempt_enable();
4969 	rcu_read_unlock();
4970 
4971 	return ret;
4972 }
4973 EXPORT_SYMBOL_GPL(workqueue_congested);
4974 
4975 /**
4976  * work_busy - test whether a work is currently pending or running
4977  * @work: the work to be tested
4978  *
4979  * Test whether @work is currently pending or running.  There is no
4980  * synchronization around this function and the test result is
4981  * unreliable and only useful as advisory hints or for debugging.
4982  *
4983  * Return:
4984  * OR'd bitmask of WORK_BUSY_* bits.
4985  */
4986 unsigned int work_busy(struct work_struct *work)
4987 {
4988 	struct worker_pool *pool;
4989 	unsigned long flags;
4990 	unsigned int ret = 0;
4991 
4992 	if (work_pending(work))
4993 		ret |= WORK_BUSY_PENDING;
4994 
4995 	rcu_read_lock();
4996 	pool = get_work_pool(work);
4997 	if (pool) {
4998 		raw_spin_lock_irqsave(&pool->lock, flags);
4999 		if (find_worker_executing_work(pool, work))
5000 			ret |= WORK_BUSY_RUNNING;
5001 		raw_spin_unlock_irqrestore(&pool->lock, flags);
5002 	}
5003 	rcu_read_unlock();
5004 
5005 	return ret;
5006 }
5007 EXPORT_SYMBOL_GPL(work_busy);
5008 
5009 /**
5010  * set_worker_desc - set description for the current work item
5011  * @fmt: printf-style format string
5012  * @...: arguments for the format string
5013  *
5014  * This function can be called by a running work function to describe what
5015  * the work item is about.  If the worker task gets dumped, this
5016  * information will be printed out together to help debugging.  The
5017  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5018  */
5019 void set_worker_desc(const char *fmt, ...)
5020 {
5021 	struct worker *worker = current_wq_worker();
5022 	va_list args;
5023 
5024 	if (worker) {
5025 		va_start(args, fmt);
5026 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5027 		va_end(args);
5028 	}
5029 }
5030 EXPORT_SYMBOL_GPL(set_worker_desc);
5031 
5032 /**
5033  * print_worker_info - print out worker information and description
5034  * @log_lvl: the log level to use when printing
5035  * @task: target task
5036  *
5037  * If @task is a worker and currently executing a work item, print out the
5038  * name of the workqueue being serviced and worker description set with
5039  * set_worker_desc() by the currently executing work item.
5040  *
5041  * This function can be safely called on any task as long as the
5042  * task_struct itself is accessible.  While safe, this function isn't
5043  * synchronized and may print out mixups or garbages of limited length.
5044  */
5045 void print_worker_info(const char *log_lvl, struct task_struct *task)
5046 {
5047 	work_func_t *fn = NULL;
5048 	char name[WQ_NAME_LEN] = { };
5049 	char desc[WORKER_DESC_LEN] = { };
5050 	struct pool_workqueue *pwq = NULL;
5051 	struct workqueue_struct *wq = NULL;
5052 	struct worker *worker;
5053 
5054 	if (!(task->flags & PF_WQ_WORKER))
5055 		return;
5056 
5057 	/*
5058 	 * This function is called without any synchronization and @task
5059 	 * could be in any state.  Be careful with dereferences.
5060 	 */
5061 	worker = kthread_probe_data(task);
5062 
5063 	/*
5064 	 * Carefully copy the associated workqueue's workfn, name and desc.
5065 	 * Keep the original last '\0' in case the original is garbage.
5066 	 */
5067 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5068 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5069 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5070 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5071 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5072 
5073 	if (fn || name[0] || desc[0]) {
5074 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5075 		if (strcmp(name, desc))
5076 			pr_cont(" (%s)", desc);
5077 		pr_cont("\n");
5078 	}
5079 }
5080 
5081 static void pr_cont_pool_info(struct worker_pool *pool)
5082 {
5083 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5084 	if (pool->node != NUMA_NO_NODE)
5085 		pr_cont(" node=%d", pool->node);
5086 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
5087 }
5088 
5089 struct pr_cont_work_struct {
5090 	bool comma;
5091 	work_func_t func;
5092 	long ctr;
5093 };
5094 
5095 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5096 {
5097 	if (!pcwsp->ctr)
5098 		goto out_record;
5099 	if (func == pcwsp->func) {
5100 		pcwsp->ctr++;
5101 		return;
5102 	}
5103 	if (pcwsp->ctr == 1)
5104 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5105 	else
5106 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5107 	pcwsp->ctr = 0;
5108 out_record:
5109 	if ((long)func == -1L)
5110 		return;
5111 	pcwsp->comma = comma;
5112 	pcwsp->func = func;
5113 	pcwsp->ctr = 1;
5114 }
5115 
5116 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
5117 {
5118 	if (work->func == wq_barrier_func) {
5119 		struct wq_barrier *barr;
5120 
5121 		barr = container_of(work, struct wq_barrier, work);
5122 
5123 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5124 		pr_cont("%s BAR(%d)", comma ? "," : "",
5125 			task_pid_nr(barr->task));
5126 	} else {
5127 		if (!comma)
5128 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5129 		pr_cont_work_flush(comma, work->func, pcwsp);
5130 	}
5131 }
5132 
5133 static void show_pwq(struct pool_workqueue *pwq)
5134 {
5135 	struct pr_cont_work_struct pcws = { .ctr = 0, };
5136 	struct worker_pool *pool = pwq->pool;
5137 	struct work_struct *work;
5138 	struct worker *worker;
5139 	bool has_in_flight = false, has_pending = false;
5140 	int bkt;
5141 
5142 	pr_info("  pwq %d:", pool->id);
5143 	pr_cont_pool_info(pool);
5144 
5145 	pr_cont(" active=%d refcnt=%d%s\n",
5146 		pwq->nr_active, pwq->refcnt,
5147 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5148 
5149 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5150 		if (worker->current_pwq == pwq) {
5151 			has_in_flight = true;
5152 			break;
5153 		}
5154 	}
5155 	if (has_in_flight) {
5156 		bool comma = false;
5157 
5158 		pr_info("    in-flight:");
5159 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5160 			if (worker->current_pwq != pwq)
5161 				continue;
5162 
5163 			pr_cont("%s %d%s:%ps", comma ? "," : "",
5164 				task_pid_nr(worker->task),
5165 				worker->rescue_wq ? "(RESCUER)" : "",
5166 				worker->current_func);
5167 			list_for_each_entry(work, &worker->scheduled, entry)
5168 				pr_cont_work(false, work, &pcws);
5169 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5170 			comma = true;
5171 		}
5172 		pr_cont("\n");
5173 	}
5174 
5175 	list_for_each_entry(work, &pool->worklist, entry) {
5176 		if (get_work_pwq(work) == pwq) {
5177 			has_pending = true;
5178 			break;
5179 		}
5180 	}
5181 	if (has_pending) {
5182 		bool comma = false;
5183 
5184 		pr_info("    pending:");
5185 		list_for_each_entry(work, &pool->worklist, entry) {
5186 			if (get_work_pwq(work) != pwq)
5187 				continue;
5188 
5189 			pr_cont_work(comma, work, &pcws);
5190 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5191 		}
5192 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5193 		pr_cont("\n");
5194 	}
5195 
5196 	if (!list_empty(&pwq->inactive_works)) {
5197 		bool comma = false;
5198 
5199 		pr_info("    inactive:");
5200 		list_for_each_entry(work, &pwq->inactive_works, entry) {
5201 			pr_cont_work(comma, work, &pcws);
5202 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5203 		}
5204 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5205 		pr_cont("\n");
5206 	}
5207 }
5208 
5209 /**
5210  * show_one_workqueue - dump state of specified workqueue
5211  * @wq: workqueue whose state will be printed
5212  */
5213 void show_one_workqueue(struct workqueue_struct *wq)
5214 {
5215 	struct pool_workqueue *pwq;
5216 	bool idle = true;
5217 	unsigned long flags;
5218 
5219 	for_each_pwq(pwq, wq) {
5220 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5221 			idle = false;
5222 			break;
5223 		}
5224 	}
5225 	if (idle) /* Nothing to print for idle workqueue */
5226 		return;
5227 
5228 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
5229 
5230 	for_each_pwq(pwq, wq) {
5231 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5232 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5233 			/*
5234 			 * Defer printing to avoid deadlocks in console
5235 			 * drivers that queue work while holding locks
5236 			 * also taken in their write paths.
