xref: /openbmc/linux/kernel/workqueue.c (revision 2596e07a)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 
73 	/* worker flags */
74 	WORKER_DIE		= 1 << 1,	/* die die die */
75 	WORKER_IDLE		= 1 << 2,	/* is idle */
76 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80 
81 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
82 				  WORKER_UNBOUND | WORKER_REBOUND,
83 
84 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85 
86 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
87 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88 
89 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
90 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
91 
92 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
93 						/* call for help after 10ms
94 						   (min two ticks) */
95 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
96 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
97 
98 	/*
99 	 * Rescue workers are used only on emergencies and shared by
100 	 * all cpus.  Give MIN_NICE.
101 	 */
102 	RESCUER_NICE_LEVEL	= MIN_NICE,
103 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 
105 	WQ_NAME_LEN		= 24,
106 };
107 
108 /*
109  * Structure fields follow one of the following exclusion rules.
110  *
111  * I: Modifiable by initialization/destruction paths and read-only for
112  *    everyone else.
113  *
114  * P: Preemption protected.  Disabling preemption is enough and should
115  *    only be modified and accessed from the local cpu.
116  *
117  * L: pool->lock protected.  Access with pool->lock held.
118  *
119  * X: During normal operation, modification requires pool->lock and should
120  *    be done only from local cpu.  Either disabling preemption on local
121  *    cpu or grabbing pool->lock is enough for read access.  If
122  *    POOL_DISASSOCIATED is set, it's identical to L.
123  *
124  * A: pool->attach_mutex protected.
125  *
126  * PL: wq_pool_mutex protected.
127  *
128  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129  *
130  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
131  *
132  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
133  *      sched-RCU for reads.
134  *
135  * WQ: wq->mutex protected.
136  *
137  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138  *
139  * MD: wq_mayday_lock protected.
140  */
141 
142 /* struct worker is defined in workqueue_internal.h */
143 
144 struct worker_pool {
145 	spinlock_t		lock;		/* the pool lock */
146 	int			cpu;		/* I: the associated cpu */
147 	int			node;		/* I: the associated node ID */
148 	int			id;		/* I: pool ID */
149 	unsigned int		flags;		/* X: flags */
150 
151 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
152 
153 	struct list_head	worklist;	/* L: list of pending works */
154 	int			nr_workers;	/* L: total number of workers */
155 
156 	/* nr_idle includes the ones off idle_list for rebinding */
157 	int			nr_idle;	/* L: currently idle ones */
158 
159 	struct list_head	idle_list;	/* X: list of idle workers */
160 	struct timer_list	idle_timer;	/* L: worker idle timeout */
161 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
162 
163 	/* a workers is either on busy_hash or idle_list, or the manager */
164 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 						/* L: hash of busy workers */
166 
167 	/* see manage_workers() for details on the two manager mutexes */
168 	struct mutex		manager_arb;	/* manager arbitration */
169 	struct worker		*manager;	/* L: purely informational */
170 	struct mutex		attach_mutex;	/* attach/detach exclusion */
171 	struct list_head	workers;	/* A: attached workers */
172 	struct completion	*detach_completion; /* all workers detached */
173 
174 	struct ida		worker_ida;	/* worker IDs for task name */
175 
176 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
178 	int			refcnt;		/* PL: refcnt for unbound pools */
179 
180 	/*
181 	 * The current concurrency level.  As it's likely to be accessed
182 	 * from other CPUs during try_to_wake_up(), put it in a separate
183 	 * cacheline.
184 	 */
185 	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 
187 	/*
188 	 * Destruction of pool is sched-RCU protected to allow dereferences
189 	 * from get_work_pool().
190 	 */
191 	struct rcu_head		rcu;
192 } ____cacheline_aligned_in_smp;
193 
194 /*
195  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
196  * of work_struct->data are used for flags and the remaining high bits
197  * point to the pwq; thus, pwqs need to be aligned at two's power of the
198  * number of flag bits.
199  */
200 struct pool_workqueue {
201 	struct worker_pool	*pool;		/* I: the associated pool */
202 	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 	int			work_color;	/* L: current color */
204 	int			flush_color;	/* L: flushing color */
205 	int			refcnt;		/* L: reference count */
206 	int			nr_in_flight[WORK_NR_COLORS];
207 						/* L: nr of in_flight works */
208 	int			nr_active;	/* L: nr of active works */
209 	int			max_active;	/* L: max active works */
210 	struct list_head	delayed_works;	/* L: delayed works */
211 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
213 
214 	/*
215 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
216 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
217 	 * itself is also sched-RCU protected so that the first pwq can be
218 	 * determined without grabbing wq->mutex.
219 	 */
220 	struct work_struct	unbound_release_work;
221 	struct rcu_head		rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223 
224 /*
225  * Structure used to wait for workqueue flush.
226  */
227 struct wq_flusher {
228 	struct list_head	list;		/* WQ: list of flushers */
229 	int			flush_color;	/* WQ: flush color waiting for */
230 	struct completion	done;		/* flush completion */
231 };
232 
233 struct wq_device;
234 
235 /*
236  * The externally visible workqueue.  It relays the issued work items to
237  * the appropriate worker_pool through its pool_workqueues.
238  */
239 struct workqueue_struct {
240 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241 	struct list_head	list;		/* PR: list of all workqueues */
242 
243 	struct mutex		mutex;		/* protects this wq */
244 	int			work_color;	/* WQ: current work color */
245 	int			flush_color;	/* WQ: current flush color */
246 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
248 	struct list_head	flusher_queue;	/* WQ: flush waiters */
249 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250 
251 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 	struct worker		*rescuer;	/* I: rescue worker */
253 
254 	int			nr_drainers;	/* WQ: drain in progress */
255 	int			saved_max_active; /* WQ: saved pwq max_active */
256 
257 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
258 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259 
260 #ifdef CONFIG_SYSFS
261 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267 
268 	/*
269 	 * Destruction of workqueue_struct is sched-RCU protected to allow
270 	 * walking the workqueues list without grabbing wq_pool_mutex.
271 	 * This is used to dump all workqueues from sysrq.
272 	 */
273 	struct rcu_head		rcu;
274 
275 	/* hot fields used during command issue, aligned to cacheline */
276 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280 
281 static struct kmem_cache *pwq_cache;
282 
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 					/* possible CPUs of each node */
285 
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288 
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292 
293 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
294 
295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297 
298 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
299 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
300 
301 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
302 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
303 
304 /* PL: allowable cpus for unbound wqs and work items */
305 static cpumask_var_t wq_unbound_cpumask;
306 
307 /* CPU where unbound work was last round robin scheduled from this CPU */
308 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
309 
310 /*
311  * Local execution of unbound work items is no longer guaranteed.  The
312  * following always forces round-robin CPU selection on unbound work items
313  * to uncover usages which depend on it.
314  */
315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316 static bool wq_debug_force_rr_cpu = true;
317 #else
318 static bool wq_debug_force_rr_cpu = false;
319 #endif
320 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
321 
322 /* the per-cpu worker pools */
323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
324 				     cpu_worker_pools);
325 
326 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
327 
328 /* PL: hash of all unbound pools keyed by pool->attrs */
329 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
330 
331 /* I: attributes used when instantiating standard unbound pools on demand */
332 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
333 
334 /* I: attributes used when instantiating ordered pools on demand */
335 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
336 
337 struct workqueue_struct *system_wq __read_mostly;
338 EXPORT_SYMBOL(system_wq);
339 struct workqueue_struct *system_highpri_wq __read_mostly;
340 EXPORT_SYMBOL_GPL(system_highpri_wq);
341 struct workqueue_struct *system_long_wq __read_mostly;
342 EXPORT_SYMBOL_GPL(system_long_wq);
343 struct workqueue_struct *system_unbound_wq __read_mostly;
344 EXPORT_SYMBOL_GPL(system_unbound_wq);
345 struct workqueue_struct *system_freezable_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_freezable_wq);
347 struct workqueue_struct *system_power_efficient_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
349 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
351 
352 static int worker_thread(void *__worker);
353 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
354 
355 #define CREATE_TRACE_POINTS
356 #include <trace/events/workqueue.h>
357 
358 #define assert_rcu_or_pool_mutex()					\
359 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
360 			 !lockdep_is_held(&wq_pool_mutex),		\
361 			 "sched RCU or wq_pool_mutex should be held")
362 
363 #define assert_rcu_or_wq_mutex(wq)					\
364 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
365 			 !lockdep_is_held(&wq->mutex),			\
366 			 "sched RCU or wq->mutex should be held")
367 
368 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
369 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
370 			 !lockdep_is_held(&wq->mutex) &&		\
371 			 !lockdep_is_held(&wq_pool_mutex),		\
372 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
373 
374 #define for_each_cpu_worker_pool(pool, cpu)				\
375 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
376 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
377 	     (pool)++)
378 
379 /**
380  * for_each_pool - iterate through all worker_pools in the system
381  * @pool: iteration cursor
382  * @pi: integer used for iteration
383  *
384  * This must be called either with wq_pool_mutex held or sched RCU read
385  * locked.  If the pool needs to be used beyond the locking in effect, the
386  * caller is responsible for guaranteeing that the pool stays online.
387  *
388  * The if/else clause exists only for the lockdep assertion and can be
389  * ignored.
390  */
391 #define for_each_pool(pool, pi)						\
392 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
393 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
394 		else
395 
396 /**
397  * for_each_pool_worker - iterate through all workers of a worker_pool
398  * @worker: iteration cursor
399  * @pool: worker_pool to iterate workers of
400  *
401  * This must be called with @pool->attach_mutex.
402  *
403  * The if/else clause exists only for the lockdep assertion and can be
404  * ignored.
405  */
406 #define for_each_pool_worker(worker, pool)				\
407 	list_for_each_entry((worker), &(pool)->workers, node)		\
408 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
409 		else
410 
411 /**
412  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
413  * @pwq: iteration cursor
414  * @wq: the target workqueue
415  *
416  * This must be called either with wq->mutex held or sched RCU read locked.
417  * If the pwq needs to be used beyond the locking in effect, the caller is
418  * responsible for guaranteeing that the pwq stays online.
419  *
420  * The if/else clause exists only for the lockdep assertion and can be
421  * ignored.
422  */
423 #define for_each_pwq(pwq, wq)						\
424 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
425 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
426 		else
427 
428 #ifdef CONFIG_DEBUG_OBJECTS_WORK
429 
430 static struct debug_obj_descr work_debug_descr;
431 
432 static void *work_debug_hint(void *addr)
433 {
434 	return ((struct work_struct *) addr)->func;
435 }
436 
437 /*
438  * fixup_init is called when:
439  * - an active object is initialized
440  */
441 static int work_fixup_init(void *addr, enum debug_obj_state state)
442 {
443 	struct work_struct *work = addr;
444 
445 	switch (state) {
446 	case ODEBUG_STATE_ACTIVE:
447 		cancel_work_sync(work);
448 		debug_object_init(work, &work_debug_descr);
449 		return 1;
450 	default:
451 		return 0;
452 	}
453 }
454 
455 /*
456  * fixup_activate is called when:
457  * - an active object is activated
458  * - an unknown object is activated (might be a statically initialized object)
459  */
460 static int work_fixup_activate(void *addr, enum debug_obj_state state)
461 {
462 	struct work_struct *work = addr;
463 
464 	switch (state) {
465 
466 	case ODEBUG_STATE_NOTAVAILABLE:
467 		/*
468 		 * This is not really a fixup. The work struct was
469 		 * statically initialized. We just make sure that it
470 		 * is tracked in the object tracker.
471 		 */
472 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
473 			debug_object_init(work, &work_debug_descr);
474 			debug_object_activate(work, &work_debug_descr);
475 			return 0;
476 		}
477 		WARN_ON_ONCE(1);
478 		return 0;
479 
480 	case ODEBUG_STATE_ACTIVE:
481 		WARN_ON(1);
482 
483 	default:
484 		return 0;
485 	}
486 }
487 
488 /*
489  * fixup_free is called when:
490  * - an active object is freed
491  */
492 static int work_fixup_free(void *addr, enum debug_obj_state state)
493 {
494 	struct work_struct *work = addr;
495 
496 	switch (state) {
497 	case ODEBUG_STATE_ACTIVE:
498 		cancel_work_sync(work);
499 		debug_object_free(work, &work_debug_descr);
500 		return 1;
501 	default:
502 		return 0;
503 	}
504 }
505 
506 static struct debug_obj_descr work_debug_descr = {
507 	.name		= "work_struct",
508 	.debug_hint	= work_debug_hint,
509 	.fixup_init	= work_fixup_init,
510 	.fixup_activate	= work_fixup_activate,
511 	.fixup_free	= work_fixup_free,
512 };
513 
514 static inline void debug_work_activate(struct work_struct *work)
515 {
516 	debug_object_activate(work, &work_debug_descr);
517 }
518 
519 static inline void debug_work_deactivate(struct work_struct *work)
520 {
521 	debug_object_deactivate(work, &work_debug_descr);
522 }
523 
524 void __init_work(struct work_struct *work, int onstack)
525 {
526 	if (onstack)
527 		debug_object_init_on_stack(work, &work_debug_descr);
528 	else
529 		debug_object_init(work, &work_debug_descr);
530 }
531 EXPORT_SYMBOL_GPL(__init_work);
532 
533 void destroy_work_on_stack(struct work_struct *work)
534 {
535 	debug_object_free(work, &work_debug_descr);
536 }
537 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
538 
539 void destroy_delayed_work_on_stack(struct delayed_work *work)
540 {
541 	destroy_timer_on_stack(&work->timer);
542 	debug_object_free(&work->work, &work_debug_descr);
543 }
544 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
545 
546 #else
547 static inline void debug_work_activate(struct work_struct *work) { }
548 static inline void debug_work_deactivate(struct work_struct *work) { }
549 #endif
550 
551 /**
552  * worker_pool_assign_id - allocate ID and assing it to @pool
553  * @pool: the pool pointer of interest
554  *
555  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
556  * successfully, -errno on failure.
557  */
558 static int worker_pool_assign_id(struct worker_pool *pool)
559 {
560 	int ret;
561 
562 	lockdep_assert_held(&wq_pool_mutex);
563 
564 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
565 			GFP_KERNEL);
566 	if (ret >= 0) {
567 		pool->id = ret;
568 		return 0;
569 	}
570 	return ret;
571 }
572 
573 /**
574  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
575  * @wq: the target workqueue
576  * @node: the node ID
577  *
578  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
579  * read locked.
580  * If the pwq needs to be used beyond the locking in effect, the caller is
581  * responsible for guaranteeing that the pwq stays online.
582  *
583  * Return: The unbound pool_workqueue for @node.
584  */
585 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
586 						  int node)
587 {
588 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
589 
590 	/*
591 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
592 	 * delayed item is pending.  The plan is to keep CPU -> NODE
593 	 * mapping valid and stable across CPU on/offlines.  Once that
594 	 * happens, this workaround can be removed.
595 	 */
596 	if (unlikely(node == NUMA_NO_NODE))
597 		return wq->dfl_pwq;
598 
599 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
600 }
601 
602 static unsigned int work_color_to_flags(int color)
603 {
604 	return color << WORK_STRUCT_COLOR_SHIFT;
605 }
606 
607 static int get_work_color(struct work_struct *work)
608 {
609 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
610 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
611 }
612 
613 static int work_next_color(int color)
614 {
615 	return (color + 1) % WORK_NR_COLORS;
616 }
617 
618 /*
619  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
620  * contain the pointer to the queued pwq.  Once execution starts, the flag
621  * is cleared and the high bits contain OFFQ flags and pool ID.
622  *
623  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
624  * and clear_work_data() can be used to set the pwq, pool or clear
625  * work->data.  These functions should only be called while the work is
626  * owned - ie. while the PENDING bit is set.
627  *
628  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
629  * corresponding to a work.  Pool is available once the work has been
630  * queued anywhere after initialization until it is sync canceled.  pwq is
631  * available only while the work item is queued.
632  *
633  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
634  * canceled.  While being canceled, a work item may have its PENDING set
635  * but stay off timer and worklist for arbitrarily long and nobody should
636  * try to steal the PENDING bit.
637  */
638 static inline void set_work_data(struct work_struct *work, unsigned long data,
639 				 unsigned long flags)
640 {
641 	WARN_ON_ONCE(!work_pending(work));
642 	atomic_long_set(&work->data, data | flags | work_static(work));
643 }
644 
645 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
646 			 unsigned long extra_flags)
647 {
648 	set_work_data(work, (unsigned long)pwq,
649 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
650 }
651 
652 static void set_work_pool_and_keep_pending(struct work_struct *work,
653 					   int pool_id)
654 {
655 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
656 		      WORK_STRUCT_PENDING);
657 }
658 
659 static void set_work_pool_and_clear_pending(struct work_struct *work,
660 					    int pool_id)
661 {
662 	/*
663 	 * The following wmb is paired with the implied mb in
664 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
665 	 * here are visible to and precede any updates by the next PENDING
666 	 * owner.
667 	 */
668 	smp_wmb();
669 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
670 }
671 
672 static void clear_work_data(struct work_struct *work)
673 {
674 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
675 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
676 }
677 
678 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
679 {
680 	unsigned long data = atomic_long_read(&work->data);
681 
682 	if (data & WORK_STRUCT_PWQ)
683 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
684 	else
685 		return NULL;
686 }
687 
688 /**
689  * get_work_pool - return the worker_pool a given work was associated with
690  * @work: the work item of interest
691  *
692  * Pools are created and destroyed under wq_pool_mutex, and allows read
693  * access under sched-RCU read lock.  As such, this function should be
694  * called under wq_pool_mutex or with preemption disabled.
695  *
696  * All fields of the returned pool are accessible as long as the above
697  * mentioned locking is in effect.  If the returned pool needs to be used
698  * beyond the critical section, the caller is responsible for ensuring the
699  * returned pool is and stays online.
700  *
701  * Return: The worker_pool @work was last associated with.  %NULL if none.
702  */
703 static struct worker_pool *get_work_pool(struct work_struct *work)
704 {
705 	unsigned long data = atomic_long_read(&work->data);
706 	int pool_id;
707 
708 	assert_rcu_or_pool_mutex();
709 
710 	if (data & WORK_STRUCT_PWQ)
711 		return ((struct pool_workqueue *)
712 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
713 
714 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
715 	if (pool_id == WORK_OFFQ_POOL_NONE)
716 		return NULL;
717 
718 	return idr_find(&worker_pool_idr, pool_id);
719 }
720 
721 /**
722  * get_work_pool_id - return the worker pool ID a given work is associated with
723  * @work: the work item of interest
724  *
725  * Return: The worker_pool ID @work was last associated with.
726  * %WORK_OFFQ_POOL_NONE if none.
727  */
728 static int get_work_pool_id(struct work_struct *work)
729 {
730 	unsigned long data = atomic_long_read(&work->data);
731 
732 	if (data & WORK_STRUCT_PWQ)
733 		return ((struct pool_workqueue *)
734 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
735 
736 	return data >> WORK_OFFQ_POOL_SHIFT;
737 }
738 
739 static void mark_work_canceling(struct work_struct *work)
740 {
741 	unsigned long pool_id = get_work_pool_id(work);
742 
743 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
744 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
745 }
746 
747 static bool work_is_canceling(struct work_struct *work)
748 {
749 	unsigned long data = atomic_long_read(&work->data);
750 
751 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
752 }
753 
754 /*
755  * Policy functions.  These define the policies on how the global worker
756  * pools are managed.  Unless noted otherwise, these functions assume that
757  * they're being called with pool->lock held.
758  */
759 
760 static bool __need_more_worker(struct worker_pool *pool)
761 {
762 	return !atomic_read(&pool->nr_running);
763 }
764 
765 /*
766  * Need to wake up a worker?  Called from anything but currently
767  * running workers.
768  *
769  * Note that, because unbound workers never contribute to nr_running, this
770  * function will always return %true for unbound pools as long as the
771  * worklist isn't empty.
772  */
773 static bool need_more_worker(struct worker_pool *pool)
774 {
775 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
776 }
777 
778 /* Can I start working?  Called from busy but !running workers. */
779 static bool may_start_working(struct worker_pool *pool)
780 {
781 	return pool->nr_idle;
782 }
783 
784 /* Do I need to keep working?  Called from currently running workers. */
785 static bool keep_working(struct worker_pool *pool)
786 {
787 	return !list_empty(&pool->worklist) &&
788 		atomic_read(&pool->nr_running) <= 1;
789 }
790 
791 /* Do we need a new worker?  Called from manager. */
792 static bool need_to_create_worker(struct worker_pool *pool)
793 {
794 	return need_more_worker(pool) && !may_start_working(pool);
795 }
796 
797 /* Do we have too many workers and should some go away? */
798 static bool too_many_workers(struct worker_pool *pool)
799 {
800 	bool managing = mutex_is_locked(&pool->manager_arb);
801 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
802 	int nr_busy = pool->nr_workers - nr_idle;
803 
804 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
805 }
806 
807 /*
808  * Wake up functions.
809  */
810 
811 /* Return the first idle worker.  Safe with preemption disabled */
812 static struct worker *first_idle_worker(struct worker_pool *pool)
813 {
814 	if (unlikely(list_empty(&pool->idle_list)))
815 		return NULL;
816 
817 	return list_first_entry(&pool->idle_list, struct worker, entry);
818 }
819 
820 /**
821  * wake_up_worker - wake up an idle worker
822  * @pool: worker pool to wake worker from
823  *
824  * Wake up the first idle worker of @pool.
