xref: /openbmc/linux/kernel/workqueue.c (revision 1fa6ac37)
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/workqueue.h>
38 
39 /*
40  * The per-CPU workqueue (if single thread, we always use the first
41  * possible cpu).
42  */
43 struct cpu_workqueue_struct {
44 
45 	spinlock_t lock;
46 
47 	struct list_head worklist;
48 	wait_queue_head_t more_work;
49 	struct work_struct *current_work;
50 
51 	struct workqueue_struct *wq;
52 	struct task_struct *thread;
53 } ____cacheline_aligned;
54 
55 /*
56  * The externally visible workqueue abstraction is an array of
57  * per-CPU workqueues:
58  */
59 struct workqueue_struct {
60 	struct cpu_workqueue_struct *cpu_wq;
61 	struct list_head list;
62 	const char *name;
63 	int singlethread;
64 	int freezeable;		/* Freeze threads during suspend */
65 	int rt;
66 #ifdef CONFIG_LOCKDEP
67 	struct lockdep_map lockdep_map;
68 #endif
69 };
70 
71 #ifdef CONFIG_DEBUG_OBJECTS_WORK
72 
73 static struct debug_obj_descr work_debug_descr;
74 
75 /*
76  * fixup_init is called when:
77  * - an active object is initialized
78  */
79 static int work_fixup_init(void *addr, enum debug_obj_state state)
80 {
81 	struct work_struct *work = addr;
82 
83 	switch (state) {
84 	case ODEBUG_STATE_ACTIVE:
85 		cancel_work_sync(work);
86 		debug_object_init(work, &work_debug_descr);
87 		return 1;
88 	default:
89 		return 0;
90 	}
91 }
92 
93 /*
94  * fixup_activate is called when:
95  * - an active object is activated
96  * - an unknown object is activated (might be a statically initialized object)
97  */
98 static int work_fixup_activate(void *addr, enum debug_obj_state state)
99 {
100 	struct work_struct *work = addr;
101 
102 	switch (state) {
103 
104 	case ODEBUG_STATE_NOTAVAILABLE:
105 		/*
106 		 * This is not really a fixup. The work struct was
107 		 * statically initialized. We just make sure that it
108 		 * is tracked in the object tracker.
109 		 */
110 		if (test_bit(WORK_STRUCT_STATIC, work_data_bits(work))) {
111 			debug_object_init(work, &work_debug_descr);
112 			debug_object_activate(work, &work_debug_descr);
113 			return 0;
114 		}
115 		WARN_ON_ONCE(1);
116 		return 0;
117 
118 	case ODEBUG_STATE_ACTIVE:
119 		WARN_ON(1);
120 
121 	default:
122 		return 0;
123 	}
124 }
125 
126 /*
127  * fixup_free is called when:
128  * - an active object is freed
129  */
130 static int work_fixup_free(void *addr, enum debug_obj_state state)
131 {
132 	struct work_struct *work = addr;
133 
134 	switch (state) {
135 	case ODEBUG_STATE_ACTIVE:
136 		cancel_work_sync(work);
137 		debug_object_free(work, &work_debug_descr);
138 		return 1;
139 	default:
140 		return 0;
141 	}
142 }
143 
144 static struct debug_obj_descr work_debug_descr = {
145 	.name		= "work_struct",
146 	.fixup_init	= work_fixup_init,
147 	.fixup_activate	= work_fixup_activate,
148 	.fixup_free	= work_fixup_free,
149 };
150 
151 static inline void debug_work_activate(struct work_struct *work)
152 {
153 	debug_object_activate(work, &work_debug_descr);
154 }
155 
156 static inline void debug_work_deactivate(struct work_struct *work)
157 {
158 	debug_object_deactivate(work, &work_debug_descr);
159 }
160 
161 void __init_work(struct work_struct *work, int onstack)
162 {
163 	if (onstack)
164 		debug_object_init_on_stack(work, &work_debug_descr);
165 	else
166 		debug_object_init(work, &work_debug_descr);
167 }
168 EXPORT_SYMBOL_GPL(__init_work);
169 
170 void destroy_work_on_stack(struct work_struct *work)
171 {
172 	debug_object_free(work, &work_debug_descr);
173 }
174 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
175 
176 #else
177 static inline void debug_work_activate(struct work_struct *work) { }
178 static inline void debug_work_deactivate(struct work_struct *work) { }
179 #endif
180 
181 /* Serializes the accesses to the list of workqueues. */
182 static DEFINE_SPINLOCK(workqueue_lock);
183 static LIST_HEAD(workqueues);
184 
185 static int singlethread_cpu __read_mostly;
186 static const struct cpumask *cpu_singlethread_map __read_mostly;
187 /*
188  * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
189  * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
190  * which comes in between can't use for_each_online_cpu(). We could
191  * use cpu_possible_map, the cpumask below is more a documentation
192  * than optimization.