5237 			 */
5238 			printk_deferred_enter();
5239 			show_pwq(pwq);
5240 			printk_deferred_exit();
5241 		}
5242 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5243 		/*
5244 		 * We could be printing a lot from atomic context, e.g.
5245 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
5246 		 * hard lockup.
5247 		 */
5248 		touch_nmi_watchdog();
5249 	}
5250 
5251 }
5252 
5253 /**
5254  * show_one_worker_pool - dump state of specified worker pool
5255  * @pool: worker pool whose state will be printed
5256  */
5257 static void show_one_worker_pool(struct worker_pool *pool)
5258 {
5259 	struct worker *worker;
5260 	bool first = true;
5261 	unsigned long flags;
5262 	unsigned long hung = 0;
5263 
5264 	raw_spin_lock_irqsave(&pool->lock, flags);
5265 	if (pool->nr_workers == pool->nr_idle)
5266 		goto next_pool;
5267 
5268 	/* How long the first pending work is waiting for a worker. */
5269 	if (!list_empty(&pool->worklist))
5270 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5271 
5272 	/*
5273 	 * Defer printing to avoid deadlocks in console drivers that
5274 	 * queue work while holding locks also taken in their write
5275 	 * paths.
5276 	 */
5277 	printk_deferred_enter();
5278 	pr_info("pool %d:", pool->id);
5279 	pr_cont_pool_info(pool);
5280 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
5281 	if (pool->manager)
5282 		pr_cont(" manager: %d",
5283 			task_pid_nr(pool->manager->task));
5284 	list_for_each_entry(worker, &pool->idle_list, entry) {
5285 		pr_cont(" %s%d", first ? "idle: " : "",
5286 			task_pid_nr(worker->task));
5287 		first = false;
5288 	}
5289 	pr_cont("\n");
5290 	printk_deferred_exit();
5291 next_pool:
5292 	raw_spin_unlock_irqrestore(&pool->lock, flags);
5293 	/*
5294 	 * We could be printing a lot from atomic context, e.g.
5295 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
5296 	 * hard lockup.
5297 	 */
5298 	touch_nmi_watchdog();
5299 
5300 }
5301 
5302 /**
5303  * show_all_workqueues - dump workqueue state
5304  *
5305  * Called from a sysrq handler and prints out all busy workqueues and pools.
5306  */
5307 void show_all_workqueues(void)
5308 {
5309 	struct workqueue_struct *wq;
5310 	struct worker_pool *pool;
5311 	int pi;
5312 
5313 	rcu_read_lock();
5314 
5315 	pr_info("Showing busy workqueues and worker pools:\n");
5316 
5317 	list_for_each_entry_rcu(wq, &workqueues, list)
5318 		show_one_workqueue(wq);
5319 
5320 	for_each_pool(pool, pi)
5321 		show_one_worker_pool(pool);
5322 
5323 	rcu_read_unlock();
5324 }
5325 
5326 /**
5327  * show_freezable_workqueues - dump freezable workqueue state
5328  *
5329  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5330  * still busy.
5331  */
5332 void show_freezable_workqueues(void)
5333 {
5334 	struct workqueue_struct *wq;
5335 
5336 	rcu_read_lock();
5337 
5338 	pr_info("Showing freezable workqueues that are still busy:\n");
5339 
5340 	list_for_each_entry_rcu(wq, &workqueues, list) {
5341 		if (!(wq->flags & WQ_FREEZABLE))
5342 			continue;
5343 		show_one_workqueue(wq);
5344 	}
5345 
5346 	rcu_read_unlock();
5347 }
5348 
5349 /* used to show worker information through /proc/PID/{comm,stat,status} */
5350 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5351 {
5352 	int off;
5353 
5354 	/* always show the actual comm */
5355 	off = strscpy(buf, task->comm, size);
5356 	if (off < 0)
5357 		return;
5358 
5359 	/* stabilize PF_WQ_WORKER and worker pool association */
5360 	mutex_lock(&wq_pool_attach_mutex);
5361 
5362 	if (task->flags & PF_WQ_WORKER) {
5363 		struct worker *worker = kthread_data(task);
5364 		struct worker_pool *pool = worker->pool;
5365 
5366 		if (pool) {
5367 			raw_spin_lock_irq(&pool->lock);
5368 			/*
5369 			 * ->desc tracks information (wq name or
5370 			 * set_worker_desc()) for the latest execution.  If
5371 			 * current, prepend '+', otherwise '-'.
5372 			 */
5373 			if (worker->desc[0] != '\0') {
5374 				if (worker->current_work)
5375 					scnprintf(buf + off, size - off, "+%s",
5376 						  worker->desc);
5377 				else
5378 					scnprintf(buf + off, size - off, "-%s",
5379 						  worker->desc);
5380 			}
5381 			raw_spin_unlock_irq(&pool->lock);
5382 		}
5383 	}
5384 
5385 	mutex_unlock(&wq_pool_attach_mutex);
5386 }
5387 
5388 #ifdef CONFIG_SMP
5389 
5390 /*
5391  * CPU hotplug.
5392  *
5393  * There are two challenges in supporting CPU hotplug.  Firstly, there
5394  * are a lot of assumptions on strong associations among work, pwq and
5395  * pool which make migrating pending and scheduled works very
5396  * difficult to implement without impacting hot paths.  Secondly,
5397  * worker pools serve mix of short, long and very long running works making
5398  * blocked draining impractical.
5399  *
5400  * This is solved by allowing the pools to be disassociated from the CPU
5401  * running as an unbound one and allowing it to be reattached later if the
5402  * cpu comes back online.
5403  */
5404 
5405 static void unbind_workers(int cpu)
5406 {
5407 	struct worker_pool *pool;
5408 	struct worker *worker;
5409 
5410 	for_each_cpu_worker_pool(pool, cpu) {
5411 		mutex_lock(&wq_pool_attach_mutex);
5412 		raw_spin_lock_irq(&pool->lock);
5413 
5414 		/*
5415 		 * We've blocked all attach/detach operations. Make all workers
5416 		 * unbound and set DISASSOCIATED.  Before this, all workers
5417 		 * must be on the cpu.  After this, they may become diasporas.
5418 		 * And the preemption disabled section in their sched callbacks
5419 		 * are guaranteed to see WORKER_UNBOUND since the code here
5420 		 * is on the same cpu.