825  *
826  * CONTEXT:
827  * spin_lock_irq(pool->lock).
828  */
829 static void wake_up_worker(struct worker_pool *pool)
830 {
831 	struct worker *worker = first_idle_worker(pool);
832 
833 	if (likely(worker))
834 		wake_up_process(worker->task);
835 }
836 
837 /**
838  * wq_worker_waking_up - a worker is waking up
839  * @task: task waking up
840  * @cpu: CPU @task is waking up to
841  *
842  * This function is called during try_to_wake_up() when a worker is
843  * being awoken.
844  *
845  * CONTEXT:
846  * spin_lock_irq(rq->lock)
847  */
848 void wq_worker_waking_up(struct task_struct *task, int cpu)
849 {
850 	struct worker *worker = kthread_data(task);
851 
852 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
853 		WARN_ON_ONCE(worker->pool->cpu != cpu);
854 		atomic_inc(&worker->pool->nr_running);
855 	}
856 }
857 
858 /**
859  * wq_worker_sleeping - a worker is going to sleep
860  * @task: task going to sleep
861  * @cpu: CPU in question, must be the current CPU number
862  *
863  * This function is called during schedule() when a busy worker is
864  * going to sleep.  Worker on the same cpu can be woken up by
865  * returning pointer to its task.
866  *
867  * CONTEXT:
868  * spin_lock_irq(rq->lock)
869  *
870  * Return:
871  * Worker task on @cpu to wake up, %NULL if none.
872  */
873 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
874 {
875 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
876 	struct worker_pool *pool;
877 
878 	/*
879 	 * Rescuers, which may not have all the fields set up like normal
880 	 * workers, also reach here, let's not access anything before
881 	 * checking NOT_RUNNING.
882 	 */
883 	if (worker->flags & WORKER_NOT_RUNNING)
884 		return NULL;
885 
886 	pool = worker->pool;
887 
888 	/* this can only happen on the local cpu */
889 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
890 		return NULL;
891 
892 	/*
893 	 * The counterpart of the following dec_and_test, implied mb,
894 	 * worklist not empty test sequence is in insert_work().
895 	 * Please read comment there.
896 	 *
897 	 * NOT_RUNNING is clear.  This means that we're bound to and
898 	 * running on the local cpu w/ rq lock held and preemption
899 	 * disabled, which in turn means that none else could be
900 	 * manipulating idle_list, so dereferencing idle_list without pool
901 	 * lock is safe.
902 	 */
903 	if (atomic_dec_and_test(&pool->nr_running) &&
904 	    !list_empty(&pool->worklist))
905 		to_wakeup = first_idle_worker(pool);
906 	return to_wakeup ? to_wakeup->task : NULL;
907 }
908 
909 /**
910  * worker_set_flags - set worker flags and adjust nr_running accordingly
911  * @worker: self
912  * @flags: flags to set
913  *
914  * Set @flags in @worker->flags and adjust nr_running accordingly.
915  *
916  * CONTEXT:
917  * spin_lock_irq(pool->lock)
918  */
919 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
920 {
921 	struct worker_pool *pool = worker->pool;
922 
923 	WARN_ON_ONCE(worker->task != current);
924 
925 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
926 	if ((flags & WORKER_NOT_RUNNING) &&
927 	    !(worker->flags & WORKER_NOT_RUNNING)) {
928 		atomic_dec(&pool->nr_running);
929 	}
930 
931 	worker->flags |= flags;
932 }
933 
934 /**
935  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
936  * @worker: self
937  * @flags: flags to clear
938  *
939  * Clear @flags in @worker->flags and adjust nr_running accordingly.
940  *
941  * CONTEXT:
942  * spin_lock_irq(pool->lock)
943  */
944 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
945 {
946 	struct worker_pool *pool = worker->pool;
947 	unsigned int oflags = worker->flags;
948 
949 	WARN_ON_ONCE(worker->task != current);
950 
951 	worker->flags &= ~flags;
952 
953 	/*
954 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
955 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
956 	 * of multiple flags, not a single flag.
957 	 */
958 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
959 		if (!(worker->flags & WORKER_NOT_RUNNING))
960 			atomic_inc(&pool->nr_running);
961 }
962 
963 /**
964  * find_worker_executing_work - find worker which is executing a work
965  * @pool: pool of interest
966  * @work: work to find worker for
967  *
968  * Find a worker which is executing @work on @pool by searching
969  * @pool->busy_hash which is keyed by the address of @work.  For a worker
970  * to match, its current execution should match the address of @work and
971  * its work function.  This is to avoid unwanted dependency between
972  * unrelated work executions through a work item being recycled while still
973  * being executed.
974  *
975  * This is a bit tricky.  A work item may be freed once its execution
976  * starts and nothing prevents the freed area from being recycled for
977  * another work item.  If the same work item address ends up being reused
978  * before the original execution finishes, workqueue will identify the
979  * recycled work item as currently executing and make it wait until the
980  * current execution finishes, introducing an unwanted dependency.
981  *
982  * This function checks the work item address and work function to avoid
983  * false positives.  Note that this isn't complete as one may construct a
984  * work function which can introduce dependency onto itself through a
985  * recycled work item.  Well, if somebody wants to shoot oneself in the
986  * foot that badly, there's only so much we can do, and if such deadlock
987  * actually occurs, it should be easy to locate the culprit work function.
988  *
989  * CONTEXT:
990  * spin_lock_irq(pool->lock).
991  *
992  * Return:
993  * Pointer to worker which is executing @work if found, %NULL
994  * otherwise.
995  */
996 static struct worker *find_worker_executing_work(struct worker_pool *pool,
997 						 struct work_struct *work)
998 {
999 	struct worker *worker;
1000 
1001 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1002 			       (unsigned long)work)
1003 		if (worker->current_work == work &&
1004 		    worker->current_func == work->func)
1005 			return worker;
1006 
1007 	return NULL;
1008 }
1009 
1010 /**
1011  * move_linked_works - move linked works to a list
1012  * @work: start of series of works to be scheduled
1013  * @head: target list to append @work to
1014  * @nextp: out parameter for nested worklist walking
1015  *
1016  * Schedule linked works starting from @work to @head.  Work series to
1017  * be scheduled starts at @work and includes any consecutive work with
1018  * WORK_STRUCT_LINKED set in its predecessor.
1019  *
1020  * If @nextp is not NULL, it's updated to point to the next work of
1021  * the last scheduled work.  This allows move_linked_works() to be
1022  * nested inside outer list_for_each_entry_safe().
1023  *
1024  * CONTEXT:
1025  * spin_lock_irq(pool->lock).
1026  */
1027 static void move_linked_works(struct work_struct *work, struct list_head *head,
1028 			      struct work_struct **nextp)
1029 {
1030 	struct work_struct *n;
1031 
1032 	/*
1033 	 * Linked worklist will always end before the end of the list,
1034 	 * use NULL for list head.
1035 	 */
1036 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1037 		list_move_tail(&work->entry, head);
1038 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1039 			break;
1040 	}
1041 
1042 	/*
1043 	 * If we're already inside safe list traversal and have moved
1044 	 * multiple works to the scheduled queue, the next position
1045 	 * needs to be updated.
1046 	 */
1047 	if (nextp)
1048 		*nextp = n;
1049 }
1050 
1051 /**
1052  * get_pwq - get an extra reference on the specified pool_workqueue
1053  * @pwq: pool_workqueue to get
1054  *
1055  * Obtain an extra reference on @pwq.  The caller should guarantee that
1056  * @pwq has positive refcnt and be holding the matching pool->lock.
1057  */
1058 static void get_pwq(struct pool_workqueue *pwq)
1059 {
1060 	lockdep_assert_held(&pwq->pool->lock);
1061 	WARN_ON_ONCE(pwq->refcnt <= 0);
1062 	pwq->refcnt++;
1063 }
1064 
1065 /**
1066  * put_pwq - put a pool_workqueue reference
1067  * @pwq: pool_workqueue to put
1068  *
1069  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1070  * destruction.  The caller should be holding the matching pool->lock.
1071  */
1072 static void put_pwq(struct pool_workqueue *pwq)
1073 {
1074 	lockdep_assert_held(&pwq->pool->lock);
1075 	if (likely(--pwq->refcnt))
1076 		return;
1077 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1078 		return;
1079 	/*
1080 	 * @pwq can't be released under pool->lock, bounce to
1081 	 * pwq_unbound_release_workfn().  This never recurses on the same
1082 	 * pool->lock as this path is taken only for unbound workqueues and
1083 	 * the release work item is scheduled on a per-cpu workqueue.  To
1084 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1085 	 * subclass of 1 in get_unbound_pool().
1086 	 */
1087 	schedule_work(&pwq->unbound_release_work);
1088 }
1089 
1090 /**
1091  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1092  * @pwq: pool_workqueue to put (can be %NULL)
1093  *
1094  * put_pwq() with locking.  This function also allows %NULL @pwq.
1095  */
1096 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1097 {
1098 	if (pwq) {
1099 		/*
1100 		 * As both pwqs and pools are sched-RCU protected, the
1101 		 * following lock operations are safe.
1102 		 */
1103 		spin_lock_irq(&pwq->pool->lock);
1104 		put_pwq(pwq);
1105 		spin_unlock_irq(&pwq->pool->lock);
1106 	}
1107 }
1108 
1109 static void pwq_activate_delayed_work(struct work_struct *work)
1110 {
1111 	struct pool_workqueue *pwq = get_work_pwq(work);
1112 
1113 	trace_workqueue_activate_work(work);
1114 	if (list_empty(&pwq->pool->worklist))
1115 		pwq->pool->watchdog_ts = jiffies;
1116 	move_linked_works(work, &pwq->pool->worklist, NULL);
1117 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1118 	pwq->nr_active++;
1119 }
1120 
1121 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1122 {
1123 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1124 						    struct work_struct, entry);
1125 
1126 	pwq_activate_delayed_work(work);
1127 }
1128 
1129 /**
1130  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1131  * @pwq: pwq of interest
1132  * @color: color of work which left the queue
1133  *
1134  * A work either has completed or is removed from pending queue,
1135  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1136  *
1137  * CONTEXT:
1138  * spin_lock_irq(pool->lock).
1139  */
1140 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1141 {
1142 	/* uncolored work items don't participate in flushing or nr_active */
1143 	if (color == WORK_NO_COLOR)
1144 		goto out_put;
1145 
1146 	pwq->nr_in_flight[color]--;
1147 
1148 	pwq->nr_active--;
1149 	if (!list_empty(&pwq->delayed_works)) {
1150 		/* one down, submit a delayed one */
1151 		if (pwq->nr_active < pwq->max_active)
1152 			pwq_activate_first_delayed(pwq);
1153 	}
1154 
1155 	/* is flush in progress and are we at the flushing tip? */
1156 	if (likely(pwq->flush_color != color))
1157 		goto out_put;
1158 
1159 	/* are there still in-flight works? */
1160 	if (pwq->nr_in_flight[color])
1161 		goto out_put;
1162 
1163 	/* this pwq is done, clear flush_color */
1164 	pwq->flush_color = -1;
1165 
1166 	/*
1167 	 * If this was the last pwq, wake up the first flusher.  It
1168 	 * will handle the rest.
1169 	 */
1170 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1171 		complete(&pwq->wq->first_flusher->done);
1172 out_put:
1173 	put_pwq(pwq);
1174 }
1175 
1176 /**
1177  * try_to_grab_pending - steal work item from worklist and disable irq
1178  * @work: work item to steal
1179  * @is_dwork: @work is a delayed_work
1180  * @flags: place to store irq state
1181  *
1182  * Try to grab PENDING bit of @work.  This function can handle @work in any
1183  * stable state - idle, on timer or on worklist.
1184  *
1185  * Return:
1186  *  1		if @work was pending and we successfully stole PENDING
1187  *  0		if @work was idle and we claimed PENDING
1188  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1189  *  -ENOENT	if someone else is canceling @work, this state may persist
1190  *		for arbitrarily long
1191  *
1192  * Note:
1193  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1194  * interrupted while holding PENDING and @work off queue, irq must be
1195  * disabled on entry.  This, combined with delayed_work->timer being
1196  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1197  *
1198  * On successful return, >= 0, irq is disabled and the caller is
1199  * responsible for releasing it using local_irq_restore(*@flags).
1200  *
1201  * This function is safe to call from any context including IRQ handler.
1202  */
1203 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1204 			       unsigned long *flags)
1205 {
1206 	struct worker_pool *pool;
1207 	struct pool_workqueue *pwq;
1208 
1209 	local_irq_save(*flags);
1210 
1211 	/* try to steal the timer if it exists */
1212 	if (is_dwork) {
1213 		struct delayed_work *dwork = to_delayed_work(work);
1214 
1215 		/*
1216 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1217 		 * guaranteed that the timer is not queued anywhere and not
1218 		 * running on the local CPU.
1219 		 */
1220 		if (likely(del_timer(&dwork->timer)))
1221 			return 1;
1222 	}
1223 
1224 	/* try to claim PENDING the normal way */
1225 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1226 		return 0;
1227 
1228 	/*
1229 	 * The queueing is in progress, or it is already queued. Try to
1230 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1231 	 */
1232 	pool = get_work_pool(work);
1233 	if (!pool)
1234 		goto fail;
1235 
1236 	spin_lock(&pool->lock);
1237 	/*
1238 	 * work->data is guaranteed to point to pwq only while the work
1239 	 * item is queued on pwq->wq, and both updating work->data to point
1240 	 * to pwq on queueing and to pool on dequeueing are done under
1241 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1242 	 * points to pwq which is associated with a locked pool, the work
1243 	 * item is currently queued on that pool.
1244 	 */
1245 	pwq = get_work_pwq(work);
1246 	if (pwq && pwq->pool == pool) {
1247 		debug_work_deactivate(work);
1248 
1249 		/*
1250 		 * A delayed work item cannot be grabbed directly because
1251 		 * it might have linked NO_COLOR work items which, if left
1252 		 * on the delayed_list, will confuse pwq->nr_active
1253 		 * management later on and cause stall.  Make sure the work
1254 		 * item is activated before grabbing.
1255 		 */
1256 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1257 			pwq_activate_delayed_work(work);
1258 
1259 		list_del_init(&work->entry);
1260 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1261 
1262 		/* work->data points to pwq iff queued, point to pool */
1263 		set_work_pool_and_keep_pending(work, pool->id);
1264 
1265 		spin_unlock(&pool->lock);
1266 		return 1;
1267 	}
1268 	spin_unlock(&pool->lock);
1269 fail:
1270 	local_irq_restore(*flags);
1271 	if (work_is_canceling(work))
1272 		return -ENOENT;
1273 	cpu_relax();
1274 	return -EAGAIN;
1275 }
1276 
1277 /**
1278  * insert_work - insert a work into a pool
1279  * @pwq: pwq @work belongs to
1280  * @work: work to insert
1281  * @head: insertion point
1282  * @extra_flags: extra WORK_STRUCT_* flags to set
1283  *
1284  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1285  * work_struct flags.
1286  *
1287  * CONTEXT:
1288  * spin_lock_irq(pool->lock).
1289  */
1290 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1291 			struct list_head *head, unsigned int extra_flags)
1292 {
1293 	struct worker_pool *pool = pwq->pool;
1294 
1295 	/* we own @work, set data and link */
1296 	set_work_pwq(work, pwq, extra_flags);
1297 	list_add_tail(&work->entry, head);
1298 	get_pwq(pwq);
1299 
1300 	/*
1301 	 * Ensure either wq_worker_sleeping() sees the above
1302 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1303 	 * around lazily while there are works to be processed.
1304 	 */
1305 	smp_mb();
1306 
1307 	if (__need_more_worker(pool))
1308 		wake_up_worker(pool);
1309 }
1310 
1311 /*
1312  * Test whether @work is being queued from another work executing on the
1313  * same workqueue.
1314  */
1315 static bool is_chained_work(struct workqueue_struct *wq)
1316 {
1317 	struct worker *worker;
1318 
1319 	worker = current_wq_worker();
1320 	/*
1321 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1322 	 * I'm @worker, it's safe to dereference it without locking.
1323 	 */
1324 	return worker && worker->current_pwq->wq == wq;
1325 }
1326 
1327 /*
1328  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1329  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1330  * avoid perturbing sensitive tasks.
1331  */
1332 static int wq_select_unbound_cpu(int cpu)
1333 {
1334 	static bool printed_dbg_warning;
1335 	int new_cpu;
1336 
1337 	if (likely(!wq_debug_force_rr_cpu)) {
1338 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1339 			return cpu;
1340 	} else if (!printed_dbg_warning) {
1341 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1342 		printed_dbg_warning = true;
1343 	}
1344 
1345 	if (cpumask_empty(wq_unbound_cpumask))
1346 		return cpu;
1347 
1348 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1349 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1350 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1351 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1352 		if (unlikely(new_cpu >= nr_cpu_ids))
1353 			return cpu;
1354 	}
1355 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1356 
1357 	return new_cpu;
1358 }
1359 
1360 static void __queue_work(int cpu, struct workqueue_struct *wq,
1361 			 struct work_struct *work)
1362 {
1363 	struct pool_workqueue *pwq;
1364 	struct worker_pool *last_pool;
1365 	struct list_head *worklist;
1366 	unsigned int work_flags;
1367 	unsigned int req_cpu = cpu;
1368 
1369 	/*
1370 	 * While a work item is PENDING && off queue, a task trying to
1371 	 * steal the PENDING will busy-loop waiting for it to either get
1372 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1373 	 * happen with IRQ disabled.
1374 	 */
1375 	WARN_ON_ONCE(!irqs_disabled());
1376 
1377 	debug_work_activate(work);
1378 
1379 	/* if draining, only works from the same workqueue are allowed */
1380 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1381 	    WARN_ON_ONCE(!is_chained_work(wq)))
1382 		return;
1383 retry:
1384 	if (req_cpu == WORK_CPU_UNBOUND)
1385 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1386 
1387 	/* pwq which will be used unless @work is executing elsewhere */
1388 	if (!(wq->flags & WQ_UNBOUND))
1389 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1390 	else
1391 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1392 
1393 	/*
1394 	 * If @work was previously on a different pool, it might still be
1395 	 * running there, in which case the work needs to be queued on that
1396 	 * pool to guarantee non-reentrancy.
1397 	 */
1398 	last_pool = get_work_pool(work);
1399 	if (last_pool && last_pool != pwq->pool) {
1400 		struct worker *worker;
1401 
1402 		spin_lock(&last_pool->lock);
1403 
1404 		worker = find_worker_executing_work(last_pool, work);
1405 
1406 		if (worker && worker->current_pwq->wq == wq) {
1407 			pwq = worker->current_pwq;
1408 		} else {
1409 			/* meh... not running there, queue here */
1410 			spin_unlock(&last_pool->lock);
1411 			spin_lock(&pwq->pool->lock);
1412 		}
1413 	} else {
1414 		spin_lock(&pwq->pool->lock);
1415 	}
1416 
1417 	/*
1418 	 * pwq is determined and locked.  For unbound pools, we could have
1419 	 * raced with pwq release and it could already be dead.  If its
1420 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1421 	 * without another pwq replacing it in the numa_pwq_tbl or while
1422 	 * work items are executing on it, so the retrying is guaranteed to
1423 	 * make forward-progress.
1424 	 */
1425 	if (unlikely(!pwq->refcnt)) {
1426 		if (wq->flags & WQ_UNBOUND) {
1427 			spin_unlock(&pwq->pool->lock);
1428 			cpu_relax();
1429 			goto retry;
1430 		}
1431 		/* oops */
1432 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1433 			  wq->name, cpu);
1434 	}
1435 
1436 	/* pwq determined, queue */
1437 	trace_workqueue_queue_work(req_cpu, pwq, work);
1438 
1439 	if (WARN_ON(!list_empty(&work->entry))) {
1440 		spin_unlock(&pwq->pool->lock);
1441 		return;
1442 	}
1443 
1444 	pwq->nr_in_flight[pwq->work_color]++;
1445 	work_flags = work_color_to_flags(pwq->work_color);
1446 
1447 	if (likely(pwq->nr_active < pwq->max_active)) {
1448 		trace_workqueue_activate_work(work);
1449 		pwq->nr_active++;
1450 		worklist = &pwq->pool->worklist;
1451 		if (list_empty(worklist))
1452 			pwq->pool->watchdog_ts = jiffies;
1453 	} else {
1454 		work_flags |= WORK_STRUCT_DELAYED;
1455 		worklist = &pwq->delayed_works;
1456 	}
1457 
1458 	insert_work(pwq, work, worklist, work_flags);
1459 
1460 	spin_unlock(&pwq->pool->lock);
1461 }
1462 
1463 /**
1464  * queue_work_on - queue work on specific cpu
1465  * @cpu: CPU number to execute work on
1466  * @wq: workqueue to use
1467  * @work: work to queue
1468  *
1469  * We queue the work to a specific CPU, the caller must ensure it
1470  * can't go away.
1471  *
1472  * Return: %false if @work was already on a queue, %true otherwise.
