1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/nmi.h> 53 54 #include "workqueue_internal.h" 55 56 enum { 57 /* 58 * worker_pool flags 59 * 60 * A bound pool is either associated or disassociated with its CPU. 61 * While associated (!DISASSOCIATED), all workers are bound to the 62 * CPU and none has %WORKER_UNBOUND set and concurrency management 63 * is in effect. 64 * 65 * While DISASSOCIATED, the cpu may be offline and all workers have 66 * %WORKER_UNBOUND set and concurrency management disabled, and may 67 * be executing on any CPU. The pool behaves as an unbound one. 68 * 69 * Note that DISASSOCIATED should be flipped only while holding 70 * wq_pool_attach_mutex to avoid changing binding state while 71 * worker_attach_to_pool() is in progress. 72 */ 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 75 76 /* worker flags */ 77 WORKER_DIE = 1 << 1, /* die die die */ 78 WORKER_IDLE = 1 << 2, /* is idle */ 79 WORKER_PREP = 1 << 3, /* preparing to run works */ 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 83 84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 85 WORKER_UNBOUND | WORKER_REBOUND, 86 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 88 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 91 92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 94 95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 96 /* call for help after 10ms 97 (min two ticks) */ 98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 99 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 100 101 /* 102 * Rescue workers are used only on emergencies and shared by 103 * all cpus. Give MIN_NICE. 104 */ 105 RESCUER_NICE_LEVEL = MIN_NICE, 106 HIGHPRI_NICE_LEVEL = MIN_NICE, 107 108 WQ_NAME_LEN = 24, 109 }; 110 111 /* 112 * Structure fields follow one of the following exclusion rules. 113 * 114 * I: Modifiable by initialization/destruction paths and read-only for 115 * everyone else. 116 * 117 * P: Preemption protected. Disabling preemption is enough and should 118 * only be modified and accessed from the local cpu. 119 * 120 * L: pool->lock protected. Access with pool->lock held. 121 * 122 * X: During normal operation, modification requires pool->lock and should 123 * be done only from local cpu. Either disabling preemption on local 124 * cpu or grabbing pool->lock is enough for read access. If 125 * POOL_DISASSOCIATED is set, it's identical to L. 126 * 127 * A: wq_pool_attach_mutex protected. 128 * 129 * PL: wq_pool_mutex protected. 130 * 131 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 132 * 133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 134 * 135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 136 * RCU for reads. 137 * 138 * WQ: wq->mutex protected. 139 * 140 * WR: wq->mutex protected for writes. RCU protected for reads. 141 * 142 * MD: wq_mayday_lock protected. 143 */ 144 145 /* struct worker is defined in workqueue_internal.h */ 146 147 struct worker_pool { 148 spinlock_t lock; /* the pool lock */ 149 int cpu; /* I: the associated cpu */ 150 int node; /* I: the associated node ID */ 151 int id; /* I: pool ID */ 152 unsigned int flags; /* X: flags */ 153 154 unsigned long watchdog_ts; /* L: watchdog timestamp */ 155 156 struct list_head worklist; /* L: list of pending works */ 157 158 int nr_workers; /* L: total number of workers */ 159 int nr_idle; /* L: currently idle workers */ 160 161 struct list_head idle_list; /* X: list of idle workers */ 162 struct timer_list idle_timer; /* L: worker idle timeout */ 163 struct timer_list mayday_timer; /* L: SOS timer for workers */ 164 165 /* a workers is either on busy_hash or idle_list, or the manager */ 166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 167 /* L: hash of busy workers */ 168 169 struct worker *manager; /* L: purely informational */ 170 struct list_head workers; /* A: attached workers */ 171 struct completion *detach_completion; /* all workers detached */ 172 173 struct ida worker_ida; /* worker IDs for task name */ 174 175 struct workqueue_attrs *attrs; /* I: worker attributes */ 176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 177 int refcnt; /* PL: refcnt for unbound pools */ 178 179 /* 180 * The current concurrency level. As it's likely to be accessed 181 * from other CPUs during try_to_wake_up(), put it in a separate 182 * cacheline. 183 */ 184 atomic_t nr_running ____cacheline_aligned_in_smp; 185 186 /* 187 * Destruction of pool is RCU protected to allow dereferences 188 * from get_work_pool(). 189 */ 190 struct rcu_head rcu; 191 } ____cacheline_aligned_in_smp; 192 193 /* 194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 195 * of work_struct->data are used for flags and the remaining high bits 196 * point to the pwq; thus, pwqs need to be aligned at two's power of the 197 * number of flag bits. 198 */ 199 struct pool_workqueue { 200 struct worker_pool *pool; /* I: the associated pool */ 201 struct workqueue_struct *wq; /* I: the owning workqueue */ 202 int work_color; /* L: current color */ 203 int flush_color; /* L: flushing color */ 204 int refcnt; /* L: reference count */ 205 int nr_in_flight[WORK_NR_COLORS]; 206 /* L: nr of in_flight works */ 207 int nr_active; /* L: nr of active works */ 208 int max_active; /* L: max active works */ 209 struct list_head delayed_works; /* L: delayed works */ 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 211 struct list_head mayday_node; /* MD: node on wq->maydays */ 212 213 /* 214 * Release of unbound pwq is punted to system_wq. See put_pwq() 215 * and pwq_unbound_release_workfn() for details. pool_workqueue 216 * itself is also RCU protected so that the first pwq can be 217 * determined without grabbing wq->mutex. 218 */ 219 struct work_struct unbound_release_work; 220 struct rcu_head rcu; 221 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 222 223 /* 224 * Structure used to wait for workqueue flush. 225 */ 226 struct wq_flusher { 227 struct list_head list; /* WQ: list of flushers */ 228 int flush_color; /* WQ: flush color waiting for */ 229 struct completion done; /* flush completion */ 230 }; 231 232 struct wq_device; 233 234 /* 235 * The externally visible workqueue. It relays the issued work items to 236 * the appropriate worker_pool through its pool_workqueues. 237 */ 238 struct workqueue_struct { 239 struct list_head pwqs; /* WR: all pwqs of this wq */ 240 struct list_head list; /* PR: list of all workqueues */ 241 242 struct mutex mutex; /* protects this wq */ 243 int work_color; /* WQ: current work color */ 244 int flush_color; /* WQ: current flush color */ 245 atomic_t nr_pwqs_to_flush; /* flush in progress */ 246 struct wq_flusher *first_flusher; /* WQ: first flusher */ 247 struct list_head flusher_queue; /* WQ: flush waiters */ 248 struct list_head flusher_overflow; /* WQ: flush overflow list */ 249 250 struct list_head maydays; /* MD: pwqs requesting rescue */ 251 struct worker *rescuer; /* I: rescue worker */ 252 253 int nr_drainers; /* WQ: drain in progress */ 254 int saved_max_active; /* WQ: saved pwq max_active */ 255 256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 258 259 #ifdef CONFIG_SYSFS 260 struct wq_device *wq_dev; /* I: for sysfs interface */ 261 #endif 262 #ifdef CONFIG_LOCKDEP 263 char *lock_name; 264 struct lock_class_key key; 265 struct lockdep_map lockdep_map; 266 #endif 267 char name[WQ_NAME_LEN]; /* I: workqueue name */ 268 269 /* 270 * Destruction of workqueue_struct is RCU protected to allow walking 271 * the workqueues list without grabbing wq_pool_mutex. 272 * This is used to dump all workqueues from sysrq. 273 */ 274 struct rcu_head rcu; 275 276 /* hot fields used during command issue, aligned to cacheline */ 277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 280 }; 281 282 static struct kmem_cache *pwq_cache; 283 284 static cpumask_var_t *wq_numa_possible_cpumask; 285 /* possible CPUs of each node */ 286 287 static bool wq_disable_numa; 288 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 289 290 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 292 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 293 294 static bool wq_online; /* can kworkers be created yet? */ 295 296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 297 298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 300 301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 303 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 304 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 305 306 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 307 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 308 309 /* PL: allowable cpus for unbound wqs and work items */ 310 static cpumask_var_t wq_unbound_cpumask; 311 312 /* CPU where unbound work was last round robin scheduled from this CPU */ 313 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 314 315 /* 316 * Local execution of unbound work items is no longer guaranteed. The 317 * following always forces round-robin CPU selection on unbound work items 318 * to uncover usages which depend on it. 319 */ 320 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 321 static bool wq_debug_force_rr_cpu = true; 322 #else 323 static bool wq_debug_force_rr_cpu = false; 324 #endif 325 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 326 327 /* the per-cpu worker pools */ 328 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 329 330 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 331 332 /* PL: hash of all unbound pools keyed by pool->attrs */ 333 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 334 335 /* I: attributes used when instantiating standard unbound pools on demand */ 336 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 337 338 /* I: attributes used when instantiating ordered pools on demand */ 339 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 340 341 struct workqueue_struct *system_wq __read_mostly; 342 EXPORT_SYMBOL(system_wq); 343 struct workqueue_struct *system_highpri_wq __read_mostly; 344 EXPORT_SYMBOL_GPL(system_highpri_wq); 345 struct workqueue_struct *system_long_wq __read_mostly; 346 EXPORT_SYMBOL_GPL(system_long_wq); 347 struct workqueue_struct *system_unbound_wq __read_mostly; 348 EXPORT_SYMBOL_GPL(system_unbound_wq); 349 struct workqueue_struct *system_freezable_wq __read_mostly; 350 EXPORT_SYMBOL_GPL(system_freezable_wq); 351 struct workqueue_struct *system_power_efficient_wq __read_mostly; 352 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 353 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 354 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 355 356 static int worker_thread(void *__worker); 357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 358 359 #define CREATE_TRACE_POINTS 360 #include <trace/events/workqueue.h> 361 362 #define assert_rcu_or_pool_mutex() \ 363 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 364 !lockdep_is_held(&wq_pool_mutex), \ 365 "RCU or wq_pool_mutex should be held") 366 367 #define assert_rcu_or_wq_mutex(wq) \ 368 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 369 !lockdep_is_held(&wq->mutex), \ 370 "RCU or wq->mutex should be held") 371 372 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 373 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 374 !lockdep_is_held(&wq->mutex) && \ 375 !lockdep_is_held(&wq_pool_mutex), \ 376 "RCU, wq->mutex or wq_pool_mutex should be held") 377 378 #define for_each_cpu_worker_pool(pool, cpu) \ 379 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 380 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 381 (pool)++) 382 383 /** 384 * for_each_pool - iterate through all worker_pools in the system 385 * @pool: iteration cursor 386 * @pi: integer used for iteration 387 * 388 * This must be called either with wq_pool_mutex held or RCU read 389 * locked. If the pool needs to be used beyond the locking in effect, the 390 * caller is responsible for guaranteeing that the pool stays online. 391 * 392 * The if/else clause exists only for the lockdep assertion and can be 393 * ignored. 394 */ 395 #define for_each_pool(pool, pi) \ 396 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 397 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 398 else 399 400 /** 401 * for_each_pool_worker - iterate through all workers of a worker_pool 402 * @worker: iteration cursor 403 * @pool: worker_pool to iterate workers of 404 * 405 * This must be called with wq_pool_attach_mutex. 406 * 407 * The if/else clause exists only for the lockdep assertion and can be 408 * ignored. 409 */ 410 #define for_each_pool_worker(worker, pool) \ 411 list_for_each_entry((worker), &(pool)->workers, node) \ 412 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 413 else 414 415 /** 416 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 417 * @pwq: iteration cursor 418 * @wq: the target workqueue 419 * 420 * This must be called either with wq->mutex held or RCU read locked. 421 * If the pwq needs to be used beyond the locking in effect, the caller is 422 * responsible for guaranteeing that the pwq stays online. 423 * 424 * The if/else clause exists only for the lockdep assertion and can be 425 * ignored. 426 */ 427 #define for_each_pwq(pwq, wq) \ 428 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 429 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 430 else 431 432 #ifdef CONFIG_DEBUG_OBJECTS_WORK 433 434 static struct debug_obj_descr work_debug_descr; 435 436 static void *work_debug_hint(void *addr) 437 { 438 return ((struct work_struct *) addr)->func; 439 } 440 441 static bool work_is_static_object(void *addr) 442 { 443 struct work_struct *work = addr; 444 445 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 446 } 447 448 /* 449 * fixup_init is called when: 450 * - an active object is initialized 451 */ 452 static bool work_fixup_init(void *addr, enum debug_obj_state state) 453 { 454 struct work_struct *work = addr; 455 456 switch (state) { 457 case ODEBUG_STATE_ACTIVE: 458 cancel_work_sync(work); 459 debug_object_init(work, &work_debug_descr); 460 return true; 461 default: 462 return false; 463 } 464 } 465 466 /* 467 * fixup_free is called when: 468 * - an active object is freed 469 */ 470 static bool work_fixup_free(void *addr, enum debug_obj_state state) 471 { 472 struct work_struct *work = addr; 473 474 switch (state) { 475 case ODEBUG_STATE_ACTIVE: 476 cancel_work_sync(work); 477 debug_object_free(work, &work_debug_descr); 478 return true; 479 default: 480 return false; 481 } 482 } 483 484 static struct debug_obj_descr work_debug_descr = { 485 .name = "work_struct", 486 .debug_hint = work_debug_hint, 487 .is_static_object = work_is_static_object, 488 .fixup_init = work_fixup_init, 489 .fixup_free = work_fixup_free, 490 }; 491 492 static inline void debug_work_activate(struct work_struct *work) 493 { 494 debug_object_activate(work, &work_debug_descr); 495 } 496 497 static inline void debug_work_deactivate(struct work_struct *work) 498 { 499 debug_object_deactivate(work, &work_debug_descr); 500 } 501 502 void __init_work(struct work_struct *work, int onstack) 503 { 504 if (onstack) 505 debug_object_init_on_stack(work, &work_debug_descr); 506 else 507 debug_object_init(work, &work_debug_descr); 508 } 509 EXPORT_SYMBOL_GPL(__init_work); 510 511 void destroy_work_on_stack(struct work_struct *work) 512 { 513 debug_object_free(work, &work_debug_descr); 514 } 515 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 516 517 void destroy_delayed_work_on_stack(struct delayed_work *work) 518 { 519 destroy_timer_on_stack(&work->timer); 520 debug_object_free(&work->work, &work_debug_descr); 521 } 522 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 523 524 #else 525 static inline void debug_work_activate(struct work_struct *work) { } 526 static inline void debug_work_deactivate(struct work_struct *work) { } 527 #endif 528 529 /** 530 * worker_pool_assign_id - allocate ID and assing it to @pool 531 * @pool: the pool pointer of interest 532 * 533 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 534 * successfully, -errno on failure. 535 */ 536 static int worker_pool_assign_id(struct worker_pool *pool) 537 { 538 int ret; 539 540 lockdep_assert_held(&wq_pool_mutex); 541 542 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 543 GFP_KERNEL); 544 if (ret >= 0) { 545 pool->id = ret; 546 return 0; 547 } 548 return ret; 549 } 550 551 /** 552 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 553 * @wq: the target workqueue 554 * @node: the node ID 555 * 556 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 557 * read locked. 558 * If the pwq needs to be used beyond the locking in effect, the caller is 559 * responsible for guaranteeing that the pwq stays online. 560 * 561 * Return: The unbound pool_workqueue for @node. 562 */ 563 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 564 int node) 565 { 566 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 567 568 /* 569 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 570 * delayed item is pending. The plan is to keep CPU -> NODE 571 * mapping valid and stable across CPU on/offlines. Once that 572 * happens, this workaround can be removed. 573 */ 574 if (unlikely(node == NUMA_NO_NODE)) 575 return wq->dfl_pwq; 576 577 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 578 } 579 580 static unsigned int work_color_to_flags(int color) 581 { 582 return color << WORK_STRUCT_COLOR_SHIFT; 583 } 584 585 static int get_work_color(struct work_struct *work) 586 { 587 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 588 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 589 } 590 591 static int work_next_color(int color) 592 { 593 return (color + 1) % WORK_NR_COLORS; 594 } 595 596 /* 597 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 598 * contain the pointer to the queued pwq. Once execution starts, the flag 599 * is cleared and the high bits contain OFFQ flags and pool ID. 600 * 601 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 602 * and clear_work_data() can be used to set the pwq, pool or clear 603 * work->data. These functions should only be called while the work is 604 * owned - ie. while the PENDING bit is set. 605 * 606 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 607 * corresponding to a work. Pool is available once the work has been 608 * queued anywhere after initialization until it is sync canceled. pwq is 609 * available only while the work item is queued. 610 * 611 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 612 * canceled. While being canceled, a work item may have its PENDING set 613 * but stay off timer and worklist for arbitrarily long and nobody should 614 * try to steal the PENDING bit. 615 */ 616 static inline void set_work_data(struct work_struct *work, unsigned long data, 617 unsigned long flags) 618 { 619 WARN_ON_ONCE(!work_pending(work)); 620 atomic_long_set(&work->data, data | flags | work_static(work)); 621 } 622 623 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 624 unsigned long extra_flags) 625 { 626 set_work_data(work, (unsigned long)pwq, 627 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 628 } 629 630 static void set_work_pool_and_keep_pending(struct work_struct *work, 631 int pool_id) 632 { 633 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 634 WORK_STRUCT_PENDING); 635 } 636 637 static void set_work_pool_and_clear_pending(struct work_struct *work, 638 int pool_id) 639 { 640 /* 641 * The following wmb is paired with the implied mb in 642 * test_and_set_bit(PENDING) and ensures all updates to @work made 643 * here are visible to and precede any updates by the next PENDING 644 * owner. 645 */ 646 smp_wmb(); 647 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 648 /* 649 * The following mb guarantees that previous clear of a PENDING bit 650 * will not be reordered with any speculative LOADS or STORES from 651 * work->current_func, which is executed afterwards. This possible 652 * reordering can lead to a missed execution on attempt to queue 653 * the same @work. E.g. consider this case: 654 * 655 * CPU#0 CPU#1 656 * ---------------------------- -------------------------------- 657 * 658 * 1 STORE event_indicated 659 * 2 queue_work_on() { 660 * 3 test_and_set_bit(PENDING) 661 * 4 } set_..._and_clear_pending() { 662 * 5 set_work_data() # clear bit 663 * 6 smp_mb() 664 * 7 work->current_func() { 665 * 8 LOAD event_indicated 666 * } 667 * 668 * Without an explicit full barrier speculative LOAD on line 8 can 669 * be executed before CPU#0 does STORE on line 1. If that happens, 670 * CPU#0 observes the PENDING bit is still set and new execution of 671 * a @work is not queued in a hope, that CPU#1 will eventually 672 * finish the queued @work. Meanwhile CPU#1 does not see 673 * event_indicated is set, because speculative LOAD was executed 674 * before actual STORE. 675 */ 676 smp_mb(); 677 } 678 679 static void clear_work_data(struct work_struct *work) 680 { 681 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 682 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 683 } 684 685 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 686 { 687 unsigned long data = atomic_long_read(&work->data); 688 689 if (data & WORK_STRUCT_PWQ) 690 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 691 else 692 return NULL; 693 } 694 695 /** 696 * get_work_pool - return the worker_pool a given work was associated with 697 * @work: the work item of interest 698 * 699 * Pools are created and destroyed under wq_pool_mutex, and allows read 700 * access under RCU read lock. As such, this function should be 701 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 702 * 703 * All fields of the returned pool are accessible as long as the above 704 * mentioned locking is in effect. If the returned pool needs to be used 705 * beyond the critical section, the caller is responsible for ensuring the 706 * returned pool is and stays online. 