xref: /openbmc/linux/kernel/workqueue.c (revision 151f4e2b)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/core-api/workqueue.rst for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50 #include <linux/sched/isolation.h>
51 #include <linux/nmi.h>
52 
53 #include "workqueue_internal.h"
54 
55 enum {
56 	/*
57 	 * worker_pool flags
58 	 *
59 	 * A bound pool is either associated or disassociated with its CPU.
60 	 * While associated (!DISASSOCIATED), all workers are bound to the
61 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 	 * is in effect.
63 	 *
64 	 * While DISASSOCIATED, the cpu may be offline and all workers have
65 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 	 * be executing on any CPU.  The pool behaves as an unbound one.
67 	 *
68 	 * Note that DISASSOCIATED should be flipped only while holding
69 	 * wq_pool_attach_mutex to avoid changing binding state while
70 	 * worker_attach_to_pool() is in progress.
71 	 */
72 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
73 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
74 
75 	/* worker flags */
76 	WORKER_DIE		= 1 << 1,	/* die die die */
77 	WORKER_IDLE		= 1 << 2,	/* is idle */
78 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82 
83 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
84 				  WORKER_UNBOUND | WORKER_REBOUND,
85 
86 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87 
88 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
89 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90 
91 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
92 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
93 
94 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
95 						/* call for help after 10ms
96 						   (min two ticks) */
97 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
98 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
99 
100 	/*
101 	 * Rescue workers are used only on emergencies and shared by
102 	 * all cpus.  Give MIN_NICE.
103 	 */
104 	RESCUER_NICE_LEVEL	= MIN_NICE,
105 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
106 
107 	WQ_NAME_LEN		= 24,
108 };
109 
110 /*
111  * Structure fields follow one of the following exclusion rules.
112  *
113  * I: Modifiable by initialization/destruction paths and read-only for
114  *    everyone else.
115  *
116  * P: Preemption protected.  Disabling preemption is enough and should
117  *    only be modified and accessed from the local cpu.
118  *
119  * L: pool->lock protected.  Access with pool->lock held.
120  *
121  * X: During normal operation, modification requires pool->lock and should
122  *    be done only from local cpu.  Either disabling preemption on local
123  *    cpu or grabbing pool->lock is enough for read access.  If
124  *    POOL_DISASSOCIATED is set, it's identical to L.
125  *
126  * A: wq_pool_attach_mutex protected.
127  *
128  * PL: wq_pool_mutex protected.
129  *
130  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
131  *
132  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
133  *
134  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
135  *      RCU for reads.
136  *
137  * WQ: wq->mutex protected.
138  *
139  * WR: wq->mutex protected for writes.  RCU protected for reads.
140  *
141  * MD: wq_mayday_lock protected.
142  */
143 
144 /* struct worker is defined in workqueue_internal.h */
145 
146 struct worker_pool {
147 	spinlock_t		lock;		/* the pool lock */
148 	int			cpu;		/* I: the associated cpu */
149 	int			node;		/* I: the associated node ID */
150 	int			id;		/* I: pool ID */
151 	unsigned int		flags;		/* X: flags */
152 
153 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
154 
155 	struct list_head	worklist;	/* L: list of pending works */
156 
157 	int			nr_workers;	/* L: total number of workers */
158 	int			nr_idle;	/* L: currently idle workers */
159 
160 	struct list_head	idle_list;	/* X: list of idle workers */
161 	struct timer_list	idle_timer;	/* L: worker idle timeout */
162 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
163 
164 	/* a workers is either on busy_hash or idle_list, or the manager */
165 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 						/* L: hash of busy workers */
167 
168 	struct worker		*manager;	/* L: purely informational */
169 	struct list_head	workers;	/* A: attached workers */
170 	struct completion	*detach_completion; /* all workers detached */
171 
172 	struct ida		worker_ida;	/* worker IDs for task name */
173 
174 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
175 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
176 	int			refcnt;		/* PL: refcnt for unbound pools */
177 
178 	/*
179 	 * The current concurrency level.  As it's likely to be accessed
180 	 * from other CPUs during try_to_wake_up(), put it in a separate
181 	 * cacheline.
182 	 */
183 	atomic_t		nr_running ____cacheline_aligned_in_smp;
184 
185 	/*
186 	 * Destruction of pool is RCU protected to allow dereferences
187 	 * from get_work_pool().
188 	 */
189 	struct rcu_head		rcu;
190 } ____cacheline_aligned_in_smp;
191 
192 /*
193  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
194  * of work_struct->data are used for flags and the remaining high bits
195  * point to the pwq; thus, pwqs need to be aligned at two's power of the
196  * number of flag bits.
197  */
198 struct pool_workqueue {
199 	struct worker_pool	*pool;		/* I: the associated pool */
200 	struct workqueue_struct *wq;		/* I: the owning workqueue */
201 	int			work_color;	/* L: current color */
202 	int			flush_color;	/* L: flushing color */
203 	int			refcnt;		/* L: reference count */
204 	int			nr_in_flight[WORK_NR_COLORS];
205 						/* L: nr of in_flight works */
206 	int			nr_active;	/* L: nr of active works */
207 	int			max_active;	/* L: max active works */
208 	struct list_head	delayed_works;	/* L: delayed works */
209 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
210 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
211 
212 	/*
213 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
214 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
215 	 * itself is also RCU protected so that the first pwq can be
216 	 * determined without grabbing wq->mutex.
217 	 */
218 	struct work_struct	unbound_release_work;
219 	struct rcu_head		rcu;
220 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
221 
222 /*
223  * Structure used to wait for workqueue flush.
224  */
225 struct wq_flusher {
226 	struct list_head	list;		/* WQ: list of flushers */
227 	int			flush_color;	/* WQ: flush color waiting for */
228 	struct completion	done;		/* flush completion */
229 };
230 
231 struct wq_device;
232 
233 /*
234  * The externally visible workqueue.  It relays the issued work items to
235  * the appropriate worker_pool through its pool_workqueues.
236  */
237 struct workqueue_struct {
238 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
239 	struct list_head	list;		/* PR: list of all workqueues */
240 
241 	struct mutex		mutex;		/* protects this wq */
242 	int			work_color;	/* WQ: current work color */
243 	int			flush_color;	/* WQ: current flush color */
244 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
245 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
246 	struct list_head	flusher_queue;	/* WQ: flush waiters */
247 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
248 
249 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
250 	struct worker		*rescuer;	/* I: rescue worker */
251 
252 	int			nr_drainers;	/* WQ: drain in progress */
253 	int			saved_max_active; /* WQ: saved pwq max_active */
254 
255 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
256 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
257 
258 #ifdef CONFIG_SYSFS
259 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
260 #endif
261 #ifdef CONFIG_LOCKDEP
262 	char			*lock_name;
263 	struct lock_class_key	key;
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267 
268 	/*
269 	 * Destruction of workqueue_struct is RCU protected to allow walking
270 	 * the workqueues list without grabbing wq_pool_mutex.
271 	 * This is used to dump all workqueues from sysrq.
272 	 */
273 	struct rcu_head		rcu;
274 
275 	/* hot fields used during command issue, aligned to cacheline */
276 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280 
281 static struct kmem_cache *pwq_cache;
282 
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 					/* possible CPUs of each node */
285 
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288 
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292 
293 static bool wq_online;			/* can kworkers be created yet? */
294 
295 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
296 
297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299 
300 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
301 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
302 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
303 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
304 
305 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
306 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
307 
308 /* PL: allowable cpus for unbound wqs and work items */
309 static cpumask_var_t wq_unbound_cpumask;
310 
311 /* CPU where unbound work was last round robin scheduled from this CPU */
312 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
313 
314 /*
315  * Local execution of unbound work items is no longer guaranteed.  The
316  * following always forces round-robin CPU selection on unbound work items
317  * to uncover usages which depend on it.
318  */
319 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
320 static bool wq_debug_force_rr_cpu = true;
321 #else
322 static bool wq_debug_force_rr_cpu = false;
323 #endif
324 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
325 
326 /* the per-cpu worker pools */
327 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
328 
329 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
330 
331 /* PL: hash of all unbound pools keyed by pool->attrs */
332 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
333 
334 /* I: attributes used when instantiating standard unbound pools on demand */
335 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
336 
337 /* I: attributes used when instantiating ordered pools on demand */
338 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
339 
340 struct workqueue_struct *system_wq __read_mostly;
341 EXPORT_SYMBOL(system_wq);
342 struct workqueue_struct *system_highpri_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_highpri_wq);
344 struct workqueue_struct *system_long_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_long_wq);
346 struct workqueue_struct *system_unbound_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_unbound_wq);
348 struct workqueue_struct *system_freezable_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_wq);
350 struct workqueue_struct *system_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
352 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
354 
355 static int worker_thread(void *__worker);
356 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
357 
358 #define CREATE_TRACE_POINTS
359 #include <trace/events/workqueue.h>
360 
361 #define assert_rcu_or_pool_mutex()					\
362 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
363 			 !lockdep_is_held(&wq_pool_mutex),		\
364 			 "RCU or wq_pool_mutex should be held")
365 
366 #define assert_rcu_or_wq_mutex(wq)					\
367 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
368 			 !lockdep_is_held(&wq->mutex),			\
369 			 "RCU or wq->mutex should be held")
370 
371 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
372 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
373 			 !lockdep_is_held(&wq->mutex) &&		\
374 			 !lockdep_is_held(&wq_pool_mutex),		\
375 			 "RCU, wq->mutex or wq_pool_mutex should be held")
376 
377 #define for_each_cpu_worker_pool(pool, cpu)				\
378 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
379 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
380 	     (pool)++)
381 
382 /**
383  * for_each_pool - iterate through all worker_pools in the system
384  * @pool: iteration cursor
385  * @pi: integer used for iteration
386  *
387  * This must be called either with wq_pool_mutex held or RCU read
388  * locked.  If the pool needs to be used beyond the locking in effect, the
389  * caller is responsible for guaranteeing that the pool stays online.