1473  */
1474 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1475 		   struct work_struct *work)
1476 {
1477 	bool ret = false;
1478 	unsigned long flags;
1479 
1480 	local_irq_save(flags);
1481 
1482 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1483 		__queue_work(cpu, wq, work);
1484 		ret = true;
1485 	}
1486 
1487 	local_irq_restore(flags);
1488 	return ret;
1489 }
1490 EXPORT_SYMBOL(queue_work_on);
1491 
1492 void delayed_work_timer_fn(unsigned long __data)
1493 {
1494 	struct delayed_work *dwork = (struct delayed_work *)__data;
1495 
1496 	/* should have been called from irqsafe timer with irq already off */
1497 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1498 }
1499 EXPORT_SYMBOL(delayed_work_timer_fn);
1500 
1501 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1502 				struct delayed_work *dwork, unsigned long delay)
1503 {
1504 	struct timer_list *timer = &dwork->timer;
1505 	struct work_struct *work = &dwork->work;
1506 
1507 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1508 		     timer->data != (unsigned long)dwork);
1509 	WARN_ON_ONCE(timer_pending(timer));
1510 	WARN_ON_ONCE(!list_empty(&work->entry));
1511 
1512 	/*
1513 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1514 	 * both optimization and correctness.  The earliest @timer can
1515 	 * expire is on the closest next tick and delayed_work users depend
1516 	 * on that there's no such delay when @delay is 0.
1517 	 */
1518 	if (!delay) {
1519 		__queue_work(cpu, wq, &dwork->work);
1520 		return;
1521 	}
1522 
1523 	timer_stats_timer_set_start_info(&dwork->timer);
1524 
1525 	dwork->wq = wq;
1526 	dwork->cpu = cpu;
1527 	timer->expires = jiffies + delay;
1528 
1529 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1530 		add_timer_on(timer, cpu);
1531 	else
1532 		add_timer(timer);
1533 }
1534 
1535 /**
1536  * queue_delayed_work_on - queue work on specific CPU after delay
1537  * @cpu: CPU number to execute work on
1538  * @wq: workqueue to use
1539  * @dwork: work to queue
1540  * @delay: number of jiffies to wait before queueing
1541  *
1542  * Return: %false if @work was already on a queue, %true otherwise.  If
1543  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1544  * execution.
1545  */
1546 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1547 			   struct delayed_work *dwork, unsigned long delay)
1548 {
1549 	struct work_struct *work = &dwork->work;
1550 	bool ret = false;
1551 	unsigned long flags;
1552 
1553 	/* read the comment in __queue_work() */
1554 	local_irq_save(flags);
1555 
1556 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1557 		__queue_delayed_work(cpu, wq, dwork, delay);
1558 		ret = true;
1559 	}
1560 
1561 	local_irq_restore(flags);
1562 	return ret;
1563 }
1564 EXPORT_SYMBOL(queue_delayed_work_on);
1565 
1566 /**
1567  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1568  * @cpu: CPU number to execute work on
1569  * @wq: workqueue to use
1570  * @dwork: work to queue
1571  * @delay: number of jiffies to wait before queueing
1572  *
1573  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1574  * modify @dwork's timer so that it expires after @delay.  If @delay is
1575  * zero, @work is guaranteed to be scheduled immediately regardless of its
1576  * current state.
1577  *
1578  * Return: %false if @dwork was idle and queued, %true if @dwork was
1579  * pending and its timer was modified.
1580  *
1581  * This function is safe to call from any context including IRQ handler.
1582  * See try_to_grab_pending() for details.
1583  */
1584 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1585 			 struct delayed_work *dwork, unsigned long delay)
1586 {
1587 	unsigned long flags;
1588 	int ret;
1589 
1590 	do {
1591 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1592 	} while (unlikely(ret == -EAGAIN));
1593 
1594 	if (likely(ret >= 0)) {
1595 		__queue_delayed_work(cpu, wq, dwork, delay);
1596 		local_irq_restore(flags);
1597 	}
1598 
1599 	/* -ENOENT from try_to_grab_pending() becomes %true */
1600 	return ret;
1601 }
1602 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1603 
1604 /**
1605  * worker_enter_idle - enter idle state
1606  * @worker: worker which is entering idle state
1607  *
1608  * @worker is entering idle state.  Update stats and idle timer if
1609  * necessary.
1610  *
1611  * LOCKING:
1612  * spin_lock_irq(pool->lock).
1613  */
1614 static void worker_enter_idle(struct worker *worker)
1615 {
1616 	struct worker_pool *pool = worker->pool;
1617 
1618 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1619 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1620 			 (worker->hentry.next || worker->hentry.pprev)))
1621 		return;
1622 
1623 	/* can't use worker_set_flags(), also called from create_worker() */
1624 	worker->flags |= WORKER_IDLE;
1625 	pool->nr_idle++;
1626 	worker->last_active = jiffies;
1627 
1628 	/* idle_list is LIFO */
1629 	list_add(&worker->entry, &pool->idle_list);
1630 
1631 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1632 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1633 
1634 	/*
1635 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1636 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1637 	 * nr_running, the warning may trigger spuriously.  Check iff
1638 	 * unbind is not in progress.
1639 	 */
1640 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1641 		     pool->nr_workers == pool->nr_idle &&
1642 		     atomic_read(&pool->nr_running));
1643 }
1644 
1645 /**
1646  * worker_leave_idle - leave idle state
1647  * @worker: worker which is leaving idle state
1648  *
1649  * @worker is leaving idle state.  Update stats.
1650  *
1651  * LOCKING:
1652  * spin_lock_irq(pool->lock).
1653  */
1654 static void worker_leave_idle(struct worker *worker)
1655 {
1656 	struct worker_pool *pool = worker->pool;
1657 
1658 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1659 		return;
1660 	worker_clr_flags(worker, WORKER_IDLE);
1661 	pool->nr_idle--;
1662 	list_del_init(&worker->entry);
1663 }
1664 
1665 static struct worker *alloc_worker(int node)
1666 {
1667 	struct worker *worker;
1668 
1669 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1670 	if (worker) {
1671 		INIT_LIST_HEAD(&worker->entry);
1672 		INIT_LIST_HEAD(&worker->scheduled);
1673 		INIT_LIST_HEAD(&worker->node);
1674 		/* on creation a worker is in !idle && prep state */
1675 		worker->flags = WORKER_PREP;
1676 	}
1677 	return worker;
1678 }
1679 
1680 /**
1681  * worker_attach_to_pool() - attach a worker to a pool
1682  * @worker: worker to be attached
1683  * @pool: the target pool
1684  *
1685  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1686  * cpu-binding of @worker are kept coordinated with the pool across
1687  * cpu-[un]hotplugs.
1688  */
1689 static void worker_attach_to_pool(struct worker *worker,
1690 				   struct worker_pool *pool)
1691 {
1692 	mutex_lock(&pool->attach_mutex);
1693 
1694 	/*
1695 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1696 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1697 	 */
1698 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1699 
1700 	/*
1701 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1702 	 * stable across this function.  See the comments above the
1703 	 * flag definition for details.
1704 	 */
1705 	if (pool->flags & POOL_DISASSOCIATED)
1706 		worker->flags |= WORKER_UNBOUND;
1707 
1708 	list_add_tail(&worker->node, &pool->workers);
1709 
1710 	mutex_unlock(&pool->attach_mutex);
1711 }
1712 
1713 /**
1714  * worker_detach_from_pool() - detach a worker from its pool
1715  * @worker: worker which is attached to its pool
1716  * @pool: the pool @worker is attached to
1717  *
1718  * Undo the attaching which had been done in worker_attach_to_pool().  The
1719  * caller worker shouldn't access to the pool after detached except it has
1720  * other reference to the pool.
1721  */
1722 static void worker_detach_from_pool(struct worker *worker,
1723 				    struct worker_pool *pool)
1724 {
1725 	struct completion *detach_completion = NULL;
1726 
1727 	mutex_lock(&pool->attach_mutex);
1728 	list_del(&worker->node);
1729 	if (list_empty(&pool->workers))
1730 		detach_completion = pool->detach_completion;
1731 	mutex_unlock(&pool->attach_mutex);
1732 
1733 	/* clear leftover flags without pool->lock after it is detached */
1734 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1735 
1736 	if (detach_completion)
1737 		complete(detach_completion);
1738 }
1739 
1740 /**
1741  * create_worker - create a new workqueue worker
1742  * @pool: pool the new worker will belong to
1743  *
1744  * Create and start a new worker which is attached to @pool.
1745  *
1746  * CONTEXT:
1747  * Might sleep.  Does GFP_KERNEL allocations.
1748  *
1749  * Return:
1750  * Pointer to the newly created worker.
1751  */
1752 static struct worker *create_worker(struct worker_pool *pool)
1753 {
1754 	struct worker *worker = NULL;
1755 	int id = -1;
1756 	char id_buf[16];
1757 
1758 	/* ID is needed to determine kthread name */
1759 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1760 	if (id < 0)
1761 		goto fail;
1762 
1763 	worker = alloc_worker(pool->node);
1764 	if (!worker)
1765 		goto fail;
1766 
1767 	worker->pool = pool;
1768 	worker->id = id;
1769 
1770 	if (pool->cpu >= 0)
1771 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1772 			 pool->attrs->nice < 0  ? "H" : "");
1773 	else
1774 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1775 
1776 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1777 					      "kworker/%s", id_buf);
1778 	if (IS_ERR(worker->task))
1779 		goto fail;
1780 
1781 	set_user_nice(worker->task, pool->attrs->nice);
1782 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1783 
1784 	/* successful, attach the worker to the pool */
1785 	worker_attach_to_pool(worker, pool);
1786 
1787 	/* start the newly created worker */
1788 	spin_lock_irq(&pool->lock);
1789 	worker->pool->nr_workers++;
1790 	worker_enter_idle(worker);
1791 	wake_up_process(worker->task);
1792 	spin_unlock_irq(&pool->lock);
1793 
1794 	return worker;
1795 
1796 fail:
1797 	if (id >= 0)
1798 		ida_simple_remove(&pool->worker_ida, id);
1799 	kfree(worker);
1800 	return NULL;
1801 }
1802 
1803 /**
1804  * destroy_worker - destroy a workqueue worker
1805  * @worker: worker to be destroyed
1806  *
1807  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1808  * be idle.
1809  *
1810  * CONTEXT:
1811  * spin_lock_irq(pool->lock).
1812  */
1813 static void destroy_worker(struct worker *worker)
1814 {
1815 	struct worker_pool *pool = worker->pool;
1816 
1817 	lockdep_assert_held(&pool->lock);
1818 
1819 	/* sanity check frenzy */
1820 	if (WARN_ON(worker->current_work) ||
1821 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1822 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1823 		return;
1824 
1825 	pool->nr_workers--;
1826 	pool->nr_idle--;
1827 
1828 	list_del_init(&worker->entry);
1829 	worker->flags |= WORKER_DIE;
1830 	wake_up_process(worker->task);
1831 }
1832 
1833 static void idle_worker_timeout(unsigned long __pool)
1834 {
1835 	struct worker_pool *pool = (void *)__pool;
1836 
1837 	spin_lock_irq(&pool->lock);
1838 
1839 	while (too_many_workers(pool)) {
1840 		struct worker *worker;
1841 		unsigned long expires;
1842 
1843 		/* idle_list is kept in LIFO order, check the last one */
1844 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1845 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1846 
1847 		if (time_before(jiffies, expires)) {
1848 			mod_timer(&pool->idle_timer, expires);
1849 			break;
1850 		}
1851 
1852 		destroy_worker(worker);
1853 	}
1854 
1855 	spin_unlock_irq(&pool->lock);
1856 }
1857 
1858 static void send_mayday(struct work_struct *work)
1859 {
1860 	struct pool_workqueue *pwq = get_work_pwq(work);
1861 	struct workqueue_struct *wq = pwq->wq;
1862 
1863 	lockdep_assert_held(&wq_mayday_lock);
1864 
1865 	if (!wq->rescuer)
1866 		return;
1867 
1868 	/* mayday mayday mayday */
1869 	if (list_empty(&pwq->mayday_node)) {
1870 		/*
1871 		 * If @pwq is for an unbound wq, its base ref may be put at
1872 		 * any time due to an attribute change.  Pin @pwq until the
1873 		 * rescuer is done with it.
1874 		 */
1875 		get_pwq(pwq);
1876 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1877 		wake_up_process(wq->rescuer->task);
1878 	}
1879 }
1880 
1881 static void pool_mayday_timeout(unsigned long __pool)
1882 {
1883 	struct worker_pool *pool = (void *)__pool;
1884 	struct work_struct *work;
1885 
1886 	spin_lock_irq(&pool->lock);
1887 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1888 
1889 	if (need_to_create_worker(pool)) {
1890 		/*
1891 		 * We've been trying to create a new worker but
1892 		 * haven't been successful.  We might be hitting an
1893 		 * allocation deadlock.  Send distress signals to
1894 		 * rescuers.
1895 		 */
1896 		list_for_each_entry(work, &pool->worklist, entry)
1897 			send_mayday(work);
1898 	}
1899 
1900 	spin_unlock(&wq_mayday_lock);
1901 	spin_unlock_irq(&pool->lock);
1902 
1903 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1904 }
1905 
1906 /**
1907  * maybe_create_worker - create a new worker if necessary
1908  * @pool: pool to create a new worker for
1909  *
1910  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1911  * have at least one idle worker on return from this function.  If
1912  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1913  * sent to all rescuers with works scheduled on @pool to resolve
1914  * possible allocation deadlock.
1915  *
1916  * On return, need_to_create_worker() is guaranteed to be %false and
1917  * may_start_working() %true.
1918  *
1919  * LOCKING:
1920  * spin_lock_irq(pool->lock) which may be released and regrabbed
1921  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1922  * manager.
1923  */
1924 static void maybe_create_worker(struct worker_pool *pool)
1925 __releases(&pool->lock)
1926 __acquires(&pool->lock)
1927 {
1928 restart:
1929 	spin_unlock_irq(&pool->lock);
1930 
1931 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1932 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1933 
1934 	while (true) {
1935 		if (create_worker(pool) || !need_to_create_worker(pool))
1936 			break;
1937 
1938 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1939 
1940 		if (!need_to_create_worker(pool))
1941 			break;
1942 	}
1943 
1944 	del_timer_sync(&pool->mayday_timer);
1945 	spin_lock_irq(&pool->lock);
1946 	/*
1947 	 * This is necessary even after a new worker was just successfully
1948 	 * created as @pool->lock was dropped and the new worker might have
1949 	 * already become busy.
1950 	 */
1951 	if (need_to_create_worker(pool))
1952 		goto restart;
1953 }
1954 
1955 /**
1956  * manage_workers - manage worker pool
1957  * @worker: self
1958  *
1959  * Assume the manager role and manage the worker pool @worker belongs
1960  * to.  At any given time, there can be only zero or one manager per
1961  * pool.  The exclusion is handled automatically by this function.
1962  *
1963  * The caller can safely start processing works on false return.  On
1964  * true return, it's guaranteed that need_to_create_worker() is false
1965  * and may_start_working() is true.
1966  *
1967  * CONTEXT:
1968  * spin_lock_irq(pool->lock) which may be released and regrabbed
1969  * multiple times.  Does GFP_KERNEL allocations.
1970  *
1971  * Return:
1972  * %false if the pool doesn't need management and the caller can safely
1973  * start processing works, %true if management function was performed and
1974  * the conditions that the caller verified before calling the function may
1975  * no longer be true.
1976  */
1977 static bool manage_workers(struct worker *worker)
1978 {
1979 	struct worker_pool *pool = worker->pool;
1980 
1981 	/*
1982 	 * Anyone who successfully grabs manager_arb wins the arbitration
1983 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
1984 	 * failure while holding pool->lock reliably indicates that someone
1985 	 * else is managing the pool and the worker which failed trylock
1986 	 * can proceed to executing work items.  This means that anyone
1987 	 * grabbing manager_arb is responsible for actually performing
1988 	 * manager duties.  If manager_arb is grabbed and released without
1989 	 * actual management, the pool may stall indefinitely.
1990 	 */
1991 	if (!mutex_trylock(&pool->manager_arb))
1992 		return false;
1993 	pool->manager = worker;
1994 
1995 	maybe_create_worker(pool);
1996 
1997 	pool->manager = NULL;
1998 	mutex_unlock(&pool->manager_arb);
1999 	return true;
2000 }
2001 
2002 /**
2003  * process_one_work - process single work
2004  * @worker: self
2005  * @work: work to process
2006  *
2007  * Process @work.  This function contains all the logics necessary to
2008  * process a single work including synchronization against and
2009  * interaction with other workers on the same cpu, queueing and
2010  * flushing.  As long as context requirement is met, any worker can
2011  * call this function to process a work.
2012  *
2013  * CONTEXT:
2014  * spin_lock_irq(pool->lock) which is released and regrabbed.
2015  */
2016 static void process_one_work(struct worker *worker, struct work_struct *work)
2017 __releases(&pool->lock)
2018 __acquires(&pool->lock)
2019 {
2020 	struct pool_workqueue *pwq = get_work_pwq(work);
2021 	struct worker_pool *pool = worker->pool;
2022 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2023 	int work_color;
2024 	struct worker *collision;
2025 #ifdef CONFIG_LOCKDEP
2026 	/*
2027 	 * It is permissible to free the struct work_struct from
2028 	 * inside the function that is called from it, this we need to
2029 	 * take into account for lockdep too.  To avoid bogus "held
2030 	 * lock freed" warnings as well as problems when looking into
2031 	 * work->lockdep_map, make a copy and use that here.
2032 	 */
2033 	struct lockdep_map lockdep_map;
2034 
2035 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2036 #endif
2037 	/* ensure we're on the correct CPU */
2038 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2039 		     raw_smp_processor_id() != pool->cpu);
2040 
2041 	/*
2042 	 * A single work shouldn't be executed concurrently by
2043 	 * multiple workers on a single cpu.  Check whether anyone is
2044 	 * already processing the work.  If so, defer the work to the
2045 	 * currently executing one.
2046 	 */
2047 	collision = find_worker_executing_work(pool, work);
2048 	if (unlikely(collision)) {
2049 		move_linked_works(work, &collision->scheduled, NULL);
2050 		return;
2051 	}
2052 
2053 	/* claim and dequeue */
2054 	debug_work_deactivate(work);
2055 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2056 	worker->current_work = work;
2057 	worker->current_func = work->func;
2058 	worker->current_pwq = pwq;
2059 	work_color = get_work_color(work);
2060 
2061 	list_del_init(&work->entry);
2062 
2063 	/*
2064 	 * CPU intensive works don't participate in concurrency management.
2065 	 * They're the scheduler's responsibility.  This takes @worker out
2066 	 * of concurrency management and the next code block will chain
2067 	 * execution of the pending work items.
2068 	 */
2069 	if (unlikely(cpu_intensive))
2070 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2071 
2072 	/*
2073 	 * Wake up another worker if necessary.  The condition is always
2074 	 * false for normal per-cpu workers since nr_running would always
2075 	 * be >= 1 at this point.  This is used to chain execution of the
2076 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2077 	 * UNBOUND and CPU_INTENSIVE ones.
2078 	 */
2079 	if (need_more_worker(pool))
2080 		wake_up_worker(pool);
2081 
2082 	/*
2083 	 * Record the last pool and clear PENDING which should be the last
2084 	 * update to @work.  Also, do this inside @pool->lock so that
2085 	 * PENDING and queued state changes happen together while IRQ is
2086 	 * disabled.
2087 	 */
2088 	set_work_pool_and_clear_pending(work, pool->id);
2089 
2090 	spin_unlock_irq(&pool->lock);
2091 
2092 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2093 	lock_map_acquire(&lockdep_map);
2094 	trace_workqueue_execute_start(work);
2095 	worker->current_func(work);
2096 	/*
2097 	 * While we must be careful to not use "work" after this, the trace
2098 	 * point will only record its address.
2099 	 */
2100 	trace_workqueue_execute_end(work);
2101 	lock_map_release(&lockdep_map);
2102 	lock_map_release(&pwq->wq->lockdep_map);
2103 
2104 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2105 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2106 		       "     last function: %pf\n",
2107 		       current->comm, preempt_count(), task_pid_nr(current),
2108 		       worker->current_func);
2109 		debug_show_held_locks(current);
2110 		dump_stack();
2111 	}
2112 
2113 	/*
2114 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2115 	 * kernels, where a requeueing work item waiting for something to
2116 	 * happen could deadlock with stop_machine as such work item could
2117 	 * indefinitely requeue itself while all other CPUs are trapped in
2118 	 * stop_machine. At the same time, report a quiescent RCU state so
2119 	 * the same condition doesn't freeze RCU.
2120 	 */
2121 	cond_resched_rcu_qs();
2122 
2123 	spin_lock_irq(&pool->lock);
2124 
2125 	/* clear cpu intensive status */
2126 	if (unlikely(cpu_intensive))
2127 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2128 
2129 	/* we're done with it, release */
2130 	hash_del(&worker->hentry);
2131 	worker->current_work = NULL;
2132 	worker->current_func = NULL;
2133 	worker->current_pwq = NULL;
2134 	worker->desc_valid = false;
2135 	pwq_dec_nr_in_flight(pwq, work_color);
2136 }
2137 
2138 /**
2139  * process_scheduled_works - process scheduled works
2140  * @worker: self
2141  *
2142  * Process all scheduled works.  Please note that the scheduled list
2143  * may change while processing a work, so this function repeatedly
2144  * fetches a work from the top and executes it.
2145  *
2146  * CONTEXT:
2147  * spin_lock_irq(pool->lock) which may be released and regrabbed
2148  * multiple times.