707 * 708 * Return: The worker_pool @work was last associated with. %NULL if none. 709 */ 710 static struct worker_pool *get_work_pool(struct work_struct *work) 711 { 712 unsigned long data = atomic_long_read(&work->data); 713 int pool_id; 714 715 assert_rcu_or_pool_mutex(); 716 717 if (data & WORK_STRUCT_PWQ) 718 return ((struct pool_workqueue *) 719 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 720 721 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 722 if (pool_id == WORK_OFFQ_POOL_NONE) 723 return NULL; 724 725 return idr_find(&worker_pool_idr, pool_id); 726 } 727 728 /** 729 * get_work_pool_id - return the worker pool ID a given work is associated with 730 * @work: the work item of interest 731 * 732 * Return: The worker_pool ID @work was last associated with. 733 * %WORK_OFFQ_POOL_NONE if none. 734 */ 735 static int get_work_pool_id(struct work_struct *work) 736 { 737 unsigned long data = atomic_long_read(&work->data); 738 739 if (data & WORK_STRUCT_PWQ) 740 return ((struct pool_workqueue *) 741 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 742 743 return data >> WORK_OFFQ_POOL_SHIFT; 744 } 745 746 static void mark_work_canceling(struct work_struct *work) 747 { 748 unsigned long pool_id = get_work_pool_id(work); 749 750 pool_id <<= WORK_OFFQ_POOL_SHIFT; 751 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 752 } 753 754 static bool work_is_canceling(struct work_struct *work) 755 { 756 unsigned long data = atomic_long_read(&work->data); 757 758 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 759 } 760 761 /* 762 * Policy functions. These define the policies on how the global worker 763 * pools are managed. Unless noted otherwise, these functions assume that 764 * they're being called with pool->lock held. 765 */ 766 767 static bool __need_more_worker(struct worker_pool *pool) 768 { 769 return !atomic_read(&pool->nr_running); 770 } 771 772 /* 773 * Need to wake up a worker? Called from anything but currently 774 * running workers. 775 * 776 * Note that, because unbound workers never contribute to nr_running, this 777 * function will always return %true for unbound pools as long as the 778 * worklist isn't empty. 779 */ 780 static bool need_more_worker(struct worker_pool *pool) 781 { 782 return !list_empty(&pool->worklist) && __need_more_worker(pool); 783 } 784 785 /* Can I start working? Called from busy but !running workers. */ 786 static bool may_start_working(struct worker_pool *pool) 787 { 788 return pool->nr_idle; 789 } 790 791 /* Do I need to keep working? Called from currently running workers. */ 792 static bool keep_working(struct worker_pool *pool) 793 { 794 return !list_empty(&pool->worklist) && 795 atomic_read(&pool->nr_running) <= 1; 796 } 797 798 /* Do we need a new worker? Called from manager. */ 799 static bool need_to_create_worker(struct worker_pool *pool) 800 { 801 return need_more_worker(pool) && !may_start_working(pool); 802 } 803 804 /* Do we have too many workers and should some go away? */ 805 static bool too_many_workers(struct worker_pool *pool) 806 { 807 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 808 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 809 int nr_busy = pool->nr_workers - nr_idle; 810 811 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 812 } 813 814 /* 815 * Wake up functions. 816 */ 817 818 /* Return the first idle worker. Safe with preemption disabled */ 819 static struct worker *first_idle_worker(struct worker_pool *pool) 820 { 821 if (unlikely(list_empty(&pool->idle_list))) 822 return NULL; 823 824 return list_first_entry(&pool->idle_list, struct worker, entry); 825 } 826 827 /** 828 * wake_up_worker - wake up an idle worker 829 * @pool: worker pool to wake worker from 830 * 831 * Wake up the first idle worker of @pool. 832 * 833 * CONTEXT: 834 * spin_lock_irq(pool->lock). 835 */ 836 static void wake_up_worker(struct worker_pool *pool) 837 { 838 struct worker *worker = first_idle_worker(pool); 839 840 if (likely(worker)) 841 wake_up_process(worker->task); 842 } 843 844 /** 845 * wq_worker_running - a worker is running again 846 * @task: task waking up 847 * 848 * This function is called when a worker returns from schedule() 849 */ 850 void wq_worker_running(struct task_struct *task) 851 { 852 struct worker *worker = kthread_data(task); 853 854 if (!worker->sleeping) 855 return; 856 if (!(worker->flags & WORKER_NOT_RUNNING)) 857 atomic_inc(&worker->pool->nr_running); 858 worker->sleeping = 0; 859 } 860 861 /** 862 * wq_worker_sleeping - a worker is going to sleep 863 * @task: task going to sleep 864 * 865 * This function is called from schedule() when a busy worker is 866 * going to sleep. 867 */ 868 void wq_worker_sleeping(struct task_struct *task) 869 { 870 struct worker *next, *worker = kthread_data(task); 871 struct worker_pool *pool; 872 873 /* 874 * Rescuers, which may not have all the fields set up like normal 875 * workers, also reach here, let's not access anything before 876 * checking NOT_RUNNING. 877 */ 878 if (worker->flags & WORKER_NOT_RUNNING) 879 return; 880 881 pool = worker->pool; 882 883 if (WARN_ON_ONCE(worker->sleeping)) 884 return; 885 886 worker->sleeping = 1; 887 spin_lock_irq(&pool->lock); 888 889 /* 890 * The counterpart of the following dec_and_test, implied mb, 891 * worklist not empty test sequence is in insert_work(). 892 * Please read comment there. 893 * 894 * NOT_RUNNING is clear. This means that we're bound to and 895 * running on the local cpu w/ rq lock held and preemption 896 * disabled, which in turn means that none else could be 897 * manipulating idle_list, so dereferencing idle_list without pool 898 * lock is safe. 899 */ 900 if (atomic_dec_and_test(&pool->nr_running) && 901 !list_empty(&pool->worklist)) { 902 next = first_idle_worker(pool); 903 if (next) 904 wake_up_process(next->task); 905 } 906 spin_unlock_irq(&pool->lock); 907 } 908 909 /** 910 * wq_worker_last_func - retrieve worker's last work function 911 * @task: Task to retrieve last work function of. 912 * 913 * Determine the last function a worker executed. This is called from 914 * the scheduler to get a worker's last known identity. 915 * 916 * CONTEXT: 917 * spin_lock_irq(rq->lock) 918 * 919 * This function is called during schedule() when a kworker is going 920 * to sleep. It's used by psi to identify aggregation workers during 921 * dequeuing, to allow periodic aggregation to shut-off when that 922 * worker is the last task in the system or cgroup to go to sleep. 923 * 924 * As this function doesn't involve any workqueue-related locking, it 925 * only returns stable values when called from inside the scheduler's 926 * queuing and dequeuing paths, when @task, which must be a kworker, 927 * is guaranteed to not be processing any works. 928 * 929 * Return: 930 * The last work function %current executed as a worker, NULL if it 931 * hasn't executed any work yet. 932 */ 933 work_func_t wq_worker_last_func(struct task_struct *task) 934 { 935 struct worker *worker = kthread_data(task); 936 937 return worker->last_func; 938 } 939 940 /** 941 * worker_set_flags - set worker flags and adjust nr_running accordingly 942 * @worker: self 943 * @flags: flags to set 944 * 945 * Set @flags in @worker->flags and adjust nr_running accordingly. 946 * 947 * CONTEXT: 948 * spin_lock_irq(pool->lock) 949 */ 950 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 951 { 952 struct worker_pool *pool = worker->pool; 953 954 WARN_ON_ONCE(worker->task != current); 955 956 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 957 if ((flags & WORKER_NOT_RUNNING) && 958 !(worker->flags & WORKER_NOT_RUNNING)) { 959 atomic_dec(&pool->nr_running); 960 } 961 962 worker->flags |= flags; 963 } 964 965 /** 966 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 967 * @worker: self 968 * @flags: flags to clear 969 * 970 * Clear @flags in @worker->flags and adjust nr_running accordingly. 971 * 972 * CONTEXT: 973 * spin_lock_irq(pool->lock) 974 */ 975 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 976 { 977 struct worker_pool *pool = worker->pool; 978 unsigned int oflags = worker->flags; 979 980 WARN_ON_ONCE(worker->task != current); 981 982 worker->flags &= ~flags; 983 984 /* 985 * If transitioning out of NOT_RUNNING, increment nr_running. Note 986 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 987 * of multiple flags, not a single flag. 988 */ 989 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 990 if (!(worker->flags & WORKER_NOT_RUNNING)) 991 atomic_inc(&pool->nr_running); 992 } 993 994 /** 995 * find_worker_executing_work - find worker which is executing a work 996 * @pool: pool of interest 997 * @work: work to find worker for 998 * 999 * Find a worker which is executing @work on @pool by searching 1000 * @pool->busy_hash which is keyed by the address of @work. For a worker 1001 * to match, its current execution should match the address of @work and 1002 * its work function. This is to avoid unwanted dependency between 1003 * unrelated work executions through a work item being recycled while still 1004 * being executed. 1005 * 1006 * This is a bit tricky. A work item may be freed once its execution 1007 * starts and nothing prevents the freed area from being recycled for 1008 * another work item. If the same work item address ends up being reused 1009 * before the original execution finishes, workqueue will identify the 1010 * recycled work item as currently executing and make it wait until the 1011 * current execution finishes, introducing an unwanted dependency. 1012 * 1013 * This function checks the work item address and work function to avoid 1014 * false positives. Note that this isn't complete as one may construct a 1015 * work function which can introduce dependency onto itself through a 1016 * recycled work item. Well, if somebody wants to shoot oneself in the 1017 * foot that badly, there's only so much we can do, and if such deadlock 1018 * actually occurs, it should be easy to locate the culprit work function. 1019 * 1020 * CONTEXT: 1021 * spin_lock_irq(pool->lock). 1022 * 1023 * Return: 1024 * Pointer to worker which is executing @work if found, %NULL 1025 * otherwise. 1026 */ 1027 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1028 struct work_struct *work) 1029 { 1030 struct worker *worker; 1031 1032 hash_for_each_possible(pool->busy_hash, worker, hentry, 1033 (unsigned long)work) 1034 if (worker->current_work == work && 1035 worker->current_func == work->func) 1036 return worker; 1037 1038 return NULL; 1039 } 1040 1041 /** 1042 * move_linked_works - move linked works to a list 1043 * @work: start of series of works to be scheduled 1044 * @head: target list to append @work to 1045 * @nextp: out parameter for nested worklist walking 1046 * 1047 * Schedule linked works starting from @work to @head. Work series to 1048 * be scheduled starts at @work and includes any consecutive work with 1049 * WORK_STRUCT_LINKED set in its predecessor. 1050 * 1051 * If @nextp is not NULL, it's updated to point to the next work of 1052 * the last scheduled work. This allows move_linked_works() to be 1053 * nested inside outer list_for_each_entry_safe(). 1054 * 1055 * CONTEXT: 1056 * spin_lock_irq(pool->lock). 1057 */ 1058 static void move_linked_works(struct work_struct *work, struct list_head *head, 1059 struct work_struct **nextp) 1060 { 1061 struct work_struct *n; 1062 1063 /* 1064 * Linked worklist will always end before the end of the list, 1065 * use NULL for list head. 1066 */ 1067 list_for_each_entry_safe_from(work, n, NULL, entry) { 1068 list_move_tail(&work->entry, head); 1069 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1070 break; 1071 } 1072 1073 /* 1074 * If we're already inside safe list traversal and have moved 1075 * multiple works to the scheduled queue, the next position 1076 * needs to be updated. 1077 */ 1078 if (nextp) 1079 *nextp = n; 1080 } 1081 1082 /** 1083 * get_pwq - get an extra reference on the specified pool_workqueue 1084 * @pwq: pool_workqueue to get 1085 * 1086 * Obtain an extra reference on @pwq. The caller should guarantee that 1087 * @pwq has positive refcnt and be holding the matching pool->lock. 1088 */ 1089 static void get_pwq(struct pool_workqueue *pwq) 1090 { 1091 lockdep_assert_held(&pwq->pool->lock); 1092 WARN_ON_ONCE(pwq->refcnt <= 0); 1093 pwq->refcnt++; 1094 } 1095 1096 /** 1097 * put_pwq - put a pool_workqueue reference 1098 * @pwq: pool_workqueue to put 1099 * 1100 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1101 * destruction. The caller should be holding the matching pool->lock. 1102 */ 1103 static void put_pwq(struct pool_workqueue *pwq) 1104 { 1105 lockdep_assert_held(&pwq->pool->lock); 1106 if (likely(--pwq->refcnt)) 1107 return; 1108 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1109 return; 1110 /* 1111 * @pwq can't be released under pool->lock, bounce to 1112 * pwq_unbound_release_workfn(). This never recurses on the same 1113 * pool->lock as this path is taken only for unbound workqueues and 1114 * the release work item is scheduled on a per-cpu workqueue. To 1115 * avoid lockdep warning, unbound pool->locks are given lockdep 1116 * subclass of 1 in get_unbound_pool(). 1117 */ 1118 schedule_work(&pwq->unbound_release_work); 1119 } 1120 1121 /** 1122 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1123 * @pwq: pool_workqueue to put (can be %NULL) 1124 * 1125 * put_pwq() with locking. This function also allows %NULL @pwq. 1126 */ 1127 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1128 { 1129 if (pwq) { 1130 /* 1131 * As both pwqs and pools are RCU protected, the 1132 * following lock operations are safe. 1133 */ 1134 spin_lock_irq(&pwq->pool->lock); 1135 put_pwq(pwq); 1136 spin_unlock_irq(&pwq->pool->lock); 1137 } 1138 } 1139 1140 static void pwq_activate_delayed_work(struct work_struct *work) 1141 { 1142 struct pool_workqueue *pwq = get_work_pwq(work); 1143 1144 trace_workqueue_activate_work(work); 1145 if (list_empty(&pwq->pool->worklist)) 1146 pwq->pool->watchdog_ts = jiffies; 1147 move_linked_works(work, &pwq->pool->worklist, NULL); 1148 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1149 pwq->nr_active++; 1150 } 1151 1152 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1153 { 1154 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1155 struct work_struct, entry); 1156 1157 pwq_activate_delayed_work(work); 1158 } 1159 1160 /** 1161 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1162 * @pwq: pwq of interest 1163 * @color: color of work which left the queue 1164 * 1165 * A work either has completed or is removed from pending queue, 1166 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1167 * 1168 * CONTEXT: 1169 * spin_lock_irq(pool->lock). 1170 */ 1171 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1172 { 1173 /* uncolored work items don't participate in flushing or nr_active */ 1174 if (color == WORK_NO_COLOR) 1175 goto out_put; 1176 1177 pwq->nr_in_flight[color]--; 1178 1179 pwq->nr_active--; 1180 if (!list_empty(&pwq->delayed_works)) { 1181 /* one down, submit a delayed one */ 1182 if (pwq->nr_active < pwq->max_active) 1183 pwq_activate_first_delayed(pwq); 1184 } 1185 1186 /* is flush in progress and are we at the flushing tip? */ 1187 if (likely(pwq->flush_color != color)) 1188 goto out_put; 1189 1190 /* are there still in-flight works? */ 1191 if (pwq->nr_in_flight[color]) 1192 goto out_put; 1193 1194 /* this pwq is done, clear flush_color */ 1195 pwq->flush_color = -1; 1196 1197 /* 1198 * If this was the last pwq, wake up the first flusher. It 1199 * will handle the rest. 1200 */ 1201 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1202 complete(&pwq->wq->first_flusher->done); 1203 out_put: 1204 put_pwq(pwq); 1205 } 1206 1207 /** 1208 * try_to_grab_pending - steal work item from worklist and disable irq 1209 * @work: work item to steal 1210 * @is_dwork: @work is a delayed_work 1211 * @flags: place to store irq state 1212 * 1213 * Try to grab PENDING bit of @work. This function can handle @work in any 1214 * stable state - idle, on timer or on worklist. 1215 * 1216 * Return: 1217 * 1 if @work was pending and we successfully stole PENDING 1218 * 0 if @work was idle and we claimed PENDING 1219 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1220 * -ENOENT if someone else is canceling @work, this state may persist 1221 * for arbitrarily long 1222 * 1223 * Note: 1224 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1225 * interrupted while holding PENDING and @work off queue, irq must be 1226 * disabled on entry. This, combined with delayed_work->timer being 1227 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1228 * 1229 * On successful return, >= 0, irq is disabled and the caller is 1230 * responsible for releasing it using local_irq_restore(*@flags). 1231 * 1232 * This function is safe to call from any context including IRQ handler. 1233 */ 1234 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1235 unsigned long *flags) 1236 { 1237 struct worker_pool *pool; 1238 struct pool_workqueue *pwq; 1239 1240 local_irq_save(*flags); 1241 1242 /* try to steal the timer if it exists */ 1243 if (is_dwork) { 1244 struct delayed_work *dwork = to_delayed_work(work); 1245 1246 /* 1247 * dwork->timer is irqsafe. If del_timer() fails, it's 1248 * guaranteed that the timer is not queued anywhere and not 1249 * running on the local CPU. 1250 */ 1251 if (likely(del_timer(&dwork->timer))) 1252 return 1; 1253 } 1254 1255 /* try to claim PENDING the normal way */ 1256 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1257 return 0; 1258 1259 rcu_read_lock(); 1260 /* 1261 * The queueing is in progress, or it is already queued. Try to 1262 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1263 */ 1264 pool = get_work_pool(work); 1265 if (!pool) 1266 goto fail; 1267 1268 spin_lock(&pool->lock); 1269 /* 1270 * work->data is guaranteed to point to pwq only while the work 1271 * item is queued on pwq->wq, and both updating work->data to point 1272 * to pwq on queueing and to pool on dequeueing are done under 1273 * pwq->pool->lock. This in turn guarantees that, if work->data 1274 * points to pwq which is associated with a locked pool, the work 1275 * item is currently queued on that pool. 1276 */ 1277 pwq = get_work_pwq(work); 1278 if (pwq && pwq->pool == pool) { 1279 debug_work_deactivate(work); 1280 1281 /* 1282 * A delayed work item cannot be grabbed directly because 1283 * it might have linked NO_COLOR work items which, if left 1284 * on the delayed_list, will confuse pwq->nr_active 1285 * management later on and cause stall. Make sure the work 1286 * item is activated before grabbing. 1287 */ 1288 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1289 pwq_activate_delayed_work(work); 1290 1291 list_del_init(&work->entry); 1292 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1293 1294 /* work->data points to pwq iff queued, point to pool */ 1295 set_work_pool_and_keep_pending(work, pool->id); 1296 1297 spin_unlock(&pool->lock); 1298 rcu_read_unlock(); 1299 return 1; 1300 } 1301 spin_unlock(&pool->lock); 1302 fail: 1303 rcu_read_unlock(); 1304 local_irq_restore(*flags); 1305 if (work_is_canceling(work)) 1306 return -ENOENT; 1307 cpu_relax(); 1308 return -EAGAIN; 1309 } 1310 1311 /** 1312 * insert_work - insert a work into a pool 1313 * @pwq: pwq @work belongs to 1314 * @work: work to insert 1315 * @head: insertion point 1316 * @extra_flags: extra WORK_STRUCT_* flags to set 1317 * 1318 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1319 * work_struct flags. 1320 * 1321 * CONTEXT: 1322 * spin_lock_irq(pool->lock). 1323 */ 1324 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1325 struct list_head *head, unsigned int extra_flags) 1326 { 1327 struct worker_pool *pool = pwq->pool; 1328 1329 /* we own @work, set data and link */ 1330 set_work_pwq(work, pwq, extra_flags); 1331 list_add_tail(&work->entry, head); 1332 get_pwq(pwq); 1333 1334 /* 1335 * Ensure either wq_worker_sleeping() sees the above 1336 * list_add_tail() or we see zero nr_running to avoid workers lying 1337 * around lazily while there are works to be processed. 1338 */ 1339 smp_mb(); 1340 1341 if (__need_more_worker(pool)) 1342 wake_up_worker(pool); 1343 } 1344 1345 /* 1346 * Test whether @work is being queued from another work executing on the 1347 * same workqueue. 1348 */ 1349 static bool is_chained_work(struct workqueue_struct *wq) 1350 { 1351 struct worker *worker; 1352 1353 worker = current_wq_worker(); 1354 /* 1355 * Return %true iff I'm a worker executing a work item on @wq. If 1356 * I'm @worker, it's safe to dereference it without locking. 1357 */ 1358 return worker && worker->current_pwq->wq == wq; 1359 } 1360 1361 /* 1362 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1363 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1364 * avoid perturbing sensitive tasks. 1365 */ 1366 static int wq_select_unbound_cpu(int cpu) 1367 { 1368 static bool printed_dbg_warning; 1369 int new_cpu; 1370 1371 if (likely(!wq_debug_force_rr_cpu)) { 1372 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1373 return cpu; 1374 } else if (!printed_dbg_warning) { 1375 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1376 printed_dbg_warning = true; 1377 } 1378 1379 if (cpumask_empty(wq_unbound_cpumask)) 1380 return cpu; 1381 1382 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1383 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1384 if (unlikely(new_cpu >= nr_cpu_ids)) { 1385 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1386 if (unlikely(new_cpu >= nr_cpu_ids)) 1387 return cpu; 1388 } 1389 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1390 1391 return new_cpu; 1392 } 1393 1394 static void __queue_work(int cpu, struct workqueue_struct *wq, 1395 struct work_struct *work) 1396 { 1397 struct pool_workqueue *pwq; 1398 struct worker_pool *last_pool; 1399 struct list_head *worklist; 1400 unsigned int work_flags; 1401 unsigned int req_cpu = cpu; 1402 1403 /* 1404 * While a work item is PENDING && off queue, a task trying to 1405 * steal the PENDING will busy-loop waiting for it to either get 1406 * queued or lose PENDING. Grabbing PENDING and queueing should 1407 * happen with IRQ disabled. 1408 */ 1409 lockdep_assert_irqs_disabled(); 1410 1411 debug_work_activate(work); 1412 1413 /* if draining, only works from the same workqueue are allowed */ 1414 if (unlikely(wq->flags & __WQ_DRAINING) && 1415 WARN_ON_ONCE(!is_chained_work(wq))) 1416 return; 1417 rcu_read_lock(); 1418 retry: 1419 if (req_cpu == WORK_CPU_UNBOUND) 1420 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1421 1422 /* pwq which will be used unless @work is executing elsewhere */ 1423 if (!(wq->flags & WQ_UNBOUND)) 1424 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1425 else 1426 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1427 1428 /* 1429 * If @work was previously on a different pool, it might still be 1430 * running there, in which case the work needs to be queued on that 1431 * pool to guarantee non-reentrancy. 