1 /* 2 * linux/kernel/workqueue.c 3 * 4 * Generic mechanism for defining kernel helper threads for running 5 * arbitrary tasks in process context. 6 * 7 * Started by Ingo Molnar, Copyright (C) 2002 8 * 9 * Derived from the taskqueue/keventd code by: 10 * 11 * David Woodhouse <dwmw2@infradead.org> 12 * Andrew Morton <andrewm@uow.edu.au> 13 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 14 * Theodore Ts'o <tytso@mit.edu> 15 * 16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/kernel.h> 21 #include <linux/sched.h> 22 #include <linux/init.h> 23 #include <linux/signal.h> 24 #include <linux/completion.h> 25 #include <linux/workqueue.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/notifier.h> 29 #include <linux/kthread.h> 30 #include <linux/hardirq.h> 31 #include <linux/mempolicy.h> 32 #include <linux/freezer.h> 33 #include <linux/kallsyms.h> 34 #include <linux/debug_locks.h> 35 #include <linux/lockdep.h> 36 37 /* 38 * The per-CPU workqueue (if single thread, we always use the first 39 * possible cpu). 40 */ 41 struct cpu_workqueue_struct { 42 43 spinlock_t lock; 44 45 struct list_head worklist; 46 wait_queue_head_t more_work; 47 struct work_struct *current_work; 48 49 struct workqueue_struct *wq; 50 struct task_struct *thread; 51 52 int run_depth; /* Detect run_workqueue() recursion depth */ 53 } ____cacheline_aligned; 54 55 /* 56 * The externally visible workqueue abstraction is an array of 57 * per-CPU workqueues: 58 */ 59 struct workqueue_struct { 60 struct cpu_workqueue_struct *cpu_wq; 61 struct list_head list; 62 const char *name; 63 int singlethread; 64 int freezeable; /* Freeze threads during suspend */ 65 #ifdef CONFIG_LOCKDEP 66 struct lockdep_map lockdep_map; 67 #endif 68 }; 69 70 /* Serializes the accesses to the list of workqueues. */ 71 static DEFINE_SPINLOCK(workqueue_lock); 72 static LIST_HEAD(workqueues); 73 74 static int singlethread_cpu __read_mostly; 75 static cpumask_t cpu_singlethread_map __read_mostly; 76 /* 77 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD 78 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work 79 * which comes in between can't use for_each_online_cpu(). We could 80 * use cpu_possible_map, the cpumask below is more a documentation 81 * than optimization. 82 */ 83 static cpumask_t cpu_populated_map __read_mostly; 84 85 /* If it's single threaded, it isn't in the list of workqueues. */ 86 static inline int is_single_threaded(struct workqueue_struct *wq) 87 { 88 return wq->singlethread; 89 } 90 91 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq) 92 { 93 return is_single_threaded(wq) 94 ? &cpu_singlethread_map : &cpu_populated_map; 95 } 96 97 static 98 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu) 99 { 100 if (unlikely(is_single_threaded(wq))) 101 cpu = singlethread_cpu; 102 return per_cpu_ptr(wq->cpu_wq, cpu); 103 } 104 105 /* 106 * Set the workqueue on which a work item is to be run 107 * - Must *only* be called if the pending flag is set 108 */ 109 static inline void set_wq_data(struct work_struct *work, 110 struct cpu_workqueue_struct *cwq) 111 { 112 unsigned long new; 113 114 BUG_ON(!work_pending(work)); 115 116 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING); 117 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work); 118 atomic_long_set(&work->data, new); 119 } 120 121 static inline 122 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work) 123 { 124 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK); 125 } 126 127 static void insert_work(struct cpu_workqueue_struct *cwq, 128 struct work_struct *work, int tail) 129 { 130 set_wq_data(work, cwq); 131 /* 132 * Ensure that we get the right work->data if we see the 133 * result of list_add() below, see try_to_grab_pending(). 