1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * attach_mutex to avoid changing binding state while 69 * worker_attach_to_pool() is in progress. 70 */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 73 /* worker flags */ 74 WORKER_DIE = 1 << 1, /* die die die */ 75 WORKER_IDLE = 1 << 2, /* is idle */ 76 WORKER_PREP = 1 << 3, /* preparing to run works */ 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 80 81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 82 WORKER_UNBOUND | WORKER_REBOUND, 83 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 85 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 88 89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 91 92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 93 /* call for help after 10ms 94 (min two ticks) */ 95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 96 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 97 98 /* 99 * Rescue workers are used only on emergencies and shared by 100 * all cpus. Give MIN_NICE. 101 */ 102 RESCUER_NICE_LEVEL = MIN_NICE, 103 HIGHPRI_NICE_LEVEL = MIN_NICE, 104 105 WQ_NAME_LEN = 24, 106 }; 107 108 /* 109 * Structure fields follow one of the following exclusion rules. 110 * 111 * I: Modifiable by initialization/destruction paths and read-only for 112 * everyone else. 113 * 114 * P: Preemption protected. Disabling preemption is enough and should 115 * only be modified and accessed from the local cpu. 116 * 117 * L: pool->lock protected. Access with pool->lock held. 118 * 119 * X: During normal operation, modification requires pool->lock and should 120 * be done only from local cpu. Either disabling preemption on local 121 * cpu or grabbing pool->lock is enough for read access. If 122 * POOL_DISASSOCIATED is set, it's identical to L. 123 * 124 * A: pool->attach_mutex protected. 125 * 126 * PL: wq_pool_mutex protected. 127 * 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 129 * 130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 131 * 132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 133 * sched-RCU for reads. 134 * 135 * WQ: wq->mutex protected. 136 * 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 138 * 139 * MD: wq_mayday_lock protected. 140 */ 141 142 /* struct worker is defined in workqueue_internal.h */ 143 144 struct worker_pool { 145 spinlock_t lock; /* the pool lock */ 146 int cpu; /* I: the associated cpu */ 147 int node; /* I: the associated node ID */ 148 int id; /* I: pool ID */ 149 unsigned int flags; /* X: flags */ 150 151 unsigned long watchdog_ts; /* L: watchdog timestamp */ 152 153 struct list_head worklist; /* L: list of pending works */ 154 int nr_workers; /* L: total number of workers */ 155 156 /* nr_idle includes the ones off idle_list for rebinding */ 157 int nr_idle; /* L: currently idle ones */ 158 159 struct list_head idle_list; /* X: list of idle workers */ 160 struct timer_list idle_timer; /* L: worker idle timeout */ 161 struct timer_list mayday_timer; /* L: SOS timer for workers */ 162 163 /* a workers is either on busy_hash or idle_list, or the manager */ 164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 165 /* L: hash of busy workers */ 166 167 /* see manage_workers() for details on the two manager mutexes */ 168 struct mutex manager_arb; /* manager arbitration */ 169 struct worker *manager; /* L: purely informational */ 170 struct mutex attach_mutex; /* attach/detach exclusion */ 171 struct list_head workers; /* A: attached workers */ 172 struct completion *detach_completion; /* all workers detached */ 173 174 struct ida worker_ida; /* worker IDs for task name */ 175 176 struct workqueue_attrs *attrs; /* I: worker attributes */ 177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 178 int refcnt; /* PL: refcnt for unbound pools */ 179 180 /* 181 * The current concurrency level. As it's likely to be accessed 182 * from other CPUs during try_to_wake_up(), put it in a separate 183 * cacheline. 184 */ 185 atomic_t nr_running ____cacheline_aligned_in_smp; 186 187 /* 188 * Destruction of pool is sched-RCU protected to allow dereferences 189 * from get_work_pool(). 190 */ 191 struct rcu_head rcu; 192 } ____cacheline_aligned_in_smp; 193 194 /* 195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 196 * of work_struct->data are used for flags and the remaining high bits 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the 198 * number of flag bits. 199 */ 200 struct pool_workqueue { 201 struct worker_pool *pool; /* I: the associated pool */ 202 struct workqueue_struct *wq; /* I: the owning workqueue */ 203 int work_color; /* L: current color */ 204 int flush_color; /* L: flushing color */ 205 int refcnt; /* L: reference count */ 206 int nr_in_flight[WORK_NR_COLORS]; 207 /* L: nr of in_flight works */ 208 int nr_active; /* L: nr of active works */ 209 int max_active; /* L: max active works */ 210 struct list_head delayed_works; /* L: delayed works */ 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 212 struct list_head mayday_node; /* MD: node on wq->maydays */ 213 214 /* 215 * Release of unbound pwq is punted to system_wq. See put_pwq() 216 * and pwq_unbound_release_workfn() for details. pool_workqueue 217 * itself is also sched-RCU protected so that the first pwq can be 218 * determined without grabbing wq->mutex. 219 */ 220 struct work_struct unbound_release_work; 221 struct rcu_head rcu; 222 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 223 224 /* 225 * Structure used to wait for workqueue flush. 226 */ 227 struct wq_flusher { 228 struct list_head list; /* WQ: list of flushers */ 229 int flush_color; /* WQ: flush color waiting for */ 230 struct completion done; /* flush completion */ 231 }; 232 233 struct wq_device; 234 235 /* 236 * The externally visible workqueue. It relays the issued work items to 237 * the appropriate worker_pool through its pool_workqueues. 238 */ 239 struct workqueue_struct { 240 struct list_head pwqs; /* WR: all pwqs of this wq */ 241 struct list_head list; /* PR: list of all workqueues */ 242 243 struct mutex mutex; /* protects this wq */ 244 int work_color; /* WQ: current work color */ 245 int flush_color; /* WQ: current flush color */ 246 atomic_t nr_pwqs_to_flush; /* flush in progress */ 247 struct wq_flusher *first_flusher; /* WQ: first flusher */ 248 struct list_head flusher_queue; /* WQ: flush waiters */ 249 struct list_head flusher_overflow; /* WQ: flush overflow list */ 250 251 struct list_head maydays; /* MD: pwqs requesting rescue */ 252 struct worker *rescuer; /* I: rescue worker */ 253 254 int nr_drainers; /* WQ: drain in progress */ 255 int saved_max_active; /* WQ: saved pwq max_active */ 256 257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 259 260 #ifdef CONFIG_SYSFS 261 struct wq_device *wq_dev; /* I: for sysfs interface */ 262 #endif 263 #ifdef CONFIG_LOCKDEP 264 struct lockdep_map lockdep_map; 265 #endif 266 char name[WQ_NAME_LEN]; /* I: workqueue name */ 267 268 /* 269 * Destruction of workqueue_struct is sched-RCU protected to allow 270 * walking the workqueues list without grabbing wq_pool_mutex. 271 * This is used to dump all workqueues from sysrq. 272 */ 273 struct rcu_head rcu; 274 275 /* hot fields used during command issue, aligned to cacheline */ 276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 279 }; 280 281 static struct kmem_cache *pwq_cache; 282 283 static cpumask_var_t *wq_numa_possible_cpumask; 284 /* possible CPUs of each node */ 285 286 static bool wq_disable_numa; 287 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 288 289 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 291 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 292 293 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 294 295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 297 298 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 299 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 300 301 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 302 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 303 304 /* PL: allowable cpus for unbound wqs and work items */ 305 static cpumask_var_t wq_unbound_cpumask; 306 307 /* CPU where unbound work was last round robin scheduled from this CPU */ 308 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 309 310 /* 311 * Local execution of unbound work items is no longer guaranteed. The 312 * following always forces round-robin CPU selection on unbound work items 313 * to uncover usages which depend on it. 314 */ 315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 316 static bool wq_debug_force_rr_cpu = true; 317 #else 318 static bool wq_debug_force_rr_cpu = false; 319 #endif 320 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 321 322 /* the per-cpu worker pools */ 323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 324 cpu_worker_pools); 325 326 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 327 328 /* PL: hash of all unbound pools keyed by pool->attrs */ 329 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 330 331 /* I: attributes used when instantiating standard unbound pools on demand */ 332 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 333 334 /* I: attributes used when instantiating ordered pools on demand */ 335 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 336 337 struct workqueue_struct *system_wq __read_mostly; 338 EXPORT_SYMBOL(system_wq); 339 struct workqueue_struct *system_highpri_wq __read_mostly; 340 EXPORT_SYMBOL_GPL(system_highpri_wq); 341 struct workqueue_struct *system_long_wq __read_mostly; 342 EXPORT_SYMBOL_GPL(system_long_wq); 343 struct workqueue_struct *system_unbound_wq __read_mostly; 344 EXPORT_SYMBOL_GPL(system_unbound_wq); 345 struct workqueue_struct *system_freezable_wq __read_mostly; 346 EXPORT_SYMBOL_GPL(system_freezable_wq); 347 struct workqueue_struct *system_power_efficient_wq __read_mostly; 348 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 349 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 350 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 351 352 static int worker_thread(void *__worker); 353 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 354 355 #define CREATE_TRACE_POINTS 356 #include <trace/events/workqueue.h> 357 358 #define assert_rcu_or_pool_mutex() \ 359 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 360 !lockdep_is_held(&wq_pool_mutex), \ 361 "sched RCU or wq_pool_mutex should be held") 362 363 #define assert_rcu_or_wq_mutex(wq) \ 364 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 365 !lockdep_is_held(&wq->mutex), \ 366 "sched RCU or wq->mutex should be held") 367 368 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 369 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 370 !lockdep_is_held(&wq->mutex) && \ 371 !lockdep_is_held(&wq_pool_mutex), \ 372 "sched RCU, wq->mutex or wq_pool_mutex should be held") 373 374 #define for_each_cpu_worker_pool(pool, cpu) \ 375 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 376 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 377 (pool)++) 378 379 /** 380 * for_each_pool - iterate through all worker_pools in the system 381 * @pool: iteration cursor 382 * @pi: integer used for iteration 383 * 384 * This must be called either with wq_pool_mutex held or sched RCU read 385 * locked. If the pool needs to be used beyond the locking in effect, the 386 * caller is responsible for guaranteeing that the pool stays online. 387 * 388 * The if/else clause exists only for the lockdep assertion and can be 389 * ignored. 390 */ 391 #define for_each_pool(pool, pi) \ 392 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 393 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 394 else 395 396 /** 397 * for_each_pool_worker - iterate through all workers of a worker_pool 398 * @worker: iteration cursor 399 * @pool: worker_pool to iterate workers of 400 * 401 * This must be called with @pool->attach_mutex. 402 * 403 * The if/else clause exists only for the lockdep assertion and can be 404 * ignored. 405 */ 406 #define for_each_pool_worker(worker, pool) \ 407 list_for_each_entry((worker), &(pool)->workers, node) \ 408 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 409 else 410 411 /** 412 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 413 * @pwq: iteration cursor 414 * @wq: the target workqueue 415 * 416 * This must be called either with wq->mutex held or sched RCU read locked. 417 * If the pwq needs to be used beyond the locking in effect, the caller is 418 * responsible for guaranteeing that the pwq stays online. 419 * 420 * The if/else clause exists only for the lockdep assertion and can be 421 * ignored. 422 */ 423 #define for_each_pwq(pwq, wq) \ 424 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 425 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 426 else 427 428 #ifdef CONFIG_DEBUG_OBJECTS_WORK 429 430 static struct debug_obj_descr work_debug_descr; 431 432 static void *work_debug_hint(void *addr) 433 { 434 return ((struct work_struct *) addr)->func; 435 } 436 437 /* 438 * fixup_init is called when: 439 * - an active object is initialized 440 */ 441 static int work_fixup_init(void *addr, enum debug_obj_state state) 442 { 443 struct work_struct *work = addr; 444 445 switch (state) { 446 case ODEBUG_STATE_ACTIVE: 447 cancel_work_sync(work); 448 debug_object_init(work, &work_debug_descr); 449 return 1; 450 default: 451 return 0; 452 } 453 } 454 455 /* 456 * fixup_activate is called when: 457 * - an active object is activated 458 * - an unknown object is activated (might be a statically initialized object) 459 */ 460 static int work_fixup_activate(void *addr, enum debug_obj_state state) 461 { 462 struct work_struct *work = addr; 463 464 switch (state) { 465 466 case ODEBUG_STATE_NOTAVAILABLE: 467 /* 468 * This is not really a fixup. The work struct was 469 * statically initialized. We just make sure that it 470 * is tracked in the object tracker. 471 */ 472 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 473 debug_object_init(work, &work_debug_descr); 474 debug_object_activate(work, &work_debug_descr); 475 return 0; 476 } 477 WARN_ON_ONCE(1); 478 return 0; 479 480 case ODEBUG_STATE_ACTIVE: 481 WARN_ON(1); 482 483 default: 484 return 0; 485 } 486 } 487 488 /* 489 * fixup_free is called when: 490 * - an active object is freed 491 */ 492 static int work_fixup_free(void *addr, enum debug_obj_state state) 493 { 494 struct work_struct *work = addr; 495 496 switch (state) { 497 case ODEBUG_STATE_ACTIVE: 498 cancel_work_sync(work); 499 debug_object_free(work, &work_debug_descr); 500 return 1; 501 default: 502 return 0; 503 } 504 } 505 506 static struct debug_obj_descr work_debug_descr = { 507 .name = "work_struct", 508 .debug_hint = work_debug_hint, 509 .fixup_init = work_fixup_init, 510 .fixup_activate = work_fixup_activate, 511 .fixup_free = work_fixup_free, 512 }; 513 514 static inline void debug_work_activate(struct work_struct *work) 515 { 516 debug_object_activate(work, &work_debug_descr); 517 } 518 519 static inline void debug_work_deactivate(struct work_struct *work) 520 { 521 debug_object_deactivate(work, &work_debug_descr); 522 } 523 524 void __init_work(struct work_struct *work, int onstack) 525 { 526 if (onstack) 527 debug_object_init_on_stack(work, &work_debug_descr); 528 else 529 debug_object_init(work, &work_debug_descr); 530 } 531 EXPORT_SYMBOL_GPL(__init_work); 532 533 void destroy_work_on_stack(struct work_struct *work) 534 { 535 debug_object_free(work, &work_debug_descr); 536 } 537 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 538 539 void destroy_delayed_work_on_stack(struct delayed_work *work) 540 { 541 destroy_timer_on_stack(&work->timer); 542 debug_object_free(&work->work, &work_debug_descr); 543 } 544 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 545 546 #else 547 static inline void debug_work_activate(struct work_struct *work) { } 548 static inline void debug_work_deactivate(struct work_struct *work) { } 549 #endif 550 551 /** 552 * worker_pool_assign_id - allocate ID and assing it to @pool 553 * @pool: the pool pointer of interest 554 * 555 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 556 * successfully, -errno on failure. 557 */ 558 static int worker_pool_assign_id(struct worker_pool *pool) 559 { 560 int ret; 561 562 lockdep_assert_held(&wq_pool_mutex); 563 564 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 565 GFP_KERNEL); 566 if (ret >= 0) { 567 pool->id = ret; 568 return 0; 569 } 570 return ret; 571 } 572 573 /** 574 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 575 * @wq: the target workqueue 576 * @node: the node ID 577 * 578 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 579 * read locked. 580 * If the pwq needs to be used beyond the locking in effect, the caller is 581 * responsible for guaranteeing that the pwq stays online. 582 * 583 * Return: The unbound pool_workqueue for @node. 584 */ 585 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 586 int node) 587 { 588 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 589 590 /* 591 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 592 * delayed item is pending. The plan is to keep CPU -> NODE 593 * mapping valid and stable across CPU on/offlines. Once that 594 * happens, this workaround can be removed. 595 */ 596 if (unlikely(node == NUMA_NO_NODE)) 597 return wq->dfl_pwq; 598 599 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 600 } 601 602 static unsigned int work_color_to_flags(int color) 603 { 604 return color << WORK_STRUCT_COLOR_SHIFT; 605 } 606 607 static int get_work_color(struct work_struct *work) 608 { 609 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 610 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 611 } 612 613 static int work_next_color(int color) 614 { 615 return (color + 1) % WORK_NR_COLORS; 616 } 617 618 /* 619 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 620 * contain the pointer to the queued pwq. Once execution starts, the flag 621 * is cleared and the high bits contain OFFQ flags and pool ID. 622 * 623 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 624 * and clear_work_data() can be used to set the pwq, pool or clear 625 * work->data. These functions should only be called while the work is 626 * owned - ie. while the PENDING bit is set. 627 * 628 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 629 * corresponding to a work. Pool is available once the work has been 630 * queued anywhere after initialization until it is sync canceled. pwq is 631 * available only while the work item is queued. 632 * 633 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 634 * canceled. While being canceled, a work item may have its PENDING set 635 * but stay off timer and worklist for arbitrarily long and nobody should 636 * try to steal the PENDING bit. 637 */ 638 static inline void set_work_data(struct work_struct *work, unsigned long data, 639 unsigned long flags) 640 { 641 WARN_ON_ONCE(!work_pending(work)); 642 atomic_long_set(&work->data, data | flags | work_static(work)); 643 } 644 645 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 646 unsigned long extra_flags) 647 { 648 set_work_data(work, (unsigned long)pwq, 649 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 650 } 651 652 static void set_work_pool_and_keep_pending(struct work_struct *work, 653 int pool_id) 654 { 655 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 656 WORK_STRUCT_PENDING); 657 } 658 659 static void set_work_pool_and_clear_pending(struct work_struct *work, 660 int pool_id) 661 { 662 /* 663 * The following wmb is paired with the implied mb in 664 * test_and_set_bit(PENDING) and ensures all updates to @work made 665 * here are visible to and precede any updates by the next PENDING 666 * owner. 667 */ 668 smp_wmb(); 669 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 670 } 671 672 static void clear_work_data(struct work_struct *work) 673 { 674 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 675 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 676 } 677 678 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 679 { 680 unsigned long data = atomic_long_read(&work->data); 681 682 if (data & WORK_STRUCT_PWQ) 683 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 684 else 685 return NULL; 686 } 687 688 /** 689 * get_work_pool - return the worker_pool a given work was associated with 690 * @work: the work item of interest 691 * 692 * Pools are created and destroyed under wq_pool_mutex, and allows read 693 * access under sched-RCU read lock. As such, this function should be 694 * called under wq_pool_mutex or with preemption disabled. 695 * 696 * All fields of the returned pool are accessible as long as the above 697 * mentioned locking is in effect. If the returned pool needs to be used 698 * beyond the critical section, the caller is responsible for ensuring the 699 * returned pool is and stays online. 