xref: /openbmc/linux/kernel/workqueue.c (revision 21278aea)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 
73 	/* worker flags */
74 	WORKER_DIE		= 1 << 1,	/* die die die */
75 	WORKER_IDLE		= 1 << 2,	/* is idle */
76 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80 
81 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
82 				  WORKER_UNBOUND | WORKER_REBOUND,
83 
84 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85 
86 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
87 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88 
89 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
90 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
91 
92 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
93 						/* call for help after 10ms
94 						   (min two ticks) */
95 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
96 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
97 
98 	/*
99 	 * Rescue workers are used only on emergencies and shared by
100 	 * all cpus.  Give MIN_NICE.
101 	 */
102 	RESCUER_NICE_LEVEL	= MIN_NICE,
103 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 
105 	WQ_NAME_LEN		= 24,
106 };
107 
108 /*
109  * Structure fields follow one of the following exclusion rules.
110  *
111  * I: Modifiable by initialization/destruction paths and read-only for
112  *    everyone else.
113  *
114  * P: Preemption protected.  Disabling preemption is enough and should
115  *    only be modified and accessed from the local cpu.
116  *
117  * L: pool->lock protected.  Access with pool->lock held.
118  *
119  * X: During normal operation, modification requires pool->lock and should
120  *    be done only from local cpu.  Either disabling preemption on local
121  *    cpu or grabbing pool->lock is enough for read access.  If
122  *    POOL_DISASSOCIATED is set, it's identical to L.
123  *
124  * A: pool->attach_mutex protected.
125  *
126  * PL: wq_pool_mutex protected.
127  *
128  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129  *
130  * WQ: wq->mutex protected.
131  *
132  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
133  *
134  * MD: wq_mayday_lock protected.
135  */
136 
137 /* struct worker is defined in workqueue_internal.h */
138 
139 struct worker_pool {
140 	spinlock_t		lock;		/* the pool lock */
141 	int			cpu;		/* I: the associated cpu */
142 	int			node;		/* I: the associated node ID */
143 	int			id;		/* I: pool ID */
144 	unsigned int		flags;		/* X: flags */
145 
146 	struct list_head	worklist;	/* L: list of pending works */
147 	int			nr_workers;	/* L: total number of workers */
148 
149 	/* nr_idle includes the ones off idle_list for rebinding */
150 	int			nr_idle;	/* L: currently idle ones */
151 
152 	struct list_head	idle_list;	/* X: list of idle workers */
153 	struct timer_list	idle_timer;	/* L: worker idle timeout */
154 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
155 
156 	/* a workers is either on busy_hash or idle_list, or the manager */
157 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 						/* L: hash of busy workers */
159 
160 	/* see manage_workers() for details on the two manager mutexes */
161 	struct mutex		manager_arb;	/* manager arbitration */
162 	struct mutex		attach_mutex;	/* attach/detach exclusion */
163 	struct list_head	workers;	/* A: attached workers */
164 	struct completion	*detach_completion; /* all workers detached */
165 
166 	struct ida		worker_ida;	/* worker IDs for task name */
167 
168 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
170 	int			refcnt;		/* PL: refcnt for unbound pools */
171 
172 	/*
173 	 * The current concurrency level.  As it's likely to be accessed
174 	 * from other CPUs during try_to_wake_up(), put it in a separate
175 	 * cacheline.
176 	 */
177 	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 
179 	/*
180 	 * Destruction of pool is sched-RCU protected to allow dereferences
181 	 * from get_work_pool().
182 	 */
183 	struct rcu_head		rcu;
184 } ____cacheline_aligned_in_smp;
185 
186 /*
187  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
188  * of work_struct->data are used for flags and the remaining high bits
189  * point to the pwq; thus, pwqs need to be aligned at two's power of the
190  * number of flag bits.
191  */
192 struct pool_workqueue {
193 	struct worker_pool	*pool;		/* I: the associated pool */
194 	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 	int			work_color;	/* L: current color */
196 	int			flush_color;	/* L: flushing color */
197 	int			refcnt;		/* L: reference count */
198 	int			nr_in_flight[WORK_NR_COLORS];
199 						/* L: nr of in_flight works */
200 	int			nr_active;	/* L: nr of active works */
201 	int			max_active;	/* L: max active works */
202 	struct list_head	delayed_works;	/* L: delayed works */
203 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
205 
206 	/*
207 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
208 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
209 	 * itself is also sched-RCU protected so that the first pwq can be
210 	 * determined without grabbing wq->mutex.
211 	 */
212 	struct work_struct	unbound_release_work;
213 	struct rcu_head		rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215 
216 /*
217  * Structure used to wait for workqueue flush.
218  */
219 struct wq_flusher {
220 	struct list_head	list;		/* WQ: list of flushers */
221 	int			flush_color;	/* WQ: flush color waiting for */
222 	struct completion	done;		/* flush completion */
223 };
224 
225 struct wq_device;
226 
227 /*
228  * The externally visible workqueue.  It relays the issued work items to
229  * the appropriate worker_pool through its pool_workqueues.
230  */
231 struct workqueue_struct {
232 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233 	struct list_head	list;		/* PL: list of all workqueues */
234 
235 	struct mutex		mutex;		/* protects this wq */
236 	int			work_color;	/* WQ: current work color */
237 	int			flush_color;	/* WQ: current flush color */
238 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
240 	struct list_head	flusher_queue;	/* WQ: flush waiters */
241 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242 
243 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 	struct worker		*rescuer;	/* I: rescue worker */
245 
246 	int			nr_drainers;	/* WQ: drain in progress */
247 	int			saved_max_active; /* WQ: saved pwq max_active */
248 
249 	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250 	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251 
252 #ifdef CONFIG_SYSFS
253 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 	struct lockdep_map	lockdep_map;
257 #endif
258 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 
260 	/* hot fields used during command issue, aligned to cacheline */
261 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265 
266 static struct kmem_cache *pwq_cache;
267 
268 static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
269 static cpumask_var_t *wq_numa_possible_cpumask;
270 					/* possible CPUs of each node */
271 
272 static bool wq_disable_numa;
273 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274 
275 /* see the comment above the definition of WQ_POWER_EFFICIENT */
276 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277 static bool wq_power_efficient = true;
278 #else
279 static bool wq_power_efficient;
280 #endif
281 
282 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283 
284 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
285 
286 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288 
289 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
290 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
291 
292 static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
293 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
294 
295 /* the per-cpu worker pools */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 				     cpu_worker_pools);
298 
299 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
300 
301 /* PL: hash of all unbound pools keyed by pool->attrs */
302 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303 
304 /* I: attributes used when instantiating standard unbound pools on demand */
305 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306 
307 /* I: attributes used when instantiating ordered pools on demand */
308 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
309 
310 struct workqueue_struct *system_wq __read_mostly;
311 EXPORT_SYMBOL(system_wq);
312 struct workqueue_struct *system_highpri_wq __read_mostly;
313 EXPORT_SYMBOL_GPL(system_highpri_wq);
314 struct workqueue_struct *system_long_wq __read_mostly;
315 EXPORT_SYMBOL_GPL(system_long_wq);
316 struct workqueue_struct *system_unbound_wq __read_mostly;
317 EXPORT_SYMBOL_GPL(system_unbound_wq);
318 struct workqueue_struct *system_freezable_wq __read_mostly;
319 EXPORT_SYMBOL_GPL(system_freezable_wq);
320 struct workqueue_struct *system_power_efficient_wq __read_mostly;
321 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
322 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
323 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
324 
325 static int worker_thread(void *__worker);
326 static void copy_workqueue_attrs(struct workqueue_attrs *to,
327 				 const struct workqueue_attrs *from);
328 
329 #define CREATE_TRACE_POINTS
330 #include <trace/events/workqueue.h>
331 
332 #define assert_rcu_or_pool_mutex()					\
333 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
334 			   lockdep_is_held(&wq_pool_mutex),		\
335 			   "sched RCU or wq_pool_mutex should be held")
336 
337 #define assert_rcu_or_wq_mutex(wq)					\
338 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
339 			   lockdep_is_held(&wq->mutex),			\
340 			   "sched RCU or wq->mutex should be held")
341 
342 #define for_each_cpu_worker_pool(pool, cpu)				\
343 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
344 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
345 	     (pool)++)
346 
347 /**
348  * for_each_pool - iterate through all worker_pools in the system
349  * @pool: iteration cursor
350  * @pi: integer used for iteration
351  *
352  * This must be called either with wq_pool_mutex held or sched RCU read
353  * locked.  If the pool needs to be used beyond the locking in effect, the
354  * caller is responsible for guaranteeing that the pool stays online.
355  *
356  * The if/else clause exists only for the lockdep assertion and can be
357  * ignored.
358  */
359 #define for_each_pool(pool, pi)						\
360 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
361 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
362 		else
363 
364 /**
365  * for_each_pool_worker - iterate through all workers of a worker_pool
366  * @worker: iteration cursor
367  * @pool: worker_pool to iterate workers of
368  *
369  * This must be called with @pool->attach_mutex.
370  *
371  * The if/else clause exists only for the lockdep assertion and can be
372  * ignored.
373  */
374 #define for_each_pool_worker(worker, pool)				\
375 	list_for_each_entry((worker), &(pool)->workers, node)		\
376 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
377 		else
378 
379 /**
380  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
381  * @pwq: iteration cursor
382  * @wq: the target workqueue
383  *
384  * This must be called either with wq->mutex held or sched RCU read locked.
385  * If the pwq needs to be used beyond the locking in effect, the caller is
386  * responsible for guaranteeing that the pwq stays online.
387  *
388  * The if/else clause exists only for the lockdep assertion and can be
389  * ignored.
390  */
391 #define for_each_pwq(pwq, wq)						\
392 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
393 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
394 		else
395 
396 #ifdef CONFIG_DEBUG_OBJECTS_WORK
397 
398 static struct debug_obj_descr work_debug_descr;
399 
400 static void *work_debug_hint(void *addr)
401 {
402 	return ((struct work_struct *) addr)->func;
403 }
404 
405 /*
406  * fixup_init is called when:
407  * - an active object is initialized
408  */
409 static int work_fixup_init(void *addr, enum debug_obj_state state)
410 {
411 	struct work_struct *work = addr;
412 
413 	switch (state) {
414 	case ODEBUG_STATE_ACTIVE:
415 		cancel_work_sync(work);
416 		debug_object_init(work, &work_debug_descr);
417 		return 1;
418 	default:
419 		return 0;
420 	}
421 }
422 
423 /*
424  * fixup_activate is called when:
425  * - an active object is activated
426  * - an unknown object is activated (might be a statically initialized object)
427  */
428 static int work_fixup_activate(void *addr, enum debug_obj_state state)
429 {
430 	struct work_struct *work = addr;
431 
432 	switch (state) {
433 
434 	case ODEBUG_STATE_NOTAVAILABLE:
435 		/*
436 		 * This is not really a fixup. The work struct was
437 		 * statically initialized. We just make sure that it
438 		 * is tracked in the object tracker.
439 		 */
440 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
441 			debug_object_init(work, &work_debug_descr);
442 			debug_object_activate(work, &work_debug_descr);
443 			return 0;
444 		}
445 		WARN_ON_ONCE(1);
446 		return 0;
447 
448 	case ODEBUG_STATE_ACTIVE:
449 		WARN_ON(1);
450 
451 	default:
452 		return 0;
453 	}
454 }
455 
456 /*
457  * fixup_free is called when:
458  * - an active object is freed
459  */
460 static int work_fixup_free(void *addr, enum debug_obj_state state)
461 {
462 	struct work_struct *work = addr;
463 
464 	switch (state) {
465 	case ODEBUG_STATE_ACTIVE:
466 		cancel_work_sync(work);
467 		debug_object_free(work, &work_debug_descr);
468 		return 1;
469 	default:
470 		return 0;
471 	}
472 }
473 
474 static struct debug_obj_descr work_debug_descr = {
475 	.name		= "work_struct",
476 	.debug_hint	= work_debug_hint,
477 	.fixup_init	= work_fixup_init,
478 	.fixup_activate	= work_fixup_activate,
479 	.fixup_free	= work_fixup_free,
480 };
481 
482 static inline void debug_work_activate(struct work_struct *work)
483 {
484 	debug_object_activate(work, &work_debug_descr);
485 }
486 
487 static inline void debug_work_deactivate(struct work_struct *work)
488 {
489 	debug_object_deactivate(work, &work_debug_descr);
490 }
491 
492 void __init_work(struct work_struct *work, int onstack)
493 {
494 	if (onstack)
495 		debug_object_init_on_stack(work, &work_debug_descr);
496 	else
497 		debug_object_init(work, &work_debug_descr);
498 }
499 EXPORT_SYMBOL_GPL(__init_work);
500 
501 void destroy_work_on_stack(struct work_struct *work)
502 {
503 	debug_object_free(work, &work_debug_descr);
504 }
505 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
506 
507 void destroy_delayed_work_on_stack(struct delayed_work *work)
508 {
509 	destroy_timer_on_stack(&work->timer);
510 	debug_object_free(&work->work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
513 
514 #else
515 static inline void debug_work_activate(struct work_struct *work) { }
516 static inline void debug_work_deactivate(struct work_struct *work) { }
517 #endif
518 
519 /**
520  * worker_pool_assign_id - allocate ID and assing it to @pool
521  * @pool: the pool pointer of interest
522  *
523  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
524  * successfully, -errno on failure.
525  */
526 static int worker_pool_assign_id(struct worker_pool *pool)
527 {
528 	int ret;
529 
530 	lockdep_assert_held(&wq_pool_mutex);
531 
532 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
533 			GFP_KERNEL);
534 	if (ret >= 0) {
535 		pool->id = ret;
536 		return 0;
537 	}
538 	return ret;
539 }
540 
541 /**
542  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
543  * @wq: the target workqueue
544  * @node: the node ID
545  *
546  * This must be called either with pwq_lock held or sched RCU read locked.
547  * If the pwq needs to be used beyond the locking in effect, the caller is
548  * responsible for guaranteeing that the pwq stays online.
549  *
550  * Return: The unbound pool_workqueue for @node.
551  */
552 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
553 						  int node)
554 {
555 	assert_rcu_or_wq_mutex(wq);
556 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
557 }
558 
559 static unsigned int work_color_to_flags(int color)
560 {
561 	return color << WORK_STRUCT_COLOR_SHIFT;
562 }
563 
564 static int get_work_color(struct work_struct *work)
565 {
566 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
567 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
568 }
569 
570 static int work_next_color(int color)
571 {
572 	return (color + 1) % WORK_NR_COLORS;
573 }
574 
575 /*
576  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
577  * contain the pointer to the queued pwq.  Once execution starts, the flag
578  * is cleared and the high bits contain OFFQ flags and pool ID.
579  *
580  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
581  * and clear_work_data() can be used to set the pwq, pool or clear
582  * work->data.  These functions should only be called while the work is
583  * owned - ie. while the PENDING bit is set.
584  *
585  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
586  * corresponding to a work.  Pool is available once the work has been
587  * queued anywhere after initialization until it is sync canceled.  pwq is
588  * available only while the work item is queued.
589  *
590  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
591  * canceled.  While being canceled, a work item may have its PENDING set
592  * but stay off timer and worklist for arbitrarily long and nobody should
593  * try to steal the PENDING bit.
594  */
595 static inline void set_work_data(struct work_struct *work, unsigned long data,
596 				 unsigned long flags)
597 {
598 	WARN_ON_ONCE(!work_pending(work));
599 	atomic_long_set(&work->data, data | flags | work_static(work));
600 }
601 
602 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
603 			 unsigned long extra_flags)
604 {
605 	set_work_data(work, (unsigned long)pwq,
606 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
607 }
608 
609 static void set_work_pool_and_keep_pending(struct work_struct *work,
610 					   int pool_id)
611 {
612 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
613 		      WORK_STRUCT_PENDING);
614 }
615 
616 static void set_work_pool_and_clear_pending(struct work_struct *work,
617 					    int pool_id)
618 {
619 	/*
620 	 * The following wmb is paired with the implied mb in
621 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
622 	 * here are visible to and precede any updates by the next PENDING
623 	 * owner.
624 	 */
625 	smp_wmb();
626 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
627 }
628 
629 static void clear_work_data(struct work_struct *work)
630 {
631 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
632 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
633 }
634 
635 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
636 {
637 	unsigned long data = atomic_long_read(&work->data);
638 
639 	if (data & WORK_STRUCT_PWQ)
640 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
641 	else
642 		return NULL;
643 }
644 
645 /**
646  * get_work_pool - return the worker_pool a given work was associated with
647  * @work: the work item of interest
648  *
649  * Pools are created and destroyed under wq_pool_mutex, and allows read
650  * access under sched-RCU read lock.  As such, this function should be
651  * called under wq_pool_mutex or with preemption disabled.
652  *
653  * All fields of the returned pool are accessible as long as the above
654  * mentioned locking is in effect.  If the returned pool needs to be used
655  * beyond the critical section, the caller is responsible for ensuring the
656  * returned pool is and stays online.
657  *
658  * Return: The worker_pool @work was last associated with.  %NULL if none.
659  */
660 static struct worker_pool *get_work_pool(struct work_struct *work)
661 {
662 	unsigned long data = atomic_long_read(&work->data);
663 	int pool_id;
664 
665 	assert_rcu_or_pool_mutex();
666 
667 	if (data & WORK_STRUCT_PWQ)
668 		return ((struct pool_workqueue *)
669 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
670 
671 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
672 	if (pool_id == WORK_OFFQ_POOL_NONE)
673 		return NULL;
674 
675 	return idr_find(&worker_pool_idr, pool_id);
676 }
677 
678 /**
679  * get_work_pool_id - return the worker pool ID a given work is associated with
680  * @work: the work item of interest
681  *
682  * Return: The worker_pool ID @work was last associated with.
683  * %WORK_OFFQ_POOL_NONE if none.
684  */
685 static int get_work_pool_id(struct work_struct *work)
686 {
687 	unsigned long data = atomic_long_read(&work->data);
688 
689 	if (data & WORK_STRUCT_PWQ)
690 		return ((struct pool_workqueue *)
691 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
692 
693 	return data >> WORK_OFFQ_POOL_SHIFT;
694 }
695 
696 static void mark_work_canceling(struct work_struct *work)
697 {
698 	unsigned long pool_id = get_work_pool_id(work);
699 
700 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
701 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
702 }
703 
704 static bool work_is_canceling(struct work_struct *work)
705 {
706 	unsigned long data = atomic_long_read(&work->data);
707 
708 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
709 }
710 
711 /*
712  * Policy functions.  These define the policies on how the global worker
713  * pools are managed.  Unless noted otherwise, these functions assume that
714  * they're being called with pool->lock held.
715  */
716 
717 static bool __need_more_worker(struct worker_pool *pool)
718 {
719 	return !atomic_read(&pool->nr_running);
720 }
721 
722 /*
723  * Need to wake up a worker?  Called from anything but currently
724  * running workers.
725  *
726  * Note that, because unbound workers never contribute to nr_running, this
727  * function will always return %true for unbound pools as long as the
728  * worklist isn't empty.