390  *
391  * The if/else clause exists only for the lockdep assertion and can be
392  * ignored.
393  */
394 #define for_each_pool(pool, pi)						\
395 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
396 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
397 		else
398 
399 /**
400  * for_each_pool_worker - iterate through all workers of a worker_pool
401  * @worker: iteration cursor
402  * @pool: worker_pool to iterate workers of
403  *
404  * This must be called with wq_pool_attach_mutex.
405  *
406  * The if/else clause exists only for the lockdep assertion and can be
407  * ignored.
408  */
409 #define for_each_pool_worker(worker, pool)				\
410 	list_for_each_entry((worker), &(pool)->workers, node)		\
411 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
412 		else
413 
414 /**
415  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
416  * @pwq: iteration cursor
417  * @wq: the target workqueue
418  *
419  * This must be called either with wq->mutex held or RCU read locked.
420  * If the pwq needs to be used beyond the locking in effect, the caller is
421  * responsible for guaranteeing that the pwq stays online.
422  *
423  * The if/else clause exists only for the lockdep assertion and can be
424  * ignored.
425  */
426 #define for_each_pwq(pwq, wq)						\
427 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
428 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
429 		else
430 
431 #ifdef CONFIG_DEBUG_OBJECTS_WORK
432 
433 static struct debug_obj_descr work_debug_descr;
434 
435 static void *work_debug_hint(void *addr)
436 {
437 	return ((struct work_struct *) addr)->func;
438 }
439 
440 static bool work_is_static_object(void *addr)
441 {
442 	struct work_struct *work = addr;
443 
444 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445 }
446 
447 /*
448  * fixup_init is called when:
449  * - an active object is initialized
450  */
451 static bool work_fixup_init(void *addr, enum debug_obj_state state)
452 {
453 	struct work_struct *work = addr;
454 
455 	switch (state) {
456 	case ODEBUG_STATE_ACTIVE:
457 		cancel_work_sync(work);
458 		debug_object_init(work, &work_debug_descr);
459 		return true;
460 	default:
461 		return false;
462 	}
463 }
464 
465 /*
466  * fixup_free is called when:
467  * - an active object is freed
468  */
469 static bool work_fixup_free(void *addr, enum debug_obj_state state)
470 {
471 	struct work_struct *work = addr;
472 
473 	switch (state) {
474 	case ODEBUG_STATE_ACTIVE:
475 		cancel_work_sync(work);
476 		debug_object_free(work, &work_debug_descr);
477 		return true;
478 	default:
479 		return false;
480 	}
481 }
482 
483 static struct debug_obj_descr work_debug_descr = {
484 	.name		= "work_struct",
485 	.debug_hint	= work_debug_hint,
486 	.is_static_object = work_is_static_object,
487 	.fixup_init	= work_fixup_init,
488 	.fixup_free	= work_fixup_free,
489 };
490 
491 static inline void debug_work_activate(struct work_struct *work)
492 {
493 	debug_object_activate(work, &work_debug_descr);
494 }
495 
496 static inline void debug_work_deactivate(struct work_struct *work)
497 {
498 	debug_object_deactivate(work, &work_debug_descr);
499 }
500 
501 void __init_work(struct work_struct *work, int onstack)
502 {
503 	if (onstack)
504 		debug_object_init_on_stack(work, &work_debug_descr);
505 	else
506 		debug_object_init(work, &work_debug_descr);
507 }
508 EXPORT_SYMBOL_GPL(__init_work);
509 
510 void destroy_work_on_stack(struct work_struct *work)
511 {
512 	debug_object_free(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515 
516 void destroy_delayed_work_on_stack(struct delayed_work *work)
517 {
518 	destroy_timer_on_stack(&work->timer);
519 	debug_object_free(&work->work, &work_debug_descr);
520 }
521 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
522 
523 #else
524 static inline void debug_work_activate(struct work_struct *work) { }
525 static inline void debug_work_deactivate(struct work_struct *work) { }
526 #endif
527 
528 /**
529  * worker_pool_assign_id - allocate ID and assing it to @pool
530  * @pool: the pool pointer of interest
531  *
532  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
533  * successfully, -errno on failure.
534  */
535 static int worker_pool_assign_id(struct worker_pool *pool)
536 {
537 	int ret;
538 
539 	lockdep_assert_held(&wq_pool_mutex);
540 
541 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
542 			GFP_KERNEL);
543 	if (ret >= 0) {
544 		pool->id = ret;
545 		return 0;
546 	}
547 	return ret;
548 }
549 
550 /**
551  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
552  * @wq: the target workqueue
553  * @node: the node ID
554  *
555  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
556  * read locked.
557  * If the pwq needs to be used beyond the locking in effect, the caller is
558  * responsible for guaranteeing that the pwq stays online.
559  *
560  * Return: The unbound pool_workqueue for @node.
561  */
562 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 						  int node)
564 {
565 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
566 
567 	/*
568 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
569 	 * delayed item is pending.  The plan is to keep CPU -> NODE
570 	 * mapping valid and stable across CPU on/offlines.  Once that
571 	 * happens, this workaround can be removed.
572 	 */
573 	if (unlikely(node == NUMA_NO_NODE))
574 		return wq->dfl_pwq;
575 
576 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577 }
578 
579 static unsigned int work_color_to_flags(int color)
580 {
581 	return color << WORK_STRUCT_COLOR_SHIFT;
582 }
583 
584 static int get_work_color(struct work_struct *work)
585 {
586 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
588 }
589 
590 static int work_next_color(int color)
591 {
592 	return (color + 1) % WORK_NR_COLORS;
593 }
594 
595 /*
596  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597  * contain the pointer to the queued pwq.  Once execution starts, the flag
598  * is cleared and the high bits contain OFFQ flags and pool ID.
599  *
600  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601  * and clear_work_data() can be used to set the pwq, pool or clear
602  * work->data.  These functions should only be called while the work is
603  * owned - ie. while the PENDING bit is set.
604  *
605  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
606  * corresponding to a work.  Pool is available once the work has been
607  * queued anywhere after initialization until it is sync canceled.  pwq is
608  * available only while the work item is queued.
609  *
610  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611  * canceled.  While being canceled, a work item may have its PENDING set
612  * but stay off timer and worklist for arbitrarily long and nobody should
613  * try to steal the PENDING bit.
614  */
615 static inline void set_work_data(struct work_struct *work, unsigned long data,
616 				 unsigned long flags)
617 {
618 	WARN_ON_ONCE(!work_pending(work));
619 	atomic_long_set(&work->data, data | flags | work_static(work));
620 }
621 
622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
623 			 unsigned long extra_flags)
624 {
625 	set_work_data(work, (unsigned long)pwq,
626 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627 }
628 
629 static void set_work_pool_and_keep_pending(struct work_struct *work,
630 					   int pool_id)
631 {
632 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 		      WORK_STRUCT_PENDING);
634 }
635 
636 static void set_work_pool_and_clear_pending(struct work_struct *work,
637 					    int pool_id)
638 {
639 	/*
640 	 * The following wmb is paired with the implied mb in
641 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 	 * here are visible to and precede any updates by the next PENDING
643 	 * owner.
644 	 */
645 	smp_wmb();
646 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
647 	/*
648 	 * The following mb guarantees that previous clear of a PENDING bit
649 	 * will not be reordered with any speculative LOADS or STORES from
650 	 * work->current_func, which is executed afterwards.  This possible
651 	 * reordering can lead to a missed execution on attempt to queue
652 	 * the same @work.  E.g. consider this case:
653 	 *
654 	 *   CPU#0                         CPU#1
655 	 *   ----------------------------  --------------------------------
656 	 *
657 	 * 1  STORE event_indicated
658 	 * 2  queue_work_on() {
659 	 * 3    test_and_set_bit(PENDING)
660 	 * 4 }                             set_..._and_clear_pending() {
661 	 * 5                                 set_work_data() # clear bit
662 	 * 6                                 smp_mb()
663 	 * 7                               work->current_func() {
664 	 * 8				      LOAD event_indicated
665 	 *				   }
666 	 *
667 	 * Without an explicit full barrier speculative LOAD on line 8 can
668 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
669 	 * CPU#0 observes the PENDING bit is still set and new execution of
670 	 * a @work is not queued in a hope, that CPU#1 will eventually
671 	 * finish the queued @work.  Meanwhile CPU#1 does not see
672 	 * event_indicated is set, because speculative LOAD was executed
673 	 * before actual STORE.
674 	 */
675 	smp_mb();
676 }
677 
678 static void clear_work_data(struct work_struct *work)
679 {
680 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
681 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
682 }
683 
684 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
685 {
686 	unsigned long data = atomic_long_read(&work->data);
687 
688 	if (data & WORK_STRUCT_PWQ)
689 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
690 	else
691 		return NULL;
692 }
693 
694 /**
695  * get_work_pool - return the worker_pool a given work was associated with
696  * @work: the work item of interest
697  *
698  * Pools are created and destroyed under wq_pool_mutex, and allows read
699  * access under RCU read lock.  As such, this function should be
700  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
701  *
702  * All fields of the returned pool are accessible as long as the above
703  * mentioned locking is in effect.  If the returned pool needs to be used
704  * beyond the critical section, the caller is responsible for ensuring the
705  * returned pool is and stays online.