5421 		 */
5422 		for_each_pool_worker(worker, pool)
5423 			worker->flags |= WORKER_UNBOUND;
5424 
5425 		pool->flags |= POOL_DISASSOCIATED;
5426 
5427 		/*
5428 		 * The handling of nr_running in sched callbacks are disabled
5429 		 * now.  Zap nr_running.  After this, nr_running stays zero and
5430 		 * need_more_worker() and keep_working() are always true as
5431 		 * long as the worklist is not empty.  This pool now behaves as
5432 		 * an unbound (in terms of concurrency management) pool which
5433 		 * are served by workers tied to the pool.
5434 		 */
5435 		pool->nr_running = 0;
5436 
5437 		/*
5438 		 * With concurrency management just turned off, a busy
5439 		 * worker blocking could lead to lengthy stalls.  Kick off
5440 		 * unbound chain execution of currently pending work items.
5441 		 */
5442 		kick_pool(pool);
5443 
5444 		raw_spin_unlock_irq(&pool->lock);
5445 
5446 		for_each_pool_worker(worker, pool)
5447 			unbind_worker(worker);
5448 
5449 		mutex_unlock(&wq_pool_attach_mutex);
5450 	}
5451 }
5452 
5453 /**
5454  * rebind_workers - rebind all workers of a pool to the associated CPU
5455  * @pool: pool of interest
5456  *
5457  * @pool->cpu is coming online.  Rebind all workers to the CPU.
5458  */
5459 static void rebind_workers(struct worker_pool *pool)
5460 {
5461 	struct worker *worker;
5462 
5463 	lockdep_assert_held(&wq_pool_attach_mutex);
5464 
5465 	/*
5466 	 * Restore CPU affinity of all workers.  As all idle workers should
5467 	 * be on the run-queue of the associated CPU before any local
5468 	 * wake-ups for concurrency management happen, restore CPU affinity
5469 	 * of all workers first and then clear UNBOUND.  As we're called
5470 	 * from CPU_ONLINE, the following shouldn't fail.
5471 	 */
5472 	for_each_pool_worker(worker, pool) {
5473 		kthread_set_per_cpu(worker->task, pool->cpu);
5474 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5475 						  pool_allowed_cpus(pool)) < 0);
5476 	}
5477 
5478 	raw_spin_lock_irq(&pool->lock);
5479 
5480 	pool->flags &= ~POOL_DISASSOCIATED;
5481 
5482 	for_each_pool_worker(worker, pool) {
5483 		unsigned int worker_flags = worker->flags;
5484 
5485 		/*
5486 		 * We want to clear UNBOUND but can't directly call
5487 		 * worker_clr_flags() or adjust nr_running.  Atomically
5488 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5489 		 * @worker will clear REBOUND using worker_clr_flags() when
5490 		 * it initiates the next execution cycle thus restoring
5491 		 * concurrency management.  Note that when or whether
5492 		 * @worker clears REBOUND doesn't affect correctness.
5493 		 *
5494 		 * WRITE_ONCE() is necessary because @worker->flags may be
5495 		 * tested without holding any lock in
5496 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5497 		 * fail incorrectly leading to premature concurrency
5498 		 * management operations.
5499 		 */
5500 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5501 		worker_flags |= WORKER_REBOUND;
5502 		worker_flags &= ~WORKER_UNBOUND;
5503 		WRITE_ONCE(worker->flags, worker_flags);
5504 	}
5505 
5506 	raw_spin_unlock_irq(&pool->lock);
5507 }
5508 
5509 /**
5510  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5511  * @pool: unbound pool of interest
5512  * @cpu: the CPU which is coming up
5513  *
5514  * An unbound pool may end up with a cpumask which doesn't have any online
5515  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5516  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5517  * online CPU before, cpus_allowed of all its workers should be restored.
5518  */
5519 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5520 {
5521 	static cpumask_t cpumask;
5522 	struct worker *worker;
5523 
5524 	lockdep_assert_held(&wq_pool_attach_mutex);
5525 
5526 	/* is @cpu allowed for @pool? */
5527 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5528 		return;
5529 
5530 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5531 
5532 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5533 	for_each_pool_worker(worker, pool)
5534 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5535 }
5536 
5537 int workqueue_prepare_cpu(unsigned int cpu)
5538 {
5539 	struct worker_pool *pool;
5540 
5541 	for_each_cpu_worker_pool(pool, cpu) {
5542 		if (pool->nr_workers)
5543 			continue;
5544 		if (!create_worker(pool))
5545 			return -ENOMEM;
5546 	}
5547 	return 0;
5548 }
5549 
5550 int workqueue_online_cpu(unsigned int cpu)
5551 {
5552 	struct worker_pool *pool;
5553 	struct workqueue_struct *wq;
5554 	int pi;
5555 
5556 	mutex_lock(&wq_pool_mutex);
5557 
5558 	for_each_pool(pool, pi) {
5559 		mutex_lock(&wq_pool_attach_mutex);
5560 
5561 		if (pool->cpu == cpu)
5562 			rebind_workers(pool);
5563 		else if (pool->cpu < 0)
5564 			restore_unbound_workers_cpumask(pool, cpu);
5565 
5566 		mutex_unlock(&wq_pool_attach_mutex);
5567 	}
5568 
5569 	/* update pod affinity of unbound workqueues */
5570 	list_for_each_entry(wq, &workqueues, list) {
5571 		struct workqueue_attrs *attrs = wq->unbound_attrs;
5572 
5573 		if (attrs) {
5574 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5575 			int tcpu;
5576 
5577 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5578 				wq_update_pod(wq, tcpu, cpu, true);
5579 		}
5580 	}
5581 
5582 	mutex_unlock(&wq_pool_mutex);
5583 	return 0;
5584 }
5585 
5586 int workqueue_offline_cpu(unsigned int cpu)
5587 {
5588 	struct workqueue_struct *wq;
5589 
5590 	/* unbinding per-cpu workers should happen on the local CPU */
5591 	if (WARN_ON(cpu != smp_processor_id()))
5592 		return -1;
5593 
5594 	unbind_workers(cpu);
5595 
5596 	/* update pod affinity of unbound workqueues */
5597 	mutex_lock(&wq_pool_mutex);
5598 	list_for_each_entry(wq, &workqueues, list) {
5599 		struct workqueue_attrs *attrs = wq->unbound_attrs;
5600 
5601 		if (attrs) {
5602 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5603 			int tcpu;
5604 
5605 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5606 				wq_update_pod(wq, tcpu, cpu, false);
5607 		}
5608 	}
5609 	mutex_unlock(&wq_pool_mutex);
5610 
5611 	return 0;
5612 }
5613 
5614 struct work_for_cpu {
5615 	struct work_struct work;
5616 	long (*fn)(void *);
5617 	void *arg;
5618 	long ret;
5619 };
5620 
5621 static void work_for_cpu_fn(struct work_struct *work)
5622 {
5623 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5624 
5625 	wfc->ret = wfc->fn(wfc->arg);
5626 }
5627 
5628 /**
5629  * work_on_cpu_key - run a function in thread context on a particular cpu
5630  * @cpu: the cpu to run on
5631  * @fn: the function to run
5632  * @arg: the function arg
5633  * @key: The lock class key for lock debugging purposes
5634  *
5635  * It is up to the caller to ensure that the cpu doesn't go offline.