1432 */ 1433 last_pool = get_work_pool(work); 1434 if (last_pool && last_pool != pwq->pool) { 1435 struct worker *worker; 1436 1437 spin_lock(&last_pool->lock); 1438 1439 worker = find_worker_executing_work(last_pool, work); 1440 1441 if (worker && worker->current_pwq->wq == wq) { 1442 pwq = worker->current_pwq; 1443 } else { 1444 /* meh... not running there, queue here */ 1445 spin_unlock(&last_pool->lock); 1446 spin_lock(&pwq->pool->lock); 1447 } 1448 } else { 1449 spin_lock(&pwq->pool->lock); 1450 } 1451 1452 /* 1453 * pwq is determined and locked. For unbound pools, we could have 1454 * raced with pwq release and it could already be dead. If its 1455 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1456 * without another pwq replacing it in the numa_pwq_tbl or while 1457 * work items are executing on it, so the retrying is guaranteed to 1458 * make forward-progress. 1459 */ 1460 if (unlikely(!pwq->refcnt)) { 1461 if (wq->flags & WQ_UNBOUND) { 1462 spin_unlock(&pwq->pool->lock); 1463 cpu_relax(); 1464 goto retry; 1465 } 1466 /* oops */ 1467 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1468 wq->name, cpu); 1469 } 1470 1471 /* pwq determined, queue */ 1472 trace_workqueue_queue_work(req_cpu, pwq, work); 1473 1474 if (WARN_ON(!list_empty(&work->entry))) 1475 goto out; 1476 1477 pwq->nr_in_flight[pwq->work_color]++; 1478 work_flags = work_color_to_flags(pwq->work_color); 1479 1480 if (likely(pwq->nr_active < pwq->max_active)) { 1481 trace_workqueue_activate_work(work); 1482 pwq->nr_active++; 1483 worklist = &pwq->pool->worklist; 1484 if (list_empty(worklist)) 1485 pwq->pool->watchdog_ts = jiffies; 1486 } else { 1487 work_flags |= WORK_STRUCT_DELAYED; 1488 worklist = &pwq->delayed_works; 1489 } 1490 1491 insert_work(pwq, work, worklist, work_flags); 1492 1493 out: 1494 spin_unlock(&pwq->pool->lock); 1495 rcu_read_unlock(); 1496 } 1497 1498 /** 1499 * queue_work_on - queue work on specific cpu 1500 * @cpu: CPU number to execute work on 1501 * @wq: workqueue to use 1502 * @work: work to queue 1503 * 1504 * We queue the work to a specific CPU, the caller must ensure it 1505 * can't go away. 1506 * 1507 * Return: %false if @work was already on a queue, %true otherwise. 1508 */ 1509 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1510 struct work_struct *work) 1511 { 1512 bool ret = false; 1513 unsigned long flags; 1514 1515 local_irq_save(flags); 1516 1517 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1518 __queue_work(cpu, wq, work); 1519 ret = true; 1520 } 1521 1522 local_irq_restore(flags); 1523 return ret; 1524 } 1525 EXPORT_SYMBOL(queue_work_on); 1526 1527 /** 1528 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1529 * @node: NUMA node ID that we want to select a CPU from 1530 * 1531 * This function will attempt to find a "random" cpu available on a given 1532 * node. If there are no CPUs available on the given node it will return 1533 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1534 * available CPU if we need to schedule this work. 1535 */ 1536 static int workqueue_select_cpu_near(int node) 1537 { 1538 int cpu; 1539 1540 /* No point in doing this if NUMA isn't enabled for workqueues */ 1541 if (!wq_numa_enabled) 1542 return WORK_CPU_UNBOUND; 1543 1544 /* Delay binding to CPU if node is not valid or online */ 1545 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1546 return WORK_CPU_UNBOUND; 1547 1548 /* Use local node/cpu if we are already there */ 1549 cpu = raw_smp_processor_id(); 1550 if (node == cpu_to_node(cpu)) 1551 return cpu; 1552 1553 /* Use "random" otherwise know as "first" online CPU of node */ 1554 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1555 1556 /* If CPU is valid return that, otherwise just defer */ 1557 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1558 } 1559 1560 /** 1561 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1562 * @node: NUMA node that we are targeting the work for 1563 * @wq: workqueue to use 1564 * @work: work to queue 1565 * 1566 * We queue the work to a "random" CPU within a given NUMA node. The basic 1567 * idea here is to provide a way to somehow associate work with a given 1568 * NUMA node. 1569 * 1570 * This function will only make a best effort attempt at getting this onto 1571 * the right NUMA node. If no node is requested or the requested node is 1572 * offline then we just fall back to standard queue_work behavior. 1573 * 1574 * Currently the "random" CPU ends up being the first available CPU in the 1575 * intersection of cpu_online_mask and the cpumask of the node, unless we 1576 * are running on the node. In that case we just use the current CPU. 1577 * 1578 * Return: %false if @work was already on a queue, %true otherwise. 1579 */ 1580 bool queue_work_node(int node, struct workqueue_struct *wq, 1581 struct work_struct *work) 1582 { 1583 unsigned long flags; 1584 bool ret = false; 1585 1586 /* 1587 * This current implementation is specific to unbound workqueues. 1588 * Specifically we only return the first available CPU for a given 1589 * node instead of cycling through individual CPUs within the node. 1590 * 1591 * If this is used with a per-cpu workqueue then the logic in 1592 * workqueue_select_cpu_near would need to be updated to allow for 1593 * some round robin type logic. 1594 */ 1595 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1596 1597 local_irq_save(flags); 1598 1599 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1600 int cpu = workqueue_select_cpu_near(node); 1601 1602 __queue_work(cpu, wq, work); 1603 ret = true; 1604 } 1605 1606 local_irq_restore(flags); 1607 return ret; 1608 } 1609 EXPORT_SYMBOL_GPL(queue_work_node); 1610 1611 void delayed_work_timer_fn(struct timer_list *t) 1612 { 1613 struct delayed_work *dwork = from_timer(dwork, t, timer); 1614 1615 /* should have been called from irqsafe timer with irq already off */ 1616 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1617 } 1618 EXPORT_SYMBOL(delayed_work_timer_fn); 1619 1620 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1621 struct delayed_work *dwork, unsigned long delay) 1622 { 1623 struct timer_list *timer = &dwork->timer; 1624 struct work_struct *work = &dwork->work; 1625 1626 WARN_ON_ONCE(!wq); 1627 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1628 WARN_ON_ONCE(timer_pending(timer)); 1629 WARN_ON_ONCE(!list_empty(&work->entry)); 1630 1631 /* 1632 * If @delay is 0, queue @dwork->work immediately. This is for 1633 * both optimization and correctness. The earliest @timer can 1634 * expire is on the closest next tick and delayed_work users depend 1635 * on that there's no such delay when @delay is 0. 1636 */ 1637 if (!delay) { 1638 __queue_work(cpu, wq, &dwork->work); 1639 return; 1640 } 1641 1642 dwork->wq = wq; 1643 dwork->cpu = cpu; 1644 timer->expires = jiffies + delay; 1645 1646 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1647 add_timer_on(timer, cpu); 1648 else 1649 add_timer(timer); 1650 } 1651 1652 /** 1653 * queue_delayed_work_on - queue work on specific CPU after delay 1654 * @cpu: CPU number to execute work on 1655 * @wq: workqueue to use 1656 * @dwork: work to queue 1657 * @delay: number of jiffies to wait before queueing 1658 * 1659 * Return: %false if @work was already on a queue, %true otherwise. If 1660 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1661 * execution. 1662 */ 1663 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1664 struct delayed_work *dwork, unsigned long delay) 1665 { 1666 struct work_struct *work = &dwork->work; 1667 bool ret = false; 1668 unsigned long flags; 1669 1670 /* read the comment in __queue_work() */ 1671 local_irq_save(flags); 1672 1673 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1674 __queue_delayed_work(cpu, wq, dwork, delay); 1675 ret = true; 1676 } 1677 1678 local_irq_restore(flags); 1679 return ret; 1680 } 1681 EXPORT_SYMBOL(queue_delayed_work_on); 1682 1683 /** 1684 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1685 * @cpu: CPU number to execute work on 1686 * @wq: workqueue to use 1687 * @dwork: work to queue 1688 * @delay: number of jiffies to wait before queueing 1689 * 1690 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1691 * modify @dwork's timer so that it expires after @delay. If @delay is 1692 * zero, @work is guaranteed to be scheduled immediately regardless of its 1693 * current state. 1694 * 1695 * Return: %false if @dwork was idle and queued, %true if @dwork was 1696 * pending and its timer was modified. 1697 * 1698 * This function is safe to call from any context including IRQ handler. 1699 * See try_to_grab_pending() for details. 1700 */ 1701 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1702 struct delayed_work *dwork, unsigned long delay) 1703 { 1704 unsigned long flags; 1705 int ret; 1706 1707 do { 1708 ret = try_to_grab_pending(&dwork->work, true, &flags); 1709 } while (unlikely(ret == -EAGAIN)); 1710 1711 if (likely(ret >= 0)) { 1712 __queue_delayed_work(cpu, wq, dwork, delay); 1713 local_irq_restore(flags); 1714 } 1715 1716 /* -ENOENT from try_to_grab_pending() becomes %true */ 1717 return ret; 1718 } 1719 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1720 1721 static void rcu_work_rcufn(struct rcu_head *rcu) 1722 { 1723 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1724 1725 /* read the comment in __queue_work() */ 1726 local_irq_disable(); 1727 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1728 local_irq_enable(); 1729 } 1730 1731 /** 1732 * queue_rcu_work - queue work after a RCU grace period 1733 * @wq: workqueue to use 1734 * @rwork: work to queue 1735 * 1736 * Return: %false if @rwork was already pending, %true otherwise. Note 1737 * that a full RCU grace period is guaranteed only after a %true return. 1738 * While @rwork is guaranteed to be executed after a %false return, the 1739 * execution may happen before a full RCU grace period has passed. 1740 */ 1741 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1742 { 1743 struct work_struct *work = &rwork->work; 1744 1745 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1746 rwork->wq = wq; 1747 call_rcu(&rwork->rcu, rcu_work_rcufn); 1748 return true; 1749 } 1750 1751 return false; 1752 } 1753 EXPORT_SYMBOL(queue_rcu_work); 1754 1755 /** 1756 * worker_enter_idle - enter idle state 1757 * @worker: worker which is entering idle state 1758 * 1759 * @worker is entering idle state. Update stats and idle timer if 1760 * necessary. 1761 * 1762 * LOCKING: 1763 * spin_lock_irq(pool->lock). 1764 */ 1765 static void worker_enter_idle(struct worker *worker) 1766 { 1767 struct worker_pool *pool = worker->pool; 1768 1769 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1770 WARN_ON_ONCE(!list_empty(&worker->entry) && 1771 (worker->hentry.next || worker->hentry.pprev))) 1772 return; 1773 1774 /* can't use worker_set_flags(), also called from create_worker() */ 1775 worker->flags |= WORKER_IDLE; 1776 pool->nr_idle++; 1777 worker->last_active = jiffies; 1778 1779 /* idle_list is LIFO */ 1780 list_add(&worker->entry, &pool->idle_list); 1781 1782 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1783 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1784 1785 /* 1786 * Sanity check nr_running. Because unbind_workers() releases 1787 * pool->lock between setting %WORKER_UNBOUND and zapping 1788 * nr_running, the warning may trigger spuriously. Check iff 1789 * unbind is not in progress. 1790 */ 1791 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1792 pool->nr_workers == pool->nr_idle && 1793 atomic_read(&pool->nr_running)); 1794 } 1795 1796 /** 1797 * worker_leave_idle - leave idle state 1798 * @worker: worker which is leaving idle state 1799 * 1800 * @worker is leaving idle state. Update stats. 1801 * 1802 * LOCKING: 1803 * spin_lock_irq(pool->lock). 1804 */ 1805 static void worker_leave_idle(struct worker *worker) 1806 { 1807 struct worker_pool *pool = worker->pool; 1808 1809 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1810 return; 1811 worker_clr_flags(worker, WORKER_IDLE); 1812 pool->nr_idle--; 1813 list_del_init(&worker->entry); 1814 } 1815 1816 static struct worker *alloc_worker(int node) 1817 { 1818 struct worker *worker; 1819 1820 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1821 if (worker) { 1822 INIT_LIST_HEAD(&worker->entry); 1823 INIT_LIST_HEAD(&worker->scheduled); 1824 INIT_LIST_HEAD(&worker->node); 1825 /* on creation a worker is in !idle && prep state */ 1826 worker->flags = WORKER_PREP; 1827 } 1828 return worker; 1829 } 1830 1831 /** 1832 * worker_attach_to_pool() - attach a worker to a pool 1833 * @worker: worker to be attached 1834 * @pool: the target pool 1835 * 1836 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1837 * cpu-binding of @worker are kept coordinated with the pool across 1838 * cpu-[un]hotplugs. 1839 */ 1840 static void worker_attach_to_pool(struct worker *worker, 1841 struct worker_pool *pool) 1842 { 1843 mutex_lock(&wq_pool_attach_mutex); 1844 1845 /* 1846 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1847 * online CPUs. It'll be re-applied when any of the CPUs come up. 1848 */ 1849 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1850 1851 /* 1852 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1853 * stable across this function. See the comments above the flag 1854 * definition for details. 1855 */ 1856 if (pool->flags & POOL_DISASSOCIATED) 1857 worker->flags |= WORKER_UNBOUND; 1858 1859 list_add_tail(&worker->node, &pool->workers); 1860 worker->pool = pool; 1861 1862 mutex_unlock(&wq_pool_attach_mutex); 1863 } 1864 1865 /** 1866 * worker_detach_from_pool() - detach a worker from its pool 1867 * @worker: worker which is attached to its pool 1868 * 1869 * Undo the attaching which had been done in worker_attach_to_pool(). The 1870 * caller worker shouldn't access to the pool after detached except it has 1871 * other reference to the pool. 1872 */ 1873 static void worker_detach_from_pool(struct worker *worker) 1874 { 1875 struct worker_pool *pool = worker->pool; 1876 struct completion *detach_completion = NULL; 1877 1878 mutex_lock(&wq_pool_attach_mutex); 1879 1880 list_del(&worker->node); 1881 worker->pool = NULL; 1882 1883 if (list_empty(&pool->workers)) 1884 detach_completion = pool->detach_completion; 1885 mutex_unlock(&wq_pool_attach_mutex); 1886 1887 /* clear leftover flags without pool->lock after it is detached */ 1888 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1889 1890 if (detach_completion) 1891 complete(detach_completion); 1892 } 1893 1894 /** 1895 * create_worker - create a new workqueue worker 1896 * @pool: pool the new worker will belong to 1897 * 1898 * Create and start a new worker which is attached to @pool. 1899 * 1900 * CONTEXT: 1901 * Might sleep. Does GFP_KERNEL allocations. 1902 * 1903 * Return: 1904 * Pointer to the newly created worker. 1905 */ 1906 static struct worker *create_worker(struct worker_pool *pool) 1907 { 1908 struct worker *worker = NULL; 1909 int id = -1; 1910 char id_buf[16]; 1911 1912 /* ID is needed to determine kthread name */ 1913 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1914 if (id < 0) 1915 goto fail; 1916 1917 worker = alloc_worker(pool->node); 1918 if (!worker) 1919 goto fail; 1920 1921 worker->id = id; 1922 1923 if (pool->cpu >= 0) 1924 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1925 pool->attrs->nice < 0 ? "H" : ""); 1926 else 1927 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1928 1929 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1930 "kworker/%s", id_buf); 1931 if (IS_ERR(worker->task)) 1932 goto fail; 1933 1934 set_user_nice(worker->task, pool->attrs->nice); 1935 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1936 1937 /* successful, attach the worker to the pool */ 1938 worker_attach_to_pool(worker, pool); 1939 1940 /* start the newly created worker */ 1941 spin_lock_irq(&pool->lock); 1942 worker->pool->nr_workers++; 1943 worker_enter_idle(worker); 1944 wake_up_process(worker->task); 1945 spin_unlock_irq(&pool->lock); 1946 1947 return worker; 1948 1949 fail: 1950 if (id >= 0) 1951 ida_simple_remove(&pool->worker_ida, id); 1952 kfree(worker); 1953 return NULL; 1954 } 1955 1956 /** 1957 * destroy_worker - destroy a workqueue worker 1958 * @worker: worker to be destroyed 1959 * 1960 * Destroy @worker and adjust @pool stats accordingly. The worker should 1961 * be idle. 1962 * 1963 * CONTEXT: 1964 * spin_lock_irq(pool->lock). 1965 */ 1966 static void destroy_worker(struct worker *worker) 1967 { 1968 struct worker_pool *pool = worker->pool; 1969 1970 lockdep_assert_held(&pool->lock); 1971 1972 /* sanity check frenzy */ 1973 if (WARN_ON(worker->current_work) || 1974 WARN_ON(!list_empty(&worker->scheduled)) || 1975 WARN_ON(!(worker->flags & WORKER_IDLE))) 1976 return; 1977 1978 pool->nr_workers--; 1979 pool->nr_idle--; 1980 1981 list_del_init(&worker->entry); 1982 worker->flags |= WORKER_DIE; 1983 wake_up_process(worker->task); 1984 } 1985 1986 static void idle_worker_timeout(struct timer_list *t) 1987 { 1988 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1989 1990 spin_lock_irq(&pool->lock); 1991 1992 while (too_many_workers(pool)) { 1993 struct worker *worker; 1994 unsigned long expires; 1995 1996 /* idle_list is kept in LIFO order, check the last one */ 1997 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1998 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1999 2000 if (time_before(jiffies, expires)) { 2001 mod_timer(&pool->idle_timer, expires); 2002 break; 2003 } 2004 2005 destroy_worker(worker); 2006 } 2007 2008 spin_unlock_irq(&pool->lock); 2009 } 2010 2011 static void send_mayday(struct work_struct *work) 2012 { 2013 struct pool_workqueue *pwq = get_work_pwq(work); 2014 struct workqueue_struct *wq = pwq->wq; 2015 2016 lockdep_assert_held(&wq_mayday_lock); 2017 2018 if (!wq->rescuer) 2019 return; 2020 2021 /* mayday mayday mayday */ 2022 if (list_empty(&pwq->mayday_node)) { 2023 /* 2024 * If @pwq is for an unbound wq, its base ref may be put at 2025 * any time due to an attribute change. Pin @pwq until the 2026 * rescuer is done with it. 2027 */ 2028 get_pwq(pwq); 2029 list_add_tail(&pwq->mayday_node, &wq->maydays); 2030 wake_up_process(wq->rescuer->task); 2031 } 2032 } 2033 2034 static void pool_mayday_timeout(struct timer_list *t) 2035 { 2036 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2037 struct work_struct *work; 2038 2039 spin_lock_irq(&pool->lock); 2040 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2041 2042 if (need_to_create_worker(pool)) { 2043 /* 2044 * We've been trying to create a new worker but 2045 * haven't been successful. We might be hitting an 2046 * allocation deadlock. Send distress signals to 2047 * rescuers. 2048 */ 2049 list_for_each_entry(work, &pool->worklist, entry) 2050 send_mayday(work); 2051 } 2052 2053 spin_unlock(&wq_mayday_lock); 2054 spin_unlock_irq(&pool->lock); 2055 2056 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2057 } 2058 2059 /** 2060 * maybe_create_worker - create a new worker if necessary 2061 * @pool: pool to create a new worker for 2062 * 2063 * Create a new worker for @pool if necessary. @pool is guaranteed to 2064 * have at least one idle worker on return from this function. If 2065 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2066 * sent to all rescuers with works scheduled on @pool to resolve 2067 * possible allocation deadlock. 2068 * 2069 * On return, need_to_create_worker() is guaranteed to be %false and 2070 * may_start_working() %true. 2071 * 2072 * LOCKING: 2073 * spin_lock_irq(pool->lock) which may be released and regrabbed 2074 * multiple times. Does GFP_KERNEL allocations. Called only from 2075 * manager. 2076 */ 2077 static void maybe_create_worker(struct worker_pool *pool) 2078 __releases(&pool->lock) 2079 __acquires(&pool->lock) 2080 { 2081 restart: 2082 spin_unlock_irq(&pool->lock); 2083 2084 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2085 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2086 2087 while (true) { 2088 if (create_worker(pool) || !need_to_create_worker(pool)) 2089 break; 2090 2091 schedule_timeout_interruptible(CREATE_COOLDOWN); 2092 2093 if (!need_to_create_worker(pool)) 2094 break; 2095 } 2096 2097 del_timer_sync(&pool->mayday_timer); 2098 spin_lock_irq(&pool->lock); 2099 /* 2100 * This is necessary even after a new worker was just successfully 2101 * created as @pool->lock was dropped and the new worker might have 2102 * already become busy. 2103 */ 2104 if (need_to_create_worker(pool)) 2105 goto restart; 2106 } 2107 2108 /** 2109 * manage_workers - manage worker pool 2110 * @worker: self 2111 * 2112 * Assume the manager role and manage the worker pool @worker belongs 2113 * to. At any given time, there can be only zero or one manager per 2114 * pool. The exclusion is handled automatically by this function. 2115 * 2116 * The caller can safely start processing works on false return. On 2117 * true return, it's guaranteed that need_to_create_worker() is false 2118 * and may_start_working() is true. 2119 * 2120 * CONTEXT: 2121 * spin_lock_irq(pool->lock) which may be released and regrabbed 2122 * multiple times. Does GFP_KERNEL allocations. 2123 * 2124 * Return: 2125 * %false if the pool doesn't need management and the caller can safely 2126 * start processing works, %true if management function was performed and 2127 * the conditions that the caller verified before calling the function may 2128 * no longer be true. 2129 */ 2130 static bool manage_workers(struct worker *worker) 2131 { 2132 struct worker_pool *pool = worker->pool; 2133 2134 if (pool->flags & POOL_MANAGER_ACTIVE) 2135 return false; 2136 2137 pool->flags |= POOL_MANAGER_ACTIVE; 2138 pool->manager = worker; 2139 2140 maybe_create_worker(pool); 2141 2142 pool->manager = NULL; 2143 pool->flags &= ~POOL_MANAGER_ACTIVE; 2144 wake_up(&wq_manager_wait); 2145 return true; 2146 } 2147 2148 /** 2149 * process_one_work - process single work 2150 * @worker: self 2151 * @work: work to process 2152 * 2153 * Process @work. This function contains all the logics necessary to 2154 * process a single work including synchronization against and 2155 * interaction with other workers on the same cpu, queueing and 2156 * flushing. As long as context requirement is met, any worker can 2157 * call this function to process a work. 2158 * 2159 * CONTEXT: 2160 * spin_lock_irq(pool->lock) which is released and regrabbed. 