706  *
707  * Return: The worker_pool @work was last associated with.  %NULL if none.
708  */
709 static struct worker_pool *get_work_pool(struct work_struct *work)
710 {
711 	unsigned long data = atomic_long_read(&work->data);
712 	int pool_id;
713 
714 	assert_rcu_or_pool_mutex();
715 
716 	if (data & WORK_STRUCT_PWQ)
717 		return ((struct pool_workqueue *)
718 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
719 
720 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
721 	if (pool_id == WORK_OFFQ_POOL_NONE)
722 		return NULL;
723 
724 	return idr_find(&worker_pool_idr, pool_id);
725 }
726 
727 /**
728  * get_work_pool_id - return the worker pool ID a given work is associated with
729  * @work: the work item of interest
730  *
731  * Return: The worker_pool ID @work was last associated with.
732  * %WORK_OFFQ_POOL_NONE if none.
733  */
734 static int get_work_pool_id(struct work_struct *work)
735 {
736 	unsigned long data = atomic_long_read(&work->data);
737 
738 	if (data & WORK_STRUCT_PWQ)
739 		return ((struct pool_workqueue *)
740 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
741 
742 	return data >> WORK_OFFQ_POOL_SHIFT;
743 }
744 
745 static void mark_work_canceling(struct work_struct *work)
746 {
747 	unsigned long pool_id = get_work_pool_id(work);
748 
749 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
750 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
751 }
752 
753 static bool work_is_canceling(struct work_struct *work)
754 {
755 	unsigned long data = atomic_long_read(&work->data);
756 
757 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
758 }
759 
760 /*
761  * Policy functions.  These define the policies on how the global worker
762  * pools are managed.  Unless noted otherwise, these functions assume that
763  * they're being called with pool->lock held.
764  */
765 
766 static bool __need_more_worker(struct worker_pool *pool)
767 {
768 	return !atomic_read(&pool->nr_running);
769 }
770 
771 /*
772  * Need to wake up a worker?  Called from anything but currently
773  * running workers.
774  *
775  * Note that, because unbound workers never contribute to nr_running, this
776  * function will always return %true for unbound pools as long as the
777  * worklist isn't empty.
778  */
779 static bool need_more_worker(struct worker_pool *pool)
780 {
781 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
782 }
783 
784 /* Can I start working?  Called from busy but !running workers. */
785 static bool may_start_working(struct worker_pool *pool)
786 {
787 	return pool->nr_idle;
788 }
789 
790 /* Do I need to keep working?  Called from currently running workers. */
791 static bool keep_working(struct worker_pool *pool)
792 {
793 	return !list_empty(&pool->worklist) &&
794 		atomic_read(&pool->nr_running) <= 1;
795 }
796 
797 /* Do we need a new worker?  Called from manager. */
798 static bool need_to_create_worker(struct worker_pool *pool)
799 {
800 	return need_more_worker(pool) && !may_start_working(pool);
801 }
802 
803 /* Do we have too many workers and should some go away? */
804 static bool too_many_workers(struct worker_pool *pool)
805 {
806 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
807 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
808 	int nr_busy = pool->nr_workers - nr_idle;
809 
810 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
811 }
812 
813 /*
814  * Wake up functions.
815  */
816 
817 /* Return the first idle worker.  Safe with preemption disabled */
818 static struct worker *first_idle_worker(struct worker_pool *pool)
819 {
820 	if (unlikely(list_empty(&pool->idle_list)))
821 		return NULL;
822 
823 	return list_first_entry(&pool->idle_list, struct worker, entry);
824 }
825 
826 /**
827  * wake_up_worker - wake up an idle worker
828  * @pool: worker pool to wake worker from
829  *
830  * Wake up the first idle worker of @pool.
831  *
832  * CONTEXT:
833  * spin_lock_irq(pool->lock).
834  */
835 static void wake_up_worker(struct worker_pool *pool)
836 {
837 	struct worker *worker = first_idle_worker(pool);
838 
839 	if (likely(worker))
840 		wake_up_process(worker->task);
841 }
842 
843 /**
844  * wq_worker_running - a worker is running again
845  * @task: task waking up
846  *
847  * This function is called when a worker returns from schedule()
848  */
849 void wq_worker_running(struct task_struct *task)
850 {
851 	struct worker *worker = kthread_data(task);
852 
853 	if (!worker->sleeping)
854 		return;
855 	if (!(worker->flags & WORKER_NOT_RUNNING))
856 		atomic_inc(&worker->pool->nr_running);
857 	worker->sleeping = 0;
858 }
859 
860 /**
861  * wq_worker_sleeping - a worker is going to sleep
862  * @task: task going to sleep
863  *
864  * This function is called from schedule() when a busy worker is
865  * going to sleep.
866  */
867 void wq_worker_sleeping(struct task_struct *task)
868 {
869 	struct worker *next, *worker = kthread_data(task);
870 	struct worker_pool *pool;
871 
872 	/*
873 	 * Rescuers, which may not have all the fields set up like normal
874 	 * workers, also reach here, let's not access anything before
875 	 * checking NOT_RUNNING.
876 	 */
877 	if (worker->flags & WORKER_NOT_RUNNING)
878 		return;
879 
880 	pool = worker->pool;
881 
882 	if (WARN_ON_ONCE(worker->sleeping))
883 		return;
884 
885 	worker->sleeping = 1;
886 	spin_lock_irq(&pool->lock);
887 
888 	/*
889 	 * The counterpart of the following dec_and_test, implied mb,
890 	 * worklist not empty test sequence is in insert_work().
891 	 * Please read comment there.
892 	 *
893 	 * NOT_RUNNING is clear.  This means that we're bound to and
894 	 * running on the local cpu w/ rq lock held and preemption
895 	 * disabled, which in turn means that none else could be
896 	 * manipulating idle_list, so dereferencing idle_list without pool
897 	 * lock is safe.
898 	 */
899 	if (atomic_dec_and_test(&pool->nr_running) &&
900 	    !list_empty(&pool->worklist)) {
901 		next = first_idle_worker(pool);
902 		if (next)
903 			wake_up_process(next->task);
904 	}
905 	spin_unlock_irq(&pool->lock);
906 }
907 
908 /**
909  * wq_worker_last_func - retrieve worker's last work function
910  * @task: Task to retrieve last work function of.
911  *
912  * Determine the last function a worker executed. This is called from
913  * the scheduler to get a worker's last known identity.
914  *
915  * CONTEXT:
916  * spin_lock_irq(rq->lock)
917  *
918  * This function is called during schedule() when a kworker is going
919  * to sleep. It's used by psi to identify aggregation workers during
920  * dequeuing, to allow periodic aggregation to shut-off when that
921  * worker is the last task in the system or cgroup to go to sleep.
922  *
923  * As this function doesn't involve any workqueue-related locking, it
924  * only returns stable values when called from inside the scheduler's
925  * queuing and dequeuing paths, when @task, which must be a kworker,
926  * is guaranteed to not be processing any works.
927  *
928  * Return:
929  * The last work function %current executed as a worker, NULL if it
930  * hasn't executed any work yet.
931  */
932 work_func_t wq_worker_last_func(struct task_struct *task)
933 {
934 	struct worker *worker = kthread_data(task);
935 
936 	return worker->last_func;
937 }
938 
939 /**
940  * worker_set_flags - set worker flags and adjust nr_running accordingly
941  * @worker: self
942  * @flags: flags to set
943  *
944  * Set @flags in @worker->flags and adjust nr_running accordingly.
945  *
946  * CONTEXT:
947  * spin_lock_irq(pool->lock)
948  */
949 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
950 {
951 	struct worker_pool *pool = worker->pool;
952 
953 	WARN_ON_ONCE(worker->task != current);
954 
955 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
956 	if ((flags & WORKER_NOT_RUNNING) &&
957 	    !(worker->flags & WORKER_NOT_RUNNING)) {
958 		atomic_dec(&pool->nr_running);
959 	}
960 
961 	worker->flags |= flags;
962 }
963 
964 /**
965  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
966  * @worker: self
967  * @flags: flags to clear
968  *
969  * Clear @flags in @worker->flags and adjust nr_running accordingly.
970  *
971  * CONTEXT:
972  * spin_lock_irq(pool->lock)
973  */
974 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
975 {
976 	struct worker_pool *pool = worker->pool;
977 	unsigned int oflags = worker->flags;
978 
979 	WARN_ON_ONCE(worker->task != current);
980 
981 	worker->flags &= ~flags;
982 
983 	/*
984 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
985 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
986 	 * of multiple flags, not a single flag.
987 	 */
988 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
989 		if (!(worker->flags & WORKER_NOT_RUNNING))
990 			atomic_inc(&pool->nr_running);
991 }
992 
993 /**
994  * find_worker_executing_work - find worker which is executing a work
995  * @pool: pool of interest
996  * @work: work to find worker for
997  *
998  * Find a worker which is executing @work on @pool by searching
999  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1000  * to match, its current execution should match the address of @work and
1001  * its work function.  This is to avoid unwanted dependency between
1002  * unrelated work executions through a work item being recycled while still
1003  * being executed.
1004  *
1005  * This is a bit tricky.  A work item may be freed once its execution
1006  * starts and nothing prevents the freed area from being recycled for
1007  * another work item.  If the same work item address ends up being reused
1008  * before the original execution finishes, workqueue will identify the
1009  * recycled work item as currently executing and make it wait until the
1010  * current execution finishes, introducing an unwanted dependency.