134 */ 135 smp_wmb(); 136 if (tail) 137 list_add_tail(&work->entry, &cwq->worklist); 138 else 139 list_add(&work->entry, &cwq->worklist); 140 wake_up(&cwq->more_work); 141 } 142 143 /* Preempt must be disabled. */ 144 static void __queue_work(struct cpu_workqueue_struct *cwq, 145 struct work_struct *work) 146 { 147 unsigned long flags; 148 149 spin_lock_irqsave(&cwq->lock, flags); 150 insert_work(cwq, work, 1); 151 spin_unlock_irqrestore(&cwq->lock, flags); 152 } 153 154 /** 155 * queue_work - queue work on a workqueue 156 * @wq: workqueue to use 157 * @work: work to queue 158 * 159 * Returns 0 if @work was already on a queue, non-zero otherwise. 160 * 161 * We queue the work to the CPU on which it was submitted, but if the CPU dies 162 * it can be processed by another CPU. 163 */ 164 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 165 { 166 int ret = 0; 167 168 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 169 BUG_ON(!list_empty(&work->entry)); 170 __queue_work(wq_per_cpu(wq, get_cpu()), work); 171 put_cpu(); 172 ret = 1; 173 } 174 return ret; 175 } 176 EXPORT_SYMBOL_GPL(queue_work); 177 178 static void delayed_work_timer_fn(unsigned long __data) 179 { 180 struct delayed_work *dwork = (struct delayed_work *)__data; 181 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work); 182 struct workqueue_struct *wq = cwq->wq; 183 184 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work); 185 } 186 187 /** 188 * queue_delayed_work - queue work on a workqueue after delay 189 * @wq: workqueue to use 190 * @dwork: delayable work to queue 191 * @delay: number of jiffies to wait before queueing 192 * 193 * Returns 0 if @work was already on a queue, non-zero otherwise. 194 */ 195 int queue_delayed_work(struct workqueue_struct *wq, 196 struct delayed_work *dwork, unsigned long delay) 197 { 198 if (delay == 0) 199 return queue_work(wq, &dwork->work); 200 201 return queue_delayed_work_on(-1, wq, dwork, delay); 202 } 203 EXPORT_SYMBOL_GPL(queue_delayed_work); 204 205 /** 206 * queue_delayed_work_on - queue work on specific CPU after delay 207 * @cpu: CPU number to execute work on 208 * @wq: workqueue to use 209 * @dwork: work to queue 210 * @delay: number of jiffies to wait before queueing 211 * 212 * Returns 0 if @work was already on a queue, non-zero otherwise. 213 */ 214 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 215 struct delayed_work *dwork, unsigned long delay) 216 { 217 int ret = 0; 218 struct timer_list *timer = &dwork->timer; 219 struct work_struct *work = &dwork->work; 220 221 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 222 BUG_ON(timer_pending(timer)); 223 BUG_ON(!list_empty(&work->entry)); 224 225 timer_stats_timer_set_start_info(&dwork->timer); 226 227 /* This stores cwq for the moment, for the timer_fn */ 228 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id())); 229 timer->expires = jiffies + delay; 230 timer->data = (unsigned long)dwork; 231 timer->function = delayed_work_timer_fn; 232 233 if (unlikely(cpu >= 0)) 234 add_timer_on(timer, cpu); 235 else 236 add_timer(timer); 237 ret = 1; 238 } 239 return ret; 240 } 241 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 242 243 static void run_workqueue(struct cpu_workqueue_struct *cwq) 244 { 245 spin_lock_irq(&cwq->lock); 246 cwq->run_depth++; 247 if (cwq->run_depth > 3) { 248 /* morton gets to eat his hat */ 249 printk("%s: recursion depth exceeded: %d\n", 250 __func__, cwq->run_depth); 251 dump_stack(); 252 } 253 while (!list_empty(&cwq->worklist)) { 254 struct work_struct *work = list_entry(cwq->worklist.next, 255 struct work_struct, entry); 256 work_func_t f = work->func; 257 #ifdef CONFIG_LOCKDEP 258 /* 259 * It is permissible to free the struct work_struct 260 * from inside the function that is called from it, 261 * this we need to take into account for lockdep too. 262 * To avoid bogus "held lock freed" warnings as well 263 * as problems when looking into work->lockdep_map, 264 * make a copy and use that here. 265 */ 266 struct lockdep_map lockdep_map = work->lockdep_map; 267 #endif 268 269 cwq->current_work = work; 270 list_del_init(cwq->worklist.next); 271 spin_unlock_irq(&cwq->lock); 272 273 BUG_ON(get_wq_data(work) != cwq); 274 work_clear_pending(work); 275 lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_); 