2149  */
2150 static void process_scheduled_works(struct worker *worker)
2151 {
2152 	while (!list_empty(&worker->scheduled)) {
2153 		struct work_struct *work = list_first_entry(&worker->scheduled,
2154 						struct work_struct, entry);
2155 		process_one_work(worker, work);
2156 	}
2157 }
2158 
2159 /**
2160  * worker_thread - the worker thread function
2161  * @__worker: self
2162  *
2163  * The worker thread function.  All workers belong to a worker_pool -
2164  * either a per-cpu one or dynamic unbound one.  These workers process all
2165  * work items regardless of their specific target workqueue.  The only
2166  * exception is work items which belong to workqueues with a rescuer which
2167  * will be explained in rescuer_thread().
2168  *
2169  * Return: 0
2170  */
2171 static int worker_thread(void *__worker)
2172 {
2173 	struct worker *worker = __worker;
2174 	struct worker_pool *pool = worker->pool;
2175 
2176 	/* tell the scheduler that this is a workqueue worker */
2177 	worker->task->flags |= PF_WQ_WORKER;
2178 woke_up:
2179 	spin_lock_irq(&pool->lock);
2180 
2181 	/* am I supposed to die? */
2182 	if (unlikely(worker->flags & WORKER_DIE)) {
2183 		spin_unlock_irq(&pool->lock);
2184 		WARN_ON_ONCE(!list_empty(&worker->entry));
2185 		worker->task->flags &= ~PF_WQ_WORKER;
2186 
2187 		set_task_comm(worker->task, "kworker/dying");
2188 		ida_simple_remove(&pool->worker_ida, worker->id);
2189 		worker_detach_from_pool(worker, pool);
2190 		kfree(worker);
2191 		return 0;
2192 	}
2193 
2194 	worker_leave_idle(worker);
2195 recheck:
2196 	/* no more worker necessary? */
2197 	if (!need_more_worker(pool))
2198 		goto sleep;
2199 
2200 	/* do we need to manage? */
2201 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2202 		goto recheck;
2203 
2204 	/*
2205 	 * ->scheduled list can only be filled while a worker is
2206 	 * preparing to process a work or actually processing it.
2207 	 * Make sure nobody diddled with it while I was sleeping.
2208 	 */
2209 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2210 
2211 	/*
2212 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2213 	 * worker or that someone else has already assumed the manager
2214 	 * role.  This is where @worker starts participating in concurrency
2215 	 * management if applicable and concurrency management is restored
2216 	 * after being rebound.  See rebind_workers() for details.
2217 	 */
2218 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2219 
2220 	do {
2221 		struct work_struct *work =
2222 			list_first_entry(&pool->worklist,
2223 					 struct work_struct, entry);
2224 
2225 		pool->watchdog_ts = jiffies;
2226 
2227 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2228 			/* optimization path, not strictly necessary */
2229 			process_one_work(worker, work);
2230 			if (unlikely(!list_empty(&worker->scheduled)))
2231 				process_scheduled_works(worker);
2232 		} else {
2233 			move_linked_works(work, &worker->scheduled, NULL);
2234 			process_scheduled_works(worker);
2235 		}
2236 	} while (keep_working(pool));
2237 
2238 	worker_set_flags(worker, WORKER_PREP);
2239 sleep:
2240 	/*
2241 	 * pool->lock is held and there's no work to process and no need to
2242 	 * manage, sleep.  Workers are woken up only while holding
2243 	 * pool->lock or from local cpu, so setting the current state
2244 	 * before releasing pool->lock is enough to prevent losing any
2245 	 * event.
2246 	 */
2247 	worker_enter_idle(worker);
2248 	__set_current_state(TASK_INTERRUPTIBLE);
2249 	spin_unlock_irq(&pool->lock);
2250 	schedule();
2251 	goto woke_up;
2252 }
2253 
2254 /**
2255  * rescuer_thread - the rescuer thread function
2256  * @__rescuer: self
2257  *
2258  * Workqueue rescuer thread function.  There's one rescuer for each
2259  * workqueue which has WQ_MEM_RECLAIM set.
2260  *
2261  * Regular work processing on a pool may block trying to create a new
2262  * worker which uses GFP_KERNEL allocation which has slight chance of
2263  * developing into deadlock if some works currently on the same queue
2264  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2265  * the problem rescuer solves.
2266  *
2267  * When such condition is possible, the pool summons rescuers of all
2268  * workqueues which have works queued on the pool and let them process
2269  * those works so that forward progress can be guaranteed.
2270  *
2271  * This should happen rarely.
2272  *
2273  * Return: 0
2274  */
2275 static int rescuer_thread(void *__rescuer)
2276 {
2277 	struct worker *rescuer = __rescuer;
2278 	struct workqueue_struct *wq = rescuer->rescue_wq;
2279 	struct list_head *scheduled = &rescuer->scheduled;
2280 	bool should_stop;
2281 
2282 	set_user_nice(current, RESCUER_NICE_LEVEL);
2283 
2284 	/*
2285 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2286 	 * doesn't participate in concurrency management.
2287 	 */
2288 	rescuer->task->flags |= PF_WQ_WORKER;
2289 repeat:
2290 	set_current_state(TASK_INTERRUPTIBLE);
2291 
2292 	/*
2293 	 * By the time the rescuer is requested to stop, the workqueue
2294 	 * shouldn't have any work pending, but @wq->maydays may still have
2295 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2296 	 * all the work items before the rescuer got to them.  Go through
2297 	 * @wq->maydays processing before acting on should_stop so that the
2298 	 * list is always empty on exit.
2299 	 */
2300 	should_stop = kthread_should_stop();
2301 
2302 	/* see whether any pwq is asking for help */
2303 	spin_lock_irq(&wq_mayday_lock);
2304 
2305 	while (!list_empty(&wq->maydays)) {
2306 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2307 					struct pool_workqueue, mayday_node);
2308 		struct worker_pool *pool = pwq->pool;
2309 		struct work_struct *work, *n;
2310 		bool first = true;
2311 
2312 		__set_current_state(TASK_RUNNING);
2313 		list_del_init(&pwq->mayday_node);
2314 
2315 		spin_unlock_irq(&wq_mayday_lock);
2316 
2317 		worker_attach_to_pool(rescuer, pool);
2318 
2319 		spin_lock_irq(&pool->lock);
2320 		rescuer->pool = pool;
2321 
2322 		/*
2323 		 * Slurp in all works issued via this workqueue and
2324 		 * process'em.
2325 		 */
2326 		WARN_ON_ONCE(!list_empty(scheduled));
2327 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2328 			if (get_work_pwq(work) == pwq) {
2329 				if (first)
2330 					pool->watchdog_ts = jiffies;
2331 				move_linked_works(work, scheduled, &n);
2332 			}
2333 			first = false;
2334 		}
2335 
2336 		if (!list_empty(scheduled)) {
2337 			process_scheduled_works(rescuer);
2338 
2339 			/*
2340 			 * The above execution of rescued work items could
2341 			 * have created more to rescue through
2342 			 * pwq_activate_first_delayed() or chained
2343 			 * queueing.  Let's put @pwq back on mayday list so
2344 			 * that such back-to-back work items, which may be
2345 			 * being used to relieve memory pressure, don't
2346 			 * incur MAYDAY_INTERVAL delay inbetween.
2347 			 */
2348 			if (need_to_create_worker(pool)) {
2349 				spin_lock(&wq_mayday_lock);
2350 				get_pwq(pwq);
2351 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2352 				spin_unlock(&wq_mayday_lock);
2353 			}
2354 		}
2355 
2356 		/*
2357 		 * Put the reference grabbed by send_mayday().  @pool won't
2358 		 * go away while we're still attached to it.
2359 		 */
2360 		put_pwq(pwq);
2361 
2362 		/*
2363 		 * Leave this pool.  If need_more_worker() is %true, notify a
2364 		 * regular worker; otherwise, we end up with 0 concurrency
2365 		 * and stalling the execution.
2366 		 */
2367 		if (need_more_worker(pool))
2368 			wake_up_worker(pool);
2369 
2370 		rescuer->pool = NULL;
2371 		spin_unlock_irq(&pool->lock);
2372 
2373 		worker_detach_from_pool(rescuer, pool);
2374 
2375 		spin_lock_irq(&wq_mayday_lock);
2376 	}
2377 
2378 	spin_unlock_irq(&wq_mayday_lock);
2379 
2380 	if (should_stop) {
2381 		__set_current_state(TASK_RUNNING);
2382 		rescuer->task->flags &= ~PF_WQ_WORKER;
2383 		return 0;
2384 	}
2385 
2386 	/* rescuers should never participate in concurrency management */
2387 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2388 	schedule();
2389 	goto repeat;
2390 }
2391 
2392 /**
2393  * check_flush_dependency - check for flush dependency sanity
2394  * @target_wq: workqueue being flushed
2395  * @target_work: work item being flushed (NULL for workqueue flushes)
2396  *
2397  * %current is trying to flush the whole @target_wq or @target_work on it.
2398  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2399  * reclaiming memory or running on a workqueue which doesn't have
2400  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2401  * a deadlock.
2402  */
2403 static void check_flush_dependency(struct workqueue_struct *target_wq,
2404 				   struct work_struct *target_work)
2405 {
2406 	work_func_t target_func = target_work ? target_work->func : NULL;
2407 	struct worker *worker;
2408 
2409 	if (target_wq->flags & WQ_MEM_RECLAIM)
2410 		return;
2411 
2412 	worker = current_wq_worker();
2413 
2414 	WARN_ONCE(current->flags & PF_MEMALLOC,
2415 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2416 		  current->pid, current->comm, target_wq->name, target_func);
2417 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2418 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2419 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2420 		  worker->current_pwq->wq->name, worker->current_func,
2421 		  target_wq->name, target_func);
2422 }
2423 
2424 struct wq_barrier {
2425 	struct work_struct	work;
2426 	struct completion	done;
2427 	struct task_struct	*task;	/* purely informational */
2428 };
2429 
2430 static void wq_barrier_func(struct work_struct *work)
2431 {
2432 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2433 	complete(&barr->done);
2434 }
2435 
2436 /**
2437  * insert_wq_barrier - insert a barrier work
2438  * @pwq: pwq to insert barrier into
2439  * @barr: wq_barrier to insert
2440  * @target: target work to attach @barr to
2441  * @worker: worker currently executing @target, NULL if @target is not executing
2442  *
2443  * @barr is linked to @target such that @barr is completed only after
2444  * @target finishes execution.  Please note that the ordering
2445  * guarantee is observed only with respect to @target and on the local
2446  * cpu.
2447  *
2448  * Currently, a queued barrier can't be canceled.  This is because
2449  * try_to_grab_pending() can't determine whether the work to be
2450  * grabbed is at the head of the queue and thus can't clear LINKED
2451  * flag of the previous work while there must be a valid next work
2452  * after a work with LINKED flag set.
2453  *
2454  * Note that when @worker is non-NULL, @target may be modified
2455  * underneath us, so we can't reliably determine pwq from @target.
2456  *
2457  * CONTEXT:
2458  * spin_lock_irq(pool->lock).
2459  */
2460 static void insert_wq_barrier(struct pool_workqueue *pwq,
2461 			      struct wq_barrier *barr,
2462 			      struct work_struct *target, struct worker *worker)
2463 {
2464 	struct list_head *head;
2465 	unsigned int linked = 0;
2466 
2467 	/*
2468 	 * debugobject calls are safe here even with pool->lock locked
2469 	 * as we know for sure that this will not trigger any of the
2470 	 * checks and call back into the fixup functions where we
2471 	 * might deadlock.
2472 	 */
2473 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2474 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2475 	init_completion(&barr->done);
2476 	barr->task = current;
2477 
2478 	/*
2479 	 * If @target is currently being executed, schedule the
2480 	 * barrier to the worker; otherwise, put it after @target.
2481 	 */
2482 	if (worker)
2483 		head = worker->scheduled.next;
2484 	else {
2485 		unsigned long *bits = work_data_bits(target);
2486 
2487 		head = target->entry.next;
2488 		/* there can already be other linked works, inherit and set */
2489 		linked = *bits & WORK_STRUCT_LINKED;
2490 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2491 	}
2492 
2493 	debug_work_activate(&barr->work);
2494 	insert_work(pwq, &barr->work, head,
2495 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2496 }
2497 
2498 /**
2499  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2500  * @wq: workqueue being flushed
2501  * @flush_color: new flush color, < 0 for no-op
2502  * @work_color: new work color, < 0 for no-op
2503  *
2504  * Prepare pwqs for workqueue flushing.
2505  *
2506  * If @flush_color is non-negative, flush_color on all pwqs should be
2507  * -1.  If no pwq has in-flight commands at the specified color, all
2508  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2509  * has in flight commands, its pwq->flush_color is set to
2510  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2511  * wakeup logic is armed and %true is returned.
2512  *
2513  * The caller should have initialized @wq->first_flusher prior to
2514  * calling this function with non-negative @flush_color.  If
2515  * @flush_color is negative, no flush color update is done and %false
2516  * is returned.
2517  *
2518  * If @work_color is non-negative, all pwqs should have the same
2519  * work_color which is previous to @work_color and all will be
2520  * advanced to @work_color.
2521  *
2522  * CONTEXT:
2523  * mutex_lock(wq->mutex).
2524  *
2525  * Return:
2526  * %true if @flush_color >= 0 and there's something to flush.  %false
2527  * otherwise.
2528  */
2529 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2530 				      int flush_color, int work_color)
2531 {
2532 	bool wait = false;
2533 	struct pool_workqueue *pwq;
2534 
2535 	if (flush_color >= 0) {
2536 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2537 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2538 	}
2539 
2540 	for_each_pwq(pwq, wq) {
2541 		struct worker_pool *pool = pwq->pool;
2542 
2543 		spin_lock_irq(&pool->lock);
2544 
2545 		if (flush_color >= 0) {
2546 			WARN_ON_ONCE(pwq->flush_color != -1);
2547 
2548 			if (pwq->nr_in_flight[flush_color]) {
2549 				pwq->flush_color = flush_color;
2550 				atomic_inc(&wq->nr_pwqs_to_flush);
2551 				wait = true;
2552 			}
2553 		}
2554 
2555 		if (work_color >= 0) {
2556 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2557 			pwq->work_color = work_color;
2558 		}
2559 
2560 		spin_unlock_irq(&pool->lock);
2561 	}
2562 
2563 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2564 		complete(&wq->first_flusher->done);
2565 
2566 	return wait;
2567 }
2568 
2569 /**
2570  * flush_workqueue - ensure that any scheduled work has run to completion.
2571  * @wq: workqueue to flush
2572  *
2573  * This function sleeps until all work items which were queued on entry
2574  * have finished execution, but it is not livelocked by new incoming ones.
2575  */
2576 void flush_workqueue(struct workqueue_struct *wq)
2577 {
2578 	struct wq_flusher this_flusher = {
2579 		.list = LIST_HEAD_INIT(this_flusher.list),
2580 		.flush_color = -1,
2581 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2582 	};
2583 	int next_color;
2584 
2585 	lock_map_acquire(&wq->lockdep_map);
2586 	lock_map_release(&wq->lockdep_map);
2587 
2588 	mutex_lock(&wq->mutex);
2589 
2590 	/*
2591 	 * Start-to-wait phase
2592 	 */
2593 	next_color = work_next_color(wq->work_color);
2594 
2595 	if (next_color != wq->flush_color) {
2596 		/*
2597 		 * Color space is not full.  The current work_color
2598 		 * becomes our flush_color and work_color is advanced
2599 		 * by one.
2600 		 */
2601 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2602 		this_flusher.flush_color = wq->work_color;
2603 		wq->work_color = next_color;
2604 
2605 		if (!wq->first_flusher) {
2606 			/* no flush in progress, become the first flusher */
2607 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2608 
2609 			wq->first_flusher = &this_flusher;
2610 
2611 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2612 						       wq->work_color)) {
2613 				/* nothing to flush, done */
2614 				wq->flush_color = next_color;
2615 				wq->first_flusher = NULL;
2616 				goto out_unlock;
2617 			}
2618 		} else {
2619 			/* wait in queue */
2620 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2621 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2622 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2623 		}
2624 	} else {
2625 		/*
2626 		 * Oops, color space is full, wait on overflow queue.
2627 		 * The next flush completion will assign us
2628 		 * flush_color and transfer to flusher_queue.
2629 		 */
2630 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2631 	}
2632 
2633 	check_flush_dependency(wq, NULL);
2634 
2635 	mutex_unlock(&wq->mutex);
2636 
2637 	wait_for_completion(&this_flusher.done);
2638 
2639 	/*
2640 	 * Wake-up-and-cascade phase
2641 	 *
2642 	 * First flushers are responsible for cascading flushes and
2643 	 * handling overflow.  Non-first flushers can simply return.
2644 	 */
2645 	if (wq->first_flusher != &this_flusher)
2646 		return;
2647 
2648 	mutex_lock(&wq->mutex);
2649 
2650 	/* we might have raced, check again with mutex held */
2651 	if (wq->first_flusher != &this_flusher)
2652 		goto out_unlock;
2653 
2654 	wq->first_flusher = NULL;
2655 
2656 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2657 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2658 
2659 	while (true) {
2660 		struct wq_flusher *next, *tmp;
2661 
2662 		/* complete all the flushers sharing the current flush color */
2663 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2664 			if (next->flush_color != wq->flush_color)
2665 				break;
2666 			list_del_init(&next->list);
2667 			complete(&next->done);
2668 		}
2669 
2670 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2671 			     wq->flush_color != work_next_color(wq->work_color));
2672 
2673 		/* this flush_color is finished, advance by one */
2674 		wq->flush_color = work_next_color(wq->flush_color);
2675 
2676 		/* one color has been freed, handle overflow queue */
2677 		if (!list_empty(&wq->flusher_overflow)) {
2678 			/*
2679 			 * Assign the same color to all overflowed
2680 			 * flushers, advance work_color and append to
2681 			 * flusher_queue.  This is the start-to-wait
2682 			 * phase for these overflowed flushers.
2683 			 */
2684 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2685 				tmp->flush_color = wq->work_color;
2686 
2687 			wq->work_color = work_next_color(wq->work_color);
2688 
2689 			list_splice_tail_init(&wq->flusher_overflow,
2690 					      &wq->flusher_queue);
2691 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2692 		}
2693 
2694 		if (list_empty(&wq->flusher_queue)) {
2695 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2696 			break;
2697 		}
2698 
2699 		/*
2700 		 * Need to flush more colors.  Make the next flusher
2701 		 * the new first flusher and arm pwqs.
2702 		 */
2703 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2704 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2705 
2706 		list_del_init(&next->list);
2707 		wq->first_flusher = next;
2708 
2709 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2710 			break;
2711 
2712 		/*
2713 		 * Meh... this color is already done, clear first
2714 		 * flusher and repeat cascading.
2715 		 */
2716 		wq->first_flusher = NULL;
2717 	}
2718 
2719 out_unlock:
2720 	mutex_unlock(&wq->mutex);
2721 }
2722 EXPORT_SYMBOL(flush_workqueue);
2723 
2724 /**
2725  * drain_workqueue - drain a workqueue
2726  * @wq: workqueue to drain
2727  *
2728  * Wait until the workqueue becomes empty.  While draining is in progress,
2729  * only chain queueing is allowed.  IOW, only currently pending or running
2730  * work items on @wq can queue further work items on it.  @wq is flushed
2731  * repeatedly until it becomes empty.  The number of flushing is determined
2732  * by the depth of chaining and should be relatively short.  Whine if it
2733  * takes too long.
2734  */
2735 void drain_workqueue(struct workqueue_struct *wq)
2736 {
2737 	unsigned int flush_cnt = 0;
2738 	struct pool_workqueue *pwq;
2739 
2740 	/*
2741 	 * __queue_work() needs to test whether there are drainers, is much
2742 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2743 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2744 	 */
2745 	mutex_lock(&wq->mutex);
2746 	if (!wq->nr_drainers++)
2747 		wq->flags |= __WQ_DRAINING;
2748 	mutex_unlock(&wq->mutex);
2749 reflush:
2750 	flush_workqueue(wq);
2751 
2752 	mutex_lock(&wq->mutex);
2753 
2754 	for_each_pwq(pwq, wq) {
2755 		bool drained;
2756 
2757 		spin_lock_irq(&pwq->pool->lock);
2758 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2759 		spin_unlock_irq(&pwq->pool->lock);
2760 
2761 		if (drained)
2762 			continue;
2763 
2764 		if (++flush_cnt == 10 ||
2765 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2766 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2767 				wq->name, flush_cnt);
2768 
2769 		mutex_unlock(&wq->mutex);
2770 		goto reflush;
2771 	}
2772 
2773 	if (!--wq->nr_drainers)
2774 		wq->flags &= ~__WQ_DRAINING;
2775 	mutex_unlock(&wq->mutex);
2776 }
2777 EXPORT_SYMBOL_GPL(drain_workqueue);
2778 
2779 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2780 {
2781 	struct worker *worker = NULL;
2782 	struct worker_pool *pool;
2783 	struct pool_workqueue *pwq;
2784 
2785 	might_sleep();
2786 
2787 	local_irq_disable();
2788 	pool = get_work_pool(work);
2789 	if (!pool) {
2790 		local_irq_enable();
2791 		return false;
2792 	}
2793 
2794 	spin_lock(&pool->lock);
2795 	/* see the comment in try_to_grab_pending() with the same code */
2796 	pwq = get_work_pwq(work);
2797 	if (pwq) {
2798 		if (unlikely(pwq->pool != pool))
2799 			goto already_gone;
2800 	} else {
2801 		worker = find_worker_executing_work(pool, work);
2802 		if (!worker)
2803 			goto already_gone;
2804 		pwq = worker->current_pwq;
2805 	}
2806 
2807 	check_flush_dependency(pwq->wq, work);
2808 
2809 	insert_wq_barrier(pwq, barr, work, worker);
2810 	spin_unlock_irq(&pool->lock);
2811 
2812 	/*
2813 	 * If @max_active is 1 or rescuer is in use, flushing another work
2814 	 * item on the same workqueue may lead to deadlock.  Make sure the
2815 	 * flusher is not running on the same workqueue by verifying write
2816 	 * access.