1011  *
1012  * This function checks the work item address and work function to avoid
1013  * false positives.  Note that this isn't complete as one may construct a
1014  * work function which can introduce dependency onto itself through a
1015  * recycled work item.  Well, if somebody wants to shoot oneself in the
1016  * foot that badly, there's only so much we can do, and if such deadlock
1017  * actually occurs, it should be easy to locate the culprit work function.
1018  *
1019  * CONTEXT:
1020  * spin_lock_irq(pool->lock).
1021  *
1022  * Return:
1023  * Pointer to worker which is executing @work if found, %NULL
1024  * otherwise.
1025  */
1026 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1027 						 struct work_struct *work)
1028 {
1029 	struct worker *worker;
1030 
1031 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1032 			       (unsigned long)work)
1033 		if (worker->current_work == work &&
1034 		    worker->current_func == work->func)
1035 			return worker;
1036 
1037 	return NULL;
1038 }
1039 
1040 /**
1041  * move_linked_works - move linked works to a list
1042  * @work: start of series of works to be scheduled
1043  * @head: target list to append @work to
1044  * @nextp: out parameter for nested worklist walking
1045  *
1046  * Schedule linked works starting from @work to @head.  Work series to
1047  * be scheduled starts at @work and includes any consecutive work with
1048  * WORK_STRUCT_LINKED set in its predecessor.
1049  *
1050  * If @nextp is not NULL, it's updated to point to the next work of
1051  * the last scheduled work.  This allows move_linked_works() to be
1052  * nested inside outer list_for_each_entry_safe().
1053  *
1054  * CONTEXT:
1055  * spin_lock_irq(pool->lock).
1056  */
1057 static void move_linked_works(struct work_struct *work, struct list_head *head,
1058 			      struct work_struct **nextp)
1059 {
1060 	struct work_struct *n;
1061 
1062 	/*
1063 	 * Linked worklist will always end before the end of the list,
1064 	 * use NULL for list head.
1065 	 */
1066 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1067 		list_move_tail(&work->entry, head);
1068 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1069 			break;
1070 	}
1071 
1072 	/*
1073 	 * If we're already inside safe list traversal and have moved
1074 	 * multiple works to the scheduled queue, the next position
1075 	 * needs to be updated.
1076 	 */
1077 	if (nextp)
1078 		*nextp = n;
1079 }
1080 
1081 /**
1082  * get_pwq - get an extra reference on the specified pool_workqueue
1083  * @pwq: pool_workqueue to get
1084  *
1085  * Obtain an extra reference on @pwq.  The caller should guarantee that
1086  * @pwq has positive refcnt and be holding the matching pool->lock.
1087  */
1088 static void get_pwq(struct pool_workqueue *pwq)
1089 {
1090 	lockdep_assert_held(&pwq->pool->lock);
1091 	WARN_ON_ONCE(pwq->refcnt <= 0);
1092 	pwq->refcnt++;
1093 }
1094 
1095 /**
1096  * put_pwq - put a pool_workqueue reference
1097  * @pwq: pool_workqueue to put
1098  *
1099  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1100  * destruction.  The caller should be holding the matching pool->lock.
1101  */
1102 static void put_pwq(struct pool_workqueue *pwq)
1103 {
1104 	lockdep_assert_held(&pwq->pool->lock);
1105 	if (likely(--pwq->refcnt))
1106 		return;
1107 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1108 		return;
1109 	/*
1110 	 * @pwq can't be released under pool->lock, bounce to
1111 	 * pwq_unbound_release_workfn().  This never recurses on the same
1112 	 * pool->lock as this path is taken only for unbound workqueues and
1113 	 * the release work item is scheduled on a per-cpu workqueue.  To
1114 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1115 	 * subclass of 1 in get_unbound_pool().
1116 	 */
1117 	schedule_work(&pwq->unbound_release_work);
1118 }
1119 
1120 /**
1121  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1122  * @pwq: pool_workqueue to put (can be %NULL)
1123  *
1124  * put_pwq() with locking.  This function also allows %NULL @pwq.
1125  */
1126 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1127 {
1128 	if (pwq) {
1129 		/*
1130 		 * As both pwqs and pools are RCU protected, the
1131 		 * following lock operations are safe.
1132 		 */
1133 		spin_lock_irq(&pwq->pool->lock);
1134 		put_pwq(pwq);
1135 		spin_unlock_irq(&pwq->pool->lock);
1136 	}
1137 }
1138 
1139 static void pwq_activate_delayed_work(struct work_struct *work)
1140 {
1141 	struct pool_workqueue *pwq = get_work_pwq(work);
1142 
1143 	trace_workqueue_activate_work(work);
1144 	if (list_empty(&pwq->pool->worklist))
1145 		pwq->pool->watchdog_ts = jiffies;
1146 	move_linked_works(work, &pwq->pool->worklist, NULL);
1147 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1148 	pwq->nr_active++;
1149 }
1150 
1151 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1152 {
1153 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1154 						    struct work_struct, entry);
1155 
1156 	pwq_activate_delayed_work(work);
1157 }
1158 
1159 /**
1160  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1161  * @pwq: pwq of interest
1162  * @color: color of work which left the queue
1163  *
1164  * A work either has completed or is removed from pending queue,
1165  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1166  *
1167  * CONTEXT:
1168  * spin_lock_irq(pool->lock).
1169  */
1170 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1171 {
1172 	/* uncolored work items don't participate in flushing or nr_active */
1173 	if (color == WORK_NO_COLOR)
1174 		goto out_put;
1175 
1176 	pwq->nr_in_flight[color]--;
1177 
1178 	pwq->nr_active--;
1179 	if (!list_empty(&pwq->delayed_works)) {
1180 		/* one down, submit a delayed one */
1181 		if (pwq->nr_active < pwq->max_active)
1182 			pwq_activate_first_delayed(pwq);
1183 	}
1184 
1185 	/* is flush in progress and are we at the flushing tip? */
1186 	if (likely(pwq->flush_color != color))
1187 		goto out_put;
1188 
1189 	/* are there still in-flight works? */
1190 	if (pwq->nr_in_flight[color])
1191 		goto out_put;
1192 
1193 	/* this pwq is done, clear flush_color */
1194 	pwq->flush_color = -1;
1195 
1196 	/*
1197 	 * If this was the last pwq, wake up the first flusher.  It
1198 	 * will handle the rest.
1199 	 */
1200 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1201 		complete(&pwq->wq->first_flusher->done);
1202 out_put:
1203 	put_pwq(pwq);
1204 }
1205 
1206 /**
1207  * try_to_grab_pending - steal work item from worklist and disable irq
1208  * @work: work item to steal
1209  * @is_dwork: @work is a delayed_work
1210  * @flags: place to store irq state
1211  *
1212  * Try to grab PENDING bit of @work.  This function can handle @work in any
1213  * stable state - idle, on timer or on worklist.
1214  *
1215  * Return:
1216  *  1		if @work was pending and we successfully stole PENDING
1217  *  0		if @work was idle and we claimed PENDING
1218  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1219  *  -ENOENT	if someone else is canceling @work, this state may persist
1220  *		for arbitrarily long
1221  *
1222  * Note:
1223  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1224  * interrupted while holding PENDING and @work off queue, irq must be
1225  * disabled on entry.  This, combined with delayed_work->timer being
1226  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1227  *
1228  * On successful return, >= 0, irq is disabled and the caller is
1229  * responsible for releasing it using local_irq_restore(*@flags).
1230  *
1231  * This function is safe to call from any context including IRQ handler.
1232  */
1233 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1234 			       unsigned long *flags)
1235 {
1236 	struct worker_pool *pool;
1237 	struct pool_workqueue *pwq;
1238 
1239 	local_irq_save(*flags);
1240 
1241 	/* try to steal the timer if it exists */
1242 	if (is_dwork) {
1243 		struct delayed_work *dwork = to_delayed_work(work);
1244 
1245 		/*
1246 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1247 		 * guaranteed that the timer is not queued anywhere and not
1248 		 * running on the local CPU.
1249 		 */
1250 		if (likely(del_timer(&dwork->timer)))
1251 			return 1;
1252 	}
1253 
1254 	/* try to claim PENDING the normal way */
1255 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1256 		return 0;
1257 
1258 	rcu_read_lock();
1259 	/*
1260 	 * The queueing is in progress, or it is already queued. Try to
1261 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1262 	 */
1263 	pool = get_work_pool(work);
1264 	if (!pool)
1265 		goto fail;
1266 
1267 	spin_lock(&pool->lock);
1268 	/*
1269 	 * work->data is guaranteed to point to pwq only while the work
1270 	 * item is queued on pwq->wq, and both updating work->data to point
1271 	 * to pwq on queueing and to pool on dequeueing are done under
1272 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1273 	 * points to pwq which is associated with a locked pool, the work
1274 	 * item is currently queued on that pool.
1275 	 */
1276 	pwq = get_work_pwq(work);
1277 	if (pwq && pwq->pool == pool) {
1278 		debug_work_deactivate(work);
1279 
1280 		/*
1281 		 * A delayed work item cannot be grabbed directly because
1282 		 * it might have linked NO_COLOR work items which, if left
1283 		 * on the delayed_list, will confuse pwq->nr_active
1284 		 * management later on and cause stall.  Make sure the work
1285 		 * item is activated before grabbing.