700 * 701 * Return: The worker_pool @work was last associated with. %NULL if none. 702 */ 703 static struct worker_pool *get_work_pool(struct work_struct *work) 704 { 705 unsigned long data = atomic_long_read(&work->data); 706 int pool_id; 707 708 assert_rcu_or_pool_mutex(); 709 710 if (data & WORK_STRUCT_PWQ) 711 return ((struct pool_workqueue *) 712 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 713 714 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 715 if (pool_id == WORK_OFFQ_POOL_NONE) 716 return NULL; 717 718 return idr_find(&worker_pool_idr, pool_id); 719 } 720 721 /** 722 * get_work_pool_id - return the worker pool ID a given work is associated with 723 * @work: the work item of interest 724 * 725 * Return: The worker_pool ID @work was last associated with. 726 * %WORK_OFFQ_POOL_NONE if none. 727 */ 728 static int get_work_pool_id(struct work_struct *work) 729 { 730 unsigned long data = atomic_long_read(&work->data); 731 732 if (data & WORK_STRUCT_PWQ) 733 return ((struct pool_workqueue *) 734 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 735 736 return data >> WORK_OFFQ_POOL_SHIFT; 737 } 738 739 static void mark_work_canceling(struct work_struct *work) 740 { 741 unsigned long pool_id = get_work_pool_id(work); 742 743 pool_id <<= WORK_OFFQ_POOL_SHIFT; 744 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 745 } 746 747 static bool work_is_canceling(struct work_struct *work) 748 { 749 unsigned long data = atomic_long_read(&work->data); 750 751 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 752 } 753 754 /* 755 * Policy functions. These define the policies on how the global worker 756 * pools are managed. Unless noted otherwise, these functions assume that 757 * they're being called with pool->lock held. 758 */ 759 760 static bool __need_more_worker(struct worker_pool *pool) 761 { 762 return !atomic_read(&pool->nr_running); 763 } 764 765 /* 766 * Need to wake up a worker? Called from anything but currently 767 * running workers. 768 * 769 * Note that, because unbound workers never contribute to nr_running, this 770 * function will always return %true for unbound pools as long as the 771 * worklist isn't empty. 772 */ 773 static bool need_more_worker(struct worker_pool *pool) 774 { 775 return !list_empty(&pool->worklist) && __need_more_worker(pool); 776 } 777 778 /* Can I start working? Called from busy but !running workers. */ 779 static bool may_start_working(struct worker_pool *pool) 780 { 781 return pool->nr_idle; 782 } 783 784 /* Do I need to keep working? Called from currently running workers. */ 785 static bool keep_working(struct worker_pool *pool) 786 { 787 return !list_empty(&pool->worklist) && 788 atomic_read(&pool->nr_running) <= 1; 789 } 790 791 /* Do we need a new worker? Called from manager. */ 792 static bool need_to_create_worker(struct worker_pool *pool) 793 { 794 return need_more_worker(pool) && !may_start_working(pool); 795 } 796 797 /* Do we have too many workers and should some go away? */ 798 static bool too_many_workers(struct worker_pool *pool) 799 { 800 bool managing = mutex_is_locked(&pool->manager_arb); 801 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 802 int nr_busy = pool->nr_workers - nr_idle; 803 804 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 805 } 806 807 /* 808 * Wake up functions. 809 */ 810 811 /* Return the first idle worker. Safe with preemption disabled */ 812 static struct worker *first_idle_worker(struct worker_pool *pool) 813 { 814 if (unlikely(list_empty(&pool->idle_list))) 815 return NULL; 816 817 return list_first_entry(&pool->idle_list, struct worker, entry); 818 } 819 820 /** 821 * wake_up_worker - wake up an idle worker 822 * @pool: worker pool to wake worker from 823 * 824 * Wake up the first idle worker of @pool. 825 * 826 * CONTEXT: 827 * spin_lock_irq(pool->lock). 828 */ 829 static void wake_up_worker(struct worker_pool *pool) 830 { 831 struct worker *worker = first_idle_worker(pool); 832 833 if (likely(worker)) 834 wake_up_process(worker->task); 835 } 836 837 /** 838 * wq_worker_waking_up - a worker is waking up 839 * @task: task waking up 840 * @cpu: CPU @task is waking up to 841 * 842 * This function is called during try_to_wake_up() when a worker is 843 * being awoken. 844 * 845 * CONTEXT: 846 * spin_lock_irq(rq->lock) 847 */ 848 void wq_worker_waking_up(struct task_struct *task, int cpu) 849 { 850 struct worker *worker = kthread_data(task); 851 852 if (!(worker->flags & WORKER_NOT_RUNNING)) { 853 WARN_ON_ONCE(worker->pool->cpu != cpu); 854 atomic_inc(&worker->pool->nr_running); 855 } 856 } 857 858 /** 859 * wq_worker_sleeping - a worker is going to sleep 860 * @task: task going to sleep 861 * @cpu: CPU in question, must be the current CPU number 862 * 863 * This function is called during schedule() when a busy worker is 864 * going to sleep. Worker on the same cpu can be woken up by 865 * returning pointer to its task. 866 * 867 * CONTEXT: 868 * spin_lock_irq(rq->lock) 869 * 870 * Return: 871 * Worker task on @cpu to wake up, %NULL if none. 872 */ 873 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 874 { 875 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 876 struct worker_pool *pool; 877 878 /* 879 * Rescuers, which may not have all the fields set up like normal 880 * workers, also reach here, let's not access anything before 881 * checking NOT_RUNNING. 882 */ 883 if (worker->flags & WORKER_NOT_RUNNING) 884 return NULL; 885 886 pool = worker->pool; 887 888 /* this can only happen on the local cpu */ 889 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu)) 890 return NULL; 891 892 /* 893 * The counterpart of the following dec_and_test, implied mb, 894 * worklist not empty test sequence is in insert_work(). 895 * Please read comment there. 896 * 897 * NOT_RUNNING is clear. This means that we're bound to and 898 * running on the local cpu w/ rq lock held and preemption 899 * disabled, which in turn means that none else could be 900 * manipulating idle_list, so dereferencing idle_list without pool 901 * lock is safe. 902 */ 903 if (atomic_dec_and_test(&pool->nr_running) && 904 !list_empty(&pool->worklist)) 905 to_wakeup = first_idle_worker(pool); 906 return to_wakeup ? to_wakeup->task : NULL; 907 } 908 909 /** 910 * worker_set_flags - set worker flags and adjust nr_running accordingly 911 * @worker: self 912 * @flags: flags to set 913 * 914 * Set @flags in @worker->flags and adjust nr_running accordingly. 915 * 916 * CONTEXT: 917 * spin_lock_irq(pool->lock) 918 */ 919 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 920 { 921 struct worker_pool *pool = worker->pool; 922 923 WARN_ON_ONCE(worker->task != current); 924 925 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 926 if ((flags & WORKER_NOT_RUNNING) && 927 !(worker->flags & WORKER_NOT_RUNNING)) { 928 atomic_dec(&pool->nr_running); 929 } 930 931 worker->flags |= flags; 932 } 933 934 /** 935 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 936 * @worker: self 937 * @flags: flags to clear 938 * 939 * Clear @flags in @worker->flags and adjust nr_running accordingly. 940 * 941 * CONTEXT: 942 * spin_lock_irq(pool->lock) 943 */ 944 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 945 { 946 struct worker_pool *pool = worker->pool; 947 unsigned int oflags = worker->flags; 948 949 WARN_ON_ONCE(worker->task != current); 950 951 worker->flags &= ~flags; 952 953 /* 954 * If transitioning out of NOT_RUNNING, increment nr_running. Note 955 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 956 * of multiple flags, not a single flag. 957 */ 958 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 959 if (!(worker->flags & WORKER_NOT_RUNNING)) 960 atomic_inc(&pool->nr_running); 961 } 962 963 /** 964 * find_worker_executing_work - find worker which is executing a work 965 * @pool: pool of interest 966 * @work: work to find worker for 967 * 968 * Find a worker which is executing @work on @pool by searching 969 * @pool->busy_hash which is keyed by the address of @work. For a worker 970 * to match, its current execution should match the address of @work and 971 * its work function. This is to avoid unwanted dependency between 972 * unrelated work executions through a work item being recycled while still 973 * being executed. 974 * 975 * This is a bit tricky. A work item may be freed once its execution 976 * starts and nothing prevents the freed area from being recycled for 977 * another work item. If the same work item address ends up being reused 978 * before the original execution finishes, workqueue will identify the 979 * recycled work item as currently executing and make it wait until the 980 * current execution finishes, introducing an unwanted dependency. 981 * 982 * This function checks the work item address and work function to avoid 983 * false positives. Note that this isn't complete as one may construct a 984 * work function which can introduce dependency onto itself through a 985 * recycled work item. Well, if somebody wants to shoot oneself in the 986 * foot that badly, there's only so much we can do, and if such deadlock 987 * actually occurs, it should be easy to locate the culprit work function. 988 * 989 * CONTEXT: 990 * spin_lock_irq(pool->lock). 991 * 992 * Return: 993 * Pointer to worker which is executing @work if found, %NULL 994 * otherwise. 995 */ 996 static struct worker *find_worker_executing_work(struct worker_pool *pool, 997 struct work_struct *work) 998 { 999 struct worker *worker; 1000 1001 hash_for_each_possible(pool->busy_hash, worker, hentry, 1002 (unsigned long)work) 1003 if (worker->current_work == work && 1004 worker->current_func == work->func) 1005 return worker; 1006 1007 return NULL; 1008 } 1009 1010 /** 1011 * move_linked_works - move linked works to a list 1012 * @work: start of series of works to be scheduled 1013 * @head: target list to append @work to 1014 * @nextp: out parameter for nested worklist walking 1015 * 1016 * Schedule linked works starting from @work to @head. Work series to 1017 * be scheduled starts at @work and includes any consecutive work with 1018 * WORK_STRUCT_LINKED set in its predecessor. 1019 * 1020 * If @nextp is not NULL, it's updated to point to the next work of 1021 * the last scheduled work. This allows move_linked_works() to be 1022 * nested inside outer list_for_each_entry_safe(). 1023 * 1024 * CONTEXT: 1025 * spin_lock_irq(pool->lock). 1026 */ 1027 static void move_linked_works(struct work_struct *work, struct list_head *head, 1028 struct work_struct **nextp) 1029 { 1030 struct work_struct *n; 1031 1032 /* 1033 * Linked worklist will always end before the end of the list, 1034 * use NULL for list head. 1035 */ 1036 list_for_each_entry_safe_from(work, n, NULL, entry) { 1037 list_move_tail(&work->entry, head); 1038 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1039 break; 1040 } 1041 1042 /* 1043 * If we're already inside safe list traversal and have moved 1044 * multiple works to the scheduled queue, the next position 1045 * needs to be updated. 1046 */ 1047 if (nextp) 1048 *nextp = n; 1049 } 1050 1051 /** 1052 * get_pwq - get an extra reference on the specified pool_workqueue 1053 * @pwq: pool_workqueue to get 1054 * 1055 * Obtain an extra reference on @pwq. The caller should guarantee that 1056 * @pwq has positive refcnt and be holding the matching pool->lock. 1057 */ 1058 static void get_pwq(struct pool_workqueue *pwq) 1059 { 1060 lockdep_assert_held(&pwq->pool->lock); 1061 WARN_ON_ONCE(pwq->refcnt <= 0); 1062 pwq->refcnt++; 1063 } 1064 1065 /** 1066 * put_pwq - put a pool_workqueue reference 1067 * @pwq: pool_workqueue to put 1068 * 1069 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1070 * destruction. The caller should be holding the matching pool->lock. 1071 */ 1072 static void put_pwq(struct pool_workqueue *pwq) 1073 { 1074 lockdep_assert_held(&pwq->pool->lock); 1075 if (likely(--pwq->refcnt)) 1076 return; 1077 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1078 return; 1079 /* 1080 * @pwq can't be released under pool->lock, bounce to 1081 * pwq_unbound_release_workfn(). This never recurses on the same 1082 * pool->lock as this path is taken only for unbound workqueues and 1083 * the release work item is scheduled on a per-cpu workqueue. To 1084 * avoid lockdep warning, unbound pool->locks are given lockdep 1085 * subclass of 1 in get_unbound_pool(). 1086 */ 1087 schedule_work(&pwq->unbound_release_work); 1088 } 1089 1090 /** 1091 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1092 * @pwq: pool_workqueue to put (can be %NULL) 1093 * 1094 * put_pwq() with locking. This function also allows %NULL @pwq. 1095 */ 1096 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1097 { 1098 if (pwq) { 1099 /* 1100 * As both pwqs and pools are sched-RCU protected, the 1101 * following lock operations are safe. 1102 */ 1103 spin_lock_irq(&pwq->pool->lock); 1104 put_pwq(pwq); 1105 spin_unlock_irq(&pwq->pool->lock); 1106 } 1107 } 1108 1109 static void pwq_activate_delayed_work(struct work_struct *work) 1110 { 1111 struct pool_workqueue *pwq = get_work_pwq(work); 1112 1113 trace_workqueue_activate_work(work); 1114 if (list_empty(&pwq->pool->worklist)) 1115 pwq->pool->watchdog_ts = jiffies; 1116 move_linked_works(work, &pwq->pool->worklist, NULL); 1117 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1118 pwq->nr_active++; 1119 } 1120 1121 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1122 { 1123 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1124 struct work_struct, entry); 1125 1126 pwq_activate_delayed_work(work); 1127 } 1128 1129 /** 1130 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1131 * @pwq: pwq of interest 1132 * @color: color of work which left the queue 1133 * 1134 * A work either has completed or is removed from pending queue, 1135 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1136 * 1137 * CONTEXT: 1138 * spin_lock_irq(pool->lock). 1139 */ 1140 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1141 { 1142 /* uncolored work items don't participate in flushing or nr_active */ 1143 if (color == WORK_NO_COLOR) 1144 goto out_put; 1145 1146 pwq->nr_in_flight[color]--; 1147 1148 pwq->nr_active--; 1149 if (!list_empty(&pwq->delayed_works)) { 1150 /* one down, submit a delayed one */ 1151 if (pwq->nr_active < pwq->max_active) 1152 pwq_activate_first_delayed(pwq); 1153 } 1154 1155 /* is flush in progress and are we at the flushing tip? */ 1156 if (likely(pwq->flush_color != color)) 1157 goto out_put; 1158 1159 /* are there still in-flight works? */ 1160 if (pwq->nr_in_flight[color]) 1161 goto out_put; 1162 1163 /* this pwq is done, clear flush_color */ 1164 pwq->flush_color = -1; 1165 1166 /* 1167 * If this was the last pwq, wake up the first flusher. It 1168 * will handle the rest. 1169 */ 1170 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1171 complete(&pwq->wq->first_flusher->done); 1172 out_put: 1173 put_pwq(pwq); 1174 } 1175 1176 /** 1177 * try_to_grab_pending - steal work item from worklist and disable irq 1178 * @work: work item to steal 1179 * @is_dwork: @work is a delayed_work 1180 * @flags: place to store irq state 1181 * 1182 * Try to grab PENDING bit of @work. This function can handle @work in any 1183 * stable state - idle, on timer or on worklist. 1184 * 1185 * Return: 1186 * 1 if @work was pending and we successfully stole PENDING 1187 * 0 if @work was idle and we claimed PENDING 1188 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1189 * -ENOENT if someone else is canceling @work, this state may persist 1190 * for arbitrarily long 1191 * 1192 * Note: 1193 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1194 * interrupted while holding PENDING and @work off queue, irq must be 1195 * disabled on entry. This, combined with delayed_work->timer being 1196 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1197 * 1198 * On successful return, >= 0, irq is disabled and the caller is 1199 * responsible for releasing it using local_irq_restore(*@flags). 1200 * 1201 * This function is safe to call from any context including IRQ handler. 1202 */ 1203 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1204 unsigned long *flags) 1205 { 1206 struct worker_pool *pool; 1207 struct pool_workqueue *pwq; 1208 1209 local_irq_save(*flags); 1210 1211 /* try to steal the timer if it exists */ 1212 if (is_dwork) { 1213 struct delayed_work *dwork = to_delayed_work(work); 1214 1215 /* 1216 * dwork->timer is irqsafe. If del_timer() fails, it's 1217 * guaranteed that the timer is not queued anywhere and not 1218 * running on the local CPU. 1219 */ 1220 if (likely(del_timer(&dwork->timer))) 1221 return 1; 1222 } 1223 1224 /* try to claim PENDING the normal way */ 1225 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1226 return 0; 1227 1228 /* 1229 * The queueing is in progress, or it is already queued. Try to 1230 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1231 */ 1232 pool = get_work_pool(work); 1233 if (!pool) 1234 goto fail; 1235 1236 spin_lock(&pool->lock); 1237 /* 1238 * work->data is guaranteed to point to pwq only while the work 1239 * item is queued on pwq->wq, and both updating work->data to point 1240 * to pwq on queueing and to pool on dequeueing are done under 1241 * pwq->pool->lock. This in turn guarantees that, if work->data 1242 * points to pwq which is associated with a locked pool, the work 1243 * item is currently queued on that pool. 1244 */ 1245 pwq = get_work_pwq(work); 1246 if (pwq && pwq->pool == pool) { 1247 debug_work_deactivate(work); 1248 1249 /* 1250 * A delayed work item cannot be grabbed directly because 1251 * it might have linked NO_COLOR work items which, if left 1252 * on the delayed_list, will confuse pwq->nr_active 1253 * management later on and cause stall. Make sure the work 1254 * item is activated before grabbing. 1255 */ 1256 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1257 pwq_activate_delayed_work(work); 1258 1259 list_del_init(&work->entry); 1260 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1261 1262 /* work->data points to pwq iff queued, point to pool */ 1263 set_work_pool_and_keep_pending(work, pool->id); 1264 1265 spin_unlock(&pool->lock); 1266 return 1; 1267 } 1268 spin_unlock(&pool->lock); 1269 fail: 1270 local_irq_restore(*flags); 1271 if (work_is_canceling(work)) 1272 return -ENOENT; 1273 cpu_relax(); 1274 return -EAGAIN; 1275 } 1276 1277 /** 1278 * insert_work - insert a work into a pool 1279 * @pwq: pwq @work belongs to 1280 * @work: work to insert 1281 * @head: insertion point 1282 * @extra_flags: extra WORK_STRUCT_* flags to set 1283 * 1284 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1285 * work_struct flags. 1286 * 1287 * CONTEXT: 1288 * spin_lock_irq(pool->lock). 1289 */ 1290 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1291 struct list_head *head, unsigned int extra_flags) 1292 { 1293 struct worker_pool *pool = pwq->pool; 1294 1295 /* we own @work, set data and link */ 1296 set_work_pwq(work, pwq, extra_flags); 1297 list_add_tail(&work->entry, head); 1298 get_pwq(pwq); 1299 1300 /* 1301 * Ensure either wq_worker_sleeping() sees the above 1302 * list_add_tail() or we see zero nr_running to avoid workers lying 1303 * around lazily while there are works to be processed. 1304 */ 1305 smp_mb(); 1306 1307 if (__need_more_worker(pool)) 1308 wake_up_worker(pool); 1309 } 1310 1311 /* 1312 * Test whether @work is being queued from another work executing on the 1313 * same workqueue. 1314 */ 1315 static bool is_chained_work(struct workqueue_struct *wq) 1316 { 1317 struct worker *worker; 1318 1319 worker = current_wq_worker(); 1320 /* 1321 * Return %true iff I'm a worker execuing a work item on @wq. If 1322 * I'm @worker, it's safe to dereference it without locking. 1323 */ 1324 return worker && worker->current_pwq->wq == wq; 1325 } 1326 1327 /* 1328 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1329 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1330 * avoid perturbing sensitive tasks. 1331 */ 1332 static int wq_select_unbound_cpu(int cpu) 1333 { 1334 static bool printed_dbg_warning; 1335 int new_cpu; 1336 1337 if (likely(!wq_debug_force_rr_cpu)) { 1338 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1339 return cpu; 1340 } else if (!printed_dbg_warning) { 1341 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1342 printed_dbg_warning = true; 1343 } 1344 1345 if (cpumask_empty(wq_unbound_cpumask)) 1346 return cpu; 1347 1348 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1349 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1350 if (unlikely(new_cpu >= nr_cpu_ids)) { 1351 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1352 if (unlikely(new_cpu >= nr_cpu_ids)) 1353 return cpu; 1354 } 1355 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1356 1357 return new_cpu; 1358 } 1359 1360 static void __queue_work(int cpu, struct workqueue_struct *wq, 1361 struct work_struct *work) 1362 { 1363 struct pool_workqueue *pwq; 1364 struct worker_pool *last_pool; 1365 struct list_head *worklist; 1366 unsigned int work_flags; 1367 unsigned int req_cpu = cpu; 1368 1369 /* 1370 * While a work item is PENDING && off queue, a task trying to 1371 * steal the PENDING will busy-loop waiting for it to either get 1372 * queued or lose PENDING. Grabbing PENDING and queueing should 1373 * happen with IRQ disabled. 