729  */
730 static bool need_more_worker(struct worker_pool *pool)
731 {
732 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
733 }
734 
735 /* Can I start working?  Called from busy but !running workers. */
736 static bool may_start_working(struct worker_pool *pool)
737 {
738 	return pool->nr_idle;
739 }
740 
741 /* Do I need to keep working?  Called from currently running workers. */
742 static bool keep_working(struct worker_pool *pool)
743 {
744 	return !list_empty(&pool->worklist) &&
745 		atomic_read(&pool->nr_running) <= 1;
746 }
747 
748 /* Do we need a new worker?  Called from manager. */
749 static bool need_to_create_worker(struct worker_pool *pool)
750 {
751 	return need_more_worker(pool) && !may_start_working(pool);
752 }
753 
754 /* Do we have too many workers and should some go away? */
755 static bool too_many_workers(struct worker_pool *pool)
756 {
757 	bool managing = mutex_is_locked(&pool->manager_arb);
758 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
759 	int nr_busy = pool->nr_workers - nr_idle;
760 
761 	/*
762 	 * nr_idle and idle_list may disagree if idle rebinding is in
763 	 * progress.  Never return %true if idle_list is empty.
764 	 */
765 	if (list_empty(&pool->idle_list))
766 		return false;
767 
768 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
769 }
770 
771 /*
772  * Wake up functions.
773  */
774 
775 /* Return the first idle worker.  Safe with preemption disabled */
776 static struct worker *first_idle_worker(struct worker_pool *pool)
777 {
778 	if (unlikely(list_empty(&pool->idle_list)))
779 		return NULL;
780 
781 	return list_first_entry(&pool->idle_list, struct worker, entry);
782 }
783 
784 /**
785  * wake_up_worker - wake up an idle worker
786  * @pool: worker pool to wake worker from
787  *
788  * Wake up the first idle worker of @pool.
789  *
790  * CONTEXT:
791  * spin_lock_irq(pool->lock).
792  */
793 static void wake_up_worker(struct worker_pool *pool)
794 {
795 	struct worker *worker = first_idle_worker(pool);
796 
797 	if (likely(worker))
798 		wake_up_process(worker->task);
799 }
800 
801 /**
802  * wq_worker_waking_up - a worker is waking up
803  * @task: task waking up
804  * @cpu: CPU @task is waking up to
805  *
806  * This function is called during try_to_wake_up() when a worker is
807  * being awoken.
808  *
809  * CONTEXT:
810  * spin_lock_irq(rq->lock)
811  */
812 void wq_worker_waking_up(struct task_struct *task, int cpu)
813 {
814 	struct worker *worker = kthread_data(task);
815 
816 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
817 		WARN_ON_ONCE(worker->pool->cpu != cpu);
818 		atomic_inc(&worker->pool->nr_running);
819 	}
820 }
821 
822 /**
823  * wq_worker_sleeping - a worker is going to sleep
824  * @task: task going to sleep
825  * @cpu: CPU in question, must be the current CPU number
826  *
827  * This function is called during schedule() when a busy worker is
828  * going to sleep.  Worker on the same cpu can be woken up by
829  * returning pointer to its task.
830  *
831  * CONTEXT:
832  * spin_lock_irq(rq->lock)
833  *
834  * Return:
835  * Worker task on @cpu to wake up, %NULL if none.
836  */
837 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
838 {
839 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
840 	struct worker_pool *pool;
841 
842 	/*
843 	 * Rescuers, which may not have all the fields set up like normal
844 	 * workers, also reach here, let's not access anything before
845 	 * checking NOT_RUNNING.
846 	 */
847 	if (worker->flags & WORKER_NOT_RUNNING)
848 		return NULL;
849 
850 	pool = worker->pool;
851 
852 	/* this can only happen on the local cpu */
853 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
854 		return NULL;
855 
856 	/*
857 	 * The counterpart of the following dec_and_test, implied mb,
858 	 * worklist not empty test sequence is in insert_work().
859 	 * Please read comment there.
860 	 *
861 	 * NOT_RUNNING is clear.  This means that we're bound to and
862 	 * running on the local cpu w/ rq lock held and preemption
863 	 * disabled, which in turn means that none else could be
864 	 * manipulating idle_list, so dereferencing idle_list without pool
865 	 * lock is safe.
866 	 */
867 	if (atomic_dec_and_test(&pool->nr_running) &&
868 	    !list_empty(&pool->worklist))
869 		to_wakeup = first_idle_worker(pool);
870 	return to_wakeup ? to_wakeup->task : NULL;
871 }
872 
873 /**
874  * worker_set_flags - set worker flags and adjust nr_running accordingly
875  * @worker: self
876  * @flags: flags to set
877  * @wakeup: wakeup an idle worker if necessary
878  *
879  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
880  * nr_running becomes zero and @wakeup is %true, an idle worker is
881  * woken up.
882  *
883  * CONTEXT:
884  * spin_lock_irq(pool->lock)
885  */
886 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
887 				    bool wakeup)
888 {
889 	struct worker_pool *pool = worker->pool;
890 
891 	WARN_ON_ONCE(worker->task != current);
892 
893 	/*
894 	 * If transitioning into NOT_RUNNING, adjust nr_running and
895 	 * wake up an idle worker as necessary if requested by
896 	 * @wakeup.
897 	 */
898 	if ((flags & WORKER_NOT_RUNNING) &&
899 	    !(worker->flags & WORKER_NOT_RUNNING)) {
900 		if (wakeup) {
901 			if (atomic_dec_and_test(&pool->nr_running) &&
902 			    !list_empty(&pool->worklist))
903 				wake_up_worker(pool);
904 		} else
905 			atomic_dec(&pool->nr_running);
906 	}
907 
908 	worker->flags |= flags;
909 }
910 
911 /**
912  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
913  * @worker: self
914  * @flags: flags to clear
915  *
916  * Clear @flags in @worker->flags and adjust nr_running accordingly.
917  *
918  * CONTEXT:
919  * spin_lock_irq(pool->lock)
920  */
921 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
922 {
923 	struct worker_pool *pool = worker->pool;
924 	unsigned int oflags = worker->flags;
925 
926 	WARN_ON_ONCE(worker->task != current);
927 
928 	worker->flags &= ~flags;
929 
930 	/*
931 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
932 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
933 	 * of multiple flags, not a single flag.
934 	 */
935 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
936 		if (!(worker->flags & WORKER_NOT_RUNNING))
937 			atomic_inc(&pool->nr_running);
938 }
939 
940 /**
941  * find_worker_executing_work - find worker which is executing a work
942  * @pool: pool of interest
943  * @work: work to find worker for
944  *
945  * Find a worker which is executing @work on @pool by searching
946  * @pool->busy_hash which is keyed by the address of @work.  For a worker
947  * to match, its current execution should match the address of @work and
948  * its work function.  This is to avoid unwanted dependency between
949  * unrelated work executions through a work item being recycled while still
950  * being executed.
951  *
952  * This is a bit tricky.  A work item may be freed once its execution
953  * starts and nothing prevents the freed area from being recycled for
954  * another work item.  If the same work item address ends up being reused
955  * before the original execution finishes, workqueue will identify the
956  * recycled work item as currently executing and make it wait until the
957  * current execution finishes, introducing an unwanted dependency.
958  *
959  * This function checks the work item address and work function to avoid
960  * false positives.  Note that this isn't complete as one may construct a
961  * work function which can introduce dependency onto itself through a
962  * recycled work item.  Well, if somebody wants to shoot oneself in the
963  * foot that badly, there's only so much we can do, and if such deadlock
964  * actually occurs, it should be easy to locate the culprit work function.
965  *
966  * CONTEXT:
967  * spin_lock_irq(pool->lock).
968  *
969  * Return:
970  * Pointer to worker which is executing @work if found, %NULL
971  * otherwise.
972  */
973 static struct worker *find_worker_executing_work(struct worker_pool *pool,
974 						 struct work_struct *work)
975 {
976 	struct worker *worker;
977 
978 	hash_for_each_possible(pool->busy_hash, worker, hentry,
979 			       (unsigned long)work)
980 		if (worker->current_work == work &&
981 		    worker->current_func == work->func)
982 			return worker;
983 
984 	return NULL;
985 }
986 
987 /**
988  * move_linked_works - move linked works to a list
989  * @work: start of series of works to be scheduled
990  * @head: target list to append @work to
991  * @nextp: out paramter for nested worklist walking
992  *
993  * Schedule linked works starting from @work to @head.  Work series to
994  * be scheduled starts at @work and includes any consecutive work with
995  * WORK_STRUCT_LINKED set in its predecessor.
996  *
997  * If @nextp is not NULL, it's updated to point to the next work of
998  * the last scheduled work.  This allows move_linked_works() to be
999  * nested inside outer list_for_each_entry_safe().
1000  *
1001  * CONTEXT:
1002  * spin_lock_irq(pool->lock).
1003  */
1004 static void move_linked_works(struct work_struct *work, struct list_head *head,
1005 			      struct work_struct **nextp)
1006 {
1007 	struct work_struct *n;
1008 
1009 	/*
1010 	 * Linked worklist will always end before the end of the list,
1011 	 * use NULL for list head.
1012 	 */
1013 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1014 		list_move_tail(&work->entry, head);
1015 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1016 			break;
1017 	}
1018 
1019 	/*
1020 	 * If we're already inside safe list traversal and have moved
1021 	 * multiple works to the scheduled queue, the next position
1022 	 * needs to be updated.
1023 	 */
1024 	if (nextp)
1025 		*nextp = n;
1026 }
1027 
1028 /**
1029  * get_pwq - get an extra reference on the specified pool_workqueue
1030  * @pwq: pool_workqueue to get
1031  *
1032  * Obtain an extra reference on @pwq.  The caller should guarantee that
1033  * @pwq has positive refcnt and be holding the matching pool->lock.
1034  */
1035 static void get_pwq(struct pool_workqueue *pwq)
1036 {
1037 	lockdep_assert_held(&pwq->pool->lock);
1038 	WARN_ON_ONCE(pwq->refcnt <= 0);
1039 	pwq->refcnt++;
1040 }
1041 
1042 /**
1043  * put_pwq - put a pool_workqueue reference
1044  * @pwq: pool_workqueue to put
1045  *
1046  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1047  * destruction.  The caller should be holding the matching pool->lock.
1048  */
1049 static void put_pwq(struct pool_workqueue *pwq)
1050 {
1051 	lockdep_assert_held(&pwq->pool->lock);
1052 	if (likely(--pwq->refcnt))
1053 		return;
1054 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1055 		return;
1056 	/*
1057 	 * @pwq can't be released under pool->lock, bounce to
1058 	 * pwq_unbound_release_workfn().  This never recurses on the same
1059 	 * pool->lock as this path is taken only for unbound workqueues and
1060 	 * the release work item is scheduled on a per-cpu workqueue.  To
1061 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1062 	 * subclass of 1 in get_unbound_pool().
1063 	 */
1064 	schedule_work(&pwq->unbound_release_work);
1065 }
1066 
1067 /**
1068  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1069  * @pwq: pool_workqueue to put (can be %NULL)
1070  *
1071  * put_pwq() with locking.  This function also allows %NULL @pwq.
1072  */
1073 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1074 {
1075 	if (pwq) {
1076 		/*
1077 		 * As both pwqs and pools are sched-RCU protected, the
1078 		 * following lock operations are safe.
1079 		 */
1080 		spin_lock_irq(&pwq->pool->lock);
1081 		put_pwq(pwq);
1082 		spin_unlock_irq(&pwq->pool->lock);
1083 	}
1084 }
1085 
1086 static void pwq_activate_delayed_work(struct work_struct *work)
1087 {
1088 	struct pool_workqueue *pwq = get_work_pwq(work);
1089 
1090 	trace_workqueue_activate_work(work);
1091 	move_linked_works(work, &pwq->pool->worklist, NULL);
1092 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1093 	pwq->nr_active++;
1094 }
1095 
1096 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1097 {
1098 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1099 						    struct work_struct, entry);
1100 
1101 	pwq_activate_delayed_work(work);
1102 }
1103 
1104 /**
1105  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1106  * @pwq: pwq of interest
1107  * @color: color of work which left the queue
1108  *
1109  * A work either has completed or is removed from pending queue,
1110  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1111  *
1112  * CONTEXT:
1113  * spin_lock_irq(pool->lock).
1114  */
1115 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1116 {
1117 	/* uncolored work items don't participate in flushing or nr_active */
1118 	if (color == WORK_NO_COLOR)
1119 		goto out_put;
1120 
1121 	pwq->nr_in_flight[color]--;
1122 
1123 	pwq->nr_active--;
1124 	if (!list_empty(&pwq->delayed_works)) {
1125 		/* one down, submit a delayed one */
1126 		if (pwq->nr_active < pwq->max_active)
1127 			pwq_activate_first_delayed(pwq);
1128 	}
1129 
1130 	/* is flush in progress and are we at the flushing tip? */
1131 	if (likely(pwq->flush_color != color))
1132 		goto out_put;
1133 
1134 	/* are there still in-flight works? */
1135 	if (pwq->nr_in_flight[color])
1136 		goto out_put;
1137 
1138 	/* this pwq is done, clear flush_color */
1139 	pwq->flush_color = -1;
1140 
1141 	/*
1142 	 * If this was the last pwq, wake up the first flusher.  It
1143 	 * will handle the rest.
1144 	 */
1145 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1146 		complete(&pwq->wq->first_flusher->done);
1147 out_put:
1148 	put_pwq(pwq);
1149 }
1150 
1151 /**
1152  * try_to_grab_pending - steal work item from worklist and disable irq
1153  * @work: work item to steal
1154  * @is_dwork: @work is a delayed_work
1155  * @flags: place to store irq state
1156  *
1157  * Try to grab PENDING bit of @work.  This function can handle @work in any
1158  * stable state - idle, on timer or on worklist.
1159  *
1160  * Return:
1161  *  1		if @work was pending and we successfully stole PENDING
1162  *  0		if @work was idle and we claimed PENDING
1163  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1164  *  -ENOENT	if someone else is canceling @work, this state may persist
1165  *		for arbitrarily long
1166  *
1167  * Note:
1168  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1169  * interrupted while holding PENDING and @work off queue, irq must be
1170  * disabled on entry.  This, combined with delayed_work->timer being
1171  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1172  *
1173  * On successful return, >= 0, irq is disabled and the caller is
1174  * responsible for releasing it using local_irq_restore(*@flags).
1175  *
1176  * This function is safe to call from any context including IRQ handler.
1177  */
1178 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1179 			       unsigned long *flags)
1180 {
1181 	struct worker_pool *pool;
1182 	struct pool_workqueue *pwq;
1183 
1184 	local_irq_save(*flags);
1185 
1186 	/* try to steal the timer if it exists */
1187 	if (is_dwork) {
1188 		struct delayed_work *dwork = to_delayed_work(work);
1189 
1190 		/*
1191 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1192 		 * guaranteed that the timer is not queued anywhere and not
1193 		 * running on the local CPU.
1194 		 */
1195 		if (likely(del_timer(&dwork->timer)))
1196 			return 1;
1197 	}
1198 
1199 	/* try to claim PENDING the normal way */
1200 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1201 		return 0;
1202 
1203 	/*
1204 	 * The queueing is in progress, or it is already queued. Try to
1205 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1206 	 */
1207 	pool = get_work_pool(work);
1208 	if (!pool)
1209 		goto fail;
1210 
1211 	spin_lock(&pool->lock);
1212 	/*
1213 	 * work->data is guaranteed to point to pwq only while the work
1214 	 * item is queued on pwq->wq, and both updating work->data to point
1215 	 * to pwq on queueing and to pool on dequeueing are done under
1216 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1217 	 * points to pwq which is associated with a locked pool, the work
1218 	 * item is currently queued on that pool.
1219 	 */
1220 	pwq = get_work_pwq(work);
1221 	if (pwq && pwq->pool == pool) {
1222 		debug_work_deactivate(work);
1223 
1224 		/*
1225 		 * A delayed work item cannot be grabbed directly because
1226 		 * it might have linked NO_COLOR work items which, if left
1227 		 * on the delayed_list, will confuse pwq->nr_active
1228 		 * management later on and cause stall.  Make sure the work
1229 		 * item is activated before grabbing.
1230 		 */
1231 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1232 			pwq_activate_delayed_work(work);
1233 
1234 		list_del_init(&work->entry);
1235 		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1236 
1237 		/* work->data points to pwq iff queued, point to pool */
1238 		set_work_pool_and_keep_pending(work, pool->id);
1239 
1240 		spin_unlock(&pool->lock);
1241 		return 1;
1242 	}
1243 	spin_unlock(&pool->lock);
1244 fail:
1245 	local_irq_restore(*flags);
1246 	if (work_is_canceling(work))
1247 		return -ENOENT;
1248 	cpu_relax();
1249 	return -EAGAIN;
1250 }
1251 
1252 /**
1253  * insert_work - insert a work into a pool
1254  * @pwq: pwq @work belongs to
1255  * @work: work to insert
1256  * @head: insertion point
1257  * @extra_flags: extra WORK_STRUCT_* flags to set
1258  *
1259  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1260  * work_struct flags.
1261  *
1262  * CONTEXT:
1263  * spin_lock_irq(pool->lock).
1264  */
1265 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1266 			struct list_head *head, unsigned int extra_flags)
1267 {
1268 	struct worker_pool *pool = pwq->pool;
1269 
1270 	/* we own @work, set data and link */
1271 	set_work_pwq(work, pwq, extra_flags);
1272 	list_add_tail(&work->entry, head);
1273 	get_pwq(pwq);
1274 
1275 	/*
1276 	 * Ensure either wq_worker_sleeping() sees the above
1277 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1278 	 * around lazily while there are works to be processed.
1279 	 */
1280 	smp_mb();
1281 
1282 	if (__need_more_worker(pool))
1283 		wake_up_worker(pool);
1284 }
1285 
1286 /*
1287  * Test whether @work is being queued from another work executing on the
1288  * same workqueue.
1289  */
1290 static bool is_chained_work(struct workqueue_struct *wq)
1291 {
1292 	struct worker *worker;
1293 
1294 	worker = current_wq_worker();
1295 	/*
1296 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1297 	 * I'm @worker, it's safe to dereference it without locking.
1298 	 */
1299 	return worker && worker->current_pwq->wq == wq;
1300 }
1301 
1302 static void __queue_work(int cpu, struct workqueue_struct *wq,
1303 			 struct work_struct *work)
1304 {
1305 	struct pool_workqueue *pwq;
1306 	struct worker_pool *last_pool;
1307 	struct list_head *worklist;
1308 	unsigned int work_flags;
1309 	unsigned int req_cpu = cpu;
1310 
1311 	/*
1312 	 * While a work item is PENDING && off queue, a task trying to
1313 	 * steal the PENDING will busy-loop waiting for it to either get
1314 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1315 	 * happen with IRQ disabled.
1316 	 */
1317 	WARN_ON_ONCE(!irqs_disabled());
1318 
1319 	debug_work_activate(work);
1320 
1321 	/* if draining, only works from the same workqueue are allowed */
1322 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1323 	    WARN_ON_ONCE(!is_chained_work(wq)))
1324 		return;
1325 retry:
1326 	if (req_cpu == WORK_CPU_UNBOUND)
1327 		cpu = raw_smp_processor_id();
1328 
1329 	/* pwq which will be used unless @work is executing elsewhere */
1330 	if (!(wq->flags & WQ_UNBOUND))
1331 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1332 	else
1333 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1334 
1335 	/*
1336 	 * If @work was previously on a different pool, it might still be
1337 	 * running there, in which case the work needs to be queued on that
1338 	 * pool to guarantee non-reentrancy.