1286 		 */
1287 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1288 			pwq_activate_delayed_work(work);
1289 
1290 		list_del_init(&work->entry);
1291 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1292 
1293 		/* work->data points to pwq iff queued, point to pool */
1294 		set_work_pool_and_keep_pending(work, pool->id);
1295 
1296 		spin_unlock(&pool->lock);
1297 		rcu_read_unlock();
1298 		return 1;
1299 	}
1300 	spin_unlock(&pool->lock);
1301 fail:
1302 	rcu_read_unlock();
1303 	local_irq_restore(*flags);
1304 	if (work_is_canceling(work))
1305 		return -ENOENT;
1306 	cpu_relax();
1307 	return -EAGAIN;
1308 }
1309 
1310 /**
1311  * insert_work - insert a work into a pool
1312  * @pwq: pwq @work belongs to
1313  * @work: work to insert
1314  * @head: insertion point
1315  * @extra_flags: extra WORK_STRUCT_* flags to set
1316  *
1317  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1318  * work_struct flags.
1319  *
1320  * CONTEXT:
1321  * spin_lock_irq(pool->lock).
1322  */
1323 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1324 			struct list_head *head, unsigned int extra_flags)
1325 {
1326 	struct worker_pool *pool = pwq->pool;
1327 
1328 	/* we own @work, set data and link */
1329 	set_work_pwq(work, pwq, extra_flags);
1330 	list_add_tail(&work->entry, head);
1331 	get_pwq(pwq);
1332 
1333 	/*
1334 	 * Ensure either wq_worker_sleeping() sees the above
1335 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1336 	 * around lazily while there are works to be processed.
1337 	 */
1338 	smp_mb();
1339 
1340 	if (__need_more_worker(pool))
1341 		wake_up_worker(pool);
1342 }
1343 
1344 /*
1345  * Test whether @work is being queued from another work executing on the
1346  * same workqueue.
1347  */
1348 static bool is_chained_work(struct workqueue_struct *wq)
1349 {
1350 	struct worker *worker;
1351 
1352 	worker = current_wq_worker();
1353 	/*
1354 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1355 	 * I'm @worker, it's safe to dereference it without locking.
1356 	 */
1357 	return worker && worker->current_pwq->wq == wq;
1358 }
1359 
1360 /*
1361  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1362  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1363  * avoid perturbing sensitive tasks.
1364  */
1365 static int wq_select_unbound_cpu(int cpu)
1366 {
1367 	static bool printed_dbg_warning;
1368 	int new_cpu;
1369 
1370 	if (likely(!wq_debug_force_rr_cpu)) {
1371 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1372 			return cpu;
1373 	} else if (!printed_dbg_warning) {
1374 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1375 		printed_dbg_warning = true;
1376 	}
1377 
1378 	if (cpumask_empty(wq_unbound_cpumask))
1379 		return cpu;
1380 
1381 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1382 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1383 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1384 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1385 		if (unlikely(new_cpu >= nr_cpu_ids))
1386 			return cpu;
1387 	}
1388 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1389 
1390 	return new_cpu;
1391 }
1392 
1393 static void __queue_work(int cpu, struct workqueue_struct *wq,
1394 			 struct work_struct *work)
1395 {
1396 	struct pool_workqueue *pwq;
1397 	struct worker_pool *last_pool;
1398 	struct list_head *worklist;
1399 	unsigned int work_flags;
1400 	unsigned int req_cpu = cpu;
1401 
1402 	/*
1403 	 * While a work item is PENDING && off queue, a task trying to
1404 	 * steal the PENDING will busy-loop waiting for it to either get
1405 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1406 	 * happen with IRQ disabled.
1407 	 */
1408 	lockdep_assert_irqs_disabled();
1409 
1410 	debug_work_activate(work);
1411 
1412 	/* if draining, only works from the same workqueue are allowed */
1413 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1414 	    WARN_ON_ONCE(!is_chained_work(wq)))
1415 		return;
1416 	rcu_read_lock();
1417 retry:
1418 	if (req_cpu == WORK_CPU_UNBOUND)
1419 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1420 
1421 	/* pwq which will be used unless @work is executing elsewhere */
1422 	if (!(wq->flags & WQ_UNBOUND))
1423 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1424 	else
1425 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1426 
1427 	/*
1428 	 * If @work was previously on a different pool, it might still be
1429 	 * running there, in which case the work needs to be queued on that
1430 	 * pool to guarantee non-reentrancy.
1431 	 */
1432 	last_pool = get_work_pool(work);
1433 	if (last_pool && last_pool != pwq->pool) {
1434 		struct worker *worker;
1435 
1436 		spin_lock(&last_pool->lock);
1437 
1438 		worker = find_worker_executing_work(last_pool, work);
1439 
1440 		if (worker && worker->current_pwq->wq == wq) {
1441 			pwq = worker->current_pwq;
1442 		} else {
1443 			/* meh... not running there, queue here */
1444 			spin_unlock(&last_pool->lock);
1445 			spin_lock(&pwq->pool->lock);
1446 		}
1447 	} else {
1448 		spin_lock(&pwq->pool->lock);
1449 	}
1450 
1451 	/*
1452 	 * pwq is determined and locked.  For unbound pools, we could have
1453 	 * raced with pwq release and it could already be dead.  If its
1454 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1455 	 * without another pwq replacing it in the numa_pwq_tbl or while
1456 	 * work items are executing on it, so the retrying is guaranteed to
1457 	 * make forward-progress.
1458 	 */
1459 	if (unlikely(!pwq->refcnt)) {
1460 		if (wq->flags & WQ_UNBOUND) {
1461 			spin_unlock(&pwq->pool->lock);
1462 			cpu_relax();
1463 			goto retry;
1464 		}
1465 		/* oops */
1466 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1467 			  wq->name, cpu);
1468 	}
1469 
1470 	/* pwq determined, queue */
1471 	trace_workqueue_queue_work(req_cpu, pwq, work);
1472 
1473 	if (WARN_ON(!list_empty(&work->entry)))
1474 		goto out;
1475 
1476 	pwq->nr_in_flight[pwq->work_color]++;
1477 	work_flags = work_color_to_flags(pwq->work_color);
1478 
1479 	if (likely(pwq->nr_active < pwq->max_active)) {
1480 		trace_workqueue_activate_work(work);
1481 		pwq->nr_active++;
1482 		worklist = &pwq->pool->worklist;
1483 		if (list_empty(worklist))
1484 			pwq->pool->watchdog_ts = jiffies;
1485 	} else {
1486 		work_flags |= WORK_STRUCT_DELAYED;
1487 		worklist = &pwq->delayed_works;
1488 	}
1489 
1490 	insert_work(pwq, work, worklist, work_flags);
1491 
1492 out:
1493 	spin_unlock(&pwq->pool->lock);
1494 	rcu_read_unlock();
1495 }
1496 
1497 /**
1498  * queue_work_on - queue work on specific cpu
1499  * @cpu: CPU number to execute work on
1500  * @wq: workqueue to use
1501  * @work: work to queue
1502  *
1503  * We queue the work to a specific CPU, the caller must ensure it
1504  * can't go away.
1505  *
1506  * Return: %false if @work was already on a queue, %true otherwise.
1507  */
1508 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1509 		   struct work_struct *work)
1510 {
1511 	bool ret = false;
1512 	unsigned long flags;
1513 
1514 	local_irq_save(flags);
1515 
1516 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1517 		__queue_work(cpu, wq, work);
1518 		ret = true;
1519 	}
1520 
1521 	local_irq_restore(flags);
1522 	return ret;
1523 }
1524 EXPORT_SYMBOL(queue_work_on);
1525 
1526 /**
1527  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1528  * @node: NUMA node ID that we want to select a CPU from
1529  *
1530  * This function will attempt to find a "random" cpu available on a given
1531  * node. If there are no CPUs available on the given node it will return
1532  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1533  * available CPU if we need to schedule this work.
1534  */
1535 static int workqueue_select_cpu_near(int node)
1536 {
1537 	int cpu;
1538 
1539 	/* No point in doing this if NUMA isn't enabled for workqueues */
1540 	if (!wq_numa_enabled)
1541 		return WORK_CPU_UNBOUND;
1542 
1543 	/* Delay binding to CPU if node is not valid or online */
1544 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1545 		return WORK_CPU_UNBOUND;
1546 
1547 	/* Use local node/cpu if we are already there */
1548 	cpu = raw_smp_processor_id();
1549 	if (node == cpu_to_node(cpu))
1550 		return cpu;
1551 
1552 	/* Use "random" otherwise know as "first" online CPU of node */
1553 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1554 
1555 	/* If CPU is valid return that, otherwise just defer */
1556 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1557 }
1558 
1559 /**
1560  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1561  * @node: NUMA node that we are targeting the work for
1562  * @wq: workqueue to use
1563  * @work: work to queue
1564  *
1565  * We queue the work to a "random" CPU within a given NUMA node. The basic
1566  * idea here is to provide a way to somehow associate work with a given
1567  * NUMA node.
1568  *
1569  * This function will only make a best effort attempt at getting this onto
1570  * the right NUMA node. If no node is requested or the requested node is
1571  * offline then we just fall back to standard queue_work behavior.
1572  *
1573  * Currently the "random" CPU ends up being the first available CPU in the
1574  * intersection of cpu_online_mask and the cpumask of the node, unless we
1575  * are running on the node. In that case we just use the current CPU.
1576  *
1577  * Return: %false if @work was already on a queue, %true otherwise.
1578  */
1579 bool queue_work_node(int node, struct workqueue_struct *wq,
1580 		     struct work_struct *work)
1581 {
1582 	unsigned long flags;
1583 	bool ret = false;
1584 
1585 	/*
1586 	 * This current implementation is specific to unbound workqueues.