1374 */ 1375 WARN_ON_ONCE(!irqs_disabled()); 1376 1377 debug_work_activate(work); 1378 1379 /* if draining, only works from the same workqueue are allowed */ 1380 if (unlikely(wq->flags & __WQ_DRAINING) && 1381 WARN_ON_ONCE(!is_chained_work(wq))) 1382 return; 1383 retry: 1384 if (req_cpu == WORK_CPU_UNBOUND) 1385 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1386 1387 /* pwq which will be used unless @work is executing elsewhere */ 1388 if (!(wq->flags & WQ_UNBOUND)) 1389 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1390 else 1391 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1392 1393 /* 1394 * If @work was previously on a different pool, it might still be 1395 * running there, in which case the work needs to be queued on that 1396 * pool to guarantee non-reentrancy. 1397 */ 1398 last_pool = get_work_pool(work); 1399 if (last_pool && last_pool != pwq->pool) { 1400 struct worker *worker; 1401 1402 spin_lock(&last_pool->lock); 1403 1404 worker = find_worker_executing_work(last_pool, work); 1405 1406 if (worker && worker->current_pwq->wq == wq) { 1407 pwq = worker->current_pwq; 1408 } else { 1409 /* meh... not running there, queue here */ 1410 spin_unlock(&last_pool->lock); 1411 spin_lock(&pwq->pool->lock); 1412 } 1413 } else { 1414 spin_lock(&pwq->pool->lock); 1415 } 1416 1417 /* 1418 * pwq is determined and locked. For unbound pools, we could have 1419 * raced with pwq release and it could already be dead. If its 1420 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1421 * without another pwq replacing it in the numa_pwq_tbl or while 1422 * work items are executing on it, so the retrying is guaranteed to 1423 * make forward-progress. 1424 */ 1425 if (unlikely(!pwq->refcnt)) { 1426 if (wq->flags & WQ_UNBOUND) { 1427 spin_unlock(&pwq->pool->lock); 1428 cpu_relax(); 1429 goto retry; 1430 } 1431 /* oops */ 1432 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1433 wq->name, cpu); 1434 } 1435 1436 /* pwq determined, queue */ 1437 trace_workqueue_queue_work(req_cpu, pwq, work); 1438 1439 if (WARN_ON(!list_empty(&work->entry))) { 1440 spin_unlock(&pwq->pool->lock); 1441 return; 1442 } 1443 1444 pwq->nr_in_flight[pwq->work_color]++; 1445 work_flags = work_color_to_flags(pwq->work_color); 1446 1447 if (likely(pwq->nr_active < pwq->max_active)) { 1448 trace_workqueue_activate_work(work); 1449 pwq->nr_active++; 1450 worklist = &pwq->pool->worklist; 1451 if (list_empty(worklist)) 1452 pwq->pool->watchdog_ts = jiffies; 1453 } else { 1454 work_flags |= WORK_STRUCT_DELAYED; 1455 worklist = &pwq->delayed_works; 1456 } 1457 1458 insert_work(pwq, work, worklist, work_flags); 1459 1460 spin_unlock(&pwq->pool->lock); 1461 } 1462 1463 /** 1464 * queue_work_on - queue work on specific cpu 1465 * @cpu: CPU number to execute work on 1466 * @wq: workqueue to use 1467 * @work: work to queue 1468 * 1469 * We queue the work to a specific CPU, the caller must ensure it 1470 * can't go away. 1471 * 1472 * Return: %false if @work was already on a queue, %true otherwise. 1473 */ 1474 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1475 struct work_struct *work) 1476 { 1477 bool ret = false; 1478 unsigned long flags; 1479 1480 local_irq_save(flags); 1481 1482 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1483 __queue_work(cpu, wq, work); 1484 ret = true; 1485 } 1486 1487 local_irq_restore(flags); 1488 return ret; 1489 } 1490 EXPORT_SYMBOL(queue_work_on); 1491 1492 void delayed_work_timer_fn(unsigned long __data) 1493 { 1494 struct delayed_work *dwork = (struct delayed_work *)__data; 1495 1496 /* should have been called from irqsafe timer with irq already off */ 1497 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1498 } 1499 EXPORT_SYMBOL(delayed_work_timer_fn); 1500 1501 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1502 struct delayed_work *dwork, unsigned long delay) 1503 { 1504 struct timer_list *timer = &dwork->timer; 1505 struct work_struct *work = &dwork->work; 1506 1507 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1508 timer->data != (unsigned long)dwork); 1509 WARN_ON_ONCE(timer_pending(timer)); 1510 WARN_ON_ONCE(!list_empty(&work->entry)); 1511 1512 /* 1513 * If @delay is 0, queue @dwork->work immediately. This is for 1514 * both optimization and correctness. The earliest @timer can 1515 * expire is on the closest next tick and delayed_work users depend 1516 * on that there's no such delay when @delay is 0. 1517 */ 1518 if (!delay) { 1519 __queue_work(cpu, wq, &dwork->work); 1520 return; 1521 } 1522 1523 timer_stats_timer_set_start_info(&dwork->timer); 1524 1525 dwork->wq = wq; 1526 dwork->cpu = cpu; 1527 timer->expires = jiffies + delay; 1528 1529 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1530 add_timer_on(timer, cpu); 1531 else 1532 add_timer(timer); 1533 } 1534 1535 /** 1536 * queue_delayed_work_on - queue work on specific CPU after delay 1537 * @cpu: CPU number to execute work on 1538 * @wq: workqueue to use 1539 * @dwork: work to queue 1540 * @delay: number of jiffies to wait before queueing 1541 * 1542 * Return: %false if @work was already on a queue, %true otherwise. If 1543 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1544 * execution. 1545 */ 1546 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1547 struct delayed_work *dwork, unsigned long delay) 1548 { 1549 struct work_struct *work = &dwork->work; 1550 bool ret = false; 1551 unsigned long flags; 1552 1553 /* read the comment in __queue_work() */ 1554 local_irq_save(flags); 1555 1556 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1557 __queue_delayed_work(cpu, wq, dwork, delay); 1558 ret = true; 1559 } 1560 1561 local_irq_restore(flags); 1562 return ret; 1563 } 1564 EXPORT_SYMBOL(queue_delayed_work_on); 1565 1566 /** 1567 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1568 * @cpu: CPU number to execute work on 1569 * @wq: workqueue to use 1570 * @dwork: work to queue 1571 * @delay: number of jiffies to wait before queueing 1572 * 1573 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1574 * modify @dwork's timer so that it expires after @delay. If @delay is 1575 * zero, @work is guaranteed to be scheduled immediately regardless of its 1576 * current state. 1577 * 1578 * Return: %false if @dwork was idle and queued, %true if @dwork was 1579 * pending and its timer was modified. 1580 * 1581 * This function is safe to call from any context including IRQ handler. 1582 * See try_to_grab_pending() for details. 1583 */ 1584 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1585 struct delayed_work *dwork, unsigned long delay) 1586 { 1587 unsigned long flags; 1588 int ret; 1589 1590 do { 1591 ret = try_to_grab_pending(&dwork->work, true, &flags); 1592 } while (unlikely(ret == -EAGAIN)); 1593 1594 if (likely(ret >= 0)) { 1595 __queue_delayed_work(cpu, wq, dwork, delay); 1596 local_irq_restore(flags); 1597 } 1598 1599 /* -ENOENT from try_to_grab_pending() becomes %true */ 1600 return ret; 1601 } 1602 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1603 1604 /** 1605 * worker_enter_idle - enter idle state 1606 * @worker: worker which is entering idle state 1607 * 1608 * @worker is entering idle state. Update stats and idle timer if 1609 * necessary. 1610 * 1611 * LOCKING: 1612 * spin_lock_irq(pool->lock). 1613 */ 1614 static void worker_enter_idle(struct worker *worker) 1615 { 1616 struct worker_pool *pool = worker->pool; 1617 1618 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1619 WARN_ON_ONCE(!list_empty(&worker->entry) && 1620 (worker->hentry.next || worker->hentry.pprev))) 1621 return; 1622 1623 /* can't use worker_set_flags(), also called from create_worker() */ 1624 worker->flags |= WORKER_IDLE; 1625 pool->nr_idle++; 1626 worker->last_active = jiffies; 1627 1628 /* idle_list is LIFO */ 1629 list_add(&worker->entry, &pool->idle_list); 1630 1631 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1632 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1633 1634 /* 1635 * Sanity check nr_running. Because wq_unbind_fn() releases 1636 * pool->lock between setting %WORKER_UNBOUND and zapping 1637 * nr_running, the warning may trigger spuriously. Check iff 1638 * unbind is not in progress. 1639 */ 1640 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1641 pool->nr_workers == pool->nr_idle && 1642 atomic_read(&pool->nr_running)); 1643 } 1644 1645 /** 1646 * worker_leave_idle - leave idle state 1647 * @worker: worker which is leaving idle state 1648 * 1649 * @worker is leaving idle state. Update stats. 1650 * 1651 * LOCKING: 1652 * spin_lock_irq(pool->lock). 1653 */ 1654 static void worker_leave_idle(struct worker *worker) 1655 { 1656 struct worker_pool *pool = worker->pool; 1657 1658 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1659 return; 1660 worker_clr_flags(worker, WORKER_IDLE); 1661 pool->nr_idle--; 1662 list_del_init(&worker->entry); 1663 } 1664 1665 static struct worker *alloc_worker(int node) 1666 { 1667 struct worker *worker; 1668 1669 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1670 if (worker) { 1671 INIT_LIST_HEAD(&worker->entry); 1672 INIT_LIST_HEAD(&worker->scheduled); 1673 INIT_LIST_HEAD(&worker->node); 1674 /* on creation a worker is in !idle && prep state */ 1675 worker->flags = WORKER_PREP; 1676 } 1677 return worker; 1678 } 1679 1680 /** 1681 * worker_attach_to_pool() - attach a worker to a pool 1682 * @worker: worker to be attached 1683 * @pool: the target pool 1684 * 1685 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1686 * cpu-binding of @worker are kept coordinated with the pool across 1687 * cpu-[un]hotplugs. 1688 */ 1689 static void worker_attach_to_pool(struct worker *worker, 1690 struct worker_pool *pool) 1691 { 1692 mutex_lock(&pool->attach_mutex); 1693 1694 /* 1695 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1696 * online CPUs. It'll be re-applied when any of the CPUs come up. 1697 */ 1698 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1699 1700 /* 1701 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1702 * stable across this function. See the comments above the 1703 * flag definition for details. 1704 */ 1705 if (pool->flags & POOL_DISASSOCIATED) 1706 worker->flags |= WORKER_UNBOUND; 1707 1708 list_add_tail(&worker->node, &pool->workers); 1709 1710 mutex_unlock(&pool->attach_mutex); 1711 } 1712 1713 /** 1714 * worker_detach_from_pool() - detach a worker from its pool 1715 * @worker: worker which is attached to its pool 1716 * @pool: the pool @worker is attached to 1717 * 1718 * Undo the attaching which had been done in worker_attach_to_pool(). The 1719 * caller worker shouldn't access to the pool after detached except it has 1720 * other reference to the pool. 1721 */ 1722 static void worker_detach_from_pool(struct worker *worker, 1723 struct worker_pool *pool) 1724 { 1725 struct completion *detach_completion = NULL; 1726 1727 mutex_lock(&pool->attach_mutex); 1728 list_del(&worker->node); 1729 if (list_empty(&pool->workers)) 1730 detach_completion = pool->detach_completion; 1731 mutex_unlock(&pool->attach_mutex); 1732 1733 /* clear leftover flags without pool->lock after it is detached */ 1734 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1735 1736 if (detach_completion) 1737 complete(detach_completion); 1738 } 1739 1740 /** 1741 * create_worker - create a new workqueue worker 1742 * @pool: pool the new worker will belong to 1743 * 1744 * Create and start a new worker which is attached to @pool. 1745 * 1746 * CONTEXT: 1747 * Might sleep. Does GFP_KERNEL allocations. 1748 * 1749 * Return: 1750 * Pointer to the newly created worker. 1751 */ 1752 static struct worker *create_worker(struct worker_pool *pool) 1753 { 1754 struct worker *worker = NULL; 1755 int id = -1; 1756 char id_buf[16]; 1757 1758 /* ID is needed to determine kthread name */ 1759 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1760 if (id < 0) 1761 goto fail; 1762 1763 worker = alloc_worker(pool->node); 1764 if (!worker) 1765 goto fail; 1766 1767 worker->pool = pool; 1768 worker->id = id; 1769 1770 if (pool->cpu >= 0) 1771 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1772 pool->attrs->nice < 0 ? "H" : ""); 1773 else 1774 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1775 1776 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1777 "kworker/%s", id_buf); 1778 if (IS_ERR(worker->task)) 1779 goto fail; 1780 1781 set_user_nice(worker->task, pool->attrs->nice); 1782 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1783 1784 /* successful, attach the worker to the pool */ 1785 worker_attach_to_pool(worker, pool); 1786 1787 /* start the newly created worker */ 1788 spin_lock_irq(&pool->lock); 1789 worker->pool->nr_workers++; 1790 worker_enter_idle(worker); 1791 wake_up_process(worker->task); 1792 spin_unlock_irq(&pool->lock); 1793 1794 return worker; 1795 1796 fail: 1797 if (id >= 0) 1798 ida_simple_remove(&pool->worker_ida, id); 1799 kfree(worker); 1800 return NULL; 1801 } 1802 1803 /** 1804 * destroy_worker - destroy a workqueue worker 1805 * @worker: worker to be destroyed 1806 * 1807 * Destroy @worker and adjust @pool stats accordingly. The worker should 1808 * be idle. 1809 * 1810 * CONTEXT: 1811 * spin_lock_irq(pool->lock). 1812 */ 1813 static void destroy_worker(struct worker *worker) 1814 { 1815 struct worker_pool *pool = worker->pool; 1816 1817 lockdep_assert_held(&pool->lock); 1818 1819 /* sanity check frenzy */ 1820 if (WARN_ON(worker->current_work) || 1821 WARN_ON(!list_empty(&worker->scheduled)) || 1822 WARN_ON(!(worker->flags & WORKER_IDLE))) 1823 return; 1824 1825 pool->nr_workers--; 1826 pool->nr_idle--; 1827 1828 list_del_init(&worker->entry); 1829 worker->flags |= WORKER_DIE; 1830 wake_up_process(worker->task); 1831 } 1832 1833 static void idle_worker_timeout(unsigned long __pool) 1834 { 1835 struct worker_pool *pool = (void *)__pool; 1836 1837 spin_lock_irq(&pool->lock); 1838 1839 while (too_many_workers(pool)) { 1840 struct worker *worker; 1841 unsigned long expires; 1842 1843 /* idle_list is kept in LIFO order, check the last one */ 1844 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1845 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1846 1847 if (time_before(jiffies, expires)) { 1848 mod_timer(&pool->idle_timer, expires); 1849 break; 1850 } 1851 1852 destroy_worker(worker); 1853 } 1854 1855 spin_unlock_irq(&pool->lock); 1856 } 1857 1858 static void send_mayday(struct work_struct *work) 1859 { 1860 struct pool_workqueue *pwq = get_work_pwq(work); 1861 struct workqueue_struct *wq = pwq->wq; 1862 1863 lockdep_assert_held(&wq_mayday_lock); 1864 1865 if (!wq->rescuer) 1866 return; 1867 1868 /* mayday mayday mayday */ 1869 if (list_empty(&pwq->mayday_node)) { 1870 /* 1871 * If @pwq is for an unbound wq, its base ref may be put at 1872 * any time due to an attribute change. Pin @pwq until the 1873 * rescuer is done with it. 1874 */ 1875 get_pwq(pwq); 1876 list_add_tail(&pwq->mayday_node, &wq->maydays); 1877 wake_up_process(wq->rescuer->task); 1878 } 1879 } 1880 1881 static void pool_mayday_timeout(unsigned long __pool) 1882 { 1883 struct worker_pool *pool = (void *)__pool; 1884 struct work_struct *work; 1885 1886 spin_lock_irq(&pool->lock); 1887 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1888 1889 if (need_to_create_worker(pool)) { 1890 /* 1891 * We've been trying to create a new worker but 1892 * haven't been successful. We might be hitting an 1893 * allocation deadlock. Send distress signals to 1894 * rescuers. 1895 */ 1896 list_for_each_entry(work, &pool->worklist, entry) 1897 send_mayday(work); 1898 } 1899 1900 spin_unlock(&wq_mayday_lock); 1901 spin_unlock_irq(&pool->lock); 1902 1903 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1904 } 1905 1906 /** 1907 * maybe_create_worker - create a new worker if necessary 1908 * @pool: pool to create a new worker for 1909 * 1910 * Create a new worker for @pool if necessary. @pool is guaranteed to 1911 * have at least one idle worker on return from this function. If 1912 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1913 * sent to all rescuers with works scheduled on @pool to resolve 1914 * possible allocation deadlock. 1915 * 1916 * On return, need_to_create_worker() is guaranteed to be %false and 1917 * may_start_working() %true. 1918 * 1919 * LOCKING: 1920 * spin_lock_irq(pool->lock) which may be released and regrabbed 1921 * multiple times. Does GFP_KERNEL allocations. Called only from 1922 * manager. 1923 */ 1924 static void maybe_create_worker(struct worker_pool *pool) 1925 __releases(&pool->lock) 1926 __acquires(&pool->lock) 1927 { 1928 restart: 1929 spin_unlock_irq(&pool->lock); 1930 1931 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1932 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1933 1934 while (true) { 1935 if (create_worker(pool) || !need_to_create_worker(pool)) 1936 break; 1937 1938 schedule_timeout_interruptible(CREATE_COOLDOWN); 1939 1940 if (!need_to_create_worker(pool)) 1941 break; 1942 } 1943 1944 del_timer_sync(&pool->mayday_timer); 1945 spin_lock_irq(&pool->lock); 1946 /* 1947 * This is necessary even after a new worker was just successfully 1948 * created as @pool->lock was dropped and the new worker might have 1949 * already become busy. 1950 */ 1951 if (need_to_create_worker(pool)) 1952 goto restart; 1953 } 1954 1955 /** 1956 * manage_workers - manage worker pool 1957 * @worker: self 1958 * 1959 * Assume the manager role and manage the worker pool @worker belongs 1960 * to. At any given time, there can be only zero or one manager per 1961 * pool. The exclusion is handled automatically by this function. 1962 * 1963 * The caller can safely start processing works on false return. On 1964 * true return, it's guaranteed that need_to_create_worker() is false 1965 * and may_start_working() is true. 1966 * 1967 * CONTEXT: 1968 * spin_lock_irq(pool->lock) which may be released and regrabbed 1969 * multiple times. Does GFP_KERNEL allocations. 1970 * 1971 * Return: 1972 * %false if the pool doesn't need management and the caller can safely 1973 * start processing works, %true if management function was performed and 1974 * the conditions that the caller verified before calling the function may 1975 * no longer be true. 1976 */ 1977 static bool manage_workers(struct worker *worker) 1978 { 1979 struct worker_pool *pool = worker->pool; 1980 1981 /* 1982 * Anyone who successfully grabs manager_arb wins the arbitration 1983 * and becomes the manager. mutex_trylock() on pool->manager_arb 1984 * failure while holding pool->lock reliably indicates that someone 1985 * else is managing the pool and the worker which failed trylock 1986 * can proceed to executing work items. This means that anyone 1987 * grabbing manager_arb is responsible for actually performing 1988 * manager duties. If manager_arb is grabbed and released without 1989 * actual management, the pool may stall indefinitely. 1990 */ 1991 if (!mutex_trylock(&pool->manager_arb)) 1992 return false; 1993 pool->manager = worker; 1994 1995 maybe_create_worker(pool); 1996 1997 pool->manager = NULL; 1998 mutex_unlock(&pool->manager_arb); 1999 return true; 2000 } 2001 2002 /** 2003 * process_one_work - process single work 2004 * @worker: self 2005 * @work: work to process 2006 * 2007 * Process @work. This function contains all the logics necessary to 2008 * process a single work including synchronization against and 2009 * interaction with other workers on the same cpu, queueing and 2010 * flushing. As long as context requirement is met, any worker can 2011 * call this function to process a work. 2012 * 2013 * CONTEXT: 2014 * spin_lock_irq(pool->lock) which is released and regrabbed. 2015 */ 2016 static void process_one_work(struct worker *worker, struct work_struct *work) 2017 __releases(&pool->lock) 2018 __acquires(&pool->lock) 2019 { 2020 struct pool_workqueue *pwq = get_work_pwq(work); 2021 struct worker_pool *pool = worker->pool; 2022 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2023 int work_color; 2024 struct worker *collision; 2025 #ifdef CONFIG_LOCKDEP 2026 /* 2027 * It is permissible to free the struct work_struct from 2028 * inside the function that is called from it, this we need to 2029 * take into account for lockdep too. To avoid bogus "held 2030 * lock freed" warnings as well as problems when looking into 2031 * work->lockdep_map, make a copy and use that here. 2032 */ 2033 struct lockdep_map lockdep_map; 2034 2035 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2036 #endif 2037 /* ensure we're on the correct CPU */ 2038 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2039 raw_smp_processor_id() != pool->cpu); 2040 2041 /* 2042 * A single work shouldn't be executed concurrently by 2043 * multiple workers on a single cpu. Check whether anyone is 2044 * already processing the work. If so, defer the work to the 2045 * currently executing one. 2046 */ 2047 collision = find_worker_executing_work(pool, work); 2048 if (unlikely(collision)) { 2049 move_linked_works(work, &collision->scheduled, NULL); 2050 return; 2051 } 2052 2053 /* claim and dequeue */ 2054 debug_work_deactivate(work); 2055 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2056 worker->current_work = work; 2057 worker->current_func = work->func; 2058 worker->current_pwq = pwq; 2059 work_color = get_work_color(work); 2060 2061 list_del_init(&work->entry); 2062 2063 /* 2064 * CPU intensive works don't participate in concurrency management. 