1339 	 */
1340 	last_pool = get_work_pool(work);
1341 	if (last_pool && last_pool != pwq->pool) {
1342 		struct worker *worker;
1343 
1344 		spin_lock(&last_pool->lock);
1345 
1346 		worker = find_worker_executing_work(last_pool, work);
1347 
1348 		if (worker && worker->current_pwq->wq == wq) {
1349 			pwq = worker->current_pwq;
1350 		} else {
1351 			/* meh... not running there, queue here */
1352 			spin_unlock(&last_pool->lock);
1353 			spin_lock(&pwq->pool->lock);
1354 		}
1355 	} else {
1356 		spin_lock(&pwq->pool->lock);
1357 	}
1358 
1359 	/*
1360 	 * pwq is determined and locked.  For unbound pools, we could have
1361 	 * raced with pwq release and it could already be dead.  If its
1362 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1363 	 * without another pwq replacing it in the numa_pwq_tbl or while
1364 	 * work items are executing on it, so the retrying is guaranteed to
1365 	 * make forward-progress.
1366 	 */
1367 	if (unlikely(!pwq->refcnt)) {
1368 		if (wq->flags & WQ_UNBOUND) {
1369 			spin_unlock(&pwq->pool->lock);
1370 			cpu_relax();
1371 			goto retry;
1372 		}
1373 		/* oops */
1374 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1375 			  wq->name, cpu);
1376 	}
1377 
1378 	/* pwq determined, queue */
1379 	trace_workqueue_queue_work(req_cpu, pwq, work);
1380 
1381 	if (WARN_ON(!list_empty(&work->entry))) {
1382 		spin_unlock(&pwq->pool->lock);
1383 		return;
1384 	}
1385 
1386 	pwq->nr_in_flight[pwq->work_color]++;
1387 	work_flags = work_color_to_flags(pwq->work_color);
1388 
1389 	if (likely(pwq->nr_active < pwq->max_active)) {
1390 		trace_workqueue_activate_work(work);
1391 		pwq->nr_active++;
1392 		worklist = &pwq->pool->worklist;
1393 	} else {
1394 		work_flags |= WORK_STRUCT_DELAYED;
1395 		worklist = &pwq->delayed_works;
1396 	}
1397 
1398 	insert_work(pwq, work, worklist, work_flags);
1399 
1400 	spin_unlock(&pwq->pool->lock);
1401 }
1402 
1403 /**
1404  * queue_work_on - queue work on specific cpu
1405  * @cpu: CPU number to execute work on
1406  * @wq: workqueue to use
1407  * @work: work to queue
1408  *
1409  * We queue the work to a specific CPU, the caller must ensure it
1410  * can't go away.
1411  *
1412  * Return: %false if @work was already on a queue, %true otherwise.
1413  */
1414 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1415 		   struct work_struct *work)
1416 {
1417 	bool ret = false;
1418 	unsigned long flags;
1419 
1420 	local_irq_save(flags);
1421 
1422 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1423 		__queue_work(cpu, wq, work);
1424 		ret = true;
1425 	}
1426 
1427 	local_irq_restore(flags);
1428 	return ret;
1429 }
1430 EXPORT_SYMBOL(queue_work_on);
1431 
1432 void delayed_work_timer_fn(unsigned long __data)
1433 {
1434 	struct delayed_work *dwork = (struct delayed_work *)__data;
1435 
1436 	/* should have been called from irqsafe timer with irq already off */
1437 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1438 }
1439 EXPORT_SYMBOL(delayed_work_timer_fn);
1440 
1441 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1442 				struct delayed_work *dwork, unsigned long delay)
1443 {
1444 	struct timer_list *timer = &dwork->timer;
1445 	struct work_struct *work = &dwork->work;
1446 
1447 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1448 		     timer->data != (unsigned long)dwork);
1449 	WARN_ON_ONCE(timer_pending(timer));
1450 	WARN_ON_ONCE(!list_empty(&work->entry));
1451 
1452 	/*
1453 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1454 	 * both optimization and correctness.  The earliest @timer can
1455 	 * expire is on the closest next tick and delayed_work users depend
1456 	 * on that there's no such delay when @delay is 0.
1457 	 */
1458 	if (!delay) {
1459 		__queue_work(cpu, wq, &dwork->work);
1460 		return;
1461 	}
1462 
1463 	timer_stats_timer_set_start_info(&dwork->timer);
1464 
1465 	dwork->wq = wq;
1466 	dwork->cpu = cpu;
1467 	timer->expires = jiffies + delay;
1468 
1469 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1470 		add_timer_on(timer, cpu);
1471 	else
1472 		add_timer(timer);
1473 }
1474 
1475 /**
1476  * queue_delayed_work_on - queue work on specific CPU after delay
1477  * @cpu: CPU number to execute work on
1478  * @wq: workqueue to use
1479  * @dwork: work to queue
1480  * @delay: number of jiffies to wait before queueing
1481  *
1482  * Return: %false if @work was already on a queue, %true otherwise.  If
1483  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1484  * execution.
1485  */
1486 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1487 			   struct delayed_work *dwork, unsigned long delay)
1488 {
1489 	struct work_struct *work = &dwork->work;
1490 	bool ret = false;
1491 	unsigned long flags;
1492 
1493 	/* read the comment in __queue_work() */
1494 	local_irq_save(flags);
1495 
1496 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1497 		__queue_delayed_work(cpu, wq, dwork, delay);
1498 		ret = true;
1499 	}
1500 
1501 	local_irq_restore(flags);
1502 	return ret;
1503 }
1504 EXPORT_SYMBOL(queue_delayed_work_on);
1505 
1506 /**
1507  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1508  * @cpu: CPU number to execute work on
1509  * @wq: workqueue to use
1510  * @dwork: work to queue
1511  * @delay: number of jiffies to wait before queueing
1512  *
1513  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1514  * modify @dwork's timer so that it expires after @delay.  If @delay is
1515  * zero, @work is guaranteed to be scheduled immediately regardless of its
1516  * current state.
1517  *
1518  * Return: %false if @dwork was idle and queued, %true if @dwork was
1519  * pending and its timer was modified.
1520  *
1521  * This function is safe to call from any context including IRQ handler.
1522  * See try_to_grab_pending() for details.
1523  */
1524 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1525 			 struct delayed_work *dwork, unsigned long delay)
1526 {
1527 	unsigned long flags;
1528 	int ret;
1529 
1530 	do {
1531 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1532 	} while (unlikely(ret == -EAGAIN));
1533 
1534 	if (likely(ret >= 0)) {
1535 		__queue_delayed_work(cpu, wq, dwork, delay);
1536 		local_irq_restore(flags);
1537 	}
1538 
1539 	/* -ENOENT from try_to_grab_pending() becomes %true */
1540 	return ret;
1541 }
1542 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1543 
1544 /**
1545  * worker_enter_idle - enter idle state
1546  * @worker: worker which is entering idle state
1547  *
1548  * @worker is entering idle state.  Update stats and idle timer if
1549  * necessary.
1550  *
1551  * LOCKING:
1552  * spin_lock_irq(pool->lock).
1553  */
1554 static void worker_enter_idle(struct worker *worker)
1555 {
1556 	struct worker_pool *pool = worker->pool;
1557 
1558 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1559 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1560 			 (worker->hentry.next || worker->hentry.pprev)))
1561 		return;
1562 
1563 	/* can't use worker_set_flags(), also called from start_worker() */
1564 	worker->flags |= WORKER_IDLE;
1565 	pool->nr_idle++;
1566 	worker->last_active = jiffies;
1567 
1568 	/* idle_list is LIFO */
1569 	list_add(&worker->entry, &pool->idle_list);
1570 
1571 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1572 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1573 
1574 	/*
1575 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1576 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1577 	 * nr_running, the warning may trigger spuriously.  Check iff
1578 	 * unbind is not in progress.
1579 	 */
1580 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1581 		     pool->nr_workers == pool->nr_idle &&
1582 		     atomic_read(&pool->nr_running));
1583 }
1584 
1585 /**
1586  * worker_leave_idle - leave idle state
1587  * @worker: worker which is leaving idle state
1588  *
1589  * @worker is leaving idle state.  Update stats.
1590  *
1591  * LOCKING:
1592  * spin_lock_irq(pool->lock).
1593  */
1594 static void worker_leave_idle(struct worker *worker)
1595 {
1596 	struct worker_pool *pool = worker->pool;
1597 
1598 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1599 		return;
1600 	worker_clr_flags(worker, WORKER_IDLE);
1601 	pool->nr_idle--;
1602 	list_del_init(&worker->entry);
1603 }
1604 
1605 static struct worker *alloc_worker(void)
1606 {
1607 	struct worker *worker;
1608 
1609 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1610 	if (worker) {
1611 		INIT_LIST_HEAD(&worker->entry);
1612 		INIT_LIST_HEAD(&worker->scheduled);
1613 		INIT_LIST_HEAD(&worker->node);
1614 		/* on creation a worker is in !idle && prep state */
1615 		worker->flags = WORKER_PREP;
1616 	}
1617 	return worker;
1618 }
1619 
1620 /**
1621  * worker_attach_to_pool() - attach a worker to a pool
1622  * @worker: worker to be attached
1623  * @pool: the target pool
1624  *
1625  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1626  * cpu-binding of @worker are kept coordinated with the pool across
1627  * cpu-[un]hotplugs.
1628  */
1629 static void worker_attach_to_pool(struct worker *worker,
1630 				   struct worker_pool *pool)
1631 {
1632 	mutex_lock(&pool->attach_mutex);
1633 
1634 	/*
1635 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1636 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1637 	 */
1638 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1639 
1640 	/*
1641 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1642 	 * stable across this function.  See the comments above the
1643 	 * flag definition for details.
1644 	 */
1645 	if (pool->flags & POOL_DISASSOCIATED)
1646 		worker->flags |= WORKER_UNBOUND;
1647 
1648 	list_add_tail(&worker->node, &pool->workers);
1649 
1650 	mutex_unlock(&pool->attach_mutex);
1651 }
1652 
1653 /**
1654  * worker_detach_from_pool() - detach a worker from its pool
1655  * @worker: worker which is attached to its pool
1656  * @pool: the pool @worker is attached to
1657  *
1658  * Undo the attaching which had been done in worker_attach_to_pool().  The
1659  * caller worker shouldn't access to the pool after detached except it has
1660  * other reference to the pool.
1661  */
1662 static void worker_detach_from_pool(struct worker *worker,
1663 				    struct worker_pool *pool)
1664 {
1665 	struct completion *detach_completion = NULL;
1666 
1667 	mutex_lock(&pool->attach_mutex);
1668 	list_del(&worker->node);
1669 	if (list_empty(&pool->workers))
1670 		detach_completion = pool->detach_completion;
1671 	mutex_unlock(&pool->attach_mutex);
1672 
1673 	if (detach_completion)
1674 		complete(detach_completion);
1675 }
1676 
1677 /**
1678  * create_worker - create a new workqueue worker
1679  * @pool: pool the new worker will belong to
1680  *
1681  * Create a new worker which is attached to @pool.  The new worker must be
1682  * started by start_worker().
1683  *
1684  * CONTEXT:
1685  * Might sleep.  Does GFP_KERNEL allocations.
1686  *
1687  * Return:
1688  * Pointer to the newly created worker.
1689  */
1690 static struct worker *create_worker(struct worker_pool *pool)
1691 {
1692 	struct worker *worker = NULL;
1693 	int id = -1;
1694 	char id_buf[16];
1695 
1696 	/* ID is needed to determine kthread name */
1697 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1698 	if (id < 0)
1699 		goto fail;
1700 
1701 	worker = alloc_worker();
1702 	if (!worker)
1703 		goto fail;
1704 
1705 	worker->pool = pool;
1706 	worker->id = id;
1707 
1708 	if (pool->cpu >= 0)
1709 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1710 			 pool->attrs->nice < 0  ? "H" : "");
1711 	else
1712 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1713 
1714 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1715 					      "kworker/%s", id_buf);
1716 	if (IS_ERR(worker->task))
1717 		goto fail;
1718 
1719 	set_user_nice(worker->task, pool->attrs->nice);
1720 
1721 	/* prevent userland from meddling with cpumask of workqueue workers */
1722 	worker->task->flags |= PF_NO_SETAFFINITY;
1723 
1724 	/* successful, attach the worker to the pool */
1725 	worker_attach_to_pool(worker, pool);
1726 
1727 	return worker;
1728 
1729 fail:
1730 	if (id >= 0)
1731 		ida_simple_remove(&pool->worker_ida, id);
1732 	kfree(worker);
1733 	return NULL;
1734 }
1735 
1736 /**
1737  * start_worker - start a newly created worker
1738  * @worker: worker to start
1739  *
1740  * Make the pool aware of @worker and start it.
1741  *
1742  * CONTEXT:
1743  * spin_lock_irq(pool->lock).
1744  */
1745 static void start_worker(struct worker *worker)
1746 {
1747 	worker->pool->nr_workers++;
1748 	worker_enter_idle(worker);
1749 	wake_up_process(worker->task);
1750 }
1751 
1752 /**
1753  * create_and_start_worker - create and start a worker for a pool
1754  * @pool: the target pool
1755  *
1756  * Grab the managership of @pool and create and start a new worker for it.
1757  *
1758  * Return: 0 on success. A negative error code otherwise.
1759  */
1760 static int create_and_start_worker(struct worker_pool *pool)
1761 {
1762 	struct worker *worker;
1763 
1764 	worker = create_worker(pool);
1765 	if (worker) {
1766 		spin_lock_irq(&pool->lock);
1767 		start_worker(worker);
1768 		spin_unlock_irq(&pool->lock);
1769 	}
1770 
1771 	return worker ? 0 : -ENOMEM;
1772 }
1773 
1774 /**
1775  * destroy_worker - destroy a workqueue worker
1776  * @worker: worker to be destroyed
1777  *
1778  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1779  * be idle.
1780  *
1781  * CONTEXT:
1782  * spin_lock_irq(pool->lock).
1783  */
1784 static void destroy_worker(struct worker *worker)
1785 {
1786 	struct worker_pool *pool = worker->pool;
1787 
1788 	lockdep_assert_held(&pool->lock);
1789 
1790 	/* sanity check frenzy */
1791 	if (WARN_ON(worker->current_work) ||
1792 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1793 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1794 		return;
1795 
1796 	pool->nr_workers--;
1797 	pool->nr_idle--;
1798 
1799 	list_del_init(&worker->entry);
1800 	worker->flags |= WORKER_DIE;
1801 	wake_up_process(worker->task);
1802 }
1803 
1804 static void idle_worker_timeout(unsigned long __pool)
1805 {
1806 	struct worker_pool *pool = (void *)__pool;
1807 
1808 	spin_lock_irq(&pool->lock);
1809 
1810 	while (too_many_workers(pool)) {
1811 		struct worker *worker;
1812 		unsigned long expires;
1813 
1814 		/* idle_list is kept in LIFO order, check the last one */
1815 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1816 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1817 
1818 		if (time_before(jiffies, expires)) {
1819 			mod_timer(&pool->idle_timer, expires);
1820 			break;
1821 		}
1822 
1823 		destroy_worker(worker);
1824 	}
1825 
1826 	spin_unlock_irq(&pool->lock);
1827 }
1828 
1829 static void send_mayday(struct work_struct *work)
1830 {
1831 	struct pool_workqueue *pwq = get_work_pwq(work);
1832 	struct workqueue_struct *wq = pwq->wq;
1833 
1834 	lockdep_assert_held(&wq_mayday_lock);
1835 
1836 	if (!wq->rescuer)
1837 		return;
1838 
1839 	/* mayday mayday mayday */
1840 	if (list_empty(&pwq->mayday_node)) {
1841 		/*
1842 		 * If @pwq is for an unbound wq, its base ref may be put at
1843 		 * any time due to an attribute change.  Pin @pwq until the
1844 		 * rescuer is done with it.
1845 		 */
1846 		get_pwq(pwq);
1847 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1848 		wake_up_process(wq->rescuer->task);
1849 	}
1850 }
1851 
1852 static void pool_mayday_timeout(unsigned long __pool)
1853 {
1854 	struct worker_pool *pool = (void *)__pool;
1855 	struct work_struct *work;
1856 
1857 	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1858 	spin_lock(&pool->lock);
1859 
1860 	if (need_to_create_worker(pool)) {
1861 		/*
1862 		 * We've been trying to create a new worker but
1863 		 * haven't been successful.  We might be hitting an
1864 		 * allocation deadlock.  Send distress signals to
1865 		 * rescuers.
1866 		 */
1867 		list_for_each_entry(work, &pool->worklist, entry)
1868 			send_mayday(work);
1869 	}
1870 
1871 	spin_unlock(&pool->lock);
1872 	spin_unlock_irq(&wq_mayday_lock);
1873 
1874 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1875 }
1876 
1877 /**
1878  * maybe_create_worker - create a new worker if necessary
1879  * @pool: pool to create a new worker for
1880  *
1881  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1882  * have at least one idle worker on return from this function.  If
1883  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1884  * sent to all rescuers with works scheduled on @pool to resolve
1885  * possible allocation deadlock.
1886  *
1887  * On return, need_to_create_worker() is guaranteed to be %false and
1888  * may_start_working() %true.
1889  *
1890  * LOCKING:
1891  * spin_lock_irq(pool->lock) which may be released and regrabbed
1892  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1893  * manager.
1894  *
1895  * Return:
1896  * %false if no action was taken and pool->lock stayed locked, %true
1897  * otherwise.
1898  */
1899 static bool maybe_create_worker(struct worker_pool *pool)
1900 __releases(&pool->lock)
1901 __acquires(&pool->lock)
1902 {
1903 	if (!need_to_create_worker(pool))
1904 		return false;
1905 restart:
1906 	spin_unlock_irq(&pool->lock);
1907 
1908 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1909 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1910 
1911 	while (true) {
1912 		struct worker *worker;
1913 
1914 		worker = create_worker(pool);
1915 		if (worker) {
1916 			del_timer_sync(&pool->mayday_timer);
1917 			spin_lock_irq(&pool->lock);
1918 			start_worker(worker);
1919 			if (WARN_ON_ONCE(need_to_create_worker(pool)))
1920 				goto restart;
1921 			return true;
1922 		}
1923 
1924 		if (!need_to_create_worker(pool))
1925 			break;
1926 
1927 		__set_current_state(TASK_INTERRUPTIBLE);
1928 		schedule_timeout(CREATE_COOLDOWN);
1929 
1930 		if (!need_to_create_worker(pool))
1931 			break;
1932 	}
1933 
1934 	del_timer_sync(&pool->mayday_timer);
1935 	spin_lock_irq(&pool->lock);
1936 	if (need_to_create_worker(pool))
1937 		goto restart;
1938 	return true;
1939 }
1940 
1941 /**
1942  * manage_workers - manage worker pool
1943  * @worker: self
1944  *
1945  * Assume the manager role and manage the worker pool @worker belongs
1946  * to.  At any given time, there can be only zero or one manager per
1947  * pool.  The exclusion is handled automatically by this function.
1948  *
1949  * The caller can safely start processing works on false return.  On
1950  * true return, it's guaranteed that need_to_create_worker() is false
1951  * and may_start_working() is true.
1952  *
1953  * CONTEXT:
1954  * spin_lock_irq(pool->lock) which may be released and regrabbed
1955  * multiple times.  Does GFP_KERNEL allocations.