1587 	 * Specifically we only return the first available CPU for a given
1588 	 * node instead of cycling through individual CPUs within the node.
1589 	 *
1590 	 * If this is used with a per-cpu workqueue then the logic in
1591 	 * workqueue_select_cpu_near would need to be updated to allow for
1592 	 * some round robin type logic.
1593 	 */
1594 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1595 
1596 	local_irq_save(flags);
1597 
1598 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1599 		int cpu = workqueue_select_cpu_near(node);
1600 
1601 		__queue_work(cpu, wq, work);
1602 		ret = true;
1603 	}
1604 
1605 	local_irq_restore(flags);
1606 	return ret;
1607 }
1608 EXPORT_SYMBOL_GPL(queue_work_node);
1609 
1610 void delayed_work_timer_fn(struct timer_list *t)
1611 {
1612 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1613 
1614 	/* should have been called from irqsafe timer with irq already off */
1615 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1616 }
1617 EXPORT_SYMBOL(delayed_work_timer_fn);
1618 
1619 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1620 				struct delayed_work *dwork, unsigned long delay)
1621 {
1622 	struct timer_list *timer = &dwork->timer;
1623 	struct work_struct *work = &dwork->work;
1624 
1625 	WARN_ON_ONCE(!wq);
1626 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1627 	WARN_ON_ONCE(timer_pending(timer));
1628 	WARN_ON_ONCE(!list_empty(&work->entry));
1629 
1630 	/*
1631 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1632 	 * both optimization and correctness.  The earliest @timer can
1633 	 * expire is on the closest next tick and delayed_work users depend
1634 	 * on that there's no such delay when @delay is 0.
1635 	 */
1636 	if (!delay) {
1637 		__queue_work(cpu, wq, &dwork->work);
1638 		return;
1639 	}
1640 
1641 	dwork->wq = wq;
1642 	dwork->cpu = cpu;
1643 	timer->expires = jiffies + delay;
1644 
1645 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1646 		add_timer_on(timer, cpu);
1647 	else
1648 		add_timer(timer);
1649 }
1650 
1651 /**
1652  * queue_delayed_work_on - queue work on specific CPU after delay
1653  * @cpu: CPU number to execute work on
1654  * @wq: workqueue to use
1655  * @dwork: work to queue
1656  * @delay: number of jiffies to wait before queueing
1657  *
1658  * Return: %false if @work was already on a queue, %true otherwise.  If
1659  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1660  * execution.
1661  */
1662 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1663 			   struct delayed_work *dwork, unsigned long delay)
1664 {
1665 	struct work_struct *work = &dwork->work;
1666 	bool ret = false;
1667 	unsigned long flags;
1668 
1669 	/* read the comment in __queue_work() */
1670 	local_irq_save(flags);
1671 
1672 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1673 		__queue_delayed_work(cpu, wq, dwork, delay);
1674 		ret = true;
1675 	}
1676 
1677 	local_irq_restore(flags);
1678 	return ret;
1679 }
1680 EXPORT_SYMBOL(queue_delayed_work_on);
1681 
1682 /**
1683  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1684  * @cpu: CPU number to execute work on
1685  * @wq: workqueue to use
1686  * @dwork: work to queue
1687  * @delay: number of jiffies to wait before queueing
1688  *
1689  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1690  * modify @dwork's timer so that it expires after @delay.  If @delay is
1691  * zero, @work is guaranteed to be scheduled immediately regardless of its
1692  * current state.
1693  *
1694  * Return: %false if @dwork was idle and queued, %true if @dwork was
1695  * pending and its timer was modified.
1696  *
1697  * This function is safe to call from any context including IRQ handler.
1698  * See try_to_grab_pending() for details.
1699  */
1700 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1701 			 struct delayed_work *dwork, unsigned long delay)
1702 {
1703 	unsigned long flags;
1704 	int ret;
1705 
1706 	do {
1707 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1708 	} while (unlikely(ret == -EAGAIN));
1709 
1710 	if (likely(ret >= 0)) {
1711 		__queue_delayed_work(cpu, wq, dwork, delay);
1712 		local_irq_restore(flags);
1713 	}
1714 
1715 	/* -ENOENT from try_to_grab_pending() becomes %true */
1716 	return ret;
1717 }
1718 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1719 
1720 static void rcu_work_rcufn(struct rcu_head *rcu)
1721 {
1722 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1723 
1724 	/* read the comment in __queue_work() */
1725 	local_irq_disable();
1726 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1727 	local_irq_enable();
1728 }
1729 
1730 /**
1731  * queue_rcu_work - queue work after a RCU grace period
1732  * @wq: workqueue to use
1733  * @rwork: work to queue
1734  *
1735  * Return: %false if @rwork was already pending, %true otherwise.  Note
1736  * that a full RCU grace period is guaranteed only after a %true return.
1737  * While @rwork is guaranteed to be executed after a %false return, the
1738  * execution may happen before a full RCU grace period has passed.
1739  */
1740 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1741 {
1742 	struct work_struct *work = &rwork->work;
1743 
1744 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1745 		rwork->wq = wq;
1746 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1747 		return true;
1748 	}
1749 
1750 	return false;
1751 }
1752 EXPORT_SYMBOL(queue_rcu_work);
1753 
1754 /**
1755  * worker_enter_idle - enter idle state
1756  * @worker: worker which is entering idle state
1757  *
1758  * @worker is entering idle state.  Update stats and idle timer if
1759  * necessary.
1760  *
1761  * LOCKING:
1762  * spin_lock_irq(pool->lock).
1763  */
1764 static void worker_enter_idle(struct worker *worker)
1765 {
1766 	struct worker_pool *pool = worker->pool;
1767 
1768 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1769 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1770 			 (worker->hentry.next || worker->hentry.pprev)))
1771 		return;
1772 
1773 	/* can't use worker_set_flags(), also called from create_worker() */
1774 	worker->flags |= WORKER_IDLE;
1775 	pool->nr_idle++;
1776 	worker->last_active = jiffies;
1777 
1778 	/* idle_list is LIFO */
1779 	list_add(&worker->entry, &pool->idle_list);
1780 
1781 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1782 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1783 
1784 	/*
1785 	 * Sanity check nr_running.  Because unbind_workers() releases
1786 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1787 	 * nr_running, the warning may trigger spuriously.  Check iff
1788 	 * unbind is not in progress.
1789 	 */
1790 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1791 		     pool->nr_workers == pool->nr_idle &&
1792 		     atomic_read(&pool->nr_running));
1793 }
1794 
1795 /**
1796  * worker_leave_idle - leave idle state
1797  * @worker: worker which is leaving idle state
1798  *
1799  * @worker is leaving idle state.  Update stats.
1800  *
1801  * LOCKING:
1802  * spin_lock_irq(pool->lock).
1803  */
1804 static void worker_leave_idle(struct worker *worker)
1805 {
1806 	struct worker_pool *pool = worker->pool;
1807 
1808 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1809 		return;
1810 	worker_clr_flags(worker, WORKER_IDLE);
1811 	pool->nr_idle--;
1812 	list_del_init(&worker->entry);
1813 }
1814 
1815 static struct worker *alloc_worker(int node)
1816 {
1817 	struct worker *worker;
1818 
1819 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1820 	if (worker) {
1821 		INIT_LIST_HEAD(&worker->entry);
1822 		INIT_LIST_HEAD(&worker->scheduled);
1823 		INIT_LIST_HEAD(&worker->node);
1824 		/* on creation a worker is in !idle && prep state */
1825 		worker->flags = WORKER_PREP;
1826 	}
1827 	return worker;
1828 }
1829 
1830 /**
1831  * worker_attach_to_pool() - attach a worker to a pool
1832  * @worker: worker to be attached
1833  * @pool: the target pool
1834  *
1835  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1836  * cpu-binding of @worker are kept coordinated with the pool across
1837  * cpu-[un]hotplugs.
1838  */
1839 static void worker_attach_to_pool(struct worker *worker,
1840 				   struct worker_pool *pool)
1841 {
1842 	mutex_lock(&wq_pool_attach_mutex);
1843 
1844 	/*
1845 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1846 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1847 	 */
1848 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1849 
1850 	/*
1851 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1852 	 * stable across this function.  See the comments above the flag
1853 	 * definition for details.
1854 	 */
1855 	if (pool->flags & POOL_DISASSOCIATED)
1856 		worker->flags |= WORKER_UNBOUND;
1857 
1858 	list_add_tail(&worker->node, &pool->workers);
1859 	worker->pool = pool;
1860 
1861 	mutex_unlock(&wq_pool_attach_mutex);
1862 }
1863 
1864 /**
1865  * worker_detach_from_pool() - detach a worker from its pool
1866  * @worker: worker which is attached to its pool
1867  *
1868  * Undo the attaching which had been done in worker_attach_to_pool().  The
1869  * caller worker shouldn't access to the pool after detached except it has
1870  * other reference to the pool.
1871  */
1872 static void worker_detach_from_pool(struct worker *worker)
1873 {
1874 	struct worker_pool *pool = worker->pool;
1875 	struct completion *detach_completion = NULL;
1876 
1877 	mutex_lock(&wq_pool_attach_mutex);
1878 
1879 	list_del(&worker->node);
1880 	worker->pool = NULL;
1881 
1882 	if (list_empty(&pool->workers))
1883 		detach_completion = pool->detach_completion;
1884 	mutex_unlock(&wq_pool_attach_mutex);
1885 
1886 	/* clear leftover flags without pool->lock after it is detached */
1887 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1888 
1889 	if (detach_completion)
1890 		complete(detach_completion);
1891 }
1892 
1893 /**
1894  * create_worker - create a new workqueue worker
1895  * @pool: pool the new worker will belong to
1896  *
1897  * Create and start a new worker which is attached to @pool.