276 lock_acquire(&lockdep_map, 0, 0, 0, 2, _THIS_IP_); 277 f(work); 278 lock_release(&lockdep_map, 1, _THIS_IP_); 279 lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_); 280 281 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 282 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 283 "%s/0x%08x/%d\n", 284 current->comm, preempt_count(), 285 task_pid_nr(current)); 286 printk(KERN_ERR " last function: "); 287 print_symbol("%s\n", (unsigned long)f); 288 debug_show_held_locks(current); 289 dump_stack(); 290 } 291 292 spin_lock_irq(&cwq->lock); 293 cwq->current_work = NULL; 294 } 295 cwq->run_depth--; 296 spin_unlock_irq(&cwq->lock); 297 } 298 299 static int worker_thread(void *__cwq) 300 { 301 struct cpu_workqueue_struct *cwq = __cwq; 302 DEFINE_WAIT(wait); 303 304 if (cwq->wq->freezeable) 305 set_freezable(); 306 307 set_user_nice(current, -5); 308 309 for (;;) { 310 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); 311 if (!freezing(current) && 312 !kthread_should_stop() && 313 list_empty(&cwq->worklist)) 314 schedule(); 315 finish_wait(&cwq->more_work, &wait); 316 317 try_to_freeze(); 318 319 if (kthread_should_stop()) 320 break; 321 322 run_workqueue(cwq); 323 } 324 325 return 0; 326 } 327 328 struct wq_barrier { 329 struct work_struct work; 330 struct completion done; 331 }; 332 333 static void wq_barrier_func(struct work_struct *work) 334 { 335 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 336 complete(&barr->done); 337 } 338 339 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 340 struct wq_barrier *barr, int tail) 341 { 342 INIT_WORK(&barr->work, wq_barrier_func); 343 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work)); 344 345 init_completion(&barr->done); 346 347 insert_work(cwq, &barr->work, tail); 348 } 349 350 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) 351 { 352 int active; 353 354 if (cwq->thread == current) { 355 /* 356 * Probably keventd trying to flush its own queue. So simply run 357 * it by hand rather than deadlocking. 358 */ 359 run_workqueue(cwq); 360 active = 1; 361 } else { 362 struct wq_barrier barr; 363 364 active = 0; 365 spin_lock_irq(&cwq->lock); 366 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) { 367 insert_wq_barrier(cwq, &barr, 1); 368 active = 1; 369 } 370 spin_unlock_irq(&cwq->lock); 371 372 if (active) 373 wait_for_completion(&barr.done); 374 } 375 376 return active; 377 } 378 379 /** 380 * flush_workqueue - ensure that any scheduled work has run to completion. 381 * @wq: workqueue to flush 382 * 383 * Forces execution of the workqueue and blocks until its completion. 384 * This is typically used in driver shutdown handlers. 385 * 386 * We sleep until all works which were queued on entry have been handled, 387 * but we are not livelocked by new incoming ones. 388 * 389 * This function used to run the workqueues itself. Now we just wait for the 390 * helper threads to do it. 391 */ 392 void flush_workqueue(struct workqueue_struct *wq) 393 { 394 const cpumask_t *cpu_map = wq_cpu_map(wq); 395 int cpu; 396 397 might_sleep(); 398 lock_acquire(&wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_); 399 lock_release(&wq->lockdep_map, 1, _THIS_IP_); 400 for_each_cpu_mask(cpu, *cpu_map) 401 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu)); 402 } 403 EXPORT_SYMBOL_GPL(flush_workqueue); 404 405 /* 406 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 407 * so this work can't be re-armed in any way. 408 */ 409 static int try_to_grab_pending(struct work_struct *work) 410 { 411 struct cpu_workqueue_struct *cwq; 412 int ret = -1; 413 414 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) 415 return 0; 416 417 /* 418 * The queueing is in progress, or it is already queued. Try to 419 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 420 */ 421 422 cwq = get_wq_data(work); 423 if (!cwq) 424 return ret; 425 426 spin_lock_irq(&cwq->lock); 427 if (!list_empty(&work->entry)) { 428 /* 429 * This work is queued, but perhaps we locked the wrong cwq. 430 * In that case we must see the new value after rmb(), see 431 * insert_work()->wmb(). 