1956  *
1957  * Return:
1958  * %false if the pool don't need management and the caller can safely start
1959  * processing works, %true indicates that the function released pool->lock
1960  * and reacquired it to perform some management function and that the
1961  * conditions that the caller verified while holding the lock before
1962  * calling the function might no longer be true.
1963  */
1964 static bool manage_workers(struct worker *worker)
1965 {
1966 	struct worker_pool *pool = worker->pool;
1967 	bool ret = false;
1968 
1969 	/*
1970 	 * Anyone who successfully grabs manager_arb wins the arbitration
1971 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
1972 	 * failure while holding pool->lock reliably indicates that someone
1973 	 * else is managing the pool and the worker which failed trylock
1974 	 * can proceed to executing work items.  This means that anyone
1975 	 * grabbing manager_arb is responsible for actually performing
1976 	 * manager duties.  If manager_arb is grabbed and released without
1977 	 * actual management, the pool may stall indefinitely.
1978 	 */
1979 	if (!mutex_trylock(&pool->manager_arb))
1980 		return ret;
1981 
1982 	ret |= maybe_create_worker(pool);
1983 
1984 	mutex_unlock(&pool->manager_arb);
1985 	return ret;
1986 }
1987 
1988 /**
1989  * process_one_work - process single work
1990  * @worker: self
1991  * @work: work to process
1992  *
1993  * Process @work.  This function contains all the logics necessary to
1994  * process a single work including synchronization against and
1995  * interaction with other workers on the same cpu, queueing and
1996  * flushing.  As long as context requirement is met, any worker can
1997  * call this function to process a work.
1998  *
1999  * CONTEXT:
2000  * spin_lock_irq(pool->lock) which is released and regrabbed.
2001  */
2002 static void process_one_work(struct worker *worker, struct work_struct *work)
2003 __releases(&pool->lock)
2004 __acquires(&pool->lock)
2005 {
2006 	struct pool_workqueue *pwq = get_work_pwq(work);
2007 	struct worker_pool *pool = worker->pool;
2008 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2009 	int work_color;
2010 	struct worker *collision;
2011 #ifdef CONFIG_LOCKDEP
2012 	/*
2013 	 * It is permissible to free the struct work_struct from
2014 	 * inside the function that is called from it, this we need to
2015 	 * take into account for lockdep too.  To avoid bogus "held
2016 	 * lock freed" warnings as well as problems when looking into
2017 	 * work->lockdep_map, make a copy and use that here.
2018 	 */
2019 	struct lockdep_map lockdep_map;
2020 
2021 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2022 #endif
2023 	/*
2024 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2025 	 * necessary to avoid spurious warnings from rescuers servicing the
2026 	 * unbound or a disassociated pool.
2027 	 */
2028 	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2029 		     !(pool->flags & POOL_DISASSOCIATED) &&
2030 		     raw_smp_processor_id() != pool->cpu);
2031 
2032 	/*
2033 	 * A single work shouldn't be executed concurrently by
2034 	 * multiple workers on a single cpu.  Check whether anyone is
2035 	 * already processing the work.  If so, defer the work to the
2036 	 * currently executing one.
2037 	 */
2038 	collision = find_worker_executing_work(pool, work);
2039 	if (unlikely(collision)) {
2040 		move_linked_works(work, &collision->scheduled, NULL);
2041 		return;
2042 	}
2043 
2044 	/* claim and dequeue */
2045 	debug_work_deactivate(work);
2046 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2047 	worker->current_work = work;
2048 	worker->current_func = work->func;
2049 	worker->current_pwq = pwq;
2050 	work_color = get_work_color(work);
2051 
2052 	list_del_init(&work->entry);
2053 
2054 	/*
2055 	 * CPU intensive works don't participate in concurrency
2056 	 * management.  They're the scheduler's responsibility.
2057 	 */
2058 	if (unlikely(cpu_intensive))
2059 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2060 
2061 	/*
2062 	 * Unbound pool isn't concurrency managed and work items should be
2063 	 * executed ASAP.  Wake up another worker if necessary.
2064 	 */
2065 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2066 		wake_up_worker(pool);
2067 
2068 	/*
2069 	 * Record the last pool and clear PENDING which should be the last
2070 	 * update to @work.  Also, do this inside @pool->lock so that
2071 	 * PENDING and queued state changes happen together while IRQ is
2072 	 * disabled.
2073 	 */
2074 	set_work_pool_and_clear_pending(work, pool->id);
2075 
2076 	spin_unlock_irq(&pool->lock);
2077 
2078 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2079 	lock_map_acquire(&lockdep_map);
2080 	trace_workqueue_execute_start(work);
2081 	worker->current_func(work);
2082 	/*
2083 	 * While we must be careful to not use "work" after this, the trace
2084 	 * point will only record its address.
2085 	 */
2086 	trace_workqueue_execute_end(work);
2087 	lock_map_release(&lockdep_map);
2088 	lock_map_release(&pwq->wq->lockdep_map);
2089 
2090 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2091 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2092 		       "     last function: %pf\n",
2093 		       current->comm, preempt_count(), task_pid_nr(current),
2094 		       worker->current_func);
2095 		debug_show_held_locks(current);
2096 		dump_stack();
2097 	}
2098 
2099 	/*
2100 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2101 	 * kernels, where a requeueing work item waiting for something to
2102 	 * happen could deadlock with stop_machine as such work item could
2103 	 * indefinitely requeue itself while all other CPUs are trapped in
2104 	 * stop_machine.
2105 	 */
2106 	cond_resched();
2107 
2108 	spin_lock_irq(&pool->lock);
2109 
2110 	/* clear cpu intensive status */
2111 	if (unlikely(cpu_intensive))
2112 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2113 
2114 	/* we're done with it, release */
2115 	hash_del(&worker->hentry);
2116 	worker->current_work = NULL;
2117 	worker->current_func = NULL;
2118 	worker->current_pwq = NULL;
2119 	worker->desc_valid = false;
2120 	pwq_dec_nr_in_flight(pwq, work_color);
2121 }
2122 
2123 /**
2124  * process_scheduled_works - process scheduled works
2125  * @worker: self
2126  *
2127  * Process all scheduled works.  Please note that the scheduled list
2128  * may change while processing a work, so this function repeatedly
2129  * fetches a work from the top and executes it.
2130  *
2131  * CONTEXT:
2132  * spin_lock_irq(pool->lock) which may be released and regrabbed
2133  * multiple times.
2134  */
2135 static void process_scheduled_works(struct worker *worker)
2136 {
2137 	while (!list_empty(&worker->scheduled)) {
2138 		struct work_struct *work = list_first_entry(&worker->scheduled,
2139 						struct work_struct, entry);
2140 		process_one_work(worker, work);
2141 	}
2142 }
2143 
2144 /**
2145  * worker_thread - the worker thread function
2146  * @__worker: self
2147  *
2148  * The worker thread function.  All workers belong to a worker_pool -
2149  * either a per-cpu one or dynamic unbound one.  These workers process all
2150  * work items regardless of their specific target workqueue.  The only
2151  * exception is work items which belong to workqueues with a rescuer which
2152  * will be explained in rescuer_thread().
2153  *
2154  * Return: 0
2155  */
2156 static int worker_thread(void *__worker)
2157 {
2158 	struct worker *worker = __worker;
2159 	struct worker_pool *pool = worker->pool;
2160 
2161 	/* tell the scheduler that this is a workqueue worker */
2162 	worker->task->flags |= PF_WQ_WORKER;
2163 woke_up:
2164 	spin_lock_irq(&pool->lock);
2165 
2166 	/* am I supposed to die? */
2167 	if (unlikely(worker->flags & WORKER_DIE)) {
2168 		spin_unlock_irq(&pool->lock);
2169 		WARN_ON_ONCE(!list_empty(&worker->entry));
2170 		worker->task->flags &= ~PF_WQ_WORKER;
2171 
2172 		set_task_comm(worker->task, "kworker/dying");
2173 		ida_simple_remove(&pool->worker_ida, worker->id);
2174 		worker_detach_from_pool(worker, pool);
2175 		kfree(worker);
2176 		return 0;
2177 	}
2178 
2179 	worker_leave_idle(worker);
2180 recheck:
2181 	/* no more worker necessary? */
2182 	if (!need_more_worker(pool))
2183 		goto sleep;
2184 
2185 	/* do we need to manage? */
2186 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2187 		goto recheck;
2188 
2189 	/*
2190 	 * ->scheduled list can only be filled while a worker is
2191 	 * preparing to process a work or actually processing it.
2192 	 * Make sure nobody diddled with it while I was sleeping.
2193 	 */
2194 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2195 
2196 	/*
2197 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2198 	 * worker or that someone else has already assumed the manager
2199 	 * role.  This is where @worker starts participating in concurrency
2200 	 * management if applicable and concurrency management is restored
2201 	 * after being rebound.  See rebind_workers() for details.
2202 	 */
2203 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2204 
2205 	do {
2206 		struct work_struct *work =
2207 			list_first_entry(&pool->worklist,
2208 					 struct work_struct, entry);
2209 
2210 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2211 			/* optimization path, not strictly necessary */
2212 			process_one_work(worker, work);
2213 			if (unlikely(!list_empty(&worker->scheduled)))
2214 				process_scheduled_works(worker);
2215 		} else {
2216 			move_linked_works(work, &worker->scheduled, NULL);
2217 			process_scheduled_works(worker);
2218 		}
2219 	} while (keep_working(pool));
2220 
2221 	worker_set_flags(worker, WORKER_PREP, false);
2222 sleep:
2223 	/*
2224 	 * pool->lock is held and there's no work to process and no need to
2225 	 * manage, sleep.  Workers are woken up only while holding
2226 	 * pool->lock or from local cpu, so setting the current state
2227 	 * before releasing pool->lock is enough to prevent losing any
2228 	 * event.
2229 	 */
2230 	worker_enter_idle(worker);
2231 	__set_current_state(TASK_INTERRUPTIBLE);
2232 	spin_unlock_irq(&pool->lock);
2233 	schedule();
2234 	goto woke_up;
2235 }
2236 
2237 /**
2238  * rescuer_thread - the rescuer thread function
2239  * @__rescuer: self
2240  *
2241  * Workqueue rescuer thread function.  There's one rescuer for each
2242  * workqueue which has WQ_MEM_RECLAIM set.
2243  *
2244  * Regular work processing on a pool may block trying to create a new
2245  * worker which uses GFP_KERNEL allocation which has slight chance of
2246  * developing into deadlock if some works currently on the same queue
2247  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2248  * the problem rescuer solves.
2249  *
2250  * When such condition is possible, the pool summons rescuers of all
2251  * workqueues which have works queued on the pool and let them process
2252  * those works so that forward progress can be guaranteed.
2253  *
2254  * This should happen rarely.
2255  *
2256  * Return: 0
2257  */
2258 static int rescuer_thread(void *__rescuer)
2259 {
2260 	struct worker *rescuer = __rescuer;
2261 	struct workqueue_struct *wq = rescuer->rescue_wq;
2262 	struct list_head *scheduled = &rescuer->scheduled;
2263 	bool should_stop;
2264 
2265 	set_user_nice(current, RESCUER_NICE_LEVEL);
2266 
2267 	/*
2268 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2269 	 * doesn't participate in concurrency management.
2270 	 */
2271 	rescuer->task->flags |= PF_WQ_WORKER;
2272 repeat:
2273 	set_current_state(TASK_INTERRUPTIBLE);
2274 
2275 	/*
2276 	 * By the time the rescuer is requested to stop, the workqueue
2277 	 * shouldn't have any work pending, but @wq->maydays may still have
2278 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2279 	 * all the work items before the rescuer got to them.  Go through
2280 	 * @wq->maydays processing before acting on should_stop so that the
2281 	 * list is always empty on exit.
2282 	 */
2283 	should_stop = kthread_should_stop();
2284 
2285 	/* see whether any pwq is asking for help */
2286 	spin_lock_irq(&wq_mayday_lock);
2287 
2288 	while (!list_empty(&wq->maydays)) {
2289 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2290 					struct pool_workqueue, mayday_node);
2291 		struct worker_pool *pool = pwq->pool;
2292 		struct work_struct *work, *n;
2293 
2294 		__set_current_state(TASK_RUNNING);
2295 		list_del_init(&pwq->mayday_node);
2296 
2297 		spin_unlock_irq(&wq_mayday_lock);
2298 
2299 		worker_attach_to_pool(rescuer, pool);
2300 
2301 		spin_lock_irq(&pool->lock);
2302 		rescuer->pool = pool;
2303 
2304 		/*
2305 		 * Slurp in all works issued via this workqueue and
2306 		 * process'em.
2307 		 */
2308 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2309 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2310 			if (get_work_pwq(work) == pwq)
2311 				move_linked_works(work, scheduled, &n);
2312 
2313 		process_scheduled_works(rescuer);
2314 		spin_unlock_irq(&pool->lock);
2315 
2316 		worker_detach_from_pool(rescuer, pool);
2317 
2318 		spin_lock_irq(&pool->lock);
2319 
2320 		/*
2321 		 * Put the reference grabbed by send_mayday().  @pool won't
2322 		 * go away while we're holding its lock.
2323 		 */
2324 		put_pwq(pwq);
2325 
2326 		/*
2327 		 * Leave this pool.  If keep_working() is %true, notify a
2328 		 * regular worker; otherwise, we end up with 0 concurrency
2329 		 * and stalling the execution.
2330 		 */
2331 		if (keep_working(pool))
2332 			wake_up_worker(pool);
2333 
2334 		rescuer->pool = NULL;
2335 		spin_unlock(&pool->lock);
2336 		spin_lock(&wq_mayday_lock);
2337 	}
2338 
2339 	spin_unlock_irq(&wq_mayday_lock);
2340 
2341 	if (should_stop) {
2342 		__set_current_state(TASK_RUNNING);
2343 		rescuer->task->flags &= ~PF_WQ_WORKER;
2344 		return 0;
2345 	}
2346 
2347 	/* rescuers should never participate in concurrency management */
2348 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2349 	schedule();
2350 	goto repeat;
2351 }
2352 
2353 struct wq_barrier {
2354 	struct work_struct	work;
2355 	struct completion	done;
2356 };
2357 
2358 static void wq_barrier_func(struct work_struct *work)
2359 {
2360 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2361 	complete(&barr->done);
2362 }
2363 
2364 /**
2365  * insert_wq_barrier - insert a barrier work
2366  * @pwq: pwq to insert barrier into
2367  * @barr: wq_barrier to insert
2368  * @target: target work to attach @barr to
2369  * @worker: worker currently executing @target, NULL if @target is not executing
2370  *
2371  * @barr is linked to @target such that @barr is completed only after
2372  * @target finishes execution.  Please note that the ordering
2373  * guarantee is observed only with respect to @target and on the local
2374  * cpu.
2375  *
2376  * Currently, a queued barrier can't be canceled.  This is because
2377  * try_to_grab_pending() can't determine whether the work to be
2378  * grabbed is at the head of the queue and thus can't clear LINKED
2379  * flag of the previous work while there must be a valid next work
2380  * after a work with LINKED flag set.
2381  *
2382  * Note that when @worker is non-NULL, @target may be modified
2383  * underneath us, so we can't reliably determine pwq from @target.
2384  *
2385  * CONTEXT:
2386  * spin_lock_irq(pool->lock).
2387  */
2388 static void insert_wq_barrier(struct pool_workqueue *pwq,
2389 			      struct wq_barrier *barr,
2390 			      struct work_struct *target, struct worker *worker)
2391 {
2392 	struct list_head *head;
2393 	unsigned int linked = 0;
2394 
2395 	/*
2396 	 * debugobject calls are safe here even with pool->lock locked
2397 	 * as we know for sure that this will not trigger any of the
2398 	 * checks and call back into the fixup functions where we
2399 	 * might deadlock.
2400 	 */
2401 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2402 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2403 	init_completion(&barr->done);
2404 
2405 	/*
2406 	 * If @target is currently being executed, schedule the
2407 	 * barrier to the worker; otherwise, put it after @target.
2408 	 */
2409 	if (worker)
2410 		head = worker->scheduled.next;
2411 	else {
2412 		unsigned long *bits = work_data_bits(target);
2413 
2414 		head = target->entry.next;
2415 		/* there can already be other linked works, inherit and set */
2416 		linked = *bits & WORK_STRUCT_LINKED;
2417 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2418 	}
2419 
2420 	debug_work_activate(&barr->work);
2421 	insert_work(pwq, &barr->work, head,
2422 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2423 }
2424 
2425 /**
2426  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2427  * @wq: workqueue being flushed
2428  * @flush_color: new flush color, < 0 for no-op
2429  * @work_color: new work color, < 0 for no-op
2430  *
2431  * Prepare pwqs for workqueue flushing.
2432  *
2433  * If @flush_color is non-negative, flush_color on all pwqs should be
2434  * -1.  If no pwq has in-flight commands at the specified color, all
2435  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2436  * has in flight commands, its pwq->flush_color is set to
2437  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2438  * wakeup logic is armed and %true is returned.
2439  *
2440  * The caller should have initialized @wq->first_flusher prior to
2441  * calling this function with non-negative @flush_color.  If
2442  * @flush_color is negative, no flush color update is done and %false
2443  * is returned.
2444  *
2445  * If @work_color is non-negative, all pwqs should have the same
2446  * work_color which is previous to @work_color and all will be
2447  * advanced to @work_color.
2448  *
2449  * CONTEXT:
2450  * mutex_lock(wq->mutex).
2451  *
2452  * Return:
2453  * %true if @flush_color >= 0 and there's something to flush.  %false
2454  * otherwise.
2455  */
2456 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2457 				      int flush_color, int work_color)
2458 {
2459 	bool wait = false;
2460 	struct pool_workqueue *pwq;
2461 
2462 	if (flush_color >= 0) {
2463 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2464 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2465 	}
2466 
2467 	for_each_pwq(pwq, wq) {
2468 		struct worker_pool *pool = pwq->pool;
2469 
2470 		spin_lock_irq(&pool->lock);
2471 
2472 		if (flush_color >= 0) {
2473 			WARN_ON_ONCE(pwq->flush_color != -1);
2474 
2475 			if (pwq->nr_in_flight[flush_color]) {
2476 				pwq->flush_color = flush_color;
2477 				atomic_inc(&wq->nr_pwqs_to_flush);
2478 				wait = true;
2479 			}
2480 		}
2481 
2482 		if (work_color >= 0) {
2483 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2484 			pwq->work_color = work_color;
2485 		}
2486 
2487 		spin_unlock_irq(&pool->lock);
2488 	}
2489 
2490 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2491 		complete(&wq->first_flusher->done);
2492 
2493 	return wait;
2494 }
2495 
2496 /**
2497  * flush_workqueue - ensure that any scheduled work has run to completion.
2498  * @wq: workqueue to flush
2499  *
2500  * This function sleeps until all work items which were queued on entry
2501  * have finished execution, but it is not livelocked by new incoming ones.
2502  */
2503 void flush_workqueue(struct workqueue_struct *wq)
2504 {
2505 	struct wq_flusher this_flusher = {
2506 		.list = LIST_HEAD_INIT(this_flusher.list),
2507 		.flush_color = -1,
2508 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2509 	};
2510 	int next_color;
2511 
2512 	lock_map_acquire(&wq->lockdep_map);
2513 	lock_map_release(&wq->lockdep_map);
2514 
2515 	mutex_lock(&wq->mutex);
2516 
2517 	/*
2518 	 * Start-to-wait phase
2519 	 */
2520 	next_color = work_next_color(wq->work_color);
2521 
2522 	if (next_color != wq->flush_color) {
2523 		/*
2524 		 * Color space is not full.  The current work_color
2525 		 * becomes our flush_color and work_color is advanced
2526 		 * by one.