1898  *
1899  * CONTEXT:
1900  * Might sleep.  Does GFP_KERNEL allocations.
1901  *
1902  * Return:
1903  * Pointer to the newly created worker.
1904  */
1905 static struct worker *create_worker(struct worker_pool *pool)
1906 {
1907 	struct worker *worker = NULL;
1908 	int id = -1;
1909 	char id_buf[16];
1910 
1911 	/* ID is needed to determine kthread name */
1912 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1913 	if (id < 0)
1914 		goto fail;
1915 
1916 	worker = alloc_worker(pool->node);
1917 	if (!worker)
1918 		goto fail;
1919 
1920 	worker->id = id;
1921 
1922 	if (pool->cpu >= 0)
1923 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1924 			 pool->attrs->nice < 0  ? "H" : "");
1925 	else
1926 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1927 
1928 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1929 					      "kworker/%s", id_buf);
1930 	if (IS_ERR(worker->task))
1931 		goto fail;
1932 
1933 	set_user_nice(worker->task, pool->attrs->nice);
1934 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1935 
1936 	/* successful, attach the worker to the pool */
1937 	worker_attach_to_pool(worker, pool);
1938 
1939 	/* start the newly created worker */
1940 	spin_lock_irq(&pool->lock);
1941 	worker->pool->nr_workers++;
1942 	worker_enter_idle(worker);
1943 	wake_up_process(worker->task);
1944 	spin_unlock_irq(&pool->lock);
1945 
1946 	return worker;
1947 
1948 fail:
1949 	if (id >= 0)
1950 		ida_simple_remove(&pool->worker_ida, id);
1951 	kfree(worker);
1952 	return NULL;
1953 }
1954 
1955 /**
1956  * destroy_worker - destroy a workqueue worker
1957  * @worker: worker to be destroyed
1958  *
1959  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1960  * be idle.
1961  *
1962  * CONTEXT:
1963  * spin_lock_irq(pool->lock).
1964  */
1965 static void destroy_worker(struct worker *worker)
1966 {
1967 	struct worker_pool *pool = worker->pool;
1968 
1969 	lockdep_assert_held(&pool->lock);
1970 
1971 	/* sanity check frenzy */
1972 	if (WARN_ON(worker->current_work) ||
1973 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1974 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1975 		return;
1976 
1977 	pool->nr_workers--;
1978 	pool->nr_idle--;
1979 
1980 	list_del_init(&worker->entry);
1981 	worker->flags |= WORKER_DIE;
1982 	wake_up_process(worker->task);
1983 }
1984 
1985 static void idle_worker_timeout(struct timer_list *t)
1986 {
1987 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1988 
1989 	spin_lock_irq(&pool->lock);
1990 
1991 	while (too_many_workers(pool)) {
1992 		struct worker *worker;
1993 		unsigned long expires;
1994 
1995 		/* idle_list is kept in LIFO order, check the last one */
1996 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1997 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1998 
1999 		if (time_before(jiffies, expires)) {
2000 			mod_timer(&pool->idle_timer, expires);
2001 			break;
2002 		}
2003 
2004 		destroy_worker(worker);
2005 	}
2006 
2007 	spin_unlock_irq(&pool->lock);
2008 }
2009 
2010 static void send_mayday(struct work_struct *work)
2011 {
2012 	struct pool_workqueue *pwq = get_work_pwq(work);
2013 	struct workqueue_struct *wq = pwq->wq;
2014 
2015 	lockdep_assert_held(&wq_mayday_lock);
2016 
2017 	if (!wq->rescuer)
2018 		return;
2019 
2020 	/* mayday mayday mayday */
2021 	if (list_empty(&pwq->mayday_node)) {
2022 		/*
2023 		 * If @pwq is for an unbound wq, its base ref may be put at
2024 		 * any time due to an attribute change.  Pin @pwq until the
2025 		 * rescuer is done with it.
2026 		 */
2027 		get_pwq(pwq);
2028 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2029 		wake_up_process(wq->rescuer->task);
2030 	}
2031 }
2032 
2033 static void pool_mayday_timeout(struct timer_list *t)
2034 {
2035 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2036 	struct work_struct *work;
2037 
2038 	spin_lock_irq(&pool->lock);
2039 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2040 
2041 	if (need_to_create_worker(pool)) {
2042 		/*
2043 		 * We've been trying to create a new worker but
2044 		 * haven't been successful.  We might be hitting an
2045 		 * allocation deadlock.  Send distress signals to
2046 		 * rescuers.
2047 		 */
2048 		list_for_each_entry(work, &pool->worklist, entry)
2049 			send_mayday(work);
2050 	}
2051 
2052 	spin_unlock(&wq_mayday_lock);
2053 	spin_unlock_irq(&pool->lock);
2054 
2055 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2056 }
2057 
2058 /**
2059  * maybe_create_worker - create a new worker if necessary
2060  * @pool: pool to create a new worker for
2061  *
2062  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2063  * have at least one idle worker on return from this function.  If
2064  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2065  * sent to all rescuers with works scheduled on @pool to resolve
2066  * possible allocation deadlock.
2067  *
2068  * On return, need_to_create_worker() is guaranteed to be %false and
2069  * may_start_working() %true.
2070  *
2071  * LOCKING:
2072  * spin_lock_irq(pool->lock) which may be released and regrabbed
2073  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2074  * manager.
2075  */
2076 static void maybe_create_worker(struct worker_pool *pool)
2077 __releases(&pool->lock)
2078 __acquires(&pool->lock)
2079 {
2080 restart:
2081 	spin_unlock_irq(&pool->lock);
2082 
2083 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2084 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2085 
2086 	while (true) {
2087 		if (create_worker(pool) || !need_to_create_worker(pool))
2088 			break;
2089 
2090 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2091 
2092 		if (!need_to_create_worker(pool))
2093 			break;
2094 	}
2095 
2096 	del_timer_sync(&pool->mayday_timer);
2097 	spin_lock_irq(&pool->lock);
2098 	/*
2099 	 * This is necessary even after a new worker was just successfully
2100 	 * created as @pool->lock was dropped and the new worker might have
2101 	 * already become busy.
2102 	 */
2103 	if (need_to_create_worker(pool))
2104 		goto restart;
2105 }
2106 
2107 /**
2108  * manage_workers - manage worker pool
2109  * @worker: self
2110  *
2111  * Assume the manager role and manage the worker pool @worker belongs
2112  * to.  At any given time, there can be only zero or one manager per
2113  * pool.  The exclusion is handled automatically by this function.
2114  *
2115  * The caller can safely start processing works on false return.  On
2116  * true return, it's guaranteed that need_to_create_worker() is false
2117  * and may_start_working() is true.
2118  *
2119  * CONTEXT:
2120  * spin_lock_irq(pool->lock) which may be released and regrabbed
2121  * multiple times.  Does GFP_KERNEL allocations.
2122  *
2123  * Return:
2124  * %false if the pool doesn't need management and the caller can safely
2125  * start processing works, %true if management function was performed and
2126  * the conditions that the caller verified before calling the function may
2127  * no longer be true.
2128  */
2129 static bool manage_workers(struct worker *worker)
2130 {
2131 	struct worker_pool *pool = worker->pool;
2132 
2133 	if (pool->flags & POOL_MANAGER_ACTIVE)
2134 		return false;
2135 
2136 	pool->flags |= POOL_MANAGER_ACTIVE;
2137 	pool->manager = worker;
2138 
2139 	maybe_create_worker(pool);
2140 
2141 	pool->manager = NULL;
2142 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2143 	wake_up(&wq_manager_wait);
2144 	return true;
2145 }
2146 
2147 /**
2148  * process_one_work - process single work
2149  * @worker: self
2150  * @work: work to process
2151  *
2152  * Process @work.  This function contains all the logics necessary to
2153  * process a single work including synchronization against and
2154  * interaction with other workers on the same cpu, queueing and
2155  * flushing.  As long as context requirement is met, any worker can
2156  * call this function to process a work.
2157  *
2158  * CONTEXT:
2159  * spin_lock_irq(pool->lock) which is released and regrabbed.
2160  */
2161 static void process_one_work(struct worker *worker, struct work_struct *work)
2162 __releases(&pool->lock)
2163 __acquires(&pool->lock)
2164 {
2165 	struct pool_workqueue *pwq = get_work_pwq(work);
2166 	struct worker_pool *pool = worker->pool;
2167 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2168 	int work_color;
2169 	struct worker *collision;
2170 #ifdef CONFIG_LOCKDEP
2171 	/*
2172 	 * It is permissible to free the struct work_struct from
2173 	 * inside the function that is called from it, this we need to
2174 	 * take into account for lockdep too.  To avoid bogus "held
2175 	 * lock freed" warnings as well as problems when looking into
2176 	 * work->lockdep_map, make a copy and use that here.
2177 	 */
2178 	struct lockdep_map lockdep_map;
2179 
2180 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2181 #endif
2182 	/* ensure we're on the correct CPU */
2183 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2184 		     raw_smp_processor_id() != pool->cpu);
2185 
2186 	/*
2187 	 * A single work shouldn't be executed concurrently by
2188 	 * multiple workers on a single cpu.  Check whether anyone is
2189 	 * already processing the work.  If so, defer the work to the
2190 	 * currently executing one.