5636  * The caller must not hold any locks which would prevent @fn from completing.
5637  *
5638  * Return: The value @fn returns.
5639  */
5640 long work_on_cpu_key(int cpu, long (*fn)(void *),
5641 		     void *arg, struct lock_class_key *key)
5642 {
5643 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5644 
5645 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
5646 	schedule_work_on(cpu, &wfc.work);
5647 	flush_work(&wfc.work);
5648 	destroy_work_on_stack(&wfc.work);
5649 	return wfc.ret;
5650 }
5651 EXPORT_SYMBOL_GPL(work_on_cpu_key);
5652 
5653 /**
5654  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
5655  * @cpu: the cpu to run on
5656  * @fn:  the function to run
5657  * @arg: the function argument
5658  * @key: The lock class key for lock debugging purposes
5659  *
5660  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5661  * any locks which would prevent @fn from completing.
5662  *
5663  * Return: The value @fn returns.
5664  */
5665 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
5666 			  void *arg, struct lock_class_key *key)
5667 {
5668 	long ret = -ENODEV;
5669 
5670 	cpus_read_lock();
5671 	if (cpu_online(cpu))
5672 		ret = work_on_cpu_key(cpu, fn, arg, key);
5673 	cpus_read_unlock();
5674 	return ret;
5675 }
5676 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
5677 #endif /* CONFIG_SMP */
5678 
5679 #ifdef CONFIG_FREEZER
5680 
5681 /**
5682  * freeze_workqueues_begin - begin freezing workqueues
5683  *
5684  * Start freezing workqueues.  After this function returns, all freezable
5685  * workqueues will queue new works to their inactive_works list instead of
5686  * pool->worklist.
5687  *
5688  * CONTEXT:
5689  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5690  */
5691 void freeze_workqueues_begin(void)
5692 {
5693 	struct workqueue_struct *wq;
5694 
5695 	mutex_lock(&wq_pool_mutex);
5696 
5697 	WARN_ON_ONCE(workqueue_freezing);
5698 	workqueue_freezing = true;
5699 
5700 	list_for_each_entry(wq, &workqueues, list) {
5701 		mutex_lock(&wq->mutex);
5702 		wq_adjust_max_active(wq);
5703 		mutex_unlock(&wq->mutex);
5704 	}
5705 
5706 	mutex_unlock(&wq_pool_mutex);
5707 }
5708 
5709 /**
5710  * freeze_workqueues_busy - are freezable workqueues still busy?
5711  *
5712  * Check whether freezing is complete.  This function must be called
5713  * between freeze_workqueues_begin() and thaw_workqueues().
5714  *
5715  * CONTEXT:
5716  * Grabs and releases wq_pool_mutex.
5717  *
5718  * Return:
5719  * %true if some freezable workqueues are still busy.  %false if freezing
5720  * is complete.
5721  */
5722 bool freeze_workqueues_busy(void)
5723 {
5724 	bool busy = false;
5725 	struct workqueue_struct *wq;
5726 	struct pool_workqueue *pwq;
5727 
5728 	mutex_lock(&wq_pool_mutex);
5729 
5730 	WARN_ON_ONCE(!workqueue_freezing);
5731 
5732 	list_for_each_entry(wq, &workqueues, list) {
5733 		if (!(wq->flags & WQ_FREEZABLE))
5734 			continue;
5735 		/*
5736 		 * nr_active is monotonically decreasing.  It's safe
5737 		 * to peek without lock.
5738 		 */
5739 		rcu_read_lock();
5740 		for_each_pwq(pwq, wq) {
5741 			WARN_ON_ONCE(pwq->nr_active < 0);
5742 			if (pwq->nr_active) {
5743 				busy = true;
5744 				rcu_read_unlock();
5745 				goto out_unlock;
5746 			}
5747 		}
5748 		rcu_read_unlock();
5749 	}
5750 out_unlock:
5751 	mutex_unlock(&wq_pool_mutex);
5752 	return busy;
5753 }
5754 
5755 /**
5756  * thaw_workqueues - thaw workqueues
5757  *
5758  * Thaw workqueues.  Normal queueing is restored and all collected
5759  * frozen works are transferred to their respective pool worklists.
5760  *
5761  * CONTEXT:
5762  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5763  */
5764 void thaw_workqueues(void)
5765 {
5766 	struct workqueue_struct *wq;
5767 
5768 	mutex_lock(&wq_pool_mutex);
5769 
5770 	if (!workqueue_freezing)
5771 		goto out_unlock;
5772 
5773 	workqueue_freezing = false;
5774 
5775 	/* restore max_active and repopulate worklist */
5776 	list_for_each_entry(wq, &workqueues, list) {
5777 		mutex_lock(&wq->mutex);
5778 		wq_adjust_max_active(wq);
5779 		mutex_unlock(&wq->mutex);
5780 	}
5781 
5782 out_unlock:
5783 	mutex_unlock(&wq_pool_mutex);
5784 }
5785 #endif /* CONFIG_FREEZER */
5786 
5787 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5788 {
5789 	LIST_HEAD(ctxs);
5790 	int ret = 0;
5791 	struct workqueue_struct *wq;
5792 	struct apply_wqattrs_ctx *ctx, *n;
5793 
5794 	lockdep_assert_held(&wq_pool_mutex);
5795 
5796 	list_for_each_entry(wq, &workqueues, list) {
5797 		if (!(wq->flags & WQ_UNBOUND))
5798 			continue;
5799 		/* creating multiple pwqs breaks ordering guarantee */
5800 		if (wq->flags & __WQ_ORDERED)
5801 			continue;
5802 
5803 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5804 		if (IS_ERR(ctx)) {
5805 			ret = PTR_ERR(ctx);
5806 			break;
5807 		}
5808 
5809 		list_add_tail(&ctx->list, &ctxs);
5810 	}
5811 
5812 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5813 		if (!ret)
5814 			apply_wqattrs_commit(ctx);
5815 		apply_wqattrs_cleanup(ctx);
5816 	}
5817 
5818 	if (!ret) {
5819 		mutex_lock(&wq_pool_attach_mutex);
5820 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5821 		mutex_unlock(&wq_pool_attach_mutex);
5822 	}
5823 	return ret;
5824 }
5825 
5826 /**
5827  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5828  *  @cpumask: the cpumask to set
5829  *
5830  *  The low-level workqueues cpumask is a global cpumask that limits
5831  *  the affinity of all unbound workqueues.  This function check the @cpumask
5832  *  and apply it to all unbound workqueues and updates all pwqs of them.
5833  *
5834  *  Return:	0	- Success
5835  *  		-EINVAL	- Invalid @cpumask
5836  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5837  */
5838 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5839 {
5840 	int ret = -EINVAL;
5841 
5842 	/*
5843 	 * Not excluding isolated cpus on purpose.
5844 	 * If the user wishes to include them, we allow that.