193  */
194 static cpumask_var_t cpu_populated_map __read_mostly;
195 
196 /* If it's single threaded, it isn't in the list of workqueues. */
197 static inline int is_wq_single_threaded(struct workqueue_struct *wq)
198 {
199 	return wq->singlethread;
200 }
201 
202 static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq)
203 {
204 	return is_wq_single_threaded(wq)
205 		? cpu_singlethread_map : cpu_populated_map;
206 }
207 
208 static
209 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
210 {
211 	if (unlikely(is_wq_single_threaded(wq)))
212 		cpu = singlethread_cpu;
213 	return per_cpu_ptr(wq->cpu_wq, cpu);
214 }
215 
216 /*
217  * Set the workqueue on which a work item is to be run
218  * - Must *only* be called if the pending flag is set
219  */
220 static inline void set_wq_data(struct work_struct *work,
221 				struct cpu_workqueue_struct *cwq)
222 {
223 	unsigned long new;
224 
225 	BUG_ON(!work_pending(work));
226 
227 	new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
228 	new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
229 	atomic_long_set(&work->data, new);
230 }
231 
232 /*
233  * Clear WORK_STRUCT_PENDING and the workqueue on which it was queued.
234  */
235 static inline void clear_wq_data(struct work_struct *work)
236 {
237 	unsigned long flags = *work_data_bits(work) &
238 				(1UL << WORK_STRUCT_STATIC);
239 	atomic_long_set(&work->data, flags);
240 }
241 
242 static inline
243 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
244 {
245 	return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
246 }
247 
248 static void insert_work(struct cpu_workqueue_struct *cwq,
249 			struct work_struct *work, struct list_head *head)
250 {
251 	trace_workqueue_insertion(cwq->thread, work);
252 
253 	set_wq_data(work, cwq);
254 	/*
255 	 * Ensure that we get the right work->data if we see the
256 	 * result of list_add() below, see try_to_grab_pending().
257 	 */
258 	smp_wmb();
259 	list_add_tail(&work->entry, head);
260 	wake_up(&cwq->more_work);
261 }
262 
263 static void __queue_work(struct cpu_workqueue_struct *cwq,
264 			 struct work_struct *work)
265 {
266 	unsigned long flags;
267 
268 	debug_work_activate(work);
269 	spin_lock_irqsave(&cwq->lock, flags);
270 	insert_work(cwq, work, &cwq->worklist);
271 	spin_unlock_irqrestore(&cwq->lock, flags);
272 }
273 
274 /**
275  * queue_work - queue work on a workqueue
276  * @wq: workqueue to use
277  * @work: work to queue
278  *
279  * Returns 0 if @work was already on a queue, non-zero otherwise.
280  *
281  * We queue the work to the CPU on which it was submitted, but if the CPU dies
282  * it can be processed by another CPU.
283  */
284 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
285 {
286 	int ret;
287 
288 	ret = queue_work_on(get_cpu(), wq, work);
289 	put_cpu();
290 
291 	return ret;
292 }
293 EXPORT_SYMBOL_GPL(queue_work);
294 
295 /**
296  * queue_work_on - queue work on specific cpu
297  * @cpu: CPU number to execute work on
298  * @wq: workqueue to use
299  * @work: work to queue
300  *
301  * Returns 0 if @work was already on a queue, non-zero otherwise.
302  *
303  * We queue the work to a specific CPU, the caller must ensure it
304  * can't go away.
305  */
306 int
307 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
308 {
309 	int ret = 0;
310 
311 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
312 		BUG_ON(!list_empty(&work->entry));
313 		__queue_work(wq_per_cpu(wq, cpu), work);
314 		ret = 1;
315 	}
316 	return ret;
317 }
318 EXPORT_SYMBOL_GPL(queue_work_on);
319 
320 static void delayed_work_timer_fn(unsigned long __data)
321 {
322 	struct delayed_work *dwork = (struct delayed_work *)__data;
323 	struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
324 	struct workqueue_struct *wq = cwq->wq;
325 
326 	__queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
327 }
328 
329 /**
330  * queue_delayed_work - queue work on a workqueue after delay
331  * @wq: workqueue to use
332  * @dwork: delayable work to queue
333  * @delay: number of jiffies to wait before queueing
334  *
335  * Returns 0 if @work was already on a queue, non-zero otherwise.
