xref: /openbmc/linux/kernel/workqueue.c (revision 31b90347)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * manager_mutex to avoid changing binding state while
69 	 * create_worker() is in progress.
70 	 */
71 	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
72 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73 	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
74 
75 	/* worker flags */
76 	WORKER_STARTED		= 1 << 0,	/* started */
77 	WORKER_DIE		= 1 << 1,	/* die die die */
78 	WORKER_IDLE		= 1 << 2,	/* is idle */
79 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83 
84 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
85 				  WORKER_UNBOUND | WORKER_REBOUND,
86 
87 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88 
89 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
90 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91 
92 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
93 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
94 
95 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
96 						/* call for help after 10ms
97 						   (min two ticks) */
98 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
99 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
100 
101 	/*
102 	 * Rescue workers are used only on emergencies and shared by
103 	 * all cpus.  Give -20.
104 	 */
105 	RESCUER_NICE_LEVEL	= -20,
106 	HIGHPRI_NICE_LEVEL	= -20,
107 
108 	WQ_NAME_LEN		= 24,
109 };
110 
111 /*
112  * Structure fields follow one of the following exclusion rules.
113  *
114  * I: Modifiable by initialization/destruction paths and read-only for
115  *    everyone else.
116  *
117  * P: Preemption protected.  Disabling preemption is enough and should
118  *    only be modified and accessed from the local cpu.
119  *
120  * L: pool->lock protected.  Access with pool->lock held.
121  *
122  * X: During normal operation, modification requires pool->lock and should
123  *    be done only from local cpu.  Either disabling preemption on local
124  *    cpu or grabbing pool->lock is enough for read access.  If
125  *    POOL_DISASSOCIATED is set, it's identical to L.
126  *
127  * MG: pool->manager_mutex and pool->lock protected.  Writes require both
128  *     locks.  Reads can happen under either lock.
129  *
130  * PL: wq_pool_mutex protected.
131  *
132  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
133  *
134  * WQ: wq->mutex protected.
135  *
136  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
137  *
138  * MD: wq_mayday_lock protected.
139  */
140 
141 /* struct worker is defined in workqueue_internal.h */
142 
143 struct worker_pool {
144 	spinlock_t		lock;		/* the pool lock */
145 	int			cpu;		/* I: the associated cpu */
146 	int			node;		/* I: the associated node ID */
147 	int			id;		/* I: pool ID */
148 	unsigned int		flags;		/* X: flags */
149 
150 	struct list_head	worklist;	/* L: list of pending works */
151 	int			nr_workers;	/* L: total number of workers */
152 
153 	/* nr_idle includes the ones off idle_list for rebinding */
154 	int			nr_idle;	/* L: currently idle ones */
155 
156 	struct list_head	idle_list;	/* X: list of idle workers */
157 	struct timer_list	idle_timer;	/* L: worker idle timeout */
158 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
159 
160 	/* a workers is either on busy_hash or idle_list, or the manager */
161 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
162 						/* L: hash of busy workers */
163 
164 	/* see manage_workers() for details on the two manager mutexes */
165 	struct mutex		manager_arb;	/* manager arbitration */
166 	struct mutex		manager_mutex;	/* manager exclusion */
167 	struct idr		worker_idr;	/* MG: worker IDs and iteration */
168 
169 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
171 	int			refcnt;		/* PL: refcnt for unbound pools */
172 
173 	/*
174 	 * The current concurrency level.  As it's likely to be accessed
175 	 * from other CPUs during try_to_wake_up(), put it in a separate
176 	 * cacheline.
177 	 */
178 	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 
180 	/*
181 	 * Destruction of pool is sched-RCU protected to allow dereferences
182 	 * from get_work_pool().
183 	 */
184 	struct rcu_head		rcu;
185 } ____cacheline_aligned_in_smp;
186 
187 /*
188  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
189  * of work_struct->data are used for flags and the remaining high bits
190  * point to the pwq; thus, pwqs need to be aligned at two's power of the
191  * number of flag bits.
192  */
193 struct pool_workqueue {
194 	struct worker_pool	*pool;		/* I: the associated pool */
195 	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 	int			work_color;	/* L: current color */
197 	int			flush_color;	/* L: flushing color */
198 	int			refcnt;		/* L: reference count */
199 	int			nr_in_flight[WORK_NR_COLORS];
200 						/* L: nr of in_flight works */
201 	int			nr_active;	/* L: nr of active works */
202 	int			max_active;	/* L: max active works */
203 	struct list_head	delayed_works;	/* L: delayed works */
204 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
206 
207 	/*
208 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
209 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
210 	 * itself is also sched-RCU protected so that the first pwq can be
211 	 * determined without grabbing wq->mutex.
212 	 */
213 	struct work_struct	unbound_release_work;
214 	struct rcu_head		rcu;
215 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
216 
217 /*
218  * Structure used to wait for workqueue flush.
219  */
220 struct wq_flusher {
221 	struct list_head	list;		/* WQ: list of flushers */
222 	int			flush_color;	/* WQ: flush color waiting for */
223 	struct completion	done;		/* flush completion */
224 };
225 
226 struct wq_device;
227 
228 /*
229  * The externally visible workqueue.  It relays the issued work items to
230  * the appropriate worker_pool through its pool_workqueues.
231  */
232 struct workqueue_struct {
233 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234 	struct list_head	list;		/* PL: list of all workqueues */
235 
236 	struct mutex		mutex;		/* protects this wq */
237 	int			work_color;	/* WQ: current work color */
238 	int			flush_color;	/* WQ: current flush color */
239 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
241 	struct list_head	flusher_queue;	/* WQ: flush waiters */
242 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243 
244 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 	struct worker		*rescuer;	/* I: rescue worker */
246 
247 	int			nr_drainers;	/* WQ: drain in progress */
248 	int			saved_max_active; /* WQ: saved pwq max_active */
249 
250 	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251 	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252 
253 #ifdef CONFIG_SYSFS
254 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
255 #endif
256 #ifdef CONFIG_LOCKDEP
257 	struct lockdep_map	lockdep_map;
258 #endif
259 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260 
261 	/* hot fields used during command issue, aligned to cacheline */
262 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
263 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
265 };
266 
267 static struct kmem_cache *pwq_cache;
268 
269 static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
270 static cpumask_var_t *wq_numa_possible_cpumask;
271 					/* possible CPUs of each node */
272 
273 static bool wq_disable_numa;
274 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
275 
276 /* see the comment above the definition of WQ_POWER_EFFICIENT */
277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278 static bool wq_power_efficient = true;
279 #else
280 static bool wq_power_efficient;
281 #endif
282 
283 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
284 
285 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
286 
287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
289 
290 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
291 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
292 
293 static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
294 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
295 
296 /* the per-cpu worker pools */
297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
298 				     cpu_worker_pools);
299 
300 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
301 
302 /* PL: hash of all unbound pools keyed by pool->attrs */
303 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
304 
305 /* I: attributes used when instantiating standard unbound pools on demand */
306 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
307 
308 /* I: attributes used when instantiating ordered pools on demand */
309 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
310 
311 struct workqueue_struct *system_wq __read_mostly;
312 EXPORT_SYMBOL(system_wq);
313 struct workqueue_struct *system_highpri_wq __read_mostly;
314 EXPORT_SYMBOL_GPL(system_highpri_wq);
315 struct workqueue_struct *system_long_wq __read_mostly;
316 EXPORT_SYMBOL_GPL(system_long_wq);
317 struct workqueue_struct *system_unbound_wq __read_mostly;
318 EXPORT_SYMBOL_GPL(system_unbound_wq);
319 struct workqueue_struct *system_freezable_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_freezable_wq);
321 struct workqueue_struct *system_power_efficient_wq __read_mostly;
322 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
323 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
324 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
325 
326 static int worker_thread(void *__worker);
327 static void copy_workqueue_attrs(struct workqueue_attrs *to,
328 				 const struct workqueue_attrs *from);
329 
330 #define CREATE_TRACE_POINTS
331 #include <trace/events/workqueue.h>
332 
333 #define assert_rcu_or_pool_mutex()					\
334 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
335 			   lockdep_is_held(&wq_pool_mutex),		\
336 			   "sched RCU or wq_pool_mutex should be held")
337 
338 #define assert_rcu_or_wq_mutex(wq)					\
339 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
340 			   lockdep_is_held(&wq->mutex),			\
341 			   "sched RCU or wq->mutex should be held")
342 
343 #ifdef CONFIG_LOCKDEP
344 #define assert_manager_or_pool_lock(pool)				\
345 	WARN_ONCE(debug_locks &&					\
346 		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
347 		  !lockdep_is_held(&(pool)->lock),			\
348 		  "pool->manager_mutex or ->lock should be held")
349 #else
350 #define assert_manager_or_pool_lock(pool)	do { } while (0)
351 #endif
352 
353 #define for_each_cpu_worker_pool(pool, cpu)				\
354 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
355 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
356 	     (pool)++)
357 
358 /**
359  * for_each_pool - iterate through all worker_pools in the system
360  * @pool: iteration cursor
361  * @pi: integer used for iteration
362  *
363  * This must be called either with wq_pool_mutex held or sched RCU read
364  * locked.  If the pool needs to be used beyond the locking in effect, the
365  * caller is responsible for guaranteeing that the pool stays online.
366  *
367  * The if/else clause exists only for the lockdep assertion and can be
368  * ignored.
369  */
370 #define for_each_pool(pool, pi)						\
371 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
372 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
373 		else
374 
375 /**
376  * for_each_pool_worker - iterate through all workers of a worker_pool
377  * @worker: iteration cursor
378  * @wi: integer used for iteration
379  * @pool: worker_pool to iterate workers of
380  *
381  * This must be called with either @pool->manager_mutex or ->lock held.
382  *
383  * The if/else clause exists only for the lockdep assertion and can be
384  * ignored.
385  */
386 #define for_each_pool_worker(worker, wi, pool)				\
387 	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
388 		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
389 		else
390 
391 /**
392  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
393  * @pwq: iteration cursor
394  * @wq: the target workqueue
395  *
396  * This must be called either with wq->mutex held or sched RCU read locked.
397  * If the pwq needs to be used beyond the locking in effect, the caller is
398  * responsible for guaranteeing that the pwq stays online.
399  *
400  * The if/else clause exists only for the lockdep assertion and can be
401  * ignored.
402  */
403 #define for_each_pwq(pwq, wq)						\
404 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
405 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
406 		else
407 
408 #ifdef CONFIG_DEBUG_OBJECTS_WORK
409 
410 static struct debug_obj_descr work_debug_descr;
411 
412 static void *work_debug_hint(void *addr)
413 {
414 	return ((struct work_struct *) addr)->func;
415 }
416 
417 /*
418  * fixup_init is called when:
419  * - an active object is initialized
420  */
421 static int work_fixup_init(void *addr, enum debug_obj_state state)
422 {
423 	struct work_struct *work = addr;
424 
425 	switch (state) {
426 	case ODEBUG_STATE_ACTIVE:
427 		cancel_work_sync(work);
428 		debug_object_init(work, &work_debug_descr);
429 		return 1;
430 	default:
431 		return 0;
432 	}
433 }
434 
435 /*
436  * fixup_activate is called when:
437  * - an active object is activated
438  * - an unknown object is activated (might be a statically initialized object)
439  */
440 static int work_fixup_activate(void *addr, enum debug_obj_state state)
441 {
442 	struct work_struct *work = addr;
443 
444 	switch (state) {
445 
446 	case ODEBUG_STATE_NOTAVAILABLE:
447 		/*
448 		 * This is not really a fixup. The work struct was
449 		 * statically initialized. We just make sure that it
450 		 * is tracked in the object tracker.
451 		 */
452 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
453 			debug_object_init(work, &work_debug_descr);
454 			debug_object_activate(work, &work_debug_descr);
455 			return 0;
456 		}
457 		WARN_ON_ONCE(1);
458 		return 0;
459 
460 	case ODEBUG_STATE_ACTIVE:
461 		WARN_ON(1);
462 
463 	default:
464 		return 0;
465 	}
466 }
467 
468 /*
469  * fixup_free is called when:
470  * - an active object is freed
471  */
472 static int work_fixup_free(void *addr, enum debug_obj_state state)
473 {
474 	struct work_struct *work = addr;
475 
476 	switch (state) {
477 	case ODEBUG_STATE_ACTIVE:
478 		cancel_work_sync(work);
479 		debug_object_free(work, &work_debug_descr);
480 		return 1;
481 	default:
482 		return 0;
483 	}
484 }
485 
486 static struct debug_obj_descr work_debug_descr = {
487 	.name		= "work_struct",
488 	.debug_hint	= work_debug_hint,
489 	.fixup_init	= work_fixup_init,
490 	.fixup_activate	= work_fixup_activate,
491 	.fixup_free	= work_fixup_free,
492 };
493 
494 static inline void debug_work_activate(struct work_struct *work)
495 {
496 	debug_object_activate(work, &work_debug_descr);
497 }
498 
499 static inline void debug_work_deactivate(struct work_struct *work)
500 {
501 	debug_object_deactivate(work, &work_debug_descr);
502 }
503 
504 void __init_work(struct work_struct *work, int onstack)
505 {
506 	if (onstack)
507 		debug_object_init_on_stack(work, &work_debug_descr);
508 	else
509 		debug_object_init(work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(__init_work);
512 
513 void destroy_work_on_stack(struct work_struct *work)
514 {
515 	debug_object_free(work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
518 
519 #else
520 static inline void debug_work_activate(struct work_struct *work) { }
521 static inline void debug_work_deactivate(struct work_struct *work) { }
522 #endif
523 
524 /**
525  * worker_pool_assign_id - allocate ID and assing it to @pool
526  * @pool: the pool pointer of interest
527  *
528  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529  * successfully, -errno on failure.
530  */
531 static int worker_pool_assign_id(struct worker_pool *pool)
532 {
533 	int ret;
534 
535 	lockdep_assert_held(&wq_pool_mutex);
536 
537 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
538 			GFP_KERNEL);
539 	if (ret >= 0) {
540 		pool->id = ret;
541 		return 0;
542 	}
543 	return ret;
544 }
545 
546 /**
547  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548  * @wq: the target workqueue
549  * @node: the node ID
550  *
551  * This must be called either with pwq_lock held or sched RCU read locked.
552  * If the pwq needs to be used beyond the locking in effect, the caller is
553  * responsible for guaranteeing that the pwq stays online.
554  *
555  * Return: The unbound pool_workqueue for @node.
556  */
557 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
558 						  int node)
559 {
560 	assert_rcu_or_wq_mutex(wq);
561 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
562 }
563 
564 static unsigned int work_color_to_flags(int color)
565 {
566 	return color << WORK_STRUCT_COLOR_SHIFT;
567 }
568 
569 static int get_work_color(struct work_struct *work)
570 {
571 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
572 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
573 }
574 
575 static int work_next_color(int color)
576 {
577 	return (color + 1) % WORK_NR_COLORS;
578 }
579 
580 /*
581  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
582  * contain the pointer to the queued pwq.  Once execution starts, the flag
583  * is cleared and the high bits contain OFFQ flags and pool ID.
584  *
585  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
586  * and clear_work_data() can be used to set the pwq, pool or clear
587  * work->data.  These functions should only be called while the work is
588  * owned - ie. while the PENDING bit is set.
589  *
590  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
591  * corresponding to a work.  Pool is available once the work has been
592  * queued anywhere after initialization until it is sync canceled.  pwq is
593  * available only while the work item is queued.
594  *
595  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
596  * canceled.  While being canceled, a work item may have its PENDING set
597  * but stay off timer and worklist for arbitrarily long and nobody should
598  * try to steal the PENDING bit.
599  */
600 static inline void set_work_data(struct work_struct *work, unsigned long data,
601 				 unsigned long flags)
602 {
603 	WARN_ON_ONCE(!work_pending(work));
604 	atomic_long_set(&work->data, data | flags | work_static(work));
605 }
606 
607 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
608 			 unsigned long extra_flags)
609 {
610 	set_work_data(work, (unsigned long)pwq,
611 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
612 }
613 
614 static void set_work_pool_and_keep_pending(struct work_struct *work,
615 					   int pool_id)
616 {
617 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
618 		      WORK_STRUCT_PENDING);
619 }
620 
621 static void set_work_pool_and_clear_pending(struct work_struct *work,
622 					    int pool_id)
623 {
624 	/*
625 	 * The following wmb is paired with the implied mb in
626 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
627 	 * here are visible to and precede any updates by the next PENDING
628 	 * owner.
629 	 */
630 	smp_wmb();
631 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
632 }
633 
634 static void clear_work_data(struct work_struct *work)
635 {
636 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
637 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
638 }
639 
640 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
641 {
642 	unsigned long data = atomic_long_read(&work->data);
643 
644 	if (data & WORK_STRUCT_PWQ)
645 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
646 	else
647 		return NULL;
648 }
649 
650 /**
651  * get_work_pool - return the worker_pool a given work was associated with
652  * @work: the work item of interest
653  *
654  * Pools are created and destroyed under wq_pool_mutex, and allows read
655  * access under sched-RCU read lock.  As such, this function should be
656  * called under wq_pool_mutex or with preemption disabled.
657  *
658  * All fields of the returned pool are accessible as long as the above
659  * mentioned locking is in effect.  If the returned pool needs to be used
660  * beyond the critical section, the caller is responsible for ensuring the
661  * returned pool is and stays online.
662  *
663  * Return: The worker_pool @work was last associated with.  %NULL if none.
664  */
665 static struct worker_pool *get_work_pool(struct work_struct *work)
666 {
667 	unsigned long data = atomic_long_read(&work->data);
668 	int pool_id;
669 
670 	assert_rcu_or_pool_mutex();
671 
672 	if (data & WORK_STRUCT_PWQ)
673 		return ((struct pool_workqueue *)
674 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
675 
676 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
677 	if (pool_id == WORK_OFFQ_POOL_NONE)
678 		return NULL;
679 
680 	return idr_find(&worker_pool_idr, pool_id);
681 }
682 
683 /**
684  * get_work_pool_id - return the worker pool ID a given work is associated with
685  * @work: the work item of interest
686  *
687  * Return: The worker_pool ID @work was last associated with.
688  * %WORK_OFFQ_POOL_NONE if none.
689  */
690 static int get_work_pool_id(struct work_struct *work)
691 {
692 	unsigned long data = atomic_long_read(&work->data);
693 
694 	if (data & WORK_STRUCT_PWQ)
695 		return ((struct pool_workqueue *)
696 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
697 
698 	return data >> WORK_OFFQ_POOL_SHIFT;
699 }
700 
701 static void mark_work_canceling(struct work_struct *work)
702 {
703 	unsigned long pool_id = get_work_pool_id(work);
704 
705 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
706 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
707 }
708 
709 static bool work_is_canceling(struct work_struct *work)
710 {
711 	unsigned long data = atomic_long_read(&work->data);
712 
713 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
714 }
715 
716 /*
717  * Policy functions.  These define the policies on how the global worker
718  * pools are managed.  Unless noted otherwise, these functions assume that
719  * they're being called with pool->lock held.
720  */
721 
722 static bool __need_more_worker(struct worker_pool *pool)
723 {
724 	return !atomic_read(&pool->nr_running);
725 }
726 
727 /*
728  * Need to wake up a worker?  Called from anything but currently
729  * running workers.
730  *
731  * Note that, because unbound workers never contribute to nr_running, this
732  * function will always return %true for unbound pools as long as the
733  * worklist isn't empty.