2065 * They're the scheduler's responsibility. This takes @worker out 2066 * of concurrency management and the next code block will chain 2067 * execution of the pending work items. 2068 */ 2069 if (unlikely(cpu_intensive)) 2070 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2071 2072 /* 2073 * Wake up another worker if necessary. The condition is always 2074 * false for normal per-cpu workers since nr_running would always 2075 * be >= 1 at this point. This is used to chain execution of the 2076 * pending work items for WORKER_NOT_RUNNING workers such as the 2077 * UNBOUND and CPU_INTENSIVE ones. 2078 */ 2079 if (need_more_worker(pool)) 2080 wake_up_worker(pool); 2081 2082 /* 2083 * Record the last pool and clear PENDING which should be the last 2084 * update to @work. Also, do this inside @pool->lock so that 2085 * PENDING and queued state changes happen together while IRQ is 2086 * disabled. 2087 */ 2088 set_work_pool_and_clear_pending(work, pool->id); 2089 2090 spin_unlock_irq(&pool->lock); 2091 2092 lock_map_acquire_read(&pwq->wq->lockdep_map); 2093 lock_map_acquire(&lockdep_map); 2094 trace_workqueue_execute_start(work); 2095 worker->current_func(work); 2096 /* 2097 * While we must be careful to not use "work" after this, the trace 2098 * point will only record its address. 2099 */ 2100 trace_workqueue_execute_end(work); 2101 lock_map_release(&lockdep_map); 2102 lock_map_release(&pwq->wq->lockdep_map); 2103 2104 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2105 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2106 " last function: %pf\n", 2107 current->comm, preempt_count(), task_pid_nr(current), 2108 worker->current_func); 2109 debug_show_held_locks(current); 2110 dump_stack(); 2111 } 2112 2113 /* 2114 * The following prevents a kworker from hogging CPU on !PREEMPT 2115 * kernels, where a requeueing work item waiting for something to 2116 * happen could deadlock with stop_machine as such work item could 2117 * indefinitely requeue itself while all other CPUs are trapped in 2118 * stop_machine. At the same time, report a quiescent RCU state so 2119 * the same condition doesn't freeze RCU. 2120 */ 2121 cond_resched_rcu_qs(); 2122 2123 spin_lock_irq(&pool->lock); 2124 2125 /* clear cpu intensive status */ 2126 if (unlikely(cpu_intensive)) 2127 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2128 2129 /* we're done with it, release */ 2130 hash_del(&worker->hentry); 2131 worker->current_work = NULL; 2132 worker->current_func = NULL; 2133 worker->current_pwq = NULL; 2134 worker->desc_valid = false; 2135 pwq_dec_nr_in_flight(pwq, work_color); 2136 } 2137 2138 /** 2139 * process_scheduled_works - process scheduled works 2140 * @worker: self 2141 * 2142 * Process all scheduled works. Please note that the scheduled list 2143 * may change while processing a work, so this function repeatedly 2144 * fetches a work from the top and executes it. 2145 * 2146 * CONTEXT: 2147 * spin_lock_irq(pool->lock) which may be released and regrabbed 2148 * multiple times. 2149 */ 2150 static void process_scheduled_works(struct worker *worker) 2151 { 2152 while (!list_empty(&worker->scheduled)) { 2153 struct work_struct *work = list_first_entry(&worker->scheduled, 2154 struct work_struct, entry); 2155 process_one_work(worker, work); 2156 } 2157 } 2158 2159 /** 2160 * worker_thread - the worker thread function 2161 * @__worker: self 2162 * 2163 * The worker thread function. All workers belong to a worker_pool - 2164 * either a per-cpu one or dynamic unbound one. These workers process all 2165 * work items regardless of their specific target workqueue. The only 2166 * exception is work items which belong to workqueues with a rescuer which 2167 * will be explained in rescuer_thread(). 2168 * 2169 * Return: 0 2170 */ 2171 static int worker_thread(void *__worker) 2172 { 2173 struct worker *worker = __worker; 2174 struct worker_pool *pool = worker->pool; 2175 2176 /* tell the scheduler that this is a workqueue worker */ 2177 worker->task->flags |= PF_WQ_WORKER; 2178 woke_up: 2179 spin_lock_irq(&pool->lock); 2180 2181 /* am I supposed to die? */ 2182 if (unlikely(worker->flags & WORKER_DIE)) { 2183 spin_unlock_irq(&pool->lock); 2184 WARN_ON_ONCE(!list_empty(&worker->entry)); 2185 worker->task->flags &= ~PF_WQ_WORKER; 2186 2187 set_task_comm(worker->task, "kworker/dying"); 2188 ida_simple_remove(&pool->worker_ida, worker->id); 2189 worker_detach_from_pool(worker, pool); 2190 kfree(worker); 2191 return 0; 2192 } 2193 2194 worker_leave_idle(worker); 2195 recheck: 2196 /* no more worker necessary? */ 2197 if (!need_more_worker(pool)) 2198 goto sleep; 2199 2200 /* do we need to manage? */ 2201 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2202 goto recheck; 2203 2204 /* 2205 * ->scheduled list can only be filled while a worker is 2206 * preparing to process a work or actually processing it. 2207 * Make sure nobody diddled with it while I was sleeping. 2208 */ 2209 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2210 2211 /* 2212 * Finish PREP stage. We're guaranteed to have at least one idle 2213 * worker or that someone else has already assumed the manager 2214 * role. This is where @worker starts participating in concurrency 2215 * management if applicable and concurrency management is restored 2216 * after being rebound. See rebind_workers() for details. 2217 */ 2218 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2219 2220 do { 2221 struct work_struct *work = 2222 list_first_entry(&pool->worklist, 2223 struct work_struct, entry); 2224 2225 pool->watchdog_ts = jiffies; 2226 2227 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2228 /* optimization path, not strictly necessary */ 2229 process_one_work(worker, work); 2230 if (unlikely(!list_empty(&worker->scheduled))) 2231 process_scheduled_works(worker); 2232 } else { 2233 move_linked_works(work, &worker->scheduled, NULL); 2234 process_scheduled_works(worker); 2235 } 2236 } while (keep_working(pool)); 2237 2238 worker_set_flags(worker, WORKER_PREP); 2239 sleep: 2240 /* 2241 * pool->lock is held and there's no work to process and no need to 2242 * manage, sleep. Workers are woken up only while holding 2243 * pool->lock or from local cpu, so setting the current state 2244 * before releasing pool->lock is enough to prevent losing any 2245 * event. 2246 */ 2247 worker_enter_idle(worker); 2248 __set_current_state(TASK_INTERRUPTIBLE); 2249 spin_unlock_irq(&pool->lock); 2250 schedule(); 2251 goto woke_up; 2252 } 2253 2254 /** 2255 * rescuer_thread - the rescuer thread function 2256 * @__rescuer: self 2257 * 2258 * Workqueue rescuer thread function. There's one rescuer for each 2259 * workqueue which has WQ_MEM_RECLAIM set. 2260 * 2261 * Regular work processing on a pool may block trying to create a new 2262 * worker which uses GFP_KERNEL allocation which has slight chance of 2263 * developing into deadlock if some works currently on the same queue 2264 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2265 * the problem rescuer solves. 2266 * 2267 * When such condition is possible, the pool summons rescuers of all 2268 * workqueues which have works queued on the pool and let them process 2269 * those works so that forward progress can be guaranteed. 2270 * 2271 * This should happen rarely. 2272 * 2273 * Return: 0 2274 */ 2275 static int rescuer_thread(void *__rescuer) 2276 { 2277 struct worker *rescuer = __rescuer; 2278 struct workqueue_struct *wq = rescuer->rescue_wq; 2279 struct list_head *scheduled = &rescuer->scheduled; 2280 bool should_stop; 2281 2282 set_user_nice(current, RESCUER_NICE_LEVEL); 2283 2284 /* 2285 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2286 * doesn't participate in concurrency management. 2287 */ 2288 rescuer->task->flags |= PF_WQ_WORKER; 2289 repeat: 2290 set_current_state(TASK_INTERRUPTIBLE); 2291 2292 /* 2293 * By the time the rescuer is requested to stop, the workqueue 2294 * shouldn't have any work pending, but @wq->maydays may still have 2295 * pwq(s) queued. This can happen by non-rescuer workers consuming 2296 * all the work items before the rescuer got to them. Go through 2297 * @wq->maydays processing before acting on should_stop so that the 2298 * list is always empty on exit. 2299 */ 2300 should_stop = kthread_should_stop(); 2301 2302 /* see whether any pwq is asking for help */ 2303 spin_lock_irq(&wq_mayday_lock); 2304 2305 while (!list_empty(&wq->maydays)) { 2306 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2307 struct pool_workqueue, mayday_node); 2308 struct worker_pool *pool = pwq->pool; 2309 struct work_struct *work, *n; 2310 bool first = true; 2311 2312 __set_current_state(TASK_RUNNING); 2313 list_del_init(&pwq->mayday_node); 2314 2315 spin_unlock_irq(&wq_mayday_lock); 2316 2317 worker_attach_to_pool(rescuer, pool); 2318 2319 spin_lock_irq(&pool->lock); 2320 rescuer->pool = pool; 2321 2322 /* 2323 * Slurp in all works issued via this workqueue and 2324 * process'em. 2325 */ 2326 WARN_ON_ONCE(!list_empty(scheduled)); 2327 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2328 if (get_work_pwq(work) == pwq) { 2329 if (first) 2330 pool->watchdog_ts = jiffies; 2331 move_linked_works(work, scheduled, &n); 2332 } 2333 first = false; 2334 } 2335 2336 if (!list_empty(scheduled)) { 2337 process_scheduled_works(rescuer); 2338 2339 /* 2340 * The above execution of rescued work items could 2341 * have created more to rescue through 2342 * pwq_activate_first_delayed() or chained 2343 * queueing. Let's put @pwq back on mayday list so 2344 * that such back-to-back work items, which may be 2345 * being used to relieve memory pressure, don't 2346 * incur MAYDAY_INTERVAL delay inbetween. 2347 */ 2348 if (need_to_create_worker(pool)) { 2349 spin_lock(&wq_mayday_lock); 2350 get_pwq(pwq); 2351 list_move_tail(&pwq->mayday_node, &wq->maydays); 2352 spin_unlock(&wq_mayday_lock); 2353 } 2354 } 2355 2356 /* 2357 * Put the reference grabbed by send_mayday(). @pool won't 2358 * go away while we're still attached to it. 2359 */ 2360 put_pwq(pwq); 2361 2362 /* 2363 * Leave this pool. If need_more_worker() is %true, notify a 2364 * regular worker; otherwise, we end up with 0 concurrency 2365 * and stalling the execution. 2366 */ 2367 if (need_more_worker(pool)) 2368 wake_up_worker(pool); 2369 2370 rescuer->pool = NULL; 2371 spin_unlock_irq(&pool->lock); 2372 2373 worker_detach_from_pool(rescuer, pool); 2374 2375 spin_lock_irq(&wq_mayday_lock); 2376 } 2377 2378 spin_unlock_irq(&wq_mayday_lock); 2379 2380 if (should_stop) { 2381 __set_current_state(TASK_RUNNING); 2382 rescuer->task->flags &= ~PF_WQ_WORKER; 2383 return 0; 2384 } 2385 2386 /* rescuers should never participate in concurrency management */ 2387 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2388 schedule(); 2389 goto repeat; 2390 } 2391 2392 /** 2393 * check_flush_dependency - check for flush dependency sanity 2394 * @target_wq: workqueue being flushed 2395 * @target_work: work item being flushed (NULL for workqueue flushes) 2396 * 2397 * %current is trying to flush the whole @target_wq or @target_work on it. 2398 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2399 * reclaiming memory or running on a workqueue which doesn't have 2400 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2401 * a deadlock. 2402 */ 2403 static void check_flush_dependency(struct workqueue_struct *target_wq, 2404 struct work_struct *target_work) 2405 { 2406 work_func_t target_func = target_work ? target_work->func : NULL; 2407 struct worker *worker; 2408 2409 if (target_wq->flags & WQ_MEM_RECLAIM) 2410 return; 2411 2412 worker = current_wq_worker(); 2413 2414 WARN_ONCE(current->flags & PF_MEMALLOC, 2415 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2416 current->pid, current->comm, target_wq->name, target_func); 2417 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2418 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2419 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2420 worker->current_pwq->wq->name, worker->current_func, 2421 target_wq->name, target_func); 2422 } 2423 2424 struct wq_barrier { 2425 struct work_struct work; 2426 struct completion done; 2427 struct task_struct *task; /* purely informational */ 2428 }; 2429 2430 static void wq_barrier_func(struct work_struct *work) 2431 { 2432 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2433 complete(&barr->done); 2434 } 2435 2436 /** 2437 * insert_wq_barrier - insert a barrier work 2438 * @pwq: pwq to insert barrier into 2439 * @barr: wq_barrier to insert 2440 * @target: target work to attach @barr to 2441 * @worker: worker currently executing @target, NULL if @target is not executing 2442 * 2443 * @barr is linked to @target such that @barr is completed only after 2444 * @target finishes execution. Please note that the ordering 2445 * guarantee is observed only with respect to @target and on the local 2446 * cpu. 2447 * 2448 * Currently, a queued barrier can't be canceled. This is because 2449 * try_to_grab_pending() can't determine whether the work to be 2450 * grabbed is at the head of the queue and thus can't clear LINKED 2451 * flag of the previous work while there must be a valid next work 2452 * after a work with LINKED flag set. 2453 * 2454 * Note that when @worker is non-NULL, @target may be modified 2455 * underneath us, so we can't reliably determine pwq from @target. 2456 * 2457 * CONTEXT: 2458 * spin_lock_irq(pool->lock). 2459 */ 2460 static void insert_wq_barrier(struct pool_workqueue *pwq, 2461 struct wq_barrier *barr, 2462 struct work_struct *target, struct worker *worker) 2463 { 2464 struct list_head *head; 2465 unsigned int linked = 0; 2466 2467 /* 2468 * debugobject calls are safe here even with pool->lock locked 2469 * as we know for sure that this will not trigger any of the 2470 * checks and call back into the fixup functions where we 2471 * might deadlock. 2472 */ 2473 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2474 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2475 init_completion(&barr->done); 2476 barr->task = current; 2477 2478 /* 2479 * If @target is currently being executed, schedule the 2480 * barrier to the worker; otherwise, put it after @target. 2481 */ 2482 if (worker) 2483 head = worker->scheduled.next; 2484 else { 2485 unsigned long *bits = work_data_bits(target); 2486 2487 head = target->entry.next; 2488 /* there can already be other linked works, inherit and set */ 2489 linked = *bits & WORK_STRUCT_LINKED; 2490 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2491 } 2492 2493 debug_work_activate(&barr->work); 2494 insert_work(pwq, &barr->work, head, 2495 work_color_to_flags(WORK_NO_COLOR) | linked); 2496 } 2497 2498 /** 2499 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2500 * @wq: workqueue being flushed 2501 * @flush_color: new flush color, < 0 for no-op 2502 * @work_color: new work color, < 0 for no-op 2503 * 2504 * Prepare pwqs for workqueue flushing. 2505 * 2506 * If @flush_color is non-negative, flush_color on all pwqs should be 2507 * -1. If no pwq has in-flight commands at the specified color, all 2508 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2509 * has in flight commands, its pwq->flush_color is set to 2510 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2511 * wakeup logic is armed and %true is returned. 2512 * 2513 * The caller should have initialized @wq->first_flusher prior to 2514 * calling this function with non-negative @flush_color. If 2515 * @flush_color is negative, no flush color update is done and %false 2516 * is returned. 2517 * 2518 * If @work_color is non-negative, all pwqs should have the same 2519 * work_color which is previous to @work_color and all will be 2520 * advanced to @work_color. 2521 * 2522 * CONTEXT: 2523 * mutex_lock(wq->mutex). 2524 * 2525 * Return: 2526 * %true if @flush_color >= 0 and there's something to flush. %false 2527 * otherwise. 2528 */ 2529 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2530 int flush_color, int work_color) 2531 { 2532 bool wait = false; 2533 struct pool_workqueue *pwq; 2534 2535 if (flush_color >= 0) { 2536 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2537 atomic_set(&wq->nr_pwqs_to_flush, 1); 2538 } 2539 2540 for_each_pwq(pwq, wq) { 2541 struct worker_pool *pool = pwq->pool; 2542 2543 spin_lock_irq(&pool->lock); 2544 2545 if (flush_color >= 0) { 2546 WARN_ON_ONCE(pwq->flush_color != -1); 2547 2548 if (pwq->nr_in_flight[flush_color]) { 2549 pwq->flush_color = flush_color; 2550 atomic_inc(&wq->nr_pwqs_to_flush); 2551 wait = true; 2552 } 2553 } 2554 2555 if (work_color >= 0) { 2556 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2557 pwq->work_color = work_color; 2558 } 2559 2560 spin_unlock_irq(&pool->lock); 2561 } 2562 2563 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2564 complete(&wq->first_flusher->done); 2565 2566 return wait; 2567 } 2568 2569 /** 2570 * flush_workqueue - ensure that any scheduled work has run to completion. 2571 * @wq: workqueue to flush 2572 * 2573 * This function sleeps until all work items which were queued on entry 2574 * have finished execution, but it is not livelocked by new incoming ones. 2575 */ 2576 void flush_workqueue(struct workqueue_struct *wq) 2577 { 2578 struct wq_flusher this_flusher = { 2579 .list = LIST_HEAD_INIT(this_flusher.list), 2580 .flush_color = -1, 2581 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2582 }; 2583 int next_color; 2584 2585 lock_map_acquire(&wq->lockdep_map); 2586 lock_map_release(&wq->lockdep_map); 2587 2588 mutex_lock(&wq->mutex); 2589 2590 /* 2591 * Start-to-wait phase 2592 */ 2593 next_color = work_next_color(wq->work_color); 2594 2595 if (next_color != wq->flush_color) { 2596 /* 2597 * Color space is not full. The current work_color 2598 * becomes our flush_color and work_color is advanced 2599 * by one. 2600 */ 2601 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2602 this_flusher.flush_color = wq->work_color; 2603 wq->work_color = next_color; 2604 2605 if (!wq->first_flusher) { 2606 /* no flush in progress, become the first flusher */ 2607 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2608 2609 wq->first_flusher = &this_flusher; 2610 2611 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2612 wq->work_color)) { 2613 /* nothing to flush, done */ 2614 wq->flush_color = next_color; 2615 wq->first_flusher = NULL; 2616 goto out_unlock; 2617 } 2618 } else { 2619 /* wait in queue */ 2620 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2621 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2622 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2623 } 2624 } else { 2625 /* 2626 * Oops, color space is full, wait on overflow queue. 2627 * The next flush completion will assign us 2628 * flush_color and transfer to flusher_queue. 2629 */ 2630 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2631 } 2632 2633 check_flush_dependency(wq, NULL); 2634 2635 mutex_unlock(&wq->mutex); 2636 2637 wait_for_completion(&this_flusher.done); 2638 2639 /* 2640 * Wake-up-and-cascade phase 2641 * 2642 * First flushers are responsible for cascading flushes and 2643 * handling overflow. Non-first flushers can simply return. 2644 */ 2645 if (wq->first_flusher != &this_flusher) 2646 return; 2647 2648 mutex_lock(&wq->mutex); 2649 2650 /* we might have raced, check again with mutex held */ 2651 if (wq->first_flusher != &this_flusher) 2652 goto out_unlock; 2653 2654 wq->first_flusher = NULL; 2655 2656 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2657 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2658 2659 while (true) { 2660 struct wq_flusher *next, *tmp; 2661 2662 /* complete all the flushers sharing the current flush color */ 2663 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2664 if (next->flush_color != wq->flush_color) 2665 break; 2666 list_del_init(&next->list); 2667 complete(&next->done); 2668 } 2669 2670 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2671 wq->flush_color != work_next_color(wq->work_color)); 2672 2673 /* this flush_color is finished, advance by one */ 2674 wq->flush_color = work_next_color(wq->flush_color); 2675 2676 /* one color has been freed, handle overflow queue */ 2677 if (!list_empty(&wq->flusher_overflow)) { 2678 /* 2679 * Assign the same color to all overflowed 2680 * flushers, advance work_color and append to 2681 * flusher_queue. This is the start-to-wait 2682 * phase for these overflowed flushers. 