2817 	 */
2818 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2819 		lock_map_acquire(&pwq->wq->lockdep_map);
2820 	else
2821 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2822 	lock_map_release(&pwq->wq->lockdep_map);
2823 
2824 	return true;
2825 already_gone:
2826 	spin_unlock_irq(&pool->lock);
2827 	return false;
2828 }
2829 
2830 /**
2831  * flush_work - wait for a work to finish executing the last queueing instance
2832  * @work: the work to flush
2833  *
2834  * Wait until @work has finished execution.  @work is guaranteed to be idle
2835  * on return if it hasn't been requeued since flush started.
2836  *
2837  * Return:
2838  * %true if flush_work() waited for the work to finish execution,
2839  * %false if it was already idle.
2840  */
2841 bool flush_work(struct work_struct *work)
2842 {
2843 	struct wq_barrier barr;
2844 
2845 	lock_map_acquire(&work->lockdep_map);
2846 	lock_map_release(&work->lockdep_map);
2847 
2848 	if (start_flush_work(work, &barr)) {
2849 		wait_for_completion(&barr.done);
2850 		destroy_work_on_stack(&barr.work);
2851 		return true;
2852 	} else {
2853 		return false;
2854 	}
2855 }
2856 EXPORT_SYMBOL_GPL(flush_work);
2857 
2858 struct cwt_wait {
2859 	wait_queue_t		wait;
2860 	struct work_struct	*work;
2861 };
2862 
2863 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2864 {
2865 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2866 
2867 	if (cwait->work != key)
2868 		return 0;
2869 	return autoremove_wake_function(wait, mode, sync, key);
2870 }
2871 
2872 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2873 {
2874 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2875 	unsigned long flags;
2876 	int ret;
2877 
2878 	do {
2879 		ret = try_to_grab_pending(work, is_dwork, &flags);
2880 		/*
2881 		 * If someone else is already canceling, wait for it to
2882 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2883 		 * because we may get scheduled between @work's completion
2884 		 * and the other canceling task resuming and clearing
2885 		 * CANCELING - flush_work() will return false immediately
2886 		 * as @work is no longer busy, try_to_grab_pending() will
2887 		 * return -ENOENT as @work is still being canceled and the
2888 		 * other canceling task won't be able to clear CANCELING as
2889 		 * we're hogging the CPU.
2890 		 *
2891 		 * Let's wait for completion using a waitqueue.  As this
2892 		 * may lead to the thundering herd problem, use a custom
2893 		 * wake function which matches @work along with exclusive
2894 		 * wait and wakeup.
2895 		 */
2896 		if (unlikely(ret == -ENOENT)) {
2897 			struct cwt_wait cwait;
2898 
2899 			init_wait(&cwait.wait);
2900 			cwait.wait.func = cwt_wakefn;
2901 			cwait.work = work;
2902 
2903 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2904 						  TASK_UNINTERRUPTIBLE);
2905 			if (work_is_canceling(work))
2906 				schedule();
2907 			finish_wait(&cancel_waitq, &cwait.wait);
2908 		}
2909 	} while (unlikely(ret < 0));
2910 
2911 	/* tell other tasks trying to grab @work to back off */
2912 	mark_work_canceling(work);
2913 	local_irq_restore(flags);
2914 
2915 	flush_work(work);
2916 	clear_work_data(work);
2917 
2918 	/*
2919 	 * Paired with prepare_to_wait() above so that either
2920 	 * waitqueue_active() is visible here or !work_is_canceling() is
2921 	 * visible there.
2922 	 */
2923 	smp_mb();
2924 	if (waitqueue_active(&cancel_waitq))
2925 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2926 
2927 	return ret;
2928 }
2929 
2930 /**
2931  * cancel_work_sync - cancel a work and wait for it to finish
2932  * @work: the work to cancel
2933  *
2934  * Cancel @work and wait for its execution to finish.  This function
2935  * can be used even if the work re-queues itself or migrates to
2936  * another workqueue.  On return from this function, @work is
2937  * guaranteed to be not pending or executing on any CPU.
2938  *
2939  * cancel_work_sync(&delayed_work->work) must not be used for
2940  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2941  *
2942  * The caller must ensure that the workqueue on which @work was last
2943  * queued can't be destroyed before this function returns.
2944  *
2945  * Return:
2946  * %true if @work was pending, %false otherwise.
2947  */
2948 bool cancel_work_sync(struct work_struct *work)
2949 {
2950 	return __cancel_work_timer(work, false);
2951 }
2952 EXPORT_SYMBOL_GPL(cancel_work_sync);
2953 
2954 /**
2955  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2956  * @dwork: the delayed work to flush
2957  *
2958  * Delayed timer is cancelled and the pending work is queued for
2959  * immediate execution.  Like flush_work(), this function only
2960  * considers the last queueing instance of @dwork.
2961  *
2962  * Return:
2963  * %true if flush_work() waited for the work to finish execution,
2964  * %false if it was already idle.
2965  */
2966 bool flush_delayed_work(struct delayed_work *dwork)
2967 {
2968 	local_irq_disable();
2969 	if (del_timer_sync(&dwork->timer))
2970 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2971 	local_irq_enable();
2972 	return flush_work(&dwork->work);
2973 }
2974 EXPORT_SYMBOL(flush_delayed_work);
2975 
2976 /**
2977  * cancel_delayed_work - cancel a delayed work
2978  * @dwork: delayed_work to cancel
2979  *
2980  * Kill off a pending delayed_work.
2981  *
2982  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2983  * pending.
2984  *
2985  * Note:
2986  * The work callback function may still be running on return, unless
2987  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2988  * use cancel_delayed_work_sync() to wait on it.
2989  *
2990  * This function is safe to call from any context including IRQ handler.
2991  */
2992 bool cancel_delayed_work(struct delayed_work *dwork)
2993 {
2994 	unsigned long flags;
2995 	int ret;
2996 
2997 	do {
2998 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2999 	} while (unlikely(ret == -EAGAIN));
3000 
3001 	if (unlikely(ret < 0))
3002 		return false;
3003 
3004 	set_work_pool_and_clear_pending(&dwork->work,
3005 					get_work_pool_id(&dwork->work));
3006 	local_irq_restore(flags);
3007 	return ret;
3008 }
3009 EXPORT_SYMBOL(cancel_delayed_work);
3010 
3011 /**
3012  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3013  * @dwork: the delayed work cancel
3014  *
3015  * This is cancel_work_sync() for delayed works.
3016  *
3017  * Return:
3018  * %true if @dwork was pending, %false otherwise.
3019  */
3020 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3021 {
3022 	return __cancel_work_timer(&dwork->work, true);
3023 }
3024 EXPORT_SYMBOL(cancel_delayed_work_sync);
3025 
3026 /**
3027  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3028  * @func: the function to call
3029  *
3030  * schedule_on_each_cpu() executes @func on each online CPU using the
3031  * system workqueue and blocks until all CPUs have completed.
3032  * schedule_on_each_cpu() is very slow.
3033  *
3034  * Return:
3035  * 0 on success, -errno on failure.
3036  */
3037 int schedule_on_each_cpu(work_func_t func)
3038 {
3039 	int cpu;
3040 	struct work_struct __percpu *works;
3041 
3042 	works = alloc_percpu(struct work_struct);
3043 	if (!works)
3044 		return -ENOMEM;
3045 
3046 	get_online_cpus();
3047 
3048 	for_each_online_cpu(cpu) {
3049 		struct work_struct *work = per_cpu_ptr(works, cpu);
3050 
3051 		INIT_WORK(work, func);
3052 		schedule_work_on(cpu, work);
3053 	}
3054 
3055 	for_each_online_cpu(cpu)
3056 		flush_work(per_cpu_ptr(works, cpu));
3057 
3058 	put_online_cpus();
3059 	free_percpu(works);
3060 	return 0;
3061 }
3062 
3063 /**
3064  * execute_in_process_context - reliably execute the routine with user context
3065  * @fn:		the function to execute
3066  * @ew:		guaranteed storage for the execute work structure (must
3067  *		be available when the work executes)
3068  *
3069  * Executes the function immediately if process context is available,
3070  * otherwise schedules the function for delayed execution.
3071  *
3072  * Return:	0 - function was executed
3073  *		1 - function was scheduled for execution
3074  */
3075 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3076 {
3077 	if (!in_interrupt()) {
3078 		fn(&ew->work);
3079 		return 0;
3080 	}
3081 
3082 	INIT_WORK(&ew->work, fn);
3083 	schedule_work(&ew->work);
3084 
3085 	return 1;
3086 }
3087 EXPORT_SYMBOL_GPL(execute_in_process_context);
3088 
3089 /**
3090  * free_workqueue_attrs - free a workqueue_attrs
3091  * @attrs: workqueue_attrs to free
3092  *
3093  * Undo alloc_workqueue_attrs().
3094  */
3095 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3096 {
3097 	if (attrs) {
3098 		free_cpumask_var(attrs->cpumask);
3099 		kfree(attrs);
3100 	}
3101 }
3102 
3103 /**
3104  * alloc_workqueue_attrs - allocate a workqueue_attrs
3105  * @gfp_mask: allocation mask to use
3106  *
3107  * Allocate a new workqueue_attrs, initialize with default settings and
3108  * return it.
3109  *
3110  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3111  */
3112 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3113 {
3114 	struct workqueue_attrs *attrs;
3115 
3116 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3117 	if (!attrs)
3118 		goto fail;
3119 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3120 		goto fail;
3121 
3122 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3123 	return attrs;
3124 fail:
3125 	free_workqueue_attrs(attrs);
3126 	return NULL;
3127 }
3128 
3129 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3130 				 const struct workqueue_attrs *from)
3131 {
3132 	to->nice = from->nice;
3133 	cpumask_copy(to->cpumask, from->cpumask);
3134 	/*
3135 	 * Unlike hash and equality test, this function doesn't ignore
3136 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3137 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3138 	 */
3139 	to->no_numa = from->no_numa;
3140 }
3141 
3142 /* hash value of the content of @attr */
3143 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3144 {
3145 	u32 hash = 0;
3146 
3147 	hash = jhash_1word(attrs->nice, hash);
3148 	hash = jhash(cpumask_bits(attrs->cpumask),
3149 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3150 	return hash;
3151 }
3152 
3153 /* content equality test */
3154 static bool wqattrs_equal(const struct workqueue_attrs *a,
3155 			  const struct workqueue_attrs *b)
3156 {
3157 	if (a->nice != b->nice)
3158 		return false;
3159 	if (!cpumask_equal(a->cpumask, b->cpumask))
3160 		return false;
3161 	return true;
3162 }
3163 
3164 /**
3165  * init_worker_pool - initialize a newly zalloc'd worker_pool
3166  * @pool: worker_pool to initialize
3167  *
3168  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3169  *
3170  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3171  * inside @pool proper are initialized and put_unbound_pool() can be called
3172  * on @pool safely to release it.
3173  */
3174 static int init_worker_pool(struct worker_pool *pool)
3175 {
3176 	spin_lock_init(&pool->lock);
3177 	pool->id = -1;
3178 	pool->cpu = -1;
3179 	pool->node = NUMA_NO_NODE;
3180 	pool->flags |= POOL_DISASSOCIATED;
3181 	pool->watchdog_ts = jiffies;
3182 	INIT_LIST_HEAD(&pool->worklist);
3183 	INIT_LIST_HEAD(&pool->idle_list);
3184 	hash_init(pool->busy_hash);
3185 
3186 	init_timer_deferrable(&pool->idle_timer);
3187 	pool->idle_timer.function = idle_worker_timeout;
3188 	pool->idle_timer.data = (unsigned long)pool;
3189 
3190 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3191 		    (unsigned long)pool);
3192 
3193 	mutex_init(&pool->manager_arb);
3194 	mutex_init(&pool->attach_mutex);
3195 	INIT_LIST_HEAD(&pool->workers);
3196 
3197 	ida_init(&pool->worker_ida);
3198 	INIT_HLIST_NODE(&pool->hash_node);
3199 	pool->refcnt = 1;
3200 
3201 	/* shouldn't fail above this point */
3202 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3203 	if (!pool->attrs)
3204 		return -ENOMEM;
3205 	return 0;
3206 }
3207 
3208 static void rcu_free_wq(struct rcu_head *rcu)
3209 {
3210 	struct workqueue_struct *wq =
3211 		container_of(rcu, struct workqueue_struct, rcu);
3212 
3213 	if (!(wq->flags & WQ_UNBOUND))
3214 		free_percpu(wq->cpu_pwqs);
3215 	else
3216 		free_workqueue_attrs(wq->unbound_attrs);
3217 
3218 	kfree(wq->rescuer);
3219 	kfree(wq);
3220 }
3221 
3222 static void rcu_free_pool(struct rcu_head *rcu)
3223 {
3224 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3225 
3226 	ida_destroy(&pool->worker_ida);
3227 	free_workqueue_attrs(pool->attrs);
3228 	kfree(pool);
3229 }
3230 
3231 /**
3232  * put_unbound_pool - put a worker_pool
3233  * @pool: worker_pool to put
3234  *
3235  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3236  * safe manner.  get_unbound_pool() calls this function on its failure path
3237  * and this function should be able to release pools which went through,
3238  * successfully or not, init_worker_pool().
3239  *
3240  * Should be called with wq_pool_mutex held.
3241  */
3242 static void put_unbound_pool(struct worker_pool *pool)
3243 {
3244 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3245 	struct worker *worker;
3246 
3247 	lockdep_assert_held(&wq_pool_mutex);
3248 
3249 	if (--pool->refcnt)
3250 		return;
3251 
3252 	/* sanity checks */
3253 	if (WARN_ON(!(pool->cpu < 0)) ||
3254 	    WARN_ON(!list_empty(&pool->worklist)))
3255 		return;
3256 
3257 	/* release id and unhash */
3258 	if (pool->id >= 0)
3259 		idr_remove(&worker_pool_idr, pool->id);
3260 	hash_del(&pool->hash_node);
3261 
3262 	/*
3263 	 * Become the manager and destroy all workers.  Grabbing
3264 	 * manager_arb prevents @pool's workers from blocking on
3265 	 * attach_mutex.
3266 	 */
3267 	mutex_lock(&pool->manager_arb);
3268 
3269 	spin_lock_irq(&pool->lock);
3270 	while ((worker = first_idle_worker(pool)))
3271 		destroy_worker(worker);
3272 	WARN_ON(pool->nr_workers || pool->nr_idle);
3273 	spin_unlock_irq(&pool->lock);
3274 
3275 	mutex_lock(&pool->attach_mutex);
3276 	if (!list_empty(&pool->workers))
3277 		pool->detach_completion = &detach_completion;
3278 	mutex_unlock(&pool->attach_mutex);
3279 
3280 	if (pool->detach_completion)
3281 		wait_for_completion(pool->detach_completion);
3282 
3283 	mutex_unlock(&pool->manager_arb);
3284 
3285 	/* shut down the timers */
3286 	del_timer_sync(&pool->idle_timer);
3287 	del_timer_sync(&pool->mayday_timer);
3288 
3289 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3290 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3291 }
3292 
3293 /**
3294  * get_unbound_pool - get a worker_pool with the specified attributes
3295  * @attrs: the attributes of the worker_pool to get
3296  *
3297  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3298  * reference count and return it.  If there already is a matching
3299  * worker_pool, it will be used; otherwise, this function attempts to
3300  * create a new one.
3301  *
3302  * Should be called with wq_pool_mutex held.
3303  *
3304  * Return: On success, a worker_pool with the same attributes as @attrs.
3305  * On failure, %NULL.
3306  */
3307 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3308 {
3309 	u32 hash = wqattrs_hash(attrs);
3310 	struct worker_pool *pool;
3311 	int node;
3312 	int target_node = NUMA_NO_NODE;
3313 
3314 	lockdep_assert_held(&wq_pool_mutex);
3315 
3316 	/* do we already have a matching pool? */
3317 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3318 		if (wqattrs_equal(pool->attrs, attrs)) {
3319 			pool->refcnt++;
3320 			return pool;
3321 		}
3322 	}
3323 
3324 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3325 	if (wq_numa_enabled) {
3326 		for_each_node(node) {
3327 			if (cpumask_subset(attrs->cpumask,
3328 					   wq_numa_possible_cpumask[node])) {
3329 				target_node = node;
3330 				break;
3331 			}
3332 		}
3333 	}
3334 
3335 	/* nope, create a new one */
3336 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3337 	if (!pool || init_worker_pool(pool) < 0)
3338 		goto fail;
3339 
3340 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3341 	copy_workqueue_attrs(pool->attrs, attrs);
3342 	pool->node = target_node;
3343 
3344 	/*
3345 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3346 	 * 'struct workqueue_attrs' comments for detail.
3347 	 */
3348 	pool->attrs->no_numa = false;
3349 
3350 	if (worker_pool_assign_id(pool) < 0)
3351 		goto fail;
3352 
3353 	/* create and start the initial worker */
3354 	if (!create_worker(pool))
3355 		goto fail;
3356 
3357 	/* install */
3358 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3359 
3360 	return pool;
3361 fail:
3362 	if (pool)
3363 		put_unbound_pool(pool);
3364 	return NULL;
3365 }
3366 
3367 static void rcu_free_pwq(struct rcu_head *rcu)
3368 {
3369 	kmem_cache_free(pwq_cache,
3370 			container_of(rcu, struct pool_workqueue, rcu));
3371 }
3372 
3373 /*
3374  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3375  * and needs to be destroyed.
3376  */
3377 static void pwq_unbound_release_workfn(struct work_struct *work)
3378 {
3379 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3380 						  unbound_release_work);
3381 	struct workqueue_struct *wq = pwq->wq;
3382 	struct worker_pool *pool = pwq->pool;
3383 	bool is_last;
3384 
3385 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3386 		return;
3387 
3388 	mutex_lock(&wq->mutex);
3389 	list_del_rcu(&pwq->pwqs_node);
3390 	is_last = list_empty(&wq->pwqs);
3391 	mutex_unlock(&wq->mutex);
3392 
3393 	mutex_lock(&wq_pool_mutex);
3394 	put_unbound_pool(pool);
3395 	mutex_unlock(&wq_pool_mutex);
3396 
3397 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3398 
3399 	/*
3400 	 * If we're the last pwq going away, @wq is already dead and no one
3401 	 * is gonna access it anymore.  Schedule RCU free.
3402 	 */
3403 	if (is_last)
3404 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3405 }
3406 
3407 /**
3408  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3409  * @pwq: target pool_workqueue
3410  *
3411  * If @pwq isn't freezing, set @pwq->max_active to the associated
3412  * workqueue's saved_max_active and activate delayed work items
3413  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3414  */
3415 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3416 {
3417 	struct workqueue_struct *wq = pwq->wq;
3418 	bool freezable = wq->flags & WQ_FREEZABLE;
3419 
3420 	/* for @wq->saved_max_active */
3421 	lockdep_assert_held(&wq->mutex);
3422 
3423 	/* fast exit for non-freezable wqs */
3424 	if (!freezable && pwq->max_active == wq->saved_max_active)
3425 		return;
3426 
3427 	spin_lock_irq(&pwq->pool->lock);
3428 
3429 	/*
3430 	 * During [un]freezing, the caller is responsible for ensuring that
3431 	 * this function is called at least once after @workqueue_freezing
3432 	 * is updated and visible.
3433 	 */
3434 	if (!freezable || !workqueue_freezing) {
3435 		pwq->max_active = wq->saved_max_active;
3436 
3437 		while (!list_empty(&pwq->delayed_works) &&
3438 		       pwq->nr_active < pwq->max_active)
3439 			pwq_activate_first_delayed(pwq);
3440 
3441 		/*
3442 		 * Need to kick a worker after thawed or an unbound wq's
3443 		 * max_active is bumped.  It's a slow path.  Do it always.