2161 */ 2162 static void process_one_work(struct worker *worker, struct work_struct *work) 2163 __releases(&pool->lock) 2164 __acquires(&pool->lock) 2165 { 2166 struct pool_workqueue *pwq = get_work_pwq(work); 2167 struct worker_pool *pool = worker->pool; 2168 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2169 int work_color; 2170 struct worker *collision; 2171 #ifdef CONFIG_LOCKDEP 2172 /* 2173 * It is permissible to free the struct work_struct from 2174 * inside the function that is called from it, this we need to 2175 * take into account for lockdep too. To avoid bogus "held 2176 * lock freed" warnings as well as problems when looking into 2177 * work->lockdep_map, make a copy and use that here. 2178 */ 2179 struct lockdep_map lockdep_map; 2180 2181 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2182 #endif 2183 /* ensure we're on the correct CPU */ 2184 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2185 raw_smp_processor_id() != pool->cpu); 2186 2187 /* 2188 * A single work shouldn't be executed concurrently by 2189 * multiple workers on a single cpu. Check whether anyone is 2190 * already processing the work. If so, defer the work to the 2191 * currently executing one. 2192 */ 2193 collision = find_worker_executing_work(pool, work); 2194 if (unlikely(collision)) { 2195 move_linked_works(work, &collision->scheduled, NULL); 2196 return; 2197 } 2198 2199 /* claim and dequeue */ 2200 debug_work_deactivate(work); 2201 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2202 worker->current_work = work; 2203 worker->current_func = work->func; 2204 worker->current_pwq = pwq; 2205 work_color = get_work_color(work); 2206 2207 /* 2208 * Record wq name for cmdline and debug reporting, may get 2209 * overridden through set_worker_desc(). 2210 */ 2211 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2212 2213 list_del_init(&work->entry); 2214 2215 /* 2216 * CPU intensive works don't participate in concurrency management. 2217 * They're the scheduler's responsibility. This takes @worker out 2218 * of concurrency management and the next code block will chain 2219 * execution of the pending work items. 2220 */ 2221 if (unlikely(cpu_intensive)) 2222 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2223 2224 /* 2225 * Wake up another worker if necessary. The condition is always 2226 * false for normal per-cpu workers since nr_running would always 2227 * be >= 1 at this point. This is used to chain execution of the 2228 * pending work items for WORKER_NOT_RUNNING workers such as the 2229 * UNBOUND and CPU_INTENSIVE ones. 2230 */ 2231 if (need_more_worker(pool)) 2232 wake_up_worker(pool); 2233 2234 /* 2235 * Record the last pool and clear PENDING which should be the last 2236 * update to @work. Also, do this inside @pool->lock so that 2237 * PENDING and queued state changes happen together while IRQ is 2238 * disabled. 2239 */ 2240 set_work_pool_and_clear_pending(work, pool->id); 2241 2242 spin_unlock_irq(&pool->lock); 2243 2244 lock_map_acquire(&pwq->wq->lockdep_map); 2245 lock_map_acquire(&lockdep_map); 2246 /* 2247 * Strictly speaking we should mark the invariant state without holding 2248 * any locks, that is, before these two lock_map_acquire()'s. 2249 * 2250 * However, that would result in: 2251 * 2252 * A(W1) 2253 * WFC(C) 2254 * A(W1) 2255 * C(C) 2256 * 2257 * Which would create W1->C->W1 dependencies, even though there is no 2258 * actual deadlock possible. There are two solutions, using a 2259 * read-recursive acquire on the work(queue) 'locks', but this will then 2260 * hit the lockdep limitation on recursive locks, or simply discard 2261 * these locks. 2262 * 2263 * AFAICT there is no possible deadlock scenario between the 2264 * flush_work() and complete() primitives (except for single-threaded 2265 * workqueues), so hiding them isn't a problem. 2266 */ 2267 lockdep_invariant_state(true); 2268 trace_workqueue_execute_start(work); 2269 worker->current_func(work); 2270 /* 2271 * While we must be careful to not use "work" after this, the trace 2272 * point will only record its address. 2273 */ 2274 trace_workqueue_execute_end(work); 2275 lock_map_release(&lockdep_map); 2276 lock_map_release(&pwq->wq->lockdep_map); 2277 2278 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2279 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2280 " last function: %ps\n", 2281 current->comm, preempt_count(), task_pid_nr(current), 2282 worker->current_func); 2283 debug_show_held_locks(current); 2284 dump_stack(); 2285 } 2286 2287 /* 2288 * The following prevents a kworker from hogging CPU on !PREEMPT 2289 * kernels, where a requeueing work item waiting for something to 2290 * happen could deadlock with stop_machine as such work item could 2291 * indefinitely requeue itself while all other CPUs are trapped in 2292 * stop_machine. At the same time, report a quiescent RCU state so 2293 * the same condition doesn't freeze RCU. 2294 */ 2295 cond_resched(); 2296 2297 spin_lock_irq(&pool->lock); 2298 2299 /* clear cpu intensive status */ 2300 if (unlikely(cpu_intensive)) 2301 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2302 2303 /* tag the worker for identification in schedule() */ 2304 worker->last_func = worker->current_func; 2305 2306 /* we're done with it, release */ 2307 hash_del(&worker->hentry); 2308 worker->current_work = NULL; 2309 worker->current_func = NULL; 2310 worker->current_pwq = NULL; 2311 pwq_dec_nr_in_flight(pwq, work_color); 2312 } 2313 2314 /** 2315 * process_scheduled_works - process scheduled works 2316 * @worker: self 2317 * 2318 * Process all scheduled works. Please note that the scheduled list 2319 * may change while processing a work, so this function repeatedly 2320 * fetches a work from the top and executes it. 2321 * 2322 * CONTEXT: 2323 * spin_lock_irq(pool->lock) which may be released and regrabbed 2324 * multiple times. 2325 */ 2326 static void process_scheduled_works(struct worker *worker) 2327 { 2328 while (!list_empty(&worker->scheduled)) { 2329 struct work_struct *work = list_first_entry(&worker->scheduled, 2330 struct work_struct, entry); 2331 process_one_work(worker, work); 2332 } 2333 } 2334 2335 static void set_pf_worker(bool val) 2336 { 2337 mutex_lock(&wq_pool_attach_mutex); 2338 if (val) 2339 current->flags |= PF_WQ_WORKER; 2340 else 2341 current->flags &= ~PF_WQ_WORKER; 2342 mutex_unlock(&wq_pool_attach_mutex); 2343 } 2344 2345 /** 2346 * worker_thread - the worker thread function 2347 * @__worker: self 2348 * 2349 * The worker thread function. All workers belong to a worker_pool - 2350 * either a per-cpu one or dynamic unbound one. These workers process all 2351 * work items regardless of their specific target workqueue. The only 2352 * exception is work items which belong to workqueues with a rescuer which 2353 * will be explained in rescuer_thread(). 2354 * 2355 * Return: 0 2356 */ 2357 static int worker_thread(void *__worker) 2358 { 2359 struct worker *worker = __worker; 2360 struct worker_pool *pool = worker->pool; 2361 2362 /* tell the scheduler that this is a workqueue worker */ 2363 set_pf_worker(true); 2364 woke_up: 2365 spin_lock_irq(&pool->lock); 2366 2367 /* am I supposed to die? */ 2368 if (unlikely(worker->flags & WORKER_DIE)) { 2369 spin_unlock_irq(&pool->lock); 2370 WARN_ON_ONCE(!list_empty(&worker->entry)); 2371 set_pf_worker(false); 2372 2373 set_task_comm(worker->task, "kworker/dying"); 2374 ida_simple_remove(&pool->worker_ida, worker->id); 2375 worker_detach_from_pool(worker); 2376 kfree(worker); 2377 return 0; 2378 } 2379 2380 worker_leave_idle(worker); 2381 recheck: 2382 /* no more worker necessary? */ 2383 if (!need_more_worker(pool)) 2384 goto sleep; 2385 2386 /* do we need to manage? */ 2387 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2388 goto recheck; 2389 2390 /* 2391 * ->scheduled list can only be filled while a worker is 2392 * preparing to process a work or actually processing it. 2393 * Make sure nobody diddled with it while I was sleeping. 2394 */ 2395 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2396 2397 /* 2398 * Finish PREP stage. We're guaranteed to have at least one idle 2399 * worker or that someone else has already assumed the manager 2400 * role. This is where @worker starts participating in concurrency 2401 * management if applicable and concurrency management is restored 2402 * after being rebound. See rebind_workers() for details. 2403 */ 2404 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2405 2406 do { 2407 struct work_struct *work = 2408 list_first_entry(&pool->worklist, 2409 struct work_struct, entry); 2410 2411 pool->watchdog_ts = jiffies; 2412 2413 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2414 /* optimization path, not strictly necessary */ 2415 process_one_work(worker, work); 2416 if (unlikely(!list_empty(&worker->scheduled))) 2417 process_scheduled_works(worker); 2418 } else { 2419 move_linked_works(work, &worker->scheduled, NULL); 2420 process_scheduled_works(worker); 2421 } 2422 } while (keep_working(pool)); 2423 2424 worker_set_flags(worker, WORKER_PREP); 2425 sleep: 2426 /* 2427 * pool->lock is held and there's no work to process and no need to 2428 * manage, sleep. Workers are woken up only while holding 2429 * pool->lock or from local cpu, so setting the current state 2430 * before releasing pool->lock is enough to prevent losing any 2431 * event. 2432 */ 2433 worker_enter_idle(worker); 2434 __set_current_state(TASK_IDLE); 2435 spin_unlock_irq(&pool->lock); 2436 schedule(); 2437 goto woke_up; 2438 } 2439 2440 /** 2441 * rescuer_thread - the rescuer thread function 2442 * @__rescuer: self 2443 * 2444 * Workqueue rescuer thread function. There's one rescuer for each 2445 * workqueue which has WQ_MEM_RECLAIM set. 2446 * 2447 * Regular work processing on a pool may block trying to create a new 2448 * worker which uses GFP_KERNEL allocation which has slight chance of 2449 * developing into deadlock if some works currently on the same queue 2450 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2451 * the problem rescuer solves. 2452 * 2453 * When such condition is possible, the pool summons rescuers of all 2454 * workqueues which have works queued on the pool and let them process 2455 * those works so that forward progress can be guaranteed. 2456 * 2457 * This should happen rarely. 2458 * 2459 * Return: 0 2460 */ 2461 static int rescuer_thread(void *__rescuer) 2462 { 2463 struct worker *rescuer = __rescuer; 2464 struct workqueue_struct *wq = rescuer->rescue_wq; 2465 struct list_head *scheduled = &rescuer->scheduled; 2466 bool should_stop; 2467 2468 set_user_nice(current, RESCUER_NICE_LEVEL); 2469 2470 /* 2471 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2472 * doesn't participate in concurrency management. 2473 */ 2474 set_pf_worker(true); 2475 repeat: 2476 set_current_state(TASK_IDLE); 2477 2478 /* 2479 * By the time the rescuer is requested to stop, the workqueue 2480 * shouldn't have any work pending, but @wq->maydays may still have 2481 * pwq(s) queued. This can happen by non-rescuer workers consuming 2482 * all the work items before the rescuer got to them. Go through 2483 * @wq->maydays processing before acting on should_stop so that the 2484 * list is always empty on exit. 2485 */ 2486 should_stop = kthread_should_stop(); 2487 2488 /* see whether any pwq is asking for help */ 2489 spin_lock_irq(&wq_mayday_lock); 2490 2491 while (!list_empty(&wq->maydays)) { 2492 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2493 struct pool_workqueue, mayday_node); 2494 struct worker_pool *pool = pwq->pool; 2495 struct work_struct *work, *n; 2496 bool first = true; 2497 2498 __set_current_state(TASK_RUNNING); 2499 list_del_init(&pwq->mayday_node); 2500 2501 spin_unlock_irq(&wq_mayday_lock); 2502 2503 worker_attach_to_pool(rescuer, pool); 2504 2505 spin_lock_irq(&pool->lock); 2506 2507 /* 2508 * Slurp in all works issued via this workqueue and 2509 * process'em. 2510 */ 2511 WARN_ON_ONCE(!list_empty(scheduled)); 2512 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2513 if (get_work_pwq(work) == pwq) { 2514 if (first) 2515 pool->watchdog_ts = jiffies; 2516 move_linked_works(work, scheduled, &n); 2517 } 2518 first = false; 2519 } 2520 2521 if (!list_empty(scheduled)) { 2522 process_scheduled_works(rescuer); 2523 2524 /* 2525 * The above execution of rescued work items could 2526 * have created more to rescue through 2527 * pwq_activate_first_delayed() or chained 2528 * queueing. Let's put @pwq back on mayday list so 2529 * that such back-to-back work items, which may be 2530 * being used to relieve memory pressure, don't 2531 * incur MAYDAY_INTERVAL delay inbetween. 2532 */ 2533 if (need_to_create_worker(pool)) { 2534 spin_lock(&wq_mayday_lock); 2535 get_pwq(pwq); 2536 list_move_tail(&pwq->mayday_node, &wq->maydays); 2537 spin_unlock(&wq_mayday_lock); 2538 } 2539 } 2540 2541 /* 2542 * Put the reference grabbed by send_mayday(). @pool won't 2543 * go away while we're still attached to it. 2544 */ 2545 put_pwq(pwq); 2546 2547 /* 2548 * Leave this pool. If need_more_worker() is %true, notify a 2549 * regular worker; otherwise, we end up with 0 concurrency 2550 * and stalling the execution. 2551 */ 2552 if (need_more_worker(pool)) 2553 wake_up_worker(pool); 2554 2555 spin_unlock_irq(&pool->lock); 2556 2557 worker_detach_from_pool(rescuer); 2558 2559 spin_lock_irq(&wq_mayday_lock); 2560 } 2561 2562 spin_unlock_irq(&wq_mayday_lock); 2563 2564 if (should_stop) { 2565 __set_current_state(TASK_RUNNING); 2566 set_pf_worker(false); 2567 return 0; 2568 } 2569 2570 /* rescuers should never participate in concurrency management */ 2571 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2572 schedule(); 2573 goto repeat; 2574 } 2575 2576 /** 2577 * check_flush_dependency - check for flush dependency sanity 2578 * @target_wq: workqueue being flushed 2579 * @target_work: work item being flushed (NULL for workqueue flushes) 2580 * 2581 * %current is trying to flush the whole @target_wq or @target_work on it. 2582 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2583 * reclaiming memory or running on a workqueue which doesn't have 2584 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2585 * a deadlock. 2586 */ 2587 static void check_flush_dependency(struct workqueue_struct *target_wq, 2588 struct work_struct *target_work) 2589 { 2590 work_func_t target_func = target_work ? target_work->func : NULL; 2591 struct worker *worker; 2592 2593 if (target_wq->flags & WQ_MEM_RECLAIM) 2594 return; 2595 2596 worker = current_wq_worker(); 2597 2598 WARN_ONCE(current->flags & PF_MEMALLOC, 2599 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2600 current->pid, current->comm, target_wq->name, target_func); 2601 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2602 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2603 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2604 worker->current_pwq->wq->name, worker->current_func, 2605 target_wq->name, target_func); 2606 } 2607 2608 struct wq_barrier { 2609 struct work_struct work; 2610 struct completion done; 2611 struct task_struct *task; /* purely informational */ 2612 }; 2613 2614 static void wq_barrier_func(struct work_struct *work) 2615 { 2616 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2617 complete(&barr->done); 2618 } 2619 2620 /** 2621 * insert_wq_barrier - insert a barrier work 2622 * @pwq: pwq to insert barrier into 2623 * @barr: wq_barrier to insert 2624 * @target: target work to attach @barr to 2625 * @worker: worker currently executing @target, NULL if @target is not executing 2626 * 2627 * @barr is linked to @target such that @barr is completed only after 2628 * @target finishes execution. Please note that the ordering 2629 * guarantee is observed only with respect to @target and on the local 2630 * cpu. 2631 * 2632 * Currently, a queued barrier can't be canceled. This is because 2633 * try_to_grab_pending() can't determine whether the work to be 2634 * grabbed is at the head of the queue and thus can't clear LINKED 2635 * flag of the previous work while there must be a valid next work 2636 * after a work with LINKED flag set. 2637 * 2638 * Note that when @worker is non-NULL, @target may be modified 2639 * underneath us, so we can't reliably determine pwq from @target. 2640 * 2641 * CONTEXT: 2642 * spin_lock_irq(pool->lock). 2643 */ 2644 static void insert_wq_barrier(struct pool_workqueue *pwq, 2645 struct wq_barrier *barr, 2646 struct work_struct *target, struct worker *worker) 2647 { 2648 struct list_head *head; 2649 unsigned int linked = 0; 2650 2651 /* 2652 * debugobject calls are safe here even with pool->lock locked 2653 * as we know for sure that this will not trigger any of the 2654 * checks and call back into the fixup functions where we 2655 * might deadlock. 2656 */ 2657 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2658 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2659 2660 init_completion_map(&barr->done, &target->lockdep_map); 2661 2662 barr->task = current; 2663 2664 /* 2665 * If @target is currently being executed, schedule the 2666 * barrier to the worker; otherwise, put it after @target. 2667 */ 2668 if (worker) 2669 head = worker->scheduled.next; 2670 else { 2671 unsigned long *bits = work_data_bits(target); 2672 2673 head = target->entry.next; 2674 /* there can already be other linked works, inherit and set */ 2675 linked = *bits & WORK_STRUCT_LINKED; 2676 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2677 } 2678 2679 debug_work_activate(&barr->work); 2680 insert_work(pwq, &barr->work, head, 2681 work_color_to_flags(WORK_NO_COLOR) | linked); 2682 } 2683 2684 /** 2685 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2686 * @wq: workqueue being flushed 2687 * @flush_color: new flush color, < 0 for no-op 2688 * @work_color: new work color, < 0 for no-op 2689 * 2690 * Prepare pwqs for workqueue flushing. 2691 * 2692 * If @flush_color is non-negative, flush_color on all pwqs should be 2693 * -1. If no pwq has in-flight commands at the specified color, all 2694 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2695 * has in flight commands, its pwq->flush_color is set to 2696 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2697 * wakeup logic is armed and %true is returned. 2698 * 2699 * The caller should have initialized @wq->first_flusher prior to 2700 * calling this function with non-negative @flush_color. If 2701 * @flush_color is negative, no flush color update is done and %false 2702 * is returned. 2703 * 2704 * If @work_color is non-negative, all pwqs should have the same 2705 * work_color which is previous to @work_color and all will be 2706 * advanced to @work_color. 2707 * 2708 * CONTEXT: 2709 * mutex_lock(wq->mutex). 2710 * 2711 * Return: 2712 * %true if @flush_color >= 0 and there's something to flush. %false 2713 * otherwise. 2714 */ 2715 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2716 int flush_color, int work_color) 2717 { 2718 bool wait = false; 2719 struct pool_workqueue *pwq; 2720 2721 if (flush_color >= 0) { 2722 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2723 atomic_set(&wq->nr_pwqs_to_flush, 1); 2724 } 2725 2726 for_each_pwq(pwq, wq) { 2727 struct worker_pool *pool = pwq->pool; 2728 2729 spin_lock_irq(&pool->lock); 2730 2731 if (flush_color >= 0) { 2732 WARN_ON_ONCE(pwq->flush_color != -1); 2733 2734 if (pwq->nr_in_flight[flush_color]) { 2735 pwq->flush_color = flush_color; 2736 atomic_inc(&wq->nr_pwqs_to_flush); 2737 wait = true; 2738 } 2739 } 2740 2741 if (work_color >= 0) { 2742 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2743 pwq->work_color = work_color; 2744 } 2745 2746 spin_unlock_irq(&pool->lock); 2747 } 2748 2749 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2750 complete(&wq->first_flusher->done); 2751 2752 return wait; 2753 } 2754 2755 /** 2756 * flush_workqueue - ensure that any scheduled work has run to completion. 2757 * @wq: workqueue to flush 2758 * 2759 * This function sleeps until all work items which were queued on entry 2760 * have finished execution, but it is not livelocked by new incoming ones. 2761 */ 2762 void flush_workqueue(struct workqueue_struct *wq) 2763 { 2764 struct wq_flusher this_flusher = { 2765 .list = LIST_HEAD_INIT(this_flusher.list), 2766 .flush_color = -1, 2767 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2768 }; 2769 int next_color; 2770 2771 if (WARN_ON(!wq_online)) 2772 return; 2773 2774 lock_map_acquire(&wq->lockdep_map); 2775 lock_map_release(&wq->lockdep_map); 2776 2777 mutex_lock(&wq->mutex); 2778 2779 /* 2780 * Start-to-wait phase 2781 */ 2782 next_color = work_next_color(wq->work_color); 2783 2784 if (next_color != wq->flush_color) { 2785 /* 2786 * Color space is not full. The current work_color 2787 * becomes our flush_color and work_color is advanced 2788 * by one. 2789 */ 2790 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2791 this_flusher.flush_color = wq->work_color; 2792 wq->work_color = next_color; 2793 2794 if (!wq->first_flusher) { 2795 /* no flush in progress, become the first flusher */ 2796 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2797 2798 wq->first_flusher = &this_flusher; 2799 2800 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2801 wq->work_color)) { 2802 /* nothing to flush, done */ 2803 wq->flush_color = next_color; 2804 wq->first_flusher = NULL; 2805 goto out_unlock; 2806 } 2807 } else { 2808 /* wait in queue */ 2809 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2810 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2811 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2812 } 2813 } else { 2814 /* 2815 * Oops, color space is full, wait on overflow queue. 2816 * The next flush completion will assign us 2817 * flush_color and transfer to flusher_queue. 2818 */ 2819 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2820 } 2821 2822 check_flush_dependency(wq, NULL); 2823 2824 mutex_unlock(&wq->mutex); 2825 2826 wait_for_completion(&this_flusher.done); 2827 2828 /* 2829 * Wake-up-and-cascade phase 2830 * 2831 * First flushers are responsible for cascading flushes and 2832 * handling overflow. Non-first flushers can simply return. 2833 */ 2834 if (wq->first_flusher != &this_flusher) 2835 return; 2836 2837 mutex_lock(&wq->mutex); 2838 2839 /* we might have raced, check again with mutex held */ 2840 if (wq->first_flusher != &this_flusher) 2841 goto out_unlock; 2842 2843 wq->first_flusher = NULL; 2844 2845 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2846 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2847 2848 while (true) { 2849 struct wq_flusher *next, *tmp; 2850 2851 /* complete all the flushers sharing the current flush color */ 2852 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2853 if (next->flush_color != wq->flush_color) 2854 break; 2855 list_del_init(&next->list); 2856 complete(&next->done); 2857 } 2858 2859 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2860 wq->flush_color != work_next_color(wq->work_color)); 2861 2862 /* this flush_color is finished, advance by one */ 2863 wq->flush_color = work_next_color(wq->flush_color); 2864 2865 /* one color has been freed, handle overflow queue */ 2866 if (!list_empty(&wq->flusher_overflow)) { 2867 /* 2868 * Assign the same color to all overflowed 2869 * flushers, advance work_color and append to 2870 * flusher_queue. This is the start-to-wait 2871 * phase for these overflowed flushers. 