336  */
337 int queue_delayed_work(struct workqueue_struct *wq,
338 			struct delayed_work *dwork, unsigned long delay)
339 {
340 	if (delay == 0)
341 		return queue_work(wq, &dwork->work);
342 
343 	return queue_delayed_work_on(-1, wq, dwork, delay);
344 }
345 EXPORT_SYMBOL_GPL(queue_delayed_work);
346 
347 /**
348  * queue_delayed_work_on - queue work on specific CPU after delay
349  * @cpu: CPU number to execute work on
350  * @wq: workqueue to use
351  * @dwork: work to queue
352  * @delay: number of jiffies to wait before queueing
353  *
354  * Returns 0 if @work was already on a queue, non-zero otherwise.
355  */
356 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
357 			struct delayed_work *dwork, unsigned long delay)
358 {
359 	int ret = 0;
360 	struct timer_list *timer = &dwork->timer;
361 	struct work_struct *work = &dwork->work;
362 
363 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
364 		BUG_ON(timer_pending(timer));
365 		BUG_ON(!list_empty(&work->entry));
366 
367 		timer_stats_timer_set_start_info(&dwork->timer);
368 
369 		/* This stores cwq for the moment, for the timer_fn */
370 		set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
371 		timer->expires = jiffies + delay;
372 		timer->data = (unsigned long)dwork;
373 		timer->function = delayed_work_timer_fn;
374 
375 		if (unlikely(cpu >= 0))
376 			add_timer_on(timer, cpu);
377 		else
378 			add_timer(timer);
379 		ret = 1;
380 	}
381 	return ret;
382 }
383 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
384 
385 static void run_workqueue(struct cpu_workqueue_struct *cwq)
386 {
387 	spin_lock_irq(&cwq->lock);
388 	while (!list_empty(&cwq->worklist)) {
389 		struct work_struct *work = list_entry(cwq->worklist.next,
390 						struct work_struct, entry);
391 		work_func_t f = work->func;
392 #ifdef CONFIG_LOCKDEP
393 		/*
394 		 * It is permissible to free the struct work_struct
395 		 * from inside the function that is called from it,
396 		 * this we need to take into account for lockdep too.
397 		 * To avoid bogus "held lock freed" warnings as well
398 		 * as problems when looking into work->lockdep_map,
399 		 * make a copy and use that here.
400 		 */
401 		struct lockdep_map lockdep_map = work->lockdep_map;
402 #endif
403 		trace_workqueue_execution(cwq->thread, work);
404 		debug_work_deactivate(work);
405 		cwq->current_work = work;
406 		list_del_init(cwq->worklist.next);
407 		spin_unlock_irq(&cwq->lock);
408 
409 		BUG_ON(get_wq_data(work) != cwq);
410 		work_clear_pending(work);
411 		lock_map_acquire(&cwq->wq->lockdep_map);
412 		lock_map_acquire(&lockdep_map);
413 		f(work);
414 		lock_map_release(&lockdep_map);
415 		lock_map_release(&cwq->wq->lockdep_map);
416 
417 		if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
418 			printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
419 					"%s/0x%08x/%d\n",
420 					current->comm, preempt_count(),
421 				       	task_pid_nr(current));
422 			printk(KERN_ERR "    last function: ");
423 			print_symbol("%s\n", (unsigned long)f);
424 			debug_show_held_locks(current);
425 			dump_stack();
426 		}
427 
428 		spin_lock_irq(&cwq->lock);
429 		cwq->current_work = NULL;
430 	}
431 	spin_unlock_irq(&cwq->lock);
432 }
433 
434 static int worker_thread(void *__cwq)
435 {
436 	struct cpu_workqueue_struct *cwq = __cwq;
437 	DEFINE_WAIT(wait);
438 
439 	if (cwq->wq->freezeable)
440 		set_freezable();
441 
442 	for (;;) {
443 		prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
444 		if (!freezing(current) &&
445 		    !kthread_should_stop() &&
446 		    list_empty(&cwq->worklist))
447 			schedule();
448 		finish_wait(&cwq->more_work, &wait);
449 
450 		try_to_freeze();
451 
452 		if (kthread_should_stop())
453 			break;
454 
455 		run_workqueue(cwq);
456 	}
457 
458 	return 0;
459 }
460 
461 struct wq_barrier {
462 	struct work_struct	work;
463 	struct completion	done;
464 };
465 
466 static void wq_barrier_func(struct work_struct *work)
467 {
468 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
469 	complete(&barr->done);
470 }
471 
472 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
473 			struct wq_barrier *barr, struct list_head *head)
474 {
475 	/*
476 	 * debugobject calls are safe here even with cwq->lock locked
477 	 * as we know for sure that this will not trigger any of the
478 	 * checks and call back into the fixup functions where we
479 	 * might deadlock.