734  */
735 static bool need_more_worker(struct worker_pool *pool)
736 {
737 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
738 }
739 
740 /* Can I start working?  Called from busy but !running workers. */
741 static bool may_start_working(struct worker_pool *pool)
742 {
743 	return pool->nr_idle;
744 }
745 
746 /* Do I need to keep working?  Called from currently running workers. */
747 static bool keep_working(struct worker_pool *pool)
748 {
749 	return !list_empty(&pool->worklist) &&
750 		atomic_read(&pool->nr_running) <= 1;
751 }
752 
753 /* Do we need a new worker?  Called from manager. */
754 static bool need_to_create_worker(struct worker_pool *pool)
755 {
756 	return need_more_worker(pool) && !may_start_working(pool);
757 }
758 
759 /* Do I need to be the manager? */
760 static bool need_to_manage_workers(struct worker_pool *pool)
761 {
762 	return need_to_create_worker(pool) ||
763 		(pool->flags & POOL_MANAGE_WORKERS);
764 }
765 
766 /* Do we have too many workers and should some go away? */
767 static bool too_many_workers(struct worker_pool *pool)
768 {
769 	bool managing = mutex_is_locked(&pool->manager_arb);
770 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
771 	int nr_busy = pool->nr_workers - nr_idle;
772 
773 	/*
774 	 * nr_idle and idle_list may disagree if idle rebinding is in
775 	 * progress.  Never return %true if idle_list is empty.
776 	 */
777 	if (list_empty(&pool->idle_list))
778 		return false;
779 
780 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
781 }
782 
783 /*
784  * Wake up functions.
785  */
786 
787 /* Return the first worker.  Safe with preemption disabled */
788 static struct worker *first_worker(struct worker_pool *pool)
789 {
790 	if (unlikely(list_empty(&pool->idle_list)))
791 		return NULL;
792 
793 	return list_first_entry(&pool->idle_list, struct worker, entry);
794 }
795 
796 /**
797  * wake_up_worker - wake up an idle worker
798  * @pool: worker pool to wake worker from
799  *
800  * Wake up the first idle worker of @pool.
801  *
802  * CONTEXT:
803  * spin_lock_irq(pool->lock).
804  */
805 static void wake_up_worker(struct worker_pool *pool)
806 {
807 	struct worker *worker = first_worker(pool);
808 
809 	if (likely(worker))
810 		wake_up_process(worker->task);
811 }
812 
813 /**
814  * wq_worker_waking_up - a worker is waking up
815  * @task: task waking up
816  * @cpu: CPU @task is waking up to
817  *
818  * This function is called during try_to_wake_up() when a worker is
819  * being awoken.
820  *
821  * CONTEXT:
822  * spin_lock_irq(rq->lock)
823  */
824 void wq_worker_waking_up(struct task_struct *task, int cpu)
825 {
826 	struct worker *worker = kthread_data(task);
827 
828 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
829 		WARN_ON_ONCE(worker->pool->cpu != cpu);
830 		atomic_inc(&worker->pool->nr_running);
831 	}
832 }
833 
834 /**
835  * wq_worker_sleeping - a worker is going to sleep
836  * @task: task going to sleep
837  * @cpu: CPU in question, must be the current CPU number
838  *
839  * This function is called during schedule() when a busy worker is
840  * going to sleep.  Worker on the same cpu can be woken up by
841  * returning pointer to its task.
842  *
843  * CONTEXT:
844  * spin_lock_irq(rq->lock)
845  *
846  * Return:
847  * Worker task on @cpu to wake up, %NULL if none.
848  */
849 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
850 {
851 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
852 	struct worker_pool *pool;
853 
854 	/*
855 	 * Rescuers, which may not have all the fields set up like normal
856 	 * workers, also reach here, let's not access anything before
857 	 * checking NOT_RUNNING.
858 	 */
859 	if (worker->flags & WORKER_NOT_RUNNING)
860 		return NULL;
861 
862 	pool = worker->pool;
863 
864 	/* this can only happen on the local cpu */
865 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
866 		return NULL;
867 
868 	/*
869 	 * The counterpart of the following dec_and_test, implied mb,
870 	 * worklist not empty test sequence is in insert_work().
871 	 * Please read comment there.
872 	 *
873 	 * NOT_RUNNING is clear.  This means that we're bound to and
874 	 * running on the local cpu w/ rq lock held and preemption
875 	 * disabled, which in turn means that none else could be
876 	 * manipulating idle_list, so dereferencing idle_list without pool
877 	 * lock is safe.
878 	 */
879 	if (atomic_dec_and_test(&pool->nr_running) &&
880 	    !list_empty(&pool->worklist))
881 		to_wakeup = first_worker(pool);
882 	return to_wakeup ? to_wakeup->task : NULL;
883 }
884 
885 /**
886  * worker_set_flags - set worker flags and adjust nr_running accordingly
887  * @worker: self
888  * @flags: flags to set
889  * @wakeup: wakeup an idle worker if necessary
890  *
891  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
892  * nr_running becomes zero and @wakeup is %true, an idle worker is
893  * woken up.
894  *
895  * CONTEXT:
896  * spin_lock_irq(pool->lock)
897  */
898 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
899 				    bool wakeup)
900 {
901 	struct worker_pool *pool = worker->pool;
902 
903 	WARN_ON_ONCE(worker->task != current);
904 
905 	/*
906 	 * If transitioning into NOT_RUNNING, adjust nr_running and
907 	 * wake up an idle worker as necessary if requested by
908 	 * @wakeup.
909 	 */
910 	if ((flags & WORKER_NOT_RUNNING) &&
911 	    !(worker->flags & WORKER_NOT_RUNNING)) {
912 		if (wakeup) {
913 			if (atomic_dec_and_test(&pool->nr_running) &&
914 			    !list_empty(&pool->worklist))
915 				wake_up_worker(pool);
916 		} else
917 			atomic_dec(&pool->nr_running);
918 	}
919 
920 	worker->flags |= flags;
921 }
922 
923 /**
924  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
925  * @worker: self
926  * @flags: flags to clear
927  *
928  * Clear @flags in @worker->flags and adjust nr_running accordingly.
929  *
930  * CONTEXT:
931  * spin_lock_irq(pool->lock)
932  */
933 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
934 {
935 	struct worker_pool *pool = worker->pool;
936 	unsigned int oflags = worker->flags;
937 
938 	WARN_ON_ONCE(worker->task != current);
939 
940 	worker->flags &= ~flags;
941 
942 	/*
943 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
944 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
945 	 * of multiple flags, not a single flag.
946 	 */
947 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
948 		if (!(worker->flags & WORKER_NOT_RUNNING))
949 			atomic_inc(&pool->nr_running);
950 }
951 
952 /**
953  * find_worker_executing_work - find worker which is executing a work
954  * @pool: pool of interest
955  * @work: work to find worker for
956  *
957  * Find a worker which is executing @work on @pool by searching
958  * @pool->busy_hash which is keyed by the address of @work.  For a worker
959  * to match, its current execution should match the address of @work and
960  * its work function.  This is to avoid unwanted dependency between
961  * unrelated work executions through a work item being recycled while still
962  * being executed.
963  *
964  * This is a bit tricky.  A work item may be freed once its execution
965  * starts and nothing prevents the freed area from being recycled for
966  * another work item.  If the same work item address ends up being reused
967  * before the original execution finishes, workqueue will identify the
968  * recycled work item as currently executing and make it wait until the
969  * current execution finishes, introducing an unwanted dependency.
970  *
971  * This function checks the work item address and work function to avoid
972  * false positives.  Note that this isn't complete as one may construct a
973  * work function which can introduce dependency onto itself through a
974  * recycled work item.  Well, if somebody wants to shoot oneself in the
975  * foot that badly, there's only so much we can do, and if such deadlock
976  * actually occurs, it should be easy to locate the culprit work function.
977  *
978  * CONTEXT:
979  * spin_lock_irq(pool->lock).
980  *
981  * Return:
982  * Pointer to worker which is executing @work if found, %NULL
983  * otherwise.
984  */
985 static struct worker *find_worker_executing_work(struct worker_pool *pool,
986 						 struct work_struct *work)
987 {
988 	struct worker *worker;
989 
990 	hash_for_each_possible(pool->busy_hash, worker, hentry,
991 			       (unsigned long)work)
992 		if (worker->current_work == work &&
993 		    worker->current_func == work->func)
994 			return worker;
995 
996 	return NULL;
997 }
998 
999 /**
1000  * move_linked_works - move linked works to a list
1001  * @work: start of series of works to be scheduled
1002  * @head: target list to append @work to
1003  * @nextp: out paramter for nested worklist walking
1004  *
1005  * Schedule linked works starting from @work to @head.  Work series to
1006  * be scheduled starts at @work and includes any consecutive work with
1007  * WORK_STRUCT_LINKED set in its predecessor.
1008  *
1009  * If @nextp is not NULL, it's updated to point to the next work of
1010  * the last scheduled work.  This allows move_linked_works() to be
1011  * nested inside outer list_for_each_entry_safe().
1012  *
1013  * CONTEXT:
1014  * spin_lock_irq(pool->lock).
1015  */
1016 static void move_linked_works(struct work_struct *work, struct list_head *head,
1017 			      struct work_struct **nextp)
1018 {
1019 	struct work_struct *n;
1020 
1021 	/*
1022 	 * Linked worklist will always end before the end of the list,
1023 	 * use NULL for list head.
1024 	 */
1025 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1026 		list_move_tail(&work->entry, head);
1027 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1028 			break;
1029 	}
1030 
1031 	/*
1032 	 * If we're already inside safe list traversal and have moved
1033 	 * multiple works to the scheduled queue, the next position
1034 	 * needs to be updated.
1035 	 */
1036 	if (nextp)
1037 		*nextp = n;
1038 }
1039 
1040 /**
1041  * get_pwq - get an extra reference on the specified pool_workqueue
1042  * @pwq: pool_workqueue to get
1043  *
1044  * Obtain an extra reference on @pwq.  The caller should guarantee that
1045  * @pwq has positive refcnt and be holding the matching pool->lock.
1046  */
1047 static void get_pwq(struct pool_workqueue *pwq)
1048 {
1049 	lockdep_assert_held(&pwq->pool->lock);
1050 	WARN_ON_ONCE(pwq->refcnt <= 0);
1051 	pwq->refcnt++;
1052 }
1053 
1054 /**
1055  * put_pwq - put a pool_workqueue reference
1056  * @pwq: pool_workqueue to put
1057  *
1058  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1059  * destruction.  The caller should be holding the matching pool->lock.
1060  */
1061 static void put_pwq(struct pool_workqueue *pwq)
1062 {
1063 	lockdep_assert_held(&pwq->pool->lock);
1064 	if (likely(--pwq->refcnt))
1065 		return;
1066 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1067 		return;
1068 	/*
1069 	 * @pwq can't be released under pool->lock, bounce to
1070 	 * pwq_unbound_release_workfn().  This never recurses on the same
1071 	 * pool->lock as this path is taken only for unbound workqueues and
1072 	 * the release work item is scheduled on a per-cpu workqueue.  To
1073 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1074 	 * subclass of 1 in get_unbound_pool().
1075 	 */
1076 	schedule_work(&pwq->unbound_release_work);
1077 }
1078 
1079 /**
1080  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1081  * @pwq: pool_workqueue to put (can be %NULL)
1082  *
1083  * put_pwq() with locking.  This function also allows %NULL @pwq.
1084  */
1085 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1086 {
1087 	if (pwq) {
1088 		/*
1089 		 * As both pwqs and pools are sched-RCU protected, the
1090 		 * following lock operations are safe.
1091 		 */
1092 		spin_lock_irq(&pwq->pool->lock);
1093 		put_pwq(pwq);
1094 		spin_unlock_irq(&pwq->pool->lock);
1095 	}
1096 }
1097 
1098 static void pwq_activate_delayed_work(struct work_struct *work)
1099 {
1100 	struct pool_workqueue *pwq = get_work_pwq(work);
1101 
1102 	trace_workqueue_activate_work(work);
1103 	move_linked_works(work, &pwq->pool->worklist, NULL);
1104 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1105 	pwq->nr_active++;
1106 }
1107 
1108 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1109 {
1110 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1111 						    struct work_struct, entry);
1112 
1113 	pwq_activate_delayed_work(work);
1114 }
1115 
1116 /**
1117  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1118  * @pwq: pwq of interest
1119  * @color: color of work which left the queue
1120  *
1121  * A work either has completed or is removed from pending queue,
1122  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1123  *
1124  * CONTEXT:
1125  * spin_lock_irq(pool->lock).
1126  */
1127 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1128 {
1129 	/* uncolored work items don't participate in flushing or nr_active */
1130 	if (color == WORK_NO_COLOR)
1131 		goto out_put;
1132 
1133 	pwq->nr_in_flight[color]--;
1134 
1135 	pwq->nr_active--;
1136 	if (!list_empty(&pwq->delayed_works)) {
1137 		/* one down, submit a delayed one */
1138 		if (pwq->nr_active < pwq->max_active)
1139 			pwq_activate_first_delayed(pwq);
1140 	}
1141 
1142 	/* is flush in progress and are we at the flushing tip? */
1143 	if (likely(pwq->flush_color != color))
1144 		goto out_put;
1145 
1146 	/* are there still in-flight works? */
1147 	if (pwq->nr_in_flight[color])
1148 		goto out_put;
1149 
1150 	/* this pwq is done, clear flush_color */
1151 	pwq->flush_color = -1;
1152 
1153 	/*
1154 	 * If this was the last pwq, wake up the first flusher.  It
1155 	 * will handle the rest.
1156 	 */
1157 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1158 		complete(&pwq->wq->first_flusher->done);
1159 out_put:
1160 	put_pwq(pwq);
1161 }
1162 
1163 /**
1164  * try_to_grab_pending - steal work item from worklist and disable irq
1165  * @work: work item to steal
1166  * @is_dwork: @work is a delayed_work
1167  * @flags: place to store irq state
1168  *
1169  * Try to grab PENDING bit of @work.  This function can handle @work in any
1170  * stable state - idle, on timer or on worklist.
1171  *
1172  * Return:
1173  *  1		if @work was pending and we successfully stole PENDING
1174  *  0		if @work was idle and we claimed PENDING
1175  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1176  *  -ENOENT	if someone else is canceling @work, this state may persist
1177  *		for arbitrarily long
1178  *
1179  * Note:
1180  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1181  * interrupted while holding PENDING and @work off queue, irq must be
1182  * disabled on entry.  This, combined with delayed_work->timer being
1183  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1184  *
1185  * On successful return, >= 0, irq is disabled and the caller is
1186  * responsible for releasing it using local_irq_restore(*@flags).
1187  *
1188  * This function is safe to call from any context including IRQ handler.
1189  */
1190 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1191 			       unsigned long *flags)
1192 {
1193 	struct worker_pool *pool;
1194 	struct pool_workqueue *pwq;
1195 
1196 	local_irq_save(*flags);
1197 
1198 	/* try to steal the timer if it exists */
1199 	if (is_dwork) {
1200 		struct delayed_work *dwork = to_delayed_work(work);
1201 
1202 		/*
1203 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1204 		 * guaranteed that the timer is not queued anywhere and not
1205 		 * running on the local CPU.
1206 		 */
1207 		if (likely(del_timer(&dwork->timer)))
1208 			return 1;
1209 	}
1210 
1211 	/* try to claim PENDING the normal way */
1212 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1213 		return 0;
1214 
1215 	/*
1216 	 * The queueing is in progress, or it is already queued. Try to
1217 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1218 	 */
1219 	pool = get_work_pool(work);
1220 	if (!pool)
1221 		goto fail;
1222 
1223 	spin_lock(&pool->lock);
1224 	/*
1225 	 * work->data is guaranteed to point to pwq only while the work
1226 	 * item is queued on pwq->wq, and both updating work->data to point
1227 	 * to pwq on queueing and to pool on dequeueing are done under
1228 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1229 	 * points to pwq which is associated with a locked pool, the work
1230 	 * item is currently queued on that pool.
1231 	 */
1232 	pwq = get_work_pwq(work);
1233 	if (pwq && pwq->pool == pool) {
1234 		debug_work_deactivate(work);
1235 
1236 		/*
1237 		 * A delayed work item cannot be grabbed directly because
1238 		 * it might have linked NO_COLOR work items which, if left
1239 		 * on the delayed_list, will confuse pwq->nr_active
1240 		 * management later on and cause stall.  Make sure the work
1241 		 * item is activated before grabbing.
1242 		 */
1243 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1244 			pwq_activate_delayed_work(work);
1245 
1246 		list_del_init(&work->entry);
1247 		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1248 
1249 		/* work->data points to pwq iff queued, point to pool */
1250 		set_work_pool_and_keep_pending(work, pool->id);
1251 
1252 		spin_unlock(&pool->lock);
1253 		return 1;
1254 	}
1255 	spin_unlock(&pool->lock);
1256 fail:
1257 	local_irq_restore(*flags);
1258 	if (work_is_canceling(work))
1259 		return -ENOENT;
1260 	cpu_relax();
1261 	return -EAGAIN;
1262 }
1263 
1264 /**
1265  * insert_work - insert a work into a pool
1266  * @pwq: pwq @work belongs to
1267  * @work: work to insert
1268  * @head: insertion point
1269  * @extra_flags: extra WORK_STRUCT_* flags to set
1270  *
1271  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1272  * work_struct flags.
1273  *
1274  * CONTEXT:
1275  * spin_lock_irq(pool->lock).
1276  */
1277 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1278 			struct list_head *head, unsigned int extra_flags)
1279 {
1280 	struct worker_pool *pool = pwq->pool;
1281 
1282 	/* we own @work, set data and link */
1283 	set_work_pwq(work, pwq, extra_flags);
1284 	list_add_tail(&work->entry, head);
1285 	get_pwq(pwq);
1286 
1287 	/*
1288 	 * Ensure either wq_worker_sleeping() sees the above
1289 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1290 	 * around lazily while there are works to be processed.
1291 	 */
1292 	smp_mb();
1293 
1294 	if (__need_more_worker(pool))
1295 		wake_up_worker(pool);
1296 }
1297 
1298 /*
1299  * Test whether @work is being queued from another work executing on the
1300  * same workqueue.
1301  */
1302 static bool is_chained_work(struct workqueue_struct *wq)
1303 {
1304 	struct worker *worker;
1305 
1306 	worker = current_wq_worker();
1307 	/*
1308 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1309 	 * I'm @worker, it's safe to dereference it without locking.
1310 	 */
1311 	return worker && worker->current_pwq->wq == wq;
1312 }
1313 
1314 static void __queue_work(int cpu, struct workqueue_struct *wq,
1315 			 struct work_struct *work)
1316 {
1317 	struct pool_workqueue *pwq;
1318 	struct worker_pool *last_pool;
1319 	struct list_head *worklist;
1320 	unsigned int work_flags;
1321 	unsigned int req_cpu = cpu;
1322 
1323 	/*
1324 	 * While a work item is PENDING && off queue, a task trying to
1325 	 * steal the PENDING will busy-loop waiting for it to either get
1326 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1327 	 * happen with IRQ disabled.
1328 	 */
1329 	WARN_ON_ONCE(!irqs_disabled());
1330 
1331 	debug_work_activate(work);
1332 
1333 	/* if draining, only works from the same workqueue are allowed */
1334 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1335 	    WARN_ON_ONCE(!is_chained_work(wq)))
1336 		return;
1337 retry:
1338 	if (req_cpu == WORK_CPU_UNBOUND)
1339 		cpu = raw_smp_processor_id();
1340 
1341 	/* pwq which will be used unless @work is executing elsewhere */
1342 	if (!(wq->flags & WQ_UNBOUND))
1343 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1344 	else
1345 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1346 
1347 	/*
1348 	 * If @work was previously on a different pool, it might still be
1349 	 * running there, in which case the work needs to be queued on that
1350 	 * pool to guarantee non-reentrancy.