2872 */ 2873 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2874 tmp->flush_color = wq->work_color; 2875 2876 wq->work_color = work_next_color(wq->work_color); 2877 2878 list_splice_tail_init(&wq->flusher_overflow, 2879 &wq->flusher_queue); 2880 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2881 } 2882 2883 if (list_empty(&wq->flusher_queue)) { 2884 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2885 break; 2886 } 2887 2888 /* 2889 * Need to flush more colors. Make the next flusher 2890 * the new first flusher and arm pwqs. 2891 */ 2892 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2893 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2894 2895 list_del_init(&next->list); 2896 wq->first_flusher = next; 2897 2898 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2899 break; 2900 2901 /* 2902 * Meh... this color is already done, clear first 2903 * flusher and repeat cascading. 2904 */ 2905 wq->first_flusher = NULL; 2906 } 2907 2908 out_unlock: 2909 mutex_unlock(&wq->mutex); 2910 } 2911 EXPORT_SYMBOL(flush_workqueue); 2912 2913 /** 2914 * drain_workqueue - drain a workqueue 2915 * @wq: workqueue to drain 2916 * 2917 * Wait until the workqueue becomes empty. While draining is in progress, 2918 * only chain queueing is allowed. IOW, only currently pending or running 2919 * work items on @wq can queue further work items on it. @wq is flushed 2920 * repeatedly until it becomes empty. The number of flushing is determined 2921 * by the depth of chaining and should be relatively short. Whine if it 2922 * takes too long. 2923 */ 2924 void drain_workqueue(struct workqueue_struct *wq) 2925 { 2926 unsigned int flush_cnt = 0; 2927 struct pool_workqueue *pwq; 2928 2929 /* 2930 * __queue_work() needs to test whether there are drainers, is much 2931 * hotter than drain_workqueue() and already looks at @wq->flags. 2932 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2933 */ 2934 mutex_lock(&wq->mutex); 2935 if (!wq->nr_drainers++) 2936 wq->flags |= __WQ_DRAINING; 2937 mutex_unlock(&wq->mutex); 2938 reflush: 2939 flush_workqueue(wq); 2940 2941 mutex_lock(&wq->mutex); 2942 2943 for_each_pwq(pwq, wq) { 2944 bool drained; 2945 2946 spin_lock_irq(&pwq->pool->lock); 2947 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2948 spin_unlock_irq(&pwq->pool->lock); 2949 2950 if (drained) 2951 continue; 2952 2953 if (++flush_cnt == 10 || 2954 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2955 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2956 wq->name, flush_cnt); 2957 2958 mutex_unlock(&wq->mutex); 2959 goto reflush; 2960 } 2961 2962 if (!--wq->nr_drainers) 2963 wq->flags &= ~__WQ_DRAINING; 2964 mutex_unlock(&wq->mutex); 2965 } 2966 EXPORT_SYMBOL_GPL(drain_workqueue); 2967 2968 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2969 bool from_cancel) 2970 { 2971 struct worker *worker = NULL; 2972 struct worker_pool *pool; 2973 struct pool_workqueue *pwq; 2974 2975 might_sleep(); 2976 2977 rcu_read_lock(); 2978 pool = get_work_pool(work); 2979 if (!pool) { 2980 rcu_read_unlock(); 2981 return false; 2982 } 2983 2984 spin_lock_irq(&pool->lock); 2985 /* see the comment in try_to_grab_pending() with the same code */ 2986 pwq = get_work_pwq(work); 2987 if (pwq) { 2988 if (unlikely(pwq->pool != pool)) 2989 goto already_gone; 2990 } else { 2991 worker = find_worker_executing_work(pool, work); 2992 if (!worker) 2993 goto already_gone; 2994 pwq = worker->current_pwq; 2995 } 2996 2997 check_flush_dependency(pwq->wq, work); 2998 2999 insert_wq_barrier(pwq, barr, work, worker); 3000 spin_unlock_irq(&pool->lock); 3001 3002 /* 3003 * Force a lock recursion deadlock when using flush_work() inside a 3004 * single-threaded or rescuer equipped workqueue. 3005 * 3006 * For single threaded workqueues the deadlock happens when the work 3007 * is after the work issuing the flush_work(). For rescuer equipped 3008 * workqueues the deadlock happens when the rescuer stalls, blocking 3009 * forward progress. 3010 */ 3011 if (!from_cancel && 3012 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3013 lock_map_acquire(&pwq->wq->lockdep_map); 3014 lock_map_release(&pwq->wq->lockdep_map); 3015 } 3016 rcu_read_unlock(); 3017 return true; 3018 already_gone: 3019 spin_unlock_irq(&pool->lock); 3020 rcu_read_unlock(); 3021 return false; 3022 } 3023 3024 static bool __flush_work(struct work_struct *work, bool from_cancel) 3025 { 3026 struct wq_barrier barr; 3027 3028 if (WARN_ON(!wq_online)) 3029 return false; 3030 3031 if (WARN_ON(!work->func)) 3032 return false; 3033 3034 if (!from_cancel) { 3035 lock_map_acquire(&work->lockdep_map); 3036 lock_map_release(&work->lockdep_map); 3037 } 3038 3039 if (start_flush_work(work, &barr, from_cancel)) { 3040 wait_for_completion(&barr.done); 3041 destroy_work_on_stack(&barr.work); 3042 return true; 3043 } else { 3044 return false; 3045 } 3046 } 3047 3048 /** 3049 * flush_work - wait for a work to finish executing the last queueing instance 3050 * @work: the work to flush 3051 * 3052 * Wait until @work has finished execution. @work is guaranteed to be idle 3053 * on return if it hasn't been requeued since flush started. 3054 * 3055 * Return: 3056 * %true if flush_work() waited for the work to finish execution, 3057 * %false if it was already idle. 3058 */ 3059 bool flush_work(struct work_struct *work) 3060 { 3061 return __flush_work(work, false); 3062 } 3063 EXPORT_SYMBOL_GPL(flush_work); 3064 3065 struct cwt_wait { 3066 wait_queue_entry_t wait; 3067 struct work_struct *work; 3068 }; 3069 3070 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3071 { 3072 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3073 3074 if (cwait->work != key) 3075 return 0; 3076 return autoremove_wake_function(wait, mode, sync, key); 3077 } 3078 3079 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3080 { 3081 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3082 unsigned long flags; 3083 int ret; 3084 3085 do { 3086 ret = try_to_grab_pending(work, is_dwork, &flags); 3087 /* 3088 * If someone else is already canceling, wait for it to 3089 * finish. flush_work() doesn't work for PREEMPT_NONE 3090 * because we may get scheduled between @work's completion 3091 * and the other canceling task resuming and clearing 3092 * CANCELING - flush_work() will return false immediately 3093 * as @work is no longer busy, try_to_grab_pending() will 3094 * return -ENOENT as @work is still being canceled and the 3095 * other canceling task won't be able to clear CANCELING as 3096 * we're hogging the CPU. 3097 * 3098 * Let's wait for completion using a waitqueue. As this 3099 * may lead to the thundering herd problem, use a custom 3100 * wake function which matches @work along with exclusive 3101 * wait and wakeup. 3102 */ 3103 if (unlikely(ret == -ENOENT)) { 3104 struct cwt_wait cwait; 3105 3106 init_wait(&cwait.wait); 3107 cwait.wait.func = cwt_wakefn; 3108 cwait.work = work; 3109 3110 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3111 TASK_UNINTERRUPTIBLE); 3112 if (work_is_canceling(work)) 3113 schedule(); 3114 finish_wait(&cancel_waitq, &cwait.wait); 3115 } 3116 } while (unlikely(ret < 0)); 3117 3118 /* tell other tasks trying to grab @work to back off */ 3119 mark_work_canceling(work); 3120 local_irq_restore(flags); 3121 3122 /* 3123 * This allows canceling during early boot. We know that @work 3124 * isn't executing. 3125 */ 3126 if (wq_online) 3127 __flush_work(work, true); 3128 3129 clear_work_data(work); 3130 3131 /* 3132 * Paired with prepare_to_wait() above so that either 3133 * waitqueue_active() is visible here or !work_is_canceling() is 3134 * visible there. 3135 */ 3136 smp_mb(); 3137 if (waitqueue_active(&cancel_waitq)) 3138 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3139 3140 return ret; 3141 } 3142 3143 /** 3144 * cancel_work_sync - cancel a work and wait for it to finish 3145 * @work: the work to cancel 3146 * 3147 * Cancel @work and wait for its execution to finish. This function 3148 * can be used even if the work re-queues itself or migrates to 3149 * another workqueue. On return from this function, @work is 3150 * guaranteed to be not pending or executing on any CPU. 3151 * 3152 * cancel_work_sync(&delayed_work->work) must not be used for 3153 * delayed_work's. Use cancel_delayed_work_sync() instead. 3154 * 3155 * The caller must ensure that the workqueue on which @work was last 3156 * queued can't be destroyed before this function returns. 3157 * 3158 * Return: 3159 * %true if @work was pending, %false otherwise. 3160 */ 3161 bool cancel_work_sync(struct work_struct *work) 3162 { 3163 return __cancel_work_timer(work, false); 3164 } 3165 EXPORT_SYMBOL_GPL(cancel_work_sync); 3166 3167 /** 3168 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3169 * @dwork: the delayed work to flush 3170 * 3171 * Delayed timer is cancelled and the pending work is queued for 3172 * immediate execution. Like flush_work(), this function only 3173 * considers the last queueing instance of @dwork. 3174 * 3175 * Return: 3176 * %true if flush_work() waited for the work to finish execution, 3177 * %false if it was already idle. 3178 */ 3179 bool flush_delayed_work(struct delayed_work *dwork) 3180 { 3181 local_irq_disable(); 3182 if (del_timer_sync(&dwork->timer)) 3183 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3184 local_irq_enable(); 3185 return flush_work(&dwork->work); 3186 } 3187 EXPORT_SYMBOL(flush_delayed_work); 3188 3189 /** 3190 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3191 * @rwork: the rcu work to flush 3192 * 3193 * Return: 3194 * %true if flush_rcu_work() waited for the work to finish execution, 3195 * %false if it was already idle. 3196 */ 3197 bool flush_rcu_work(struct rcu_work *rwork) 3198 { 3199 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3200 rcu_barrier(); 3201 flush_work(&rwork->work); 3202 return true; 3203 } else { 3204 return flush_work(&rwork->work); 3205 } 3206 } 3207 EXPORT_SYMBOL(flush_rcu_work); 3208 3209 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3210 { 3211 unsigned long flags; 3212 int ret; 3213 3214 do { 3215 ret = try_to_grab_pending(work, is_dwork, &flags); 3216 } while (unlikely(ret == -EAGAIN)); 3217 3218 if (unlikely(ret < 0)) 3219 return false; 3220 3221 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3222 local_irq_restore(flags); 3223 return ret; 3224 } 3225 3226 /** 3227 * cancel_delayed_work - cancel a delayed work 3228 * @dwork: delayed_work to cancel 3229 * 3230 * Kill off a pending delayed_work. 3231 * 3232 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3233 * pending. 3234 * 3235 * Note: 3236 * The work callback function may still be running on return, unless 3237 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3238 * use cancel_delayed_work_sync() to wait on it. 3239 * 3240 * This function is safe to call from any context including IRQ handler. 3241 */ 3242 bool cancel_delayed_work(struct delayed_work *dwork) 3243 { 3244 return __cancel_work(&dwork->work, true); 3245 } 3246 EXPORT_SYMBOL(cancel_delayed_work); 3247 3248 /** 3249 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3250 * @dwork: the delayed work cancel 3251 * 3252 * This is cancel_work_sync() for delayed works. 3253 * 3254 * Return: 3255 * %true if @dwork was pending, %false otherwise. 3256 */ 3257 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3258 { 3259 return __cancel_work_timer(&dwork->work, true); 3260 } 3261 EXPORT_SYMBOL(cancel_delayed_work_sync); 3262 3263 /** 3264 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3265 * @func: the function to call 3266 * 3267 * schedule_on_each_cpu() executes @func on each online CPU using the 3268 * system workqueue and blocks until all CPUs have completed. 3269 * schedule_on_each_cpu() is very slow. 3270 * 3271 * Return: 3272 * 0 on success, -errno on failure. 3273 */ 3274 int schedule_on_each_cpu(work_func_t func) 3275 { 3276 int cpu; 3277 struct work_struct __percpu *works; 3278 3279 works = alloc_percpu(struct work_struct); 3280 if (!works) 3281 return -ENOMEM; 3282 3283 get_online_cpus(); 3284 3285 for_each_online_cpu(cpu) { 3286 struct work_struct *work = per_cpu_ptr(works, cpu); 3287 3288 INIT_WORK(work, func); 3289 schedule_work_on(cpu, work); 3290 } 3291 3292 for_each_online_cpu(cpu) 3293 flush_work(per_cpu_ptr(works, cpu)); 3294 3295 put_online_cpus(); 3296 free_percpu(works); 3297 return 0; 3298 } 3299 3300 /** 3301 * execute_in_process_context - reliably execute the routine with user context 3302 * @fn: the function to execute 3303 * @ew: guaranteed storage for the execute work structure (must 3304 * be available when the work executes) 3305 * 3306 * Executes the function immediately if process context is available, 3307 * otherwise schedules the function for delayed execution. 3308 * 3309 * Return: 0 - function was executed 3310 * 1 - function was scheduled for execution 3311 */ 3312 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3313 { 3314 if (!in_interrupt()) { 3315 fn(&ew->work); 3316 return 0; 3317 } 3318 3319 INIT_WORK(&ew->work, fn); 3320 schedule_work(&ew->work); 3321 3322 return 1; 3323 } 3324 EXPORT_SYMBOL_GPL(execute_in_process_context); 3325 3326 /** 3327 * free_workqueue_attrs - free a workqueue_attrs 3328 * @attrs: workqueue_attrs to free 3329 * 3330 * Undo alloc_workqueue_attrs(). 3331 */ 3332 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3333 { 3334 if (attrs) { 3335 free_cpumask_var(attrs->cpumask); 3336 kfree(attrs); 3337 } 3338 } 3339 3340 /** 3341 * alloc_workqueue_attrs - allocate a workqueue_attrs 3342 * @gfp_mask: allocation mask to use 3343 * 3344 * Allocate a new workqueue_attrs, initialize with default settings and 3345 * return it. 3346 * 3347 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3348 */ 3349 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3350 { 3351 struct workqueue_attrs *attrs; 3352 3353 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3354 if (!attrs) 3355 goto fail; 3356 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3357 goto fail; 3358 3359 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3360 return attrs; 3361 fail: 3362 free_workqueue_attrs(attrs); 3363 return NULL; 3364 } 3365 3366 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3367 const struct workqueue_attrs *from) 3368 { 3369 to->nice = from->nice; 3370 cpumask_copy(to->cpumask, from->cpumask); 3371 /* 3372 * Unlike hash and equality test, this function doesn't ignore 3373 * ->no_numa as it is used for both pool and wq attrs. Instead, 3374 * get_unbound_pool() explicitly clears ->no_numa after copying. 3375 */ 3376 to->no_numa = from->no_numa; 3377 } 3378 3379 /* hash value of the content of @attr */ 3380 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3381 { 3382 u32 hash = 0; 3383 3384 hash = jhash_1word(attrs->nice, hash); 3385 hash = jhash(cpumask_bits(attrs->cpumask), 3386 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3387 return hash; 3388 } 3389 3390 /* content equality test */ 3391 static bool wqattrs_equal(const struct workqueue_attrs *a, 3392 const struct workqueue_attrs *b) 3393 { 3394 if (a->nice != b->nice) 3395 return false; 3396 if (!cpumask_equal(a->cpumask, b->cpumask)) 3397 return false; 3398 return true; 3399 } 3400 3401 /** 3402 * init_worker_pool - initialize a newly zalloc'd worker_pool 3403 * @pool: worker_pool to initialize 3404 * 3405 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3406 * 3407 * Return: 0 on success, -errno on failure. Even on failure, all fields 3408 * inside @pool proper are initialized and put_unbound_pool() can be called 3409 * on @pool safely to release it. 3410 */ 3411 static int init_worker_pool(struct worker_pool *pool) 3412 { 3413 spin_lock_init(&pool->lock); 3414 pool->id = -1; 3415 pool->cpu = -1; 3416 pool->node = NUMA_NO_NODE; 3417 pool->flags |= POOL_DISASSOCIATED; 3418 pool->watchdog_ts = jiffies; 3419 INIT_LIST_HEAD(&pool->worklist); 3420 INIT_LIST_HEAD(&pool->idle_list); 3421 hash_init(pool->busy_hash); 3422 3423 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3424 3425 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3426 3427 INIT_LIST_HEAD(&pool->workers); 3428 3429 ida_init(&pool->worker_ida); 3430 INIT_HLIST_NODE(&pool->hash_node); 3431 pool->refcnt = 1; 3432 3433 /* shouldn't fail above this point */ 3434 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3435 if (!pool->attrs) 3436 return -ENOMEM; 3437 return 0; 3438 } 3439 3440 #ifdef CONFIG_LOCKDEP 3441 static void wq_init_lockdep(struct workqueue_struct *wq) 3442 { 3443 char *lock_name; 3444 3445 lockdep_register_key(&wq->key); 3446 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3447 if (!lock_name) 3448 lock_name = wq->name; 3449 3450 wq->lock_name = lock_name; 3451 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3452 } 3453 3454 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3455 { 3456 lockdep_unregister_key(&wq->key); 3457 } 3458 3459 static void wq_free_lockdep(struct workqueue_struct *wq) 3460 { 3461 if (wq->lock_name != wq->name) 3462 kfree(wq->lock_name); 3463 } 3464 #else 3465 static void wq_init_lockdep(struct workqueue_struct *wq) 3466 { 3467 } 3468 3469 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3470 { 3471 } 3472 3473 static void wq_free_lockdep(struct workqueue_struct *wq) 3474 { 3475 } 3476 #endif 3477 3478 static void rcu_free_wq(struct rcu_head *rcu) 3479 { 3480 struct workqueue_struct *wq = 3481 container_of(rcu, struct workqueue_struct, rcu); 3482 3483 wq_free_lockdep(wq); 3484 3485 if (!(wq->flags & WQ_UNBOUND)) 3486 free_percpu(wq->cpu_pwqs); 3487 else 3488 free_workqueue_attrs(wq->unbound_attrs); 3489 3490 kfree(wq->rescuer); 3491 kfree(wq); 3492 } 3493 3494 static void rcu_free_pool(struct rcu_head *rcu) 3495 { 3496 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3497 3498 ida_destroy(&pool->worker_ida); 3499 free_workqueue_attrs(pool->attrs); 3500 kfree(pool); 3501 } 3502 3503 /** 3504 * put_unbound_pool - put a worker_pool 3505 * @pool: worker_pool to put 3506 * 3507 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3508 * safe manner. get_unbound_pool() calls this function on its failure path 3509 * and this function should be able to release pools which went through, 3510 * successfully or not, init_worker_pool(). 3511 * 3512 * Should be called with wq_pool_mutex held. 3513 */ 3514 static void put_unbound_pool(struct worker_pool *pool) 3515 { 3516 DECLARE_COMPLETION_ONSTACK(detach_completion); 3517 struct worker *worker; 3518 3519 lockdep_assert_held(&wq_pool_mutex); 3520 3521 if (--pool->refcnt) 3522 return; 3523 3524 /* sanity checks */ 3525 if (WARN_ON(!(pool->cpu < 0)) || 3526 WARN_ON(!list_empty(&pool->worklist))) 3527 return; 3528 3529 /* release id and unhash */ 3530 if (pool->id >= 0) 3531 idr_remove(&worker_pool_idr, pool->id); 3532 hash_del(&pool->hash_node); 3533 3534 /* 3535 * Become the manager and destroy all workers. This prevents 3536 * @pool's workers from blocking on attach_mutex. We're the last 3537 * manager and @pool gets freed with the flag set. 3538 */ 3539 spin_lock_irq(&pool->lock); 3540 wait_event_lock_irq(wq_manager_wait, 3541 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3542 pool->flags |= POOL_MANAGER_ACTIVE; 3543 3544 while ((worker = first_idle_worker(pool))) 3545 destroy_worker(worker); 3546 WARN_ON(pool->nr_workers || pool->nr_idle); 3547 spin_unlock_irq(&pool->lock); 3548 3549 mutex_lock(&wq_pool_attach_mutex); 3550 if (!list_empty(&pool->workers)) 3551 pool->detach_completion = &detach_completion; 3552 mutex_unlock(&wq_pool_attach_mutex); 3553 3554 if (pool->detach_completion) 3555 wait_for_completion(pool->detach_completion); 3556 3557 /* shut down the timers */ 3558 del_timer_sync(&pool->idle_timer); 3559 del_timer_sync(&pool->mayday_timer); 3560 3561 /* RCU protected to allow dereferences from get_work_pool() */ 3562 call_rcu(&pool->rcu, rcu_free_pool); 3563 } 3564 3565 /** 3566 * get_unbound_pool - get a worker_pool with the specified attributes 3567 * @attrs: the attributes of the worker_pool to get 3568 * 3569 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3570 * reference count and return it. If there already is a matching 3571 * worker_pool, it will be used; otherwise, this function attempts to 3572 * create a new one. 3573 * 3574 * Should be called with wq_pool_mutex held. 3575 * 3576 * Return: On success, a worker_pool with the same attributes as @attrs. 3577 * On failure, %NULL. 3578 */ 3579 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3580 { 3581 u32 hash = wqattrs_hash(attrs); 3582 struct worker_pool *pool; 3583 int node; 3584 int target_node = NUMA_NO_NODE; 3585 3586 lockdep_assert_held(&wq_pool_mutex); 3587 3588 /* do we already have a matching pool? */ 3589 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3590 if (wqattrs_equal(pool->attrs, attrs)) { 3591 pool->refcnt++; 3592 return pool; 3593 } 3594 } 3595 3596 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3597 if (wq_numa_enabled) { 3598 for_each_node(node) { 3599 if (cpumask_subset(attrs->cpumask, 3600 wq_numa_possible_cpumask[node])) { 3601 target_node = node; 3602 break; 3603 } 3604 } 3605 } 3606 3607 /* nope, create a new one */ 3608 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3609 if (!pool || init_worker_pool(pool) < 0) 3610 goto fail; 3611 3612 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3613 copy_workqueue_attrs(pool->attrs, attrs); 3614 pool->node = target_node; 3615 3616 /* 3617 * no_numa isn't a worker_pool attribute, always clear it. See 3618 * 'struct workqueue_attrs' comments for detail. 3619 */ 3620 pool->attrs->no_numa = false; 3621 3622 if (worker_pool_assign_id(pool) < 0) 3623 goto fail; 3624 3625 /* create and start the initial worker */ 3626 if (wq_online && !create_worker(pool)) 3627 goto fail; 3628 3629 /* install */ 3630 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3631 3632 return pool; 3633 fail: 3634 if (pool) 3635 put_unbound_pool(pool); 3636 return NULL; 3637 } 3638 3639 static void rcu_free_pwq(struct rcu_head *rcu) 3640 { 3641 kmem_cache_free(pwq_cache, 3642 container_of(rcu, struct pool_workqueue, rcu)); 3643 } 3644 3645 /* 3646 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3647 * and needs to be destroyed. 