2527 		 */
2528 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2529 		this_flusher.flush_color = wq->work_color;
2530 		wq->work_color = next_color;
2531 
2532 		if (!wq->first_flusher) {
2533 			/* no flush in progress, become the first flusher */
2534 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2535 
2536 			wq->first_flusher = &this_flusher;
2537 
2538 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2539 						       wq->work_color)) {
2540 				/* nothing to flush, done */
2541 				wq->flush_color = next_color;
2542 				wq->first_flusher = NULL;
2543 				goto out_unlock;
2544 			}
2545 		} else {
2546 			/* wait in queue */
2547 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2548 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2549 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2550 		}
2551 	} else {
2552 		/*
2553 		 * Oops, color space is full, wait on overflow queue.
2554 		 * The next flush completion will assign us
2555 		 * flush_color and transfer to flusher_queue.
2556 		 */
2557 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2558 	}
2559 
2560 	mutex_unlock(&wq->mutex);
2561 
2562 	wait_for_completion(&this_flusher.done);
2563 
2564 	/*
2565 	 * Wake-up-and-cascade phase
2566 	 *
2567 	 * First flushers are responsible for cascading flushes and
2568 	 * handling overflow.  Non-first flushers can simply return.
2569 	 */
2570 	if (wq->first_flusher != &this_flusher)
2571 		return;
2572 
2573 	mutex_lock(&wq->mutex);
2574 
2575 	/* we might have raced, check again with mutex held */
2576 	if (wq->first_flusher != &this_flusher)
2577 		goto out_unlock;
2578 
2579 	wq->first_flusher = NULL;
2580 
2581 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2582 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2583 
2584 	while (true) {
2585 		struct wq_flusher *next, *tmp;
2586 
2587 		/* complete all the flushers sharing the current flush color */
2588 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2589 			if (next->flush_color != wq->flush_color)
2590 				break;
2591 			list_del_init(&next->list);
2592 			complete(&next->done);
2593 		}
2594 
2595 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2596 			     wq->flush_color != work_next_color(wq->work_color));
2597 
2598 		/* this flush_color is finished, advance by one */
2599 		wq->flush_color = work_next_color(wq->flush_color);
2600 
2601 		/* one color has been freed, handle overflow queue */
2602 		if (!list_empty(&wq->flusher_overflow)) {
2603 			/*
2604 			 * Assign the same color to all overflowed
2605 			 * flushers, advance work_color and append to
2606 			 * flusher_queue.  This is the start-to-wait
2607 			 * phase for these overflowed flushers.
2608 			 */
2609 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2610 				tmp->flush_color = wq->work_color;
2611 
2612 			wq->work_color = work_next_color(wq->work_color);
2613 
2614 			list_splice_tail_init(&wq->flusher_overflow,
2615 					      &wq->flusher_queue);
2616 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2617 		}
2618 
2619 		if (list_empty(&wq->flusher_queue)) {
2620 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2621 			break;
2622 		}
2623 
2624 		/*
2625 		 * Need to flush more colors.  Make the next flusher
2626 		 * the new first flusher and arm pwqs.
2627 		 */
2628 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2629 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2630 
2631 		list_del_init(&next->list);
2632 		wq->first_flusher = next;
2633 
2634 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2635 			break;
2636 
2637 		/*
2638 		 * Meh... this color is already done, clear first
2639 		 * flusher and repeat cascading.
2640 		 */
2641 		wq->first_flusher = NULL;
2642 	}
2643 
2644 out_unlock:
2645 	mutex_unlock(&wq->mutex);
2646 }
2647 EXPORT_SYMBOL_GPL(flush_workqueue);
2648 
2649 /**
2650  * drain_workqueue - drain a workqueue
2651  * @wq: workqueue to drain
2652  *
2653  * Wait until the workqueue becomes empty.  While draining is in progress,
2654  * only chain queueing is allowed.  IOW, only currently pending or running
2655  * work items on @wq can queue further work items on it.  @wq is flushed
2656  * repeatedly until it becomes empty.  The number of flushing is detemined
2657  * by the depth of chaining and should be relatively short.  Whine if it
2658  * takes too long.
2659  */
2660 void drain_workqueue(struct workqueue_struct *wq)
2661 {
2662 	unsigned int flush_cnt = 0;
2663 	struct pool_workqueue *pwq;
2664 
2665 	/*
2666 	 * __queue_work() needs to test whether there are drainers, is much
2667 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2668 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2669 	 */
2670 	mutex_lock(&wq->mutex);
2671 	if (!wq->nr_drainers++)
2672 		wq->flags |= __WQ_DRAINING;
2673 	mutex_unlock(&wq->mutex);
2674 reflush:
2675 	flush_workqueue(wq);
2676 
2677 	mutex_lock(&wq->mutex);
2678 
2679 	for_each_pwq(pwq, wq) {
2680 		bool drained;
2681 
2682 		spin_lock_irq(&pwq->pool->lock);
2683 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2684 		spin_unlock_irq(&pwq->pool->lock);
2685 
2686 		if (drained)
2687 			continue;
2688 
2689 		if (++flush_cnt == 10 ||
2690 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2691 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2692 				wq->name, flush_cnt);
2693 
2694 		mutex_unlock(&wq->mutex);
2695 		goto reflush;
2696 	}
2697 
2698 	if (!--wq->nr_drainers)
2699 		wq->flags &= ~__WQ_DRAINING;
2700 	mutex_unlock(&wq->mutex);
2701 }
2702 EXPORT_SYMBOL_GPL(drain_workqueue);
2703 
2704 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2705 {
2706 	struct worker *worker = NULL;
2707 	struct worker_pool *pool;
2708 	struct pool_workqueue *pwq;
2709 
2710 	might_sleep();
2711 
2712 	local_irq_disable();
2713 	pool = get_work_pool(work);
2714 	if (!pool) {
2715 		local_irq_enable();
2716 		return false;
2717 	}
2718 
2719 	spin_lock(&pool->lock);
2720 	/* see the comment in try_to_grab_pending() with the same code */
2721 	pwq = get_work_pwq(work);
2722 	if (pwq) {
2723 		if (unlikely(pwq->pool != pool))
2724 			goto already_gone;
2725 	} else {
2726 		worker = find_worker_executing_work(pool, work);
2727 		if (!worker)
2728 			goto already_gone;
2729 		pwq = worker->current_pwq;
2730 	}
2731 
2732 	insert_wq_barrier(pwq, barr, work, worker);
2733 	spin_unlock_irq(&pool->lock);
2734 
2735 	/*
2736 	 * If @max_active is 1 or rescuer is in use, flushing another work
2737 	 * item on the same workqueue may lead to deadlock.  Make sure the
2738 	 * flusher is not running on the same workqueue by verifying write
2739 	 * access.
2740 	 */
2741 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2742 		lock_map_acquire(&pwq->wq->lockdep_map);
2743 	else
2744 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2745 	lock_map_release(&pwq->wq->lockdep_map);
2746 
2747 	return true;
2748 already_gone:
2749 	spin_unlock_irq(&pool->lock);
2750 	return false;
2751 }
2752 
2753 /**
2754  * flush_work - wait for a work to finish executing the last queueing instance
2755  * @work: the work to flush
2756  *
2757  * Wait until @work has finished execution.  @work is guaranteed to be idle
2758  * on return if it hasn't been requeued since flush started.
2759  *
2760  * Return:
2761  * %true if flush_work() waited for the work to finish execution,
2762  * %false if it was already idle.
2763  */
2764 bool flush_work(struct work_struct *work)
2765 {
2766 	struct wq_barrier barr;
2767 
2768 	lock_map_acquire(&work->lockdep_map);
2769 	lock_map_release(&work->lockdep_map);
2770 
2771 	if (start_flush_work(work, &barr)) {
2772 		wait_for_completion(&barr.done);
2773 		destroy_work_on_stack(&barr.work);
2774 		return true;
2775 	} else {
2776 		return false;
2777 	}
2778 }
2779 EXPORT_SYMBOL_GPL(flush_work);
2780 
2781 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2782 {
2783 	unsigned long flags;
2784 	int ret;
2785 
2786 	do {
2787 		ret = try_to_grab_pending(work, is_dwork, &flags);
2788 		/*
2789 		 * If someone else is canceling, wait for the same event it
2790 		 * would be waiting for before retrying.
2791 		 */
2792 		if (unlikely(ret == -ENOENT))
2793 			flush_work(work);
2794 	} while (unlikely(ret < 0));
2795 
2796 	/* tell other tasks trying to grab @work to back off */
2797 	mark_work_canceling(work);
2798 	local_irq_restore(flags);
2799 
2800 	flush_work(work);
2801 	clear_work_data(work);
2802 	return ret;
2803 }
2804 
2805 /**
2806  * cancel_work_sync - cancel a work and wait for it to finish
2807  * @work: the work to cancel
2808  *
2809  * Cancel @work and wait for its execution to finish.  This function
2810  * can be used even if the work re-queues itself or migrates to
2811  * another workqueue.  On return from this function, @work is
2812  * guaranteed to be not pending or executing on any CPU.
2813  *
2814  * cancel_work_sync(&delayed_work->work) must not be used for
2815  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2816  *
2817  * The caller must ensure that the workqueue on which @work was last
2818  * queued can't be destroyed before this function returns.
2819  *
2820  * Return:
2821  * %true if @work was pending, %false otherwise.
2822  */
2823 bool cancel_work_sync(struct work_struct *work)
2824 {
2825 	return __cancel_work_timer(work, false);
2826 }
2827 EXPORT_SYMBOL_GPL(cancel_work_sync);
2828 
2829 /**
2830  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2831  * @dwork: the delayed work to flush
2832  *
2833  * Delayed timer is cancelled and the pending work is queued for
2834  * immediate execution.  Like flush_work(), this function only
2835  * considers the last queueing instance of @dwork.
2836  *
2837  * Return:
2838  * %true if flush_work() waited for the work to finish execution,
2839  * %false if it was already idle.
2840  */
2841 bool flush_delayed_work(struct delayed_work *dwork)
2842 {
2843 	local_irq_disable();
2844 	if (del_timer_sync(&dwork->timer))
2845 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2846 	local_irq_enable();
2847 	return flush_work(&dwork->work);
2848 }
2849 EXPORT_SYMBOL(flush_delayed_work);
2850 
2851 /**
2852  * cancel_delayed_work - cancel a delayed work
2853  * @dwork: delayed_work to cancel
2854  *
2855  * Kill off a pending delayed_work.
2856  *
2857  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2858  * pending.
2859  *
2860  * Note:
2861  * The work callback function may still be running on return, unless
2862  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2863  * use cancel_delayed_work_sync() to wait on it.
2864  *
2865  * This function is safe to call from any context including IRQ handler.
2866  */
2867 bool cancel_delayed_work(struct delayed_work *dwork)
2868 {
2869 	unsigned long flags;
2870 	int ret;
2871 
2872 	do {
2873 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2874 	} while (unlikely(ret == -EAGAIN));
2875 
2876 	if (unlikely(ret < 0))
2877 		return false;
2878 
2879 	set_work_pool_and_clear_pending(&dwork->work,
2880 					get_work_pool_id(&dwork->work));
2881 	local_irq_restore(flags);
2882 	return ret;
2883 }
2884 EXPORT_SYMBOL(cancel_delayed_work);
2885 
2886 /**
2887  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2888  * @dwork: the delayed work cancel
2889  *
2890  * This is cancel_work_sync() for delayed works.
2891  *
2892  * Return:
2893  * %true if @dwork was pending, %false otherwise.
2894  */
2895 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2896 {
2897 	return __cancel_work_timer(&dwork->work, true);
2898 }
2899 EXPORT_SYMBOL(cancel_delayed_work_sync);
2900 
2901 /**
2902  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2903  * @func: the function to call
2904  *
2905  * schedule_on_each_cpu() executes @func on each online CPU using the
2906  * system workqueue and blocks until all CPUs have completed.
2907  * schedule_on_each_cpu() is very slow.
2908  *
2909  * Return:
2910  * 0 on success, -errno on failure.
2911  */
2912 int schedule_on_each_cpu(work_func_t func)
2913 {
2914 	int cpu;
2915 	struct work_struct __percpu *works;
2916 
2917 	works = alloc_percpu(struct work_struct);
2918 	if (!works)
2919 		return -ENOMEM;
2920 
2921 	get_online_cpus();
2922 
2923 	for_each_online_cpu(cpu) {
2924 		struct work_struct *work = per_cpu_ptr(works, cpu);
2925 
2926 		INIT_WORK(work, func);
2927 		schedule_work_on(cpu, work);
2928 	}
2929 
2930 	for_each_online_cpu(cpu)
2931 		flush_work(per_cpu_ptr(works, cpu));
2932 
2933 	put_online_cpus();
2934 	free_percpu(works);
2935 	return 0;
2936 }
2937 
2938 /**
2939  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2940  *
2941  * Forces execution of the kernel-global workqueue and blocks until its
2942  * completion.
2943  *
2944  * Think twice before calling this function!  It's very easy to get into
2945  * trouble if you don't take great care.  Either of the following situations
2946  * will lead to deadlock:
2947  *
2948  *	One of the work items currently on the workqueue needs to acquire
2949  *	a lock held by your code or its caller.
2950  *
2951  *	Your code is running in the context of a work routine.
2952  *
2953  * They will be detected by lockdep when they occur, but the first might not
2954  * occur very often.  It depends on what work items are on the workqueue and
2955  * what locks they need, which you have no control over.
2956  *
2957  * In most situations flushing the entire workqueue is overkill; you merely
2958  * need to know that a particular work item isn't queued and isn't running.
2959  * In such cases you should use cancel_delayed_work_sync() or
2960  * cancel_work_sync() instead.
2961  */
2962 void flush_scheduled_work(void)
2963 {
2964 	flush_workqueue(system_wq);
2965 }
2966 EXPORT_SYMBOL(flush_scheduled_work);
2967 
2968 /**
2969  * execute_in_process_context - reliably execute the routine with user context
2970  * @fn:		the function to execute
2971  * @ew:		guaranteed storage for the execute work structure (must
2972  *		be available when the work executes)
2973  *
2974  * Executes the function immediately if process context is available,
2975  * otherwise schedules the function for delayed execution.
2976  *
2977  * Return:	0 - function was executed
2978  *		1 - function was scheduled for execution
2979  */
2980 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2981 {
2982 	if (!in_interrupt()) {
2983 		fn(&ew->work);
2984 		return 0;
2985 	}
2986 
2987 	INIT_WORK(&ew->work, fn);
2988 	schedule_work(&ew->work);
2989 
2990 	return 1;
2991 }
2992 EXPORT_SYMBOL_GPL(execute_in_process_context);
2993 
2994 #ifdef CONFIG_SYSFS
2995 /*
2996  * Workqueues with WQ_SYSFS flag set is visible to userland via
2997  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
2998  * following attributes.
2999  *
3000  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
3001  *  max_active	RW int	: maximum number of in-flight work items
3002  *
3003  * Unbound workqueues have the following extra attributes.
3004  *
3005  *  id		RO int	: the associated pool ID
3006  *  nice	RW int	: nice value of the workers
3007  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
3008  */
3009 struct wq_device {
3010 	struct workqueue_struct		*wq;
3011 	struct device			dev;
3012 };
3013 
3014 static struct workqueue_struct *dev_to_wq(struct device *dev)
3015 {
3016 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3017 
3018 	return wq_dev->wq;
3019 }
3020 
3021 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3022 			    char *buf)
3023 {
3024 	struct workqueue_struct *wq = dev_to_wq(dev);
3025 
3026 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3027 }
3028 static DEVICE_ATTR_RO(per_cpu);
3029 
3030 static ssize_t max_active_show(struct device *dev,
3031 			       struct device_attribute *attr, char *buf)
3032 {
3033 	struct workqueue_struct *wq = dev_to_wq(dev);
3034 
3035 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3036 }
3037 
3038 static ssize_t max_active_store(struct device *dev,
3039 				struct device_attribute *attr, const char *buf,
3040 				size_t count)
3041 {
3042 	struct workqueue_struct *wq = dev_to_wq(dev);
3043 	int val;
3044 
3045 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3046 		return -EINVAL;
3047 
3048 	workqueue_set_max_active(wq, val);
3049 	return count;
3050 }
3051 static DEVICE_ATTR_RW(max_active);
3052 
3053 static struct attribute *wq_sysfs_attrs[] = {
3054 	&dev_attr_per_cpu.attr,
3055 	&dev_attr_max_active.attr,
3056 	NULL,
3057 };
3058 ATTRIBUTE_GROUPS(wq_sysfs);
3059 
3060 static ssize_t wq_pool_ids_show(struct device *dev,
3061 				struct device_attribute *attr, char *buf)
3062 {
3063 	struct workqueue_struct *wq = dev_to_wq(dev);
3064 	const char *delim = "";
3065 	int node, written = 0;
3066 
3067 	rcu_read_lock_sched();
3068 	for_each_node(node) {
3069 		written += scnprintf(buf + written, PAGE_SIZE - written,
3070 				     "%s%d:%d", delim, node,
3071 				     unbound_pwq_by_node(wq, node)->pool->id);
3072 		delim = " ";
3073 	}
3074 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3075 	rcu_read_unlock_sched();
3076 
3077 	return written;
3078 }
3079 
3080 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3081 			    char *buf)
3082 {
3083 	struct workqueue_struct *wq = dev_to_wq(dev);
3084 	int written;
3085 
3086 	mutex_lock(&wq->mutex);
3087 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3088 	mutex_unlock(&wq->mutex);
3089 
3090 	return written;
3091 }
3092 
3093 /* prepare workqueue_attrs for sysfs store operations */
3094 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3095 {
3096 	struct workqueue_attrs *attrs;
3097 
3098 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
3099 	if (!attrs)
3100 		return NULL;
3101 
3102 	mutex_lock(&wq->mutex);
3103 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
3104 	mutex_unlock(&wq->mutex);
3105 	return attrs;
3106 }
3107 
3108 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3109 			     const char *buf, size_t count)
3110 {
3111 	struct workqueue_struct *wq = dev_to_wq(dev);
3112 	struct workqueue_attrs *attrs;
3113 	int ret;
3114 
3115 	attrs = wq_sysfs_prep_attrs(wq);
3116 	if (!attrs)
3117 		return -ENOMEM;
3118 
3119 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3120 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3121 		ret = apply_workqueue_attrs(wq, attrs);
3122 	else
3123 		ret = -EINVAL;
3124 
3125 	free_workqueue_attrs(attrs);
3126 	return ret ?: count;
3127 }
3128 
3129 static ssize_t wq_cpumask_show(struct device *dev,
3130 			       struct device_attribute *attr, char *buf)
3131 {
3132 	struct workqueue_struct *wq = dev_to_wq(dev);
3133 	int written;
3134 
3135 	mutex_lock(&wq->mutex);
3136 	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3137 	mutex_unlock(&wq->mutex);
3138 
3139 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3140 	return written;
3141 }
3142 
3143 static ssize_t wq_cpumask_store(struct device *dev,
3144 				struct device_attribute *attr,
3145 				const char *buf, size_t count)
3146 {
3147 	struct workqueue_struct *wq = dev_to_wq(dev);
3148 	struct workqueue_attrs *attrs;
3149 	int ret;
3150 
3151 	attrs = wq_sysfs_prep_attrs(wq);
3152 	if (!attrs)
3153 		return -ENOMEM;
3154 
3155 	ret = cpumask_parse(buf, attrs->cpumask);
3156 	if (!ret)
3157 		ret = apply_workqueue_attrs(wq, attrs);
3158 
3159 	free_workqueue_attrs(attrs);
3160 	return ret ?: count;
3161 }
3162 
3163 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3164 			    char *buf)
3165 {
3166 	struct workqueue_struct *wq = dev_to_wq(dev);
3167 	int written;
3168 
3169 	mutex_lock(&wq->mutex);
3170 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
3171 			    !wq->unbound_attrs->no_numa);
3172 	mutex_unlock(&wq->mutex);
3173 
3174 	return written;
3175 }
3176 
3177 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3178 			     const char *buf, size_t count)
3179 {
3180 	struct workqueue_struct *wq = dev_to_wq(dev);
3181 	struct workqueue_attrs *attrs;
3182 	int v, ret;
3183 
3184 	attrs = wq_sysfs_prep_attrs(wq);
3185 	if (!attrs)
3186 		return -ENOMEM;
3187 
3188 	ret = -EINVAL;
3189 	if (sscanf(buf, "%d", &v) == 1) {
3190 		attrs->no_numa = !v;
3191 		ret = apply_workqueue_attrs(wq, attrs);
3192 	}
3193 
3194 	free_workqueue_attrs(attrs);
3195 	return ret ?: count;
3196 }
3197 
3198 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3199 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3200 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3201 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3202 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3203 	__ATTR_NULL,
3204 };
3205 
3206 static struct bus_type wq_subsys = {
3207 	.name				= "workqueue",
3208 	.dev_groups			= wq_sysfs_groups,
3209 };
3210 
3211 static int __init wq_sysfs_init(void)
3212 {
3213 	return subsys_virtual_register(&wq_subsys, NULL);
3214 }
3215 core_initcall(wq_sysfs_init);
3216 
3217 static void wq_device_release(struct device *dev)
3218 {
3219 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3220 
3221 	kfree(wq_dev);
3222 }
3223 
3224 /**
3225  * workqueue_sysfs_register - make a workqueue visible in sysfs
3226  * @wq: the workqueue to register
3227  *
3228  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3229  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3230  * which is the preferred method.