2683 */ 2684 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2685 tmp->flush_color = wq->work_color; 2686 2687 wq->work_color = work_next_color(wq->work_color); 2688 2689 list_splice_tail_init(&wq->flusher_overflow, 2690 &wq->flusher_queue); 2691 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2692 } 2693 2694 if (list_empty(&wq->flusher_queue)) { 2695 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2696 break; 2697 } 2698 2699 /* 2700 * Need to flush more colors. Make the next flusher 2701 * the new first flusher and arm pwqs. 2702 */ 2703 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2704 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2705 2706 list_del_init(&next->list); 2707 wq->first_flusher = next; 2708 2709 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2710 break; 2711 2712 /* 2713 * Meh... this color is already done, clear first 2714 * flusher and repeat cascading. 2715 */ 2716 wq->first_flusher = NULL; 2717 } 2718 2719 out_unlock: 2720 mutex_unlock(&wq->mutex); 2721 } 2722 EXPORT_SYMBOL(flush_workqueue); 2723 2724 /** 2725 * drain_workqueue - drain a workqueue 2726 * @wq: workqueue to drain 2727 * 2728 * Wait until the workqueue becomes empty. While draining is in progress, 2729 * only chain queueing is allowed. IOW, only currently pending or running 2730 * work items on @wq can queue further work items on it. @wq is flushed 2731 * repeatedly until it becomes empty. The number of flushing is determined 2732 * by the depth of chaining and should be relatively short. Whine if it 2733 * takes too long. 2734 */ 2735 void drain_workqueue(struct workqueue_struct *wq) 2736 { 2737 unsigned int flush_cnt = 0; 2738 struct pool_workqueue *pwq; 2739 2740 /* 2741 * __queue_work() needs to test whether there are drainers, is much 2742 * hotter than drain_workqueue() and already looks at @wq->flags. 2743 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2744 */ 2745 mutex_lock(&wq->mutex); 2746 if (!wq->nr_drainers++) 2747 wq->flags |= __WQ_DRAINING; 2748 mutex_unlock(&wq->mutex); 2749 reflush: 2750 flush_workqueue(wq); 2751 2752 mutex_lock(&wq->mutex); 2753 2754 for_each_pwq(pwq, wq) { 2755 bool drained; 2756 2757 spin_lock_irq(&pwq->pool->lock); 2758 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2759 spin_unlock_irq(&pwq->pool->lock); 2760 2761 if (drained) 2762 continue; 2763 2764 if (++flush_cnt == 10 || 2765 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2766 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2767 wq->name, flush_cnt); 2768 2769 mutex_unlock(&wq->mutex); 2770 goto reflush; 2771 } 2772 2773 if (!--wq->nr_drainers) 2774 wq->flags &= ~__WQ_DRAINING; 2775 mutex_unlock(&wq->mutex); 2776 } 2777 EXPORT_SYMBOL_GPL(drain_workqueue); 2778 2779 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2780 { 2781 struct worker *worker = NULL; 2782 struct worker_pool *pool; 2783 struct pool_workqueue *pwq; 2784 2785 might_sleep(); 2786 2787 local_irq_disable(); 2788 pool = get_work_pool(work); 2789 if (!pool) { 2790 local_irq_enable(); 2791 return false; 2792 } 2793 2794 spin_lock(&pool->lock); 2795 /* see the comment in try_to_grab_pending() with the same code */ 2796 pwq = get_work_pwq(work); 2797 if (pwq) { 2798 if (unlikely(pwq->pool != pool)) 2799 goto already_gone; 2800 } else { 2801 worker = find_worker_executing_work(pool, work); 2802 if (!worker) 2803 goto already_gone; 2804 pwq = worker->current_pwq; 2805 } 2806 2807 check_flush_dependency(pwq->wq, work); 2808 2809 insert_wq_barrier(pwq, barr, work, worker); 2810 spin_unlock_irq(&pool->lock); 2811 2812 /* 2813 * If @max_active is 1 or rescuer is in use, flushing another work 2814 * item on the same workqueue may lead to deadlock. Make sure the 2815 * flusher is not running on the same workqueue by verifying write 2816 * access. 2817 */ 2818 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2819 lock_map_acquire(&pwq->wq->lockdep_map); 2820 else 2821 lock_map_acquire_read(&pwq->wq->lockdep_map); 2822 lock_map_release(&pwq->wq->lockdep_map); 2823 2824 return true; 2825 already_gone: 2826 spin_unlock_irq(&pool->lock); 2827 return false; 2828 } 2829 2830 /** 2831 * flush_work - wait for a work to finish executing the last queueing instance 2832 * @work: the work to flush 2833 * 2834 * Wait until @work has finished execution. @work is guaranteed to be idle 2835 * on return if it hasn't been requeued since flush started. 2836 * 2837 * Return: 2838 * %true if flush_work() waited for the work to finish execution, 2839 * %false if it was already idle. 2840 */ 2841 bool flush_work(struct work_struct *work) 2842 { 2843 struct wq_barrier barr; 2844 2845 lock_map_acquire(&work->lockdep_map); 2846 lock_map_release(&work->lockdep_map); 2847 2848 if (start_flush_work(work, &barr)) { 2849 wait_for_completion(&barr.done); 2850 destroy_work_on_stack(&barr.work); 2851 return true; 2852 } else { 2853 return false; 2854 } 2855 } 2856 EXPORT_SYMBOL_GPL(flush_work); 2857 2858 struct cwt_wait { 2859 wait_queue_t wait; 2860 struct work_struct *work; 2861 }; 2862 2863 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key) 2864 { 2865 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2866 2867 if (cwait->work != key) 2868 return 0; 2869 return autoremove_wake_function(wait, mode, sync, key); 2870 } 2871 2872 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2873 { 2874 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2875 unsigned long flags; 2876 int ret; 2877 2878 do { 2879 ret = try_to_grab_pending(work, is_dwork, &flags); 2880 /* 2881 * If someone else is already canceling, wait for it to 2882 * finish. flush_work() doesn't work for PREEMPT_NONE 2883 * because we may get scheduled between @work's completion 2884 * and the other canceling task resuming and clearing 2885 * CANCELING - flush_work() will return false immediately 2886 * as @work is no longer busy, try_to_grab_pending() will 2887 * return -ENOENT as @work is still being canceled and the 2888 * other canceling task won't be able to clear CANCELING as 2889 * we're hogging the CPU. 2890 * 2891 * Let's wait for completion using a waitqueue. As this 2892 * may lead to the thundering herd problem, use a custom 2893 * wake function which matches @work along with exclusive 2894 * wait and wakeup. 2895 */ 2896 if (unlikely(ret == -ENOENT)) { 2897 struct cwt_wait cwait; 2898 2899 init_wait(&cwait.wait); 2900 cwait.wait.func = cwt_wakefn; 2901 cwait.work = work; 2902 2903 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2904 TASK_UNINTERRUPTIBLE); 2905 if (work_is_canceling(work)) 2906 schedule(); 2907 finish_wait(&cancel_waitq, &cwait.wait); 2908 } 2909 } while (unlikely(ret < 0)); 2910 2911 /* tell other tasks trying to grab @work to back off */ 2912 mark_work_canceling(work); 2913 local_irq_restore(flags); 2914 2915 flush_work(work); 2916 clear_work_data(work); 2917 2918 /* 2919 * Paired with prepare_to_wait() above so that either 2920 * waitqueue_active() is visible here or !work_is_canceling() is 2921 * visible there. 2922 */ 2923 smp_mb(); 2924 if (waitqueue_active(&cancel_waitq)) 2925 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 2926 2927 return ret; 2928 } 2929 2930 /** 2931 * cancel_work_sync - cancel a work and wait for it to finish 2932 * @work: the work to cancel 2933 * 2934 * Cancel @work and wait for its execution to finish. This function 2935 * can be used even if the work re-queues itself or migrates to 2936 * another workqueue. On return from this function, @work is 2937 * guaranteed to be not pending or executing on any CPU. 2938 * 2939 * cancel_work_sync(&delayed_work->work) must not be used for 2940 * delayed_work's. Use cancel_delayed_work_sync() instead. 2941 * 2942 * The caller must ensure that the workqueue on which @work was last 2943 * queued can't be destroyed before this function returns. 2944 * 2945 * Return: 2946 * %true if @work was pending, %false otherwise. 2947 */ 2948 bool cancel_work_sync(struct work_struct *work) 2949 { 2950 return __cancel_work_timer(work, false); 2951 } 2952 EXPORT_SYMBOL_GPL(cancel_work_sync); 2953 2954 /** 2955 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2956 * @dwork: the delayed work to flush 2957 * 2958 * Delayed timer is cancelled and the pending work is queued for 2959 * immediate execution. Like flush_work(), this function only 2960 * considers the last queueing instance of @dwork. 2961 * 2962 * Return: 2963 * %true if flush_work() waited for the work to finish execution, 2964 * %false if it was already idle. 2965 */ 2966 bool flush_delayed_work(struct delayed_work *dwork) 2967 { 2968 local_irq_disable(); 2969 if (del_timer_sync(&dwork->timer)) 2970 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2971 local_irq_enable(); 2972 return flush_work(&dwork->work); 2973 } 2974 EXPORT_SYMBOL(flush_delayed_work); 2975 2976 /** 2977 * cancel_delayed_work - cancel a delayed work 2978 * @dwork: delayed_work to cancel 2979 * 2980 * Kill off a pending delayed_work. 2981 * 2982 * Return: %true if @dwork was pending and canceled; %false if it wasn't 2983 * pending. 2984 * 2985 * Note: 2986 * The work callback function may still be running on return, unless 2987 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 2988 * use cancel_delayed_work_sync() to wait on it. 2989 * 2990 * This function is safe to call from any context including IRQ handler. 2991 */ 2992 bool cancel_delayed_work(struct delayed_work *dwork) 2993 { 2994 unsigned long flags; 2995 int ret; 2996 2997 do { 2998 ret = try_to_grab_pending(&dwork->work, true, &flags); 2999 } while (unlikely(ret == -EAGAIN)); 3000 3001 if (unlikely(ret < 0)) 3002 return false; 3003 3004 set_work_pool_and_clear_pending(&dwork->work, 3005 get_work_pool_id(&dwork->work)); 3006 local_irq_restore(flags); 3007 return ret; 3008 } 3009 EXPORT_SYMBOL(cancel_delayed_work); 3010 3011 /** 3012 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3013 * @dwork: the delayed work cancel 3014 * 3015 * This is cancel_work_sync() for delayed works. 3016 * 3017 * Return: 3018 * %true if @dwork was pending, %false otherwise. 3019 */ 3020 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3021 { 3022 return __cancel_work_timer(&dwork->work, true); 3023 } 3024 EXPORT_SYMBOL(cancel_delayed_work_sync); 3025 3026 /** 3027 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3028 * @func: the function to call 3029 * 3030 * schedule_on_each_cpu() executes @func on each online CPU using the 3031 * system workqueue and blocks until all CPUs have completed. 3032 * schedule_on_each_cpu() is very slow. 3033 * 3034 * Return: 3035 * 0 on success, -errno on failure. 3036 */ 3037 int schedule_on_each_cpu(work_func_t func) 3038 { 3039 int cpu; 3040 struct work_struct __percpu *works; 3041 3042 works = alloc_percpu(struct work_struct); 3043 if (!works) 3044 return -ENOMEM; 3045 3046 get_online_cpus(); 3047 3048 for_each_online_cpu(cpu) { 3049 struct work_struct *work = per_cpu_ptr(works, cpu); 3050 3051 INIT_WORK(work, func); 3052 schedule_work_on(cpu, work); 3053 } 3054 3055 for_each_online_cpu(cpu) 3056 flush_work(per_cpu_ptr(works, cpu)); 3057 3058 put_online_cpus(); 3059 free_percpu(works); 3060 return 0; 3061 } 3062 3063 /** 3064 * execute_in_process_context - reliably execute the routine with user context 3065 * @fn: the function to execute 3066 * @ew: guaranteed storage for the execute work structure (must 3067 * be available when the work executes) 3068 * 3069 * Executes the function immediately if process context is available, 3070 * otherwise schedules the function for delayed execution. 3071 * 3072 * Return: 0 - function was executed 3073 * 1 - function was scheduled for execution 3074 */ 3075 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3076 { 3077 if (!in_interrupt()) { 3078 fn(&ew->work); 3079 return 0; 3080 } 3081 3082 INIT_WORK(&ew->work, fn); 3083 schedule_work(&ew->work); 3084 3085 return 1; 3086 } 3087 EXPORT_SYMBOL_GPL(execute_in_process_context); 3088 3089 /** 3090 * free_workqueue_attrs - free a workqueue_attrs 3091 * @attrs: workqueue_attrs to free 3092 * 3093 * Undo alloc_workqueue_attrs(). 3094 */ 3095 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3096 { 3097 if (attrs) { 3098 free_cpumask_var(attrs->cpumask); 3099 kfree(attrs); 3100 } 3101 } 3102 3103 /** 3104 * alloc_workqueue_attrs - allocate a workqueue_attrs 3105 * @gfp_mask: allocation mask to use 3106 * 3107 * Allocate a new workqueue_attrs, initialize with default settings and 3108 * return it. 3109 * 3110 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3111 */ 3112 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3113 { 3114 struct workqueue_attrs *attrs; 3115 3116 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3117 if (!attrs) 3118 goto fail; 3119 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3120 goto fail; 3121 3122 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3123 return attrs; 3124 fail: 3125 free_workqueue_attrs(attrs); 3126 return NULL; 3127 } 3128 3129 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3130 const struct workqueue_attrs *from) 3131 { 3132 to->nice = from->nice; 3133 cpumask_copy(to->cpumask, from->cpumask); 3134 /* 3135 * Unlike hash and equality test, this function doesn't ignore 3136 * ->no_numa as it is used for both pool and wq attrs. Instead, 3137 * get_unbound_pool() explicitly clears ->no_numa after copying. 3138 */ 3139 to->no_numa = from->no_numa; 3140 } 3141 3142 /* hash value of the content of @attr */ 3143 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3144 { 3145 u32 hash = 0; 3146 3147 hash = jhash_1word(attrs->nice, hash); 3148 hash = jhash(cpumask_bits(attrs->cpumask), 3149 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3150 return hash; 3151 } 3152 3153 /* content equality test */ 3154 static bool wqattrs_equal(const struct workqueue_attrs *a, 3155 const struct workqueue_attrs *b) 3156 { 3157 if (a->nice != b->nice) 3158 return false; 3159 if (!cpumask_equal(a->cpumask, b->cpumask)) 3160 return false; 3161 return true; 3162 } 3163 3164 /** 3165 * init_worker_pool - initialize a newly zalloc'd worker_pool 3166 * @pool: worker_pool to initialize 3167 * 3168 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3169 * 3170 * Return: 0 on success, -errno on failure. Even on failure, all fields 3171 * inside @pool proper are initialized and put_unbound_pool() can be called 3172 * on @pool safely to release it. 3173 */ 3174 static int init_worker_pool(struct worker_pool *pool) 3175 { 3176 spin_lock_init(&pool->lock); 3177 pool->id = -1; 3178 pool->cpu = -1; 3179 pool->node = NUMA_NO_NODE; 3180 pool->flags |= POOL_DISASSOCIATED; 3181 pool->watchdog_ts = jiffies; 3182 INIT_LIST_HEAD(&pool->worklist); 3183 INIT_LIST_HEAD(&pool->idle_list); 3184 hash_init(pool->busy_hash); 3185 3186 init_timer_deferrable(&pool->idle_timer); 3187 pool->idle_timer.function = idle_worker_timeout; 3188 pool->idle_timer.data = (unsigned long)pool; 3189 3190 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3191 (unsigned long)pool); 3192 3193 mutex_init(&pool->manager_arb); 3194 mutex_init(&pool->attach_mutex); 3195 INIT_LIST_HEAD(&pool->workers); 3196 3197 ida_init(&pool->worker_ida); 3198 INIT_HLIST_NODE(&pool->hash_node); 3199 pool->refcnt = 1; 3200 3201 /* shouldn't fail above this point */ 3202 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3203 if (!pool->attrs) 3204 return -ENOMEM; 3205 return 0; 3206 } 3207 3208 static void rcu_free_wq(struct rcu_head *rcu) 3209 { 3210 struct workqueue_struct *wq = 3211 container_of(rcu, struct workqueue_struct, rcu); 3212 3213 if (!(wq->flags & WQ_UNBOUND)) 3214 free_percpu(wq->cpu_pwqs); 3215 else 3216 free_workqueue_attrs(wq->unbound_attrs); 3217 3218 kfree(wq->rescuer); 3219 kfree(wq); 3220 } 3221 3222 static void rcu_free_pool(struct rcu_head *rcu) 3223 { 3224 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3225 3226 ida_destroy(&pool->worker_ida); 3227 free_workqueue_attrs(pool->attrs); 3228 kfree(pool); 3229 } 3230 3231 /** 3232 * put_unbound_pool - put a worker_pool 3233 * @pool: worker_pool to put 3234 * 3235 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3236 * safe manner. get_unbound_pool() calls this function on its failure path 3237 * and this function should be able to release pools which went through, 3238 * successfully or not, init_worker_pool(). 3239 * 3240 * Should be called with wq_pool_mutex held. 3241 */ 3242 static void put_unbound_pool(struct worker_pool *pool) 3243 { 3244 DECLARE_COMPLETION_ONSTACK(detach_completion); 3245 struct worker *worker; 3246 3247 lockdep_assert_held(&wq_pool_mutex); 3248 3249 if (--pool->refcnt) 3250 return; 3251 3252 /* sanity checks */ 3253 if (WARN_ON(!(pool->cpu < 0)) || 3254 WARN_ON(!list_empty(&pool->worklist))) 3255 return; 3256 3257 /* release id and unhash */ 3258 if (pool->id >= 0) 3259 idr_remove(&worker_pool_idr, pool->id); 3260 hash_del(&pool->hash_node); 3261 3262 /* 3263 * Become the manager and destroy all workers. Grabbing 3264 * manager_arb prevents @pool's workers from blocking on 3265 * attach_mutex. 3266 */ 3267 mutex_lock(&pool->manager_arb); 3268 3269 spin_lock_irq(&pool->lock); 3270 while ((worker = first_idle_worker(pool))) 3271 destroy_worker(worker); 3272 WARN_ON(pool->nr_workers || pool->nr_idle); 3273 spin_unlock_irq(&pool->lock); 3274 3275 mutex_lock(&pool->attach_mutex); 3276 if (!list_empty(&pool->workers)) 3277 pool->detach_completion = &detach_completion; 3278 mutex_unlock(&pool->attach_mutex); 3279 3280 if (pool->detach_completion) 3281 wait_for_completion(pool->detach_completion); 3282 3283 mutex_unlock(&pool->manager_arb); 3284 3285 /* shut down the timers */ 3286 del_timer_sync(&pool->idle_timer); 3287 del_timer_sync(&pool->mayday_timer); 3288 3289 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3290 call_rcu_sched(&pool->rcu, rcu_free_pool); 3291 } 3292 3293 /** 3294 * get_unbound_pool - get a worker_pool with the specified attributes 3295 * @attrs: the attributes of the worker_pool to get 3296 * 3297 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3298 * reference count and return it. If there already is a matching 3299 * worker_pool, it will be used; otherwise, this function attempts to 3300 * create a new one. 3301 * 3302 * Should be called with wq_pool_mutex held. 3303 * 3304 * Return: On success, a worker_pool with the same attributes as @attrs. 3305 * On failure, %NULL. 3306 */ 3307 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3308 { 3309 u32 hash = wqattrs_hash(attrs); 3310 struct worker_pool *pool; 3311 int node; 3312 int target_node = NUMA_NO_NODE; 3313 3314 lockdep_assert_held(&wq_pool_mutex); 3315 3316 /* do we already have a matching pool? */ 3317 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3318 if (wqattrs_equal(pool->attrs, attrs)) { 3319 pool->refcnt++; 3320 return pool; 3321 } 3322 } 3323 3324 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3325 if (wq_numa_enabled) { 3326 for_each_node(node) { 3327 if (cpumask_subset(attrs->cpumask, 3328 wq_numa_possible_cpumask[node])) { 3329 target_node = node; 3330 break; 3331 } 3332 } 3333 } 3334 3335 /* nope, create a new one */ 3336 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3337 if (!pool || init_worker_pool(pool) < 0) 3338 goto fail; 3339 3340 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3341 copy_workqueue_attrs(pool->attrs, attrs); 3342 pool->node = target_node; 3343 3344 /* 3345 * no_numa isn't a worker_pool attribute, always clear it. See 3346 * 'struct workqueue_attrs' comments for detail. 3347 */ 3348 pool->attrs->no_numa = false; 3349 3350 if (worker_pool_assign_id(pool) < 0) 3351 goto fail; 3352 3353 /* create and start the initial worker */ 3354 if (!create_worker(pool)) 3355 goto fail; 3356 3357 /* install */ 3358 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3359 3360 return pool; 3361 fail: 3362 if (pool) 3363 put_unbound_pool(pool); 3364 return NULL; 3365 } 3366 3367 static void rcu_free_pwq(struct rcu_head *rcu) 3368 { 3369 kmem_cache_free(pwq_cache, 3370 container_of(rcu, struct pool_workqueue, rcu)); 3371 } 3372 3373 /* 3374 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3375 * and needs to be destroyed. 