480 	 */
481 	INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
482 	__set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
483 
484 	init_completion(&barr->done);
485 
486 	debug_work_activate(&barr->work);
487 	insert_work(cwq, &barr->work, head);
488 }
489 
490 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
491 {
492 	int active = 0;
493 	struct wq_barrier barr;
494 
495 	WARN_ON(cwq->thread == current);
496 
497 	spin_lock_irq(&cwq->lock);
498 	if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
499 		insert_wq_barrier(cwq, &barr, &cwq->worklist);
500 		active = 1;
501 	}
502 	spin_unlock_irq(&cwq->lock);
503 
504 	if (active) {
505 		wait_for_completion(&barr.done);
506 		destroy_work_on_stack(&barr.work);
507 	}
508 
509 	return active;
510 }
511 
512 /**
513  * flush_workqueue - ensure that any scheduled work has run to completion.
514  * @wq: workqueue to flush
515  *
516  * Forces execution of the workqueue and blocks until its completion.
517  * This is typically used in driver shutdown handlers.
518  *
519  * We sleep until all works which were queued on entry have been handled,
520  * but we are not livelocked by new incoming ones.
521  *
522  * This function used to run the workqueues itself.  Now we just wait for the
523  * helper threads to do it.
524  */
525 void flush_workqueue(struct workqueue_struct *wq)
526 {
527 	const struct cpumask *cpu_map = wq_cpu_map(wq);
528 	int cpu;
529 
530 	might_sleep();
531 	lock_map_acquire(&wq->lockdep_map);
532 	lock_map_release(&wq->lockdep_map);
533 	for_each_cpu(cpu, cpu_map)
534 		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
535 }
536 EXPORT_SYMBOL_GPL(flush_workqueue);
537 
538 /**
539  * flush_work - block until a work_struct's callback has terminated
540  * @work: the work which is to be flushed
541  *
542  * Returns false if @work has already terminated.
543  *
544  * It is expected that, prior to calling flush_work(), the caller has
545  * arranged for the work to not be requeued, otherwise it doesn't make
546  * sense to use this function.
547  */
548 int flush_work(struct work_struct *work)
549 {
550 	struct cpu_workqueue_struct *cwq;
551 	struct list_head *prev;
552 	struct wq_barrier barr;
553 
554 	might_sleep();
555 	cwq = get_wq_data(work);
556 	if (!cwq)
557 		return 0;
558 
559 	lock_map_acquire(&cwq->wq->lockdep_map);
560 	lock_map_release(&cwq->wq->lockdep_map);
561 
562 	prev = NULL;
563 	spin_lock_irq(&cwq->lock);
564 	if (!list_empty(&work->entry)) {
565 		/*
566 		 * See the comment near try_to_grab_pending()->smp_rmb().
567 		 * If it was re-queued under us we are not going to wait.
568 		 */
569 		smp_rmb();
570 		if (unlikely(cwq != get_wq_data(work)))
571 			goto out;
572 		prev = &work->entry;
573 	} else {
574 		if (cwq->current_work != work)
575 			goto out;
576 		prev = &cwq->worklist;
577 	}
578 	insert_wq_barrier(cwq, &barr, prev->next);
579 out:
580 	spin_unlock_irq(&cwq->lock);
581 	if (!prev)
582 		return 0;
583 
584 	wait_for_completion(&barr.done);
585 	destroy_work_on_stack(&barr.work);
586 	return 1;
587 }
588 EXPORT_SYMBOL_GPL(flush_work);
589 
590 /*
591  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
592  * so this work can't be re-armed in any way.
593  */
594 static int try_to_grab_pending(struct work_struct *work)
595 {
596 	struct cpu_workqueue_struct *cwq;
597 	int ret = -1;
598 
599 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
600 		return 0;
601 
602 	/*
603 	 * The queueing is in progress, or it is already queued. Try to
604 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
605 	 */
606 
607 	cwq = get_wq_data(work);
608 	if (!cwq)
609 		return ret;
610 
611 	spin_lock_irq(&cwq->lock);
612 	if (!list_empty(&work->entry)) {
613 		/*
614 		 * This work is queued, but perhaps we locked the wrong cwq.
615 		 * In that case we must see the new value after rmb(), see
616 		 * insert_work()->wmb().