3444 		 */
3445 		wake_up_worker(pwq->pool);
3446 	} else {
3447 		pwq->max_active = 0;
3448 	}
3449 
3450 	spin_unlock_irq(&pwq->pool->lock);
3451 }
3452 
3453 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3454 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3455 		     struct worker_pool *pool)
3456 {
3457 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3458 
3459 	memset(pwq, 0, sizeof(*pwq));
3460 
3461 	pwq->pool = pool;
3462 	pwq->wq = wq;
3463 	pwq->flush_color = -1;
3464 	pwq->refcnt = 1;
3465 	INIT_LIST_HEAD(&pwq->delayed_works);
3466 	INIT_LIST_HEAD(&pwq->pwqs_node);
3467 	INIT_LIST_HEAD(&pwq->mayday_node);
3468 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3469 }
3470 
3471 /* sync @pwq with the current state of its associated wq and link it */
3472 static void link_pwq(struct pool_workqueue *pwq)
3473 {
3474 	struct workqueue_struct *wq = pwq->wq;
3475 
3476 	lockdep_assert_held(&wq->mutex);
3477 
3478 	/* may be called multiple times, ignore if already linked */
3479 	if (!list_empty(&pwq->pwqs_node))
3480 		return;
3481 
3482 	/* set the matching work_color */
3483 	pwq->work_color = wq->work_color;
3484 
3485 	/* sync max_active to the current setting */
3486 	pwq_adjust_max_active(pwq);
3487 
3488 	/* link in @pwq */
3489 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3490 }
3491 
3492 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3493 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3494 					const struct workqueue_attrs *attrs)
3495 {
3496 	struct worker_pool *pool;
3497 	struct pool_workqueue *pwq;
3498 
3499 	lockdep_assert_held(&wq_pool_mutex);
3500 
3501 	pool = get_unbound_pool(attrs);
3502 	if (!pool)
3503 		return NULL;
3504 
3505 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3506 	if (!pwq) {
3507 		put_unbound_pool(pool);
3508 		return NULL;
3509 	}
3510 
3511 	init_pwq(pwq, wq, pool);
3512 	return pwq;
3513 }
3514 
3515 /**
3516  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3517  * @attrs: the wq_attrs of the default pwq of the target workqueue
3518  * @node: the target NUMA node
3519  * @cpu_going_down: if >= 0, the CPU to consider as offline
3520  * @cpumask: outarg, the resulting cpumask
3521  *
3522  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3523  * @cpu_going_down is >= 0, that cpu is considered offline during
3524  * calculation.  The result is stored in @cpumask.
3525  *
3526  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3527  * enabled and @node has online CPUs requested by @attrs, the returned
3528  * cpumask is the intersection of the possible CPUs of @node and
3529  * @attrs->cpumask.
3530  *
3531  * The caller is responsible for ensuring that the cpumask of @node stays
3532  * stable.
3533  *
3534  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3535  * %false if equal.
3536  */
3537 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3538 				 int cpu_going_down, cpumask_t *cpumask)
3539 {
3540 	if (!wq_numa_enabled || attrs->no_numa)
3541 		goto use_dfl;
3542 
3543 	/* does @node have any online CPUs @attrs wants? */
3544 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3545 	if (cpu_going_down >= 0)
3546 		cpumask_clear_cpu(cpu_going_down, cpumask);
3547 
3548 	if (cpumask_empty(cpumask))
3549 		goto use_dfl;
3550 
3551 	/* yeap, return possible CPUs in @node that @attrs wants */
3552 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3553 	return !cpumask_equal(cpumask, attrs->cpumask);
3554 
3555 use_dfl:
3556 	cpumask_copy(cpumask, attrs->cpumask);
3557 	return false;
3558 }
3559 
3560 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3561 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3562 						   int node,
3563 						   struct pool_workqueue *pwq)
3564 {
3565 	struct pool_workqueue *old_pwq;
3566 
3567 	lockdep_assert_held(&wq_pool_mutex);
3568 	lockdep_assert_held(&wq->mutex);
3569 
3570 	/* link_pwq() can handle duplicate calls */
3571 	link_pwq(pwq);
3572 
3573 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3574 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3575 	return old_pwq;
3576 }
3577 
3578 /* context to store the prepared attrs & pwqs before applying */
3579 struct apply_wqattrs_ctx {
3580 	struct workqueue_struct	*wq;		/* target workqueue */
3581 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3582 	struct list_head	list;		/* queued for batching commit */
3583 	struct pool_workqueue	*dfl_pwq;
3584 	struct pool_workqueue	*pwq_tbl[];
3585 };
3586 
3587 /* free the resources after success or abort */
3588 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3589 {
3590 	if (ctx) {
3591 		int node;
3592 
3593 		for_each_node(node)
3594 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3595 		put_pwq_unlocked(ctx->dfl_pwq);
3596 
3597 		free_workqueue_attrs(ctx->attrs);
3598 
3599 		kfree(ctx);
3600 	}
3601 }
3602 
3603 /* allocate the attrs and pwqs for later installation */
3604 static struct apply_wqattrs_ctx *
3605 apply_wqattrs_prepare(struct workqueue_struct *wq,
3606 		      const struct workqueue_attrs *attrs)
3607 {
3608 	struct apply_wqattrs_ctx *ctx;
3609 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3610 	int node;
3611 
3612 	lockdep_assert_held(&wq_pool_mutex);
3613 
3614 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3615 		      GFP_KERNEL);
3616 
3617 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3618 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3619 	if (!ctx || !new_attrs || !tmp_attrs)
3620 		goto out_free;
3621 
3622 	/*
3623 	 * Calculate the attrs of the default pwq.
3624 	 * If the user configured cpumask doesn't overlap with the
3625 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3626 	 */
3627 	copy_workqueue_attrs(new_attrs, attrs);
3628 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3629 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3630 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3631 
3632 	/*
3633 	 * We may create multiple pwqs with differing cpumasks.  Make a
3634 	 * copy of @new_attrs which will be modified and used to obtain
3635 	 * pools.
3636 	 */
3637 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3638 
3639 	/*
3640 	 * If something goes wrong during CPU up/down, we'll fall back to
3641 	 * the default pwq covering whole @attrs->cpumask.  Always create
3642 	 * it even if we don't use it immediately.
3643 	 */
3644 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3645 	if (!ctx->dfl_pwq)
3646 		goto out_free;
3647 
3648 	for_each_node(node) {
3649 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3650 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3651 			if (!ctx->pwq_tbl[node])
3652 				goto out_free;
3653 		} else {
3654 			ctx->dfl_pwq->refcnt++;
3655 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3656 		}
3657 	}
3658 
3659 	/* save the user configured attrs and sanitize it. */
3660 	copy_workqueue_attrs(new_attrs, attrs);
3661 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3662 	ctx->attrs = new_attrs;
3663 
3664 	ctx->wq = wq;
3665 	free_workqueue_attrs(tmp_attrs);
3666 	return ctx;
3667 
3668 out_free:
3669 	free_workqueue_attrs(tmp_attrs);
3670 	free_workqueue_attrs(new_attrs);
3671 	apply_wqattrs_cleanup(ctx);
3672 	return NULL;
3673 }
3674 
3675 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3676 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3677 {
3678 	int node;
3679 
3680 	/* all pwqs have been created successfully, let's install'em */
3681 	mutex_lock(&ctx->wq->mutex);
3682 
3683 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3684 
3685 	/* save the previous pwq and install the new one */
3686 	for_each_node(node)
3687 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3688 							  ctx->pwq_tbl[node]);
3689 
3690 	/* @dfl_pwq might not have been used, ensure it's linked */
3691 	link_pwq(ctx->dfl_pwq);
3692 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3693 
3694 	mutex_unlock(&ctx->wq->mutex);
3695 }
3696 
3697 static void apply_wqattrs_lock(void)
3698 {
3699 	/* CPUs should stay stable across pwq creations and installations */
3700 	get_online_cpus();
3701 	mutex_lock(&wq_pool_mutex);
3702 }
3703 
3704 static void apply_wqattrs_unlock(void)
3705 {
3706 	mutex_unlock(&wq_pool_mutex);
3707 	put_online_cpus();
3708 }
3709 
3710 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3711 					const struct workqueue_attrs *attrs)
3712 {
3713 	struct apply_wqattrs_ctx *ctx;
3714 
3715 	/* only unbound workqueues can change attributes */
3716 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3717 		return -EINVAL;
3718 
3719 	/* creating multiple pwqs breaks ordering guarantee */
3720 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3721 		return -EINVAL;
3722 
3723 	ctx = apply_wqattrs_prepare(wq, attrs);
3724 	if (!ctx)
3725 		return -ENOMEM;
3726 
3727 	/* the ctx has been prepared successfully, let's commit it */
3728 	apply_wqattrs_commit(ctx);
3729 	apply_wqattrs_cleanup(ctx);
3730 
3731 	return 0;
3732 }
3733 
3734 /**
3735  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3736  * @wq: the target workqueue
3737  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3738  *
3739  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3740  * machines, this function maps a separate pwq to each NUMA node with
3741  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3742  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3743  * items finish.  Note that a work item which repeatedly requeues itself
3744  * back-to-back will stay on its current pwq.
3745  *
3746  * Performs GFP_KERNEL allocations.
3747  *
3748  * Return: 0 on success and -errno on failure.
3749  */
3750 int apply_workqueue_attrs(struct workqueue_struct *wq,
3751 			  const struct workqueue_attrs *attrs)
3752 {
3753 	int ret;
3754 
3755 	apply_wqattrs_lock();
3756 	ret = apply_workqueue_attrs_locked(wq, attrs);
3757 	apply_wqattrs_unlock();
3758 
3759 	return ret;
3760 }
3761 
3762 /**
3763  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3764  * @wq: the target workqueue
3765  * @cpu: the CPU coming up or going down
3766  * @online: whether @cpu is coming up or going down
3767  *
3768  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3769  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3770  * @wq accordingly.
3771  *
3772  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3773  * falls back to @wq->dfl_pwq which may not be optimal but is always
3774  * correct.
3775  *
3776  * Note that when the last allowed CPU of a NUMA node goes offline for a
3777  * workqueue with a cpumask spanning multiple nodes, the workers which were
3778  * already executing the work items for the workqueue will lose their CPU
3779  * affinity and may execute on any CPU.  This is similar to how per-cpu
3780  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3781  * affinity, it's the user's responsibility to flush the work item from
3782  * CPU_DOWN_PREPARE.
3783  */
3784 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3785 				   bool online)
3786 {
3787 	int node = cpu_to_node(cpu);
3788 	int cpu_off = online ? -1 : cpu;
3789 	struct pool_workqueue *old_pwq = NULL, *pwq;
3790 	struct workqueue_attrs *target_attrs;
3791 	cpumask_t *cpumask;
3792 
3793 	lockdep_assert_held(&wq_pool_mutex);
3794 
3795 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3796 	    wq->unbound_attrs->no_numa)
3797 		return;
3798 
3799 	/*
3800 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3801 	 * Let's use a preallocated one.  The following buf is protected by
3802 	 * CPU hotplug exclusion.
3803 	 */
3804 	target_attrs = wq_update_unbound_numa_attrs_buf;
3805 	cpumask = target_attrs->cpumask;
3806 
3807 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3808 	pwq = unbound_pwq_by_node(wq, node);
3809 
3810 	/*
3811 	 * Let's determine what needs to be done.  If the target cpumask is
3812 	 * different from the default pwq's, we need to compare it to @pwq's
3813 	 * and create a new one if they don't match.  If the target cpumask
3814 	 * equals the default pwq's, the default pwq should be used.
3815 	 */
3816 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3817 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3818 			return;
3819 	} else {
3820 		goto use_dfl_pwq;
3821 	}
3822 
3823 	/* create a new pwq */
3824 	pwq = alloc_unbound_pwq(wq, target_attrs);
3825 	if (!pwq) {
3826 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3827 			wq->name);
3828 		goto use_dfl_pwq;
3829 	}
3830 
3831 	/* Install the new pwq. */
3832 	mutex_lock(&wq->mutex);
3833 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3834 	goto out_unlock;
3835 
3836 use_dfl_pwq:
3837 	mutex_lock(&wq->mutex);
3838 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3839 	get_pwq(wq->dfl_pwq);
3840 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3841 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3842 out_unlock:
3843 	mutex_unlock(&wq->mutex);
3844 	put_pwq_unlocked(old_pwq);
3845 }
3846 
3847 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3848 {
3849 	bool highpri = wq->flags & WQ_HIGHPRI;
3850 	int cpu, ret;
3851 
3852 	if (!(wq->flags & WQ_UNBOUND)) {
3853 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3854 		if (!wq->cpu_pwqs)
3855 			return -ENOMEM;
3856 
3857 		for_each_possible_cpu(cpu) {
3858 			struct pool_workqueue *pwq =
3859 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3860 			struct worker_pool *cpu_pools =
3861 				per_cpu(cpu_worker_pools, cpu);
3862 
3863 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3864 
3865 			mutex_lock(&wq->mutex);
3866 			link_pwq(pwq);
3867 			mutex_unlock(&wq->mutex);
3868 		}
3869 		return 0;
3870 	} else if (wq->flags & __WQ_ORDERED) {
3871 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3872 		/* there should only be single pwq for ordering guarantee */
3873 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3874 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3875 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3876 		return ret;
3877 	} else {
3878 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3879 	}
3880 }
3881 
3882 static int wq_clamp_max_active(int max_active, unsigned int flags,
3883 			       const char *name)
3884 {
3885 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3886 
3887 	if (max_active < 1 || max_active > lim)
3888 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3889 			max_active, name, 1, lim);
3890 
3891 	return clamp_val(max_active, 1, lim);
3892 }
3893 
3894 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3895 					       unsigned int flags,
3896 					       int max_active,
3897 					       struct lock_class_key *key,
3898 					       const char *lock_name, ...)
3899 {
3900 	size_t tbl_size = 0;
3901 	va_list args;
3902 	struct workqueue_struct *wq;
3903 	struct pool_workqueue *pwq;
3904 
3905 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3906 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3907 		flags |= WQ_UNBOUND;
3908 
3909 	/* allocate wq and format name */
3910 	if (flags & WQ_UNBOUND)
3911 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3912 
3913 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3914 	if (!wq)
3915 		return NULL;
3916 
3917 	if (flags & WQ_UNBOUND) {
3918 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3919 		if (!wq->unbound_attrs)
3920 			goto err_free_wq;
3921 	}
3922 
3923 	va_start(args, lock_name);
3924 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3925 	va_end(args);
3926 
3927 	max_active = max_active ?: WQ_DFL_ACTIVE;
3928 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3929 
3930 	/* init wq */
3931 	wq->flags = flags;
3932 	wq->saved_max_active = max_active;
3933 	mutex_init(&wq->mutex);
3934 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3935 	INIT_LIST_HEAD(&wq->pwqs);
3936 	INIT_LIST_HEAD(&wq->flusher_queue);
3937 	INIT_LIST_HEAD(&wq->flusher_overflow);
3938 	INIT_LIST_HEAD(&wq->maydays);
3939 
3940 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3941 	INIT_LIST_HEAD(&wq->list);
3942 
3943 	if (alloc_and_link_pwqs(wq) < 0)
3944 		goto err_free_wq;
3945 
3946 	/*
3947 	 * Workqueues which may be used during memory reclaim should
3948 	 * have a rescuer to guarantee forward progress.
3949 	 */
3950 	if (flags & WQ_MEM_RECLAIM) {
3951 		struct worker *rescuer;
3952 
3953 		rescuer = alloc_worker(NUMA_NO_NODE);
3954 		if (!rescuer)
3955 			goto err_destroy;
3956 
3957 		rescuer->rescue_wq = wq;
3958 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3959 					       wq->name);
3960 		if (IS_ERR(rescuer->task)) {
3961 			kfree(rescuer);
3962 			goto err_destroy;
3963 		}
3964 
3965 		wq->rescuer = rescuer;
3966 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3967 		wake_up_process(rescuer->task);
3968 	}
3969 
3970 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3971 		goto err_destroy;
3972 
3973 	/*
3974 	 * wq_pool_mutex protects global freeze state and workqueues list.
3975 	 * Grab it, adjust max_active and add the new @wq to workqueues
3976 	 * list.
3977 	 */
3978 	mutex_lock(&wq_pool_mutex);
3979 
3980 	mutex_lock(&wq->mutex);
3981 	for_each_pwq(pwq, wq)
3982 		pwq_adjust_max_active(pwq);
3983 	mutex_unlock(&wq->mutex);
3984 
3985 	list_add_tail_rcu(&wq->list, &workqueues);
3986 
3987 	mutex_unlock(&wq_pool_mutex);
3988 
3989 	return wq;
3990 
3991 err_free_wq:
3992 	free_workqueue_attrs(wq->unbound_attrs);
3993 	kfree(wq);
3994 	return NULL;
3995 err_destroy:
3996 	destroy_workqueue(wq);
3997 	return NULL;
3998 }
3999 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4000 
4001 /**
4002  * destroy_workqueue - safely terminate a workqueue
4003  * @wq: target workqueue
4004  *
4005  * Safely destroy a workqueue. All work currently pending will be done first.
4006  */
4007 void destroy_workqueue(struct workqueue_struct *wq)
4008 {
4009 	struct pool_workqueue *pwq;
4010 	int node;
4011 
4012 	/* drain it before proceeding with destruction */
4013 	drain_workqueue(wq);
4014 
4015 	/* sanity checks */
4016 	mutex_lock(&wq->mutex);
4017 	for_each_pwq(pwq, wq) {
4018 		int i;
4019 
4020 		for (i = 0; i < WORK_NR_COLORS; i++) {
4021 			if (WARN_ON(pwq->nr_in_flight[i])) {
4022 				mutex_unlock(&wq->mutex);
4023 				return;
4024 			}
4025 		}
4026 
4027 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4028 		    WARN_ON(pwq->nr_active) ||
4029 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4030 			mutex_unlock(&wq->mutex);
4031 			return;
4032 		}
4033 	}
4034 	mutex_unlock(&wq->mutex);
4035 
4036 	/*
4037 	 * wq list is used to freeze wq, remove from list after
4038 	 * flushing is complete in case freeze races us.
4039 	 */
4040 	mutex_lock(&wq_pool_mutex);
4041 	list_del_rcu(&wq->list);
4042 	mutex_unlock(&wq_pool_mutex);
4043 
4044 	workqueue_sysfs_unregister(wq);
4045 
4046 	if (wq->rescuer)
4047 		kthread_stop(wq->rescuer->task);
4048 
4049 	if (!(wq->flags & WQ_UNBOUND)) {
4050 		/*
4051 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4052 		 * schedule RCU free.
4053 		 */
4054 		call_rcu_sched(&wq->rcu, rcu_free_wq);
4055 	} else {
4056 		/*
4057 		 * We're the sole accessor of @wq at this point.  Directly
4058 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4059 		 * @wq will be freed when the last pwq is released.
4060 		 */
4061 		for_each_node(node) {
4062 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4063 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4064 			put_pwq_unlocked(pwq);
4065 		}
4066 
4067 		/*
4068 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4069 		 * put.  Don't access it afterwards.
4070 		 */
4071 		pwq = wq->dfl_pwq;
4072 		wq->dfl_pwq = NULL;
4073 		put_pwq_unlocked(pwq);
4074 	}
4075 }
4076 EXPORT_SYMBOL_GPL(destroy_workqueue);
4077 
4078 /**
4079  * workqueue_set_max_active - adjust max_active of a workqueue
4080  * @wq: target workqueue
4081  * @max_active: new max_active value.
4082  *
4083  * Set max_active of @wq to @max_active.
4084  *
4085  * CONTEXT:
4086  * Don't call from IRQ context.
4087  */
4088 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4089 {
4090 	struct pool_workqueue *pwq;
4091 
4092 	/* disallow meddling with max_active for ordered workqueues */
4093 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4094 		return;
4095 
4096 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4097 
4098 	mutex_lock(&wq->mutex);
4099 
4100 	wq->saved_max_active = max_active;
4101 
4102 	for_each_pwq(pwq, wq)
4103 		pwq_adjust_max_active(pwq);
4104 
4105 	mutex_unlock(&wq->mutex);
4106 }
4107 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4108 
4109 /**
4110  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4111  *
4112  * Determine whether %current is a workqueue rescuer.  Can be used from
4113  * work functions to determine whether it's being run off the rescuer task.
4114  *
4115  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4116  */
4117 bool current_is_workqueue_rescuer(void)
4118 {
4119 	struct worker *worker = current_wq_worker();
4120 
4121 	return worker && worker->rescue_wq;
4122 }
4123 
4124 /**
4125  * workqueue_congested - test whether a workqueue is congested
4126  * @cpu: CPU in question
4127  * @wq: target workqueue
4128  *
4129  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4130  * no synchronization around this function and the test result is
4131  * unreliable and only useful as advisory hints or for debugging.
4132  *
4133  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4134  * Note that both per-cpu and unbound workqueues may be associated with
4135  * multiple pool_workqueues which have separate congested states.  A
4136  * workqueue being congested on one CPU doesn't mean the workqueue is also
4137  * contested on other CPUs / NUMA nodes.
4138  *
4139  * Return:
4140  * %true if congested, %false otherwise.
4141  */
4142 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4143 {
4144 	struct pool_workqueue *pwq;
4145 	bool ret;
4146 
4147 	rcu_read_lock_sched();
4148 
4149 	if (cpu == WORK_CPU_UNBOUND)
4150 		cpu = smp_processor_id();
4151 
4152 	if (!(wq->flags & WQ_UNBOUND))
4153 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4154 	else
4155 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4156 
4157 	ret = !list_empty(&pwq->delayed_works);
4158 	rcu_read_unlock_sched();
4159 
4160 	return ret;
4161 }
4162 EXPORT_SYMBOL_GPL(workqueue_congested);
4163 
4164 /**
4165  * work_busy - test whether a work is currently pending or running
4166  * @work: the work to be tested
4167  *
4168  * Test whether @work is currently pending or running.  There is no
4169  * synchronization around this function and the test result is
4170  * unreliable and only useful as advisory hints or for debugging.
4171  *
4172  * Return:
4173  * OR'd bitmask of WORK_BUSY_* bits.