3376 */ 3377 static void pwq_unbound_release_workfn(struct work_struct *work) 3378 { 3379 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3380 unbound_release_work); 3381 struct workqueue_struct *wq = pwq->wq; 3382 struct worker_pool *pool = pwq->pool; 3383 bool is_last; 3384 3385 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3386 return; 3387 3388 mutex_lock(&wq->mutex); 3389 list_del_rcu(&pwq->pwqs_node); 3390 is_last = list_empty(&wq->pwqs); 3391 mutex_unlock(&wq->mutex); 3392 3393 mutex_lock(&wq_pool_mutex); 3394 put_unbound_pool(pool); 3395 mutex_unlock(&wq_pool_mutex); 3396 3397 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3398 3399 /* 3400 * If we're the last pwq going away, @wq is already dead and no one 3401 * is gonna access it anymore. Schedule RCU free. 3402 */ 3403 if (is_last) 3404 call_rcu_sched(&wq->rcu, rcu_free_wq); 3405 } 3406 3407 /** 3408 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3409 * @pwq: target pool_workqueue 3410 * 3411 * If @pwq isn't freezing, set @pwq->max_active to the associated 3412 * workqueue's saved_max_active and activate delayed work items 3413 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3414 */ 3415 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3416 { 3417 struct workqueue_struct *wq = pwq->wq; 3418 bool freezable = wq->flags & WQ_FREEZABLE; 3419 3420 /* for @wq->saved_max_active */ 3421 lockdep_assert_held(&wq->mutex); 3422 3423 /* fast exit for non-freezable wqs */ 3424 if (!freezable && pwq->max_active == wq->saved_max_active) 3425 return; 3426 3427 spin_lock_irq(&pwq->pool->lock); 3428 3429 /* 3430 * During [un]freezing, the caller is responsible for ensuring that 3431 * this function is called at least once after @workqueue_freezing 3432 * is updated and visible. 3433 */ 3434 if (!freezable || !workqueue_freezing) { 3435 pwq->max_active = wq->saved_max_active; 3436 3437 while (!list_empty(&pwq->delayed_works) && 3438 pwq->nr_active < pwq->max_active) 3439 pwq_activate_first_delayed(pwq); 3440 3441 /* 3442 * Need to kick a worker after thawed or an unbound wq's 3443 * max_active is bumped. It's a slow path. Do it always. 3444 */ 3445 wake_up_worker(pwq->pool); 3446 } else { 3447 pwq->max_active = 0; 3448 } 3449 3450 spin_unlock_irq(&pwq->pool->lock); 3451 } 3452 3453 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3454 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3455 struct worker_pool *pool) 3456 { 3457 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3458 3459 memset(pwq, 0, sizeof(*pwq)); 3460 3461 pwq->pool = pool; 3462 pwq->wq = wq; 3463 pwq->flush_color = -1; 3464 pwq->refcnt = 1; 3465 INIT_LIST_HEAD(&pwq->delayed_works); 3466 INIT_LIST_HEAD(&pwq->pwqs_node); 3467 INIT_LIST_HEAD(&pwq->mayday_node); 3468 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3469 } 3470 3471 /* sync @pwq with the current state of its associated wq and link it */ 3472 static void link_pwq(struct pool_workqueue *pwq) 3473 { 3474 struct workqueue_struct *wq = pwq->wq; 3475 3476 lockdep_assert_held(&wq->mutex); 3477 3478 /* may be called multiple times, ignore if already linked */ 3479 if (!list_empty(&pwq->pwqs_node)) 3480 return; 3481 3482 /* set the matching work_color */ 3483 pwq->work_color = wq->work_color; 3484 3485 /* sync max_active to the current setting */ 3486 pwq_adjust_max_active(pwq); 3487 3488 /* link in @pwq */ 3489 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3490 } 3491 3492 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3493 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3494 const struct workqueue_attrs *attrs) 3495 { 3496 struct worker_pool *pool; 3497 struct pool_workqueue *pwq; 3498 3499 lockdep_assert_held(&wq_pool_mutex); 3500 3501 pool = get_unbound_pool(attrs); 3502 if (!pool) 3503 return NULL; 3504 3505 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3506 if (!pwq) { 3507 put_unbound_pool(pool); 3508 return NULL; 3509 } 3510 3511 init_pwq(pwq, wq, pool); 3512 return pwq; 3513 } 3514 3515 /** 3516 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3517 * @attrs: the wq_attrs of the default pwq of the target workqueue 3518 * @node: the target NUMA node 3519 * @cpu_going_down: if >= 0, the CPU to consider as offline 3520 * @cpumask: outarg, the resulting cpumask 3521 * 3522 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3523 * @cpu_going_down is >= 0, that cpu is considered offline during 3524 * calculation. The result is stored in @cpumask. 3525 * 3526 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3527 * enabled and @node has online CPUs requested by @attrs, the returned 3528 * cpumask is the intersection of the possible CPUs of @node and 3529 * @attrs->cpumask. 3530 * 3531 * The caller is responsible for ensuring that the cpumask of @node stays 3532 * stable. 3533 * 3534 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3535 * %false if equal. 3536 */ 3537 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3538 int cpu_going_down, cpumask_t *cpumask) 3539 { 3540 if (!wq_numa_enabled || attrs->no_numa) 3541 goto use_dfl; 3542 3543 /* does @node have any online CPUs @attrs wants? */ 3544 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3545 if (cpu_going_down >= 0) 3546 cpumask_clear_cpu(cpu_going_down, cpumask); 3547 3548 if (cpumask_empty(cpumask)) 3549 goto use_dfl; 3550 3551 /* yeap, return possible CPUs in @node that @attrs wants */ 3552 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3553 return !cpumask_equal(cpumask, attrs->cpumask); 3554 3555 use_dfl: 3556 cpumask_copy(cpumask, attrs->cpumask); 3557 return false; 3558 } 3559 3560 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3561 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3562 int node, 3563 struct pool_workqueue *pwq) 3564 { 3565 struct pool_workqueue *old_pwq; 3566 3567 lockdep_assert_held(&wq_pool_mutex); 3568 lockdep_assert_held(&wq->mutex); 3569 3570 /* link_pwq() can handle duplicate calls */ 3571 link_pwq(pwq); 3572 3573 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3574 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3575 return old_pwq; 3576 } 3577 3578 /* context to store the prepared attrs & pwqs before applying */ 3579 struct apply_wqattrs_ctx { 3580 struct workqueue_struct *wq; /* target workqueue */ 3581 struct workqueue_attrs *attrs; /* attrs to apply */ 3582 struct list_head list; /* queued for batching commit */ 3583 struct pool_workqueue *dfl_pwq; 3584 struct pool_workqueue *pwq_tbl[]; 3585 }; 3586 3587 /* free the resources after success or abort */ 3588 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3589 { 3590 if (ctx) { 3591 int node; 3592 3593 for_each_node(node) 3594 put_pwq_unlocked(ctx->pwq_tbl[node]); 3595 put_pwq_unlocked(ctx->dfl_pwq); 3596 3597 free_workqueue_attrs(ctx->attrs); 3598 3599 kfree(ctx); 3600 } 3601 } 3602 3603 /* allocate the attrs and pwqs for later installation */ 3604 static struct apply_wqattrs_ctx * 3605 apply_wqattrs_prepare(struct workqueue_struct *wq, 3606 const struct workqueue_attrs *attrs) 3607 { 3608 struct apply_wqattrs_ctx *ctx; 3609 struct workqueue_attrs *new_attrs, *tmp_attrs; 3610 int node; 3611 3612 lockdep_assert_held(&wq_pool_mutex); 3613 3614 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]), 3615 GFP_KERNEL); 3616 3617 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3618 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3619 if (!ctx || !new_attrs || !tmp_attrs) 3620 goto out_free; 3621 3622 /* 3623 * Calculate the attrs of the default pwq. 3624 * If the user configured cpumask doesn't overlap with the 3625 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3626 */ 3627 copy_workqueue_attrs(new_attrs, attrs); 3628 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3629 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3630 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3631 3632 /* 3633 * We may create multiple pwqs with differing cpumasks. Make a 3634 * copy of @new_attrs which will be modified and used to obtain 3635 * pools. 3636 */ 3637 copy_workqueue_attrs(tmp_attrs, new_attrs); 3638 3639 /* 3640 * If something goes wrong during CPU up/down, we'll fall back to 3641 * the default pwq covering whole @attrs->cpumask. Always create 3642 * it even if we don't use it immediately. 3643 */ 3644 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3645 if (!ctx->dfl_pwq) 3646 goto out_free; 3647 3648 for_each_node(node) { 3649 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3650 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3651 if (!ctx->pwq_tbl[node]) 3652 goto out_free; 3653 } else { 3654 ctx->dfl_pwq->refcnt++; 3655 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3656 } 3657 } 3658 3659 /* save the user configured attrs and sanitize it. */ 3660 copy_workqueue_attrs(new_attrs, attrs); 3661 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3662 ctx->attrs = new_attrs; 3663 3664 ctx->wq = wq; 3665 free_workqueue_attrs(tmp_attrs); 3666 return ctx; 3667 3668 out_free: 3669 free_workqueue_attrs(tmp_attrs); 3670 free_workqueue_attrs(new_attrs); 3671 apply_wqattrs_cleanup(ctx); 3672 return NULL; 3673 } 3674 3675 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3676 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3677 { 3678 int node; 3679 3680 /* all pwqs have been created successfully, let's install'em */ 3681 mutex_lock(&ctx->wq->mutex); 3682 3683 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3684 3685 /* save the previous pwq and install the new one */ 3686 for_each_node(node) 3687 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3688 ctx->pwq_tbl[node]); 3689 3690 /* @dfl_pwq might not have been used, ensure it's linked */ 3691 link_pwq(ctx->dfl_pwq); 3692 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3693 3694 mutex_unlock(&ctx->wq->mutex); 3695 } 3696 3697 static void apply_wqattrs_lock(void) 3698 { 3699 /* CPUs should stay stable across pwq creations and installations */ 3700 get_online_cpus(); 3701 mutex_lock(&wq_pool_mutex); 3702 } 3703 3704 static void apply_wqattrs_unlock(void) 3705 { 3706 mutex_unlock(&wq_pool_mutex); 3707 put_online_cpus(); 3708 } 3709 3710 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3711 const struct workqueue_attrs *attrs) 3712 { 3713 struct apply_wqattrs_ctx *ctx; 3714 3715 /* only unbound workqueues can change attributes */ 3716 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3717 return -EINVAL; 3718 3719 /* creating multiple pwqs breaks ordering guarantee */ 3720 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3721 return -EINVAL; 3722 3723 ctx = apply_wqattrs_prepare(wq, attrs); 3724 if (!ctx) 3725 return -ENOMEM; 3726 3727 /* the ctx has been prepared successfully, let's commit it */ 3728 apply_wqattrs_commit(ctx); 3729 apply_wqattrs_cleanup(ctx); 3730 3731 return 0; 3732 } 3733 3734 /** 3735 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3736 * @wq: the target workqueue 3737 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3738 * 3739 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3740 * machines, this function maps a separate pwq to each NUMA node with 3741 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3742 * NUMA node it was issued on. Older pwqs are released as in-flight work 3743 * items finish. Note that a work item which repeatedly requeues itself 3744 * back-to-back will stay on its current pwq. 3745 * 3746 * Performs GFP_KERNEL allocations. 3747 * 3748 * Return: 0 on success and -errno on failure. 3749 */ 3750 int apply_workqueue_attrs(struct workqueue_struct *wq, 3751 const struct workqueue_attrs *attrs) 3752 { 3753 int ret; 3754 3755 apply_wqattrs_lock(); 3756 ret = apply_workqueue_attrs_locked(wq, attrs); 3757 apply_wqattrs_unlock(); 3758 3759 return ret; 3760 } 3761 3762 /** 3763 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3764 * @wq: the target workqueue 3765 * @cpu: the CPU coming up or going down 3766 * @online: whether @cpu is coming up or going down 3767 * 3768 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3769 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3770 * @wq accordingly. 3771 * 3772 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3773 * falls back to @wq->dfl_pwq which may not be optimal but is always 3774 * correct. 3775 * 3776 * Note that when the last allowed CPU of a NUMA node goes offline for a 3777 * workqueue with a cpumask spanning multiple nodes, the workers which were 3778 * already executing the work items for the workqueue will lose their CPU 3779 * affinity and may execute on any CPU. This is similar to how per-cpu 3780 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3781 * affinity, it's the user's responsibility to flush the work item from 3782 * CPU_DOWN_PREPARE. 3783 */ 3784 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3785 bool online) 3786 { 3787 int node = cpu_to_node(cpu); 3788 int cpu_off = online ? -1 : cpu; 3789 struct pool_workqueue *old_pwq = NULL, *pwq; 3790 struct workqueue_attrs *target_attrs; 3791 cpumask_t *cpumask; 3792 3793 lockdep_assert_held(&wq_pool_mutex); 3794 3795 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3796 wq->unbound_attrs->no_numa) 3797 return; 3798 3799 /* 3800 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3801 * Let's use a preallocated one. The following buf is protected by 3802 * CPU hotplug exclusion. 3803 */ 3804 target_attrs = wq_update_unbound_numa_attrs_buf; 3805 cpumask = target_attrs->cpumask; 3806 3807 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3808 pwq = unbound_pwq_by_node(wq, node); 3809 3810 /* 3811 * Let's determine what needs to be done. If the target cpumask is 3812 * different from the default pwq's, we need to compare it to @pwq's 3813 * and create a new one if they don't match. If the target cpumask 3814 * equals the default pwq's, the default pwq should be used. 3815 */ 3816 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3817 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3818 return; 3819 } else { 3820 goto use_dfl_pwq; 3821 } 3822 3823 /* create a new pwq */ 3824 pwq = alloc_unbound_pwq(wq, target_attrs); 3825 if (!pwq) { 3826 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3827 wq->name); 3828 goto use_dfl_pwq; 3829 } 3830 3831 /* Install the new pwq. */ 3832 mutex_lock(&wq->mutex); 3833 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3834 goto out_unlock; 3835 3836 use_dfl_pwq: 3837 mutex_lock(&wq->mutex); 3838 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3839 get_pwq(wq->dfl_pwq); 3840 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3841 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3842 out_unlock: 3843 mutex_unlock(&wq->mutex); 3844 put_pwq_unlocked(old_pwq); 3845 } 3846 3847 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3848 { 3849 bool highpri = wq->flags & WQ_HIGHPRI; 3850 int cpu, ret; 3851 3852 if (!(wq->flags & WQ_UNBOUND)) { 3853 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3854 if (!wq->cpu_pwqs) 3855 return -ENOMEM; 3856 3857 for_each_possible_cpu(cpu) { 3858 struct pool_workqueue *pwq = 3859 per_cpu_ptr(wq->cpu_pwqs, cpu); 3860 struct worker_pool *cpu_pools = 3861 per_cpu(cpu_worker_pools, cpu); 3862 3863 init_pwq(pwq, wq, &cpu_pools[highpri]); 3864 3865 mutex_lock(&wq->mutex); 3866 link_pwq(pwq); 3867 mutex_unlock(&wq->mutex); 3868 } 3869 return 0; 3870 } else if (wq->flags & __WQ_ORDERED) { 3871 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3872 /* there should only be single pwq for ordering guarantee */ 3873 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3874 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3875 "ordering guarantee broken for workqueue %s\n", wq->name); 3876 return ret; 3877 } else { 3878 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3879 } 3880 } 3881 3882 static int wq_clamp_max_active(int max_active, unsigned int flags, 3883 const char *name) 3884 { 3885 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3886 3887 if (max_active < 1 || max_active > lim) 3888 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3889 max_active, name, 1, lim); 3890 3891 return clamp_val(max_active, 1, lim); 3892 } 3893 3894 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3895 unsigned int flags, 3896 int max_active, 3897 struct lock_class_key *key, 3898 const char *lock_name, ...) 3899 { 3900 size_t tbl_size = 0; 3901 va_list args; 3902 struct workqueue_struct *wq; 3903 struct pool_workqueue *pwq; 3904 3905 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 3906 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 3907 flags |= WQ_UNBOUND; 3908 3909 /* allocate wq and format name */ 3910 if (flags & WQ_UNBOUND) 3911 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 3912 3913 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 3914 if (!wq) 3915 return NULL; 3916 3917 if (flags & WQ_UNBOUND) { 3918 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3919 if (!wq->unbound_attrs) 3920 goto err_free_wq; 3921 } 3922 3923 va_start(args, lock_name); 3924 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 3925 va_end(args); 3926 3927 max_active = max_active ?: WQ_DFL_ACTIVE; 3928 max_active = wq_clamp_max_active(max_active, flags, wq->name); 3929 3930 /* init wq */ 3931 wq->flags = flags; 3932 wq->saved_max_active = max_active; 3933 mutex_init(&wq->mutex); 3934 atomic_set(&wq->nr_pwqs_to_flush, 0); 3935 INIT_LIST_HEAD(&wq->pwqs); 3936 INIT_LIST_HEAD(&wq->flusher_queue); 3937 INIT_LIST_HEAD(&wq->flusher_overflow); 3938 INIT_LIST_HEAD(&wq->maydays); 3939 3940 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3941 INIT_LIST_HEAD(&wq->list); 3942 3943 if (alloc_and_link_pwqs(wq) < 0) 3944 goto err_free_wq; 3945 3946 /* 3947 * Workqueues which may be used during memory reclaim should 3948 * have a rescuer to guarantee forward progress. 3949 */ 3950 if (flags & WQ_MEM_RECLAIM) { 3951 struct worker *rescuer; 3952 3953 rescuer = alloc_worker(NUMA_NO_NODE); 3954 if (!rescuer) 3955 goto err_destroy; 3956 3957 rescuer->rescue_wq = wq; 3958 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 3959 wq->name); 3960 if (IS_ERR(rescuer->task)) { 3961 kfree(rescuer); 3962 goto err_destroy; 3963 } 3964 3965 wq->rescuer = rescuer; 3966 kthread_bind_mask(rescuer->task, cpu_possible_mask); 3967 wake_up_process(rescuer->task); 3968 } 3969 3970 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 3971 goto err_destroy; 3972 3973 /* 3974 * wq_pool_mutex protects global freeze state and workqueues list. 3975 * Grab it, adjust max_active and add the new @wq to workqueues 3976 * list. 3977 */ 3978 mutex_lock(&wq_pool_mutex); 3979 3980 mutex_lock(&wq->mutex); 3981 for_each_pwq(pwq, wq) 3982 pwq_adjust_max_active(pwq); 3983 mutex_unlock(&wq->mutex); 3984 3985 list_add_tail_rcu(&wq->list, &workqueues); 3986 3987 mutex_unlock(&wq_pool_mutex); 3988 3989 return wq; 3990 3991 err_free_wq: 3992 free_workqueue_attrs(wq->unbound_attrs); 3993 kfree(wq); 3994 return NULL; 3995 err_destroy: 3996 destroy_workqueue(wq); 3997 return NULL; 3998 } 3999 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4000 4001 /** 4002 * destroy_workqueue - safely terminate a workqueue 4003 * @wq: target workqueue 4004 * 4005 * Safely destroy a workqueue. All work currently pending will be done first. 4006 */ 4007 void destroy_workqueue(struct workqueue_struct *wq) 4008 { 4009 struct pool_workqueue *pwq; 4010 int node; 4011 4012 /* drain it before proceeding with destruction */ 4013 drain_workqueue(wq); 4014 4015 /* sanity checks */ 4016 mutex_lock(&wq->mutex); 4017 for_each_pwq(pwq, wq) { 4018 int i; 4019 4020 for (i = 0; i < WORK_NR_COLORS; i++) { 4021 if (WARN_ON(pwq->nr_in_flight[i])) { 4022 mutex_unlock(&wq->mutex); 4023 return; 4024 } 4025 } 4026 4027 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4028 WARN_ON(pwq->nr_active) || 4029 WARN_ON(!list_empty(&pwq->delayed_works))) { 4030 mutex_unlock(&wq->mutex); 4031 return; 4032 } 4033 } 4034 mutex_unlock(&wq->mutex); 4035 4036 /* 4037 * wq list is used to freeze wq, remove from list after 4038 * flushing is complete in case freeze races us. 4039 */ 4040 mutex_lock(&wq_pool_mutex); 4041 list_del_rcu(&wq->list); 4042 mutex_unlock(&wq_pool_mutex); 4043 4044 workqueue_sysfs_unregister(wq); 4045 4046 if (wq->rescuer) 4047 kthread_stop(wq->rescuer->task); 4048 4049 if (!(wq->flags & WQ_UNBOUND)) { 4050 /* 4051 * The base ref is never dropped on per-cpu pwqs. Directly 4052 * schedule RCU free. 4053 */ 4054 call_rcu_sched(&wq->rcu, rcu_free_wq); 4055 } else { 4056 /* 4057 * We're the sole accessor of @wq at this point. Directly 4058 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4059 * @wq will be freed when the last pwq is released. 4060 */ 4061 for_each_node(node) { 4062 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4063 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4064 put_pwq_unlocked(pwq); 4065 } 4066 4067 /* 4068 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4069 * put. Don't access it afterwards. 4070 */ 4071 pwq = wq->dfl_pwq; 4072 wq->dfl_pwq = NULL; 4073 put_pwq_unlocked(pwq); 4074 } 4075 } 4076 EXPORT_SYMBOL_GPL(destroy_workqueue); 4077 4078 /** 4079 * workqueue_set_max_active - adjust max_active of a workqueue 4080 * @wq: target workqueue 4081 * @max_active: new max_active value. 4082 * 4083 * Set max_active of @wq to @max_active. 4084 * 4085 * CONTEXT: 4086 * Don't call from IRQ context. 