5845 	 */
5846 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5847 	if (!cpumask_empty(cpumask)) {
5848 		apply_wqattrs_lock();
5849 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5850 			ret = 0;
5851 			goto out_unlock;
5852 		}
5853 
5854 		ret = workqueue_apply_unbound_cpumask(cpumask);
5855 
5856 out_unlock:
5857 		apply_wqattrs_unlock();
5858 	}
5859 
5860 	return ret;
5861 }
5862 
5863 static int parse_affn_scope(const char *val)
5864 {
5865 	int i;
5866 
5867 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
5868 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
5869 			return i;
5870 	}
5871 	return -EINVAL;
5872 }
5873 
5874 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
5875 {
5876 	struct workqueue_struct *wq;
5877 	int affn, cpu;
5878 
5879 	affn = parse_affn_scope(val);
5880 	if (affn < 0)
5881 		return affn;
5882 	if (affn == WQ_AFFN_DFL)
5883 		return -EINVAL;
5884 
5885 	cpus_read_lock();
5886 	mutex_lock(&wq_pool_mutex);
5887 
5888 	wq_affn_dfl = affn;
5889 
5890 	list_for_each_entry(wq, &workqueues, list) {
5891 		for_each_online_cpu(cpu) {
5892 			wq_update_pod(wq, cpu, cpu, true);
5893 		}
5894 	}
5895 
5896 	mutex_unlock(&wq_pool_mutex);
5897 	cpus_read_unlock();
5898 
5899 	return 0;
5900 }
5901 
5902 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
5903 {
5904 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
5905 }
5906 
5907 static const struct kernel_param_ops wq_affn_dfl_ops = {
5908 	.set	= wq_affn_dfl_set,
5909 	.get	= wq_affn_dfl_get,
5910 };
5911 
5912 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
5913 
5914 #ifdef CONFIG_SYSFS
5915 /*
5916  * Workqueues with WQ_SYSFS flag set is visible to userland via
5917  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5918  * following attributes.
5919  *
5920  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
5921  *  max_active		RW int	: maximum number of in-flight work items
5922  *
5923  * Unbound workqueues have the following extra attributes.
5924  *
5925  *  nice		RW int	: nice value of the workers
5926  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
5927  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
5928  *  affinity_strict	RW bool : worker CPU affinity is strict
5929  */
5930 struct wq_device {
5931 	struct workqueue_struct		*wq;
5932 	struct device			dev;
5933 };
5934 
5935 static struct workqueue_struct *dev_to_wq(struct device *dev)
5936 {
5937 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5938 
5939 	return wq_dev->wq;
5940 }
5941 
5942 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5943 			    char *buf)
5944 {
5945 	struct workqueue_struct *wq = dev_to_wq(dev);
5946 
5947 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5948 }
5949 static DEVICE_ATTR_RO(per_cpu);
5950 
5951 static ssize_t max_active_show(struct device *dev,
5952 			       struct device_attribute *attr, char *buf)
5953 {
5954 	struct workqueue_struct *wq = dev_to_wq(dev);
5955 
5956 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5957 }
5958 
5959 static ssize_t max_active_store(struct device *dev,
5960 				struct device_attribute *attr, const char *buf,
5961 				size_t count)
5962 {
5963 	struct workqueue_struct *wq = dev_to_wq(dev);
5964 	int val;
5965 
5966 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5967 		return -EINVAL;
5968 
5969 	workqueue_set_max_active(wq, val);
5970 	return count;
5971 }
5972 static DEVICE_ATTR_RW(max_active);
5973 
5974 static struct attribute *wq_sysfs_attrs[] = {
5975 	&dev_attr_per_cpu.attr,
5976 	&dev_attr_max_active.attr,
5977 	NULL,
5978 };
5979 ATTRIBUTE_GROUPS(wq_sysfs);
5980 
5981 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5982 			    char *buf)
5983 {
5984 	struct workqueue_struct *wq = dev_to_wq(dev);
5985 	int written;
5986 
5987 	mutex_lock(&wq->mutex);
5988 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5989 	mutex_unlock(&wq->mutex);
5990 
5991 	return written;
5992 }
5993 
5994 /* prepare workqueue_attrs for sysfs store operations */
5995 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5996 {
5997 	struct workqueue_attrs *attrs;
5998 
5999 	lockdep_assert_held(&wq_pool_mutex);
6000 
6001 	attrs = alloc_workqueue_attrs();
6002 	if (!attrs)
6003 		return NULL;
6004 
6005 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
6006 	return attrs;
6007 }
6008 
6009 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6010 			     const char *buf, size_t count)
6011 {
6012 	struct workqueue_struct *wq = dev_to_wq(dev);
6013 	struct workqueue_attrs *attrs;
6014 	int ret = -ENOMEM;
6015 
6016 	apply_wqattrs_lock();
6017 
6018 	attrs = wq_sysfs_prep_attrs(wq);
6019 	if (!attrs)
6020 		goto out_unlock;
6021 
6022 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6023 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6024 		ret = apply_workqueue_attrs_locked(wq, attrs);
6025 	else
6026 		ret = -EINVAL;
6027 
6028 out_unlock:
6029 	apply_wqattrs_unlock();
6030 	free_workqueue_attrs(attrs);
6031 	return ret ?: count;
6032 }
6033 
6034 static ssize_t wq_cpumask_show(struct device *dev,
6035 			       struct device_attribute *attr, char *buf)
6036 {
6037 	struct workqueue_struct *wq = dev_to_wq(dev);
6038 	int written;
6039 
6040 	mutex_lock(&wq->mutex);
6041 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6042 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
6043 	mutex_unlock(&wq->mutex);
6044 	return written;
6045 }
6046 
6047 static ssize_t wq_cpumask_store(struct device *dev,
6048 				struct device_attribute *attr,
6049 				const char *buf, size_t count)
6050 {
6051 	struct workqueue_struct *wq = dev_to_wq(dev);
6052 	struct workqueue_attrs *attrs;
6053 	int ret = -ENOMEM;
6054 
6055 	apply_wqattrs_lock();
6056 
6057 	attrs = wq_sysfs_prep_attrs(wq);
6058 	if (!attrs)
6059 		goto out_unlock;
6060 
6061 	ret = cpumask_parse(buf, attrs->cpumask);
6062 	if (!ret)
6063 		ret = apply_workqueue_attrs_locked(wq, attrs);
6064 
6065 out_unlock:
6066 	apply_wqattrs_unlock();
6067 	free_workqueue_attrs(attrs);
6068 	return ret ?: count;
6069 }
6070 
6071 static ssize_t wq_affn_scope_show(struct device *dev,
6072 				  struct device_attribute *attr, char *buf)
6073 {
6074 	struct workqueue_struct *wq = dev_to_wq(dev);
6075 	int written;
6076 
6077 	mutex_lock(&wq->mutex);
6078 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6079 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
6080 				    wq_affn_names[WQ_AFFN_DFL],
6081 				    wq_affn_names[wq_affn_dfl]);
6082 	else
6083 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
6084 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
6085 	mutex_unlock(&wq->mutex);
6086 
6087 	return written;
6088 }
6089 
6090 static ssize_t wq_affn_scope_store(struct device *dev,
6091 				   struct device_attribute *attr,
6092 				   const char *buf, size_t count)
6093 {
6094 	struct workqueue_struct *wq = dev_to_wq(dev);
6095 	struct workqueue_attrs *attrs;
6096 	int affn, ret = -ENOMEM;
6097 
6098 	affn = parse_affn_scope(buf);
6099 	if (affn < 0)
6100 		return affn;
6101 
6102 	apply_wqattrs_lock();
6103 	attrs = wq_sysfs_prep_attrs(wq);