4174  */
4175 unsigned int work_busy(struct work_struct *work)
4176 {
4177 	struct worker_pool *pool;
4178 	unsigned long flags;
4179 	unsigned int ret = 0;
4180 
4181 	if (work_pending(work))
4182 		ret |= WORK_BUSY_PENDING;
4183 
4184 	local_irq_save(flags);
4185 	pool = get_work_pool(work);
4186 	if (pool) {
4187 		spin_lock(&pool->lock);
4188 		if (find_worker_executing_work(pool, work))
4189 			ret |= WORK_BUSY_RUNNING;
4190 		spin_unlock(&pool->lock);
4191 	}
4192 	local_irq_restore(flags);
4193 
4194 	return ret;
4195 }
4196 EXPORT_SYMBOL_GPL(work_busy);
4197 
4198 /**
4199  * set_worker_desc - set description for the current work item
4200  * @fmt: printf-style format string
4201  * @...: arguments for the format string
4202  *
4203  * This function can be called by a running work function to describe what
4204  * the work item is about.  If the worker task gets dumped, this
4205  * information will be printed out together to help debugging.  The
4206  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4207  */
4208 void set_worker_desc(const char *fmt, ...)
4209 {
4210 	struct worker *worker = current_wq_worker();
4211 	va_list args;
4212 
4213 	if (worker) {
4214 		va_start(args, fmt);
4215 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4216 		va_end(args);
4217 		worker->desc_valid = true;
4218 	}
4219 }
4220 
4221 /**
4222  * print_worker_info - print out worker information and description
4223  * @log_lvl: the log level to use when printing
4224  * @task: target task
4225  *
4226  * If @task is a worker and currently executing a work item, print out the
4227  * name of the workqueue being serviced and worker description set with
4228  * set_worker_desc() by the currently executing work item.
4229  *
4230  * This function can be safely called on any task as long as the
4231  * task_struct itself is accessible.  While safe, this function isn't
4232  * synchronized and may print out mixups or garbages of limited length.
4233  */
4234 void print_worker_info(const char *log_lvl, struct task_struct *task)
4235 {
4236 	work_func_t *fn = NULL;
4237 	char name[WQ_NAME_LEN] = { };
4238 	char desc[WORKER_DESC_LEN] = { };
4239 	struct pool_workqueue *pwq = NULL;
4240 	struct workqueue_struct *wq = NULL;
4241 	bool desc_valid = false;
4242 	struct worker *worker;
4243 
4244 	if (!(task->flags & PF_WQ_WORKER))
4245 		return;
4246 
4247 	/*
4248 	 * This function is called without any synchronization and @task
4249 	 * could be in any state.  Be careful with dereferences.
4250 	 */
4251 	worker = probe_kthread_data(task);
4252 
4253 	/*
4254 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4255 	 * the original last '\0' in case the original contains garbage.
4256 	 */
4257 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4258 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4259 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4260 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4261 
4262 	/* copy worker description */
4263 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4264 	if (desc_valid)
4265 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4266 
4267 	if (fn || name[0] || desc[0]) {
4268 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4269 		if (desc[0])
4270 			pr_cont(" (%s)", desc);
4271 		pr_cont("\n");
4272 	}
4273 }
4274 
4275 static void pr_cont_pool_info(struct worker_pool *pool)
4276 {
4277 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4278 	if (pool->node != NUMA_NO_NODE)
4279 		pr_cont(" node=%d", pool->node);
4280 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4281 }
4282 
4283 static void pr_cont_work(bool comma, struct work_struct *work)
4284 {
4285 	if (work->func == wq_barrier_func) {
4286 		struct wq_barrier *barr;
4287 
4288 		barr = container_of(work, struct wq_barrier, work);
4289 
4290 		pr_cont("%s BAR(%d)", comma ? "," : "",
4291 			task_pid_nr(barr->task));
4292 	} else {
4293 		pr_cont("%s %pf", comma ? "," : "", work->func);
4294 	}
4295 }
4296 
4297 static void show_pwq(struct pool_workqueue *pwq)
4298 {
4299 	struct worker_pool *pool = pwq->pool;
4300 	struct work_struct *work;
4301 	struct worker *worker;
4302 	bool has_in_flight = false, has_pending = false;
4303 	int bkt;
4304 
4305 	pr_info("  pwq %d:", pool->id);
4306 	pr_cont_pool_info(pool);
4307 
4308 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4309 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4310 
4311 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4312 		if (worker->current_pwq == pwq) {
4313 			has_in_flight = true;
4314 			break;
4315 		}
4316 	}
4317 	if (has_in_flight) {
4318 		bool comma = false;
4319 
4320 		pr_info("    in-flight:");
4321 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4322 			if (worker->current_pwq != pwq)
4323 				continue;
4324 
4325 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4326 				task_pid_nr(worker->task),
4327 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4328 				worker->current_func);
4329 			list_for_each_entry(work, &worker->scheduled, entry)
4330 				pr_cont_work(false, work);
4331 			comma = true;
4332 		}
4333 		pr_cont("\n");
4334 	}
4335 
4336 	list_for_each_entry(work, &pool->worklist, entry) {
4337 		if (get_work_pwq(work) == pwq) {
4338 			has_pending = true;
4339 			break;
4340 		}
4341 	}
4342 	if (has_pending) {
4343 		bool comma = false;
4344 
4345 		pr_info("    pending:");
4346 		list_for_each_entry(work, &pool->worklist, entry) {
4347 			if (get_work_pwq(work) != pwq)
4348 				continue;
4349 
4350 			pr_cont_work(comma, work);
4351 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4352 		}
4353 		pr_cont("\n");
4354 	}
4355 
4356 	if (!list_empty(&pwq->delayed_works)) {
4357 		bool comma = false;
4358 
4359 		pr_info("    delayed:");
4360 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4361 			pr_cont_work(comma, work);
4362 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4363 		}
4364 		pr_cont("\n");
4365 	}
4366 }
4367 
4368 /**
4369  * show_workqueue_state - dump workqueue state
4370  *
4371  * Called from a sysrq handler and prints out all busy workqueues and
4372  * pools.
4373  */
4374 void show_workqueue_state(void)
4375 {
4376 	struct workqueue_struct *wq;
4377 	struct worker_pool *pool;
4378 	unsigned long flags;
4379 	int pi;
4380 
4381 	rcu_read_lock_sched();
4382 
4383 	pr_info("Showing busy workqueues and worker pools:\n");
4384 
4385 	list_for_each_entry_rcu(wq, &workqueues, list) {
4386 		struct pool_workqueue *pwq;
4387 		bool idle = true;
4388 
4389 		for_each_pwq(pwq, wq) {
4390 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4391 				idle = false;
4392 				break;
4393 			}
4394 		}
4395 		if (idle)
4396 			continue;
4397 
4398 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4399 
4400 		for_each_pwq(pwq, wq) {
4401 			spin_lock_irqsave(&pwq->pool->lock, flags);
4402 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4403 				show_pwq(pwq);
4404 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4405 		}
4406 	}
4407 
4408 	for_each_pool(pool, pi) {
4409 		struct worker *worker;
4410 		bool first = true;
4411 
4412 		spin_lock_irqsave(&pool->lock, flags);
4413 		if (pool->nr_workers == pool->nr_idle)
4414 			goto next_pool;
4415 
4416 		pr_info("pool %d:", pool->id);
4417 		pr_cont_pool_info(pool);
4418 		pr_cont(" hung=%us workers=%d",
4419 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4420 			pool->nr_workers);
4421 		if (pool->manager)
4422 			pr_cont(" manager: %d",
4423 				task_pid_nr(pool->manager->task));
4424 		list_for_each_entry(worker, &pool->idle_list, entry) {
4425 			pr_cont(" %s%d", first ? "idle: " : "",
4426 				task_pid_nr(worker->task));
4427 			first = false;
4428 		}
4429 		pr_cont("\n");
4430 	next_pool:
4431 		spin_unlock_irqrestore(&pool->lock, flags);
4432 	}
4433 
4434 	rcu_read_unlock_sched();
4435 }
4436 
4437 /*
4438  * CPU hotplug.
4439  *
4440  * There are two challenges in supporting CPU hotplug.  Firstly, there
4441  * are a lot of assumptions on strong associations among work, pwq and
4442  * pool which make migrating pending and scheduled works very
4443  * difficult to implement without impacting hot paths.  Secondly,
4444  * worker pools serve mix of short, long and very long running works making
4445  * blocked draining impractical.
4446  *
4447  * This is solved by allowing the pools to be disassociated from the CPU
4448  * running as an unbound one and allowing it to be reattached later if the
4449  * cpu comes back online.
4450  */
4451 
4452 static void wq_unbind_fn(struct work_struct *work)
4453 {
4454 	int cpu = smp_processor_id();
4455 	struct worker_pool *pool;
4456 	struct worker *worker;
4457 
4458 	for_each_cpu_worker_pool(pool, cpu) {
4459 		mutex_lock(&pool->attach_mutex);
4460 		spin_lock_irq(&pool->lock);
4461 
4462 		/*
4463 		 * We've blocked all attach/detach operations. Make all workers
4464 		 * unbound and set DISASSOCIATED.  Before this, all workers
4465 		 * except for the ones which are still executing works from
4466 		 * before the last CPU down must be on the cpu.  After
4467 		 * this, they may become diasporas.
4468 		 */
4469 		for_each_pool_worker(worker, pool)
4470 			worker->flags |= WORKER_UNBOUND;
4471 
4472 		pool->flags |= POOL_DISASSOCIATED;
4473 
4474 		spin_unlock_irq(&pool->lock);
4475 		mutex_unlock(&pool->attach_mutex);
4476 
4477 		/*
4478 		 * Call schedule() so that we cross rq->lock and thus can
4479 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4480 		 * This is necessary as scheduler callbacks may be invoked
4481 		 * from other cpus.
4482 		 */
4483 		schedule();
4484 
4485 		/*
4486 		 * Sched callbacks are disabled now.  Zap nr_running.
4487 		 * After this, nr_running stays zero and need_more_worker()
4488 		 * and keep_working() are always true as long as the
4489 		 * worklist is not empty.  This pool now behaves as an
4490 		 * unbound (in terms of concurrency management) pool which
4491 		 * are served by workers tied to the pool.
4492 		 */
4493 		atomic_set(&pool->nr_running, 0);
4494 
4495 		/*
4496 		 * With concurrency management just turned off, a busy
4497 		 * worker blocking could lead to lengthy stalls.  Kick off
4498 		 * unbound chain execution of currently pending work items.
4499 		 */
4500 		spin_lock_irq(&pool->lock);
4501 		wake_up_worker(pool);
4502 		spin_unlock_irq(&pool->lock);
4503 	}
4504 }
4505 
4506 /**
4507  * rebind_workers - rebind all workers of a pool to the associated CPU
4508  * @pool: pool of interest
4509  *
4510  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4511  */
4512 static void rebind_workers(struct worker_pool *pool)
4513 {
4514 	struct worker *worker;
4515 
4516 	lockdep_assert_held(&pool->attach_mutex);
4517 
4518 	/*
4519 	 * Restore CPU affinity of all workers.  As all idle workers should
4520 	 * be on the run-queue of the associated CPU before any local
4521 	 * wake-ups for concurrency management happen, restore CPU affinity
4522 	 * of all workers first and then clear UNBOUND.  As we're called
4523 	 * from CPU_ONLINE, the following shouldn't fail.
4524 	 */
4525 	for_each_pool_worker(worker, pool)
4526 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4527 						  pool->attrs->cpumask) < 0);
4528 
4529 	spin_lock_irq(&pool->lock);
4530 	pool->flags &= ~POOL_DISASSOCIATED;
4531 
4532 	for_each_pool_worker(worker, pool) {
4533 		unsigned int worker_flags = worker->flags;
4534 
4535 		/*
4536 		 * A bound idle worker should actually be on the runqueue
4537 		 * of the associated CPU for local wake-ups targeting it to
4538 		 * work.  Kick all idle workers so that they migrate to the
4539 		 * associated CPU.  Doing this in the same loop as
4540 		 * replacing UNBOUND with REBOUND is safe as no worker will
4541 		 * be bound before @pool->lock is released.
4542 		 */
4543 		if (worker_flags & WORKER_IDLE)
4544 			wake_up_process(worker->task);
4545 
4546 		/*
4547 		 * We want to clear UNBOUND but can't directly call
4548 		 * worker_clr_flags() or adjust nr_running.  Atomically
4549 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4550 		 * @worker will clear REBOUND using worker_clr_flags() when
4551 		 * it initiates the next execution cycle thus restoring
4552 		 * concurrency management.  Note that when or whether
4553 		 * @worker clears REBOUND doesn't affect correctness.
4554 		 *
4555 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4556 		 * tested without holding any lock in
4557 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4558 		 * fail incorrectly leading to premature concurrency
4559 		 * management operations.
4560 		 */
4561 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4562 		worker_flags |= WORKER_REBOUND;
4563 		worker_flags &= ~WORKER_UNBOUND;
4564 		ACCESS_ONCE(worker->flags) = worker_flags;
4565 	}
4566 
4567 	spin_unlock_irq(&pool->lock);
4568 }
4569 
4570 /**
4571  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4572  * @pool: unbound pool of interest
4573  * @cpu: the CPU which is coming up
4574  *
4575  * An unbound pool may end up with a cpumask which doesn't have any online
4576  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4577  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4578  * online CPU before, cpus_allowed of all its workers should be restored.
4579  */
4580 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4581 {
4582 	static cpumask_t cpumask;
4583 	struct worker *worker;
4584 
4585 	lockdep_assert_held(&pool->attach_mutex);
4586 
4587 	/* is @cpu allowed for @pool? */
4588 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4589 		return;
4590 
4591 	/* is @cpu the only online CPU? */
4592 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4593 	if (cpumask_weight(&cpumask) != 1)
4594 		return;
4595 
4596 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4597 	for_each_pool_worker(worker, pool)
4598 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4599 						  pool->attrs->cpumask) < 0);
4600 }
4601 
4602 /*
4603  * Workqueues should be brought up before normal priority CPU notifiers.
4604  * This will be registered high priority CPU notifier.
4605  */
4606 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4607 					       unsigned long action,
4608 					       void *hcpu)
4609 {
4610 	int cpu = (unsigned long)hcpu;
4611 	struct worker_pool *pool;
4612 	struct workqueue_struct *wq;
4613 	int pi;
4614 
4615 	switch (action & ~CPU_TASKS_FROZEN) {
4616 	case CPU_UP_PREPARE:
4617 		for_each_cpu_worker_pool(pool, cpu) {
4618 			if (pool->nr_workers)
4619 				continue;
4620 			if (!create_worker(pool))
4621 				return NOTIFY_BAD;
4622 		}
4623 		break;
4624 
4625 	case CPU_DOWN_FAILED:
4626 	case CPU_ONLINE:
4627 		mutex_lock(&wq_pool_mutex);
4628 
4629 		for_each_pool(pool, pi) {
4630 			mutex_lock(&pool->attach_mutex);
4631 
4632 			if (pool->cpu == cpu)
4633 				rebind_workers(pool);
4634 			else if (pool->cpu < 0)
4635 				restore_unbound_workers_cpumask(pool, cpu);
4636 
4637 			mutex_unlock(&pool->attach_mutex);
4638 		}
4639 
4640 		/* update NUMA affinity of unbound workqueues */
4641 		list_for_each_entry(wq, &workqueues, list)
4642 			wq_update_unbound_numa(wq, cpu, true);
4643 
4644 		mutex_unlock(&wq_pool_mutex);
4645 		break;
4646 	}
4647 	return NOTIFY_OK;
4648 }
4649 
4650 /*
4651  * Workqueues should be brought down after normal priority CPU notifiers.
4652  * This will be registered as low priority CPU notifier.
4653  */
4654 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4655 						 unsigned long action,
4656 						 void *hcpu)
4657 {
4658 	int cpu = (unsigned long)hcpu;
4659 	struct work_struct unbind_work;
4660 	struct workqueue_struct *wq;
4661 
4662 	switch (action & ~CPU_TASKS_FROZEN) {
4663 	case CPU_DOWN_PREPARE:
4664 		/* unbinding per-cpu workers should happen on the local CPU */
4665 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4666 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4667 
4668 		/* update NUMA affinity of unbound workqueues */
4669 		mutex_lock(&wq_pool_mutex);
4670 		list_for_each_entry(wq, &workqueues, list)
4671 			wq_update_unbound_numa(wq, cpu, false);
4672 		mutex_unlock(&wq_pool_mutex);
4673 
4674 		/* wait for per-cpu unbinding to finish */
4675 		flush_work(&unbind_work);
4676 		destroy_work_on_stack(&unbind_work);
4677 		break;
4678 	}
4679 	return NOTIFY_OK;
4680 }
4681 
4682 #ifdef CONFIG_SMP
4683 
4684 struct work_for_cpu {
4685 	struct work_struct work;
4686 	long (*fn)(void *);
4687 	void *arg;
4688 	long ret;
4689 };
4690 
4691 static void work_for_cpu_fn(struct work_struct *work)
4692 {
4693 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4694 
4695 	wfc->ret = wfc->fn(wfc->arg);
4696 }
4697 
4698 /**
4699  * work_on_cpu - run a function in user context on a particular cpu
4700  * @cpu: the cpu to run on
4701  * @fn: the function to run
4702  * @arg: the function arg
4703  *
4704  * It is up to the caller to ensure that the cpu doesn't go offline.
4705  * The caller must not hold any locks which would prevent @fn from completing.
4706  *
4707  * Return: The value @fn returns.
4708  */
4709 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4710 {
4711 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4712 
4713 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4714 	schedule_work_on(cpu, &wfc.work);
4715 	flush_work(&wfc.work);
4716 	destroy_work_on_stack(&wfc.work);
4717 	return wfc.ret;
4718 }
4719 EXPORT_SYMBOL_GPL(work_on_cpu);
4720 #endif /* CONFIG_SMP */
4721 
4722 #ifdef CONFIG_FREEZER
4723 
4724 /**
4725  * freeze_workqueues_begin - begin freezing workqueues
4726  *
4727  * Start freezing workqueues.  After this function returns, all freezable
4728  * workqueues will queue new works to their delayed_works list instead of
4729  * pool->worklist.
4730  *
4731  * CONTEXT:
4732  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4733  */
4734 void freeze_workqueues_begin(void)
4735 {
4736 	struct workqueue_struct *wq;
4737 	struct pool_workqueue *pwq;
4738 
4739 	mutex_lock(&wq_pool_mutex);
4740 
4741 	WARN_ON_ONCE(workqueue_freezing);
4742 	workqueue_freezing = true;
4743 
4744 	list_for_each_entry(wq, &workqueues, list) {
4745 		mutex_lock(&wq->mutex);
4746 		for_each_pwq(pwq, wq)
4747 			pwq_adjust_max_active(pwq);
4748 		mutex_unlock(&wq->mutex);
4749 	}
4750 
4751 	mutex_unlock(&wq_pool_mutex);
4752 }
4753 
4754 /**
4755  * freeze_workqueues_busy - are freezable workqueues still busy?
4756  *
4757  * Check whether freezing is complete.  This function must be called
4758  * between freeze_workqueues_begin() and thaw_workqueues().
4759  *
4760  * CONTEXT:
4761  * Grabs and releases wq_pool_mutex.
4762  *
4763  * Return:
4764  * %true if some freezable workqueues are still busy.  %false if freezing
4765  * is complete.
4766  */
4767 bool freeze_workqueues_busy(void)
4768 {
4769 	bool busy = false;
4770 	struct workqueue_struct *wq;
4771 	struct pool_workqueue *pwq;
4772 
4773 	mutex_lock(&wq_pool_mutex);
4774 
4775 	WARN_ON_ONCE(!workqueue_freezing);
4776 
4777 	list_for_each_entry(wq, &workqueues, list) {
4778 		if (!(wq->flags & WQ_FREEZABLE))
4779 			continue;
4780 		/*
4781 		 * nr_active is monotonically decreasing.  It's safe
4782 		 * to peek without lock.
4783 		 */
4784 		rcu_read_lock_sched();
4785 		for_each_pwq(pwq, wq) {
4786 			WARN_ON_ONCE(pwq->nr_active < 0);
4787 			if (pwq->nr_active) {
4788 				busy = true;
4789 				rcu_read_unlock_sched();
4790 				goto out_unlock;
4791 			}
4792 		}
4793 		rcu_read_unlock_sched();
4794 	}
4795 out_unlock:
4796 	mutex_unlock(&wq_pool_mutex);
4797 	return busy;
4798 }
4799 
4800 /**
4801  * thaw_workqueues - thaw workqueues
4802  *
4803  * Thaw workqueues.  Normal queueing is restored and all collected
4804  * frozen works are transferred to their respective pool worklists.