3648 */ 3649 static void pwq_unbound_release_workfn(struct work_struct *work) 3650 { 3651 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3652 unbound_release_work); 3653 struct workqueue_struct *wq = pwq->wq; 3654 struct worker_pool *pool = pwq->pool; 3655 bool is_last; 3656 3657 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3658 return; 3659 3660 mutex_lock(&wq->mutex); 3661 list_del_rcu(&pwq->pwqs_node); 3662 is_last = list_empty(&wq->pwqs); 3663 mutex_unlock(&wq->mutex); 3664 3665 mutex_lock(&wq_pool_mutex); 3666 put_unbound_pool(pool); 3667 mutex_unlock(&wq_pool_mutex); 3668 3669 call_rcu(&pwq->rcu, rcu_free_pwq); 3670 3671 /* 3672 * If we're the last pwq going away, @wq is already dead and no one 3673 * is gonna access it anymore. Schedule RCU free. 3674 */ 3675 if (is_last) { 3676 wq_unregister_lockdep(wq); 3677 call_rcu(&wq->rcu, rcu_free_wq); 3678 } 3679 } 3680 3681 /** 3682 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3683 * @pwq: target pool_workqueue 3684 * 3685 * If @pwq isn't freezing, set @pwq->max_active to the associated 3686 * workqueue's saved_max_active and activate delayed work items 3687 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3688 */ 3689 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3690 { 3691 struct workqueue_struct *wq = pwq->wq; 3692 bool freezable = wq->flags & WQ_FREEZABLE; 3693 unsigned long flags; 3694 3695 /* for @wq->saved_max_active */ 3696 lockdep_assert_held(&wq->mutex); 3697 3698 /* fast exit for non-freezable wqs */ 3699 if (!freezable && pwq->max_active == wq->saved_max_active) 3700 return; 3701 3702 /* this function can be called during early boot w/ irq disabled */ 3703 spin_lock_irqsave(&pwq->pool->lock, flags); 3704 3705 /* 3706 * During [un]freezing, the caller is responsible for ensuring that 3707 * this function is called at least once after @workqueue_freezing 3708 * is updated and visible. 3709 */ 3710 if (!freezable || !workqueue_freezing) { 3711 pwq->max_active = wq->saved_max_active; 3712 3713 while (!list_empty(&pwq->delayed_works) && 3714 pwq->nr_active < pwq->max_active) 3715 pwq_activate_first_delayed(pwq); 3716 3717 /* 3718 * Need to kick a worker after thawed or an unbound wq's 3719 * max_active is bumped. It's a slow path. Do it always. 3720 */ 3721 wake_up_worker(pwq->pool); 3722 } else { 3723 pwq->max_active = 0; 3724 } 3725 3726 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3727 } 3728 3729 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3730 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3731 struct worker_pool *pool) 3732 { 3733 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3734 3735 memset(pwq, 0, sizeof(*pwq)); 3736 3737 pwq->pool = pool; 3738 pwq->wq = wq; 3739 pwq->flush_color = -1; 3740 pwq->refcnt = 1; 3741 INIT_LIST_HEAD(&pwq->delayed_works); 3742 INIT_LIST_HEAD(&pwq->pwqs_node); 3743 INIT_LIST_HEAD(&pwq->mayday_node); 3744 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3745 } 3746 3747 /* sync @pwq with the current state of its associated wq and link it */ 3748 static void link_pwq(struct pool_workqueue *pwq) 3749 { 3750 struct workqueue_struct *wq = pwq->wq; 3751 3752 lockdep_assert_held(&wq->mutex); 3753 3754 /* may be called multiple times, ignore if already linked */ 3755 if (!list_empty(&pwq->pwqs_node)) 3756 return; 3757 3758 /* set the matching work_color */ 3759 pwq->work_color = wq->work_color; 3760 3761 /* sync max_active to the current setting */ 3762 pwq_adjust_max_active(pwq); 3763 3764 /* link in @pwq */ 3765 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3766 } 3767 3768 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3769 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3770 const struct workqueue_attrs *attrs) 3771 { 3772 struct worker_pool *pool; 3773 struct pool_workqueue *pwq; 3774 3775 lockdep_assert_held(&wq_pool_mutex); 3776 3777 pool = get_unbound_pool(attrs); 3778 if (!pool) 3779 return NULL; 3780 3781 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3782 if (!pwq) { 3783 put_unbound_pool(pool); 3784 return NULL; 3785 } 3786 3787 init_pwq(pwq, wq, pool); 3788 return pwq; 3789 } 3790 3791 /** 3792 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3793 * @attrs: the wq_attrs of the default pwq of the target workqueue 3794 * @node: the target NUMA node 3795 * @cpu_going_down: if >= 0, the CPU to consider as offline 3796 * @cpumask: outarg, the resulting cpumask 3797 * 3798 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3799 * @cpu_going_down is >= 0, that cpu is considered offline during 3800 * calculation. The result is stored in @cpumask. 3801 * 3802 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3803 * enabled and @node has online CPUs requested by @attrs, the returned 3804 * cpumask is the intersection of the possible CPUs of @node and 3805 * @attrs->cpumask. 3806 * 3807 * The caller is responsible for ensuring that the cpumask of @node stays 3808 * stable. 3809 * 3810 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3811 * %false if equal. 3812 */ 3813 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3814 int cpu_going_down, cpumask_t *cpumask) 3815 { 3816 if (!wq_numa_enabled || attrs->no_numa) 3817 goto use_dfl; 3818 3819 /* does @node have any online CPUs @attrs wants? */ 3820 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3821 if (cpu_going_down >= 0) 3822 cpumask_clear_cpu(cpu_going_down, cpumask); 3823 3824 if (cpumask_empty(cpumask)) 3825 goto use_dfl; 3826 3827 /* yeap, return possible CPUs in @node that @attrs wants */ 3828 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3829 3830 if (cpumask_empty(cpumask)) { 3831 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3832 "possible intersect\n"); 3833 return false; 3834 } 3835 3836 return !cpumask_equal(cpumask, attrs->cpumask); 3837 3838 use_dfl: 3839 cpumask_copy(cpumask, attrs->cpumask); 3840 return false; 3841 } 3842 3843 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3844 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3845 int node, 3846 struct pool_workqueue *pwq) 3847 { 3848 struct pool_workqueue *old_pwq; 3849 3850 lockdep_assert_held(&wq_pool_mutex); 3851 lockdep_assert_held(&wq->mutex); 3852 3853 /* link_pwq() can handle duplicate calls */ 3854 link_pwq(pwq); 3855 3856 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3857 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3858 return old_pwq; 3859 } 3860 3861 /* context to store the prepared attrs & pwqs before applying */ 3862 struct apply_wqattrs_ctx { 3863 struct workqueue_struct *wq; /* target workqueue */ 3864 struct workqueue_attrs *attrs; /* attrs to apply */ 3865 struct list_head list; /* queued for batching commit */ 3866 struct pool_workqueue *dfl_pwq; 3867 struct pool_workqueue *pwq_tbl[]; 3868 }; 3869 3870 /* free the resources after success or abort */ 3871 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3872 { 3873 if (ctx) { 3874 int node; 3875 3876 for_each_node(node) 3877 put_pwq_unlocked(ctx->pwq_tbl[node]); 3878 put_pwq_unlocked(ctx->dfl_pwq); 3879 3880 free_workqueue_attrs(ctx->attrs); 3881 3882 kfree(ctx); 3883 } 3884 } 3885 3886 /* allocate the attrs and pwqs for later installation */ 3887 static struct apply_wqattrs_ctx * 3888 apply_wqattrs_prepare(struct workqueue_struct *wq, 3889 const struct workqueue_attrs *attrs) 3890 { 3891 struct apply_wqattrs_ctx *ctx; 3892 struct workqueue_attrs *new_attrs, *tmp_attrs; 3893 int node; 3894 3895 lockdep_assert_held(&wq_pool_mutex); 3896 3897 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3898 3899 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3900 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3901 if (!ctx || !new_attrs || !tmp_attrs) 3902 goto out_free; 3903 3904 /* 3905 * Calculate the attrs of the default pwq. 3906 * If the user configured cpumask doesn't overlap with the 3907 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3908 */ 3909 copy_workqueue_attrs(new_attrs, attrs); 3910 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3911 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3912 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3913 3914 /* 3915 * We may create multiple pwqs with differing cpumasks. Make a 3916 * copy of @new_attrs which will be modified and used to obtain 3917 * pools. 3918 */ 3919 copy_workqueue_attrs(tmp_attrs, new_attrs); 3920 3921 /* 3922 * If something goes wrong during CPU up/down, we'll fall back to 3923 * the default pwq covering whole @attrs->cpumask. Always create 3924 * it even if we don't use it immediately. 3925 */ 3926 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3927 if (!ctx->dfl_pwq) 3928 goto out_free; 3929 3930 for_each_node(node) { 3931 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3932 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3933 if (!ctx->pwq_tbl[node]) 3934 goto out_free; 3935 } else { 3936 ctx->dfl_pwq->refcnt++; 3937 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3938 } 3939 } 3940 3941 /* save the user configured attrs and sanitize it. */ 3942 copy_workqueue_attrs(new_attrs, attrs); 3943 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3944 ctx->attrs = new_attrs; 3945 3946 ctx->wq = wq; 3947 free_workqueue_attrs(tmp_attrs); 3948 return ctx; 3949 3950 out_free: 3951 free_workqueue_attrs(tmp_attrs); 3952 free_workqueue_attrs(new_attrs); 3953 apply_wqattrs_cleanup(ctx); 3954 return NULL; 3955 } 3956 3957 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3958 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3959 { 3960 int node; 3961 3962 /* all pwqs have been created successfully, let's install'em */ 3963 mutex_lock(&ctx->wq->mutex); 3964 3965 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3966 3967 /* save the previous pwq and install the new one */ 3968 for_each_node(node) 3969 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3970 ctx->pwq_tbl[node]); 3971 3972 /* @dfl_pwq might not have been used, ensure it's linked */ 3973 link_pwq(ctx->dfl_pwq); 3974 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3975 3976 mutex_unlock(&ctx->wq->mutex); 3977 } 3978 3979 static void apply_wqattrs_lock(void) 3980 { 3981 /* CPUs should stay stable across pwq creations and installations */ 3982 get_online_cpus(); 3983 mutex_lock(&wq_pool_mutex); 3984 } 3985 3986 static void apply_wqattrs_unlock(void) 3987 { 3988 mutex_unlock(&wq_pool_mutex); 3989 put_online_cpus(); 3990 } 3991 3992 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3993 const struct workqueue_attrs *attrs) 3994 { 3995 struct apply_wqattrs_ctx *ctx; 3996 3997 /* only unbound workqueues can change attributes */ 3998 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3999 return -EINVAL; 4000 4001 /* creating multiple pwqs breaks ordering guarantee */ 4002 if (!list_empty(&wq->pwqs)) { 4003 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4004 return -EINVAL; 4005 4006 wq->flags &= ~__WQ_ORDERED; 4007 } 4008 4009 ctx = apply_wqattrs_prepare(wq, attrs); 4010 if (!ctx) 4011 return -ENOMEM; 4012 4013 /* the ctx has been prepared successfully, let's commit it */ 4014 apply_wqattrs_commit(ctx); 4015 apply_wqattrs_cleanup(ctx); 4016 4017 return 0; 4018 } 4019 4020 /** 4021 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4022 * @wq: the target workqueue 4023 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4024 * 4025 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4026 * machines, this function maps a separate pwq to each NUMA node with 4027 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4028 * NUMA node it was issued on. Older pwqs are released as in-flight work 4029 * items finish. Note that a work item which repeatedly requeues itself 4030 * back-to-back will stay on its current pwq. 4031 * 4032 * Performs GFP_KERNEL allocations. 4033 * 4034 * Return: 0 on success and -errno on failure. 4035 */ 4036 int apply_workqueue_attrs(struct workqueue_struct *wq, 4037 const struct workqueue_attrs *attrs) 4038 { 4039 int ret; 4040 4041 apply_wqattrs_lock(); 4042 ret = apply_workqueue_attrs_locked(wq, attrs); 4043 apply_wqattrs_unlock(); 4044 4045 return ret; 4046 } 4047 EXPORT_SYMBOL_GPL(apply_workqueue_attrs); 4048 4049 /** 4050 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4051 * @wq: the target workqueue 4052 * @cpu: the CPU coming up or going down 4053 * @online: whether @cpu is coming up or going down 4054 * 4055 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4056 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4057 * @wq accordingly. 4058 * 4059 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4060 * falls back to @wq->dfl_pwq which may not be optimal but is always 4061 * correct. 4062 * 4063 * Note that when the last allowed CPU of a NUMA node goes offline for a 4064 * workqueue with a cpumask spanning multiple nodes, the workers which were 4065 * already executing the work items for the workqueue will lose their CPU 4066 * affinity and may execute on any CPU. This is similar to how per-cpu 4067 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4068 * affinity, it's the user's responsibility to flush the work item from 4069 * CPU_DOWN_PREPARE. 4070 */ 4071 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4072 bool online) 4073 { 4074 int node = cpu_to_node(cpu); 4075 int cpu_off = online ? -1 : cpu; 4076 struct pool_workqueue *old_pwq = NULL, *pwq; 4077 struct workqueue_attrs *target_attrs; 4078 cpumask_t *cpumask; 4079 4080 lockdep_assert_held(&wq_pool_mutex); 4081 4082 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4083 wq->unbound_attrs->no_numa) 4084 return; 4085 4086 /* 4087 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4088 * Let's use a preallocated one. The following buf is protected by 4089 * CPU hotplug exclusion. 4090 */ 4091 target_attrs = wq_update_unbound_numa_attrs_buf; 4092 cpumask = target_attrs->cpumask; 4093 4094 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4095 pwq = unbound_pwq_by_node(wq, node); 4096 4097 /* 4098 * Let's determine what needs to be done. If the target cpumask is 4099 * different from the default pwq's, we need to compare it to @pwq's 4100 * and create a new one if they don't match. If the target cpumask 4101 * equals the default pwq's, the default pwq should be used. 4102 */ 4103 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4104 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4105 return; 4106 } else { 4107 goto use_dfl_pwq; 4108 } 4109 4110 /* create a new pwq */ 4111 pwq = alloc_unbound_pwq(wq, target_attrs); 4112 if (!pwq) { 4113 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4114 wq->name); 4115 goto use_dfl_pwq; 4116 } 4117 4118 /* Install the new pwq. */ 4119 mutex_lock(&wq->mutex); 4120 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4121 goto out_unlock; 4122 4123 use_dfl_pwq: 4124 mutex_lock(&wq->mutex); 4125 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4126 get_pwq(wq->dfl_pwq); 4127 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4128 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4129 out_unlock: 4130 mutex_unlock(&wq->mutex); 4131 put_pwq_unlocked(old_pwq); 4132 } 4133 4134 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4135 { 4136 bool highpri = wq->flags & WQ_HIGHPRI; 4137 int cpu, ret; 4138 4139 if (!(wq->flags & WQ_UNBOUND)) { 4140 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4141 if (!wq->cpu_pwqs) 4142 return -ENOMEM; 4143 4144 for_each_possible_cpu(cpu) { 4145 struct pool_workqueue *pwq = 4146 per_cpu_ptr(wq->cpu_pwqs, cpu); 4147 struct worker_pool *cpu_pools = 4148 per_cpu(cpu_worker_pools, cpu); 4149 4150 init_pwq(pwq, wq, &cpu_pools[highpri]); 4151 4152 mutex_lock(&wq->mutex); 4153 link_pwq(pwq); 4154 mutex_unlock(&wq->mutex); 4155 } 4156 return 0; 4157 } else if (wq->flags & __WQ_ORDERED) { 4158 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4159 /* there should only be single pwq for ordering guarantee */ 4160 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4161 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4162 "ordering guarantee broken for workqueue %s\n", wq->name); 4163 return ret; 4164 } else { 4165 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4166 } 4167 } 4168 4169 static int wq_clamp_max_active(int max_active, unsigned int flags, 4170 const char *name) 4171 { 4172 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4173 4174 if (max_active < 1 || max_active > lim) 4175 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4176 max_active, name, 1, lim); 4177 4178 return clamp_val(max_active, 1, lim); 4179 } 4180 4181 /* 4182 * Workqueues which may be used during memory reclaim should have a rescuer 4183 * to guarantee forward progress. 4184 */ 4185 static int init_rescuer(struct workqueue_struct *wq) 4186 { 4187 struct worker *rescuer; 4188 int ret; 4189 4190 if (!(wq->flags & WQ_MEM_RECLAIM)) 4191 return 0; 4192 4193 rescuer = alloc_worker(NUMA_NO_NODE); 4194 if (!rescuer) 4195 return -ENOMEM; 4196 4197 rescuer->rescue_wq = wq; 4198 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4199 ret = PTR_ERR_OR_ZERO(rescuer->task); 4200 if (ret) { 4201 kfree(rescuer); 4202 return ret; 4203 } 4204 4205 wq->rescuer = rescuer; 4206 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4207 wake_up_process(rescuer->task); 4208 4209 return 0; 4210 } 4211 4212 __printf(1, 4) 4213 struct workqueue_struct *alloc_workqueue(const char *fmt, 4214 unsigned int flags, 4215 int max_active, ...) 4216 { 4217 size_t tbl_size = 0; 4218 va_list args; 4219 struct workqueue_struct *wq; 4220 struct pool_workqueue *pwq; 4221 4222 /* 4223 * Unbound && max_active == 1 used to imply ordered, which is no 4224 * longer the case on NUMA machines due to per-node pools. While 4225 * alloc_ordered_workqueue() is the right way to create an ordered 4226 * workqueue, keep the previous behavior to avoid subtle breakages 4227 * on NUMA. 4228 */ 4229 if ((flags & WQ_UNBOUND) && max_active == 1) 4230 flags |= __WQ_ORDERED; 4231 4232 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4233 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4234 flags |= WQ_UNBOUND; 4235 4236 /* allocate wq and format name */ 4237 if (flags & WQ_UNBOUND) 4238 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4239 4240 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4241 if (!wq) 4242 return NULL; 4243 4244 if (flags & WQ_UNBOUND) { 4245 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4246 if (!wq->unbound_attrs) 4247 goto err_free_wq; 4248 } 4249 4250 va_start(args, max_active); 4251 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4252 va_end(args); 4253 4254 max_active = max_active ?: WQ_DFL_ACTIVE; 4255 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4256 4257 /* init wq */ 4258 wq->flags = flags; 4259 wq->saved_max_active = max_active; 4260 mutex_init(&wq->mutex); 4261 atomic_set(&wq->nr_pwqs_to_flush, 0); 4262 INIT_LIST_HEAD(&wq->pwqs); 4263 INIT_LIST_HEAD(&wq->flusher_queue); 4264 INIT_LIST_HEAD(&wq->flusher_overflow); 4265 INIT_LIST_HEAD(&wq->maydays); 4266 4267 wq_init_lockdep(wq); 4268 INIT_LIST_HEAD(&wq->list); 4269 4270 if (alloc_and_link_pwqs(wq) < 0) 4271 goto err_unreg_lockdep; 4272 4273 if (wq_online && init_rescuer(wq) < 0) 4274 goto err_destroy; 4275 4276 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4277 goto err_destroy; 4278 4279 /* 4280 * wq_pool_mutex protects global freeze state and workqueues list. 4281 * Grab it, adjust max_active and add the new @wq to workqueues 4282 * list. 4283 */ 4284 mutex_lock(&wq_pool_mutex); 4285 4286 mutex_lock(&wq->mutex); 4287 for_each_pwq(pwq, wq) 4288 pwq_adjust_max_active(pwq); 4289 mutex_unlock(&wq->mutex); 4290 4291 list_add_tail_rcu(&wq->list, &workqueues); 4292 4293 mutex_unlock(&wq_pool_mutex); 4294 4295 return wq; 4296 4297 err_unreg_lockdep: 4298 wq_unregister_lockdep(wq); 4299 wq_free_lockdep(wq); 4300 err_free_wq: 4301 free_workqueue_attrs(wq->unbound_attrs); 4302 kfree(wq); 4303 return NULL; 4304 err_destroy: 4305 destroy_workqueue(wq); 4306 return NULL; 4307 } 4308 EXPORT_SYMBOL_GPL(alloc_workqueue); 4309 4310 /** 4311 * destroy_workqueue - safely terminate a workqueue 4312 * @wq: target workqueue 4313 * 4314 * Safely destroy a workqueue. All work currently pending will be done first. 4315 */ 4316 void destroy_workqueue(struct workqueue_struct *wq) 4317 { 4318 struct pool_workqueue *pwq; 4319 int node; 4320 4321 /* drain it before proceeding with destruction */ 4322 drain_workqueue(wq); 4323 4324 /* sanity checks */ 4325 mutex_lock(&wq->mutex); 4326 for_each_pwq(pwq, wq) { 4327 int i; 4328 4329 for (i = 0; i < WORK_NR_COLORS; i++) { 4330 if (WARN_ON(pwq->nr_in_flight[i])) { 4331 mutex_unlock(&wq->mutex); 4332 show_workqueue_state(); 4333 return; 4334 } 4335 } 4336 4337 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4338 WARN_ON(pwq->nr_active) || 4339 WARN_ON(!list_empty(&pwq->delayed_works))) { 4340 mutex_unlock(&wq->mutex); 4341 show_workqueue_state(); 4342 return; 4343 } 4344 } 4345 mutex_unlock(&wq->mutex); 4346 4347 /* 4348 * wq list is used to freeze wq, remove from list after 4349 * flushing is complete in case freeze races us. 4350 */ 4351 mutex_lock(&wq_pool_mutex); 4352 list_del_rcu(&wq->list); 4353 mutex_unlock(&wq_pool_mutex); 4354 4355 workqueue_sysfs_unregister(wq); 4356 4357 if (wq->rescuer) 4358 kthread_stop(wq->rescuer->task); 4359 4360 if (!(wq->flags & WQ_UNBOUND)) { 4361 wq_unregister_lockdep(wq); 4362 /* 4363 * The base ref is never dropped on per-cpu pwqs. Directly 4364 * schedule RCU free. 4365 */ 4366 call_rcu(&wq->rcu, rcu_free_wq); 4367 } else { 4368 /* 4369 * We're the sole accessor of @wq at this point. Directly 4370 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4371 * @wq will be freed when the last pwq is released. 4372 */ 4373 for_each_node(node) { 4374 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4375 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4376 put_pwq_unlocked(pwq); 4377 } 4378 4379 /* 4380 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4381 * put. Don't access it afterwards. 4382 */ 4383 pwq = wq->dfl_pwq; 4384 wq->dfl_pwq = NULL; 4385 put_pwq_unlocked(pwq); 4386 } 4387 } 4388 EXPORT_SYMBOL_GPL(destroy_workqueue); 4389 4390 /** 4391 * workqueue_set_max_active - adjust max_active of a workqueue 4392 * @wq: target workqueue 4393 * @max_active: new max_active value. 4394 * 4395 * Set max_active of @wq to @max_active. 4396 * 4397 * CONTEXT: 4398 * Don't call from IRQ context. 