432 */ 433 smp_rmb(); 434 if (cwq == get_wq_data(work)) { 435 list_del_init(&work->entry); 436 ret = 1; 437 } 438 } 439 spin_unlock_irq(&cwq->lock); 440 441 return ret; 442 } 443 444 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq, 445 struct work_struct *work) 446 { 447 struct wq_barrier barr; 448 int running = 0; 449 450 spin_lock_irq(&cwq->lock); 451 if (unlikely(cwq->current_work == work)) { 452 insert_wq_barrier(cwq, &barr, 0); 453 running = 1; 454 } 455 spin_unlock_irq(&cwq->lock); 456 457 if (unlikely(running)) 458 wait_for_completion(&barr.done); 459 } 460 461 static void wait_on_work(struct work_struct *work) 462 { 463 struct cpu_workqueue_struct *cwq; 464 struct workqueue_struct *wq; 465 const cpumask_t *cpu_map; 466 int cpu; 467 468 might_sleep(); 469 470 lock_acquire(&work->lockdep_map, 0, 0, 0, 2, _THIS_IP_); 471 lock_release(&work->lockdep_map, 1, _THIS_IP_); 472 473 cwq = get_wq_data(work); 474 if (!cwq) 475 return; 476 477 wq = cwq->wq; 478 cpu_map = wq_cpu_map(wq); 479 480 for_each_cpu_mask(cpu, *cpu_map) 481 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work); 482 } 483 484 static int __cancel_work_timer(struct work_struct *work, 485 struct timer_list* timer) 486 { 487 int ret; 488 489 do { 490 ret = (timer && likely(del_timer(timer))); 491 if (!ret) 492 ret = try_to_grab_pending(work); 493 wait_on_work(work); 494 } while (unlikely(ret < 0)); 495 496 work_clear_pending(work); 497 return ret; 498 } 499 500 /** 501 * cancel_work_sync - block until a work_struct's callback has terminated 502 * @work: the work which is to be flushed 503 * 504 * Returns true if @work was pending. 505 * 506 * cancel_work_sync() will cancel the work if it is queued. If the work's 507 * callback appears to be running, cancel_work_sync() will block until it 508 * has completed. 509 * 510 * It is possible to use this function if the work re-queues itself. It can 511 * cancel the work even if it migrates to another workqueue, however in that 512 * case it only guarantees that work->func() has completed on the last queued 513 * workqueue. 514 * 515 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not 516 * pending, otherwise it goes into a busy-wait loop until the timer expires. 517 * 518 * The caller must ensure that workqueue_struct on which this work was last 519 * queued can't be destroyed before this function returns. 520 */ 521 int cancel_work_sync(struct work_struct *work) 522 { 523 return __cancel_work_timer(work, NULL); 524 } 525 EXPORT_SYMBOL_GPL(cancel_work_sync); 526 527 /** 528 * cancel_delayed_work_sync - reliably kill off a delayed work. 529 * @dwork: the delayed work struct 530 * 531 * Returns true if @dwork was pending. 532 * 533 * It is possible to use this function if @dwork rearms itself via queue_work() 534 * or queue_delayed_work(). See also the comment for cancel_work_sync(). 535 */ 536 int cancel_delayed_work_sync(struct delayed_work *dwork) 537 { 538 return __cancel_work_timer(&dwork->work, &dwork->timer); 539 } 540 EXPORT_SYMBOL(cancel_delayed_work_sync); 541 542 static struct workqueue_struct *keventd_wq __read_mostly; 543 544 /** 545 * schedule_work - put work task in global workqueue 546 * @work: job to be done 547 * 548 * This puts a job in the kernel-global workqueue. 549 */ 550 int schedule_work(struct work_struct *work) 551 { 552 return queue_work(keventd_wq, work); 553 } 554 EXPORT_SYMBOL(schedule_work); 555 556 /** 557 * schedule_delayed_work - put work task in global workqueue after delay 558 * @dwork: job to be done 559 * @delay: number of jiffies to wait or 0 for immediate execution 560 * 561 * After waiting for a given time this puts a job in the kernel-global 562 * workqueue. 