4805  *
4806  * CONTEXT:
4807  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4808  */
4809 void thaw_workqueues(void)
4810 {
4811 	struct workqueue_struct *wq;
4812 	struct pool_workqueue *pwq;
4813 
4814 	mutex_lock(&wq_pool_mutex);
4815 
4816 	if (!workqueue_freezing)
4817 		goto out_unlock;
4818 
4819 	workqueue_freezing = false;
4820 
4821 	/* restore max_active and repopulate worklist */
4822 	list_for_each_entry(wq, &workqueues, list) {
4823 		mutex_lock(&wq->mutex);
4824 		for_each_pwq(pwq, wq)
4825 			pwq_adjust_max_active(pwq);
4826 		mutex_unlock(&wq->mutex);
4827 	}
4828 
4829 out_unlock:
4830 	mutex_unlock(&wq_pool_mutex);
4831 }
4832 #endif /* CONFIG_FREEZER */
4833 
4834 static int workqueue_apply_unbound_cpumask(void)
4835 {
4836 	LIST_HEAD(ctxs);
4837 	int ret = 0;
4838 	struct workqueue_struct *wq;
4839 	struct apply_wqattrs_ctx *ctx, *n;
4840 
4841 	lockdep_assert_held(&wq_pool_mutex);
4842 
4843 	list_for_each_entry(wq, &workqueues, list) {
4844 		if (!(wq->flags & WQ_UNBOUND))
4845 			continue;
4846 		/* creating multiple pwqs breaks ordering guarantee */
4847 		if (wq->flags & __WQ_ORDERED)
4848 			continue;
4849 
4850 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4851 		if (!ctx) {
4852 			ret = -ENOMEM;
4853 			break;
4854 		}
4855 
4856 		list_add_tail(&ctx->list, &ctxs);
4857 	}
4858 
4859 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4860 		if (!ret)
4861 			apply_wqattrs_commit(ctx);
4862 		apply_wqattrs_cleanup(ctx);
4863 	}
4864 
4865 	return ret;
4866 }
4867 
4868 /**
4869  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4870  *  @cpumask: the cpumask to set
4871  *
4872  *  The low-level workqueues cpumask is a global cpumask that limits
4873  *  the affinity of all unbound workqueues.  This function check the @cpumask
4874  *  and apply it to all unbound workqueues and updates all pwqs of them.
4875  *
4876  *  Retun:	0	- Success
4877  *  		-EINVAL	- Invalid @cpumask
4878  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4879  */
4880 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4881 {
4882 	int ret = -EINVAL;
4883 	cpumask_var_t saved_cpumask;
4884 
4885 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4886 		return -ENOMEM;
4887 
4888 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4889 	if (!cpumask_empty(cpumask)) {
4890 		apply_wqattrs_lock();
4891 
4892 		/* save the old wq_unbound_cpumask. */
4893 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4894 
4895 		/* update wq_unbound_cpumask at first and apply it to wqs. */
4896 		cpumask_copy(wq_unbound_cpumask, cpumask);
4897 		ret = workqueue_apply_unbound_cpumask();
4898 
4899 		/* restore the wq_unbound_cpumask when failed. */
4900 		if (ret < 0)
4901 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4902 
4903 		apply_wqattrs_unlock();
4904 	}
4905 
4906 	free_cpumask_var(saved_cpumask);
4907 	return ret;
4908 }
4909 
4910 #ifdef CONFIG_SYSFS
4911 /*
4912  * Workqueues with WQ_SYSFS flag set is visible to userland via
4913  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4914  * following attributes.
4915  *
4916  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4917  *  max_active	RW int	: maximum number of in-flight work items
4918  *
4919  * Unbound workqueues have the following extra attributes.
4920  *
4921  *  id		RO int	: the associated pool ID
4922  *  nice	RW int	: nice value of the workers
4923  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4924  */
4925 struct wq_device {
4926 	struct workqueue_struct		*wq;
4927 	struct device			dev;
4928 };
4929 
4930 static struct workqueue_struct *dev_to_wq(struct device *dev)
4931 {
4932 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4933 
4934 	return wq_dev->wq;
4935 }
4936 
4937 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4938 			    char *buf)
4939 {
4940 	struct workqueue_struct *wq = dev_to_wq(dev);
4941 
4942 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4943 }
4944 static DEVICE_ATTR_RO(per_cpu);
4945 
4946 static ssize_t max_active_show(struct device *dev,
4947 			       struct device_attribute *attr, char *buf)
4948 {
4949 	struct workqueue_struct *wq = dev_to_wq(dev);
4950 
4951 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4952 }
4953 
4954 static ssize_t max_active_store(struct device *dev,
4955 				struct device_attribute *attr, const char *buf,
4956 				size_t count)
4957 {
4958 	struct workqueue_struct *wq = dev_to_wq(dev);
4959 	int val;
4960 
4961 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4962 		return -EINVAL;
4963 
4964 	workqueue_set_max_active(wq, val);
4965 	return count;
4966 }
4967 static DEVICE_ATTR_RW(max_active);
4968 
4969 static struct attribute *wq_sysfs_attrs[] = {
4970 	&dev_attr_per_cpu.attr,
4971 	&dev_attr_max_active.attr,
4972 	NULL,
4973 };
4974 ATTRIBUTE_GROUPS(wq_sysfs);
4975 
4976 static ssize_t wq_pool_ids_show(struct device *dev,
4977 				struct device_attribute *attr, char *buf)
4978 {
4979 	struct workqueue_struct *wq = dev_to_wq(dev);
4980 	const char *delim = "";
4981 	int node, written = 0;
4982 
4983 	rcu_read_lock_sched();
4984 	for_each_node(node) {
4985 		written += scnprintf(buf + written, PAGE_SIZE - written,
4986 				     "%s%d:%d", delim, node,
4987 				     unbound_pwq_by_node(wq, node)->pool->id);
4988 		delim = " ";
4989 	}
4990 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4991 	rcu_read_unlock_sched();
4992 
4993 	return written;
4994 }
4995 
4996 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4997 			    char *buf)
4998 {
4999 	struct workqueue_struct *wq = dev_to_wq(dev);
5000 	int written;
5001 
5002 	mutex_lock(&wq->mutex);
5003 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5004 	mutex_unlock(&wq->mutex);
5005 
5006 	return written;
5007 }
5008 
5009 /* prepare workqueue_attrs for sysfs store operations */
5010 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5011 {
5012 	struct workqueue_attrs *attrs;
5013 
5014 	lockdep_assert_held(&wq_pool_mutex);
5015 
5016 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5017 	if (!attrs)
5018 		return NULL;
5019 
5020 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5021 	return attrs;
5022 }
5023 
5024 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5025 			     const char *buf, size_t count)
5026 {
5027 	struct workqueue_struct *wq = dev_to_wq(dev);
5028 	struct workqueue_attrs *attrs;
5029 	int ret = -ENOMEM;
5030 
5031 	apply_wqattrs_lock();
5032 
5033 	attrs = wq_sysfs_prep_attrs(wq);
5034 	if (!attrs)
5035 		goto out_unlock;
5036 
5037 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5038 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5039 		ret = apply_workqueue_attrs_locked(wq, attrs);
5040 	else
5041 		ret = -EINVAL;
5042 
5043 out_unlock:
5044 	apply_wqattrs_unlock();
5045 	free_workqueue_attrs(attrs);
5046 	return ret ?: count;
5047 }
5048 
5049 static ssize_t wq_cpumask_show(struct device *dev,
5050 			       struct device_attribute *attr, char *buf)
5051 {
5052 	struct workqueue_struct *wq = dev_to_wq(dev);
5053 	int written;
5054 
5055 	mutex_lock(&wq->mutex);
5056 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5057 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5058 	mutex_unlock(&wq->mutex);
5059 	return written;
5060 }
5061 
5062 static ssize_t wq_cpumask_store(struct device *dev,
5063 				struct device_attribute *attr,
5064 				const char *buf, size_t count)
5065 {
5066 	struct workqueue_struct *wq = dev_to_wq(dev);
5067 	struct workqueue_attrs *attrs;
5068 	int ret = -ENOMEM;
5069 
5070 	apply_wqattrs_lock();
5071 
5072 	attrs = wq_sysfs_prep_attrs(wq);
5073 	if (!attrs)
5074 		goto out_unlock;
5075 
5076 	ret = cpumask_parse(buf, attrs->cpumask);
5077 	if (!ret)
5078 		ret = apply_workqueue_attrs_locked(wq, attrs);
5079 
5080 out_unlock:
5081 	apply_wqattrs_unlock();
5082 	free_workqueue_attrs(attrs);
5083 	return ret ?: count;
5084 }
5085 
5086 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5087 			    char *buf)
5088 {
5089 	struct workqueue_struct *wq = dev_to_wq(dev);
5090 	int written;
5091 
5092 	mutex_lock(&wq->mutex);
5093 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5094 			    !wq->unbound_attrs->no_numa);
5095 	mutex_unlock(&wq->mutex);
5096 
5097 	return written;
5098 }
5099 
5100 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5101 			     const char *buf, size_t count)
5102 {
5103 	struct workqueue_struct *wq = dev_to_wq(dev);
5104 	struct workqueue_attrs *attrs;
5105 	int v, ret = -ENOMEM;
5106 
5107 	apply_wqattrs_lock();
5108 
5109 	attrs = wq_sysfs_prep_attrs(wq);
5110 	if (!attrs)
5111 		goto out_unlock;
5112 
5113 	ret = -EINVAL;
5114 	if (sscanf(buf, "%d", &v) == 1) {
5115 		attrs->no_numa = !v;
5116 		ret = apply_workqueue_attrs_locked(wq, attrs);
5117 	}
5118 
5119 out_unlock:
5120 	apply_wqattrs_unlock();
5121 	free_workqueue_attrs(attrs);
5122 	return ret ?: count;
5123 }
5124 
5125 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5126 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5127 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5128 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5129 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5130 	__ATTR_NULL,
5131 };
5132 
5133 static struct bus_type wq_subsys = {
5134 	.name				= "workqueue",
5135 	.dev_groups			= wq_sysfs_groups,
5136 };
5137 
5138 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5139 		struct device_attribute *attr, char *buf)
5140 {
5141 	int written;
5142 
5143 	mutex_lock(&wq_pool_mutex);
5144 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5145 			    cpumask_pr_args(wq_unbound_cpumask));
5146 	mutex_unlock(&wq_pool_mutex);
5147 
5148 	return written;
5149 }
5150 
5151 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5152 		struct device_attribute *attr, const char *buf, size_t count)
5153 {
5154 	cpumask_var_t cpumask;
5155 	int ret;
5156 
5157 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5158 		return -ENOMEM;
5159 
5160 	ret = cpumask_parse(buf, cpumask);
5161 	if (!ret)
5162 		ret = workqueue_set_unbound_cpumask(cpumask);
5163 
5164 	free_cpumask_var(cpumask);
5165 	return ret ? ret : count;
5166 }
5167 
5168 static struct device_attribute wq_sysfs_cpumask_attr =
5169 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5170 	       wq_unbound_cpumask_store);
5171 
5172 static int __init wq_sysfs_init(void)
5173 {
5174 	int err;
5175 
5176 	err = subsys_virtual_register(&wq_subsys, NULL);
5177 	if (err)
5178 		return err;
5179 
5180 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5181 }
5182 core_initcall(wq_sysfs_init);
5183 
5184 static void wq_device_release(struct device *dev)
5185 {
5186 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5187 
5188 	kfree(wq_dev);
5189 }
5190 
5191 /**
5192  * workqueue_sysfs_register - make a workqueue visible in sysfs
5193  * @wq: the workqueue to register
5194  *
5195  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5196  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5197  * which is the preferred method.
5198  *
5199  * Workqueue user should use this function directly iff it wants to apply
5200  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5201  * apply_workqueue_attrs() may race against userland updating the
5202  * attributes.
5203  *
5204  * Return: 0 on success, -errno on failure.
5205  */
5206 int workqueue_sysfs_register(struct workqueue_struct *wq)
5207 {
5208 	struct wq_device *wq_dev;
5209 	int ret;
5210 
5211 	/*
5212 	 * Adjusting max_active or creating new pwqs by applying
5213 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5214 	 * workqueues.
5215 	 */
5216 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5217 		return -EINVAL;
5218 
5219 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5220 	if (!wq_dev)
5221 		return -ENOMEM;
5222 
5223 	wq_dev->wq = wq;
5224 	wq_dev->dev.bus = &wq_subsys;
5225 	wq_dev->dev.init_name = wq->name;
5226 	wq_dev->dev.release = wq_device_release;
5227 
5228 	/*
5229 	 * unbound_attrs are created separately.  Suppress uevent until
5230 	 * everything is ready.
5231 	 */
5232 	dev_set_uevent_suppress(&wq_dev->dev, true);
5233 
5234 	ret = device_register(&wq_dev->dev);
5235 	if (ret) {
5236 		kfree(wq_dev);
5237 		wq->wq_dev = NULL;
5238 		return ret;
5239 	}
5240 
5241 	if (wq->flags & WQ_UNBOUND) {
5242 		struct device_attribute *attr;
5243 
5244 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5245 			ret = device_create_file(&wq_dev->dev, attr);
5246 			if (ret) {
5247 				device_unregister(&wq_dev->dev);
5248 				wq->wq_dev = NULL;
5249 				return ret;
5250 			}
5251 		}
5252 	}
5253 
5254 	dev_set_uevent_suppress(&wq_dev->dev, false);
5255 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5256 	return 0;
5257 }
5258 
5259 /**
5260  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5261  * @wq: the workqueue to unregister
5262  *
5263  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5264  */
5265 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5266 {
5267 	struct wq_device *wq_dev = wq->wq_dev;
5268 
5269 	if (!wq->wq_dev)
5270 		return;
5271 
5272 	wq->wq_dev = NULL;
5273 	device_unregister(&wq_dev->dev);
5274 }
5275 #else	/* CONFIG_SYSFS */
5276 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5277 #endif	/* CONFIG_SYSFS */
5278 
5279 /*
5280  * Workqueue watchdog.
5281  *
5282  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5283  * flush dependency, a concurrency managed work item which stays RUNNING
5284  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5285  * usual warning mechanisms don't trigger and internal workqueue state is
5286  * largely opaque.
5287  *
5288  * Workqueue watchdog monitors all worker pools periodically and dumps
5289  * state if some pools failed to make forward progress for a while where
5290  * forward progress is defined as the first item on ->worklist changing.
5291  *
5292  * This mechanism is controlled through the kernel parameter
5293  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5294  * corresponding sysfs parameter file.
5295  */
5296 #ifdef CONFIG_WQ_WATCHDOG
5297 
5298 static void wq_watchdog_timer_fn(unsigned long data);
5299 
5300 static unsigned long wq_watchdog_thresh = 30;
5301 static struct timer_list wq_watchdog_timer =
5302 	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5303 
5304 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5305 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5306 
5307 static void wq_watchdog_reset_touched(void)
5308 {
5309 	int cpu;
5310 
5311 	wq_watchdog_touched = jiffies;
5312 	for_each_possible_cpu(cpu)
5313 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5314 }
5315 
5316 static void wq_watchdog_timer_fn(unsigned long data)
5317 {
5318 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5319 	bool lockup_detected = false;
5320 	struct worker_pool *pool;
5321 	int pi;
5322 
5323 	if (!thresh)
5324 		return;
5325 
5326 	rcu_read_lock();
5327 
5328 	for_each_pool(pool, pi) {
5329 		unsigned long pool_ts, touched, ts;
5330 
5331 		if (list_empty(&pool->worklist))
5332 			continue;
5333 
5334 		/* get the latest of pool and touched timestamps */
5335 		pool_ts = READ_ONCE(pool->watchdog_ts);
5336 		touched = READ_ONCE(wq_watchdog_touched);
5337 
5338 		if (time_after(pool_ts, touched))
5339 			ts = pool_ts;
5340 		else
5341 			ts = touched;
5342 
5343 		if (pool->cpu >= 0) {
5344 			unsigned long cpu_touched =
5345 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5346 						  pool->cpu));
5347 			if (time_after(cpu_touched, ts))
5348 				ts = cpu_touched;
5349 		}
5350 
5351 		/* did we stall? */
5352 		if (time_after(jiffies, ts + thresh)) {
5353 			lockup_detected = true;
5354 			pr_emerg("BUG: workqueue lockup - pool");
5355 			pr_cont_pool_info(pool);
5356 			pr_cont(" stuck for %us!\n",
5357 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5358 		}
5359 	}
5360 
5361 	rcu_read_unlock();
5362 
5363 	if (lockup_detected)
5364 		show_workqueue_state();
5365 
5366 	wq_watchdog_reset_touched();
5367 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5368 }
5369 
5370 void wq_watchdog_touch(int cpu)
5371 {
5372 	if (cpu >= 0)
5373 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5374 	else
5375 		wq_watchdog_touched = jiffies;
5376 }
5377 
5378 static void wq_watchdog_set_thresh(unsigned long thresh)
5379 {
5380 	wq_watchdog_thresh = 0;
5381 	del_timer_sync(&wq_watchdog_timer);
5382 
5383 	if (thresh) {
5384 		wq_watchdog_thresh = thresh;
5385 		wq_watchdog_reset_touched();
5386 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5387 	}
5388 }
5389 
5390 static int wq_watchdog_param_set_thresh(const char *val,
5391 					const struct kernel_param *kp)
5392 {
5393 	unsigned long thresh;
5394 	int ret;
5395 
5396 	ret = kstrtoul(val, 0, &thresh);
5397 	if (ret)
5398 		return ret;
5399 
5400 	if (system_wq)
5401 		wq_watchdog_set_thresh(thresh);
5402 	else
5403 		wq_watchdog_thresh = thresh;
5404 
5405 	return 0;
5406 }
5407 
5408 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5409 	.set	= wq_watchdog_param_set_thresh,
5410 	.get	= param_get_ulong,
5411 };
5412 
5413 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5414 		0644);
5415 
5416 static void wq_watchdog_init(void)
5417 {
5418 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5419 }
5420 
5421 #else	/* CONFIG_WQ_WATCHDOG */
5422 
5423 static inline void wq_watchdog_init(void) { }
5424 
5425 #endif	/* CONFIG_WQ_WATCHDOG */
5426 
5427 static void __init wq_numa_init(void)
5428 {
5429 	cpumask_var_t *tbl;
5430 	int node, cpu;
5431 
5432 	if (num_possible_nodes() <= 1)
5433 		return;
5434 
5435 	if (wq_disable_numa) {
5436 		pr_info("workqueue: NUMA affinity support disabled\n");
5437 		return;
5438 	}
5439 
5440 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5441 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5442 
5443 	/*
5444 	 * We want masks of possible CPUs of each node which isn't readily
5445 	 * available.  Build one from cpu_to_node() which should have been
5446 	 * fully initialized by now.
5447 	 */
5448 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5449 	BUG_ON(!tbl);
5450 
5451 	for_each_node(node)
5452 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5453 				node_online(node) ? node : NUMA_NO_NODE));
5454 
5455 	for_each_possible_cpu(cpu) {
5456 		node = cpu_to_node(cpu);
5457 		if (WARN_ON(node == NUMA_NO_NODE)) {
5458 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5459 			/* happens iff arch is bonkers, let's just proceed */
5460 			return;
5461 		}
5462 		cpumask_set_cpu(cpu, tbl[node]);
5463 	}
5464 
5465 	wq_numa_possible_cpumask = tbl;
5466 	wq_numa_enabled = true;
5467 }
5468 
5469 static int __init init_workqueues(void)
5470 {
5471 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5472 	int i, cpu;
5473 
5474 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5475 
5476 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5477 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5478 
5479 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5480 
5481 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5482 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5483 
5484 	wq_numa_init();
5485 
5486 	/* initialize CPU pools */
5487 	for_each_possible_cpu(cpu) {
5488 		struct worker_pool *pool;
5489 
5490 		i = 0;
5491 		for_each_cpu_worker_pool(pool, cpu) {
5492 			BUG_ON(init_worker_pool(pool));
5493 			pool->cpu = cpu;
5494 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5495 			pool->attrs->nice = std_nice[i++];
5496 			pool->node = cpu_to_node(cpu);
5497 
5498 			/* alloc pool ID */
5499 			mutex_lock(&wq_pool_mutex);
5500 			BUG_ON(worker_pool_assign_id(pool));
5501 			mutex_unlock(&wq_pool_mutex);
5502 		}
5503 	}
5504 
5505 	/* create the initial worker */
5506 	for_each_online_cpu(cpu) {
5507 		struct worker_pool *pool;
5508 
5509 		for_each_cpu_worker_pool(pool, cpu) {
5510 			pool->flags &= ~POOL_DISASSOCIATED;
5511 			BUG_ON(!create_worker(pool));
5512 		}
5513 	}
5514 
5515 	/* create default unbound and ordered wq attrs */
5516 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5517 		struct workqueue_attrs *attrs;
5518 
5519 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5520 		attrs->nice = std_nice[i];
5521 		unbound_std_wq_attrs[i] = attrs;
5522 
5523 		/*
5524 		 * An ordered wq should have only one pwq as ordering is
5525 		 * guaranteed by max_active which is enforced by pwqs.
5526 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5527 		 */
5528 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5529 		attrs->nice = std_nice[i];
5530 		attrs->no_numa = true;
5531 		ordered_wq_attrs[i] = attrs;
5532 	}
5533 
5534 	system_wq = alloc_workqueue("events", 0, 0);
5535 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5536 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5537 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5538 					    WQ_UNBOUND_MAX_ACTIVE);
5539 	system_freezable_wq = alloc_workqueue("events_freezable",
5540 					      WQ_FREEZABLE, 0);
5541 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5542 					      WQ_POWER_EFFICIENT, 0);
5543 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5544 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5545 					      0);
5546 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5547 	       !system_unbound_wq || !system_freezable_wq ||
5548 	       !system_power_efficient_wq ||
5549 	       !system_freezable_power_efficient_wq);
5550 
5551 	wq_watchdog_init();
5552 
5553 	return 0;
5554 }
5555 early_initcall(init_workqueues);
5556