617 		 */
618 		smp_rmb();
619 		if (cwq == get_wq_data(work)) {
620 			debug_work_deactivate(work);
621 			list_del_init(&work->entry);
622 			ret = 1;
623 		}
624 	}
625 	spin_unlock_irq(&cwq->lock);
626 
627 	return ret;
628 }
629 
630 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
631 				struct work_struct *work)
632 {
633 	struct wq_barrier barr;
634 	int running = 0;
635 
636 	spin_lock_irq(&cwq->lock);
637 	if (unlikely(cwq->current_work == work)) {
638 		insert_wq_barrier(cwq, &barr, cwq->worklist.next);
639 		running = 1;
640 	}
641 	spin_unlock_irq(&cwq->lock);
642 
643 	if (unlikely(running)) {
644 		wait_for_completion(&barr.done);
645 		destroy_work_on_stack(&barr.work);
646 	}
647 }
648 
649 static void wait_on_work(struct work_struct *work)
650 {
651 	struct cpu_workqueue_struct *cwq;
652 	struct workqueue_struct *wq;
653 	const struct cpumask *cpu_map;
654 	int cpu;
655 
656 	might_sleep();
657 
658 	lock_map_acquire(&work->lockdep_map);
659 	lock_map_release(&work->lockdep_map);
660 
661 	cwq = get_wq_data(work);
662 	if (!cwq)
663 		return;
664 
665 	wq = cwq->wq;
666 	cpu_map = wq_cpu_map(wq);
667 
668 	for_each_cpu(cpu, cpu_map)
669 		wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
670 }
671 
672 static int __cancel_work_timer(struct work_struct *work,
673 				struct timer_list* timer)
674 {
675 	int ret;
676 
677 	do {
678 		ret = (timer && likely(del_timer(timer)));
679 		if (!ret)
680 			ret = try_to_grab_pending(work);
681 		wait_on_work(work);
682 	} while (unlikely(ret < 0));
683 
684 	clear_wq_data(work);
685 	return ret;
686 }
687 
688 /**
689  * cancel_work_sync - block until a work_struct's callback has terminated
690  * @work: the work which is to be flushed
691  *
692  * Returns true if @work was pending.
693  *
694  * cancel_work_sync() will cancel the work if it is queued. If the work's
695  * callback appears to be running, cancel_work_sync() will block until it
696  * has completed.
697  *
698  * It is possible to use this function if the work re-queues itself. It can
699  * cancel the work even if it migrates to another workqueue, however in that
700  * case it only guarantees that work->func() has completed on the last queued
701  * workqueue.
702  *
703  * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
704  * pending, otherwise it goes into a busy-wait loop until the timer expires.
705  *
706  * The caller must ensure that workqueue_struct on which this work was last
707  * queued can't be destroyed before this function returns.
708  */
709 int cancel_work_sync(struct work_struct *work)
710 {
711 	return __cancel_work_timer(work, NULL);
712 }
713 EXPORT_SYMBOL_GPL(cancel_work_sync);
714 
715 /**
716  * cancel_delayed_work_sync - reliably kill off a delayed work.
717  * @dwork: the delayed work struct
718  *
719  * Returns true if @dwork was pending.
720  *
721  * It is possible to use this function if @dwork rearms itself via queue_work()
722  * or queue_delayed_work(). See also the comment for cancel_work_sync().
723  */
724 int cancel_delayed_work_sync(struct delayed_work *dwork)
725 {
726 	return __cancel_work_timer(&dwork->work, &dwork->timer);
727 }
728 EXPORT_SYMBOL(cancel_delayed_work_sync);
729 
730 static struct workqueue_struct *keventd_wq __read_mostly;
731 
732 /**
733  * schedule_work - put work task in global workqueue
734  * @work: job to be done
735  *
736  * Returns zero if @work was already on the kernel-global workqueue and
737  * non-zero otherwise.
738  *
739  * This puts a job in the kernel-global workqueue if it was not already
740  * queued and leaves it in the same position on the kernel-global
741  * workqueue otherwise.
742  */
743 int schedule_work(struct work_struct *work)
744 {
745 	return queue_work(keventd_wq, work);
746 }
747 EXPORT_SYMBOL(schedule_work);
748 
749 /*
750  * schedule_work_on - put work task on a specific cpu
751  * @cpu: cpu to put the work task on
752  * @work: job to be done
753  *
754  * This puts a job on a specific cpu
755  */
756 int schedule_work_on(int cpu, struct work_struct *work)
757 {
758 	return queue_work_on(cpu, keventd_wq, work);
759 }
760 EXPORT_SYMBOL(schedule_work_on);
761 
762 /**
763  * schedule_delayed_work - put work task in global workqueue after delay
764  * @dwork: job to be done
765  * @delay: number of jiffies to wait or 0 for immediate execution
766  *
767  * After waiting for a given time this puts a job in the kernel-global
768  * workqueue.
769  */
770 int schedule_delayed_work(struct delayed_work *dwork,
771 					unsigned long delay)
772 {
773 	return queue_delayed_work(keventd_wq, dwork, delay);
774 }
775 EXPORT_SYMBOL(schedule_delayed_work);
776 
777 /**
778  * flush_delayed_work - block until a dwork_struct's callback has terminated
779  * @dwork: the delayed work which is to be flushed
780  *
781  * Any timeout is cancelled, and any pending work is run immediately.