4399 */ 4400 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4401 { 4402 struct pool_workqueue *pwq; 4403 4404 /* disallow meddling with max_active for ordered workqueues */ 4405 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4406 return; 4407 4408 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4409 4410 mutex_lock(&wq->mutex); 4411 4412 wq->flags &= ~__WQ_ORDERED; 4413 wq->saved_max_active = max_active; 4414 4415 for_each_pwq(pwq, wq) 4416 pwq_adjust_max_active(pwq); 4417 4418 mutex_unlock(&wq->mutex); 4419 } 4420 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4421 4422 /** 4423 * current_work - retrieve %current task's work struct 4424 * 4425 * Determine if %current task is a workqueue worker and what it's working on. 4426 * Useful to find out the context that the %current task is running in. 4427 * 4428 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4429 */ 4430 struct work_struct *current_work(void) 4431 { 4432 struct worker *worker = current_wq_worker(); 4433 4434 return worker ? worker->current_work : NULL; 4435 } 4436 EXPORT_SYMBOL(current_work); 4437 4438 /** 4439 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4440 * 4441 * Determine whether %current is a workqueue rescuer. Can be used from 4442 * work functions to determine whether it's being run off the rescuer task. 4443 * 4444 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4445 */ 4446 bool current_is_workqueue_rescuer(void) 4447 { 4448 struct worker *worker = current_wq_worker(); 4449 4450 return worker && worker->rescue_wq; 4451 } 4452 4453 /** 4454 * workqueue_congested - test whether a workqueue is congested 4455 * @cpu: CPU in question 4456 * @wq: target workqueue 4457 * 4458 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4459 * no synchronization around this function and the test result is 4460 * unreliable and only useful as advisory hints or for debugging. 4461 * 4462 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4463 * Note that both per-cpu and unbound workqueues may be associated with 4464 * multiple pool_workqueues which have separate congested states. A 4465 * workqueue being congested on one CPU doesn't mean the workqueue is also 4466 * contested on other CPUs / NUMA nodes. 4467 * 4468 * Return: 4469 * %true if congested, %false otherwise. 4470 */ 4471 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4472 { 4473 struct pool_workqueue *pwq; 4474 bool ret; 4475 4476 rcu_read_lock(); 4477 preempt_disable(); 4478 4479 if (cpu == WORK_CPU_UNBOUND) 4480 cpu = smp_processor_id(); 4481 4482 if (!(wq->flags & WQ_UNBOUND)) 4483 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4484 else 4485 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4486 4487 ret = !list_empty(&pwq->delayed_works); 4488 preempt_enable(); 4489 rcu_read_unlock(); 4490 4491 return ret; 4492 } 4493 EXPORT_SYMBOL_GPL(workqueue_congested); 4494 4495 /** 4496 * work_busy - test whether a work is currently pending or running 4497 * @work: the work to be tested 4498 * 4499 * Test whether @work is currently pending or running. There is no 4500 * synchronization around this function and the test result is 4501 * unreliable and only useful as advisory hints or for debugging. 4502 * 4503 * Return: 4504 * OR'd bitmask of WORK_BUSY_* bits. 4505 */ 4506 unsigned int work_busy(struct work_struct *work) 4507 { 4508 struct worker_pool *pool; 4509 unsigned long flags; 4510 unsigned int ret = 0; 4511 4512 if (work_pending(work)) 4513 ret |= WORK_BUSY_PENDING; 4514 4515 rcu_read_lock(); 4516 pool = get_work_pool(work); 4517 if (pool) { 4518 spin_lock_irqsave(&pool->lock, flags); 4519 if (find_worker_executing_work(pool, work)) 4520 ret |= WORK_BUSY_RUNNING; 4521 spin_unlock_irqrestore(&pool->lock, flags); 4522 } 4523 rcu_read_unlock(); 4524 4525 return ret; 4526 } 4527 EXPORT_SYMBOL_GPL(work_busy); 4528 4529 /** 4530 * set_worker_desc - set description for the current work item 4531 * @fmt: printf-style format string 4532 * @...: arguments for the format string 4533 * 4534 * This function can be called by a running work function to describe what 4535 * the work item is about. If the worker task gets dumped, this 4536 * information will be printed out together to help debugging. The 4537 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4538 */ 4539 void set_worker_desc(const char *fmt, ...) 4540 { 4541 struct worker *worker = current_wq_worker(); 4542 va_list args; 4543 4544 if (worker) { 4545 va_start(args, fmt); 4546 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4547 va_end(args); 4548 } 4549 } 4550 EXPORT_SYMBOL_GPL(set_worker_desc); 4551 4552 /** 4553 * print_worker_info - print out worker information and description 4554 * @log_lvl: the log level to use when printing 4555 * @task: target task 4556 * 4557 * If @task is a worker and currently executing a work item, print out the 4558 * name of the workqueue being serviced and worker description set with 4559 * set_worker_desc() by the currently executing work item. 4560 * 4561 * This function can be safely called on any task as long as the 4562 * task_struct itself is accessible. While safe, this function isn't 4563 * synchronized and may print out mixups or garbages of limited length. 4564 */ 4565 void print_worker_info(const char *log_lvl, struct task_struct *task) 4566 { 4567 work_func_t *fn = NULL; 4568 char name[WQ_NAME_LEN] = { }; 4569 char desc[WORKER_DESC_LEN] = { }; 4570 struct pool_workqueue *pwq = NULL; 4571 struct workqueue_struct *wq = NULL; 4572 struct worker *worker; 4573 4574 if (!(task->flags & PF_WQ_WORKER)) 4575 return; 4576 4577 /* 4578 * This function is called without any synchronization and @task 4579 * could be in any state. Be careful with dereferences. 4580 */ 4581 worker = kthread_probe_data(task); 4582 4583 /* 4584 * Carefully copy the associated workqueue's workfn, name and desc. 4585 * Keep the original last '\0' in case the original is garbage. 4586 */ 4587 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4588 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4589 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4590 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4591 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4592 4593 if (fn || name[0] || desc[0]) { 4594 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4595 if (strcmp(name, desc)) 4596 pr_cont(" (%s)", desc); 4597 pr_cont("\n"); 4598 } 4599 } 4600 4601 static void pr_cont_pool_info(struct worker_pool *pool) 4602 { 4603 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4604 if (pool->node != NUMA_NO_NODE) 4605 pr_cont(" node=%d", pool->node); 4606 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4607 } 4608 4609 static void pr_cont_work(bool comma, struct work_struct *work) 4610 { 4611 if (work->func == wq_barrier_func) { 4612 struct wq_barrier *barr; 4613 4614 barr = container_of(work, struct wq_barrier, work); 4615 4616 pr_cont("%s BAR(%d)", comma ? "," : "", 4617 task_pid_nr(barr->task)); 4618 } else { 4619 pr_cont("%s %ps", comma ? "," : "", work->func); 4620 } 4621 } 4622 4623 static void show_pwq(struct pool_workqueue *pwq) 4624 { 4625 struct worker_pool *pool = pwq->pool; 4626 struct work_struct *work; 4627 struct worker *worker; 4628 bool has_in_flight = false, has_pending = false; 4629 int bkt; 4630 4631 pr_info(" pwq %d:", pool->id); 4632 pr_cont_pool_info(pool); 4633 4634 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4635 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4636 4637 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4638 if (worker->current_pwq == pwq) { 4639 has_in_flight = true; 4640 break; 4641 } 4642 } 4643 if (has_in_flight) { 4644 bool comma = false; 4645 4646 pr_info(" in-flight:"); 4647 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4648 if (worker->current_pwq != pwq) 4649 continue; 4650 4651 pr_cont("%s %d%s:%ps", comma ? "," : "", 4652 task_pid_nr(worker->task), 4653 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4654 worker->current_func); 4655 list_for_each_entry(work, &worker->scheduled, entry) 4656 pr_cont_work(false, work); 4657 comma = true; 4658 } 4659 pr_cont("\n"); 4660 } 4661 4662 list_for_each_entry(work, &pool->worklist, entry) { 4663 if (get_work_pwq(work) == pwq) { 4664 has_pending = true; 4665 break; 4666 } 4667 } 4668 if (has_pending) { 4669 bool comma = false; 4670 4671 pr_info(" pending:"); 4672 list_for_each_entry(work, &pool->worklist, entry) { 4673 if (get_work_pwq(work) != pwq) 4674 continue; 4675 4676 pr_cont_work(comma, work); 4677 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4678 } 4679 pr_cont("\n"); 4680 } 4681 4682 if (!list_empty(&pwq->delayed_works)) { 4683 bool comma = false; 4684 4685 pr_info(" delayed:"); 4686 list_for_each_entry(work, &pwq->delayed_works, entry) { 4687 pr_cont_work(comma, work); 4688 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4689 } 4690 pr_cont("\n"); 4691 } 4692 } 4693 4694 /** 4695 * show_workqueue_state - dump workqueue state 4696 * 4697 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4698 * all busy workqueues and pools. 4699 */ 4700 void show_workqueue_state(void) 4701 { 4702 struct workqueue_struct *wq; 4703 struct worker_pool *pool; 4704 unsigned long flags; 4705 int pi; 4706 4707 rcu_read_lock(); 4708 4709 pr_info("Showing busy workqueues and worker pools:\n"); 4710 4711 list_for_each_entry_rcu(wq, &workqueues, list) { 4712 struct pool_workqueue *pwq; 4713 bool idle = true; 4714 4715 for_each_pwq(pwq, wq) { 4716 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4717 idle = false; 4718 break; 4719 } 4720 } 4721 if (idle) 4722 continue; 4723 4724 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4725 4726 for_each_pwq(pwq, wq) { 4727 spin_lock_irqsave(&pwq->pool->lock, flags); 4728 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4729 show_pwq(pwq); 4730 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4731 /* 4732 * We could be printing a lot from atomic context, e.g. 4733 * sysrq-t -> show_workqueue_state(). Avoid triggering 4734 * hard lockup. 4735 */ 4736 touch_nmi_watchdog(); 4737 } 4738 } 4739 4740 for_each_pool(pool, pi) { 4741 struct worker *worker; 4742 bool first = true; 4743 4744 spin_lock_irqsave(&pool->lock, flags); 4745 if (pool->nr_workers == pool->nr_idle) 4746 goto next_pool; 4747 4748 pr_info("pool %d:", pool->id); 4749 pr_cont_pool_info(pool); 4750 pr_cont(" hung=%us workers=%d", 4751 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4752 pool->nr_workers); 4753 if (pool->manager) 4754 pr_cont(" manager: %d", 4755 task_pid_nr(pool->manager->task)); 4756 list_for_each_entry(worker, &pool->idle_list, entry) { 4757 pr_cont(" %s%d", first ? "idle: " : "", 4758 task_pid_nr(worker->task)); 4759 first = false; 4760 } 4761 pr_cont("\n"); 4762 next_pool: 4763 spin_unlock_irqrestore(&pool->lock, flags); 4764 /* 4765 * We could be printing a lot from atomic context, e.g. 4766 * sysrq-t -> show_workqueue_state(). Avoid triggering 4767 * hard lockup. 4768 */ 4769 touch_nmi_watchdog(); 4770 } 4771 4772 rcu_read_unlock(); 4773 } 4774 4775 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4776 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4777 { 4778 int off; 4779 4780 /* always show the actual comm */ 4781 off = strscpy(buf, task->comm, size); 4782 if (off < 0) 4783 return; 4784 4785 /* stabilize PF_WQ_WORKER and worker pool association */ 4786 mutex_lock(&wq_pool_attach_mutex); 4787 4788 if (task->flags & PF_WQ_WORKER) { 4789 struct worker *worker = kthread_data(task); 4790 struct worker_pool *pool = worker->pool; 4791 4792 if (pool) { 4793 spin_lock_irq(&pool->lock); 4794 /* 4795 * ->desc tracks information (wq name or 4796 * set_worker_desc()) for the latest execution. If 4797 * current, prepend '+', otherwise '-'. 4798 */ 4799 if (worker->desc[0] != '\0') { 4800 if (worker->current_work) 4801 scnprintf(buf + off, size - off, "+%s", 4802 worker->desc); 4803 else 4804 scnprintf(buf + off, size - off, "-%s", 4805 worker->desc); 4806 } 4807 spin_unlock_irq(&pool->lock); 4808 } 4809 } 4810 4811 mutex_unlock(&wq_pool_attach_mutex); 4812 } 4813 4814 #ifdef CONFIG_SMP 4815 4816 /* 4817 * CPU hotplug. 4818 * 4819 * There are two challenges in supporting CPU hotplug. Firstly, there 4820 * are a lot of assumptions on strong associations among work, pwq and 4821 * pool which make migrating pending and scheduled works very 4822 * difficult to implement without impacting hot paths. Secondly, 4823 * worker pools serve mix of short, long and very long running works making 4824 * blocked draining impractical. 4825 * 4826 * This is solved by allowing the pools to be disassociated from the CPU 4827 * running as an unbound one and allowing it to be reattached later if the 4828 * cpu comes back online. 4829 */ 4830 4831 static void unbind_workers(int cpu) 4832 { 4833 struct worker_pool *pool; 4834 struct worker *worker; 4835 4836 for_each_cpu_worker_pool(pool, cpu) { 4837 mutex_lock(&wq_pool_attach_mutex); 4838 spin_lock_irq(&pool->lock); 4839 4840 /* 4841 * We've blocked all attach/detach operations. Make all workers 4842 * unbound and set DISASSOCIATED. Before this, all workers 4843 * except for the ones which are still executing works from 4844 * before the last CPU down must be on the cpu. After 4845 * this, they may become diasporas. 4846 */ 4847 for_each_pool_worker(worker, pool) 4848 worker->flags |= WORKER_UNBOUND; 4849 4850 pool->flags |= POOL_DISASSOCIATED; 4851 4852 spin_unlock_irq(&pool->lock); 4853 mutex_unlock(&wq_pool_attach_mutex); 4854 4855 /* 4856 * Call schedule() so that we cross rq->lock and thus can 4857 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4858 * This is necessary as scheduler callbacks may be invoked 4859 * from other cpus. 4860 */ 4861 schedule(); 4862 4863 /* 4864 * Sched callbacks are disabled now. Zap nr_running. 4865 * After this, nr_running stays zero and need_more_worker() 4866 * and keep_working() are always true as long as the 4867 * worklist is not empty. This pool now behaves as an 4868 * unbound (in terms of concurrency management) pool which 4869 * are served by workers tied to the pool. 4870 */ 4871 atomic_set(&pool->nr_running, 0); 4872 4873 /* 4874 * With concurrency management just turned off, a busy 4875 * worker blocking could lead to lengthy stalls. Kick off 4876 * unbound chain execution of currently pending work items. 4877 */ 4878 spin_lock_irq(&pool->lock); 4879 wake_up_worker(pool); 4880 spin_unlock_irq(&pool->lock); 4881 } 4882 } 4883 4884 /** 4885 * rebind_workers - rebind all workers of a pool to the associated CPU 4886 * @pool: pool of interest 4887 * 4888 * @pool->cpu is coming online. Rebind all workers to the CPU. 4889 */ 4890 static void rebind_workers(struct worker_pool *pool) 4891 { 4892 struct worker *worker; 4893 4894 lockdep_assert_held(&wq_pool_attach_mutex); 4895 4896 /* 4897 * Restore CPU affinity of all workers. As all idle workers should 4898 * be on the run-queue of the associated CPU before any local 4899 * wake-ups for concurrency management happen, restore CPU affinity 4900 * of all workers first and then clear UNBOUND. As we're called 4901 * from CPU_ONLINE, the following shouldn't fail. 4902 */ 4903 for_each_pool_worker(worker, pool) 4904 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4905 pool->attrs->cpumask) < 0); 4906 4907 spin_lock_irq(&pool->lock); 4908 4909 pool->flags &= ~POOL_DISASSOCIATED; 4910 4911 for_each_pool_worker(worker, pool) { 4912 unsigned int worker_flags = worker->flags; 4913 4914 /* 4915 * A bound idle worker should actually be on the runqueue 4916 * of the associated CPU for local wake-ups targeting it to 4917 * work. Kick all idle workers so that they migrate to the 4918 * associated CPU. Doing this in the same loop as 4919 * replacing UNBOUND with REBOUND is safe as no worker will 4920 * be bound before @pool->lock is released. 4921 */ 4922 if (worker_flags & WORKER_IDLE) 4923 wake_up_process(worker->task); 4924 4925 /* 4926 * We want to clear UNBOUND but can't directly call 4927 * worker_clr_flags() or adjust nr_running. Atomically 4928 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4929 * @worker will clear REBOUND using worker_clr_flags() when 4930 * it initiates the next execution cycle thus restoring 4931 * concurrency management. Note that when or whether 4932 * @worker clears REBOUND doesn't affect correctness. 4933 * 4934 * WRITE_ONCE() is necessary because @worker->flags may be 4935 * tested without holding any lock in 4936 * wq_worker_running(). Without it, NOT_RUNNING test may 4937 * fail incorrectly leading to premature concurrency 4938 * management operations. 4939 */ 4940 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4941 worker_flags |= WORKER_REBOUND; 4942 worker_flags &= ~WORKER_UNBOUND; 4943 WRITE_ONCE(worker->flags, worker_flags); 4944 } 4945 4946 spin_unlock_irq(&pool->lock); 4947 } 4948 4949 /** 4950 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4951 * @pool: unbound pool of interest 4952 * @cpu: the CPU which is coming up 4953 * 4954 * An unbound pool may end up with a cpumask which doesn't have any online 4955 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4956 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4957 * online CPU before, cpus_allowed of all its workers should be restored. 4958 */ 4959 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4960 { 4961 static cpumask_t cpumask; 4962 struct worker *worker; 4963 4964 lockdep_assert_held(&wq_pool_attach_mutex); 4965 4966 /* is @cpu allowed for @pool? */ 4967 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4968 return; 4969 4970 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4971 4972 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4973 for_each_pool_worker(worker, pool) 4974 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4975 } 4976 4977 int workqueue_prepare_cpu(unsigned int cpu) 4978 { 4979 struct worker_pool *pool; 4980 4981 for_each_cpu_worker_pool(pool, cpu) { 4982 if (pool->nr_workers) 4983 continue; 4984 if (!create_worker(pool)) 4985 return -ENOMEM; 4986 } 4987 return 0; 4988 } 4989 4990 int workqueue_online_cpu(unsigned int cpu) 4991 { 4992 struct worker_pool *pool; 4993 struct workqueue_struct *wq; 4994 int pi; 4995 4996 mutex_lock(&wq_pool_mutex); 4997 4998 for_each_pool(pool, pi) { 4999 mutex_lock(&wq_pool_attach_mutex); 5000 5001 if (pool->cpu == cpu) 5002 rebind_workers(pool); 5003 else if (pool->cpu < 0) 5004 restore_unbound_workers_cpumask(pool, cpu); 5005 5006 mutex_unlock(&wq_pool_attach_mutex); 5007 } 5008 5009 /* update NUMA affinity of unbound workqueues */ 5010 list_for_each_entry(wq, &workqueues, list) 5011 wq_update_unbound_numa(wq, cpu, true); 5012 5013 mutex_unlock(&wq_pool_mutex); 5014 return 0; 5015 } 5016 5017 int workqueue_offline_cpu(unsigned int cpu) 5018 { 5019 struct workqueue_struct *wq; 5020 5021 /* unbinding per-cpu workers should happen on the local CPU */ 5022 if (WARN_ON(cpu != smp_processor_id())) 5023 return -1; 5024 5025 unbind_workers(cpu); 5026 5027 /* update NUMA affinity of unbound workqueues */ 5028 mutex_lock(&wq_pool_mutex); 5029 list_for_each_entry(wq, &workqueues, list) 5030 wq_update_unbound_numa(wq, cpu, false); 5031 mutex_unlock(&wq_pool_mutex); 5032 5033 return 0; 5034 } 5035 5036 struct work_for_cpu { 5037 struct work_struct work; 5038 long (*fn)(void *); 5039 void *arg; 5040 long ret; 5041 }; 5042 5043 static void work_for_cpu_fn(struct work_struct *work) 5044 { 5045 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5046 5047 wfc->ret = wfc->fn(wfc->arg); 5048 } 5049 5050 /** 5051 * work_on_cpu - run a function in thread context on a particular cpu 5052 * @cpu: the cpu to run on 5053 * @fn: the function to run 5054 * @arg: the function arg 5055 * 5056 * It is up to the caller to ensure that the cpu doesn't go offline. 5057 * The caller must not hold any locks which would prevent @fn from completing. 5058 * 5059 * Return: The value @fn returns. 5060 */ 5061 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5062 { 5063 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5064 5065 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5066 schedule_work_on(cpu, &wfc.work); 5067 flush_work(&wfc.work); 5068 destroy_work_on_stack(&wfc.work); 5069 return wfc.ret; 5070 } 5071 EXPORT_SYMBOL_GPL(work_on_cpu); 5072 5073 /** 5074 * work_on_cpu_safe - run a function in thread context on a particular cpu 5075 * @cpu: the cpu to run on 5076 * @fn: the function to run 5077 * @arg: the function argument 5078 * 5079 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5080 * any locks which would prevent @fn from completing. 5081 * 5082 * Return: The value @fn returns. 5083 */ 5084 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5085 { 5086 long ret = -ENODEV; 5087 5088 get_online_cpus(); 5089 if (cpu_online(cpu)) 5090 ret = work_on_cpu(cpu, fn, arg); 5091 put_online_cpus(); 5092 return ret; 5093 } 5094 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5095 #endif /* CONFIG_SMP */ 5096 5097 #ifdef CONFIG_FREEZER 5098 5099 /** 5100 * freeze_workqueues_begin - begin freezing workqueues 5101 * 5102 * Start freezing workqueues. After this function returns, all freezable 5103 * workqueues will queue new works to their delayed_works list instead of 5104 * pool->worklist. 5105 * 5106 * CONTEXT: 5107 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5108 */ 5109 void freeze_workqueues_begin(void) 5110 { 5111 struct workqueue_struct *wq; 5112 struct pool_workqueue *pwq; 5113 5114 mutex_lock(&wq_pool_mutex); 5115 5116 WARN_ON_ONCE(workqueue_freezing); 5117 workqueue_freezing = true; 5118 5119 list_for_each_entry(wq, &workqueues, list) { 5120 mutex_lock(&wq->mutex); 5121 for_each_pwq(pwq, wq) 5122 pwq_adjust_max_active(pwq); 5123 mutex_unlock(&wq->mutex); 5124 } 5125 5126 mutex_unlock(&wq_pool_mutex); 5127 } 5128 5129 /** 5130 * freeze_workqueues_busy - are freezable workqueues still busy? 5131 * 5132 * Check whether freezing is complete. This function must be called 5133 * between freeze_workqueues_begin() and thaw_workqueues(). 5134 * 5135 * CONTEXT: 5136 * Grabs and releases wq_pool_mutex. 5137 * 5138 * Return: 5139 * %true if some freezable workqueues are still busy. %false if freezing 5140 * is complete. 5141 */ 5142 bool freeze_workqueues_busy(void) 5143 { 5144 bool busy = false; 5145 struct workqueue_struct *wq; 5146 struct pool_workqueue *pwq; 5147 5148 mutex_lock(&wq_pool_mutex); 5149 5150 WARN_ON_ONCE(!workqueue_freezing); 5151 5152 list_for_each_entry(wq, &workqueues, list) { 5153 if (!(wq->flags & WQ_FREEZABLE)) 5154 continue; 5155 /* 5156 * nr_active is monotonically decreasing. It's safe 5157 * to peek without lock. 5158 */ 5159 rcu_read_lock(); 5160 for_each_pwq(pwq, wq) { 5161 WARN_ON_ONCE(pwq->nr_active < 0); 5162 if (pwq->nr_active) { 5163 busy = true; 5164 rcu_read_unlock(); 5165 goto out_unlock; 5166 } 5167 } 5168 rcu_read_unlock(); 5169 } 5170 out_unlock: 5171 mutex_unlock(&wq_pool_mutex); 5172 return busy; 5173 } 5174 5175 /** 5176 * thaw_workqueues - thaw workqueues 5177 * 5178 * Thaw workqueues. Normal queueing is restored and all collected 5179 * frozen works are transferred to their respective pool worklists. 