4087 */ 4088 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4089 { 4090 struct pool_workqueue *pwq; 4091 4092 /* disallow meddling with max_active for ordered workqueues */ 4093 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4094 return; 4095 4096 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4097 4098 mutex_lock(&wq->mutex); 4099 4100 wq->saved_max_active = max_active; 4101 4102 for_each_pwq(pwq, wq) 4103 pwq_adjust_max_active(pwq); 4104 4105 mutex_unlock(&wq->mutex); 4106 } 4107 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4108 4109 /** 4110 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4111 * 4112 * Determine whether %current is a workqueue rescuer. Can be used from 4113 * work functions to determine whether it's being run off the rescuer task. 4114 * 4115 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4116 */ 4117 bool current_is_workqueue_rescuer(void) 4118 { 4119 struct worker *worker = current_wq_worker(); 4120 4121 return worker && worker->rescue_wq; 4122 } 4123 4124 /** 4125 * workqueue_congested - test whether a workqueue is congested 4126 * @cpu: CPU in question 4127 * @wq: target workqueue 4128 * 4129 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4130 * no synchronization around this function and the test result is 4131 * unreliable and only useful as advisory hints or for debugging. 4132 * 4133 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4134 * Note that both per-cpu and unbound workqueues may be associated with 4135 * multiple pool_workqueues which have separate congested states. A 4136 * workqueue being congested on one CPU doesn't mean the workqueue is also 4137 * contested on other CPUs / NUMA nodes. 4138 * 4139 * Return: 4140 * %true if congested, %false otherwise. 4141 */ 4142 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4143 { 4144 struct pool_workqueue *pwq; 4145 bool ret; 4146 4147 rcu_read_lock_sched(); 4148 4149 if (cpu == WORK_CPU_UNBOUND) 4150 cpu = smp_processor_id(); 4151 4152 if (!(wq->flags & WQ_UNBOUND)) 4153 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4154 else 4155 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4156 4157 ret = !list_empty(&pwq->delayed_works); 4158 rcu_read_unlock_sched(); 4159 4160 return ret; 4161 } 4162 EXPORT_SYMBOL_GPL(workqueue_congested); 4163 4164 /** 4165 * work_busy - test whether a work is currently pending or running 4166 * @work: the work to be tested 4167 * 4168 * Test whether @work is currently pending or running. There is no 4169 * synchronization around this function and the test result is 4170 * unreliable and only useful as advisory hints or for debugging. 4171 * 4172 * Return: 4173 * OR'd bitmask of WORK_BUSY_* bits. 4174 */ 4175 unsigned int work_busy(struct work_struct *work) 4176 { 4177 struct worker_pool *pool; 4178 unsigned long flags; 4179 unsigned int ret = 0; 4180 4181 if (work_pending(work)) 4182 ret |= WORK_BUSY_PENDING; 4183 4184 local_irq_save(flags); 4185 pool = get_work_pool(work); 4186 if (pool) { 4187 spin_lock(&pool->lock); 4188 if (find_worker_executing_work(pool, work)) 4189 ret |= WORK_BUSY_RUNNING; 4190 spin_unlock(&pool->lock); 4191 } 4192 local_irq_restore(flags); 4193 4194 return ret; 4195 } 4196 EXPORT_SYMBOL_GPL(work_busy); 4197 4198 /** 4199 * set_worker_desc - set description for the current work item 4200 * @fmt: printf-style format string 4201 * @...: arguments for the format string 4202 * 4203 * This function can be called by a running work function to describe what 4204 * the work item is about. If the worker task gets dumped, this 4205 * information will be printed out together to help debugging. The 4206 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4207 */ 4208 void set_worker_desc(const char *fmt, ...) 4209 { 4210 struct worker *worker = current_wq_worker(); 4211 va_list args; 4212 4213 if (worker) { 4214 va_start(args, fmt); 4215 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4216 va_end(args); 4217 worker->desc_valid = true; 4218 } 4219 } 4220 4221 /** 4222 * print_worker_info - print out worker information and description 4223 * @log_lvl: the log level to use when printing 4224 * @task: target task 4225 * 4226 * If @task is a worker and currently executing a work item, print out the 4227 * name of the workqueue being serviced and worker description set with 4228 * set_worker_desc() by the currently executing work item. 4229 * 4230 * This function can be safely called on any task as long as the 4231 * task_struct itself is accessible. While safe, this function isn't 4232 * synchronized and may print out mixups or garbages of limited length. 4233 */ 4234 void print_worker_info(const char *log_lvl, struct task_struct *task) 4235 { 4236 work_func_t *fn = NULL; 4237 char name[WQ_NAME_LEN] = { }; 4238 char desc[WORKER_DESC_LEN] = { }; 4239 struct pool_workqueue *pwq = NULL; 4240 struct workqueue_struct *wq = NULL; 4241 bool desc_valid = false; 4242 struct worker *worker; 4243 4244 if (!(task->flags & PF_WQ_WORKER)) 4245 return; 4246 4247 /* 4248 * This function is called without any synchronization and @task 4249 * could be in any state. Be careful with dereferences. 4250 */ 4251 worker = probe_kthread_data(task); 4252 4253 /* 4254 * Carefully copy the associated workqueue's workfn and name. Keep 4255 * the original last '\0' in case the original contains garbage. 4256 */ 4257 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4258 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4259 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4260 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4261 4262 /* copy worker description */ 4263 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4264 if (desc_valid) 4265 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4266 4267 if (fn || name[0] || desc[0]) { 4268 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4269 if (desc[0]) 4270 pr_cont(" (%s)", desc); 4271 pr_cont("\n"); 4272 } 4273 } 4274 4275 static void pr_cont_pool_info(struct worker_pool *pool) 4276 { 4277 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4278 if (pool->node != NUMA_NO_NODE) 4279 pr_cont(" node=%d", pool->node); 4280 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4281 } 4282 4283 static void pr_cont_work(bool comma, struct work_struct *work) 4284 { 4285 if (work->func == wq_barrier_func) { 4286 struct wq_barrier *barr; 4287 4288 barr = container_of(work, struct wq_barrier, work); 4289 4290 pr_cont("%s BAR(%d)", comma ? "," : "", 4291 task_pid_nr(barr->task)); 4292 } else { 4293 pr_cont("%s %pf", comma ? "," : "", work->func); 4294 } 4295 } 4296 4297 static void show_pwq(struct pool_workqueue *pwq) 4298 { 4299 struct worker_pool *pool = pwq->pool; 4300 struct work_struct *work; 4301 struct worker *worker; 4302 bool has_in_flight = false, has_pending = false; 4303 int bkt; 4304 4305 pr_info(" pwq %d:", pool->id); 4306 pr_cont_pool_info(pool); 4307 4308 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4309 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4310 4311 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4312 if (worker->current_pwq == pwq) { 4313 has_in_flight = true; 4314 break; 4315 } 4316 } 4317 if (has_in_flight) { 4318 bool comma = false; 4319 4320 pr_info(" in-flight:"); 4321 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4322 if (worker->current_pwq != pwq) 4323 continue; 4324 4325 pr_cont("%s %d%s:%pf", comma ? "," : "", 4326 task_pid_nr(worker->task), 4327 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4328 worker->current_func); 4329 list_for_each_entry(work, &worker->scheduled, entry) 4330 pr_cont_work(false, work); 4331 comma = true; 4332 } 4333 pr_cont("\n"); 4334 } 4335 4336 list_for_each_entry(work, &pool->worklist, entry) { 4337 if (get_work_pwq(work) == pwq) { 4338 has_pending = true; 4339 break; 4340 } 4341 } 4342 if (has_pending) { 4343 bool comma = false; 4344 4345 pr_info(" pending:"); 4346 list_for_each_entry(work, &pool->worklist, entry) { 4347 if (get_work_pwq(work) != pwq) 4348 continue; 4349 4350 pr_cont_work(comma, work); 4351 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4352 } 4353 pr_cont("\n"); 4354 } 4355 4356 if (!list_empty(&pwq->delayed_works)) { 4357 bool comma = false; 4358 4359 pr_info(" delayed:"); 4360 list_for_each_entry(work, &pwq->delayed_works, entry) { 4361 pr_cont_work(comma, work); 4362 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4363 } 4364 pr_cont("\n"); 4365 } 4366 } 4367 4368 /** 4369 * show_workqueue_state - dump workqueue state 4370 * 4371 * Called from a sysrq handler and prints out all busy workqueues and 4372 * pools. 4373 */ 4374 void show_workqueue_state(void) 4375 { 4376 struct workqueue_struct *wq; 4377 struct worker_pool *pool; 4378 unsigned long flags; 4379 int pi; 4380 4381 rcu_read_lock_sched(); 4382 4383 pr_info("Showing busy workqueues and worker pools:\n"); 4384 4385 list_for_each_entry_rcu(wq, &workqueues, list) { 4386 struct pool_workqueue *pwq; 4387 bool idle = true; 4388 4389 for_each_pwq(pwq, wq) { 4390 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4391 idle = false; 4392 break; 4393 } 4394 } 4395 if (idle) 4396 continue; 4397 4398 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4399 4400 for_each_pwq(pwq, wq) { 4401 spin_lock_irqsave(&pwq->pool->lock, flags); 4402 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4403 show_pwq(pwq); 4404 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4405 } 4406 } 4407 4408 for_each_pool(pool, pi) { 4409 struct worker *worker; 4410 bool first = true; 4411 4412 spin_lock_irqsave(&pool->lock, flags); 4413 if (pool->nr_workers == pool->nr_idle) 4414 goto next_pool; 4415 4416 pr_info("pool %d:", pool->id); 4417 pr_cont_pool_info(pool); 4418 pr_cont(" hung=%us workers=%d", 4419 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4420 pool->nr_workers); 4421 if (pool->manager) 4422 pr_cont(" manager: %d", 4423 task_pid_nr(pool->manager->task)); 4424 list_for_each_entry(worker, &pool->idle_list, entry) { 4425 pr_cont(" %s%d", first ? "idle: " : "", 4426 task_pid_nr(worker->task)); 4427 first = false; 4428 } 4429 pr_cont("\n"); 4430 next_pool: 4431 spin_unlock_irqrestore(&pool->lock, flags); 4432 } 4433 4434 rcu_read_unlock_sched(); 4435 } 4436 4437 /* 4438 * CPU hotplug. 4439 * 4440 * There are two challenges in supporting CPU hotplug. Firstly, there 4441 * are a lot of assumptions on strong associations among work, pwq and 4442 * pool which make migrating pending and scheduled works very 4443 * difficult to implement without impacting hot paths. Secondly, 4444 * worker pools serve mix of short, long and very long running works making 4445 * blocked draining impractical. 4446 * 4447 * This is solved by allowing the pools to be disassociated from the CPU 4448 * running as an unbound one and allowing it to be reattached later if the 4449 * cpu comes back online. 4450 */ 4451 4452 static void wq_unbind_fn(struct work_struct *work) 4453 { 4454 int cpu = smp_processor_id(); 4455 struct worker_pool *pool; 4456 struct worker *worker; 4457 4458 for_each_cpu_worker_pool(pool, cpu) { 4459 mutex_lock(&pool->attach_mutex); 4460 spin_lock_irq(&pool->lock); 4461 4462 /* 4463 * We've blocked all attach/detach operations. Make all workers 4464 * unbound and set DISASSOCIATED. Before this, all workers 4465 * except for the ones which are still executing works from 4466 * before the last CPU down must be on the cpu. After 4467 * this, they may become diasporas. 4468 */ 4469 for_each_pool_worker(worker, pool) 4470 worker->flags |= WORKER_UNBOUND; 4471 4472 pool->flags |= POOL_DISASSOCIATED; 4473 4474 spin_unlock_irq(&pool->lock); 4475 mutex_unlock(&pool->attach_mutex); 4476 4477 /* 4478 * Call schedule() so that we cross rq->lock and thus can 4479 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4480 * This is necessary as scheduler callbacks may be invoked 4481 * from other cpus. 4482 */ 4483 schedule(); 4484 4485 /* 4486 * Sched callbacks are disabled now. Zap nr_running. 4487 * After this, nr_running stays zero and need_more_worker() 4488 * and keep_working() are always true as long as the 4489 * worklist is not empty. This pool now behaves as an 4490 * unbound (in terms of concurrency management) pool which 4491 * are served by workers tied to the pool. 4492 */ 4493 atomic_set(&pool->nr_running, 0); 4494 4495 /* 4496 * With concurrency management just turned off, a busy 4497 * worker blocking could lead to lengthy stalls. Kick off 4498 * unbound chain execution of currently pending work items. 4499 */ 4500 spin_lock_irq(&pool->lock); 4501 wake_up_worker(pool); 4502 spin_unlock_irq(&pool->lock); 4503 } 4504 } 4505 4506 /** 4507 * rebind_workers - rebind all workers of a pool to the associated CPU 4508 * @pool: pool of interest 4509 * 4510 * @pool->cpu is coming online. Rebind all workers to the CPU. 4511 */ 4512 static void rebind_workers(struct worker_pool *pool) 4513 { 4514 struct worker *worker; 4515 4516 lockdep_assert_held(&pool->attach_mutex); 4517 4518 /* 4519 * Restore CPU affinity of all workers. As all idle workers should 4520 * be on the run-queue of the associated CPU before any local 4521 * wake-ups for concurrency management happen, restore CPU affinity 4522 * of all workers first and then clear UNBOUND. As we're called 4523 * from CPU_ONLINE, the following shouldn't fail. 4524 */ 4525 for_each_pool_worker(worker, pool) 4526 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4527 pool->attrs->cpumask) < 0); 4528 4529 spin_lock_irq(&pool->lock); 4530 pool->flags &= ~POOL_DISASSOCIATED; 4531 4532 for_each_pool_worker(worker, pool) { 4533 unsigned int worker_flags = worker->flags; 4534 4535 /* 4536 * A bound idle worker should actually be on the runqueue 4537 * of the associated CPU for local wake-ups targeting it to 4538 * work. Kick all idle workers so that they migrate to the 4539 * associated CPU. Doing this in the same loop as 4540 * replacing UNBOUND with REBOUND is safe as no worker will 4541 * be bound before @pool->lock is released. 4542 */ 4543 if (worker_flags & WORKER_IDLE) 4544 wake_up_process(worker->task); 4545 4546 /* 4547 * We want to clear UNBOUND but can't directly call 4548 * worker_clr_flags() or adjust nr_running. Atomically 4549 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4550 * @worker will clear REBOUND using worker_clr_flags() when 4551 * it initiates the next execution cycle thus restoring 4552 * concurrency management. Note that when or whether 4553 * @worker clears REBOUND doesn't affect correctness. 4554 * 4555 * ACCESS_ONCE() is necessary because @worker->flags may be 4556 * tested without holding any lock in 4557 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4558 * fail incorrectly leading to premature concurrency 4559 * management operations. 4560 */ 4561 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4562 worker_flags |= WORKER_REBOUND; 4563 worker_flags &= ~WORKER_UNBOUND; 4564 ACCESS_ONCE(worker->flags) = worker_flags; 4565 } 4566 4567 spin_unlock_irq(&pool->lock); 4568 } 4569 4570 /** 4571 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4572 * @pool: unbound pool of interest 4573 * @cpu: the CPU which is coming up 4574 * 4575 * An unbound pool may end up with a cpumask which doesn't have any online 4576 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4577 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4578 * online CPU before, cpus_allowed of all its workers should be restored. 4579 */ 4580 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4581 { 4582 static cpumask_t cpumask; 4583 struct worker *worker; 4584 4585 lockdep_assert_held(&pool->attach_mutex); 4586 4587 /* is @cpu allowed for @pool? */ 4588 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4589 return; 4590 4591 /* is @cpu the only online CPU? */ 4592 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4593 if (cpumask_weight(&cpumask) != 1) 4594 return; 4595 4596 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4597 for_each_pool_worker(worker, pool) 4598 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4599 pool->attrs->cpumask) < 0); 4600 } 4601 4602 /* 4603 * Workqueues should be brought up before normal priority CPU notifiers. 4604 * This will be registered high priority CPU notifier. 4605 */ 4606 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4607 unsigned long action, 4608 void *hcpu) 4609 { 4610 int cpu = (unsigned long)hcpu; 4611 struct worker_pool *pool; 4612 struct workqueue_struct *wq; 4613 int pi; 4614 4615 switch (action & ~CPU_TASKS_FROZEN) { 4616 case CPU_UP_PREPARE: 4617 for_each_cpu_worker_pool(pool, cpu) { 4618 if (pool->nr_workers) 4619 continue; 4620 if (!create_worker(pool)) 4621 return NOTIFY_BAD; 4622 } 4623 break; 4624 4625 case CPU_DOWN_FAILED: 4626 case CPU_ONLINE: 4627 mutex_lock(&wq_pool_mutex); 4628 4629 for_each_pool(pool, pi) { 4630 mutex_lock(&pool->attach_mutex); 4631 4632 if (pool->cpu == cpu) 4633 rebind_workers(pool); 4634 else if (pool->cpu < 0) 4635 restore_unbound_workers_cpumask(pool, cpu); 4636 4637 mutex_unlock(&pool->attach_mutex); 4638 } 4639 4640 /* update NUMA affinity of unbound workqueues */ 4641 list_for_each_entry(wq, &workqueues, list) 4642 wq_update_unbound_numa(wq, cpu, true); 4643 4644 mutex_unlock(&wq_pool_mutex); 4645 break; 4646 } 4647 return NOTIFY_OK; 4648 } 4649 4650 /* 4651 * Workqueues should be brought down after normal priority CPU notifiers. 4652 * This will be registered as low priority CPU notifier. 4653 */ 4654 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4655 unsigned long action, 4656 void *hcpu) 4657 { 4658 int cpu = (unsigned long)hcpu; 4659 struct work_struct unbind_work; 4660 struct workqueue_struct *wq; 4661 4662 switch (action & ~CPU_TASKS_FROZEN) { 4663 case CPU_DOWN_PREPARE: 4664 /* unbinding per-cpu workers should happen on the local CPU */ 4665 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4666 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4667 4668 /* update NUMA affinity of unbound workqueues */ 4669 mutex_lock(&wq_pool_mutex); 4670 list_for_each_entry(wq, &workqueues, list) 4671 wq_update_unbound_numa(wq, cpu, false); 4672 mutex_unlock(&wq_pool_mutex); 4673 4674 /* wait for per-cpu unbinding to finish */ 4675 flush_work(&unbind_work); 4676 destroy_work_on_stack(&unbind_work); 4677 break; 4678 } 4679 return NOTIFY_OK; 4680 } 4681 4682 #ifdef CONFIG_SMP 4683 4684 struct work_for_cpu { 4685 struct work_struct work; 4686 long (*fn)(void *); 4687 void *arg; 4688 long ret; 4689 }; 4690 4691 static void work_for_cpu_fn(struct work_struct *work) 4692 { 4693 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4694 4695 wfc->ret = wfc->fn(wfc->arg); 4696 } 4697 4698 /** 4699 * work_on_cpu - run a function in user context on a particular cpu 4700 * @cpu: the cpu to run on 4701 * @fn: the function to run 4702 * @arg: the function arg 4703 * 4704 * It is up to the caller to ensure that the cpu doesn't go offline. 4705 * The caller must not hold any locks which would prevent @fn from completing. 4706 * 4707 * Return: The value @fn returns. 4708 */ 4709 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4710 { 4711 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4712 4713 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4714 schedule_work_on(cpu, &wfc.work); 4715 flush_work(&wfc.work); 4716 destroy_work_on_stack(&wfc.work); 4717 return wfc.ret; 4718 } 4719 EXPORT_SYMBOL_GPL(work_on_cpu); 4720 #endif /* CONFIG_SMP */ 4721 4722 #ifdef CONFIG_FREEZER 4723 4724 /** 4725 * freeze_workqueues_begin - begin freezing workqueues 4726 * 4727 * Start freezing workqueues. After this function returns, all freezable 4728 * workqueues will queue new works to their delayed_works list instead of 4729 * pool->worklist. 4730 * 4731 * CONTEXT: 4732 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4733 */ 4734 void freeze_workqueues_begin(void) 4735 { 4736 struct workqueue_struct *wq; 4737 struct pool_workqueue *pwq; 4738 4739 mutex_lock(&wq_pool_mutex); 4740 4741 WARN_ON_ONCE(workqueue_freezing); 4742 workqueue_freezing = true; 4743 4744 list_for_each_entry(wq, &workqueues, list) { 4745 mutex_lock(&wq->mutex); 4746 for_each_pwq(pwq, wq) 4747 pwq_adjust_max_active(pwq); 4748 mutex_unlock(&wq->mutex); 4749 } 4750 4751 mutex_unlock(&wq_pool_mutex); 4752 } 4753 4754 /** 4755 * freeze_workqueues_busy - are freezable workqueues still busy? 4756 * 4757 * Check whether freezing is complete. This function must be called 4758 * between freeze_workqueues_begin() and thaw_workqueues(). 4759 * 4760 * CONTEXT: 4761 * Grabs and releases wq_pool_mutex. 4762 * 4763 * Return: 4764 * %true if some freezable workqueues are still busy. %false if freezing 4765 * is complete. 4766 */ 4767 bool freeze_workqueues_busy(void) 4768 { 4769 bool busy = false; 4770 struct workqueue_struct *wq; 4771 struct pool_workqueue *pwq; 4772 4773 mutex_lock(&wq_pool_mutex); 4774 4775 WARN_ON_ONCE(!workqueue_freezing); 4776 4777 list_for_each_entry(wq, &workqueues, list) { 4778 if (!(wq->flags & WQ_FREEZABLE)) 4779 continue; 4780 /* 4781 * nr_active is monotonically decreasing. It's safe 4782 * to peek without lock. 4783 */ 4784 rcu_read_lock_sched(); 4785 for_each_pwq(pwq, wq) { 4786 WARN_ON_ONCE(pwq->nr_active < 0); 4787 if (pwq->nr_active) { 4788 busy = true; 4789 rcu_read_unlock_sched(); 4790 goto out_unlock; 4791 } 4792 } 4793 rcu_read_unlock_sched(); 4794 } 4795 out_unlock: 4796 mutex_unlock(&wq_pool_mutex); 4797 return busy; 4798 } 4799 4800 /** 4801 * thaw_workqueues - thaw workqueues 4802 * 4803 * Thaw workqueues. Normal queueing is restored and all collected 4804 * frozen works are transferred to their respective pool worklists. 