1351 	 */
1352 	last_pool = get_work_pool(work);
1353 	if (last_pool && last_pool != pwq->pool) {
1354 		struct worker *worker;
1355 
1356 		spin_lock(&last_pool->lock);
1357 
1358 		worker = find_worker_executing_work(last_pool, work);
1359 
1360 		if (worker && worker->current_pwq->wq == wq) {
1361 			pwq = worker->current_pwq;
1362 		} else {
1363 			/* meh... not running there, queue here */
1364 			spin_unlock(&last_pool->lock);
1365 			spin_lock(&pwq->pool->lock);
1366 		}
1367 	} else {
1368 		spin_lock(&pwq->pool->lock);
1369 	}
1370 
1371 	/*
1372 	 * pwq is determined and locked.  For unbound pools, we could have
1373 	 * raced with pwq release and it could already be dead.  If its
1374 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1375 	 * without another pwq replacing it in the numa_pwq_tbl or while
1376 	 * work items are executing on it, so the retrying is guaranteed to
1377 	 * make forward-progress.
1378 	 */
1379 	if (unlikely(!pwq->refcnt)) {
1380 		if (wq->flags & WQ_UNBOUND) {
1381 			spin_unlock(&pwq->pool->lock);
1382 			cpu_relax();
1383 			goto retry;
1384 		}
1385 		/* oops */
1386 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1387 			  wq->name, cpu);
1388 	}
1389 
1390 	/* pwq determined, queue */
1391 	trace_workqueue_queue_work(req_cpu, pwq, work);
1392 
1393 	if (WARN_ON(!list_empty(&work->entry))) {
1394 		spin_unlock(&pwq->pool->lock);
1395 		return;
1396 	}
1397 
1398 	pwq->nr_in_flight[pwq->work_color]++;
1399 	work_flags = work_color_to_flags(pwq->work_color);
1400 
1401 	if (likely(pwq->nr_active < pwq->max_active)) {
1402 		trace_workqueue_activate_work(work);
1403 		pwq->nr_active++;
1404 		worklist = &pwq->pool->worklist;
1405 	} else {
1406 		work_flags |= WORK_STRUCT_DELAYED;
1407 		worklist = &pwq->delayed_works;
1408 	}
1409 
1410 	insert_work(pwq, work, worklist, work_flags);
1411 
1412 	spin_unlock(&pwq->pool->lock);
1413 }
1414 
1415 /**
1416  * queue_work_on - queue work on specific cpu
1417  * @cpu: CPU number to execute work on
1418  * @wq: workqueue to use
1419  * @work: work to queue
1420  *
1421  * We queue the work to a specific CPU, the caller must ensure it
1422  * can't go away.
1423  *
1424  * Return: %false if @work was already on a queue, %true otherwise.
1425  */
1426 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1427 		   struct work_struct *work)
1428 {
1429 	bool ret = false;
1430 	unsigned long flags;
1431 
1432 	local_irq_save(flags);
1433 
1434 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1435 		__queue_work(cpu, wq, work);
1436 		ret = true;
1437 	}
1438 
1439 	local_irq_restore(flags);
1440 	return ret;
1441 }
1442 EXPORT_SYMBOL(queue_work_on);
1443 
1444 void delayed_work_timer_fn(unsigned long __data)
1445 {
1446 	struct delayed_work *dwork = (struct delayed_work *)__data;
1447 
1448 	/* should have been called from irqsafe timer with irq already off */
1449 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1450 }
1451 EXPORT_SYMBOL(delayed_work_timer_fn);
1452 
1453 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1454 				struct delayed_work *dwork, unsigned long delay)
1455 {
1456 	struct timer_list *timer = &dwork->timer;
1457 	struct work_struct *work = &dwork->work;
1458 
1459 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1460 		     timer->data != (unsigned long)dwork);
1461 	WARN_ON_ONCE(timer_pending(timer));
1462 	WARN_ON_ONCE(!list_empty(&work->entry));
1463 
1464 	/*
1465 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1466 	 * both optimization and correctness.  The earliest @timer can
1467 	 * expire is on the closest next tick and delayed_work users depend
1468 	 * on that there's no such delay when @delay is 0.
1469 	 */
1470 	if (!delay) {
1471 		__queue_work(cpu, wq, &dwork->work);
1472 		return;
1473 	}
1474 
1475 	timer_stats_timer_set_start_info(&dwork->timer);
1476 
1477 	dwork->wq = wq;
1478 	dwork->cpu = cpu;
1479 	timer->expires = jiffies + delay;
1480 
1481 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1482 		add_timer_on(timer, cpu);
1483 	else
1484 		add_timer(timer);
1485 }
1486 
1487 /**
1488  * queue_delayed_work_on - queue work on specific CPU after delay
1489  * @cpu: CPU number to execute work on
1490  * @wq: workqueue to use
1491  * @dwork: work to queue
1492  * @delay: number of jiffies to wait before queueing
1493  *
1494  * Return: %false if @work was already on a queue, %true otherwise.  If
1495  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1496  * execution.
1497  */
1498 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1499 			   struct delayed_work *dwork, unsigned long delay)
1500 {
1501 	struct work_struct *work = &dwork->work;
1502 	bool ret = false;
1503 	unsigned long flags;
1504 
1505 	/* read the comment in __queue_work() */
1506 	local_irq_save(flags);
1507 
1508 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1509 		__queue_delayed_work(cpu, wq, dwork, delay);
1510 		ret = true;
1511 	}
1512 
1513 	local_irq_restore(flags);
1514 	return ret;
1515 }
1516 EXPORT_SYMBOL(queue_delayed_work_on);
1517 
1518 /**
1519  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1520  * @cpu: CPU number to execute work on
1521  * @wq: workqueue to use
1522  * @dwork: work to queue
1523  * @delay: number of jiffies to wait before queueing
1524  *
1525  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1526  * modify @dwork's timer so that it expires after @delay.  If @delay is
1527  * zero, @work is guaranteed to be scheduled immediately regardless of its
1528  * current state.
1529  *
1530  * Return: %false if @dwork was idle and queued, %true if @dwork was
1531  * pending and its timer was modified.
1532  *
1533  * This function is safe to call from any context including IRQ handler.
1534  * See try_to_grab_pending() for details.
1535  */
1536 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1537 			 struct delayed_work *dwork, unsigned long delay)
1538 {
1539 	unsigned long flags;
1540 	int ret;
1541 
1542 	do {
1543 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1544 	} while (unlikely(ret == -EAGAIN));
1545 
1546 	if (likely(ret >= 0)) {
1547 		__queue_delayed_work(cpu, wq, dwork, delay);
1548 		local_irq_restore(flags);
1549 	}
1550 
1551 	/* -ENOENT from try_to_grab_pending() becomes %true */
1552 	return ret;
1553 }
1554 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1555 
1556 /**
1557  * worker_enter_idle - enter idle state
1558  * @worker: worker which is entering idle state
1559  *
1560  * @worker is entering idle state.  Update stats and idle timer if
1561  * necessary.
1562  *
1563  * LOCKING:
1564  * spin_lock_irq(pool->lock).
1565  */
1566 static void worker_enter_idle(struct worker *worker)
1567 {
1568 	struct worker_pool *pool = worker->pool;
1569 
1570 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1571 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1572 			 (worker->hentry.next || worker->hentry.pprev)))
1573 		return;
1574 
1575 	/* can't use worker_set_flags(), also called from start_worker() */
1576 	worker->flags |= WORKER_IDLE;
1577 	pool->nr_idle++;
1578 	worker->last_active = jiffies;
1579 
1580 	/* idle_list is LIFO */
1581 	list_add(&worker->entry, &pool->idle_list);
1582 
1583 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1584 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1585 
1586 	/*
1587 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1588 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1589 	 * nr_running, the warning may trigger spuriously.  Check iff
1590 	 * unbind is not in progress.
1591 	 */
1592 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1593 		     pool->nr_workers == pool->nr_idle &&
1594 		     atomic_read(&pool->nr_running));
1595 }
1596 
1597 /**
1598  * worker_leave_idle - leave idle state
1599  * @worker: worker which is leaving idle state
1600  *
1601  * @worker is leaving idle state.  Update stats.
1602  *
1603  * LOCKING:
1604  * spin_lock_irq(pool->lock).
1605  */
1606 static void worker_leave_idle(struct worker *worker)
1607 {
1608 	struct worker_pool *pool = worker->pool;
1609 
1610 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1611 		return;
1612 	worker_clr_flags(worker, WORKER_IDLE);
1613 	pool->nr_idle--;
1614 	list_del_init(&worker->entry);
1615 }
1616 
1617 /**
1618  * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1619  * @pool: target worker_pool
1620  *
1621  * Bind %current to the cpu of @pool if it is associated and lock @pool.
1622  *
1623  * Works which are scheduled while the cpu is online must at least be
1624  * scheduled to a worker which is bound to the cpu so that if they are
1625  * flushed from cpu callbacks while cpu is going down, they are
1626  * guaranteed to execute on the cpu.
1627  *
1628  * This function is to be used by unbound workers and rescuers to bind
1629  * themselves to the target cpu and may race with cpu going down or
1630  * coming online.  kthread_bind() can't be used because it may put the
1631  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1632  * verbatim as it's best effort and blocking and pool may be
1633  * [dis]associated in the meantime.
1634  *
1635  * This function tries set_cpus_allowed() and locks pool and verifies the
1636  * binding against %POOL_DISASSOCIATED which is set during
1637  * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1638  * enters idle state or fetches works without dropping lock, it can
1639  * guarantee the scheduling requirement described in the first paragraph.
1640  *
1641  * CONTEXT:
1642  * Might sleep.  Called without any lock but returns with pool->lock
1643  * held.
1644  *
1645  * Return:
1646  * %true if the associated pool is online (@worker is successfully
1647  * bound), %false if offline.
1648  */
1649 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1650 __acquires(&pool->lock)
1651 {
1652 	while (true) {
1653 		/*
1654 		 * The following call may fail, succeed or succeed
1655 		 * without actually migrating the task to the cpu if
1656 		 * it races with cpu hotunplug operation.  Verify
1657 		 * against POOL_DISASSOCIATED.
1658 		 */
1659 		if (!(pool->flags & POOL_DISASSOCIATED))
1660 			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1661 
1662 		spin_lock_irq(&pool->lock);
1663 		if (pool->flags & POOL_DISASSOCIATED)
1664 			return false;
1665 		if (task_cpu(current) == pool->cpu &&
1666 		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1667 			return true;
1668 		spin_unlock_irq(&pool->lock);
1669 
1670 		/*
1671 		 * We've raced with CPU hot[un]plug.  Give it a breather
1672 		 * and retry migration.  cond_resched() is required here;
1673 		 * otherwise, we might deadlock against cpu_stop trying to
1674 		 * bring down the CPU on non-preemptive kernel.
1675 		 */
1676 		cpu_relax();
1677 		cond_resched();
1678 	}
1679 }
1680 
1681 static struct worker *alloc_worker(void)
1682 {
1683 	struct worker *worker;
1684 
1685 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1686 	if (worker) {
1687 		INIT_LIST_HEAD(&worker->entry);
1688 		INIT_LIST_HEAD(&worker->scheduled);
1689 		/* on creation a worker is in !idle && prep state */
1690 		worker->flags = WORKER_PREP;
1691 	}
1692 	return worker;
1693 }
1694 
1695 /**
1696  * create_worker - create a new workqueue worker
1697  * @pool: pool the new worker will belong to
1698  *
1699  * Create a new worker which is bound to @pool.  The returned worker
1700  * can be started by calling start_worker() or destroyed using
1701  * destroy_worker().
1702  *
1703  * CONTEXT:
1704  * Might sleep.  Does GFP_KERNEL allocations.
1705  *
1706  * Return:
1707  * Pointer to the newly created worker.
1708  */
1709 static struct worker *create_worker(struct worker_pool *pool)
1710 {
1711 	struct worker *worker = NULL;
1712 	int id = -1;
1713 	char id_buf[16];
1714 
1715 	lockdep_assert_held(&pool->manager_mutex);
1716 
1717 	/*
1718 	 * ID is needed to determine kthread name.  Allocate ID first
1719 	 * without installing the pointer.
1720 	 */
1721 	idr_preload(GFP_KERNEL);
1722 	spin_lock_irq(&pool->lock);
1723 
1724 	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1725 
1726 	spin_unlock_irq(&pool->lock);
1727 	idr_preload_end();
1728 	if (id < 0)
1729 		goto fail;
1730 
1731 	worker = alloc_worker();
1732 	if (!worker)
1733 		goto fail;
1734 
1735 	worker->pool = pool;
1736 	worker->id = id;
1737 
1738 	if (pool->cpu >= 0)
1739 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1740 			 pool->attrs->nice < 0  ? "H" : "");
1741 	else
1742 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1743 
1744 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1745 					      "kworker/%s", id_buf);
1746 	if (IS_ERR(worker->task))
1747 		goto fail;
1748 
1749 	set_user_nice(worker->task, pool->attrs->nice);
1750 
1751 	/* prevent userland from meddling with cpumask of workqueue workers */
1752 	worker->task->flags |= PF_NO_SETAFFINITY;
1753 
1754 	/*
1755 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1756 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1757 	 */
1758 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1759 
1760 	/*
1761 	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1762 	 * remains stable across this function.  See the comments above the
1763 	 * flag definition for details.
1764 	 */
1765 	if (pool->flags & POOL_DISASSOCIATED)
1766 		worker->flags |= WORKER_UNBOUND;
1767 
1768 	/* successful, commit the pointer to idr */
1769 	spin_lock_irq(&pool->lock);
1770 	idr_replace(&pool->worker_idr, worker, worker->id);
1771 	spin_unlock_irq(&pool->lock);
1772 
1773 	return worker;
1774 
1775 fail:
1776 	if (id >= 0) {
1777 		spin_lock_irq(&pool->lock);
1778 		idr_remove(&pool->worker_idr, id);
1779 		spin_unlock_irq(&pool->lock);
1780 	}
1781 	kfree(worker);
1782 	return NULL;
1783 }
1784 
1785 /**
1786  * start_worker - start a newly created worker
1787  * @worker: worker to start
1788  *
1789  * Make the pool aware of @worker and start it.
1790  *
1791  * CONTEXT:
1792  * spin_lock_irq(pool->lock).
1793  */
1794 static void start_worker(struct worker *worker)
1795 {
1796 	worker->flags |= WORKER_STARTED;
1797 	worker->pool->nr_workers++;
1798 	worker_enter_idle(worker);
1799 	wake_up_process(worker->task);
1800 }
1801 
1802 /**
1803  * create_and_start_worker - create and start a worker for a pool
1804  * @pool: the target pool
1805  *
1806  * Grab the managership of @pool and create and start a new worker for it.
1807  *
1808  * Return: 0 on success. A negative error code otherwise.
1809  */
1810 static int create_and_start_worker(struct worker_pool *pool)
1811 {
1812 	struct worker *worker;
1813 
1814 	mutex_lock(&pool->manager_mutex);
1815 
1816 	worker = create_worker(pool);
1817 	if (worker) {
1818 		spin_lock_irq(&pool->lock);
1819 		start_worker(worker);
1820 		spin_unlock_irq(&pool->lock);
1821 	}
1822 
1823 	mutex_unlock(&pool->manager_mutex);
1824 
1825 	return worker ? 0 : -ENOMEM;
1826 }
1827 
1828 /**
1829  * destroy_worker - destroy a workqueue worker
1830  * @worker: worker to be destroyed
1831  *
1832  * Destroy @worker and adjust @pool stats accordingly.
1833  *
1834  * CONTEXT:
1835  * spin_lock_irq(pool->lock) which is released and regrabbed.
1836  */
1837 static void destroy_worker(struct worker *worker)
1838 {
1839 	struct worker_pool *pool = worker->pool;
1840 
1841 	lockdep_assert_held(&pool->manager_mutex);
1842 	lockdep_assert_held(&pool->lock);
1843 
1844 	/* sanity check frenzy */
1845 	if (WARN_ON(worker->current_work) ||
1846 	    WARN_ON(!list_empty(&worker->scheduled)))
1847 		return;
1848 
1849 	if (worker->flags & WORKER_STARTED)
1850 		pool->nr_workers--;
1851 	if (worker->flags & WORKER_IDLE)
1852 		pool->nr_idle--;
1853 
1854 	list_del_init(&worker->entry);
1855 	worker->flags |= WORKER_DIE;
1856 
1857 	idr_remove(&pool->worker_idr, worker->id);
1858 
1859 	spin_unlock_irq(&pool->lock);
1860 
1861 	kthread_stop(worker->task);
1862 	kfree(worker);
1863 
1864 	spin_lock_irq(&pool->lock);
1865 }
1866 
1867 static void idle_worker_timeout(unsigned long __pool)
1868 {
1869 	struct worker_pool *pool = (void *)__pool;
1870 
1871 	spin_lock_irq(&pool->lock);
1872 
1873 	if (too_many_workers(pool)) {
1874 		struct worker *worker;
1875 		unsigned long expires;
1876 
1877 		/* idle_list is kept in LIFO order, check the last one */
1878 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1879 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1880 
1881 		if (time_before(jiffies, expires))
1882 			mod_timer(&pool->idle_timer, expires);
1883 		else {
1884 			/* it's been idle for too long, wake up manager */
1885 			pool->flags |= POOL_MANAGE_WORKERS;
1886 			wake_up_worker(pool);
1887 		}
1888 	}
1889 
1890 	spin_unlock_irq(&pool->lock);
1891 }
1892 
1893 static void send_mayday(struct work_struct *work)
1894 {
1895 	struct pool_workqueue *pwq = get_work_pwq(work);
1896 	struct workqueue_struct *wq = pwq->wq;
1897 
1898 	lockdep_assert_held(&wq_mayday_lock);
1899 
1900 	if (!wq->rescuer)
1901 		return;
1902 
1903 	/* mayday mayday mayday */
1904 	if (list_empty(&pwq->mayday_node)) {
1905 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1906 		wake_up_process(wq->rescuer->task);
1907 	}
1908 }
1909 
1910 static void pool_mayday_timeout(unsigned long __pool)
1911 {
1912 	struct worker_pool *pool = (void *)__pool;
1913 	struct work_struct *work;
1914 
1915 	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1916 	spin_lock(&pool->lock);
1917 
1918 	if (need_to_create_worker(pool)) {
1919 		/*
1920 		 * We've been trying to create a new worker but
1921 		 * haven't been successful.  We might be hitting an
1922 		 * allocation deadlock.  Send distress signals to
1923 		 * rescuers.
1924 		 */
1925 		list_for_each_entry(work, &pool->worklist, entry)
1926 			send_mayday(work);
1927 	}
1928 
1929 	spin_unlock(&pool->lock);
1930 	spin_unlock_irq(&wq_mayday_lock);
1931 
1932 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1933 }
1934 
1935 /**
1936  * maybe_create_worker - create a new worker if necessary
1937  * @pool: pool to create a new worker for
1938  *
1939  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1940  * have at least one idle worker on return from this function.  If
1941  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1942  * sent to all rescuers with works scheduled on @pool to resolve
1943  * possible allocation deadlock.
1944  *
1945  * On return, need_to_create_worker() is guaranteed to be %false and
1946  * may_start_working() %true.
1947  *
1948  * LOCKING:
1949  * spin_lock_irq(pool->lock) which may be released and regrabbed
1950  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1951  * manager.
1952  *
1953  * Return:
1954  * %false if no action was taken and pool->lock stayed locked, %true
1955  * otherwise.
1956  */
1957 static bool maybe_create_worker(struct worker_pool *pool)
1958 __releases(&pool->lock)
1959 __acquires(&pool->lock)
1960 {
1961 	if (!need_to_create_worker(pool))
1962 		return false;
1963 restart:
1964 	spin_unlock_irq(&pool->lock);
1965 
1966 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1967 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1968 
1969 	while (true) {
1970 		struct worker *worker;
1971 
1972 		worker = create_worker(pool);
1973 		if (worker) {
1974 			del_timer_sync(&pool->mayday_timer);
1975 			spin_lock_irq(&pool->lock);
1976 			start_worker(worker);
1977 			if (WARN_ON_ONCE(need_to_create_worker(pool)))
1978 				goto restart;
1979 			return true;
1980 		}
1981 
1982 		if (!need_to_create_worker(pool))
1983 			break;
1984 
1985 		__set_current_state(TASK_INTERRUPTIBLE);
1986 		schedule_timeout(CREATE_COOLDOWN);
1987 
1988 		if (!need_to_create_worker(pool))
1989 			break;
1990 	}
1991 
1992 	del_timer_sync(&pool->mayday_timer);
1993 	spin_lock_irq(&pool->lock);
1994 	if (need_to_create_worker(pool))
1995 		goto restart;
1996 	return true;
1997 }
1998 
1999 /**
2000  * maybe_destroy_worker - destroy workers which have been idle for a while
2001  * @pool: pool to destroy workers for
2002  *
2003  * Destroy @pool workers which have been idle for longer than
2004  * IDLE_WORKER_TIMEOUT.