6104 	if (attrs) {
6105 		attrs->affn_scope = affn;
6106 		ret = apply_workqueue_attrs_locked(wq, attrs);
6107 	}
6108 	apply_wqattrs_unlock();
6109 	free_workqueue_attrs(attrs);
6110 	return ret ?: count;
6111 }
6112 
6113 static ssize_t wq_affinity_strict_show(struct device *dev,
6114 				       struct device_attribute *attr, char *buf)
6115 {
6116 	struct workqueue_struct *wq = dev_to_wq(dev);
6117 
6118 	return scnprintf(buf, PAGE_SIZE, "%d\n",
6119 			 wq->unbound_attrs->affn_strict);
6120 }
6121 
6122 static ssize_t wq_affinity_strict_store(struct device *dev,
6123 					struct device_attribute *attr,
6124 					const char *buf, size_t count)
6125 {
6126 	struct workqueue_struct *wq = dev_to_wq(dev);
6127 	struct workqueue_attrs *attrs;
6128 	int v, ret = -ENOMEM;
6129 
6130 	if (sscanf(buf, "%d", &v) != 1)
6131 		return -EINVAL;
6132 
6133 	apply_wqattrs_lock();
6134 	attrs = wq_sysfs_prep_attrs(wq);
6135 	if (attrs) {
6136 		attrs->affn_strict = (bool)v;
6137 		ret = apply_workqueue_attrs_locked(wq, attrs);
6138 	}
6139 	apply_wqattrs_unlock();
6140 	free_workqueue_attrs(attrs);
6141 	return ret ?: count;
6142 }
6143 
6144 static struct device_attribute wq_sysfs_unbound_attrs[] = {
6145 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6146 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
6147 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
6148 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6149 	__ATTR_NULL,
6150 };
6151 
6152 static struct bus_type wq_subsys = {
6153 	.name				= "workqueue",
6154 	.dev_groups			= wq_sysfs_groups,
6155 };
6156 
6157 static ssize_t wq_unbound_cpumask_show(struct device *dev,
6158 		struct device_attribute *attr, char *buf)
6159 {
6160 	int written;
6161 
6162 	mutex_lock(&wq_pool_mutex);
6163 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6164 			    cpumask_pr_args(wq_unbound_cpumask));
6165 	mutex_unlock(&wq_pool_mutex);
6166 
6167 	return written;
6168 }
6169 
6170 static ssize_t wq_unbound_cpumask_store(struct device *dev,
6171 		struct device_attribute *attr, const char *buf, size_t count)
6172 {
6173 	cpumask_var_t cpumask;
6174 	int ret;
6175 
6176 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6177 		return -ENOMEM;
6178 
6179 	ret = cpumask_parse(buf, cpumask);
6180 	if (!ret)
6181 		ret = workqueue_set_unbound_cpumask(cpumask);
6182 
6183 	free_cpumask_var(cpumask);
6184 	return ret ? ret : count;
6185 }
6186 
6187 static struct device_attribute wq_sysfs_cpumask_attr =
6188 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
6189 	       wq_unbound_cpumask_store);
6190 
6191 static int __init wq_sysfs_init(void)
6192 {
6193 	struct device *dev_root;
6194 	int err;
6195 
6196 	err = subsys_virtual_register(&wq_subsys, NULL);
6197 	if (err)
6198 		return err;
6199 
6200 	dev_root = bus_get_dev_root(&wq_subsys);
6201 	if (dev_root) {
6202 		err = device_create_file(dev_root, &wq_sysfs_cpumask_attr);
6203 		put_device(dev_root);
6204 	}
6205 	return err;
6206 }
6207 core_initcall(wq_sysfs_init);
6208 
6209 static void wq_device_release(struct device *dev)
6210 {
6211 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6212 
6213 	kfree(wq_dev);
6214 }
6215 
6216 /**
6217  * workqueue_sysfs_register - make a workqueue visible in sysfs
6218  * @wq: the workqueue to register
6219  *
6220  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
6221  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
6222  * which is the preferred method.
6223  *
6224  * Workqueue user should use this function directly iff it wants to apply
6225  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
6226  * apply_workqueue_attrs() may race against userland updating the
6227  * attributes.
6228  *
6229  * Return: 0 on success, -errno on failure.
6230  */
6231 int workqueue_sysfs_register(struct workqueue_struct *wq)
6232 {
6233 	struct wq_device *wq_dev;
6234 	int ret;
6235 
6236 	/*
6237 	 * Adjusting max_active or creating new pwqs by applying
6238 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
6239 	 * workqueues.
6240 	 */
6241 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6242 		return -EINVAL;
6243 
6244 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
6245 	if (!wq_dev)
6246 		return -ENOMEM;
6247 
6248 	wq_dev->wq = wq;
6249 	wq_dev->dev.bus = &wq_subsys;
6250 	wq_dev->dev.release = wq_device_release;
6251 	dev_set_name(&wq_dev->dev, "%s", wq->name);
6252 
6253 	/*
6254 	 * unbound_attrs are created separately.  Suppress uevent until
6255 	 * everything is ready.
6256 	 */
6257 	dev_set_uevent_suppress(&wq_dev->dev, true);
6258 
6259 	ret = device_register(&wq_dev->dev);
6260 	if (ret) {
6261 		put_device(&wq_dev->dev);
6262 		wq->wq_dev = NULL;
6263 		return ret;
6264 	}
6265 
6266 	if (wq->flags & WQ_UNBOUND) {
6267 		struct device_attribute *attr;
6268 
6269 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6270 			ret = device_create_file(&wq_dev->dev, attr);
6271 			if (ret) {
6272 				device_unregister(&wq_dev->dev);
6273 				wq->wq_dev = NULL;
6274 				return ret;
6275 			}
6276 		}
6277 	}
6278 
6279 	dev_set_uevent_suppress(&wq_dev->dev, false);
6280 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
6281 	return 0;
6282 }
6283 
6284 /**
6285  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6286  * @wq: the workqueue to unregister
6287  *
6288  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
6289  */
6290 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
6291 {
6292 	struct wq_device *wq_dev = wq->wq_dev;
6293 
6294 	if (!wq->wq_dev)
6295 		return;
6296 
6297 	wq->wq_dev = NULL;
6298 	device_unregister(&wq_dev->dev);
6299 }
6300 #else	/* CONFIG_SYSFS */
6301 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
6302 #endif	/* CONFIG_SYSFS */
6303 
6304 /*
6305  * Workqueue watchdog.
6306  *
6307  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6308  * flush dependency, a concurrency managed work item which stays RUNNING
6309  * indefinitely.  Workqueue stalls can be very difficult to debug as the
6310  * usual warning mechanisms don't trigger and internal workqueue state is
6311  * largely opaque.
6312  *
6313  * Workqueue watchdog monitors all worker pools periodically and dumps
6314  * state if some pools failed to make forward progress for a while where
6315  * forward progress is defined as the first item on ->worklist changing.
6316  *
6317  * This mechanism is controlled through the kernel parameter
6318  * "workqueue.watchdog_thresh" which can be updated at runtime through the
6319  * corresponding sysfs parameter file.
6320  */
6321 #ifdef CONFIG_WQ_WATCHDOG
6322 
6323 static unsigned long wq_watchdog_thresh = 30;
6324 static struct timer_list wq_watchdog_timer;
6325 
6326 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6327 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6328 
6329 /*
6330  * Show workers that might prevent the processing of pending work items.
6331  * The only candidates are CPU-bound workers in the running state.
6332  * Pending work items should be handled by another idle worker
6333  * in all other situations.