782  */
783 void flush_delayed_work(struct delayed_work *dwork)
784 {
785 	if (del_timer_sync(&dwork->timer)) {
786 		struct cpu_workqueue_struct *cwq;
787 		cwq = wq_per_cpu(get_wq_data(&dwork->work)->wq, get_cpu());
788 		__queue_work(cwq, &dwork->work);
789 		put_cpu();
790 	}
791 	flush_work(&dwork->work);
792 }
793 EXPORT_SYMBOL(flush_delayed_work);
794 
795 /**
796  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
797  * @cpu: cpu to use
798  * @dwork: job to be done
799  * @delay: number of jiffies to wait
800  *
801  * After waiting for a given time this puts a job in the kernel-global
802  * workqueue on the specified CPU.
803  */
804 int schedule_delayed_work_on(int cpu,
805 			struct delayed_work *dwork, unsigned long delay)
806 {
807 	return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
808 }
809 EXPORT_SYMBOL(schedule_delayed_work_on);
810 
811 /**
812  * schedule_on_each_cpu - call a function on each online CPU from keventd
813  * @func: the function to call
814  *
815  * Returns zero on success.
816  * Returns -ve errno on failure.
817  *
818  * schedule_on_each_cpu() is very slow.
819  */
820 int schedule_on_each_cpu(work_func_t func)
821 {
822 	int cpu;
823 	int orig = -1;
824 	struct work_struct *works;
825 
826 	works = alloc_percpu(struct work_struct);
827 	if (!works)
828 		return -ENOMEM;
829 
830 	get_online_cpus();
831 
832 	/*
833 	 * When running in keventd don't schedule a work item on
834 	 * itself.  Can just call directly because the work queue is
835 	 * already bound.  This also is faster.
836 	 */
837 	if (current_is_keventd())
838 		orig = raw_smp_processor_id();
839 
840 	for_each_online_cpu(cpu) {
841 		struct work_struct *work = per_cpu_ptr(works, cpu);
842 
843 		INIT_WORK(work, func);
844 		if (cpu != orig)
845 			schedule_work_on(cpu, work);
846 	}
847 	if (orig >= 0)
848 		func(per_cpu_ptr(works, orig));
849 
850 	for_each_online_cpu(cpu)
851 		flush_work(per_cpu_ptr(works, cpu));
852 
853 	put_online_cpus();
854 	free_percpu(works);
855 	return 0;
856 }
857 
858 /**
859  * flush_scheduled_work - ensure that any scheduled work has run to completion.
860  *
861  * Forces execution of the kernel-global workqueue and blocks until its
862  * completion.
863  *
864  * Think twice before calling this function!  It's very easy to get into
865  * trouble if you don't take great care.  Either of the following situations
866  * will lead to deadlock:
867  *
868  *	One of the work items currently on the workqueue needs to acquire
869  *	a lock held by your code or its caller.
870  *
871  *	Your code is running in the context of a work routine.
872  *
873  * They will be detected by lockdep when they occur, but the first might not
874  * occur very often.  It depends on what work items are on the workqueue and
875  * what locks they need, which you have no control over.
876  *
877  * In most situations flushing the entire workqueue is overkill; you merely
878  * need to know that a particular work item isn't queued and isn't running.
879  * In such cases you should use cancel_delayed_work_sync() or
880  * cancel_work_sync() instead.
881  */
882 void flush_scheduled_work(void)
883 {
884 	flush_workqueue(keventd_wq);
885 }
886 EXPORT_SYMBOL(flush_scheduled_work);
887 
888 /**
889  * execute_in_process_context - reliably execute the routine with user context
890  * @fn:		the function to execute
891  * @ew:		guaranteed storage for the execute work structure (must
892  *		be available when the work executes)
893  *
894  * Executes the function immediately if process context is available,
895  * otherwise schedules the function for delayed execution.
896  *
897  * Returns:	0 - function was executed
898  *		1 - function was scheduled for execution
899  */
900 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
901 {
902 	if (!in_interrupt()) {
903 		fn(&ew->work);
904 		return 0;
905 	}
906 
907 	INIT_WORK(&ew->work, fn);
908 	schedule_work(&ew->work);
909 
910 	return 1;
911 }
912 EXPORT_SYMBOL_GPL(execute_in_process_context);
913 
914 int keventd_up(void)
915 {
916 	return keventd_wq != NULL;
917 }
918 
919 int current_is_keventd(void)
920 {
921 	struct cpu_workqueue_struct *cwq;
922 	int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
923 	int ret = 0;
924 
925 	BUG_ON(!keventd_wq);
926 
927 	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
928 	if (current == cwq->thread)
929 		ret = 1;
930 
931 	return ret;
932 
933 }
934 
935 static struct cpu_workqueue_struct *
936 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
937 {
938 	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
939 
940 	cwq->wq = wq;
941 	spin_lock_init(&cwq->lock);
942 	INIT_LIST_HEAD(&cwq->worklist);
943 	init_waitqueue_head(&cwq->more_work);
944 
945 	return cwq;
946 }
947 
948 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
949 {
950 	struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
951 	struct workqueue_struct *wq = cwq->wq;
952 	const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d";
953 	struct task_struct *p;
954 
955 	p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
956 	/*
957 	 * Nobody can add the work_struct to this cwq,
958 	 *	if (caller is __create_workqueue)
959 	 *		nobody should see this wq
960 	 *	else // caller is CPU_UP_PREPARE
961 	 *		cpu is not on cpu_online_map
962 	 * so we can abort safely.