2005  *
2006  * LOCKING:
2007  * spin_lock_irq(pool->lock) which may be released and regrabbed
2008  * multiple times.  Called only from manager.
2009  *
2010  * Return:
2011  * %false if no action was taken and pool->lock stayed locked, %true
2012  * otherwise.
2013  */
2014 static bool maybe_destroy_workers(struct worker_pool *pool)
2015 {
2016 	bool ret = false;
2017 
2018 	while (too_many_workers(pool)) {
2019 		struct worker *worker;
2020 		unsigned long expires;
2021 
2022 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2023 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2024 
2025 		if (time_before(jiffies, expires)) {
2026 			mod_timer(&pool->idle_timer, expires);
2027 			break;
2028 		}
2029 
2030 		destroy_worker(worker);
2031 		ret = true;
2032 	}
2033 
2034 	return ret;
2035 }
2036 
2037 /**
2038  * manage_workers - manage worker pool
2039  * @worker: self
2040  *
2041  * Assume the manager role and manage the worker pool @worker belongs
2042  * to.  At any given time, there can be only zero or one manager per
2043  * pool.  The exclusion is handled automatically by this function.
2044  *
2045  * The caller can safely start processing works on false return.  On
2046  * true return, it's guaranteed that need_to_create_worker() is false
2047  * and may_start_working() is true.
2048  *
2049  * CONTEXT:
2050  * spin_lock_irq(pool->lock) which may be released and regrabbed
2051  * multiple times.  Does GFP_KERNEL allocations.
2052  *
2053  * Return:
2054  * %false if the pool don't need management and the caller can safely start
2055  * processing works, %true indicates that the function released pool->lock
2056  * and reacquired it to perform some management function and that the
2057  * conditions that the caller verified while holding the lock before
2058  * calling the function might no longer be true.
2059  */
2060 static bool manage_workers(struct worker *worker)
2061 {
2062 	struct worker_pool *pool = worker->pool;
2063 	bool ret = false;
2064 
2065 	/*
2066 	 * Managership is governed by two mutexes - manager_arb and
2067 	 * manager_mutex.  manager_arb handles arbitration of manager role.
2068 	 * Anyone who successfully grabs manager_arb wins the arbitration
2069 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
2070 	 * failure while holding pool->lock reliably indicates that someone
2071 	 * else is managing the pool and the worker which failed trylock
2072 	 * can proceed to executing work items.  This means that anyone
2073 	 * grabbing manager_arb is responsible for actually performing
2074 	 * manager duties.  If manager_arb is grabbed and released without
2075 	 * actual management, the pool may stall indefinitely.
2076 	 *
2077 	 * manager_mutex is used for exclusion of actual management
2078 	 * operations.  The holder of manager_mutex can be sure that none
2079 	 * of management operations, including creation and destruction of
2080 	 * workers, won't take place until the mutex is released.  Because
2081 	 * manager_mutex doesn't interfere with manager role arbitration,
2082 	 * it is guaranteed that the pool's management, while may be
2083 	 * delayed, won't be disturbed by someone else grabbing
2084 	 * manager_mutex.
2085 	 */
2086 	if (!mutex_trylock(&pool->manager_arb))
2087 		return ret;
2088 
2089 	/*
2090 	 * With manager arbitration won, manager_mutex would be free in
2091 	 * most cases.  trylock first without dropping @pool->lock.
2092 	 */
2093 	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2094 		spin_unlock_irq(&pool->lock);
2095 		mutex_lock(&pool->manager_mutex);
2096 		spin_lock_irq(&pool->lock);
2097 		ret = true;
2098 	}
2099 
2100 	pool->flags &= ~POOL_MANAGE_WORKERS;
2101 
2102 	/*
2103 	 * Destroy and then create so that may_start_working() is true
2104 	 * on return.
2105 	 */
2106 	ret |= maybe_destroy_workers(pool);
2107 	ret |= maybe_create_worker(pool);
2108 
2109 	mutex_unlock(&pool->manager_mutex);
2110 	mutex_unlock(&pool->manager_arb);
2111 	return ret;
2112 }
2113 
2114 /**
2115  * process_one_work - process single work
2116  * @worker: self
2117  * @work: work to process
2118  *
2119  * Process @work.  This function contains all the logics necessary to
2120  * process a single work including synchronization against and
2121  * interaction with other workers on the same cpu, queueing and
2122  * flushing.  As long as context requirement is met, any worker can
2123  * call this function to process a work.
2124  *
2125  * CONTEXT:
2126  * spin_lock_irq(pool->lock) which is released and regrabbed.
2127  */
2128 static void process_one_work(struct worker *worker, struct work_struct *work)
2129 __releases(&pool->lock)
2130 __acquires(&pool->lock)
2131 {
2132 	struct pool_workqueue *pwq = get_work_pwq(work);
2133 	struct worker_pool *pool = worker->pool;
2134 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2135 	int work_color;
2136 	struct worker *collision;
2137 #ifdef CONFIG_LOCKDEP
2138 	/*
2139 	 * It is permissible to free the struct work_struct from
2140 	 * inside the function that is called from it, this we need to
2141 	 * take into account for lockdep too.  To avoid bogus "held
2142 	 * lock freed" warnings as well as problems when looking into
2143 	 * work->lockdep_map, make a copy and use that here.
2144 	 */
2145 	struct lockdep_map lockdep_map;
2146 
2147 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2148 #endif
2149 	/*
2150 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2151 	 * necessary to avoid spurious warnings from rescuers servicing the
2152 	 * unbound or a disassociated pool.
2153 	 */
2154 	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2155 		     !(pool->flags & POOL_DISASSOCIATED) &&
2156 		     raw_smp_processor_id() != pool->cpu);
2157 
2158 	/*
2159 	 * A single work shouldn't be executed concurrently by
2160 	 * multiple workers on a single cpu.  Check whether anyone is
2161 	 * already processing the work.  If so, defer the work to the
2162 	 * currently executing one.
2163 	 */
2164 	collision = find_worker_executing_work(pool, work);
2165 	if (unlikely(collision)) {
2166 		move_linked_works(work, &collision->scheduled, NULL);
2167 		return;
2168 	}
2169 
2170 	/* claim and dequeue */
2171 	debug_work_deactivate(work);
2172 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2173 	worker->current_work = work;
2174 	worker->current_func = work->func;
2175 	worker->current_pwq = pwq;
2176 	work_color = get_work_color(work);
2177 
2178 	list_del_init(&work->entry);
2179 
2180 	/*
2181 	 * CPU intensive works don't participate in concurrency
2182 	 * management.  They're the scheduler's responsibility.
2183 	 */
2184 	if (unlikely(cpu_intensive))
2185 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2186 
2187 	/*
2188 	 * Unbound pool isn't concurrency managed and work items should be
2189 	 * executed ASAP.  Wake up another worker if necessary.
2190 	 */
2191 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2192 		wake_up_worker(pool);
2193 
2194 	/*
2195 	 * Record the last pool and clear PENDING which should be the last
2196 	 * update to @work.  Also, do this inside @pool->lock so that
2197 	 * PENDING and queued state changes happen together while IRQ is
2198 	 * disabled.
2199 	 */
2200 	set_work_pool_and_clear_pending(work, pool->id);
2201 
2202 	spin_unlock_irq(&pool->lock);
2203 
2204 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2205 	lock_map_acquire(&lockdep_map);
2206 	trace_workqueue_execute_start(work);
2207 	worker->current_func(work);
2208 	/*
2209 	 * While we must be careful to not use "work" after this, the trace
2210 	 * point will only record its address.
2211 	 */
2212 	trace_workqueue_execute_end(work);
2213 	lock_map_release(&lockdep_map);
2214 	lock_map_release(&pwq->wq->lockdep_map);
2215 
2216 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2217 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2218 		       "     last function: %pf\n",
2219 		       current->comm, preempt_count(), task_pid_nr(current),
2220 		       worker->current_func);
2221 		debug_show_held_locks(current);
2222 		dump_stack();
2223 	}
2224 
2225 	/*
2226 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2227 	 * kernels, where a requeueing work item waiting for something to
2228 	 * happen could deadlock with stop_machine as such work item could
2229 	 * indefinitely requeue itself while all other CPUs are trapped in
2230 	 * stop_machine.
2231 	 */
2232 	cond_resched();
2233 
2234 	spin_lock_irq(&pool->lock);
2235 
2236 	/* clear cpu intensive status */
2237 	if (unlikely(cpu_intensive))
2238 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2239 
2240 	/* we're done with it, release */
2241 	hash_del(&worker->hentry);
2242 	worker->current_work = NULL;
2243 	worker->current_func = NULL;
2244 	worker->current_pwq = NULL;
2245 	worker->desc_valid = false;
2246 	pwq_dec_nr_in_flight(pwq, work_color);
2247 }
2248 
2249 /**
2250  * process_scheduled_works - process scheduled works
2251  * @worker: self
2252  *
2253  * Process all scheduled works.  Please note that the scheduled list
2254  * may change while processing a work, so this function repeatedly
2255  * fetches a work from the top and executes it.
2256  *
2257  * CONTEXT:
2258  * spin_lock_irq(pool->lock) which may be released and regrabbed
2259  * multiple times.
2260  */
2261 static void process_scheduled_works(struct worker *worker)
2262 {
2263 	while (!list_empty(&worker->scheduled)) {
2264 		struct work_struct *work = list_first_entry(&worker->scheduled,
2265 						struct work_struct, entry);
2266 		process_one_work(worker, work);
2267 	}
2268 }
2269 
2270 /**
2271  * worker_thread - the worker thread function
2272  * @__worker: self
2273  *
2274  * The worker thread function.  All workers belong to a worker_pool -
2275  * either a per-cpu one or dynamic unbound one.  These workers process all
2276  * work items regardless of their specific target workqueue.  The only
2277  * exception is work items which belong to workqueues with a rescuer which
2278  * will be explained in rescuer_thread().
2279  *
2280  * Return: 0
2281  */
2282 static int worker_thread(void *__worker)
2283 {
2284 	struct worker *worker = __worker;
2285 	struct worker_pool *pool = worker->pool;
2286 
2287 	/* tell the scheduler that this is a workqueue worker */
2288 	worker->task->flags |= PF_WQ_WORKER;
2289 woke_up:
2290 	spin_lock_irq(&pool->lock);
2291 
2292 	/* am I supposed to die? */
2293 	if (unlikely(worker->flags & WORKER_DIE)) {
2294 		spin_unlock_irq(&pool->lock);
2295 		WARN_ON_ONCE(!list_empty(&worker->entry));
2296 		worker->task->flags &= ~PF_WQ_WORKER;
2297 		return 0;
2298 	}
2299 
2300 	worker_leave_idle(worker);
2301 recheck:
2302 	/* no more worker necessary? */
2303 	if (!need_more_worker(pool))
2304 		goto sleep;
2305 
2306 	/* do we need to manage? */
2307 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2308 		goto recheck;
2309 
2310 	/*
2311 	 * ->scheduled list can only be filled while a worker is
2312 	 * preparing to process a work or actually processing it.
2313 	 * Make sure nobody diddled with it while I was sleeping.
2314 	 */
2315 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2316 
2317 	/*
2318 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2319 	 * worker or that someone else has already assumed the manager
2320 	 * role.  This is where @worker starts participating in concurrency
2321 	 * management if applicable and concurrency management is restored
2322 	 * after being rebound.  See rebind_workers() for details.
2323 	 */
2324 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2325 
2326 	do {
2327 		struct work_struct *work =
2328 			list_first_entry(&pool->worklist,
2329 					 struct work_struct, entry);
2330 
2331 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2332 			/* optimization path, not strictly necessary */
2333 			process_one_work(worker, work);
2334 			if (unlikely(!list_empty(&worker->scheduled)))
2335 				process_scheduled_works(worker);
2336 		} else {
2337 			move_linked_works(work, &worker->scheduled, NULL);
2338 			process_scheduled_works(worker);
2339 		}
2340 	} while (keep_working(pool));
2341 
2342 	worker_set_flags(worker, WORKER_PREP, false);
2343 sleep:
2344 	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2345 		goto recheck;
2346 
2347 	/*
2348 	 * pool->lock is held and there's no work to process and no need to
2349 	 * manage, sleep.  Workers are woken up only while holding
2350 	 * pool->lock or from local cpu, so setting the current state
2351 	 * before releasing pool->lock is enough to prevent losing any
2352 	 * event.
2353 	 */
2354 	worker_enter_idle(worker);
2355 	__set_current_state(TASK_INTERRUPTIBLE);
2356 	spin_unlock_irq(&pool->lock);
2357 	schedule();
2358 	goto woke_up;
2359 }
2360 
2361 /**
2362  * rescuer_thread - the rescuer thread function
2363  * @__rescuer: self
2364  *
2365  * Workqueue rescuer thread function.  There's one rescuer for each
2366  * workqueue which has WQ_MEM_RECLAIM set.
2367  *
2368  * Regular work processing on a pool may block trying to create a new
2369  * worker which uses GFP_KERNEL allocation which has slight chance of
2370  * developing into deadlock if some works currently on the same queue
2371  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2372  * the problem rescuer solves.
2373  *
2374  * When such condition is possible, the pool summons rescuers of all
2375  * workqueues which have works queued on the pool and let them process
2376  * those works so that forward progress can be guaranteed.
2377  *
2378  * This should happen rarely.
2379  *
2380  * Return: 0
2381  */
2382 static int rescuer_thread(void *__rescuer)
2383 {
2384 	struct worker *rescuer = __rescuer;
2385 	struct workqueue_struct *wq = rescuer->rescue_wq;
2386 	struct list_head *scheduled = &rescuer->scheduled;
2387 
2388 	set_user_nice(current, RESCUER_NICE_LEVEL);
2389 
2390 	/*
2391 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2392 	 * doesn't participate in concurrency management.
2393 	 */
2394 	rescuer->task->flags |= PF_WQ_WORKER;
2395 repeat:
2396 	set_current_state(TASK_INTERRUPTIBLE);
2397 
2398 	if (kthread_should_stop()) {
2399 		__set_current_state(TASK_RUNNING);
2400 		rescuer->task->flags &= ~PF_WQ_WORKER;
2401 		return 0;
2402 	}
2403 
2404 	/* see whether any pwq is asking for help */
2405 	spin_lock_irq(&wq_mayday_lock);
2406 
2407 	while (!list_empty(&wq->maydays)) {
2408 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2409 					struct pool_workqueue, mayday_node);
2410 		struct worker_pool *pool = pwq->pool;
2411 		struct work_struct *work, *n;
2412 
2413 		__set_current_state(TASK_RUNNING);
2414 		list_del_init(&pwq->mayday_node);
2415 
2416 		spin_unlock_irq(&wq_mayday_lock);
2417 
2418 		/* migrate to the target cpu if possible */
2419 		worker_maybe_bind_and_lock(pool);
2420 		rescuer->pool = pool;
2421 
2422 		/*
2423 		 * Slurp in all works issued via this workqueue and
2424 		 * process'em.
2425 		 */
2426 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2427 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2428 			if (get_work_pwq(work) == pwq)
2429 				move_linked_works(work, scheduled, &n);
2430 
2431 		process_scheduled_works(rescuer);
2432 
2433 		/*
2434 		 * Leave this pool.  If keep_working() is %true, notify a
2435 		 * regular worker; otherwise, we end up with 0 concurrency
2436 		 * and stalling the execution.
2437 		 */
2438 		if (keep_working(pool))
2439 			wake_up_worker(pool);
2440 
2441 		rescuer->pool = NULL;
2442 		spin_unlock(&pool->lock);
2443 		spin_lock(&wq_mayday_lock);
2444 	}
2445 
2446 	spin_unlock_irq(&wq_mayday_lock);
2447 
2448 	/* rescuers should never participate in concurrency management */
2449 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2450 	schedule();
2451 	goto repeat;
2452 }
2453 
2454 struct wq_barrier {
2455 	struct work_struct	work;
2456 	struct completion	done;
2457 };
2458 
2459 static void wq_barrier_func(struct work_struct *work)
2460 {
2461 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2462 	complete(&barr->done);
2463 }
2464 
2465 /**
2466  * insert_wq_barrier - insert a barrier work
2467  * @pwq: pwq to insert barrier into
2468  * @barr: wq_barrier to insert
2469  * @target: target work to attach @barr to
2470  * @worker: worker currently executing @target, NULL if @target is not executing
2471  *
2472  * @barr is linked to @target such that @barr is completed only after
2473  * @target finishes execution.  Please note that the ordering
2474  * guarantee is observed only with respect to @target and on the local
2475  * cpu.
2476  *
2477  * Currently, a queued barrier can't be canceled.  This is because
2478  * try_to_grab_pending() can't determine whether the work to be
2479  * grabbed is at the head of the queue and thus can't clear LINKED
2480  * flag of the previous work while there must be a valid next work
2481  * after a work with LINKED flag set.
2482  *
2483  * Note that when @worker is non-NULL, @target may be modified
2484  * underneath us, so we can't reliably determine pwq from @target.
2485  *
2486  * CONTEXT:
2487  * spin_lock_irq(pool->lock).
2488  */
2489 static void insert_wq_barrier(struct pool_workqueue *pwq,
2490 			      struct wq_barrier *barr,
2491 			      struct work_struct *target, struct worker *worker)
2492 {
2493 	struct list_head *head;
2494 	unsigned int linked = 0;
2495 
2496 	/*
2497 	 * debugobject calls are safe here even with pool->lock locked
2498 	 * as we know for sure that this will not trigger any of the
2499 	 * checks and call back into the fixup functions where we
2500 	 * might deadlock.
2501 	 */
2502 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2503 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2504 	init_completion(&barr->done);
2505 
2506 	/*
2507 	 * If @target is currently being executed, schedule the
2508 	 * barrier to the worker; otherwise, put it after @target.
2509 	 */
2510 	if (worker)
2511 		head = worker->scheduled.next;
2512 	else {
2513 		unsigned long *bits = work_data_bits(target);
2514 
2515 		head = target->entry.next;
2516 		/* there can already be other linked works, inherit and set */
2517 		linked = *bits & WORK_STRUCT_LINKED;
2518 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2519 	}
2520 
2521 	debug_work_activate(&barr->work);
2522 	insert_work(pwq, &barr->work, head,
2523 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2524 }
2525 
2526 /**
2527  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2528  * @wq: workqueue being flushed
2529  * @flush_color: new flush color, < 0 for no-op
2530  * @work_color: new work color, < 0 for no-op
2531  *
2532  * Prepare pwqs for workqueue flushing.
2533  *
2534  * If @flush_color is non-negative, flush_color on all pwqs should be
2535  * -1.  If no pwq has in-flight commands at the specified color, all
2536  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2537  * has in flight commands, its pwq->flush_color is set to
2538  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2539  * wakeup logic is armed and %true is returned.
2540  *
2541  * The caller should have initialized @wq->first_flusher prior to
2542  * calling this function with non-negative @flush_color.  If
2543  * @flush_color is negative, no flush color update is done and %false
2544  * is returned.
2545  *
2546  * If @work_color is non-negative, all pwqs should have the same
2547  * work_color which is previous to @work_color and all will be
2548  * advanced to @work_color.
2549  *
2550  * CONTEXT:
2551  * mutex_lock(wq->mutex).
2552  *
2553  * Return:
2554  * %true if @flush_color >= 0 and there's something to flush.  %false
2555  * otherwise.