6334  */
6335 static void show_cpu_pool_hog(struct worker_pool *pool)
6336 {
6337 	struct worker *worker;
6338 	unsigned long flags;
6339 	int bkt;
6340 
6341 	raw_spin_lock_irqsave(&pool->lock, flags);
6342 
6343 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6344 		if (task_is_running(worker->task)) {
6345 			/*
6346 			 * Defer printing to avoid deadlocks in console
6347 			 * drivers that queue work while holding locks
6348 			 * also taken in their write paths.
6349 			 */
6350 			printk_deferred_enter();
6351 
6352 			pr_info("pool %d:\n", pool->id);
6353 			sched_show_task(worker->task);
6354 
6355 			printk_deferred_exit();
6356 		}
6357 	}
6358 
6359 	raw_spin_unlock_irqrestore(&pool->lock, flags);
6360 }
6361 
6362 static void show_cpu_pools_hogs(void)
6363 {
6364 	struct worker_pool *pool;
6365 	int pi;
6366 
6367 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6368 
6369 	rcu_read_lock();
6370 
6371 	for_each_pool(pool, pi) {
6372 		if (pool->cpu_stall)
6373 			show_cpu_pool_hog(pool);
6374 
6375 	}
6376 
6377 	rcu_read_unlock();
6378 }
6379 
6380 static void wq_watchdog_reset_touched(void)
6381 {
6382 	int cpu;
6383 
6384 	wq_watchdog_touched = jiffies;
6385 	for_each_possible_cpu(cpu)
6386 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6387 }
6388 
6389 static void wq_watchdog_timer_fn(struct timer_list *unused)
6390 {
6391 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6392 	bool lockup_detected = false;
6393 	bool cpu_pool_stall = false;
6394 	unsigned long now = jiffies;
6395 	struct worker_pool *pool;
6396 	int pi;
6397 
6398 	if (!thresh)
6399 		return;
6400 
6401 	rcu_read_lock();
6402 
6403 	for_each_pool(pool, pi) {
6404 		unsigned long pool_ts, touched, ts;
6405 
6406 		pool->cpu_stall = false;
6407 		if (list_empty(&pool->worklist))
6408 			continue;
6409 
6410 		/*
6411 		 * If a virtual machine is stopped by the host it can look to
6412 		 * the watchdog like a stall.
6413 		 */
6414 		kvm_check_and_clear_guest_paused();
6415 
6416 		/* get the latest of pool and touched timestamps */
6417 		if (pool->cpu >= 0)
6418 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6419 		else
6420 			touched = READ_ONCE(wq_watchdog_touched);
6421 		pool_ts = READ_ONCE(pool->watchdog_ts);
6422 
6423 		if (time_after(pool_ts, touched))
6424 			ts = pool_ts;
6425 		else
6426 			ts = touched;
6427 
6428 		/* did we stall? */
6429 		if (time_after(now, ts + thresh)) {
6430 			lockup_detected = true;
6431 			if (pool->cpu >= 0) {
6432 				pool->cpu_stall = true;
6433 				cpu_pool_stall = true;
6434 			}
6435 			pr_emerg("BUG: workqueue lockup - pool");
6436 			pr_cont_pool_info(pool);
6437 			pr_cont(" stuck for %us!\n",
6438 				jiffies_to_msecs(now - pool_ts) / 1000);
6439 		}
6440 
6441 
6442 	}
6443 
6444 	rcu_read_unlock();
6445 
6446 	if (lockup_detected)
6447 		show_all_workqueues();
6448 
6449 	if (cpu_pool_stall)
6450 		show_cpu_pools_hogs();
6451 
6452 	wq_watchdog_reset_touched();
6453 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
6454 }
6455 
6456 notrace void wq_watchdog_touch(int cpu)
6457 {
6458 	if (cpu >= 0)
6459 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6460 
6461 	wq_watchdog_touched = jiffies;
6462 }
6463 
6464 static void wq_watchdog_set_thresh(unsigned long thresh)
6465 {
6466 	wq_watchdog_thresh = 0;
6467 	del_timer_sync(&wq_watchdog_timer);
6468 
6469 	if (thresh) {
6470 		wq_watchdog_thresh = thresh;
6471 		wq_watchdog_reset_touched();
6472 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6473 	}
6474 }
6475 
6476 static int wq_watchdog_param_set_thresh(const char *val,
6477 					const struct kernel_param *kp)
6478 {
6479 	unsigned long thresh;
6480 	int ret;
6481 
6482 	ret = kstrtoul(val, 0, &thresh);
6483 	if (ret)
6484 		return ret;
6485 
6486 	if (system_wq)
6487 		wq_watchdog_set_thresh(thresh);
6488 	else
6489 		wq_watchdog_thresh = thresh;
6490 
6491 	return 0;
6492 }
6493 
6494 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6495 	.set	= wq_watchdog_param_set_thresh,
6496 	.get	= param_get_ulong,
6497 };
6498 
6499 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6500 		0644);
6501 
6502 static void wq_watchdog_init(void)
6503 {
6504 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
6505 	wq_watchdog_set_thresh(wq_watchdog_thresh);
6506 }
6507 
6508 #else	/* CONFIG_WQ_WATCHDOG */
6509 
6510 static inline void wq_watchdog_init(void) { }
6511 
6512 #endif	/* CONFIG_WQ_WATCHDOG */
6513 
6514 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
6515 {
6516 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
6517 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
6518 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
6519 		return;
6520 	}
6521 
6522 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
6523 }
6524 
6525 /**
6526  * workqueue_init_early - early init for workqueue subsystem
6527  *
6528  * This is the first step of three-staged workqueue subsystem initialization and
6529  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
6530  * up. It sets up all the data structures and system workqueues and allows early
6531  * boot code to create workqueues and queue/cancel work items. Actual work item
6532  * execution starts only after kthreads can be created and scheduled right
6533  * before early initcalls.
6534  */
6535 void __init workqueue_init_early(void)
6536 {
6537 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
6538 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6539 	int i, cpu;
6540 
6541 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6542 
6543 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6544 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
6545 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
6546 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
6547 	if (!cpumask_empty(&wq_cmdline_cpumask))
6548 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
6549 
6550 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6551 
6552 	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
6553 	BUG_ON(!wq_update_pod_attrs_buf);
6554 
6555 	/* initialize WQ_AFFN_SYSTEM pods */
6556 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6557 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
6558 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6559 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
6560 
6561 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
6562 
6563 	pt->nr_pods = 1;
6564 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
6565 	pt->pod_node[0] = NUMA_NO_NODE;
6566 	pt->cpu_pod[0] = 0;
6567 
6568 	/* initialize CPU pools */
6569 	for_each_possible_cpu(cpu) {
6570 		struct worker_pool *pool;
6571 
6572 		i = 0;
6573 		for_each_cpu_worker_pool(pool, cpu) {
6574 			BUG_ON(init_worker_pool(pool));
6575 			pool->cpu = cpu;
6576 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6577 			cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
6578 			pool->attrs->nice = std_nice[i++];
6579 			pool->attrs->affn_strict = true;
6580 			pool->node = cpu_to_node(cpu);
6581 
6582 			/* alloc pool ID */
6583 			mutex_lock(&wq_pool_mutex);
6584 			BUG_ON(worker_pool_assign_id(pool));
6585 			mutex_unlock(&wq_pool_mutex);
6586 		}
6587 	}
6588 
6589 	/* create default unbound and ordered wq attrs */
6590 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6591 		struct workqueue_attrs *attrs;
6592 
6593 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6594 		attrs->nice = std_nice[i];
6595 		unbound_std_wq_attrs[i] = attrs;
6596 
6597 		/*
6598 		 * An ordered wq should have only one pwq as ordering is
6599 		 * guaranteed by max_active which is enforced by pwqs.