563 */ 564 int schedule_delayed_work(struct delayed_work *dwork, 565 unsigned long delay) 566 { 567 return queue_delayed_work(keventd_wq, dwork, delay); 568 } 569 EXPORT_SYMBOL(schedule_delayed_work); 570 571 /** 572 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 573 * @cpu: cpu to use 574 * @dwork: job to be done 575 * @delay: number of jiffies to wait 576 * 577 * After waiting for a given time this puts a job in the kernel-global 578 * workqueue on the specified CPU. 579 */ 580 int schedule_delayed_work_on(int cpu, 581 struct delayed_work *dwork, unsigned long delay) 582 { 583 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); 584 } 585 EXPORT_SYMBOL(schedule_delayed_work_on); 586 587 /** 588 * schedule_on_each_cpu - call a function on each online CPU from keventd 589 * @func: the function to call 590 * 591 * Returns zero on success. 592 * Returns -ve errno on failure. 593 * 594 * schedule_on_each_cpu() is very slow. 595 */ 596 int schedule_on_each_cpu(work_func_t func) 597 { 598 int cpu; 599 struct work_struct *works; 600 601 works = alloc_percpu(struct work_struct); 602 if (!works) 603 return -ENOMEM; 604 605 get_online_cpus(); 606 for_each_online_cpu(cpu) { 607 struct work_struct *work = per_cpu_ptr(works, cpu); 608 609 INIT_WORK(work, func); 610 set_bit(WORK_STRUCT_PENDING, work_data_bits(work)); 611 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work); 612 } 613 flush_workqueue(keventd_wq); 614 put_online_cpus(); 615 free_percpu(works); 616 return 0; 617 } 618 619 void flush_scheduled_work(void) 620 { 621 flush_workqueue(keventd_wq); 622 } 623 EXPORT_SYMBOL(flush_scheduled_work); 624 625 /** 626 * execute_in_process_context - reliably execute the routine with user context 627 * @fn: the function to execute 628 * @ew: guaranteed storage for the execute work structure (must 629 * be available when the work executes) 630 * 631 * Executes the function immediately if process context is available, 632 * otherwise schedules the function for delayed execution. 633 * 634 * Returns: 0 - function was executed 635 * 1 - function was scheduled for execution 636 */ 637 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 638 { 639 if (!in_interrupt()) { 640 fn(&ew->work); 641 return 0; 642 } 643 644 INIT_WORK(&ew->work, fn); 645 schedule_work(&ew->work); 646 647 return 1; 648 } 649 EXPORT_SYMBOL_GPL(execute_in_process_context); 650 651 int keventd_up(void) 652 { 653 return keventd_wq != NULL; 654 } 655 656 int current_is_keventd(void) 657 { 658 struct cpu_workqueue_struct *cwq; 659 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */ 660 int ret = 0; 661 662 BUG_ON(!keventd_wq); 663 664 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu); 665 if (current == cwq->thread) 666 ret = 1; 667 668 return ret; 669 670 } 671 672 static struct cpu_workqueue_struct * 673 init_cpu_workqueue(struct workqueue_struct *wq, int cpu) 674 { 675 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu); 676 677 cwq->wq = wq; 678 spin_lock_init(&cwq->lock); 679 INIT_LIST_HEAD(&cwq->worklist); 680 init_waitqueue_head(&cwq->more_work); 681 682 return cwq; 683 } 684 685 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 686 { 687 struct workqueue_struct *wq = cwq->wq; 688 const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d"; 689 struct task_struct *p; 690 691 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu); 692 /* 693 * Nobody can add the work_struct to this cwq, 694 * if (caller is __create_workqueue) 695 * nobody should see this wq 696 * else // caller is CPU_UP_PREPARE 697 * cpu is not on cpu_online_map 698 * so we can abort safely. 699 */ 700 if (IS_ERR(p)) 701 return PTR_ERR(p); 702 703 cwq->thread = p; 704 705 return 0; 706 } 707 708 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 709 { 710 struct task_struct *p = cwq->thread; 711 712 if (p != NULL) { 713 if (cpu >= 0) 714 kthread_bind(p, cpu); 715 wake_up_process(p); 716 } 717 } 718 719 struct workqueue_struct *__create_workqueue_key(const char *name, 720 int singlethread, 721 int freezeable, 722 struct lock_class_key *key, 723 const char *lock_name) 724 { 725 struct workqueue_struct *wq; 726 struct cpu_workqueue_struct *cwq; 727 int err = 0, cpu; 728 729 