2556  */
2557 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2558 				      int flush_color, int work_color)
2559 {
2560 	bool wait = false;
2561 	struct pool_workqueue *pwq;
2562 
2563 	if (flush_color >= 0) {
2564 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2565 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2566 	}
2567 
2568 	for_each_pwq(pwq, wq) {
2569 		struct worker_pool *pool = pwq->pool;
2570 
2571 		spin_lock_irq(&pool->lock);
2572 
2573 		if (flush_color >= 0) {
2574 			WARN_ON_ONCE(pwq->flush_color != -1);
2575 
2576 			if (pwq->nr_in_flight[flush_color]) {
2577 				pwq->flush_color = flush_color;
2578 				atomic_inc(&wq->nr_pwqs_to_flush);
2579 				wait = true;
2580 			}
2581 		}
2582 
2583 		if (work_color >= 0) {
2584 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2585 			pwq->work_color = work_color;
2586 		}
2587 
2588 		spin_unlock_irq(&pool->lock);
2589 	}
2590 
2591 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2592 		complete(&wq->first_flusher->done);
2593 
2594 	return wait;
2595 }
2596 
2597 /**
2598  * flush_workqueue - ensure that any scheduled work has run to completion.
2599  * @wq: workqueue to flush
2600  *
2601  * This function sleeps until all work items which were queued on entry
2602  * have finished execution, but it is not livelocked by new incoming ones.
2603  */
2604 void flush_workqueue(struct workqueue_struct *wq)
2605 {
2606 	struct wq_flusher this_flusher = {
2607 		.list = LIST_HEAD_INIT(this_flusher.list),
2608 		.flush_color = -1,
2609 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2610 	};
2611 	int next_color;
2612 
2613 	lock_map_acquire(&wq->lockdep_map);
2614 	lock_map_release(&wq->lockdep_map);
2615 
2616 	mutex_lock(&wq->mutex);
2617 
2618 	/*
2619 	 * Start-to-wait phase
2620 	 */
2621 	next_color = work_next_color(wq->work_color);
2622 
2623 	if (next_color != wq->flush_color) {
2624 		/*
2625 		 * Color space is not full.  The current work_color
2626 		 * becomes our flush_color and work_color is advanced
2627 		 * by one.
2628 		 */
2629 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2630 		this_flusher.flush_color = wq->work_color;
2631 		wq->work_color = next_color;
2632 
2633 		if (!wq->first_flusher) {
2634 			/* no flush in progress, become the first flusher */
2635 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2636 
2637 			wq->first_flusher = &this_flusher;
2638 
2639 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2640 						       wq->work_color)) {
2641 				/* nothing to flush, done */
2642 				wq->flush_color = next_color;
2643 				wq->first_flusher = NULL;
2644 				goto out_unlock;
2645 			}
2646 		} else {
2647 			/* wait in queue */
2648 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2649 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2650 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2651 		}
2652 	} else {
2653 		/*
2654 		 * Oops, color space is full, wait on overflow queue.
2655 		 * The next flush completion will assign us
2656 		 * flush_color and transfer to flusher_queue.
2657 		 */
2658 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2659 	}
2660 
2661 	mutex_unlock(&wq->mutex);
2662 
2663 	wait_for_completion(&this_flusher.done);
2664 
2665 	/*
2666 	 * Wake-up-and-cascade phase
2667 	 *
2668 	 * First flushers are responsible for cascading flushes and
2669 	 * handling overflow.  Non-first flushers can simply return.
2670 	 */
2671 	if (wq->first_flusher != &this_flusher)
2672 		return;
2673 
2674 	mutex_lock(&wq->mutex);
2675 
2676 	/* we might have raced, check again with mutex held */
2677 	if (wq->first_flusher != &this_flusher)
2678 		goto out_unlock;
2679 
2680 	wq->first_flusher = NULL;
2681 
2682 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2683 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2684 
2685 	while (true) {
2686 		struct wq_flusher *next, *tmp;
2687 
2688 		/* complete all the flushers sharing the current flush color */
2689 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2690 			if (next->flush_color != wq->flush_color)
2691 				break;
2692 			list_del_init(&next->list);
2693 			complete(&next->done);
2694 		}
2695 
2696 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2697 			     wq->flush_color != work_next_color(wq->work_color));
2698 
2699 		/* this flush_color is finished, advance by one */
2700 		wq->flush_color = work_next_color(wq->flush_color);
2701 
2702 		/* one color has been freed, handle overflow queue */
2703 		if (!list_empty(&wq->flusher_overflow)) {
2704 			/*
2705 			 * Assign the same color to all overflowed
2706 			 * flushers, advance work_color and append to
2707 			 * flusher_queue.  This is the start-to-wait
2708 			 * phase for these overflowed flushers.
2709 			 */
2710 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2711 				tmp->flush_color = wq->work_color;
2712 
2713 			wq->work_color = work_next_color(wq->work_color);
2714 
2715 			list_splice_tail_init(&wq->flusher_overflow,
2716 					      &wq->flusher_queue);
2717 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2718 		}
2719 
2720 		if (list_empty(&wq->flusher_queue)) {
2721 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2722 			break;
2723 		}
2724 
2725 		/*
2726 		 * Need to flush more colors.  Make the next flusher
2727 		 * the new first flusher and arm pwqs.
2728 		 */
2729 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2730 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2731 
2732 		list_del_init(&next->list);
2733 		wq->first_flusher = next;
2734 
2735 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2736 			break;
2737 
2738 		/*
2739 		 * Meh... this color is already done, clear first
2740 		 * flusher and repeat cascading.
2741 		 */
2742 		wq->first_flusher = NULL;
2743 	}
2744 
2745 out_unlock:
2746 	mutex_unlock(&wq->mutex);
2747 }
2748 EXPORT_SYMBOL_GPL(flush_workqueue);
2749 
2750 /**
2751  * drain_workqueue - drain a workqueue
2752  * @wq: workqueue to drain
2753  *
2754  * Wait until the workqueue becomes empty.  While draining is in progress,
2755  * only chain queueing is allowed.  IOW, only currently pending or running
2756  * work items on @wq can queue further work items on it.  @wq is flushed
2757  * repeatedly until it becomes empty.  The number of flushing is detemined
2758  * by the depth of chaining and should be relatively short.  Whine if it
2759  * takes too long.
2760  */
2761 void drain_workqueue(struct workqueue_struct *wq)
2762 {
2763 	unsigned int flush_cnt = 0;
2764 	struct pool_workqueue *pwq;
2765 
2766 	/*
2767 	 * __queue_work() needs to test whether there are drainers, is much
2768 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2769 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2770 	 */
2771 	mutex_lock(&wq->mutex);
2772 	if (!wq->nr_drainers++)
2773 		wq->flags |= __WQ_DRAINING;
2774 	mutex_unlock(&wq->mutex);
2775 reflush:
2776 	flush_workqueue(wq);
2777 
2778 	mutex_lock(&wq->mutex);
2779 
2780 	for_each_pwq(pwq, wq) {
2781 		bool drained;
2782 
2783 		spin_lock_irq(&pwq->pool->lock);
2784 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2785 		spin_unlock_irq(&pwq->pool->lock);
2786 
2787 		if (drained)
2788 			continue;
2789 
2790 		if (++flush_cnt == 10 ||
2791 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2792 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2793 				wq->name, flush_cnt);
2794 
2795 		mutex_unlock(&wq->mutex);
2796 		goto reflush;
2797 	}
2798 
2799 	if (!--wq->nr_drainers)
2800 		wq->flags &= ~__WQ_DRAINING;
2801 	mutex_unlock(&wq->mutex);
2802 }
2803 EXPORT_SYMBOL_GPL(drain_workqueue);
2804 
2805 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2806 {
2807 	struct worker *worker = NULL;
2808 	struct worker_pool *pool;
2809 	struct pool_workqueue *pwq;
2810 
2811 	might_sleep();
2812 
2813 	local_irq_disable();
2814 	pool = get_work_pool(work);
2815 	if (!pool) {
2816 		local_irq_enable();
2817 		return false;
2818 	}
2819 
2820 	spin_lock(&pool->lock);
2821 	/* see the comment in try_to_grab_pending() with the same code */
2822 	pwq = get_work_pwq(work);
2823 	if (pwq) {
2824 		if (unlikely(pwq->pool != pool))
2825 			goto already_gone;
2826 	} else {
2827 		worker = find_worker_executing_work(pool, work);
2828 		if (!worker)
2829 			goto already_gone;
2830 		pwq = worker->current_pwq;
2831 	}
2832 
2833 	insert_wq_barrier(pwq, barr, work, worker);
2834 	spin_unlock_irq(&pool->lock);
2835 
2836 	/*
2837 	 * If @max_active is 1 or rescuer is in use, flushing another work
2838 	 * item on the same workqueue may lead to deadlock.  Make sure the
2839 	 * flusher is not running on the same workqueue by verifying write
2840 	 * access.
2841 	 */
2842 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2843 		lock_map_acquire(&pwq->wq->lockdep_map);
2844 	else
2845 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2846 	lock_map_release(&pwq->wq->lockdep_map);
2847 
2848 	return true;
2849 already_gone:
2850 	spin_unlock_irq(&pool->lock);
2851 	return false;
2852 }
2853 
2854 /**
2855  * flush_work - wait for a work to finish executing the last queueing instance
2856  * @work: the work to flush
2857  *
2858  * Wait until @work has finished execution.  @work is guaranteed to be idle
2859  * on return if it hasn't been requeued since flush started.
2860  *
2861  * Return:
2862  * %true if flush_work() waited for the work to finish execution,
2863  * %false if it was already idle.
2864  */
2865 bool flush_work(struct work_struct *work)
2866 {
2867 	struct wq_barrier barr;
2868 
2869 	lock_map_acquire(&work->lockdep_map);
2870 	lock_map_release(&work->lockdep_map);
2871 
2872 	if (start_flush_work(work, &barr)) {
2873 		wait_for_completion(&barr.done);
2874 		destroy_work_on_stack(&barr.work);
2875 		return true;
2876 	} else {
2877 		return false;
2878 	}
2879 }
2880 EXPORT_SYMBOL_GPL(flush_work);
2881 
2882 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2883 {
2884 	unsigned long flags;
2885 	int ret;
2886 
2887 	do {
2888 		ret = try_to_grab_pending(work, is_dwork, &flags);
2889 		/*
2890 		 * If someone else is canceling, wait for the same event it
2891 		 * would be waiting for before retrying.
2892 		 */
2893 		if (unlikely(ret == -ENOENT))
2894 			flush_work(work);
2895 	} while (unlikely(ret < 0));
2896 
2897 	/* tell other tasks trying to grab @work to back off */
2898 	mark_work_canceling(work);
2899 	local_irq_restore(flags);
2900 
2901 	flush_work(work);
2902 	clear_work_data(work);
2903 	return ret;
2904 }
2905 
2906 /**
2907  * cancel_work_sync - cancel a work and wait for it to finish
2908  * @work: the work to cancel
2909  *
2910  * Cancel @work and wait for its execution to finish.  This function
2911  * can be used even if the work re-queues itself or migrates to
2912  * another workqueue.  On return from this function, @work is
2913  * guaranteed to be not pending or executing on any CPU.
2914  *
2915  * cancel_work_sync(&delayed_work->work) must not be used for
2916  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2917  *
2918  * The caller must ensure that the workqueue on which @work was last
2919  * queued can't be destroyed before this function returns.
2920  *
2921  * Return:
2922  * %true if @work was pending, %false otherwise.
2923  */
2924 bool cancel_work_sync(struct work_struct *work)
2925 {
2926 	return __cancel_work_timer(work, false);
2927 }
2928 EXPORT_SYMBOL_GPL(cancel_work_sync);
2929 
2930 /**
2931  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2932  * @dwork: the delayed work to flush
2933  *
2934  * Delayed timer is cancelled and the pending work is queued for
2935  * immediate execution.  Like flush_work(), this function only
2936  * considers the last queueing instance of @dwork.
2937  *
2938  * Return:
2939  * %true if flush_work() waited for the work to finish execution,
2940  * %false if it was already idle.
2941  */
2942 bool flush_delayed_work(struct delayed_work *dwork)
2943 {
2944 	local_irq_disable();
2945 	if (del_timer_sync(&dwork->timer))
2946 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2947 	local_irq_enable();
2948 	return flush_work(&dwork->work);
2949 }
2950 EXPORT_SYMBOL(flush_delayed_work);
2951 
2952 /**
2953  * cancel_delayed_work - cancel a delayed work
2954  * @dwork: delayed_work to cancel
2955  *
2956  * Kill off a pending delayed_work.
2957  *
2958  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2959  * pending.
2960  *
2961  * Note:
2962  * The work callback function may still be running on return, unless
2963  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2964  * use cancel_delayed_work_sync() to wait on it.
2965  *
2966  * This function is safe to call from any context including IRQ handler.
2967  */
2968 bool cancel_delayed_work(struct delayed_work *dwork)
2969 {
2970 	unsigned long flags;
2971 	int ret;
2972 
2973 	do {
2974 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2975 	} while (unlikely(ret == -EAGAIN));
2976 
2977 	if (unlikely(ret < 0))
2978 		return false;
2979 
2980 	set_work_pool_and_clear_pending(&dwork->work,
2981 					get_work_pool_id(&dwork->work));
2982 	local_irq_restore(flags);
2983 	return ret;
2984 }
2985 EXPORT_SYMBOL(cancel_delayed_work);
2986 
2987 /**
2988  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2989  * @dwork: the delayed work cancel
2990  *
2991  * This is cancel_work_sync() for delayed works.
2992  *
2993  * Return:
2994  * %true if @dwork was pending, %false otherwise.
2995  */
2996 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2997 {
2998 	return __cancel_work_timer(&dwork->work, true);
2999 }
3000 EXPORT_SYMBOL(cancel_delayed_work_sync);
3001 
3002 /**
3003  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3004  * @func: the function to call
3005  *
3006  * schedule_on_each_cpu() executes @func on each online CPU using the
3007  * system workqueue and blocks until all CPUs have completed.
3008  * schedule_on_each_cpu() is very slow.
3009  *
3010  * Return:
3011  * 0 on success, -errno on failure.
3012  */
3013 int schedule_on_each_cpu(work_func_t func)
3014 {
3015 	int cpu;
3016 	struct work_struct __percpu *works;
3017 
3018 	works = alloc_percpu(struct work_struct);
3019 	if (!works)
3020 		return -ENOMEM;
3021 
3022 	get_online_cpus();
3023 
3024 	for_each_online_cpu(cpu) {
3025 		struct work_struct *work = per_cpu_ptr(works, cpu);
3026 
3027 		INIT_WORK(work, func);
3028 		schedule_work_on(cpu, work);
3029 	}
3030 
3031 	for_each_online_cpu(cpu)
3032 		flush_work(per_cpu_ptr(works, cpu));
3033 
3034 	put_online_cpus();
3035 	free_percpu(works);
3036 	return 0;
3037 }
3038 
3039 /**
3040  * flush_scheduled_work - ensure that any scheduled work has run to completion.
3041  *
3042  * Forces execution of the kernel-global workqueue and blocks until its
3043  * completion.
3044  *
3045  * Think twice before calling this function!  It's very easy to get into
3046  * trouble if you don't take great care.  Either of the following situations
3047  * will lead to deadlock:
3048  *
3049  *	One of the work items currently on the workqueue needs to acquire
3050  *	a lock held by your code or its caller.
3051  *
3052  *	Your code is running in the context of a work routine.
3053  *
3054  * They will be detected by lockdep when they occur, but the first might not
3055  * occur very often.  It depends on what work items are on the workqueue and
3056  * what locks they need, which you have no control over.
3057  *
3058  * In most situations flushing the entire workqueue is overkill; you merely
3059  * need to know that a particular work item isn't queued and isn't running.
3060  * In such cases you should use cancel_delayed_work_sync() or
3061  * cancel_work_sync() instead.
3062  */
3063 void flush_scheduled_work(void)
3064 {
3065 	flush_workqueue(system_wq);
3066 }
3067 EXPORT_SYMBOL(flush_scheduled_work);
3068 
3069 /**
3070  * execute_in_process_context - reliably execute the routine with user context
3071  * @fn:		the function to execute
3072  * @ew:		guaranteed storage for the execute work structure (must
3073  *		be available when the work executes)
3074  *
3075  * Executes the function immediately if process context is available,
3076  * otherwise schedules the function for delayed execution.
3077  *
3078  * Return:	0 - function was executed
3079  *		1 - function was scheduled for execution
3080  */
3081 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3082 {
3083 	if (!in_interrupt()) {
3084 		fn(&ew->work);
3085 		return 0;
3086 	}
3087 
3088 	INIT_WORK(&ew->work, fn);
3089 	schedule_work(&ew->work);
3090 
3091 	return 1;
3092 }
3093 EXPORT_SYMBOL_GPL(execute_in_process_context);
3094 
3095 #ifdef CONFIG_SYSFS
3096 /*
3097  * Workqueues with WQ_SYSFS flag set is visible to userland via
3098  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
3099  * following attributes.
3100  *
3101  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
3102  *  max_active	RW int	: maximum number of in-flight work items
3103  *
3104  * Unbound workqueues have the following extra attributes.