6600 		 */
6601 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6602 		attrs->nice = std_nice[i];
6603 		attrs->ordered = true;
6604 		ordered_wq_attrs[i] = attrs;
6605 	}
6606 
6607 	system_wq = alloc_workqueue("events", 0, 0);
6608 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6609 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6610 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6611 					    WQ_MAX_ACTIVE);
6612 	system_freezable_wq = alloc_workqueue("events_freezable",
6613 					      WQ_FREEZABLE, 0);
6614 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6615 					      WQ_POWER_EFFICIENT, 0);
6616 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6617 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6618 					      0);
6619 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6620 	       !system_unbound_wq || !system_freezable_wq ||
6621 	       !system_power_efficient_wq ||
6622 	       !system_freezable_power_efficient_wq);
6623 }
6624 
6625 static void __init wq_cpu_intensive_thresh_init(void)
6626 {
6627 	unsigned long thresh;
6628 	unsigned long bogo;
6629 
6630 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
6631 	BUG_ON(IS_ERR(pwq_release_worker));
6632 
6633 	/* if the user set it to a specific value, keep it */
6634 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
6635 		return;
6636 
6637 	/*
6638 	 * The default of 10ms is derived from the fact that most modern (as of
6639 	 * 2023) processors can do a lot in 10ms and that it's just below what
6640 	 * most consider human-perceivable. However, the kernel also runs on a
6641 	 * lot slower CPUs including microcontrollers where the threshold is way
6642 	 * too low.
6643 	 *
6644 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
6645 	 * This is by no means accurate but it doesn't have to be. The mechanism
6646 	 * is still useful even when the threshold is fully scaled up. Also, as
6647 	 * the reports would usually be applicable to everyone, some machines
6648 	 * operating on longer thresholds won't significantly diminish their
6649 	 * usefulness.
6650 	 */
6651 	thresh = 10 * USEC_PER_MSEC;
6652 
6653 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
6654 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
6655 	if (bogo < 4000)
6656 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
6657 
6658 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
6659 		 loops_per_jiffy, bogo, thresh);
6660 
6661 	wq_cpu_intensive_thresh_us = thresh;
6662 }
6663 
6664 /**
6665  * workqueue_init - bring workqueue subsystem fully online
6666  *
6667  * This is the second step of three-staged workqueue subsystem initialization
6668  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
6669  * been created and work items queued on them, but there are no kworkers
6670  * executing the work items yet. Populate the worker pools with the initial
6671  * workers and enable future kworker creations.
6672  */
6673 void __init workqueue_init(void)
6674 {
6675 	struct workqueue_struct *wq;
6676 	struct worker_pool *pool;
6677 	int cpu, bkt;
6678 
6679 	wq_cpu_intensive_thresh_init();
6680 
6681 	mutex_lock(&wq_pool_mutex);
6682 
6683 	/*
6684 	 * Per-cpu pools created earlier could be missing node hint. Fix them
6685 	 * up. Also, create a rescuer for workqueues that requested it.
6686 	 */
6687 	for_each_possible_cpu(cpu) {
6688 		for_each_cpu_worker_pool(pool, cpu) {
6689 			pool->node = cpu_to_node(cpu);
6690 		}
6691 	}
6692 
6693 	list_for_each_entry(wq, &workqueues, list) {
6694 		WARN(init_rescuer(wq),
6695 		     "workqueue: failed to create early rescuer for %s",
6696 		     wq->name);
6697 	}
6698 
6699 	mutex_unlock(&wq_pool_mutex);
6700 
6701 	/* create the initial workers */
6702 	for_each_online_cpu(cpu) {
6703 		for_each_cpu_worker_pool(pool, cpu) {
6704 			pool->flags &= ~POOL_DISASSOCIATED;
6705 			BUG_ON(!create_worker(pool));
6706 		}
6707 	}
6708 
6709 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6710 		BUG_ON(!create_worker(pool));
6711 
6712 	wq_online = true;
6713 	wq_watchdog_init();
6714 }
6715 
6716 /*
6717  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
6718  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
6719  * and consecutive pod ID. The rest of @pt is initialized accordingly.
6720  */
6721 static void __init init_pod_type(struct wq_pod_type *pt,
6722 				 bool (*cpus_share_pod)(int, int))
6723 {
6724 	int cur, pre, cpu, pod;
6725 
6726 	pt->nr_pods = 0;
6727 
6728 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
6729 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6730 	BUG_ON(!pt->cpu_pod);
6731 
6732 	for_each_possible_cpu(cur) {
6733 		for_each_possible_cpu(pre) {
6734 			if (pre >= cur) {
6735 				pt->cpu_pod[cur] = pt->nr_pods++;
6736 				break;
6737 			}
6738 			if (cpus_share_pod(cur, pre)) {
6739 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
6740 				break;
6741 			}
6742 		}
6743 	}
6744 
6745 	/* init the rest to match @pt->cpu_pod[] */
6746 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6747 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
6748 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
6749 
6750 	for (pod = 0; pod < pt->nr_pods; pod++)
6751 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
6752 
6753 	for_each_possible_cpu(cpu) {
6754 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
6755 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
6756 	}
6757 }
6758 
6759 static bool __init cpus_dont_share(int cpu0, int cpu1)
6760 {
6761 	return false;
6762 }
6763 
6764 static bool __init cpus_share_smt(int cpu0, int cpu1)
6765 {
6766 #ifdef CONFIG_SCHED_SMT
6767 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
6768 #else
6769 	return false;
6770 #endif
6771 }
6772 
6773 static bool __init cpus_share_numa(int cpu0, int cpu1)
6774 {
6775 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
6776 }
6777 
6778 /**
6779  * workqueue_init_topology - initialize CPU pods for unbound workqueues
6780  *
6781  * This is the third step of there-staged workqueue subsystem initialization and
6782  * invoked after SMP and topology information are fully initialized. It
6783  * initializes the unbound CPU pods accordingly.
6784  */
6785 void __init workqueue_init_topology(void)
6786 {
6787 	struct workqueue_struct *wq;
6788 	int cpu;
6789 
6790 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
6791 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
6792 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
6793 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
6794 
6795 	mutex_lock(&wq_pool_mutex);
6796 
6797 	/*
6798 	 * Workqueues allocated earlier would have all CPUs sharing the default
6799 	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
6800 	 * combinations to apply per-pod sharing.
6801 	 */
6802 	list_for_each_entry(wq, &workqueues, list) {
6803 		for_each_online_cpu(cpu) {
6804 			wq_update_pod(wq, cpu, cpu, true);
6805 		}
6806 	}
6807 
6808 	mutex_unlock(&wq_pool_mutex);
6809 }
6810 
6811 void __warn_flushing_systemwide_wq(void)
6812 {
6813 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
6814 	dump_stack();
6815 }
6816 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6817 
6818 static int __init workqueue_unbound_cpus_setup(char *str)
6819 {
6820 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
6821 		cpumask_clear(&wq_cmdline_cpumask);
6822 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
6823 	}
6824 
6825 	return 1;
6826 }
6827 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
6828