3231  *
3232  * Workqueue user should use this function directly iff it wants to apply
3233  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3234  * apply_workqueue_attrs() may race against userland updating the
3235  * attributes.
3236  *
3237  * Return: 0 on success, -errno on failure.
3238  */
3239 int workqueue_sysfs_register(struct workqueue_struct *wq)
3240 {
3241 	struct wq_device *wq_dev;
3242 	int ret;
3243 
3244 	/*
3245 	 * Adjusting max_active or creating new pwqs by applyting
3246 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
3247 	 * workqueues.
3248 	 */
3249 	if (WARN_ON(wq->flags & __WQ_ORDERED))
3250 		return -EINVAL;
3251 
3252 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3253 	if (!wq_dev)
3254 		return -ENOMEM;
3255 
3256 	wq_dev->wq = wq;
3257 	wq_dev->dev.bus = &wq_subsys;
3258 	wq_dev->dev.init_name = wq->name;
3259 	wq_dev->dev.release = wq_device_release;
3260 
3261 	/*
3262 	 * unbound_attrs are created separately.  Suppress uevent until
3263 	 * everything is ready.
3264 	 */
3265 	dev_set_uevent_suppress(&wq_dev->dev, true);
3266 
3267 	ret = device_register(&wq_dev->dev);
3268 	if (ret) {
3269 		kfree(wq_dev);
3270 		wq->wq_dev = NULL;
3271 		return ret;
3272 	}
3273 
3274 	if (wq->flags & WQ_UNBOUND) {
3275 		struct device_attribute *attr;
3276 
3277 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3278 			ret = device_create_file(&wq_dev->dev, attr);
3279 			if (ret) {
3280 				device_unregister(&wq_dev->dev);
3281 				wq->wq_dev = NULL;
3282 				return ret;
3283 			}
3284 		}
3285 	}
3286 
3287 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3288 	return 0;
3289 }
3290 
3291 /**
3292  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3293  * @wq: the workqueue to unregister
3294  *
3295  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3296  */
3297 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3298 {
3299 	struct wq_device *wq_dev = wq->wq_dev;
3300 
3301 	if (!wq->wq_dev)
3302 		return;
3303 
3304 	wq->wq_dev = NULL;
3305 	device_unregister(&wq_dev->dev);
3306 }
3307 #else	/* CONFIG_SYSFS */
3308 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
3309 #endif	/* CONFIG_SYSFS */
3310 
3311 /**
3312  * free_workqueue_attrs - free a workqueue_attrs
3313  * @attrs: workqueue_attrs to free
3314  *
3315  * Undo alloc_workqueue_attrs().
3316  */
3317 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3318 {
3319 	if (attrs) {
3320 		free_cpumask_var(attrs->cpumask);
3321 		kfree(attrs);
3322 	}
3323 }
3324 
3325 /**
3326  * alloc_workqueue_attrs - allocate a workqueue_attrs
3327  * @gfp_mask: allocation mask to use
3328  *
3329  * Allocate a new workqueue_attrs, initialize with default settings and
3330  * return it.
3331  *
3332  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3333  */
3334 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3335 {
3336 	struct workqueue_attrs *attrs;
3337 
3338 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3339 	if (!attrs)
3340 		goto fail;
3341 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3342 		goto fail;
3343 
3344 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3345 	return attrs;
3346 fail:
3347 	free_workqueue_attrs(attrs);
3348 	return NULL;
3349 }
3350 
3351 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3352 				 const struct workqueue_attrs *from)
3353 {
3354 	to->nice = from->nice;
3355 	cpumask_copy(to->cpumask, from->cpumask);
3356 	/*
3357 	 * Unlike hash and equality test, this function doesn't ignore
3358 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3359 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3360 	 */
3361 	to->no_numa = from->no_numa;
3362 }
3363 
3364 /* hash value of the content of @attr */
3365 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3366 {
3367 	u32 hash = 0;
3368 
3369 	hash = jhash_1word(attrs->nice, hash);
3370 	hash = jhash(cpumask_bits(attrs->cpumask),
3371 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3372 	return hash;
3373 }
3374 
3375 /* content equality test */
3376 static bool wqattrs_equal(const struct workqueue_attrs *a,
3377 			  const struct workqueue_attrs *b)
3378 {
3379 	if (a->nice != b->nice)
3380 		return false;
3381 	if (!cpumask_equal(a->cpumask, b->cpumask))
3382 		return false;
3383 	return true;
3384 }
3385 
3386 /**
3387  * init_worker_pool - initialize a newly zalloc'd worker_pool
3388  * @pool: worker_pool to initialize
3389  *
3390  * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3391  *
3392  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3393  * inside @pool proper are initialized and put_unbound_pool() can be called
3394  * on @pool safely to release it.
3395  */
3396 static int init_worker_pool(struct worker_pool *pool)
3397 {
3398 	spin_lock_init(&pool->lock);
3399 	pool->id = -1;
3400 	pool->cpu = -1;
3401 	pool->node = NUMA_NO_NODE;
3402 	pool->flags |= POOL_DISASSOCIATED;
3403 	INIT_LIST_HEAD(&pool->worklist);
3404 	INIT_LIST_HEAD(&pool->idle_list);
3405 	hash_init(pool->busy_hash);
3406 
3407 	init_timer_deferrable(&pool->idle_timer);
3408 	pool->idle_timer.function = idle_worker_timeout;
3409 	pool->idle_timer.data = (unsigned long)pool;
3410 
3411 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3412 		    (unsigned long)pool);
3413 
3414 	mutex_init(&pool->manager_arb);
3415 	mutex_init(&pool->attach_mutex);
3416 	INIT_LIST_HEAD(&pool->workers);
3417 
3418 	ida_init(&pool->worker_ida);
3419 	INIT_HLIST_NODE(&pool->hash_node);
3420 	pool->refcnt = 1;
3421 
3422 	/* shouldn't fail above this point */
3423 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3424 	if (!pool->attrs)
3425 		return -ENOMEM;
3426 	return 0;
3427 }
3428 
3429 static void rcu_free_pool(struct rcu_head *rcu)
3430 {
3431 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3432 
3433 	ida_destroy(&pool->worker_ida);
3434 	free_workqueue_attrs(pool->attrs);
3435 	kfree(pool);
3436 }
3437 
3438 /**
3439  * put_unbound_pool - put a worker_pool
3440  * @pool: worker_pool to put
3441  *
3442  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3443  * safe manner.  get_unbound_pool() calls this function on its failure path
3444  * and this function should be able to release pools which went through,
3445  * successfully or not, init_worker_pool().
3446  *
3447  * Should be called with wq_pool_mutex held.
3448  */
3449 static void put_unbound_pool(struct worker_pool *pool)
3450 {
3451 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3452 	struct worker *worker;
3453 
3454 	lockdep_assert_held(&wq_pool_mutex);
3455 
3456 	if (--pool->refcnt)
3457 		return;
3458 
3459 	/* sanity checks */
3460 	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3461 	    WARN_ON(!list_empty(&pool->worklist)))
3462 		return;
3463 
3464 	/* release id and unhash */
3465 	if (pool->id >= 0)
3466 		idr_remove(&worker_pool_idr, pool->id);
3467 	hash_del(&pool->hash_node);
3468 
3469 	/*
3470 	 * Become the manager and destroy all workers.  Grabbing
3471 	 * manager_arb prevents @pool's workers from blocking on
3472 	 * attach_mutex.
3473 	 */
3474 	mutex_lock(&pool->manager_arb);
3475 
3476 	spin_lock_irq(&pool->lock);
3477 	while ((worker = first_idle_worker(pool)))
3478 		destroy_worker(worker);
3479 	WARN_ON(pool->nr_workers || pool->nr_idle);
3480 	spin_unlock_irq(&pool->lock);
3481 
3482 	mutex_lock(&pool->attach_mutex);
3483 	if (!list_empty(&pool->workers))
3484 		pool->detach_completion = &detach_completion;
3485 	mutex_unlock(&pool->attach_mutex);
3486 
3487 	if (pool->detach_completion)
3488 		wait_for_completion(pool->detach_completion);
3489 
3490 	mutex_unlock(&pool->manager_arb);
3491 
3492 	/* shut down the timers */
3493 	del_timer_sync(&pool->idle_timer);
3494 	del_timer_sync(&pool->mayday_timer);
3495 
3496 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3497 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3498 }
3499 
3500 /**
3501  * get_unbound_pool - get a worker_pool with the specified attributes
3502  * @attrs: the attributes of the worker_pool to get
3503  *
3504  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3505  * reference count and return it.  If there already is a matching
3506  * worker_pool, it will be used; otherwise, this function attempts to
3507  * create a new one.
3508  *
3509  * Should be called with wq_pool_mutex held.
3510  *
3511  * Return: On success, a worker_pool with the same attributes as @attrs.
3512  * On failure, %NULL.
3513  */
3514 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3515 {
3516 	u32 hash = wqattrs_hash(attrs);
3517 	struct worker_pool *pool;
3518 	int node;
3519 
3520 	lockdep_assert_held(&wq_pool_mutex);
3521 
3522 	/* do we already have a matching pool? */
3523 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3524 		if (wqattrs_equal(pool->attrs, attrs)) {
3525 			pool->refcnt++;
3526 			goto out_unlock;
3527 		}
3528 	}
3529 
3530 	/* nope, create a new one */
3531 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3532 	if (!pool || init_worker_pool(pool) < 0)
3533 		goto fail;
3534 
3535 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3536 	copy_workqueue_attrs(pool->attrs, attrs);
3537 
3538 	/*
3539 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3540 	 * 'struct workqueue_attrs' comments for detail.
3541 	 */
3542 	pool->attrs->no_numa = false;
3543 
3544 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3545 	if (wq_numa_enabled) {
3546 		for_each_node(node) {
3547 			if (cpumask_subset(pool->attrs->cpumask,
3548 					   wq_numa_possible_cpumask[node])) {
3549 				pool->node = node;
3550 				break;
3551 			}
3552 		}
3553 	}
3554 
3555 	if (worker_pool_assign_id(pool) < 0)
3556 		goto fail;
3557 
3558 	/* create and start the initial worker */
3559 	if (create_and_start_worker(pool) < 0)
3560 		goto fail;
3561 
3562 	/* install */
3563 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3564 out_unlock:
3565 	return pool;
3566 fail:
3567 	if (pool)
3568 		put_unbound_pool(pool);
3569 	return NULL;
3570 }
3571 
3572 static void rcu_free_pwq(struct rcu_head *rcu)
3573 {
3574 	kmem_cache_free(pwq_cache,
3575 			container_of(rcu, struct pool_workqueue, rcu));
3576 }
3577 
3578 /*
3579  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3580  * and needs to be destroyed.
3581  */
3582 static void pwq_unbound_release_workfn(struct work_struct *work)
3583 {
3584 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3585 						  unbound_release_work);
3586 	struct workqueue_struct *wq = pwq->wq;
3587 	struct worker_pool *pool = pwq->pool;
3588 	bool is_last;
3589 
3590 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3591 		return;
3592 
3593 	/*
3594 	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3595 	 * necessary on release but do it anyway.  It's easier to verify
3596 	 * and consistent with the linking path.
3597 	 */
3598 	mutex_lock(&wq->mutex);
3599 	list_del_rcu(&pwq->pwqs_node);
3600 	is_last = list_empty(&wq->pwqs);
3601 	mutex_unlock(&wq->mutex);
3602 
3603 	mutex_lock(&wq_pool_mutex);
3604 	put_unbound_pool(pool);
3605 	mutex_unlock(&wq_pool_mutex);
3606 
3607 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3608 
3609 	/*
3610 	 * If we're the last pwq going away, @wq is already dead and no one
3611 	 * is gonna access it anymore.  Free it.
3612 	 */
3613 	if (is_last) {
3614 		free_workqueue_attrs(wq->unbound_attrs);
3615 		kfree(wq);
3616 	}
3617 }
3618 
3619 /**
3620  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3621  * @pwq: target pool_workqueue
3622  *
3623  * If @pwq isn't freezing, set @pwq->max_active to the associated
3624  * workqueue's saved_max_active and activate delayed work items
3625  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3626  */
3627 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3628 {
3629 	struct workqueue_struct *wq = pwq->wq;
3630 	bool freezable = wq->flags & WQ_FREEZABLE;
3631 
3632 	/* for @wq->saved_max_active */
3633 	lockdep_assert_held(&wq->mutex);
3634 
3635 	/* fast exit for non-freezable wqs */
3636 	if (!freezable && pwq->max_active == wq->saved_max_active)
3637 		return;
3638 
3639 	spin_lock_irq(&pwq->pool->lock);
3640 
3641 	/*
3642 	 * During [un]freezing, the caller is responsible for ensuring that
3643 	 * this function is called at least once after @workqueue_freezing
3644 	 * is updated and visible.
3645 	 */
3646 	if (!freezable || !workqueue_freezing) {
3647 		pwq->max_active = wq->saved_max_active;
3648 
3649 		while (!list_empty(&pwq->delayed_works) &&
3650 		       pwq->nr_active < pwq->max_active)
3651 			pwq_activate_first_delayed(pwq);
3652 
3653 		/*
3654 		 * Need to kick a worker after thawed or an unbound wq's
3655 		 * max_active is bumped.  It's a slow path.  Do it always.
3656 		 */
3657 		wake_up_worker(pwq->pool);
3658 	} else {
3659 		pwq->max_active = 0;
3660 	}
3661 
3662 	spin_unlock_irq(&pwq->pool->lock);
3663 }
3664 
3665 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3666 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3667 		     struct worker_pool *pool)
3668 {
3669 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3670 
3671 	memset(pwq, 0, sizeof(*pwq));
3672 
3673 	pwq->pool = pool;
3674 	pwq->wq = wq;
3675 	pwq->flush_color = -1;
3676 	pwq->refcnt = 1;
3677 	INIT_LIST_HEAD(&pwq->delayed_works);
3678 	INIT_LIST_HEAD(&pwq->pwqs_node);
3679 	INIT_LIST_HEAD(&pwq->mayday_node);
3680 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3681 }
3682 
3683 /* sync @pwq with the current state of its associated wq and link it */
3684 static void link_pwq(struct pool_workqueue *pwq)
3685 {
3686 	struct workqueue_struct *wq = pwq->wq;
3687 
3688 	lockdep_assert_held(&wq->mutex);
3689 
3690 	/* may be called multiple times, ignore if already linked */
3691 	if (!list_empty(&pwq->pwqs_node))
3692 		return;
3693 
3694 	/*
3695 	 * Set the matching work_color.  This is synchronized with
3696 	 * wq->mutex to avoid confusing flush_workqueue().
3697 	 */
3698 	pwq->work_color = wq->work_color;
3699 
3700 	/* sync max_active to the current setting */
3701 	pwq_adjust_max_active(pwq);
3702 
3703 	/* link in @pwq */
3704 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3705 }
3706 
3707 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3708 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3709 					const struct workqueue_attrs *attrs)
3710 {
3711 	struct worker_pool *pool;
3712 	struct pool_workqueue *pwq;
3713 
3714 	lockdep_assert_held(&wq_pool_mutex);
3715 
3716 	pool = get_unbound_pool(attrs);
3717 	if (!pool)
3718 		return NULL;
3719 
3720 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3721 	if (!pwq) {
3722 		put_unbound_pool(pool);
3723 		return NULL;
3724 	}
3725 
3726 	init_pwq(pwq, wq, pool);
3727 	return pwq;
3728 }
3729 
3730 /* undo alloc_unbound_pwq(), used only in the error path */
3731 static void free_unbound_pwq(struct pool_workqueue *pwq)
3732 {
3733 	lockdep_assert_held(&wq_pool_mutex);
3734 
3735 	if (pwq) {
3736 		put_unbound_pool(pwq->pool);
3737 		kmem_cache_free(pwq_cache, pwq);
3738 	}
3739 }
3740 
3741 /**
3742  * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3743  * @attrs: the wq_attrs of interest
3744  * @node: the target NUMA node
3745  * @cpu_going_down: if >= 0, the CPU to consider as offline
3746  * @cpumask: outarg, the resulting cpumask
3747  *
3748  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3749  * @cpu_going_down is >= 0, that cpu is considered offline during
3750  * calculation.  The result is stored in @cpumask.
3751  *
3752  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3753  * enabled and @node has online CPUs requested by @attrs, the returned
3754  * cpumask is the intersection of the possible CPUs of @node and
3755  * @attrs->cpumask.
3756  *
3757  * The caller is responsible for ensuring that the cpumask of @node stays
3758  * stable.
3759  *
3760  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3761  * %false if equal.