3105  *
3106  *  id		RO int	: the associated pool ID
3107  *  nice	RW int	: nice value of the workers
3108  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
3109  */
3110 struct wq_device {
3111 	struct workqueue_struct		*wq;
3112 	struct device			dev;
3113 };
3114 
3115 static struct workqueue_struct *dev_to_wq(struct device *dev)
3116 {
3117 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3118 
3119 	return wq_dev->wq;
3120 }
3121 
3122 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3123 			    char *buf)
3124 {
3125 	struct workqueue_struct *wq = dev_to_wq(dev);
3126 
3127 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3128 }
3129 static DEVICE_ATTR_RO(per_cpu);
3130 
3131 static ssize_t max_active_show(struct device *dev,
3132 			       struct device_attribute *attr, char *buf)
3133 {
3134 	struct workqueue_struct *wq = dev_to_wq(dev);
3135 
3136 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3137 }
3138 
3139 static ssize_t max_active_store(struct device *dev,
3140 				struct device_attribute *attr, const char *buf,
3141 				size_t count)
3142 {
3143 	struct workqueue_struct *wq = dev_to_wq(dev);
3144 	int val;
3145 
3146 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3147 		return -EINVAL;
3148 
3149 	workqueue_set_max_active(wq, val);
3150 	return count;
3151 }
3152 static DEVICE_ATTR_RW(max_active);
3153 
3154 static struct attribute *wq_sysfs_attrs[] = {
3155 	&dev_attr_per_cpu.attr,
3156 	&dev_attr_max_active.attr,
3157 	NULL,
3158 };
3159 ATTRIBUTE_GROUPS(wq_sysfs);
3160 
3161 static ssize_t wq_pool_ids_show(struct device *dev,
3162 				struct device_attribute *attr, char *buf)
3163 {
3164 	struct workqueue_struct *wq = dev_to_wq(dev);
3165 	const char *delim = "";
3166 	int node, written = 0;
3167 
3168 	rcu_read_lock_sched();
3169 	for_each_node(node) {
3170 		written += scnprintf(buf + written, PAGE_SIZE - written,
3171 				     "%s%d:%d", delim, node,
3172 				     unbound_pwq_by_node(wq, node)->pool->id);
3173 		delim = " ";
3174 	}
3175 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3176 	rcu_read_unlock_sched();
3177 
3178 	return written;
3179 }
3180 
3181 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3182 			    char *buf)
3183 {
3184 	struct workqueue_struct *wq = dev_to_wq(dev);
3185 	int written;
3186 
3187 	mutex_lock(&wq->mutex);
3188 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3189 	mutex_unlock(&wq->mutex);
3190 
3191 	return written;
3192 }
3193 
3194 /* prepare workqueue_attrs for sysfs store operations */
3195 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3196 {
3197 	struct workqueue_attrs *attrs;
3198 
3199 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
3200 	if (!attrs)
3201 		return NULL;
3202 
3203 	mutex_lock(&wq->mutex);
3204 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
3205 	mutex_unlock(&wq->mutex);
3206 	return attrs;
3207 }
3208 
3209 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3210 			     const char *buf, size_t count)
3211 {
3212 	struct workqueue_struct *wq = dev_to_wq(dev);
3213 	struct workqueue_attrs *attrs;
3214 	int ret;
3215 
3216 	attrs = wq_sysfs_prep_attrs(wq);
3217 	if (!attrs)
3218 		return -ENOMEM;
3219 
3220 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3221 	    attrs->nice >= -20 && attrs->nice <= 19)
3222 		ret = apply_workqueue_attrs(wq, attrs);
3223 	else
3224 		ret = -EINVAL;
3225 
3226 	free_workqueue_attrs(attrs);
3227 	return ret ?: count;
3228 }
3229 
3230 static ssize_t wq_cpumask_show(struct device *dev,
3231 			       struct device_attribute *attr, char *buf)
3232 {
3233 	struct workqueue_struct *wq = dev_to_wq(dev);
3234 	int written;
3235 
3236 	mutex_lock(&wq->mutex);
3237 	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3238 	mutex_unlock(&wq->mutex);
3239 
3240 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3241 	return written;
3242 }
3243 
3244 static ssize_t wq_cpumask_store(struct device *dev,
3245 				struct device_attribute *attr,
3246 				const char *buf, size_t count)
3247 {
3248 	struct workqueue_struct *wq = dev_to_wq(dev);
3249 	struct workqueue_attrs *attrs;
3250 	int ret;
3251 
3252 	attrs = wq_sysfs_prep_attrs(wq);
3253 	if (!attrs)
3254 		return -ENOMEM;
3255 
3256 	ret = cpumask_parse(buf, attrs->cpumask);
3257 	if (!ret)
3258 		ret = apply_workqueue_attrs(wq, attrs);
3259 
3260 	free_workqueue_attrs(attrs);
3261 	return ret ?: count;
3262 }
3263 
3264 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3265 			    char *buf)
3266 {
3267 	struct workqueue_struct *wq = dev_to_wq(dev);
3268 	int written;
3269 
3270 	mutex_lock(&wq->mutex);
3271 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
3272 			    !wq->unbound_attrs->no_numa);
3273 	mutex_unlock(&wq->mutex);
3274 
3275 	return written;
3276 }
3277 
3278 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3279 			     const char *buf, size_t count)
3280 {
3281 	struct workqueue_struct *wq = dev_to_wq(dev);
3282 	struct workqueue_attrs *attrs;
3283 	int v, ret;
3284 
3285 	attrs = wq_sysfs_prep_attrs(wq);
3286 	if (!attrs)
3287 		return -ENOMEM;
3288 
3289 	ret = -EINVAL;
3290 	if (sscanf(buf, "%d", &v) == 1) {
3291 		attrs->no_numa = !v;
3292 		ret = apply_workqueue_attrs(wq, attrs);
3293 	}
3294 
3295 	free_workqueue_attrs(attrs);
3296 	return ret ?: count;
3297 }
3298 
3299 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3300 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3301 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3302 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3303 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3304 	__ATTR_NULL,
3305 };
3306 
3307 static struct bus_type wq_subsys = {
3308 	.name				= "workqueue",
3309 	.dev_groups			= wq_sysfs_groups,
3310 };
3311 
3312 static int __init wq_sysfs_init(void)
3313 {
3314 	return subsys_virtual_register(&wq_subsys, NULL);
3315 }
3316 core_initcall(wq_sysfs_init);
3317 
3318 static void wq_device_release(struct device *dev)
3319 {
3320 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3321 
3322 	kfree(wq_dev);
3323 }
3324 
3325 /**
3326  * workqueue_sysfs_register - make a workqueue visible in sysfs
3327  * @wq: the workqueue to register
3328  *
3329  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3330  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3331  * which is the preferred method.
3332  *
3333  * Workqueue user should use this function directly iff it wants to apply
3334  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3335  * apply_workqueue_attrs() may race against userland updating the
3336  * attributes.
3337  *
3338  * Return: 0 on success, -errno on failure.
3339  */
3340 int workqueue_sysfs_register(struct workqueue_struct *wq)
3341 {
3342 	struct wq_device *wq_dev;
3343 	int ret;
3344 
3345 	/*
3346 	 * Adjusting max_active or creating new pwqs by applyting
3347 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
3348 	 * workqueues.
3349 	 */
3350 	if (WARN_ON(wq->flags & __WQ_ORDERED))
3351 		return -EINVAL;
3352 
3353 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3354 	if (!wq_dev)
3355 		return -ENOMEM;
3356 
3357 	wq_dev->wq = wq;
3358 	wq_dev->dev.bus = &wq_subsys;
3359 	wq_dev->dev.init_name = wq->name;
3360 	wq_dev->dev.release = wq_device_release;
3361 
3362 	/*
3363 	 * unbound_attrs are created separately.  Suppress uevent until
3364 	 * everything is ready.
3365 	 */
3366 	dev_set_uevent_suppress(&wq_dev->dev, true);
3367 
3368 	ret = device_register(&wq_dev->dev);
3369 	if (ret) {
3370 		kfree(wq_dev);
3371 		wq->wq_dev = NULL;
3372 		return ret;
3373 	}
3374 
3375 	if (wq->flags & WQ_UNBOUND) {
3376 		struct device_attribute *attr;
3377 
3378 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3379 			ret = device_create_file(&wq_dev->dev, attr);
3380 			if (ret) {
3381 				device_unregister(&wq_dev->dev);
3382 				wq->wq_dev = NULL;
3383 				return ret;
3384 			}
3385 		}
3386 	}
3387 
3388 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3389 	return 0;
3390 }
3391 
3392 /**
3393  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3394  * @wq: the workqueue to unregister
3395  *
3396  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3397  */
3398 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3399 {
3400 	struct wq_device *wq_dev = wq->wq_dev;
3401 
3402 	if (!wq->wq_dev)
3403 		return;
3404 
3405 	wq->wq_dev = NULL;
3406 	device_unregister(&wq_dev->dev);
3407 }
3408 #else	/* CONFIG_SYSFS */
3409 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
3410 #endif	/* CONFIG_SYSFS */
3411 
3412 /**
3413  * free_workqueue_attrs - free a workqueue_attrs
3414  * @attrs: workqueue_attrs to free
3415  *
3416  * Undo alloc_workqueue_attrs().
3417  */
3418 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3419 {
3420 	if (attrs) {
3421 		free_cpumask_var(attrs->cpumask);
3422 		kfree(attrs);
3423 	}
3424 }
3425 
3426 /**
3427  * alloc_workqueue_attrs - allocate a workqueue_attrs
3428  * @gfp_mask: allocation mask to use
3429  *
3430  * Allocate a new workqueue_attrs, initialize with default settings and
3431  * return it.
3432  *
3433  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3434  */
3435 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3436 {
3437 	struct workqueue_attrs *attrs;
3438 
3439 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3440 	if (!attrs)
3441 		goto fail;
3442 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3443 		goto fail;
3444 
3445 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3446 	return attrs;
3447 fail:
3448 	free_workqueue_attrs(attrs);
3449 	return NULL;
3450 }
3451 
3452 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3453 				 const struct workqueue_attrs *from)
3454 {
3455 	to->nice = from->nice;
3456 	cpumask_copy(to->cpumask, from->cpumask);
3457 	/*
3458 	 * Unlike hash and equality test, this function doesn't ignore
3459 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3460 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3461 	 */
3462 	to->no_numa = from->no_numa;
3463 }
3464 
3465 /* hash value of the content of @attr */
3466 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3467 {
3468 	u32 hash = 0;
3469 
3470 	hash = jhash_1word(attrs->nice, hash);
3471 	hash = jhash(cpumask_bits(attrs->cpumask),
3472 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3473 	return hash;
3474 }
3475 
3476 /* content equality test */
3477 static bool wqattrs_equal(const struct workqueue_attrs *a,
3478 			  const struct workqueue_attrs *b)
3479 {
3480 	if (a->nice != b->nice)
3481 		return false;
3482 	if (!cpumask_equal(a->cpumask, b->cpumask))
3483 		return false;
3484 	return true;
3485 }
3486 
3487 /**
3488  * init_worker_pool - initialize a newly zalloc'd worker_pool
3489  * @pool: worker_pool to initialize
3490  *
3491  * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3492  *
3493  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3494  * inside @pool proper are initialized and put_unbound_pool() can be called
3495  * on @pool safely to release it.
3496  */
3497 static int init_worker_pool(struct worker_pool *pool)
3498 {
3499 	spin_lock_init(&pool->lock);
3500 	pool->id = -1;
3501 	pool->cpu = -1;
3502 	pool->node = NUMA_NO_NODE;
3503 	pool->flags |= POOL_DISASSOCIATED;
3504 	INIT_LIST_HEAD(&pool->worklist);
3505 	INIT_LIST_HEAD(&pool->idle_list);
3506 	hash_init(pool->busy_hash);
3507 
3508 	init_timer_deferrable(&pool->idle_timer);
3509 	pool->idle_timer.function = idle_worker_timeout;
3510 	pool->idle_timer.data = (unsigned long)pool;
3511 
3512 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3513 		    (unsigned long)pool);
3514 
3515 	mutex_init(&pool->manager_arb);
3516 	mutex_init(&pool->manager_mutex);
3517 	idr_init(&pool->worker_idr);
3518 
3519 	INIT_HLIST_NODE(&pool->hash_node);
3520 	pool->refcnt = 1;
3521 
3522 	/* shouldn't fail above this point */
3523 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3524 	if (!pool->attrs)
3525 		return -ENOMEM;
3526 	return 0;
3527 }
3528 
3529 static void rcu_free_pool(struct rcu_head *rcu)
3530 {
3531 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3532 
3533 	idr_destroy(&pool->worker_idr);
3534 	free_workqueue_attrs(pool->attrs);
3535 	kfree(pool);
3536 }
3537 
3538 /**
3539  * put_unbound_pool - put a worker_pool
3540  * @pool: worker_pool to put
3541  *
3542  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3543  * safe manner.  get_unbound_pool() calls this function on its failure path
3544  * and this function should be able to release pools which went through,
3545  * successfully or not, init_worker_pool().
3546  *
3547  * Should be called with wq_pool_mutex held.
3548  */
3549 static void put_unbound_pool(struct worker_pool *pool)
3550 {
3551 	struct worker *worker;
3552 
3553 	lockdep_assert_held(&wq_pool_mutex);
3554 
3555 	if (--pool->refcnt)
3556 		return;
3557 
3558 	/* sanity checks */
3559 	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3560 	    WARN_ON(!list_empty(&pool->worklist)))
3561 		return;
3562 
3563 	/* release id and unhash */
3564 	if (pool->id >= 0)
3565 		idr_remove(&worker_pool_idr, pool->id);
3566 	hash_del(&pool->hash_node);
3567 
3568 	/*
3569 	 * Become the manager and destroy all workers.  Grabbing
3570 	 * manager_arb prevents @pool's workers from blocking on
3571 	 * manager_mutex.
3572 	 */
3573 	mutex_lock(&pool->manager_arb);
3574 	mutex_lock(&pool->manager_mutex);
3575 	spin_lock_irq(&pool->lock);
3576 
3577 	while ((worker = first_worker(pool)))
3578 		destroy_worker(worker);
3579 	WARN_ON(pool->nr_workers || pool->nr_idle);
3580 
3581 	spin_unlock_irq(&pool->lock);
3582 	mutex_unlock(&pool->manager_mutex);
3583 	mutex_unlock(&pool->manager_arb);
3584 
3585 	/* shut down the timers */
3586 	del_timer_sync(&pool->idle_timer);
3587 	del_timer_sync(&pool->mayday_timer);
3588 
3589 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3590 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3591 }
3592 
3593 /**
3594  * get_unbound_pool - get a worker_pool with the specified attributes
3595  * @attrs: the attributes of the worker_pool to get
3596  *
3597  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3598  * reference count and return it.  If there already is a matching
3599  * worker_pool, it will be used; otherwise, this function attempts to
3600  * create a new one.
3601  *
3602  * Should be called with wq_pool_mutex held.
3603  *
3604  * Return: On success, a worker_pool with the same attributes as @attrs.
3605  * On failure, %NULL.
3606  */
3607 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3608 {
3609 	u32 hash = wqattrs_hash(attrs);
3610 	struct worker_pool *pool;
3611 	int node;
3612 
3613 	lockdep_assert_held(&wq_pool_mutex);
3614 
3615 	/* do we already have a matching pool? */
3616 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3617 		if (wqattrs_equal(pool->attrs, attrs)) {
3618 			pool->refcnt++;
3619 			goto out_unlock;
3620 		}
3621 	}
3622 
3623 	/* nope, create a new one */
3624 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3625 	if (!pool || init_worker_pool(pool) < 0)
3626 		goto fail;
3627 
3628 	if (workqueue_freezing)
3629 		pool->flags |= POOL_FREEZING;
3630 
3631 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3632 	copy_workqueue_attrs(pool->attrs, attrs);
3633 
3634 	/*
3635 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3636 	 * 'struct workqueue_attrs' comments for detail.
3637 	 */
3638 	pool->attrs->no_numa = false;
3639 
3640 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3641 	if (wq_numa_enabled) {
3642 		for_each_node(node) {
3643 			if (cpumask_subset(pool->attrs->cpumask,
3644 					   wq_numa_possible_cpumask[node])) {
3645 				pool->node = node;
3646 				break;
3647 			}
3648 		}
3649 	}
3650 
3651 	if (worker_pool_assign_id(pool) < 0)
3652 		goto fail;
3653 
3654 	/* create and start the initial worker */
3655 	if (create_and_start_worker(pool) < 0)
3656 		goto fail;
3657 
3658 	/* install */
3659 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3660 out_unlock:
3661 	return pool;
3662 fail:
3663 	if (pool)
3664 		put_unbound_pool(pool);
3665 	return NULL;
3666 }
3667 
3668 static void rcu_free_pwq(struct rcu_head *rcu)
3669 {
3670 	kmem_cache_free(pwq_cache,
3671 			container_of(rcu, struct pool_workqueue, rcu));
3672 }
3673 
3674 /*
3675  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3676  * and needs to be destroyed.
3677  */
3678 static void pwq_unbound_release_workfn(struct work_struct *work)
3679 {
3680 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3681 						  unbound_release_work);
3682 	struct workqueue_struct *wq = pwq->wq;
3683 	struct worker_pool *pool = pwq->pool;
3684 	bool is_last;
3685 
3686 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3687 		return;
3688 
3689 	/*
3690 	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3691 	 * necessary on release but do it anyway.  It's easier to verify
3692 	 * and consistent with the linking path.
3693 	 */
3694 	mutex_lock(&wq->mutex);
3695 	list_del_rcu(&pwq->pwqs_node);
3696 	is_last = list_empty(&wq->pwqs);
3697 	mutex_unlock(&wq->mutex);
3698 
3699 	mutex_lock(&wq_pool_mutex);
3700 	put_unbound_pool(pool);
3701 	mutex_unlock(&wq_pool_mutex);
3702 
3703 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3704 
3705 	/*
3706 	 * If we're the last pwq going away, @wq is already dead and no one
3707 	 * is gonna access it anymore.  Free it.
3708 	 */
3709 	if (is_last) {
3710 		free_workqueue_attrs(wq->unbound_attrs);
3711 		kfree(wq);
3712 	}
3713 }
3714 
3715 /**
3716  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3717  * @pwq: target pool_workqueue
3718  *
3719  * If @pwq isn't freezing, set @pwq->max_active to the associated
3720  * workqueue's saved_max_active and activate delayed work items
3721  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3722  */
3723 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3724 {
3725 	struct workqueue_struct *wq = pwq->wq;
3726 	bool freezable = wq->flags & WQ_FREEZABLE;
3727 
3728 	/* for @wq->saved_max_active */
3729 	lockdep_assert_held(&wq->mutex);
3730 
3731 	/* fast exit for non-freezable wqs */
3732 	if (!freezable && pwq->max_active == wq->saved_max_active)
3733 		return;
3734 
3735 	spin_lock_irq(&pwq->pool->lock);
3736 
3737 	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3738 		pwq->max_active = wq->saved_max_active;
3739 
3740 		while (!list_empty(&pwq->delayed_works) &&
3741 		       pwq->nr_active < pwq->max_active)
3742 			pwq_activate_first_delayed(pwq);
3743 
3744 		/*
3745 		 * Need to kick a worker after thawed or an unbound wq's
3746 		 * max_active is bumped.  It's a slow path.  Do it always.
3747 		 */
3748 		wake_up_worker(pwq->pool);
3749 	} else {
3750 		pwq->max_active = 0;
3751 	}
3752 
3753 	spin_unlock_irq(&pwq->pool->lock);
3754 }
3755 
3756 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3757 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3758 		     struct worker_pool *pool)
3759 {
3760 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3761 
3762 	memset(pwq, 0, sizeof(*pwq));
3763 
3764 	pwq->pool = pool;
3765 	pwq->wq = wq;
3766 	pwq->flush_color = -1;
3767 	pwq->refcnt = 1;
3768 	INIT_LIST_HEAD(&pwq->delayed_works);
3769 	INIT_LIST_HEAD(&pwq->pwqs_node);
3770 	INIT_LIST_HEAD(&pwq->mayday_node);
3771 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3772 }
3773 
3774 /* sync @pwq with the current state of its associated wq and link it */
3775 static void link_pwq(struct pool_workqueue *pwq)
3776 {
3777 	struct workqueue_struct *wq = pwq->wq;
3778 
3779 	lockdep_assert_held(&wq->mutex);
3780 
3781 	/* may be called multiple times, ignore if already linked */
3782 	if (!list_empty(&pwq->pwqs_node))
3783 		return;
3784 
3785 	/*
3786 	 * Set the matching work_color.  This is synchronized with
3787 	 * wq->mutex to avoid confusing flush_workqueue().
3788 	 */
3789 	pwq->work_color = wq->work_color;
3790 
3791 	/* sync max_active to the current setting */
3792 	pwq_adjust_max_active(pwq);
3793 
3794 	/* link in @pwq */
3795 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3796 }
3797 
3798 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3799 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3800 					const struct workqueue_attrs *attrs)
3801 {
3802 	struct worker_pool *pool;
3803 	struct pool_workqueue *pwq;
3804 
3805 	lockdep_assert_held(&wq_pool_mutex);
3806 
3807 	pool = get_unbound_pool(attrs);
3808 	if (!pool)
3809 		return NULL;
3810 
3811 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3812 	if (!pwq) {
3813 		put_unbound_pool(pool);
3814 		return NULL;
3815 	}
3816 
3817 	init_pwq(pwq, wq, pool);
3818 	return pwq;
3819 }
3820 
3821 /* undo alloc_unbound_pwq(), used only in the error path */
3822 static void free_unbound_pwq(struct pool_workqueue *pwq)
3823 {
3824 	lockdep_assert_held(&wq_pool_mutex);
3825 
3826 	if (pwq) {
3827 		put_unbound_pool(pwq->pool);
3828 		kmem_cache_free(pwq_cache, pwq);
3829 	}
3830 }
3831 
3832 /**
3833  * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3834  * @attrs: the wq_attrs of interest
3835  * @node: the target NUMA node
3836  * @cpu_going_down: if >= 0, the CPU to consider as offline
3837  * @cpumask: outarg, the resulting cpumask
3838  *
3839  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3840  * @cpu_going_down is >= 0, that cpu is considered offline during
3841  * calculation.  The result is stored in @cpumask.
3842  *
3843  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3844  * enabled and @node has online CPUs requested by @attrs, the returned
3845  * cpumask is the intersection of the possible CPUs of @node and
3846  * @attrs->cpumask.
3847  *
3848  * The caller is responsible for ensuring that the cpumask of @node stays
3849  * stable.