4805 * 4806 * CONTEXT: 4807 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4808 */ 4809 void thaw_workqueues(void) 4810 { 4811 struct workqueue_struct *wq; 4812 struct pool_workqueue *pwq; 4813 4814 mutex_lock(&wq_pool_mutex); 4815 4816 if (!workqueue_freezing) 4817 goto out_unlock; 4818 4819 workqueue_freezing = false; 4820 4821 /* restore max_active and repopulate worklist */ 4822 list_for_each_entry(wq, &workqueues, list) { 4823 mutex_lock(&wq->mutex); 4824 for_each_pwq(pwq, wq) 4825 pwq_adjust_max_active(pwq); 4826 mutex_unlock(&wq->mutex); 4827 } 4828 4829 out_unlock: 4830 mutex_unlock(&wq_pool_mutex); 4831 } 4832 #endif /* CONFIG_FREEZER */ 4833 4834 static int workqueue_apply_unbound_cpumask(void) 4835 { 4836 LIST_HEAD(ctxs); 4837 int ret = 0; 4838 struct workqueue_struct *wq; 4839 struct apply_wqattrs_ctx *ctx, *n; 4840 4841 lockdep_assert_held(&wq_pool_mutex); 4842 4843 list_for_each_entry(wq, &workqueues, list) { 4844 if (!(wq->flags & WQ_UNBOUND)) 4845 continue; 4846 /* creating multiple pwqs breaks ordering guarantee */ 4847 if (wq->flags & __WQ_ORDERED) 4848 continue; 4849 4850 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 4851 if (!ctx) { 4852 ret = -ENOMEM; 4853 break; 4854 } 4855 4856 list_add_tail(&ctx->list, &ctxs); 4857 } 4858 4859 list_for_each_entry_safe(ctx, n, &ctxs, list) { 4860 if (!ret) 4861 apply_wqattrs_commit(ctx); 4862 apply_wqattrs_cleanup(ctx); 4863 } 4864 4865 return ret; 4866 } 4867 4868 /** 4869 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 4870 * @cpumask: the cpumask to set 4871 * 4872 * The low-level workqueues cpumask is a global cpumask that limits 4873 * the affinity of all unbound workqueues. This function check the @cpumask 4874 * and apply it to all unbound workqueues and updates all pwqs of them. 4875 * 4876 * Retun: 0 - Success 4877 * -EINVAL - Invalid @cpumask 4878 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 4879 */ 4880 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 4881 { 4882 int ret = -EINVAL; 4883 cpumask_var_t saved_cpumask; 4884 4885 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 4886 return -ENOMEM; 4887 4888 cpumask_and(cpumask, cpumask, cpu_possible_mask); 4889 if (!cpumask_empty(cpumask)) { 4890 apply_wqattrs_lock(); 4891 4892 /* save the old wq_unbound_cpumask. */ 4893 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 4894 4895 /* update wq_unbound_cpumask at first and apply it to wqs. */ 4896 cpumask_copy(wq_unbound_cpumask, cpumask); 4897 ret = workqueue_apply_unbound_cpumask(); 4898 4899 /* restore the wq_unbound_cpumask when failed. */ 4900 if (ret < 0) 4901 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 4902 4903 apply_wqattrs_unlock(); 4904 } 4905 4906 free_cpumask_var(saved_cpumask); 4907 return ret; 4908 } 4909 4910 #ifdef CONFIG_SYSFS 4911 /* 4912 * Workqueues with WQ_SYSFS flag set is visible to userland via 4913 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 4914 * following attributes. 4915 * 4916 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 4917 * max_active RW int : maximum number of in-flight work items 4918 * 4919 * Unbound workqueues have the following extra attributes. 4920 * 4921 * id RO int : the associated pool ID 4922 * nice RW int : nice value of the workers 4923 * cpumask RW mask : bitmask of allowed CPUs for the workers 4924 */ 4925 struct wq_device { 4926 struct workqueue_struct *wq; 4927 struct device dev; 4928 }; 4929 4930 static struct workqueue_struct *dev_to_wq(struct device *dev) 4931 { 4932 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 4933 4934 return wq_dev->wq; 4935 } 4936 4937 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 4938 char *buf) 4939 { 4940 struct workqueue_struct *wq = dev_to_wq(dev); 4941 4942 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 4943 } 4944 static DEVICE_ATTR_RO(per_cpu); 4945 4946 static ssize_t max_active_show(struct device *dev, 4947 struct device_attribute *attr, char *buf) 4948 { 4949 struct workqueue_struct *wq = dev_to_wq(dev); 4950 4951 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 4952 } 4953 4954 static ssize_t max_active_store(struct device *dev, 4955 struct device_attribute *attr, const char *buf, 4956 size_t count) 4957 { 4958 struct workqueue_struct *wq = dev_to_wq(dev); 4959 int val; 4960 4961 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 4962 return -EINVAL; 4963 4964 workqueue_set_max_active(wq, val); 4965 return count; 4966 } 4967 static DEVICE_ATTR_RW(max_active); 4968 4969 static struct attribute *wq_sysfs_attrs[] = { 4970 &dev_attr_per_cpu.attr, 4971 &dev_attr_max_active.attr, 4972 NULL, 4973 }; 4974 ATTRIBUTE_GROUPS(wq_sysfs); 4975 4976 static ssize_t wq_pool_ids_show(struct device *dev, 4977 struct device_attribute *attr, char *buf) 4978 { 4979 struct workqueue_struct *wq = dev_to_wq(dev); 4980 const char *delim = ""; 4981 int node, written = 0; 4982 4983 rcu_read_lock_sched(); 4984 for_each_node(node) { 4985 written += scnprintf(buf + written, PAGE_SIZE - written, 4986 "%s%d:%d", delim, node, 4987 unbound_pwq_by_node(wq, node)->pool->id); 4988 delim = " "; 4989 } 4990 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 4991 rcu_read_unlock_sched(); 4992 4993 return written; 4994 } 4995 4996 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 4997 char *buf) 4998 { 4999 struct workqueue_struct *wq = dev_to_wq(dev); 5000 int written; 5001 5002 mutex_lock(&wq->mutex); 5003 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5004 mutex_unlock(&wq->mutex); 5005 5006 return written; 5007 } 5008 5009 /* prepare workqueue_attrs for sysfs store operations */ 5010 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5011 { 5012 struct workqueue_attrs *attrs; 5013 5014 lockdep_assert_held(&wq_pool_mutex); 5015 5016 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5017 if (!attrs) 5018 return NULL; 5019 5020 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5021 return attrs; 5022 } 5023 5024 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5025 const char *buf, size_t count) 5026 { 5027 struct workqueue_struct *wq = dev_to_wq(dev); 5028 struct workqueue_attrs *attrs; 5029 int ret = -ENOMEM; 5030 5031 apply_wqattrs_lock(); 5032 5033 attrs = wq_sysfs_prep_attrs(wq); 5034 if (!attrs) 5035 goto out_unlock; 5036 5037 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5038 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5039 ret = apply_workqueue_attrs_locked(wq, attrs); 5040 else 5041 ret = -EINVAL; 5042 5043 out_unlock: 5044 apply_wqattrs_unlock(); 5045 free_workqueue_attrs(attrs); 5046 return ret ?: count; 5047 } 5048 5049 static ssize_t wq_cpumask_show(struct device *dev, 5050 struct device_attribute *attr, char *buf) 5051 { 5052 struct workqueue_struct *wq = dev_to_wq(dev); 5053 int written; 5054 5055 mutex_lock(&wq->mutex); 5056 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5057 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5058 mutex_unlock(&wq->mutex); 5059 return written; 5060 } 5061 5062 static ssize_t wq_cpumask_store(struct device *dev, 5063 struct device_attribute *attr, 5064 const char *buf, size_t count) 5065 { 5066 struct workqueue_struct *wq = dev_to_wq(dev); 5067 struct workqueue_attrs *attrs; 5068 int ret = -ENOMEM; 5069 5070 apply_wqattrs_lock(); 5071 5072 attrs = wq_sysfs_prep_attrs(wq); 5073 if (!attrs) 5074 goto out_unlock; 5075 5076 ret = cpumask_parse(buf, attrs->cpumask); 5077 if (!ret) 5078 ret = apply_workqueue_attrs_locked(wq, attrs); 5079 5080 out_unlock: 5081 apply_wqattrs_unlock(); 5082 free_workqueue_attrs(attrs); 5083 return ret ?: count; 5084 } 5085 5086 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5087 char *buf) 5088 { 5089 struct workqueue_struct *wq = dev_to_wq(dev); 5090 int written; 5091 5092 mutex_lock(&wq->mutex); 5093 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5094 !wq->unbound_attrs->no_numa); 5095 mutex_unlock(&wq->mutex); 5096 5097 return written; 5098 } 5099 5100 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5101 const char *buf, size_t count) 5102 { 5103 struct workqueue_struct *wq = dev_to_wq(dev); 5104 struct workqueue_attrs *attrs; 5105 int v, ret = -ENOMEM; 5106 5107 apply_wqattrs_lock(); 5108 5109 attrs = wq_sysfs_prep_attrs(wq); 5110 if (!attrs) 5111 goto out_unlock; 5112 5113 ret = -EINVAL; 5114 if (sscanf(buf, "%d", &v) == 1) { 5115 attrs->no_numa = !v; 5116 ret = apply_workqueue_attrs_locked(wq, attrs); 5117 } 5118 5119 out_unlock: 5120 apply_wqattrs_unlock(); 5121 free_workqueue_attrs(attrs); 5122 return ret ?: count; 5123 } 5124 5125 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5126 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5127 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5128 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5129 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5130 __ATTR_NULL, 5131 }; 5132 5133 static struct bus_type wq_subsys = { 5134 .name = "workqueue", 5135 .dev_groups = wq_sysfs_groups, 5136 }; 5137 5138 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5139 struct device_attribute *attr, char *buf) 5140 { 5141 int written; 5142 5143 mutex_lock(&wq_pool_mutex); 5144 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5145 cpumask_pr_args(wq_unbound_cpumask)); 5146 mutex_unlock(&wq_pool_mutex); 5147 5148 return written; 5149 } 5150 5151 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5152 struct device_attribute *attr, const char *buf, size_t count) 5153 { 5154 cpumask_var_t cpumask; 5155 int ret; 5156 5157 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5158 return -ENOMEM; 5159 5160 ret = cpumask_parse(buf, cpumask); 5161 if (!ret) 5162 ret = workqueue_set_unbound_cpumask(cpumask); 5163 5164 free_cpumask_var(cpumask); 5165 return ret ? ret : count; 5166 } 5167 5168 static struct device_attribute wq_sysfs_cpumask_attr = 5169 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5170 wq_unbound_cpumask_store); 5171 5172 static int __init wq_sysfs_init(void) 5173 { 5174 int err; 5175 5176 err = subsys_virtual_register(&wq_subsys, NULL); 5177 if (err) 5178 return err; 5179 5180 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5181 } 5182 core_initcall(wq_sysfs_init); 5183 5184 static void wq_device_release(struct device *dev) 5185 { 5186 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5187 5188 kfree(wq_dev); 5189 } 5190 5191 /** 5192 * workqueue_sysfs_register - make a workqueue visible in sysfs 5193 * @wq: the workqueue to register 5194 * 5195 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5196 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5197 * which is the preferred method. 5198 * 5199 * Workqueue user should use this function directly iff it wants to apply 5200 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5201 * apply_workqueue_attrs() may race against userland updating the 5202 * attributes. 5203 * 5204 * Return: 0 on success, -errno on failure. 5205 */ 5206 int workqueue_sysfs_register(struct workqueue_struct *wq) 5207 { 5208 struct wq_device *wq_dev; 5209 int ret; 5210 5211 /* 5212 * Adjusting max_active or creating new pwqs by applying 5213 * attributes breaks ordering guarantee. Disallow exposing ordered 5214 * workqueues. 5215 */ 5216 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5217 return -EINVAL; 5218 5219 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5220 if (!wq_dev) 5221 return -ENOMEM; 5222 5223 wq_dev->wq = wq; 5224 wq_dev->dev.bus = &wq_subsys; 5225 wq_dev->dev.init_name = wq->name; 5226 wq_dev->dev.release = wq_device_release; 5227 5228 /* 5229 * unbound_attrs are created separately. Suppress uevent until 5230 * everything is ready. 5231 */ 5232 dev_set_uevent_suppress(&wq_dev->dev, true); 5233 5234 ret = device_register(&wq_dev->dev); 5235 if (ret) { 5236 kfree(wq_dev); 5237 wq->wq_dev = NULL; 5238 return ret; 5239 } 5240 5241 if (wq->flags & WQ_UNBOUND) { 5242 struct device_attribute *attr; 5243 5244 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5245 ret = device_create_file(&wq_dev->dev, attr); 5246 if (ret) { 5247 device_unregister(&wq_dev->dev); 5248 wq->wq_dev = NULL; 5249 return ret; 5250 } 5251 } 5252 } 5253 5254 dev_set_uevent_suppress(&wq_dev->dev, false); 5255 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5256 return 0; 5257 } 5258 5259 /** 5260 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5261 * @wq: the workqueue to unregister 5262 * 5263 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5264 */ 5265 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5266 { 5267 struct wq_device *wq_dev = wq->wq_dev; 5268 5269 if (!wq->wq_dev) 5270 return; 5271 5272 wq->wq_dev = NULL; 5273 device_unregister(&wq_dev->dev); 5274 } 5275 #else /* CONFIG_SYSFS */ 5276 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5277 #endif /* CONFIG_SYSFS */ 5278 5279 /* 5280 * Workqueue watchdog. 5281 * 5282 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5283 * flush dependency, a concurrency managed work item which stays RUNNING 5284 * indefinitely. Workqueue stalls can be very difficult to debug as the 5285 * usual warning mechanisms don't trigger and internal workqueue state is 5286 * largely opaque. 5287 * 5288 * Workqueue watchdog monitors all worker pools periodically and dumps 5289 * state if some pools failed to make forward progress for a while where 5290 * forward progress is defined as the first item on ->worklist changing. 5291 * 5292 * This mechanism is controlled through the kernel parameter 5293 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5294 * corresponding sysfs parameter file. 5295 */ 5296 #ifdef CONFIG_WQ_WATCHDOG 5297 5298 static void wq_watchdog_timer_fn(unsigned long data); 5299 5300 static unsigned long wq_watchdog_thresh = 30; 5301 static struct timer_list wq_watchdog_timer = 5302 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0); 5303 5304 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5305 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5306 5307 static void wq_watchdog_reset_touched(void) 5308 { 5309 int cpu; 5310 5311 wq_watchdog_touched = jiffies; 5312 for_each_possible_cpu(cpu) 5313 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5314 } 5315 5316 static void wq_watchdog_timer_fn(unsigned long data) 5317 { 5318 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5319 bool lockup_detected = false; 5320 struct worker_pool *pool; 5321 int pi; 5322 5323 if (!thresh) 5324 return; 5325 5326 rcu_read_lock(); 5327 5328 for_each_pool(pool, pi) { 5329 unsigned long pool_ts, touched, ts; 5330 5331 if (list_empty(&pool->worklist)) 5332 continue; 5333 5334 /* get the latest of pool and touched timestamps */ 5335 pool_ts = READ_ONCE(pool->watchdog_ts); 5336 touched = READ_ONCE(wq_watchdog_touched); 5337 5338 if (time_after(pool_ts, touched)) 5339 ts = pool_ts; 5340 else 5341 ts = touched; 5342 5343 if (pool->cpu >= 0) { 5344 unsigned long cpu_touched = 5345 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5346 pool->cpu)); 5347 if (time_after(cpu_touched, ts)) 5348 ts = cpu_touched; 5349 } 5350 5351 /* did we stall? */ 5352 if (time_after(jiffies, ts + thresh)) { 5353 lockup_detected = true; 5354 pr_emerg("BUG: workqueue lockup - pool"); 5355 pr_cont_pool_info(pool); 5356 pr_cont(" stuck for %us!\n", 5357 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5358 } 5359 } 5360 5361 rcu_read_unlock(); 5362 5363 if (lockup_detected) 5364 show_workqueue_state(); 5365 5366 wq_watchdog_reset_touched(); 5367 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5368 } 5369 5370 void wq_watchdog_touch(int cpu) 5371 { 5372 if (cpu >= 0) 5373 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5374 else 5375 wq_watchdog_touched = jiffies; 5376 } 5377 5378 static void wq_watchdog_set_thresh(unsigned long thresh) 5379 { 5380 wq_watchdog_thresh = 0; 5381 del_timer_sync(&wq_watchdog_timer); 5382 5383 if (thresh) { 5384 wq_watchdog_thresh = thresh; 5385 wq_watchdog_reset_touched(); 5386 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5387 } 5388 } 5389 5390 static int wq_watchdog_param_set_thresh(const char *val, 5391 const struct kernel_param *kp) 5392 { 5393 unsigned long thresh; 5394 int ret; 5395 5396 ret = kstrtoul(val, 0, &thresh); 5397 if (ret) 5398 return ret; 5399 5400 if (system_wq) 5401 wq_watchdog_set_thresh(thresh); 5402 else 5403 wq_watchdog_thresh = thresh; 5404 5405 return 0; 5406 } 5407 5408 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5409 .set = wq_watchdog_param_set_thresh, 5410 .get = param_get_ulong, 5411 }; 5412 5413 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5414 0644); 5415 5416 static void wq_watchdog_init(void) 5417 { 5418 wq_watchdog_set_thresh(wq_watchdog_thresh); 5419 } 5420 5421 #else /* CONFIG_WQ_WATCHDOG */ 5422 5423 static inline void wq_watchdog_init(void) { } 5424 5425 #endif /* CONFIG_WQ_WATCHDOG */ 5426 5427 static void __init wq_numa_init(void) 5428 { 5429 cpumask_var_t *tbl; 5430 int node, cpu; 5431 5432 if (num_possible_nodes() <= 1) 5433 return; 5434 5435 if (wq_disable_numa) { 5436 pr_info("workqueue: NUMA affinity support disabled\n"); 5437 return; 5438 } 5439 5440 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5441 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5442 5443 /* 5444 * We want masks of possible CPUs of each node which isn't readily 5445 * available. Build one from cpu_to_node() which should have been 5446 * fully initialized by now. 5447 */ 5448 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 5449 BUG_ON(!tbl); 5450 5451 for_each_node(node) 5452 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5453 node_online(node) ? node : NUMA_NO_NODE)); 5454 5455 for_each_possible_cpu(cpu) { 5456 node = cpu_to_node(cpu); 5457 if (WARN_ON(node == NUMA_NO_NODE)) { 5458 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5459 /* happens iff arch is bonkers, let's just proceed */ 5460 return; 5461 } 5462 cpumask_set_cpu(cpu, tbl[node]); 5463 } 5464 5465 wq_numa_possible_cpumask = tbl; 5466 wq_numa_enabled = true; 5467 } 5468 5469 static int __init init_workqueues(void) 5470 { 5471 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5472 int i, cpu; 5473 5474 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5475 5476 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5477 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 5478 5479 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5480 5481 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 5482 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 5483 5484 wq_numa_init(); 5485 5486 /* initialize CPU pools */ 5487 for_each_possible_cpu(cpu) { 5488 struct worker_pool *pool; 5489 5490 i = 0; 5491 for_each_cpu_worker_pool(pool, cpu) { 5492 BUG_ON(init_worker_pool(pool)); 5493 pool->cpu = cpu; 5494 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5495 pool->attrs->nice = std_nice[i++]; 5496 pool->node = cpu_to_node(cpu); 5497 5498 /* alloc pool ID */ 5499 mutex_lock(&wq_pool_mutex); 5500 BUG_ON(worker_pool_assign_id(pool)); 5501 mutex_unlock(&wq_pool_mutex); 5502 } 5503 } 5504 5505 /* create the initial worker */ 5506 for_each_online_cpu(cpu) { 5507 struct worker_pool *pool; 5508 5509 for_each_cpu_worker_pool(pool, cpu) { 5510 pool->flags &= ~POOL_DISASSOCIATED; 5511 BUG_ON(!create_worker(pool)); 5512 } 5513 } 5514 5515 /* create default unbound and ordered wq attrs */ 5516 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5517 struct workqueue_attrs *attrs; 5518 5519 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5520 attrs->nice = std_nice[i]; 5521 unbound_std_wq_attrs[i] = attrs; 5522 5523 /* 5524 * An ordered wq should have only one pwq as ordering is 5525 * guaranteed by max_active which is enforced by pwqs. 5526 * Turn off NUMA so that dfl_pwq is used for all nodes. 5527 */ 5528 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5529 attrs->nice = std_nice[i]; 5530 attrs->no_numa = true; 5531 ordered_wq_attrs[i] = attrs; 5532 } 5533 5534 system_wq = alloc_workqueue("events", 0, 0); 5535 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5536 system_long_wq = alloc_workqueue("events_long", 0, 0); 5537 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5538 WQ_UNBOUND_MAX_ACTIVE); 5539 system_freezable_wq = alloc_workqueue("events_freezable", 5540 WQ_FREEZABLE, 0); 5541 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5542 WQ_POWER_EFFICIENT, 0); 5543 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5544 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5545 0); 5546 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5547 !system_unbound_wq || !system_freezable_wq || 5548 !system_power_efficient_wq || 5549 !system_freezable_power_efficient_wq); 5550 5551 wq_watchdog_init(); 5552 5553 return 0; 5554 } 5555 early_initcall(init_workqueues); 5556