5180 * 5181 * CONTEXT: 5182 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5183 */ 5184 void thaw_workqueues(void) 5185 { 5186 struct workqueue_struct *wq; 5187 struct pool_workqueue *pwq; 5188 5189 mutex_lock(&wq_pool_mutex); 5190 5191 if (!workqueue_freezing) 5192 goto out_unlock; 5193 5194 workqueue_freezing = false; 5195 5196 /* restore max_active and repopulate worklist */ 5197 list_for_each_entry(wq, &workqueues, list) { 5198 mutex_lock(&wq->mutex); 5199 for_each_pwq(pwq, wq) 5200 pwq_adjust_max_active(pwq); 5201 mutex_unlock(&wq->mutex); 5202 } 5203 5204 out_unlock: 5205 mutex_unlock(&wq_pool_mutex); 5206 } 5207 #endif /* CONFIG_FREEZER */ 5208 5209 static int workqueue_apply_unbound_cpumask(void) 5210 { 5211 LIST_HEAD(ctxs); 5212 int ret = 0; 5213 struct workqueue_struct *wq; 5214 struct apply_wqattrs_ctx *ctx, *n; 5215 5216 lockdep_assert_held(&wq_pool_mutex); 5217 5218 list_for_each_entry(wq, &workqueues, list) { 5219 if (!(wq->flags & WQ_UNBOUND)) 5220 continue; 5221 /* creating multiple pwqs breaks ordering guarantee */ 5222 if (wq->flags & __WQ_ORDERED) 5223 continue; 5224 5225 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5226 if (!ctx) { 5227 ret = -ENOMEM; 5228 break; 5229 } 5230 5231 list_add_tail(&ctx->list, &ctxs); 5232 } 5233 5234 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5235 if (!ret) 5236 apply_wqattrs_commit(ctx); 5237 apply_wqattrs_cleanup(ctx); 5238 } 5239 5240 return ret; 5241 } 5242 5243 /** 5244 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5245 * @cpumask: the cpumask to set 5246 * 5247 * The low-level workqueues cpumask is a global cpumask that limits 5248 * the affinity of all unbound workqueues. This function check the @cpumask 5249 * and apply it to all unbound workqueues and updates all pwqs of them. 5250 * 5251 * Retun: 0 - Success 5252 * -EINVAL - Invalid @cpumask 5253 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5254 */ 5255 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5256 { 5257 int ret = -EINVAL; 5258 cpumask_var_t saved_cpumask; 5259 5260 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5261 return -ENOMEM; 5262 5263 /* 5264 * Not excluding isolated cpus on purpose. 5265 * If the user wishes to include them, we allow that. 5266 */ 5267 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5268 if (!cpumask_empty(cpumask)) { 5269 apply_wqattrs_lock(); 5270 5271 /* save the old wq_unbound_cpumask. */ 5272 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5273 5274 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5275 cpumask_copy(wq_unbound_cpumask, cpumask); 5276 ret = workqueue_apply_unbound_cpumask(); 5277 5278 /* restore the wq_unbound_cpumask when failed. */ 5279 if (ret < 0) 5280 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5281 5282 apply_wqattrs_unlock(); 5283 } 5284 5285 free_cpumask_var(saved_cpumask); 5286 return ret; 5287 } 5288 5289 #ifdef CONFIG_SYSFS 5290 /* 5291 * Workqueues with WQ_SYSFS flag set is visible to userland via 5292 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5293 * following attributes. 5294 * 5295 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5296 * max_active RW int : maximum number of in-flight work items 5297 * 5298 * Unbound workqueues have the following extra attributes. 5299 * 5300 * pool_ids RO int : the associated pool IDs for each node 5301 * nice RW int : nice value of the workers 5302 * cpumask RW mask : bitmask of allowed CPUs for the workers 5303 * numa RW bool : whether enable NUMA affinity 5304 */ 5305 struct wq_device { 5306 struct workqueue_struct *wq; 5307 struct device dev; 5308 }; 5309 5310 static struct workqueue_struct *dev_to_wq(struct device *dev) 5311 { 5312 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5313 5314 return wq_dev->wq; 5315 } 5316 5317 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5318 char *buf) 5319 { 5320 struct workqueue_struct *wq = dev_to_wq(dev); 5321 5322 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5323 } 5324 static DEVICE_ATTR_RO(per_cpu); 5325 5326 static ssize_t max_active_show(struct device *dev, 5327 struct device_attribute *attr, char *buf) 5328 { 5329 struct workqueue_struct *wq = dev_to_wq(dev); 5330 5331 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5332 } 5333 5334 static ssize_t max_active_store(struct device *dev, 5335 struct device_attribute *attr, const char *buf, 5336 size_t count) 5337 { 5338 struct workqueue_struct *wq = dev_to_wq(dev); 5339 int val; 5340 5341 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5342 return -EINVAL; 5343 5344 workqueue_set_max_active(wq, val); 5345 return count; 5346 } 5347 static DEVICE_ATTR_RW(max_active); 5348 5349 static struct attribute *wq_sysfs_attrs[] = { 5350 &dev_attr_per_cpu.attr, 5351 &dev_attr_max_active.attr, 5352 NULL, 5353 }; 5354 ATTRIBUTE_GROUPS(wq_sysfs); 5355 5356 static ssize_t wq_pool_ids_show(struct device *dev, 5357 struct device_attribute *attr, char *buf) 5358 { 5359 struct workqueue_struct *wq = dev_to_wq(dev); 5360 const char *delim = ""; 5361 int node, written = 0; 5362 5363 get_online_cpus(); 5364 rcu_read_lock(); 5365 for_each_node(node) { 5366 written += scnprintf(buf + written, PAGE_SIZE - written, 5367 "%s%d:%d", delim, node, 5368 unbound_pwq_by_node(wq, node)->pool->id); 5369 delim = " "; 5370 } 5371 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5372 rcu_read_unlock(); 5373 put_online_cpus(); 5374 5375 return written; 5376 } 5377 5378 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5379 char *buf) 5380 { 5381 struct workqueue_struct *wq = dev_to_wq(dev); 5382 int written; 5383 5384 mutex_lock(&wq->mutex); 5385 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5386 mutex_unlock(&wq->mutex); 5387 5388 return written; 5389 } 5390 5391 /* prepare workqueue_attrs for sysfs store operations */ 5392 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5393 { 5394 struct workqueue_attrs *attrs; 5395 5396 lockdep_assert_held(&wq_pool_mutex); 5397 5398 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5399 if (!attrs) 5400 return NULL; 5401 5402 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5403 return attrs; 5404 } 5405 5406 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5407 const char *buf, size_t count) 5408 { 5409 struct workqueue_struct *wq = dev_to_wq(dev); 5410 struct workqueue_attrs *attrs; 5411 int ret = -ENOMEM; 5412 5413 apply_wqattrs_lock(); 5414 5415 attrs = wq_sysfs_prep_attrs(wq); 5416 if (!attrs) 5417 goto out_unlock; 5418 5419 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5420 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5421 ret = apply_workqueue_attrs_locked(wq, attrs); 5422 else 5423 ret = -EINVAL; 5424 5425 out_unlock: 5426 apply_wqattrs_unlock(); 5427 free_workqueue_attrs(attrs); 5428 return ret ?: count; 5429 } 5430 5431 static ssize_t wq_cpumask_show(struct device *dev, 5432 struct device_attribute *attr, char *buf) 5433 { 5434 struct workqueue_struct *wq = dev_to_wq(dev); 5435 int written; 5436 5437 mutex_lock(&wq->mutex); 5438 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5439 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5440 mutex_unlock(&wq->mutex); 5441 return written; 5442 } 5443 5444 static ssize_t wq_cpumask_store(struct device *dev, 5445 struct device_attribute *attr, 5446 const char *buf, size_t count) 5447 { 5448 struct workqueue_struct *wq = dev_to_wq(dev); 5449 struct workqueue_attrs *attrs; 5450 int ret = -ENOMEM; 5451 5452 apply_wqattrs_lock(); 5453 5454 attrs = wq_sysfs_prep_attrs(wq); 5455 if (!attrs) 5456 goto out_unlock; 5457 5458 ret = cpumask_parse(buf, attrs->cpumask); 5459 if (!ret) 5460 ret = apply_workqueue_attrs_locked(wq, attrs); 5461 5462 out_unlock: 5463 apply_wqattrs_unlock(); 5464 free_workqueue_attrs(attrs); 5465 return ret ?: count; 5466 } 5467 5468 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5469 char *buf) 5470 { 5471 struct workqueue_struct *wq = dev_to_wq(dev); 5472 int written; 5473 5474 mutex_lock(&wq->mutex); 5475 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5476 !wq->unbound_attrs->no_numa); 5477 mutex_unlock(&wq->mutex); 5478 5479 return written; 5480 } 5481 5482 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5483 const char *buf, size_t count) 5484 { 5485 struct workqueue_struct *wq = dev_to_wq(dev); 5486 struct workqueue_attrs *attrs; 5487 int v, ret = -ENOMEM; 5488 5489 apply_wqattrs_lock(); 5490 5491 attrs = wq_sysfs_prep_attrs(wq); 5492 if (!attrs) 5493 goto out_unlock; 5494 5495 ret = -EINVAL; 5496 if (sscanf(buf, "%d", &v) == 1) { 5497 attrs->no_numa = !v; 5498 ret = apply_workqueue_attrs_locked(wq, attrs); 5499 } 5500 5501 out_unlock: 5502 apply_wqattrs_unlock(); 5503 free_workqueue_attrs(attrs); 5504 return ret ?: count; 5505 } 5506 5507 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5508 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5509 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5510 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5511 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5512 __ATTR_NULL, 5513 }; 5514 5515 static struct bus_type wq_subsys = { 5516 .name = "workqueue", 5517 .dev_groups = wq_sysfs_groups, 5518 }; 5519 5520 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5521 struct device_attribute *attr, char *buf) 5522 { 5523 int written; 5524 5525 mutex_lock(&wq_pool_mutex); 5526 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5527 cpumask_pr_args(wq_unbound_cpumask)); 5528 mutex_unlock(&wq_pool_mutex); 5529 5530 return written; 5531 } 5532 5533 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5534 struct device_attribute *attr, const char *buf, size_t count) 5535 { 5536 cpumask_var_t cpumask; 5537 int ret; 5538 5539 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5540 return -ENOMEM; 5541 5542 ret = cpumask_parse(buf, cpumask); 5543 if (!ret) 5544 ret = workqueue_set_unbound_cpumask(cpumask); 5545 5546 free_cpumask_var(cpumask); 5547 return ret ? ret : count; 5548 } 5549 5550 static struct device_attribute wq_sysfs_cpumask_attr = 5551 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5552 wq_unbound_cpumask_store); 5553 5554 static int __init wq_sysfs_init(void) 5555 { 5556 int err; 5557 5558 err = subsys_virtual_register(&wq_subsys, NULL); 5559 if (err) 5560 return err; 5561 5562 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5563 } 5564 core_initcall(wq_sysfs_init); 5565 5566 static void wq_device_release(struct device *dev) 5567 { 5568 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5569 5570 kfree(wq_dev); 5571 } 5572 5573 /** 5574 * workqueue_sysfs_register - make a workqueue visible in sysfs 5575 * @wq: the workqueue to register 5576 * 5577 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5578 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5579 * which is the preferred method. 5580 * 5581 * Workqueue user should use this function directly iff it wants to apply 5582 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5583 * apply_workqueue_attrs() may race against userland updating the 5584 * attributes. 5585 * 5586 * Return: 0 on success, -errno on failure. 5587 */ 5588 int workqueue_sysfs_register(struct workqueue_struct *wq) 5589 { 5590 struct wq_device *wq_dev; 5591 int ret; 5592 5593 /* 5594 * Adjusting max_active or creating new pwqs by applying 5595 * attributes breaks ordering guarantee. Disallow exposing ordered 5596 * workqueues. 5597 */ 5598 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5599 return -EINVAL; 5600 5601 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5602 if (!wq_dev) 5603 return -ENOMEM; 5604 5605 wq_dev->wq = wq; 5606 wq_dev->dev.bus = &wq_subsys; 5607 wq_dev->dev.release = wq_device_release; 5608 dev_set_name(&wq_dev->dev, "%s", wq->name); 5609 5610 /* 5611 * unbound_attrs are created separately. Suppress uevent until 5612 * everything is ready. 5613 */ 5614 dev_set_uevent_suppress(&wq_dev->dev, true); 5615 5616 ret = device_register(&wq_dev->dev); 5617 if (ret) { 5618 put_device(&wq_dev->dev); 5619 wq->wq_dev = NULL; 5620 return ret; 5621 } 5622 5623 if (wq->flags & WQ_UNBOUND) { 5624 struct device_attribute *attr; 5625 5626 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5627 ret = device_create_file(&wq_dev->dev, attr); 5628 if (ret) { 5629 device_unregister(&wq_dev->dev); 5630 wq->wq_dev = NULL; 5631 return ret; 5632 } 5633 } 5634 } 5635 5636 dev_set_uevent_suppress(&wq_dev->dev, false); 5637 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5638 return 0; 5639 } 5640 5641 /** 5642 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5643 * @wq: the workqueue to unregister 5644 * 5645 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5646 */ 5647 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5648 { 5649 struct wq_device *wq_dev = wq->wq_dev; 5650 5651 if (!wq->wq_dev) 5652 return; 5653 5654 wq->wq_dev = NULL; 5655 device_unregister(&wq_dev->dev); 5656 } 5657 #else /* CONFIG_SYSFS */ 5658 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5659 #endif /* CONFIG_SYSFS */ 5660 5661 /* 5662 * Workqueue watchdog. 5663 * 5664 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5665 * flush dependency, a concurrency managed work item which stays RUNNING 5666 * indefinitely. Workqueue stalls can be very difficult to debug as the 5667 * usual warning mechanisms don't trigger and internal workqueue state is 5668 * largely opaque. 5669 * 5670 * Workqueue watchdog monitors all worker pools periodically and dumps 5671 * state if some pools failed to make forward progress for a while where 5672 * forward progress is defined as the first item on ->worklist changing. 5673 * 5674 * This mechanism is controlled through the kernel parameter 5675 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5676 * corresponding sysfs parameter file. 5677 */ 5678 #ifdef CONFIG_WQ_WATCHDOG 5679 5680 static unsigned long wq_watchdog_thresh = 30; 5681 static struct timer_list wq_watchdog_timer; 5682 5683 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5684 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5685 5686 static void wq_watchdog_reset_touched(void) 5687 { 5688 int cpu; 5689 5690 wq_watchdog_touched = jiffies; 5691 for_each_possible_cpu(cpu) 5692 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5693 } 5694 5695 static void wq_watchdog_timer_fn(struct timer_list *unused) 5696 { 5697 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5698 bool lockup_detected = false; 5699 struct worker_pool *pool; 5700 int pi; 5701 5702 if (!thresh) 5703 return; 5704 5705 rcu_read_lock(); 5706 5707 for_each_pool(pool, pi) { 5708 unsigned long pool_ts, touched, ts; 5709 5710 if (list_empty(&pool->worklist)) 5711 continue; 5712 5713 /* get the latest of pool and touched timestamps */ 5714 pool_ts = READ_ONCE(pool->watchdog_ts); 5715 touched = READ_ONCE(wq_watchdog_touched); 5716 5717 if (time_after(pool_ts, touched)) 5718 ts = pool_ts; 5719 else 5720 ts = touched; 5721 5722 if (pool->cpu >= 0) { 5723 unsigned long cpu_touched = 5724 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5725 pool->cpu)); 5726 if (time_after(cpu_touched, ts)) 5727 ts = cpu_touched; 5728 } 5729 5730 /* did we stall? */ 5731 if (time_after(jiffies, ts + thresh)) { 5732 lockup_detected = true; 5733 pr_emerg("BUG: workqueue lockup - pool"); 5734 pr_cont_pool_info(pool); 5735 pr_cont(" stuck for %us!\n", 5736 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5737 } 5738 } 5739 5740 rcu_read_unlock(); 5741 5742 if (lockup_detected) 5743 show_workqueue_state(); 5744 5745 wq_watchdog_reset_touched(); 5746 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5747 } 5748 5749 notrace void wq_watchdog_touch(int cpu) 5750 { 5751 if (cpu >= 0) 5752 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5753 else 5754 wq_watchdog_touched = jiffies; 5755 } 5756 5757 static void wq_watchdog_set_thresh(unsigned long thresh) 5758 { 5759 wq_watchdog_thresh = 0; 5760 del_timer_sync(&wq_watchdog_timer); 5761 5762 if (thresh) { 5763 wq_watchdog_thresh = thresh; 5764 wq_watchdog_reset_touched(); 5765 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5766 } 5767 } 5768 5769 static int wq_watchdog_param_set_thresh(const char *val, 5770 const struct kernel_param *kp) 5771 { 5772 unsigned long thresh; 5773 int ret; 5774 5775 ret = kstrtoul(val, 0, &thresh); 5776 if (ret) 5777 return ret; 5778 5779 if (system_wq) 5780 wq_watchdog_set_thresh(thresh); 5781 else 5782 wq_watchdog_thresh = thresh; 5783 5784 return 0; 5785 } 5786 5787 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5788 .set = wq_watchdog_param_set_thresh, 5789 .get = param_get_ulong, 5790 }; 5791 5792 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5793 0644); 5794 5795 static void wq_watchdog_init(void) 5796 { 5797 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5798 wq_watchdog_set_thresh(wq_watchdog_thresh); 5799 } 5800 5801 #else /* CONFIG_WQ_WATCHDOG */ 5802 5803 static inline void wq_watchdog_init(void) { } 5804 5805 #endif /* CONFIG_WQ_WATCHDOG */ 5806 5807 static void __init wq_numa_init(void) 5808 { 5809 cpumask_var_t *tbl; 5810 int node, cpu; 5811 5812 if (num_possible_nodes() <= 1) 5813 return; 5814 5815 if (wq_disable_numa) { 5816 pr_info("workqueue: NUMA affinity support disabled\n"); 5817 return; 5818 } 5819 5820 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5821 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5822 5823 /* 5824 * We want masks of possible CPUs of each node which isn't readily 5825 * available. Build one from cpu_to_node() which should have been 5826 * fully initialized by now. 5827 */ 5828 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5829 BUG_ON(!tbl); 5830 5831 for_each_node(node) 5832 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5833 node_online(node) ? node : NUMA_NO_NODE)); 5834 5835 for_each_possible_cpu(cpu) { 5836 node = cpu_to_node(cpu); 5837 if (WARN_ON(node == NUMA_NO_NODE)) { 5838 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5839 /* happens iff arch is bonkers, let's just proceed */ 5840 return; 5841 } 5842 cpumask_set_cpu(cpu, tbl[node]); 5843 } 5844 5845 wq_numa_possible_cpumask = tbl; 5846 wq_numa_enabled = true; 5847 } 5848 5849 /** 5850 * workqueue_init_early - early init for workqueue subsystem 5851 * 5852 * This is the first half of two-staged workqueue subsystem initialization 5853 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5854 * idr are up. It sets up all the data structures and system workqueues 5855 * and allows early boot code to create workqueues and queue/cancel work 5856 * items. Actual work item execution starts only after kthreads can be 5857 * created and scheduled right before early initcalls. 5858 */ 5859 int __init workqueue_init_early(void) 5860 { 5861 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5862 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5863 int i, cpu; 5864 5865 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5866 5867 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5868 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5869 5870 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5871 5872 /* initialize CPU pools */ 5873 for_each_possible_cpu(cpu) { 5874 struct worker_pool *pool; 5875 5876 i = 0; 5877 for_each_cpu_worker_pool(pool, cpu) { 5878 BUG_ON(init_worker_pool(pool)); 5879 pool->cpu = cpu; 5880 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5881 pool->attrs->nice = std_nice[i++]; 5882 pool->node = cpu_to_node(cpu); 5883 5884 /* alloc pool ID */ 5885 mutex_lock(&wq_pool_mutex); 5886 BUG_ON(worker_pool_assign_id(pool)); 5887 mutex_unlock(&wq_pool_mutex); 5888 } 5889 } 5890 5891 /* create default unbound and ordered wq attrs */ 5892 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5893 struct workqueue_attrs *attrs; 5894 5895 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5896 attrs->nice = std_nice[i]; 5897 unbound_std_wq_attrs[i] = attrs; 5898 5899 /* 5900 * An ordered wq should have only one pwq as ordering is 5901 * guaranteed by max_active which is enforced by pwqs. 5902 * Turn off NUMA so that dfl_pwq is used for all nodes. 5903 */ 5904 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5905 attrs->nice = std_nice[i]; 5906 attrs->no_numa = true; 5907 ordered_wq_attrs[i] = attrs; 5908 } 5909 5910 system_wq = alloc_workqueue("events", 0, 0); 5911 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5912 system_long_wq = alloc_workqueue("events_long", 0, 0); 5913 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5914 WQ_UNBOUND_MAX_ACTIVE); 5915 system_freezable_wq = alloc_workqueue("events_freezable", 5916 WQ_FREEZABLE, 0); 5917 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5918 WQ_POWER_EFFICIENT, 0); 5919 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5920 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5921 0); 5922 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5923 !system_unbound_wq || !system_freezable_wq || 5924 !system_power_efficient_wq || 5925 !system_freezable_power_efficient_wq); 5926 5927 return 0; 5928 } 5929 5930 /** 5931 * workqueue_init - bring workqueue subsystem fully online 5932 * 5933 * This is the latter half of two-staged workqueue subsystem initialization 5934 * and invoked as soon as kthreads can be created and scheduled. 5935 * Workqueues have been created and work items queued on them, but there 5936 * are no kworkers executing the work items yet. Populate the worker pools 5937 * with the initial workers and enable future kworker creations. 5938 */ 5939 int __init workqueue_init(void) 5940 { 5941 struct workqueue_struct *wq; 5942 struct worker_pool *pool; 5943 int cpu, bkt; 5944 5945 /* 5946 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5947 * CPU to node mapping may not be available that early on some 5948 * archs such as power and arm64. As per-cpu pools created 5949 * previously could be missing node hint and unbound pools NUMA 5950 * affinity, fix them up. 5951 * 5952 * Also, while iterating workqueues, create rescuers if requested. 5953 */ 5954 wq_numa_init(); 5955 5956 mutex_lock(&wq_pool_mutex); 5957 5958 for_each_possible_cpu(cpu) { 5959 for_each_cpu_worker_pool(pool, cpu) { 5960 pool->node = cpu_to_node(cpu); 5961 } 5962 } 5963 5964 list_for_each_entry(wq, &workqueues, list) { 5965 wq_update_unbound_numa(wq, smp_processor_id(), true); 5966 WARN(init_rescuer(wq), 5967 "workqueue: failed to create early rescuer for %s", 5968 wq->name); 5969 } 5970 5971 mutex_unlock(&wq_pool_mutex); 5972 5973 /* create the initial workers */ 5974 for_each_online_cpu(cpu) { 5975 for_each_cpu_worker_pool(pool, cpu) { 5976 pool->flags &= ~POOL_DISASSOCIATED; 5977 BUG_ON(!create_worker(pool)); 5978 } 5979 } 5980 5981 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 5982 BUG_ON(!create_worker(pool)); 5983 5984 wq_online = true; 5985 wq_watchdog_init(); 5986 5987 return 0; 5988 } 5989