3850  *
3851  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3852  * %false if equal.
3853  */
3854 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3855 				 int cpu_going_down, cpumask_t *cpumask)
3856 {
3857 	if (!wq_numa_enabled || attrs->no_numa)
3858 		goto use_dfl;
3859 
3860 	/* does @node have any online CPUs @attrs wants? */
3861 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3862 	if (cpu_going_down >= 0)
3863 		cpumask_clear_cpu(cpu_going_down, cpumask);
3864 
3865 	if (cpumask_empty(cpumask))
3866 		goto use_dfl;
3867 
3868 	/* yeap, return possible CPUs in @node that @attrs wants */
3869 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3870 	return !cpumask_equal(cpumask, attrs->cpumask);
3871 
3872 use_dfl:
3873 	cpumask_copy(cpumask, attrs->cpumask);
3874 	return false;
3875 }
3876 
3877 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3878 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3879 						   int node,
3880 						   struct pool_workqueue *pwq)
3881 {
3882 	struct pool_workqueue *old_pwq;
3883 
3884 	lockdep_assert_held(&wq->mutex);
3885 
3886 	/* link_pwq() can handle duplicate calls */
3887 	link_pwq(pwq);
3888 
3889 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3890 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3891 	return old_pwq;
3892 }
3893 
3894 /**
3895  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3896  * @wq: the target workqueue
3897  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3898  *
3899  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3900  * machines, this function maps a separate pwq to each NUMA node with
3901  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3902  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3903  * items finish.  Note that a work item which repeatedly requeues itself
3904  * back-to-back will stay on its current pwq.
3905  *
3906  * Performs GFP_KERNEL allocations.
3907  *
3908  * Return: 0 on success and -errno on failure.
3909  */
3910 int apply_workqueue_attrs(struct workqueue_struct *wq,
3911 			  const struct workqueue_attrs *attrs)
3912 {
3913 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3914 	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3915 	int node, ret;
3916 
3917 	/* only unbound workqueues can change attributes */
3918 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3919 		return -EINVAL;
3920 
3921 	/* creating multiple pwqs breaks ordering guarantee */
3922 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3923 		return -EINVAL;
3924 
3925 	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3926 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3927 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3928 	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3929 		goto enomem;
3930 
3931 	/* make a copy of @attrs and sanitize it */
3932 	copy_workqueue_attrs(new_attrs, attrs);
3933 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3934 
3935 	/*
3936 	 * We may create multiple pwqs with differing cpumasks.  Make a
3937 	 * copy of @new_attrs which will be modified and used to obtain
3938 	 * pools.
3939 	 */
3940 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3941 
3942 	/*
3943 	 * CPUs should stay stable across pwq creations and installations.
3944 	 * Pin CPUs, determine the target cpumask for each node and create
3945 	 * pwqs accordingly.
3946 	 */
3947 	get_online_cpus();
3948 
3949 	mutex_lock(&wq_pool_mutex);
3950 
3951 	/*
3952 	 * If something goes wrong during CPU up/down, we'll fall back to
3953 	 * the default pwq covering whole @attrs->cpumask.  Always create
3954 	 * it even if we don't use it immediately.
3955 	 */
3956 	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3957 	if (!dfl_pwq)
3958 		goto enomem_pwq;
3959 
3960 	for_each_node(node) {
3961 		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3962 			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3963 			if (!pwq_tbl[node])
3964 				goto enomem_pwq;
3965 		} else {
3966 			dfl_pwq->refcnt++;
3967 			pwq_tbl[node] = dfl_pwq;
3968 		}
3969 	}
3970 
3971 	mutex_unlock(&wq_pool_mutex);
3972 
3973 	/* all pwqs have been created successfully, let's install'em */
3974 	mutex_lock(&wq->mutex);
3975 
3976 	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3977 
3978 	/* save the previous pwq and install the new one */
3979 	for_each_node(node)
3980 		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3981 
3982 	/* @dfl_pwq might not have been used, ensure it's linked */
3983 	link_pwq(dfl_pwq);
3984 	swap(wq->dfl_pwq, dfl_pwq);
3985 
3986 	mutex_unlock(&wq->mutex);
3987 
3988 	/* put the old pwqs */
3989 	for_each_node(node)
3990 		put_pwq_unlocked(pwq_tbl[node]);
3991 	put_pwq_unlocked(dfl_pwq);
3992 
3993 	put_online_cpus();
3994 	ret = 0;
3995 	/* fall through */
3996 out_free:
3997 	free_workqueue_attrs(tmp_attrs);
3998 	free_workqueue_attrs(new_attrs);
3999 	kfree(pwq_tbl);
4000 	return ret;
4001 
4002 enomem_pwq:
4003 	free_unbound_pwq(dfl_pwq);
4004 	for_each_node(node)
4005 		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4006 			free_unbound_pwq(pwq_tbl[node]);
4007 	mutex_unlock(&wq_pool_mutex);
4008 	put_online_cpus();
4009 enomem:
4010 	ret = -ENOMEM;
4011 	goto out_free;
4012 }
4013 
4014 /**
4015  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4016  * @wq: the target workqueue
4017  * @cpu: the CPU coming up or going down
4018  * @online: whether @cpu is coming up or going down
4019  *
4020  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4021  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4022  * @wq accordingly.
4023  *
4024  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4025  * falls back to @wq->dfl_pwq which may not be optimal but is always
4026  * correct.
4027  *
4028  * Note that when the last allowed CPU of a NUMA node goes offline for a
4029  * workqueue with a cpumask spanning multiple nodes, the workers which were
4030  * already executing the work items for the workqueue will lose their CPU
4031  * affinity and may execute on any CPU.  This is similar to how per-cpu
4032  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4033  * affinity, it's the user's responsibility to flush the work item from
4034  * CPU_DOWN_PREPARE.
4035  */
4036 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4037 				   bool online)
4038 {
4039 	int node = cpu_to_node(cpu);
4040 	int cpu_off = online ? -1 : cpu;
4041 	struct pool_workqueue *old_pwq = NULL, *pwq;
4042 	struct workqueue_attrs *target_attrs;
4043 	cpumask_t *cpumask;
4044 
4045 	lockdep_assert_held(&wq_pool_mutex);
4046 
4047 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4048 		return;
4049 
4050 	/*
4051 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4052 	 * Let's use a preallocated one.  The following buf is protected by
4053 	 * CPU hotplug exclusion.
4054 	 */
4055 	target_attrs = wq_update_unbound_numa_attrs_buf;
4056 	cpumask = target_attrs->cpumask;
4057 
4058 	mutex_lock(&wq->mutex);
4059 	if (wq->unbound_attrs->no_numa)
4060 		goto out_unlock;
4061 
4062 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4063 	pwq = unbound_pwq_by_node(wq, node);
4064 
4065 	/*
4066 	 * Let's determine what needs to be done.  If the target cpumask is
4067 	 * different from wq's, we need to compare it to @pwq's and create
4068 	 * a new one if they don't match.  If the target cpumask equals
4069 	 * wq's, the default pwq should be used.  If @pwq is already the
4070 	 * default one, nothing to do; otherwise, install the default one.
4071 	 */
4072 	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4073 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4074 			goto out_unlock;
4075 	} else {
4076 		if (pwq == wq->dfl_pwq)
4077 			goto out_unlock;
4078 		else
4079 			goto use_dfl_pwq;
4080 	}
4081 
4082 	mutex_unlock(&wq->mutex);
4083 
4084 	/* create a new pwq */
4085 	pwq = alloc_unbound_pwq(wq, target_attrs);
4086 	if (!pwq) {
4087 		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4088 			   wq->name);
4089 		goto out_unlock;
4090 	}
4091 
4092 	/*
4093 	 * Install the new pwq.  As this function is called only from CPU
4094 	 * hotplug callbacks and applying a new attrs is wrapped with
4095 	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4096 	 * inbetween.
4097 	 */
4098 	mutex_lock(&wq->mutex);
4099 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4100 	goto out_unlock;
4101 
4102 use_dfl_pwq:
4103 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4104 	get_pwq(wq->dfl_pwq);
4105 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4106 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4107 out_unlock:
4108 	mutex_unlock(&wq->mutex);
4109 	put_pwq_unlocked(old_pwq);
4110 }
4111 
4112 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4113 {
4114 	bool highpri = wq->flags & WQ_HIGHPRI;
4115 	int cpu, ret;
4116 
4117 	if (!(wq->flags & WQ_UNBOUND)) {
4118 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4119 		if (!wq->cpu_pwqs)
4120 			return -ENOMEM;
4121 
4122 		for_each_possible_cpu(cpu) {
4123 			struct pool_workqueue *pwq =
4124 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4125 			struct worker_pool *cpu_pools =
4126 				per_cpu(cpu_worker_pools, cpu);
4127 
4128 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4129 
4130 			mutex_lock(&wq->mutex);
4131 			link_pwq(pwq);
4132 			mutex_unlock(&wq->mutex);
4133 		}
4134 		return 0;
4135 	} else if (wq->flags & __WQ_ORDERED) {
4136 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4137 		/* there should only be single pwq for ordering guarantee */
4138 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4139 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4140 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4141 		return ret;
4142 	} else {
4143 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4144 	}
4145 }
4146 
4147 static int wq_clamp_max_active(int max_active, unsigned int flags,
4148 			       const char *name)
4149 {
4150 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4151 
4152 	if (max_active < 1 || max_active > lim)
4153 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4154 			max_active, name, 1, lim);
4155 
4156 	return clamp_val(max_active, 1, lim);
4157 }
4158 
4159 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4160 					       unsigned int flags,
4161 					       int max_active,
4162 					       struct lock_class_key *key,
4163 					       const char *lock_name, ...)
4164 {
4165 	size_t tbl_size = 0;
4166 	va_list args;
4167 	struct workqueue_struct *wq;
4168 	struct pool_workqueue *pwq;
4169 
4170 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4171 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4172 		flags |= WQ_UNBOUND;
4173 
4174 	/* allocate wq and format name */
4175 	if (flags & WQ_UNBOUND)
4176 		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4177 
4178 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4179 	if (!wq)
4180 		return NULL;
4181 
4182 	if (flags & WQ_UNBOUND) {
4183 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4184 		if (!wq->unbound_attrs)
4185 			goto err_free_wq;
4186 	}
4187 
4188 	va_start(args, lock_name);
4189 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4190 	va_end(args);
4191 
4192 	max_active = max_active ?: WQ_DFL_ACTIVE;
4193 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4194 
4195 	/* init wq */
4196 	wq->flags = flags;
4197 	wq->saved_max_active = max_active;
4198 	mutex_init(&wq->mutex);
4199 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4200 	INIT_LIST_HEAD(&wq->pwqs);
4201 	INIT_LIST_HEAD(&wq->flusher_queue);
4202 	INIT_LIST_HEAD(&wq->flusher_overflow);
4203 	INIT_LIST_HEAD(&wq->maydays);
4204 
4205 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4206 	INIT_LIST_HEAD(&wq->list);
4207 
4208 	if (alloc_and_link_pwqs(wq) < 0)
4209 		goto err_free_wq;
4210 
4211 	/*
4212 	 * Workqueues which may be used during memory reclaim should
4213 	 * have a rescuer to guarantee forward progress.
4214 	 */
4215 	if (flags & WQ_MEM_RECLAIM) {
4216 		struct worker *rescuer;
4217 
4218 		rescuer = alloc_worker();
4219 		if (!rescuer)
4220 			goto err_destroy;
4221 
4222 		rescuer->rescue_wq = wq;
4223 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4224 					       wq->name);
4225 		if (IS_ERR(rescuer->task)) {
4226 			kfree(rescuer);
4227 			goto err_destroy;
4228 		}
4229 
4230 		wq->rescuer = rescuer;
4231 		rescuer->task->flags |= PF_NO_SETAFFINITY;
4232 		wake_up_process(rescuer->task);
4233 	}
4234 
4235 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4236 		goto err_destroy;
4237 
4238 	/*
4239 	 * wq_pool_mutex protects global freeze state and workqueues list.
4240 	 * Grab it, adjust max_active and add the new @wq to workqueues
4241 	 * list.
4242 	 */
4243 	mutex_lock(&wq_pool_mutex);
4244 
4245 	mutex_lock(&wq->mutex);
4246 	for_each_pwq(pwq, wq)
4247 		pwq_adjust_max_active(pwq);
4248 	mutex_unlock(&wq->mutex);
4249 
4250 	list_add(&wq->list, &workqueues);
4251 
4252 	mutex_unlock(&wq_pool_mutex);
4253 
4254 	return wq;
4255 
4256 err_free_wq:
4257 	free_workqueue_attrs(wq->unbound_attrs);
4258 	kfree(wq);
4259 	return NULL;
4260 err_destroy:
4261 	destroy_workqueue(wq);
4262 	return NULL;
4263 }
4264 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4265 
4266 /**
4267  * destroy_workqueue - safely terminate a workqueue
4268  * @wq: target workqueue
4269  *
4270  * Safely destroy a workqueue. All work currently pending will be done first.
4271  */
4272 void destroy_workqueue(struct workqueue_struct *wq)
4273 {
4274 	struct pool_workqueue *pwq;
4275 	int node;
4276 
4277 	/* drain it before proceeding with destruction */
4278 	drain_workqueue(wq);
4279 
4280 	/* sanity checks */
4281 	mutex_lock(&wq->mutex);
4282 	for_each_pwq(pwq, wq) {
4283 		int i;
4284 
4285 		for (i = 0; i < WORK_NR_COLORS; i++) {
4286 			if (WARN_ON(pwq->nr_in_flight[i])) {
4287 				mutex_unlock(&wq->mutex);
4288 				return;
4289 			}
4290 		}
4291 
4292 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4293 		    WARN_ON(pwq->nr_active) ||
4294 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4295 			mutex_unlock(&wq->mutex);
4296 			return;
4297 		}
4298 	}
4299 	mutex_unlock(&wq->mutex);
4300 
4301 	/*
4302 	 * wq list is used to freeze wq, remove from list after
4303 	 * flushing is complete in case freeze races us.
4304 	 */
4305 	mutex_lock(&wq_pool_mutex);
4306 	list_del_init(&wq->list);
4307 	mutex_unlock(&wq_pool_mutex);
4308 
4309 	workqueue_sysfs_unregister(wq);
4310 
4311 	if (wq->rescuer) {
4312 		kthread_stop(wq->rescuer->task);
4313 		kfree(wq->rescuer);
4314 		wq->rescuer = NULL;
4315 	}
4316 
4317 	if (!(wq->flags & WQ_UNBOUND)) {
4318 		/*
4319 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4320 		 * free the pwqs and wq.
4321 		 */
4322 		free_percpu(wq->cpu_pwqs);
4323 		kfree(wq);
4324 	} else {
4325 		/*
4326 		 * We're the sole accessor of @wq at this point.  Directly
4327 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4328 		 * @wq will be freed when the last pwq is released.
4329 		 */
4330 		for_each_node(node) {
4331 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4332 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4333 			put_pwq_unlocked(pwq);
4334 		}
4335 
4336 		/*
4337 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4338 		 * put.  Don't access it afterwards.
4339 		 */
4340 		pwq = wq->dfl_pwq;
4341 		wq->dfl_pwq = NULL;
4342 		put_pwq_unlocked(pwq);
4343 	}
4344 }
4345 EXPORT_SYMBOL_GPL(destroy_workqueue);
4346 
4347 /**
4348  * workqueue_set_max_active - adjust max_active of a workqueue
4349  * @wq: target workqueue
4350  * @max_active: new max_active value.
4351  *
4352  * Set max_active of @wq to @max_active.
4353  *
4354  * CONTEXT:
4355  * Don't call from IRQ context.
4356  */
4357 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4358 {
4359 	struct pool_workqueue *pwq;
4360 
4361 	/* disallow meddling with max_active for ordered workqueues */
4362 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4363 		return;
4364 
4365 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4366 
4367 	mutex_lock(&wq->mutex);
4368 
4369 	wq->saved_max_active = max_active;
4370 
4371 	for_each_pwq(pwq, wq)
4372 		pwq_adjust_max_active(pwq);
4373 
4374 	mutex_unlock(&wq->mutex);
4375 }
4376 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4377 
4378 /**
4379  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4380  *
4381  * Determine whether %current is a workqueue rescuer.  Can be used from
4382  * work functions to determine whether it's being run off the rescuer task.
4383  *
4384  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4385  */
4386 bool current_is_workqueue_rescuer(void)
4387 {
4388 	struct worker *worker = current_wq_worker();
4389 
4390 	return worker && worker->rescue_wq;
4391 }
4392 
4393 /**
4394  * workqueue_congested - test whether a workqueue is congested
4395  * @cpu: CPU in question
4396  * @wq: target workqueue
4397  *
4398  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4399  * no synchronization around this function and the test result is
4400  * unreliable and only useful as advisory hints or for debugging.
4401  *
4402  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4403  * Note that both per-cpu and unbound workqueues may be associated with
4404  * multiple pool_workqueues which have separate congested states.  A
4405  * workqueue being congested on one CPU doesn't mean the workqueue is also
4406  * contested on other CPUs / NUMA nodes.
4407  *
4408  * Return:
4409  * %true if congested, %false otherwise.
4410  */
4411 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4412 {
4413 	struct pool_workqueue *pwq;
4414 	bool ret;
4415 
4416 	rcu_read_lock_sched();
4417 
4418 	if (cpu == WORK_CPU_UNBOUND)
4419 		cpu = smp_processor_id();
4420 
4421 	if (!(wq->flags & WQ_UNBOUND))
4422 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4423 	else
4424 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4425 
4426 	ret = !list_empty(&pwq->delayed_works);
4427 	rcu_read_unlock_sched();
4428 
4429 	return ret;
4430 }
4431 EXPORT_SYMBOL_GPL(workqueue_congested);
4432 
4433 /**
4434  * work_busy - test whether a work is currently pending or running
4435  * @work: the work to be tested
4436  *
4437  * Test whether @work is currently pending or running.  There is no
4438  * synchronization around this function and the test result is
4439  * unreliable and only useful as advisory hints or for debugging.
4440  *
4441  * Return:
4442  * OR'd bitmask of WORK_BUSY_* bits.
4443  */
4444 unsigned int work_busy(struct work_struct *work)
4445 {
4446 	struct worker_pool *pool;
4447 	unsigned long flags;
4448 	unsigned int ret = 0;
4449 
4450 	if (work_pending(work))
4451 		ret |= WORK_BUSY_PENDING;
4452 
4453 	local_irq_save(flags);
4454 	pool = get_work_pool(work);
4455 	if (pool) {
4456 		spin_lock(&pool->lock);
4457 		if (find_worker_executing_work(pool, work))
4458 			ret |= WORK_BUSY_RUNNING;
4459 		spin_unlock(&pool->lock);
4460 	}
4461 	local_irq_restore(flags);
4462 
4463 	return ret;
4464 }
4465 EXPORT_SYMBOL_GPL(work_busy);
4466 
4467 /**
4468  * set_worker_desc - set description for the current work item
4469  * @fmt: printf-style format string
4470  * @...: arguments for the format string
4471  *
4472  * This function can be called by a running work function to describe what
4473  * the work item is about.  If the worker task gets dumped, this
4474  * information will be printed out together to help debugging.  The
4475  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4476  */
4477 void set_worker_desc(const char *fmt, ...)
4478 {
4479 	struct worker *worker = current_wq_worker();
4480 	va_list args;
4481 
4482 	if (worker) {
4483 		va_start(args, fmt);
4484 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4485 		va_end(args);
4486 		worker->desc_valid = true;
4487 	}
4488 }
4489 
4490 /**
4491  * print_worker_info - print out worker information and description
4492  * @log_lvl: the log level to use when printing
4493  * @task: target task
4494  *
4495  * If @task is a worker and currently executing a work item, print out the
4496  * name of the workqueue being serviced and worker description set with
4497  * set_worker_desc() by the currently executing work item.