963 	 */
964 	if (IS_ERR(p))
965 		return PTR_ERR(p);
966 	if (cwq->wq->rt)
967 		sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
968 	cwq->thread = p;
969 
970 	trace_workqueue_creation(cwq->thread, cpu);
971 
972 	return 0;
973 }
974 
975 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
976 {
977 	struct task_struct *p = cwq->thread;
978 
979 	if (p != NULL) {
980 		if (cpu >= 0)
981 			kthread_bind(p, cpu);
982 		wake_up_process(p);
983 	}
984 }
985 
986 struct workqueue_struct *__create_workqueue_key(const char *name,
987 						int singlethread,
988 						int freezeable,
989 						int rt,
990 						struct lock_class_key *key,
991 						const char *lock_name)
992 {
993 	struct workqueue_struct *wq;
994 	struct cpu_workqueue_struct *cwq;
995 	int err = 0, cpu;
996 
997 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
998 	if (!wq)
999 		return NULL;
1000 
1001 	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
1002 	if (!wq->cpu_wq) {
1003 		kfree(wq);
1004 		return NULL;
1005 	}
1006 
1007 	wq->name = name;
1008 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
1009 	wq->singlethread = singlethread;
1010 	wq->freezeable = freezeable;
1011 	wq->rt = rt;
1012 	INIT_LIST_HEAD(&wq->list);
1013 
1014 	if (singlethread) {
1015 		cwq = init_cpu_workqueue(wq, singlethread_cpu);
1016 		err = create_workqueue_thread(cwq, singlethread_cpu);
1017 		start_workqueue_thread(cwq, -1);
1018 	} else {
1019 		cpu_maps_update_begin();
1020 		/*
1021 		 * We must place this wq on list even if the code below fails.
1022 		 * cpu_down(cpu) can remove cpu from cpu_populated_map before
1023 		 * destroy_workqueue() takes the lock, in that case we leak
1024 		 * cwq[cpu]->thread.
1025 		 */
1026 		spin_lock(&workqueue_lock);
1027 		list_add(&wq->list, &workqueues);
1028 		spin_unlock(&workqueue_lock);
1029 		/*
1030 		 * We must initialize cwqs for each possible cpu even if we
1031 		 * are going to call destroy_workqueue() finally. Otherwise
1032 		 * cpu_up() can hit the uninitialized cwq once we drop the
1033 		 * lock.
1034 		 */
1035 		for_each_possible_cpu(cpu) {
1036 			cwq = init_cpu_workqueue(wq, cpu);
1037 			if (err || !cpu_online(cpu))
1038 				continue;
1039 			err = create_workqueue_thread(cwq, cpu);
1040 			start_workqueue_thread(cwq, cpu);
1041 		}
1042 		cpu_maps_update_done();
1043 	}
1044 
1045 	if (err) {
1046 		destroy_workqueue(wq);
1047 		wq = NULL;
1048 	}
1049 	return wq;
1050 }
1051 EXPORT_SYMBOL_GPL(__create_workqueue_key);
1052 
1053 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
1054 {
1055 	/*
1056 	 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
1057 	 * cpu_add_remove_lock protects cwq->thread.
1058 	 */
1059 	if (cwq->thread == NULL)
1060 		return;
1061 
1062 	lock_map_acquire(&cwq->wq->lockdep_map);
1063 	lock_map_release(&cwq->wq->lockdep_map);
1064 
1065 	flush_cpu_workqueue(cwq);
1066 	/*
1067 	 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
1068 	 * a concurrent flush_workqueue() can insert a barrier after us.
1069 	 * However, in that case run_workqueue() won't return and check
1070 	 * kthread_should_stop() until it flushes all work_struct's.
1071 	 * When ->worklist becomes empty it is safe to exit because no
1072 	 * more work_structs can be queued on this cwq: flush_workqueue
1073 	 * checks list_empty(), and a "normal" queue_work() can't use
1074 	 * a dead CPU.
1075 	 */
1076 	trace_workqueue_destruction(cwq->thread);
1077 	kthread_stop(cwq->thread);
1078 	cwq->thread = NULL;
1079 }
1080 
1081 /**
1082  * destroy_workqueue - safely terminate a workqueue
1083  * @wq: target workqueue
1084  *
1085  * Safely destroy a workqueue. All work currently pending will be done first.