3762  */
3763 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3764 				 int cpu_going_down, cpumask_t *cpumask)
3765 {
3766 	if (!wq_numa_enabled || attrs->no_numa)
3767 		goto use_dfl;
3768 
3769 	/* does @node have any online CPUs @attrs wants? */
3770 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3771 	if (cpu_going_down >= 0)
3772 		cpumask_clear_cpu(cpu_going_down, cpumask);
3773 
3774 	if (cpumask_empty(cpumask))
3775 		goto use_dfl;
3776 
3777 	/* yeap, return possible CPUs in @node that @attrs wants */
3778 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3779 	return !cpumask_equal(cpumask, attrs->cpumask);
3780 
3781 use_dfl:
3782 	cpumask_copy(cpumask, attrs->cpumask);
3783 	return false;
3784 }
3785 
3786 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3787 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3788 						   int node,
3789 						   struct pool_workqueue *pwq)
3790 {
3791 	struct pool_workqueue *old_pwq;
3792 
3793 	lockdep_assert_held(&wq->mutex);
3794 
3795 	/* link_pwq() can handle duplicate calls */
3796 	link_pwq(pwq);
3797 
3798 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3799 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3800 	return old_pwq;
3801 }
3802 
3803 /**
3804  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3805  * @wq: the target workqueue
3806  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3807  *
3808  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3809  * machines, this function maps a separate pwq to each NUMA node with
3810  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3811  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3812  * items finish.  Note that a work item which repeatedly requeues itself
3813  * back-to-back will stay on its current pwq.
3814  *
3815  * Performs GFP_KERNEL allocations.
3816  *
3817  * Return: 0 on success and -errno on failure.
3818  */
3819 int apply_workqueue_attrs(struct workqueue_struct *wq,
3820 			  const struct workqueue_attrs *attrs)
3821 {
3822 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3823 	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3824 	int node, ret;
3825 
3826 	/* only unbound workqueues can change attributes */
3827 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3828 		return -EINVAL;
3829 
3830 	/* creating multiple pwqs breaks ordering guarantee */
3831 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3832 		return -EINVAL;
3833 
3834 	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3835 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3836 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3837 	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3838 		goto enomem;
3839 
3840 	/* make a copy of @attrs and sanitize it */
3841 	copy_workqueue_attrs(new_attrs, attrs);
3842 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3843 
3844 	/*
3845 	 * We may create multiple pwqs with differing cpumasks.  Make a
3846 	 * copy of @new_attrs which will be modified and used to obtain
3847 	 * pools.
3848 	 */
3849 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3850 
3851 	/*
3852 	 * CPUs should stay stable across pwq creations and installations.
3853 	 * Pin CPUs, determine the target cpumask for each node and create
3854 	 * pwqs accordingly.
3855 	 */
3856 	get_online_cpus();
3857 
3858 	mutex_lock(&wq_pool_mutex);
3859 
3860 	/*
3861 	 * If something goes wrong during CPU up/down, we'll fall back to
3862 	 * the default pwq covering whole @attrs->cpumask.  Always create
3863 	 * it even if we don't use it immediately.
3864 	 */
3865 	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3866 	if (!dfl_pwq)
3867 		goto enomem_pwq;
3868 
3869 	for_each_node(node) {
3870 		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3871 			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3872 			if (!pwq_tbl[node])
3873 				goto enomem_pwq;
3874 		} else {
3875 			dfl_pwq->refcnt++;
3876 			pwq_tbl[node] = dfl_pwq;
3877 		}
3878 	}
3879 
3880 	mutex_unlock(&wq_pool_mutex);
3881 
3882 	/* all pwqs have been created successfully, let's install'em */
3883 	mutex_lock(&wq->mutex);
3884 
3885 	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3886 
3887 	/* save the previous pwq and install the new one */
3888 	for_each_node(node)
3889 		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3890 
3891 	/* @dfl_pwq might not have been used, ensure it's linked */
3892 	link_pwq(dfl_pwq);
3893 	swap(wq->dfl_pwq, dfl_pwq);
3894 
3895 	mutex_unlock(&wq->mutex);
3896 
3897 	/* put the old pwqs */
3898 	for_each_node(node)
3899 		put_pwq_unlocked(pwq_tbl[node]);
3900 	put_pwq_unlocked(dfl_pwq);
3901 
3902 	put_online_cpus();
3903 	ret = 0;
3904 	/* fall through */
3905 out_free:
3906 	free_workqueue_attrs(tmp_attrs);
3907 	free_workqueue_attrs(new_attrs);
3908 	kfree(pwq_tbl);
3909 	return ret;
3910 
3911 enomem_pwq:
3912 	free_unbound_pwq(dfl_pwq);
3913 	for_each_node(node)
3914 		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3915 			free_unbound_pwq(pwq_tbl[node]);
3916 	mutex_unlock(&wq_pool_mutex);
3917 	put_online_cpus();
3918 enomem:
3919 	ret = -ENOMEM;
3920 	goto out_free;
3921 }
3922 
3923 /**
3924  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3925  * @wq: the target workqueue
3926  * @cpu: the CPU coming up or going down
3927  * @online: whether @cpu is coming up or going down
3928  *
3929  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3930  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3931  * @wq accordingly.
3932  *
3933  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3934  * falls back to @wq->dfl_pwq which may not be optimal but is always
3935  * correct.
3936  *
3937  * Note that when the last allowed CPU of a NUMA node goes offline for a
3938  * workqueue with a cpumask spanning multiple nodes, the workers which were
3939  * already executing the work items for the workqueue will lose their CPU
3940  * affinity and may execute on any CPU.  This is similar to how per-cpu
3941  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3942  * affinity, it's the user's responsibility to flush the work item from
3943  * CPU_DOWN_PREPARE.
3944  */
3945 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3946 				   bool online)
3947 {
3948 	int node = cpu_to_node(cpu);
3949 	int cpu_off = online ? -1 : cpu;
3950 	struct pool_workqueue *old_pwq = NULL, *pwq;
3951 	struct workqueue_attrs *target_attrs;
3952 	cpumask_t *cpumask;
3953 
3954 	lockdep_assert_held(&wq_pool_mutex);
3955 
3956 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3957 		return;
3958 
3959 	/*
3960 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3961 	 * Let's use a preallocated one.  The following buf is protected by
3962 	 * CPU hotplug exclusion.
3963 	 */
3964 	target_attrs = wq_update_unbound_numa_attrs_buf;
3965 	cpumask = target_attrs->cpumask;
3966 
3967 	mutex_lock(&wq->mutex);
3968 	if (wq->unbound_attrs->no_numa)
3969 		goto out_unlock;
3970 
3971 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3972 	pwq = unbound_pwq_by_node(wq, node);
3973 
3974 	/*
3975 	 * Let's determine what needs to be done.  If the target cpumask is
3976 	 * different from wq's, we need to compare it to @pwq's and create
3977 	 * a new one if they don't match.  If the target cpumask equals
3978 	 * wq's, the default pwq should be used.
3979 	 */
3980 	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3981 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3982 			goto out_unlock;
3983 	} else {
3984 		goto use_dfl_pwq;
3985 	}
3986 
3987 	mutex_unlock(&wq->mutex);
3988 
3989 	/* create a new pwq */
3990 	pwq = alloc_unbound_pwq(wq, target_attrs);
3991 	if (!pwq) {
3992 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3993 			wq->name);
3994 		mutex_lock(&wq->mutex);
3995 		goto use_dfl_pwq;
3996 	}
3997 
3998 	/*
3999 	 * Install the new pwq.  As this function is called only from CPU
4000 	 * hotplug callbacks and applying a new attrs is wrapped with
4001 	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4002 	 * inbetween.
4003 	 */
4004 	mutex_lock(&wq->mutex);
4005 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4006 	goto out_unlock;
4007 
4008 use_dfl_pwq:
4009 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4010 	get_pwq(wq->dfl_pwq);
4011 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4012 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4013 out_unlock:
4014 	mutex_unlock(&wq->mutex);
4015 	put_pwq_unlocked(old_pwq);
4016 }
4017 
4018 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4019 {
4020 	bool highpri = wq->flags & WQ_HIGHPRI;
4021 	int cpu, ret;
4022 
4023 	if (!(wq->flags & WQ_UNBOUND)) {
4024 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4025 		if (!wq->cpu_pwqs)
4026 			return -ENOMEM;
4027 
4028 		for_each_possible_cpu(cpu) {
4029 			struct pool_workqueue *pwq =
4030 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4031 			struct worker_pool *cpu_pools =
4032 				per_cpu(cpu_worker_pools, cpu);
4033 
4034 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4035 
4036 			mutex_lock(&wq->mutex);
4037 			link_pwq(pwq);
4038 			mutex_unlock(&wq->mutex);
4039 		}
4040 		return 0;
4041 	} else if (wq->flags & __WQ_ORDERED) {
4042 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4043 		/* there should only be single pwq for ordering guarantee */
4044 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4045 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4046 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4047 		return ret;
4048 	} else {
4049 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4050 	}
4051 }
4052 
4053 static int wq_clamp_max_active(int max_active, unsigned int flags,
4054 			       const char *name)
4055 {
4056 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4057 
4058 	if (max_active < 1 || max_active > lim)
4059 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4060 			max_active, name, 1, lim);
4061 
4062 	return clamp_val(max_active, 1, lim);
4063 }
4064 
4065 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4066 					       unsigned int flags,
4067 					       int max_active,
4068 					       struct lock_class_key *key,
4069 					       const char *lock_name, ...)
4070 {
4071 	size_t tbl_size = 0;
4072 	va_list args;
4073 	struct workqueue_struct *wq;
4074 	struct pool_workqueue *pwq;
4075 
4076 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4077 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4078 		flags |= WQ_UNBOUND;
4079 
4080 	/* allocate wq and format name */
4081 	if (flags & WQ_UNBOUND)
4082 		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4083 
4084 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4085 	if (!wq)
4086 		return NULL;
4087 
4088 	if (flags & WQ_UNBOUND) {
4089 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4090 		if (!wq->unbound_attrs)
4091 			goto err_free_wq;
4092 	}
4093 
4094 	va_start(args, lock_name);
4095 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4096 	va_end(args);
4097 
4098 	max_active = max_active ?: WQ_DFL_ACTIVE;
4099 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4100 
4101 	/* init wq */
4102 	wq->flags = flags;
4103 	wq->saved_max_active = max_active;
4104 	mutex_init(&wq->mutex);
4105 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4106 	INIT_LIST_HEAD(&wq->pwqs);
4107 	INIT_LIST_HEAD(&wq->flusher_queue);
4108 	INIT_LIST_HEAD(&wq->flusher_overflow);
4109 	INIT_LIST_HEAD(&wq->maydays);
4110 
4111 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4112 	INIT_LIST_HEAD(&wq->list);
4113 
4114 	if (alloc_and_link_pwqs(wq) < 0)
4115 		goto err_free_wq;
4116 
4117 	/*
4118 	 * Workqueues which may be used during memory reclaim should
4119 	 * have a rescuer to guarantee forward progress.
4120 	 */
4121 	if (flags & WQ_MEM_RECLAIM) {
4122 		struct worker *rescuer;
4123 
4124 		rescuer = alloc_worker();
4125 		if (!rescuer)
4126 			goto err_destroy;
4127 
4128 		rescuer->rescue_wq = wq;
4129 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4130 					       wq->name);
4131 		if (IS_ERR(rescuer->task)) {
4132 			kfree(rescuer);
4133 			goto err_destroy;
4134 		}
4135 
4136 		wq->rescuer = rescuer;
4137 		rescuer->task->flags |= PF_NO_SETAFFINITY;
4138 		wake_up_process(rescuer->task);
4139 	}
4140 
4141 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4142 		goto err_destroy;
4143 
4144 	/*
4145 	 * wq_pool_mutex protects global freeze state and workqueues list.
4146 	 * Grab it, adjust max_active and add the new @wq to workqueues
4147 	 * list.
4148 	 */
4149 	mutex_lock(&wq_pool_mutex);
4150 
4151 	mutex_lock(&wq->mutex);
4152 	for_each_pwq(pwq, wq)
4153 		pwq_adjust_max_active(pwq);
4154 	mutex_unlock(&wq->mutex);
4155 
4156 	list_add(&wq->list, &workqueues);
4157 
4158 	mutex_unlock(&wq_pool_mutex);
4159 
4160 	return wq;
4161 
4162 err_free_wq:
4163 	free_workqueue_attrs(wq->unbound_attrs);
4164 	kfree(wq);
4165 	return NULL;
4166 err_destroy:
4167 	destroy_workqueue(wq);
4168 	return NULL;
4169 }
4170 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4171 
4172 /**
4173  * destroy_workqueue - safely terminate a workqueue
4174  * @wq: target workqueue
4175  *
4176  * Safely destroy a workqueue. All work currently pending will be done first.
4177  */
4178 void destroy_workqueue(struct workqueue_struct *wq)
4179 {
4180 	struct pool_workqueue *pwq;
4181 	int node;
4182 
4183 	/* drain it before proceeding with destruction */
4184 	drain_workqueue(wq);
4185 
4186 	/* sanity checks */
4187 	mutex_lock(&wq->mutex);
4188 	for_each_pwq(pwq, wq) {
4189 		int i;
4190 
4191 		for (i = 0; i < WORK_NR_COLORS; i++) {
4192 			if (WARN_ON(pwq->nr_in_flight[i])) {
4193 				mutex_unlock(&wq->mutex);
4194 				return;
4195 			}
4196 		}
4197 
4198 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4199 		    WARN_ON(pwq->nr_active) ||
4200 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4201 			mutex_unlock(&wq->mutex);
4202 			return;
4203 		}
4204 	}
4205 	mutex_unlock(&wq->mutex);
4206 
4207 	/*
4208 	 * wq list is used to freeze wq, remove from list after
4209 	 * flushing is complete in case freeze races us.
4210 	 */
4211 	mutex_lock(&wq_pool_mutex);
4212 	list_del_init(&wq->list);
4213 	mutex_unlock(&wq_pool_mutex);
4214 
4215 	workqueue_sysfs_unregister(wq);
4216 
4217 	if (wq->rescuer) {
4218 		kthread_stop(wq->rescuer->task);
4219 		kfree(wq->rescuer);
4220 		wq->rescuer = NULL;
4221 	}
4222 
4223 	if (!(wq->flags & WQ_UNBOUND)) {
4224 		/*
4225 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4226 		 * free the pwqs and wq.
4227 		 */
4228 		free_percpu(wq->cpu_pwqs);
4229 		kfree(wq);
4230 	} else {
4231 		/*
4232 		 * We're the sole accessor of @wq at this point.  Directly
4233 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4234 		 * @wq will be freed when the last pwq is released.
4235 		 */
4236 		for_each_node(node) {
4237 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4238 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4239 			put_pwq_unlocked(pwq);
4240 		}
4241 
4242 		/*
4243 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4244 		 * put.  Don't access it afterwards.
4245 		 */
4246 		pwq = wq->dfl_pwq;
4247 		wq->dfl_pwq = NULL;
4248 		put_pwq_unlocked(pwq);
4249 	}
4250 }
4251 EXPORT_SYMBOL_GPL(destroy_workqueue);
4252 
4253 /**
4254  * workqueue_set_max_active - adjust max_active of a workqueue
4255  * @wq: target workqueue
4256  * @max_active: new max_active value.
4257  *
4258  * Set max_active of @wq to @max_active.
4259  *
4260  * CONTEXT:
4261  * Don't call from IRQ context.
4262  */
4263 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4264 {
4265 	struct pool_workqueue *pwq;
4266 
4267 	/* disallow meddling with max_active for ordered workqueues */
4268 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4269 		return;
4270 
4271 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4272 
4273 	mutex_lock(&wq->mutex);
4274 
4275 	wq->saved_max_active = max_active;
4276 
4277 	for_each_pwq(pwq, wq)
4278 		pwq_adjust_max_active(pwq);
4279 
4280 	mutex_unlock(&wq->mutex);
4281 }
4282 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4283 
4284 /**
4285  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4286  *
4287  * Determine whether %current is a workqueue rescuer.  Can be used from
4288  * work functions to determine whether it's being run off the rescuer task.
4289  *
4290  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4291  */
4292 bool current_is_workqueue_rescuer(void)
4293 {
4294 	struct worker *worker = current_wq_worker();
4295 
4296 	return worker && worker->rescue_wq;
4297 }
4298 
4299 /**
4300  * workqueue_congested - test whether a workqueue is congested
4301  * @cpu: CPU in question
4302  * @wq: target workqueue
4303  *
4304  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4305  * no synchronization around this function and the test result is
4306  * unreliable and only useful as advisory hints or for debugging.
4307  *
4308  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4309  * Note that both per-cpu and unbound workqueues may be associated with
4310  * multiple pool_workqueues which have separate congested states.  A
4311  * workqueue being congested on one CPU doesn't mean the workqueue is also
4312  * contested on other CPUs / NUMA nodes.
4313  *
4314  * Return:
4315  * %true if congested, %false otherwise.
4316  */
4317 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4318 {
4319 	struct pool_workqueue *pwq;
4320 	bool ret;
4321 
4322 	rcu_read_lock_sched();
4323 
4324 	if (cpu == WORK_CPU_UNBOUND)
4325 		cpu = smp_processor_id();
4326 
4327 	if (!(wq->flags & WQ_UNBOUND))
4328 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4329 	else
4330 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4331 
4332 	ret = !list_empty(&pwq->delayed_works);
4333 	rcu_read_unlock_sched();
4334 
4335 	return ret;
4336 }
4337 EXPORT_SYMBOL_GPL(workqueue_congested);
4338 
4339 /**
4340  * work_busy - test whether a work is currently pending or running
4341  * @work: the work to be tested
4342  *
4343  * Test whether @work is currently pending or running.  There is no
4344  * synchronization around this function and the test result is
4345  * unreliable and only useful as advisory hints or for debugging.
4346  *
4347  * Return:
4348  * OR'd bitmask of WORK_BUSY_* bits.
4349  */
4350 unsigned int work_busy(struct work_struct *work)
4351 {
4352 	struct worker_pool *pool;
4353 	unsigned long flags;
4354 	unsigned int ret = 0;
4355 
4356 	if (work_pending(work))
4357 		ret |= WORK_BUSY_PENDING;
4358 
4359 	local_irq_save(flags);
4360 	pool = get_work_pool(work);
4361 	if (pool) {
4362 		spin_lock(&pool->lock);
4363 		if (find_worker_executing_work(pool, work))
4364 			ret |= WORK_BUSY_RUNNING;
4365 		spin_unlock(&pool->lock);
4366 	}
4367 	local_irq_restore(flags);
4368 
4369 	return ret;
4370 }
4371 EXPORT_SYMBOL_GPL(work_busy);
4372 
4373 /**
4374  * set_worker_desc - set description for the current work item
4375  * @fmt: printf-style format string
4376  * @...: arguments for the format string
4377  *
4378  * This function can be called by a running work function to describe what
4379  * the work item is about.  If the worker task gets dumped, this
4380  * information will be printed out together to help debugging.  The
4381  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4382  */
4383 void set_worker_desc(const char *fmt, ...)
4384 {
4385 	struct worker *worker = current_wq_worker();
4386 	va_list args;
4387 
4388 	if (worker) {
4389 		va_start(args, fmt);
4390 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4391 		va_end(args);
4392 		worker->desc_valid = true;
4393 	}
4394 }
4395 
4396 /**
4397  * print_worker_info - print out worker information and description
4398  * @log_lvl: the log level to use when printing
4399  * @task: target task
4400  *
4401  * If @task is a worker and currently executing a work item, print out the
4402  * name of the workqueue being serviced and worker description set with
4403  * set_worker_desc() by the currently executing work item.