4498  *
4499  * This function can be safely called on any task as long as the
4500  * task_struct itself is accessible.  While safe, this function isn't
4501  * synchronized and may print out mixups or garbages of limited length.
4502  */
4503 void print_worker_info(const char *log_lvl, struct task_struct *task)
4504 {
4505 	work_func_t *fn = NULL;
4506 	char name[WQ_NAME_LEN] = { };
4507 	char desc[WORKER_DESC_LEN] = { };
4508 	struct pool_workqueue *pwq = NULL;
4509 	struct workqueue_struct *wq = NULL;
4510 	bool desc_valid = false;
4511 	struct worker *worker;
4512 
4513 	if (!(task->flags & PF_WQ_WORKER))
4514 		return;
4515 
4516 	/*
4517 	 * This function is called without any synchronization and @task
4518 	 * could be in any state.  Be careful with dereferences.
4519 	 */
4520 	worker = probe_kthread_data(task);
4521 
4522 	/*
4523 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4524 	 * the original last '\0' in case the original contains garbage.
4525 	 */
4526 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4527 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4528 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4529 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4530 
4531 	/* copy worker description */
4532 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4533 	if (desc_valid)
4534 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4535 
4536 	if (fn || name[0] || desc[0]) {
4537 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4538 		if (desc[0])
4539 			pr_cont(" (%s)", desc);
4540 		pr_cont("\n");
4541 	}
4542 }
4543 
4544 /*
4545  * CPU hotplug.
4546  *
4547  * There are two challenges in supporting CPU hotplug.  Firstly, there
4548  * are a lot of assumptions on strong associations among work, pwq and
4549  * pool which make migrating pending and scheduled works very
4550  * difficult to implement without impacting hot paths.  Secondly,
4551  * worker pools serve mix of short, long and very long running works making
4552  * blocked draining impractical.
4553  *
4554  * This is solved by allowing the pools to be disassociated from the CPU
4555  * running as an unbound one and allowing it to be reattached later if the
4556  * cpu comes back online.
4557  */
4558 
4559 static void wq_unbind_fn(struct work_struct *work)
4560 {
4561 	int cpu = smp_processor_id();
4562 	struct worker_pool *pool;
4563 	struct worker *worker;
4564 	int wi;
4565 
4566 	for_each_cpu_worker_pool(pool, cpu) {
4567 		WARN_ON_ONCE(cpu != smp_processor_id());
4568 
4569 		mutex_lock(&pool->manager_mutex);
4570 		spin_lock_irq(&pool->lock);
4571 
4572 		/*
4573 		 * We've blocked all manager operations.  Make all workers
4574 		 * unbound and set DISASSOCIATED.  Before this, all workers
4575 		 * except for the ones which are still executing works from
4576 		 * before the last CPU down must be on the cpu.  After
4577 		 * this, they may become diasporas.
4578 		 */
4579 		for_each_pool_worker(worker, wi, pool)
4580 			worker->flags |= WORKER_UNBOUND;
4581 
4582 		pool->flags |= POOL_DISASSOCIATED;
4583 
4584 		spin_unlock_irq(&pool->lock);
4585 		mutex_unlock(&pool->manager_mutex);
4586 
4587 		/*
4588 		 * Call schedule() so that we cross rq->lock and thus can
4589 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4590 		 * This is necessary as scheduler callbacks may be invoked
4591 		 * from other cpus.
4592 		 */
4593 		schedule();
4594 
4595 		/*
4596 		 * Sched callbacks are disabled now.  Zap nr_running.
4597 		 * After this, nr_running stays zero and need_more_worker()
4598 		 * and keep_working() are always true as long as the
4599 		 * worklist is not empty.  This pool now behaves as an
4600 		 * unbound (in terms of concurrency management) pool which
4601 		 * are served by workers tied to the pool.
4602 		 */
4603 		atomic_set(&pool->nr_running, 0);
4604 
4605 		/*
4606 		 * With concurrency management just turned off, a busy
4607 		 * worker blocking could lead to lengthy stalls.  Kick off
4608 		 * unbound chain execution of currently pending work items.
4609 		 */
4610 		spin_lock_irq(&pool->lock);
4611 		wake_up_worker(pool);
4612 		spin_unlock_irq(&pool->lock);
4613 	}
4614 }
4615 
4616 /**
4617  * rebind_workers - rebind all workers of a pool to the associated CPU
4618  * @pool: pool of interest
4619  *
4620  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4621  */
4622 static void rebind_workers(struct worker_pool *pool)
4623 {
4624 	struct worker *worker;
4625 	int wi;
4626 
4627 	lockdep_assert_held(&pool->manager_mutex);
4628 
4629 	/*
4630 	 * Restore CPU affinity of all workers.  As all idle workers should
4631 	 * be on the run-queue of the associated CPU before any local
4632 	 * wake-ups for concurrency management happen, restore CPU affinty
4633 	 * of all workers first and then clear UNBOUND.  As we're called
4634 	 * from CPU_ONLINE, the following shouldn't fail.
4635 	 */
4636 	for_each_pool_worker(worker, wi, pool)
4637 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4638 						  pool->attrs->cpumask) < 0);
4639 
4640 	spin_lock_irq(&pool->lock);
4641 
4642 	for_each_pool_worker(worker, wi, pool) {
4643 		unsigned int worker_flags = worker->flags;
4644 
4645 		/*
4646 		 * A bound idle worker should actually be on the runqueue
4647 		 * of the associated CPU for local wake-ups targeting it to
4648 		 * work.  Kick all idle workers so that they migrate to the
4649 		 * associated CPU.  Doing this in the same loop as
4650 		 * replacing UNBOUND with REBOUND is safe as no worker will
4651 		 * be bound before @pool->lock is released.
4652 		 */
4653 		if (worker_flags & WORKER_IDLE)
4654 			wake_up_process(worker->task);
4655 
4656 		/*
4657 		 * We want to clear UNBOUND but can't directly call
4658 		 * worker_clr_flags() or adjust nr_running.  Atomically
4659 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4660 		 * @worker will clear REBOUND using worker_clr_flags() when
4661 		 * it initiates the next execution cycle thus restoring
4662 		 * concurrency management.  Note that when or whether
4663 		 * @worker clears REBOUND doesn't affect correctness.
4664 		 *
4665 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4666 		 * tested without holding any lock in
4667 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4668 		 * fail incorrectly leading to premature concurrency
4669 		 * management operations.
4670 		 */
4671 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4672 		worker_flags |= WORKER_REBOUND;
4673 		worker_flags &= ~WORKER_UNBOUND;
4674 		ACCESS_ONCE(worker->flags) = worker_flags;
4675 	}
4676 
4677 	spin_unlock_irq(&pool->lock);
4678 }
4679 
4680 /**
4681  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4682  * @pool: unbound pool of interest
4683  * @cpu: the CPU which is coming up
4684  *
4685  * An unbound pool may end up with a cpumask which doesn't have any online
4686  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4687  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4688  * online CPU before, cpus_allowed of all its workers should be restored.
4689  */
4690 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4691 {
4692 	static cpumask_t cpumask;
4693 	struct worker *worker;
4694 	int wi;
4695 
4696 	lockdep_assert_held(&pool->manager_mutex);
4697 
4698 	/* is @cpu allowed for @pool? */
4699 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4700 		return;
4701 
4702 	/* is @cpu the only online CPU? */
4703 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4704 	if (cpumask_weight(&cpumask) != 1)
4705 		return;
4706 
4707 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4708 	for_each_pool_worker(worker, wi, pool)
4709 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4710 						  pool->attrs->cpumask) < 0);
4711 }
4712 
4713 /*
4714  * Workqueues should be brought up before normal priority CPU notifiers.
4715  * This will be registered high priority CPU notifier.
4716  */
4717 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4718 					       unsigned long action,
4719 					       void *hcpu)
4720 {
4721 	int cpu = (unsigned long)hcpu;
4722 	struct worker_pool *pool;
4723 	struct workqueue_struct *wq;
4724 	int pi;
4725 
4726 	switch (action & ~CPU_TASKS_FROZEN) {
4727 	case CPU_UP_PREPARE:
4728 		for_each_cpu_worker_pool(pool, cpu) {
4729 			if (pool->nr_workers)
4730 				continue;
4731 			if (create_and_start_worker(pool) < 0)
4732 				return NOTIFY_BAD;
4733 		}
4734 		break;
4735 
4736 	case CPU_DOWN_FAILED:
4737 	case CPU_ONLINE:
4738 		mutex_lock(&wq_pool_mutex);
4739 
4740 		for_each_pool(pool, pi) {
4741 			mutex_lock(&pool->manager_mutex);
4742 
4743 			if (pool->cpu == cpu) {
4744 				spin_lock_irq(&pool->lock);
4745 				pool->flags &= ~POOL_DISASSOCIATED;
4746 				spin_unlock_irq(&pool->lock);
4747 
4748 				rebind_workers(pool);
4749 			} else if (pool->cpu < 0) {
4750 				restore_unbound_workers_cpumask(pool, cpu);
4751 			}
4752 
4753 			mutex_unlock(&pool->manager_mutex);
4754 		}
4755 
4756 		/* update NUMA affinity of unbound workqueues */
4757 		list_for_each_entry(wq, &workqueues, list)
4758 			wq_update_unbound_numa(wq, cpu, true);
4759 
4760 		mutex_unlock(&wq_pool_mutex);
4761 		break;
4762 	}
4763 	return NOTIFY_OK;
4764 }
4765 
4766 /*
4767  * Workqueues should be brought down after normal priority CPU notifiers.
4768  * This will be registered as low priority CPU notifier.
4769  */
4770 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4771 						 unsigned long action,
4772 						 void *hcpu)
4773 {
4774 	int cpu = (unsigned long)hcpu;
4775 	struct work_struct unbind_work;
4776 	struct workqueue_struct *wq;
4777 
4778 	switch (action & ~CPU_TASKS_FROZEN) {
4779 	case CPU_DOWN_PREPARE:
4780 		/* unbinding per-cpu workers should happen on the local CPU */
4781 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4782 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4783 
4784 		/* update NUMA affinity of unbound workqueues */
4785 		mutex_lock(&wq_pool_mutex);
4786 		list_for_each_entry(wq, &workqueues, list)
4787 			wq_update_unbound_numa(wq, cpu, false);
4788 		mutex_unlock(&wq_pool_mutex);
4789 
4790 		/* wait for per-cpu unbinding to finish */
4791 		flush_work(&unbind_work);
4792 		break;
4793 	}
4794 	return NOTIFY_OK;
4795 }
4796 
4797 #ifdef CONFIG_SMP
4798 
4799 struct work_for_cpu {
4800 	struct work_struct work;
4801 	long (*fn)(void *);
4802 	void *arg;
4803 	long ret;
4804 };
4805 
4806 static void work_for_cpu_fn(struct work_struct *work)
4807 {
4808 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4809 
4810 	wfc->ret = wfc->fn(wfc->arg);
4811 }
4812 
4813 /**
4814  * work_on_cpu - run a function in user context on a particular cpu
4815  * @cpu: the cpu to run on
4816  * @fn: the function to run
4817  * @arg: the function arg
4818  *
4819  * It is up to the caller to ensure that the cpu doesn't go offline.
4820  * The caller must not hold any locks which would prevent @fn from completing.
4821  *
4822  * Return: The value @fn returns.
4823  */
4824 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4825 {
4826 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4827 
4828 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4829 	schedule_work_on(cpu, &wfc.work);
4830 	flush_work(&wfc.work);
4831 	return wfc.ret;
4832 }
4833 EXPORT_SYMBOL_GPL(work_on_cpu);
4834 #endif /* CONFIG_SMP */
4835 
4836 #ifdef CONFIG_FREEZER
4837 
4838 /**
4839  * freeze_workqueues_begin - begin freezing workqueues
4840  *
4841  * Start freezing workqueues.  After this function returns, all freezable
4842  * workqueues will queue new works to their delayed_works list instead of
4843  * pool->worklist.
4844  *
4845  * CONTEXT:
4846  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4847  */
4848 void freeze_workqueues_begin(void)
4849 {
4850 	struct worker_pool *pool;
4851 	struct workqueue_struct *wq;
4852 	struct pool_workqueue *pwq;
4853 	int pi;
4854 
4855 	mutex_lock(&wq_pool_mutex);
4856 
4857 	WARN_ON_ONCE(workqueue_freezing);
4858 	workqueue_freezing = true;
4859 
4860 	/* set FREEZING */
4861 	for_each_pool(pool, pi) {
4862 		spin_lock_irq(&pool->lock);
4863 		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4864 		pool->flags |= POOL_FREEZING;
4865 		spin_unlock_irq(&pool->lock);
4866 	}
4867 
4868 	list_for_each_entry(wq, &workqueues, list) {
4869 		mutex_lock(&wq->mutex);
4870 		for_each_pwq(pwq, wq)
4871 			pwq_adjust_max_active(pwq);
4872 		mutex_unlock(&wq->mutex);
4873 	}
4874 
4875 	mutex_unlock(&wq_pool_mutex);
4876 }
4877 
4878 /**
4879  * freeze_workqueues_busy - are freezable workqueues still busy?
4880  *
4881  * Check whether freezing is complete.  This function must be called
4882  * between freeze_workqueues_begin() and thaw_workqueues().
4883  *
4884  * CONTEXT:
4885  * Grabs and releases wq_pool_mutex.
4886  *
4887  * Return:
4888  * %true if some freezable workqueues are still busy.  %false if freezing
4889  * is complete.
4890  */
4891 bool freeze_workqueues_busy(void)
4892 {
4893 	bool busy = false;
4894 	struct workqueue_struct *wq;
4895 	struct pool_workqueue *pwq;
4896 
4897 	mutex_lock(&wq_pool_mutex);
4898 
4899 	WARN_ON_ONCE(!workqueue_freezing);
4900 
4901 	list_for_each_entry(wq, &workqueues, list) {
4902 		if (!(wq->flags & WQ_FREEZABLE))
4903 			continue;
4904 		/*
4905 		 * nr_active is monotonically decreasing.  It's safe
4906 		 * to peek without lock.
4907 		 */
4908 		rcu_read_lock_sched();
4909 		for_each_pwq(pwq, wq) {
4910 			WARN_ON_ONCE(pwq->nr_active < 0);
4911 			if (pwq->nr_active) {
4912 				busy = true;
4913 				rcu_read_unlock_sched();
4914 				goto out_unlock;
4915 			}
4916 		}
4917 		rcu_read_unlock_sched();
4918 	}
4919 out_unlock:
4920 	mutex_unlock(&wq_pool_mutex);
4921 	return busy;
4922 }
4923 
4924 /**
4925  * thaw_workqueues - thaw workqueues
4926  *
4927  * Thaw workqueues.  Normal queueing is restored and all collected
4928  * frozen works are transferred to their respective pool worklists.
4929  *
4930  * CONTEXT:
4931  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4932  */
4933 void thaw_workqueues(void)
4934 {
4935 	struct workqueue_struct *wq;
4936 	struct pool_workqueue *pwq;
4937 	struct worker_pool *pool;
4938 	int pi;
4939 
4940 	mutex_lock(&wq_pool_mutex);
4941 
4942 	if (!workqueue_freezing)
4943 		goto out_unlock;
4944 
4945 	/* clear FREEZING */
4946 	for_each_pool(pool, pi) {
4947 		spin_lock_irq(&pool->lock);
4948 		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4949 		pool->flags &= ~POOL_FREEZING;
4950 		spin_unlock_irq(&pool->lock);
4951 	}
4952 
4953 	/* restore max_active and repopulate worklist */
4954 	list_for_each_entry(wq, &workqueues, list) {
4955 		mutex_lock(&wq->mutex);
4956 		for_each_pwq(pwq, wq)
4957 			pwq_adjust_max_active(pwq);
4958 		mutex_unlock(&wq->mutex);
4959 	}
4960 
4961 	workqueue_freezing = false;
4962 out_unlock:
4963 	mutex_unlock(&wq_pool_mutex);
4964 }
4965 #endif /* CONFIG_FREEZER */
4966 
4967 static void __init wq_numa_init(void)
4968 {
4969 	cpumask_var_t *tbl;
4970 	int node, cpu;
4971 
4972 	/* determine NUMA pwq table len - highest node id + 1 */
4973 	for_each_node(node)
4974 		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4975 
4976 	if (num_possible_nodes() <= 1)
4977 		return;
4978 
4979 	if (wq_disable_numa) {
4980 		pr_info("workqueue: NUMA affinity support disabled\n");
4981 		return;
4982 	}
4983 
4984 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4985 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
4986 
4987 	/*
4988 	 * We want masks of possible CPUs of each node which isn't readily
4989 	 * available.  Build one from cpu_to_node() which should have been
4990 	 * fully initialized by now.
4991 	 */
4992 	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4993 	BUG_ON(!tbl);
4994 
4995 	for_each_node(node)
4996 		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4997 				node_online(node) ? node : NUMA_NO_NODE));
4998 
4999 	for_each_possible_cpu(cpu) {
5000 		node = cpu_to_node(cpu);
5001 		if (WARN_ON(node == NUMA_NO_NODE)) {
5002 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5003 			/* happens iff arch is bonkers, let's just proceed */
5004 			return;
5005 		}
5006 		cpumask_set_cpu(cpu, tbl[node]);
5007 	}
5008 
5009 	wq_numa_possible_cpumask = tbl;
5010 	wq_numa_enabled = true;
5011 }
5012 
5013 static int __init init_workqueues(void)
5014 {
5015 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5016 	int i, cpu;
5017 
5018 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5019 
5020 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5021 
5022 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5023 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5024 
5025 	wq_numa_init();
5026 
5027 	/* initialize CPU pools */
5028 	for_each_possible_cpu(cpu) {
5029 		struct worker_pool *pool;
5030 
5031 		i = 0;
5032 		for_each_cpu_worker_pool(pool, cpu) {
5033 			BUG_ON(init_worker_pool(pool));
5034 			pool->cpu = cpu;
5035 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5036 			pool->attrs->nice = std_nice[i++];
5037 			pool->node = cpu_to_node(cpu);
5038 
5039 			/* alloc pool ID */
5040 			mutex_lock(&wq_pool_mutex);
5041 			BUG_ON(worker_pool_assign_id(pool));
5042 			mutex_unlock(&wq_pool_mutex);
5043 		}
5044 	}
5045 
5046 	/* create the initial worker */
5047 	for_each_online_cpu(cpu) {
5048 		struct worker_pool *pool;
5049 
5050 		for_each_cpu_worker_pool(pool, cpu) {
5051 			pool->flags &= ~POOL_DISASSOCIATED;
5052 			BUG_ON(create_and_start_worker(pool) < 0);
5053 		}
5054 	}
5055 
5056 	/* create default unbound and ordered wq attrs */
5057 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5058 		struct workqueue_attrs *attrs;
5059 
5060 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5061 		attrs->nice = std_nice[i];
5062 		unbound_std_wq_attrs[i] = attrs;
5063 
5064 		/*
5065 		 * An ordered wq should have only one pwq as ordering is
5066 		 * guaranteed by max_active which is enforced by pwqs.
5067 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5068 		 */
5069 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5070 		attrs->nice = std_nice[i];
5071 		attrs->no_numa = true;
5072 		ordered_wq_attrs[i] = attrs;
5073 	}
5074 
5075 	system_wq = alloc_workqueue("events", 0, 0);
5076 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5077 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5078 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5079 					    WQ_UNBOUND_MAX_ACTIVE);
5080 	system_freezable_wq = alloc_workqueue("events_freezable",
5081 					      WQ_FREEZABLE, 0);
5082 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5083 					      WQ_POWER_EFFICIENT, 0);
5084 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5085 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5086 					      0);
5087 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5088 	       !system_unbound_wq || !system_freezable_wq ||
5089 	       !system_power_efficient_wq ||
5090 	       !system_freezable_power_efficient_wq);
5091 	return 0;
5092 }
5093 early_initcall(init_workqueues);
5094