1086  */
1087 void destroy_workqueue(struct workqueue_struct *wq)
1088 {
1089 	const struct cpumask *cpu_map = wq_cpu_map(wq);
1090 	int cpu;
1091 
1092 	cpu_maps_update_begin();
1093 	spin_lock(&workqueue_lock);
1094 	list_del(&wq->list);
1095 	spin_unlock(&workqueue_lock);
1096 
1097 	for_each_cpu(cpu, cpu_map)
1098 		cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
1099  	cpu_maps_update_done();
1100 
1101 	free_percpu(wq->cpu_wq);
1102 	kfree(wq);
1103 }
1104 EXPORT_SYMBOL_GPL(destroy_workqueue);
1105 
1106 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
1107 						unsigned long action,
1108 						void *hcpu)
1109 {
1110 	unsigned int cpu = (unsigned long)hcpu;
1111 	struct cpu_workqueue_struct *cwq;
1112 	struct workqueue_struct *wq;
1113 	int err = 0;
1114 
1115 	action &= ~CPU_TASKS_FROZEN;
1116 
1117 	switch (action) {
1118 	case CPU_UP_PREPARE:
1119 		cpumask_set_cpu(cpu, cpu_populated_map);
1120 	}
1121 undo:
1122 	list_for_each_entry(wq, &workqueues, list) {
1123 		cwq = per_cpu_ptr(wq->cpu_wq, cpu);
1124 
1125 		switch (action) {
1126 		case CPU_UP_PREPARE:
1127 			err = create_workqueue_thread(cwq, cpu);
1128 			if (!err)
1129 				break;
1130 			printk(KERN_ERR "workqueue [%s] for %i failed\n",
1131 				wq->name, cpu);
1132 			action = CPU_UP_CANCELED;
1133 			err = -ENOMEM;
1134 			goto undo;
1135 
1136 		case CPU_ONLINE:
1137 			start_workqueue_thread(cwq, cpu);
1138 			break;
1139 
1140 		case CPU_UP_CANCELED:
1141 			start_workqueue_thread(cwq, -1);
1142 		case CPU_POST_DEAD:
1143 			cleanup_workqueue_thread(cwq);
1144 			break;
1145 		}
1146 	}
1147 
1148 	switch (action) {
1149 	case CPU_UP_CANCELED:
1150 	case CPU_POST_DEAD:
1151 		cpumask_clear_cpu(cpu, cpu_populated_map);
1152 	}
1153 
1154 	return notifier_from_errno(err);
1155 }
1156 
1157 #ifdef CONFIG_SMP
1158 
1159 struct work_for_cpu {
1160 	struct completion completion;
1161 	long (*fn)(void *);
1162 	void *arg;
1163 	long ret;
1164 };
1165 
1166 static int do_work_for_cpu(void *_wfc)
1167 {
1168 	struct work_for_cpu *wfc = _wfc;
1169 	wfc->ret = wfc->fn(wfc->arg);
1170 	complete(&wfc->completion);
1171 	return 0;
1172 }
1173 
1174 /**
1175  * work_on_cpu - run a function in user context on a particular cpu
1176  * @cpu: the cpu to run on
1177  * @fn: the function to run
1178  * @arg: the function arg
1179  *
1180  * This will return the value @fn returns.
1181  * It is up to the caller to ensure that the cpu doesn't go offline.
1182  * The caller must not hold any locks which would prevent @fn from completing.
1183  */
1184 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
1185 {
1186 	struct task_struct *sub_thread;
1187 	struct work_for_cpu wfc = {
1188 		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
1189 		.fn = fn,
1190 		.arg = arg,
1191 	};
1192 
1193 	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
1194 	if (IS_ERR(sub_thread))
1195 		return PTR_ERR(sub_thread);
1196 	kthread_bind(sub_thread, cpu);
1197 	wake_up_process(sub_thread);
1198 	wait_for_completion(&wfc.completion);
1199 	return wfc.ret;
1200 }
1201 EXPORT_SYMBOL_GPL(work_on_cpu);
1202 #endif /* CONFIG_SMP */
1203 
1204 void __init init_workqueues(void)
1205 {
1206 	alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL);
1207 
1208 	cpumask_copy(cpu_populated_map, cpu_online_mask);
1209 	singlethread_cpu = cpumask_first(cpu_possible_mask);
1210 	cpu_singlethread_map = cpumask_of(singlethread_cpu);
1211 	hotcpu_notifier(workqueue_cpu_callback, 0);
1212 	keventd_wq = create_workqueue("events");
1213 	BUG_ON(!keventd_wq);
1214 }
1215