4404  *
4405  * This function can be safely called on any task as long as the
4406  * task_struct itself is accessible.  While safe, this function isn't
4407  * synchronized and may print out mixups or garbages of limited length.
4408  */
4409 void print_worker_info(const char *log_lvl, struct task_struct *task)
4410 {
4411 	work_func_t *fn = NULL;
4412 	char name[WQ_NAME_LEN] = { };
4413 	char desc[WORKER_DESC_LEN] = { };
4414 	struct pool_workqueue *pwq = NULL;
4415 	struct workqueue_struct *wq = NULL;
4416 	bool desc_valid = false;
4417 	struct worker *worker;
4418 
4419 	if (!(task->flags & PF_WQ_WORKER))
4420 		return;
4421 
4422 	/*
4423 	 * This function is called without any synchronization and @task
4424 	 * could be in any state.  Be careful with dereferences.
4425 	 */
4426 	worker = probe_kthread_data(task);
4427 
4428 	/*
4429 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4430 	 * the original last '\0' in case the original contains garbage.
4431 	 */
4432 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4433 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4434 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4435 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4436 
4437 	/* copy worker description */
4438 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4439 	if (desc_valid)
4440 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4441 
4442 	if (fn || name[0] || desc[0]) {
4443 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4444 		if (desc[0])
4445 			pr_cont(" (%s)", desc);
4446 		pr_cont("\n");
4447 	}
4448 }
4449 
4450 /*
4451  * CPU hotplug.
4452  *
4453  * There are two challenges in supporting CPU hotplug.  Firstly, there
4454  * are a lot of assumptions on strong associations among work, pwq and
4455  * pool which make migrating pending and scheduled works very
4456  * difficult to implement without impacting hot paths.  Secondly,
4457  * worker pools serve mix of short, long and very long running works making
4458  * blocked draining impractical.
4459  *
4460  * This is solved by allowing the pools to be disassociated from the CPU
4461  * running as an unbound one and allowing it to be reattached later if the
4462  * cpu comes back online.
4463  */
4464 
4465 static void wq_unbind_fn(struct work_struct *work)
4466 {
4467 	int cpu = smp_processor_id();
4468 	struct worker_pool *pool;
4469 	struct worker *worker;
4470 
4471 	for_each_cpu_worker_pool(pool, cpu) {
4472 		WARN_ON_ONCE(cpu != smp_processor_id());
4473 
4474 		mutex_lock(&pool->attach_mutex);
4475 		spin_lock_irq(&pool->lock);
4476 
4477 		/*
4478 		 * We've blocked all attach/detach operations. Make all workers
4479 		 * unbound and set DISASSOCIATED.  Before this, all workers
4480 		 * except for the ones which are still executing works from
4481 		 * before the last CPU down must be on the cpu.  After
4482 		 * this, they may become diasporas.
4483 		 */
4484 		for_each_pool_worker(worker, pool)
4485 			worker->flags |= WORKER_UNBOUND;
4486 
4487 		pool->flags |= POOL_DISASSOCIATED;
4488 
4489 		spin_unlock_irq(&pool->lock);
4490 		mutex_unlock(&pool->attach_mutex);
4491 
4492 		/*
4493 		 * Call schedule() so that we cross rq->lock and thus can
4494 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4495 		 * This is necessary as scheduler callbacks may be invoked
4496 		 * from other cpus.
4497 		 */
4498 		schedule();
4499 
4500 		/*
4501 		 * Sched callbacks are disabled now.  Zap nr_running.
4502 		 * After this, nr_running stays zero and need_more_worker()
4503 		 * and keep_working() are always true as long as the
4504 		 * worklist is not empty.  This pool now behaves as an
4505 		 * unbound (in terms of concurrency management) pool which
4506 		 * are served by workers tied to the pool.
4507 		 */
4508 		atomic_set(&pool->nr_running, 0);
4509 
4510 		/*
4511 		 * With concurrency management just turned off, a busy
4512 		 * worker blocking could lead to lengthy stalls.  Kick off
4513 		 * unbound chain execution of currently pending work items.
4514 		 */
4515 		spin_lock_irq(&pool->lock);
4516 		wake_up_worker(pool);
4517 		spin_unlock_irq(&pool->lock);
4518 	}
4519 }
4520 
4521 /**
4522  * rebind_workers - rebind all workers of a pool to the associated CPU
4523  * @pool: pool of interest
4524  *
4525  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4526  */
4527 static void rebind_workers(struct worker_pool *pool)
4528 {
4529 	struct worker *worker;
4530 
4531 	lockdep_assert_held(&pool->attach_mutex);
4532 
4533 	/*
4534 	 * Restore CPU affinity of all workers.  As all idle workers should
4535 	 * be on the run-queue of the associated CPU before any local
4536 	 * wake-ups for concurrency management happen, restore CPU affinty
4537 	 * of all workers first and then clear UNBOUND.  As we're called
4538 	 * from CPU_ONLINE, the following shouldn't fail.
4539 	 */
4540 	for_each_pool_worker(worker, pool)
4541 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4542 						  pool->attrs->cpumask) < 0);
4543 
4544 	spin_lock_irq(&pool->lock);
4545 
4546 	for_each_pool_worker(worker, pool) {
4547 		unsigned int worker_flags = worker->flags;
4548 
4549 		/*
4550 		 * A bound idle worker should actually be on the runqueue
4551 		 * of the associated CPU for local wake-ups targeting it to
4552 		 * work.  Kick all idle workers so that they migrate to the
4553 		 * associated CPU.  Doing this in the same loop as
4554 		 * replacing UNBOUND with REBOUND is safe as no worker will
4555 		 * be bound before @pool->lock is released.
4556 		 */
4557 		if (worker_flags & WORKER_IDLE)
4558 			wake_up_process(worker->task);
4559 
4560 		/*
4561 		 * We want to clear UNBOUND but can't directly call
4562 		 * worker_clr_flags() or adjust nr_running.  Atomically
4563 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4564 		 * @worker will clear REBOUND using worker_clr_flags() when
4565 		 * it initiates the next execution cycle thus restoring
4566 		 * concurrency management.  Note that when or whether
4567 		 * @worker clears REBOUND doesn't affect correctness.
4568 		 *
4569 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4570 		 * tested without holding any lock in
4571 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4572 		 * fail incorrectly leading to premature concurrency
4573 		 * management operations.
4574 		 */
4575 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4576 		worker_flags |= WORKER_REBOUND;
4577 		worker_flags &= ~WORKER_UNBOUND;
4578 		ACCESS_ONCE(worker->flags) = worker_flags;
4579 	}
4580 
4581 	spin_unlock_irq(&pool->lock);
4582 }
4583 
4584 /**
4585  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4586  * @pool: unbound pool of interest
4587  * @cpu: the CPU which is coming up
4588  *
4589  * An unbound pool may end up with a cpumask which doesn't have any online
4590  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4591  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4592  * online CPU before, cpus_allowed of all its workers should be restored.
4593  */
4594 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4595 {
4596 	static cpumask_t cpumask;
4597 	struct worker *worker;
4598 
4599 	lockdep_assert_held(&pool->attach_mutex);
4600 
4601 	/* is @cpu allowed for @pool? */
4602 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4603 		return;
4604 
4605 	/* is @cpu the only online CPU? */
4606 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4607 	if (cpumask_weight(&cpumask) != 1)
4608 		return;
4609 
4610 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4611 	for_each_pool_worker(worker, pool)
4612 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4613 						  pool->attrs->cpumask) < 0);
4614 }
4615 
4616 /*
4617  * Workqueues should be brought up before normal priority CPU notifiers.
4618  * This will be registered high priority CPU notifier.
4619  */
4620 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4621 					       unsigned long action,
4622 					       void *hcpu)
4623 {
4624 	int cpu = (unsigned long)hcpu;
4625 	struct worker_pool *pool;
4626 	struct workqueue_struct *wq;
4627 	int pi;
4628 
4629 	switch (action & ~CPU_TASKS_FROZEN) {
4630 	case CPU_UP_PREPARE:
4631 		for_each_cpu_worker_pool(pool, cpu) {
4632 			if (pool->nr_workers)
4633 				continue;
4634 			if (create_and_start_worker(pool) < 0)
4635 				return NOTIFY_BAD;
4636 		}
4637 		break;
4638 
4639 	case CPU_DOWN_FAILED:
4640 	case CPU_ONLINE:
4641 		mutex_lock(&wq_pool_mutex);
4642 
4643 		for_each_pool(pool, pi) {
4644 			mutex_lock(&pool->attach_mutex);
4645 
4646 			if (pool->cpu == cpu) {
4647 				spin_lock_irq(&pool->lock);
4648 				pool->flags &= ~POOL_DISASSOCIATED;
4649 				spin_unlock_irq(&pool->lock);
4650 
4651 				rebind_workers(pool);
4652 			} else if (pool->cpu < 0) {
4653 				restore_unbound_workers_cpumask(pool, cpu);
4654 			}
4655 
4656 			mutex_unlock(&pool->attach_mutex);
4657 		}
4658 
4659 		/* update NUMA affinity of unbound workqueues */
4660 		list_for_each_entry(wq, &workqueues, list)
4661 			wq_update_unbound_numa(wq, cpu, true);
4662 
4663 		mutex_unlock(&wq_pool_mutex);
4664 		break;
4665 	}
4666 	return NOTIFY_OK;
4667 }
4668 
4669 /*
4670  * Workqueues should be brought down after normal priority CPU notifiers.
4671  * This will be registered as low priority CPU notifier.
4672  */
4673 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4674 						 unsigned long action,
4675 						 void *hcpu)
4676 {
4677 	int cpu = (unsigned long)hcpu;
4678 	struct work_struct unbind_work;
4679 	struct workqueue_struct *wq;
4680 
4681 	switch (action & ~CPU_TASKS_FROZEN) {
4682 	case CPU_DOWN_PREPARE:
4683 		/* unbinding per-cpu workers should happen on the local CPU */
4684 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4685 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4686 
4687 		/* update NUMA affinity of unbound workqueues */
4688 		mutex_lock(&wq_pool_mutex);
4689 		list_for_each_entry(wq, &workqueues, list)
4690 			wq_update_unbound_numa(wq, cpu, false);
4691 		mutex_unlock(&wq_pool_mutex);
4692 
4693 		/* wait for per-cpu unbinding to finish */
4694 		flush_work(&unbind_work);
4695 		destroy_work_on_stack(&unbind_work);
4696 		break;
4697 	}
4698 	return NOTIFY_OK;
4699 }
4700 
4701 #ifdef CONFIG_SMP
4702 
4703 struct work_for_cpu {
4704 	struct work_struct work;
4705 	long (*fn)(void *);
4706 	void *arg;
4707 	long ret;
4708 };
4709 
4710 static void work_for_cpu_fn(struct work_struct *work)
4711 {
4712 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4713 
4714 	wfc->ret = wfc->fn(wfc->arg);
4715 }
4716 
4717 /**
4718  * work_on_cpu - run a function in user context on a particular cpu
4719  * @cpu: the cpu to run on
4720  * @fn: the function to run
4721  * @arg: the function arg
4722  *
4723  * It is up to the caller to ensure that the cpu doesn't go offline.
4724  * The caller must not hold any locks which would prevent @fn from completing.
4725  *
4726  * Return: The value @fn returns.
4727  */
4728 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4729 {
4730 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4731 
4732 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4733 	schedule_work_on(cpu, &wfc.work);
4734 	flush_work(&wfc.work);
4735 	destroy_work_on_stack(&wfc.work);
4736 	return wfc.ret;
4737 }
4738 EXPORT_SYMBOL_GPL(work_on_cpu);
4739 #endif /* CONFIG_SMP */
4740 
4741 #ifdef CONFIG_FREEZER
4742 
4743 /**
4744  * freeze_workqueues_begin - begin freezing workqueues
4745  *
4746  * Start freezing workqueues.  After this function returns, all freezable
4747  * workqueues will queue new works to their delayed_works list instead of
4748  * pool->worklist.
4749  *
4750  * CONTEXT:
4751  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4752  */
4753 void freeze_workqueues_begin(void)
4754 {
4755 	struct workqueue_struct *wq;
4756 	struct pool_workqueue *pwq;
4757 
4758 	mutex_lock(&wq_pool_mutex);
4759 
4760 	WARN_ON_ONCE(workqueue_freezing);
4761 	workqueue_freezing = true;
4762 
4763 	list_for_each_entry(wq, &workqueues, list) {
4764 		mutex_lock(&wq->mutex);
4765 		for_each_pwq(pwq, wq)
4766 			pwq_adjust_max_active(pwq);
4767 		mutex_unlock(&wq->mutex);
4768 	}
4769 
4770 	mutex_unlock(&wq_pool_mutex);
4771 }
4772 
4773 /**
4774  * freeze_workqueues_busy - are freezable workqueues still busy?
4775  *
4776  * Check whether freezing is complete.  This function must be called
4777  * between freeze_workqueues_begin() and thaw_workqueues().
4778  *
4779  * CONTEXT:
4780  * Grabs and releases wq_pool_mutex.
4781  *
4782  * Return:
4783  * %true if some freezable workqueues are still busy.  %false if freezing
4784  * is complete.
4785  */
4786 bool freeze_workqueues_busy(void)
4787 {
4788 	bool busy = false;
4789 	struct workqueue_struct *wq;
4790 	struct pool_workqueue *pwq;
4791 
4792 	mutex_lock(&wq_pool_mutex);
4793 
4794 	WARN_ON_ONCE(!workqueue_freezing);
4795 
4796 	list_for_each_entry(wq, &workqueues, list) {
4797 		if (!(wq->flags & WQ_FREEZABLE))
4798 			continue;
4799 		/*
4800 		 * nr_active is monotonically decreasing.  It's safe
4801 		 * to peek without lock.
4802 		 */
4803 		rcu_read_lock_sched();
4804 		for_each_pwq(pwq, wq) {
4805 			WARN_ON_ONCE(pwq->nr_active < 0);
4806 			if (pwq->nr_active) {
4807 				busy = true;
4808 				rcu_read_unlock_sched();
4809 				goto out_unlock;
4810 			}
4811 		}
4812 		rcu_read_unlock_sched();
4813 	}
4814 out_unlock:
4815 	mutex_unlock(&wq_pool_mutex);
4816 	return busy;
4817 }
4818 
4819 /**
4820  * thaw_workqueues - thaw workqueues
4821  *
4822  * Thaw workqueues.  Normal queueing is restored and all collected
4823  * frozen works are transferred to their respective pool worklists.
4824  *
4825  * CONTEXT:
4826  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4827  */
4828 void thaw_workqueues(void)
4829 {
4830 	struct workqueue_struct *wq;
4831 	struct pool_workqueue *pwq;
4832 
4833 	mutex_lock(&wq_pool_mutex);
4834 
4835 	if (!workqueue_freezing)
4836 		goto out_unlock;
4837 
4838 	workqueue_freezing = false;
4839 
4840 	/* restore max_active and repopulate worklist */
4841 	list_for_each_entry(wq, &workqueues, list) {
4842 		mutex_lock(&wq->mutex);
4843 		for_each_pwq(pwq, wq)
4844 			pwq_adjust_max_active(pwq);
4845 		mutex_unlock(&wq->mutex);
4846 	}
4847 
4848 out_unlock:
4849 	mutex_unlock(&wq_pool_mutex);
4850 }
4851 #endif /* CONFIG_FREEZER */
4852 
4853 static void __init wq_numa_init(void)
4854 {
4855 	cpumask_var_t *tbl;
4856 	int node, cpu;
4857 
4858 	/* determine NUMA pwq table len - highest node id + 1 */
4859 	for_each_node(node)
4860 		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4861 
4862 	if (num_possible_nodes() <= 1)
4863 		return;
4864 
4865 	if (wq_disable_numa) {
4866 		pr_info("workqueue: NUMA affinity support disabled\n");
4867 		return;
4868 	}
4869 
4870 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4871 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
4872 
4873 	/*
4874 	 * We want masks of possible CPUs of each node which isn't readily
4875 	 * available.  Build one from cpu_to_node() which should have been
4876 	 * fully initialized by now.
4877 	 */
4878 	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4879 	BUG_ON(!tbl);
4880 
4881 	for_each_node(node)
4882 		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4883 				node_online(node) ? node : NUMA_NO_NODE));
4884 
4885 	for_each_possible_cpu(cpu) {
4886 		node = cpu_to_node(cpu);
4887 		if (WARN_ON(node == NUMA_NO_NODE)) {
4888 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4889 			/* happens iff arch is bonkers, let's just proceed */
4890 			return;
4891 		}
4892 		cpumask_set_cpu(cpu, tbl[node]);
4893 	}
4894 
4895 	wq_numa_possible_cpumask = tbl;
4896 	wq_numa_enabled = true;
4897 }
4898 
4899 static int __init init_workqueues(void)
4900 {
4901 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4902 	int i, cpu;
4903 
4904 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4905 
4906 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4907 
4908 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4909 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4910 
4911 	wq_numa_init();
4912 
4913 	/* initialize CPU pools */
4914 	for_each_possible_cpu(cpu) {
4915 		struct worker_pool *pool;
4916 
4917 		i = 0;
4918 		for_each_cpu_worker_pool(pool, cpu) {
4919 			BUG_ON(init_worker_pool(pool));
4920 			pool->cpu = cpu;
4921 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4922 			pool->attrs->nice = std_nice[i++];
4923 			pool->node = cpu_to_node(cpu);
4924 
4925 			/* alloc pool ID */
4926 			mutex_lock(&wq_pool_mutex);
4927 			BUG_ON(worker_pool_assign_id(pool));
4928 			mutex_unlock(&wq_pool_mutex);
4929 		}
4930 	}
4931 
4932 	/* create the initial worker */
4933 	for_each_online_cpu(cpu) {
4934 		struct worker_pool *pool;
4935 
4936 		for_each_cpu_worker_pool(pool, cpu) {
4937 			pool->flags &= ~POOL_DISASSOCIATED;
4938 			BUG_ON(create_and_start_worker(pool) < 0);
4939 		}
4940 	}
4941 
4942 	/* create default unbound and ordered wq attrs */
4943 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4944 		struct workqueue_attrs *attrs;
4945 
4946 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4947 		attrs->nice = std_nice[i];
4948 		unbound_std_wq_attrs[i] = attrs;
4949 
4950 		/*
4951 		 * An ordered wq should have only one pwq as ordering is
4952 		 * guaranteed by max_active which is enforced by pwqs.
4953 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
4954 		 */
4955 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4956 		attrs->nice = std_nice[i];
4957 		attrs->no_numa = true;
4958 		ordered_wq_attrs[i] = attrs;
4959 	}
4960 
4961 	system_wq = alloc_workqueue("events", 0, 0);
4962 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4963 	system_long_wq = alloc_workqueue("events_long", 0, 0);
4964 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4965 					    WQ_UNBOUND_MAX_ACTIVE);
4966 	system_freezable_wq = alloc_workqueue("events_freezable",
4967 					      WQ_FREEZABLE, 0);
4968 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
4969 					      WQ_POWER_EFFICIENT, 0);
4970 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
4971 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
4972 					      0);
4973 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4974 	       !system_unbound_wq || !system_freezable_wq ||
4975 	       !system_power_efficient_wq ||
4976 	       !system_freezable_power_efficient_wq);
4977 	return 0;
4978 }
4979 early_initcall(init_workqueues);
4980