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 730 if (!wq) 731 return NULL; 732 733 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct); 734 if (!wq->cpu_wq) { 735 kfree(wq); 736 return NULL; 737 } 738 739 wq->name = name; 740 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 741 wq->singlethread = singlethread; 742 wq->freezeable = freezeable; 743 INIT_LIST_HEAD(&wq->list); 744 745 if (singlethread) { 746 cwq = init_cpu_workqueue(wq, singlethread_cpu); 747 err = create_workqueue_thread(cwq, singlethread_cpu); 748 start_workqueue_thread(cwq, -1); 749 } else { 750 get_online_cpus(); 751 spin_lock(&workqueue_lock); 752 list_add(&wq->list, &workqueues); 753 spin_unlock(&workqueue_lock); 754 755 for_each_possible_cpu(cpu) { 756 cwq = init_cpu_workqueue(wq, cpu); 757 if (err || !cpu_online(cpu)) 758 continue; 759 err = create_workqueue_thread(cwq, cpu); 760 start_workqueue_thread(cwq, cpu); 761 } 762 put_online_cpus(); 763 } 764 765 if (err) { 766 destroy_workqueue(wq); 767 wq = NULL; 768 } 769 return wq; 770 } 771 EXPORT_SYMBOL_GPL(__create_workqueue_key); 772 773 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq) 774 { 775 /* 776 * Our caller is either destroy_workqueue() or CPU_DEAD, 777 * get_online_cpus() protects cwq->thread. 778 */ 779 if (cwq->thread == NULL) 780 return; 781 782 lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_); 783 lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_); 784 785 flush_cpu_workqueue(cwq); 786 /* 787 * If the caller is CPU_DEAD and cwq->worklist was not empty, 788 * a concurrent flush_workqueue() can insert a barrier after us. 789 * However, in that case run_workqueue() won't return and check 790 * kthread_should_stop() until it flushes all work_struct's. 791 * When ->worklist becomes empty it is safe to exit because no 792 * more work_structs can be queued on this cwq: flush_workqueue 793 * checks list_empty(), and a "normal" queue_work() can't use 794 * a dead CPU. 795 */ 796 kthread_stop(cwq->thread); 797 cwq->thread = NULL; 798 } 799 800 /** 801 * destroy_workqueue - safely terminate a workqueue 802 * @wq: target workqueue 803 * 804 * Safely destroy a workqueue. All work currently pending will be done first. 805 */ 806 void destroy_workqueue(struct workqueue_struct *wq) 807 { 808 const cpumask_t *cpu_map = wq_cpu_map(wq); 809 int cpu; 810 811 get_online_cpus(); 812 spin_lock(&workqueue_lock); 813 list_del(&wq->list); 814 spin_unlock(&workqueue_lock); 815 816 for_each_cpu_mask(cpu, *cpu_map) 817 cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu)); 818 put_online_cpus(); 819 820 free_percpu(wq->cpu_wq); 821 kfree(wq); 822 } 823 EXPORT_SYMBOL_GPL(destroy_workqueue); 824 825 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 826 unsigned long action, 827 void *hcpu) 828 { 829 unsigned int cpu = (unsigned long)hcpu; 830 struct cpu_workqueue_struct *cwq; 831 struct workqueue_struct *wq; 832 833 action &= ~CPU_TASKS_FROZEN; 834 835 switch (action) { 836 case CPU_UP_PREPARE: 837 cpu_set(cpu, cpu_populated_map); 838 } 839 840 list_for_each_entry(wq, &workqueues, list) { 841 cwq = per_cpu_ptr(wq->cpu_wq, cpu); 842 843 switch (action) { 844 case CPU_UP_PREPARE: 845 if (!create_workqueue_thread(cwq, cpu)) 846 break; 847 printk(KERN_ERR "workqueue [%s] for %i failed\n", 848 wq->name, cpu); 849 return NOTIFY_BAD; 850 851 case CPU_ONLINE: 852 start_workqueue_thread(cwq, cpu); 853 break; 854 855 case CPU_UP_CANCELED: 856 start_workqueue_thread(cwq, -1); 857 case CPU_DEAD: 858 cleanup_workqueue_thread(cwq); 859 break; 860 } 861 } 862 863 switch (action) { 864 case CPU_UP_CANCELED: 865 case CPU_DEAD: 866 cpu_clear(cpu, cpu_populated_map); 867 } 868 869 return NOTIFY_OK; 870 } 871 872 void __init init_workqueues(void) 873 { 874 cpu_populated_map = cpu_online_map; 875 singlethread_cpu = first_cpu(cpu_possible_map); 876 cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu); 877 hotcpu_notifier(workqueue_cpu_callback, 0); 878 keventd_wq = create_workqueue("events"); 879 BUG_ON(!keventd_wq); 880 } 881