2191 	 */
2192 	collision = find_worker_executing_work(pool, work);
2193 	if (unlikely(collision)) {
2194 		move_linked_works(work, &collision->scheduled, NULL);
2195 		return;
2196 	}
2197 
2198 	/* claim and dequeue */
2199 	debug_work_deactivate(work);
2200 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2201 	worker->current_work = work;
2202 	worker->current_func = work->func;
2203 	worker->current_pwq = pwq;
2204 	work_color = get_work_color(work);
2205 
2206 	/*
2207 	 * Record wq name for cmdline and debug reporting, may get
2208 	 * overridden through set_worker_desc().
2209 	 */
2210 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2211 
2212 	list_del_init(&work->entry);
2213 
2214 	/*
2215 	 * CPU intensive works don't participate in concurrency management.
2216 	 * They're the scheduler's responsibility.  This takes @worker out
2217 	 * of concurrency management and the next code block will chain
2218 	 * execution of the pending work items.
2219 	 */
2220 	if (unlikely(cpu_intensive))
2221 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2222 
2223 	/*
2224 	 * Wake up another worker if necessary.  The condition is always
2225 	 * false for normal per-cpu workers since nr_running would always
2226 	 * be >= 1 at this point.  This is used to chain execution of the
2227 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2228 	 * UNBOUND and CPU_INTENSIVE ones.
2229 	 */
2230 	if (need_more_worker(pool))
2231 		wake_up_worker(pool);
2232 
2233 	/*
2234 	 * Record the last pool and clear PENDING which should be the last
2235 	 * update to @work.  Also, do this inside @pool->lock so that
2236 	 * PENDING and queued state changes happen together while IRQ is
2237 	 * disabled.
2238 	 */
2239 	set_work_pool_and_clear_pending(work, pool->id);
2240 
2241 	spin_unlock_irq(&pool->lock);
2242 
2243 	lock_map_acquire(&pwq->wq->lockdep_map);
2244 	lock_map_acquire(&lockdep_map);
2245 	/*
2246 	 * Strictly speaking we should mark the invariant state without holding
2247 	 * any locks, that is, before these two lock_map_acquire()'s.
2248 	 *
2249 	 * However, that would result in:
2250 	 *
2251 	 *   A(W1)
2252 	 *   WFC(C)
2253 	 *		A(W1)
2254 	 *		C(C)
2255 	 *
2256 	 * Which would create W1->C->W1 dependencies, even though there is no
2257 	 * actual deadlock possible. There are two solutions, using a
2258 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2259 	 * hit the lockdep limitation on recursive locks, or simply discard
2260 	 * these locks.
2261 	 *
2262 	 * AFAICT there is no possible deadlock scenario between the
2263 	 * flush_work() and complete() primitives (except for single-threaded
2264 	 * workqueues), so hiding them isn't a problem.
2265 	 */
2266 	lockdep_invariant_state(true);
2267 	trace_workqueue_execute_start(work);
2268 	worker->current_func(work);
2269 	/*
2270 	 * While we must be careful to not use "work" after this, the trace
2271 	 * point will only record its address.
2272 	 */
2273 	trace_workqueue_execute_end(work);
2274 	lock_map_release(&lockdep_map);
2275 	lock_map_release(&pwq->wq->lockdep_map);
2276 
2277 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2278 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2279 		       "     last function: %ps\n",
2280 		       current->comm, preempt_count(), task_pid_nr(current),
2281 		       worker->current_func);
2282 		debug_show_held_locks(current);
2283 		dump_stack();
2284 	}
2285 
2286 	/*
2287 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2288 	 * kernels, where a requeueing work item waiting for something to
2289 	 * happen could deadlock with stop_machine as such work item could
2290 	 * indefinitely requeue itself while all other CPUs are trapped in
2291 	 * stop_machine. At the same time, report a quiescent RCU state so
2292 	 * the same condition doesn't freeze RCU.
2293 	 */
2294 	cond_resched();
2295 
2296 	spin_lock_irq(&pool->lock);
2297 
2298 	/* clear cpu intensive status */
2299 	if (unlikely(cpu_intensive))
2300 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2301 
2302 	/* tag the worker for identification in schedule() */
2303 	worker->last_func = worker->current_func;
2304 
2305 	/* we're done with it, release */
2306 	hash_del(&worker->hentry);
2307 	worker->current_work = NULL;
2308 	worker->current_func = NULL;
2309 	worker->current_pwq = NULL;
2310 	pwq_dec_nr_in_flight(pwq, work_color);
2311 }
2312 
2313 /**
2314  * process_scheduled_works - process scheduled works
2315  * @worker: self
2316  *
2317  * Process all scheduled works.  Please note that the scheduled list
2318  * may change while processing a work, so this function repeatedly
2319  * fetches a work from the top and executes it.
2320  *
2321  * CONTEXT:
2322  * spin_lock_irq(pool->lock) which may be released and regrabbed
2323  * multiple times.
2324  */
2325 static void process_scheduled_works(struct worker *worker)
2326 {
2327 	while (!list_empty(&worker->scheduled)) {
2328 		struct work_struct *work = list_first_entry(&worker->scheduled,
2329 						struct work_struct, entry);
2330 		process_one_work(worker, work);
2331 	}
2332 }
2333 
2334 static void set_pf_worker(bool val)
2335 {
2336 	mutex_lock(&wq_pool_attach_mutex);
2337 	if (val)
2338 		current->flags |= PF_WQ_WORKER;
2339 	else
2340 		current->flags &= ~PF_WQ_WORKER;
2341 	mutex_unlock(&wq_pool_attach_mutex);
2342 }
2343 
2344 /**
2345  * worker_thread - the worker thread function
2346  * @__worker: self
2347  *
2348  * The worker thread function.  All workers belong to a worker_pool -
2349  * either a per-cpu one or dynamic unbound one.  These workers process all
2350  * work items regardless of their specific target workqueue.  The only
2351  * exception is work items which belong to workqueues with a rescuer which
2352  * will be explained in rescuer_thread().
2353  *
2354  * Return: 0
2355  */
2356 static int worker_thread(void *__worker)
2357 {
2358 	struct worker *worker = __worker;
2359 	struct worker_pool *pool = worker->pool;
2360 
2361 	/* tell the scheduler that this is a workqueue worker */
2362 	set_pf_worker(true);
2363 woke_up:
2364 	spin_lock_irq(&pool->lock);
2365 
2366 	/* am I supposed to die? */
2367 	if (unlikely(worker->flags & WORKER_DIE)) {
2368 		spin_unlock_irq(&pool->lock);
2369 		WARN_ON_ONCE(!list_empty(&worker->entry));
2370 		set_pf_worker(false);
2371 
2372 		set_task_comm(worker->task, "kworker/dying");
2373 		ida_simple_remove(&pool->worker_ida, worker->id);
2374 		worker_detach_from_pool(worker);
2375 		kfree(worker);
2376 		return 0;
2377 	}
2378 
2379 	worker_leave_idle(worker);
2380 recheck:
2381 	/* no more worker necessary? */
2382 	if (!need_more_worker(pool))
2383 		goto sleep;
2384 
2385 	/* do we need to manage? */
2386 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2387 		goto recheck;
2388 
2389 	/*
2390 	 * ->scheduled list can only be filled while a worker is
2391 	 * preparing to process a work or actually processing it.
2392 	 * Make sure nobody diddled with it while I was sleeping.
2393 	 */
2394 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2395 
2396 	/*
2397 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2398 	 * worker or that someone else has already assumed the manager
2399 	 * role.  This is where @worker starts participating in concurrency
2400 	 * management if applicable and concurrency management is restored
2401 	 * after being rebound.  See rebind_workers() for details.
2402 	 */
2403 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2404 
2405 	do {
2406 		struct work_struct *work =
2407 			list_first_entry(&pool->worklist,
2408 					 struct work_struct, entry);
2409 
2410 		pool->watchdog_ts = jiffies;
2411 
2412 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2413 			/* optimization path, not strictly necessary */
2414 			process_one_work(worker, work);
2415 			if (unlikely(!list_empty(&worker->scheduled)))
2416 				process_scheduled_works(worker);
2417 		} else {
2418 			move_linked_works(work, &worker->scheduled, NULL);
2419 			process_scheduled_works(worker);
2420 		}
2421 	} while (keep_working(pool));
2422 
2423 	worker_set_flags(worker, WORKER_PREP);
2424 sleep:
2425 	/*
2426 	 * pool->lock is held and there's no work to process and no need to
2427 	 * manage, sleep.  Workers are woken up only while holding
2428 	 * pool->lock or from local cpu, so setting the current state
2429 	 * before releasing pool->lock is enough to prevent losing any
2430 	 * event.
2431 	 */
2432 	worker_enter_idle(worker);
2433 	__set_current_state(TASK_IDLE);
2434 	spin_unlock_irq(&pool->lock);
2435 	schedule();
2436 	goto woke_up;
2437 }
2438 
2439 /**
2440  * rescuer_thread - the rescuer thread function
2441  * @__rescuer: self
2442  *
2443  * Workqueue rescuer thread function.  There's one rescuer for each
2444  * workqueue which has WQ_MEM_RECLAIM set.
2445  *
2446  * Regular work processing on a pool may block trying to create a new
2447  * worker which uses GFP_KERNEL allocation which has slight chance of
2448  * developing into deadlock if some works currently on the same queue
2449  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2450  * the problem rescuer solves.
2451  *
2452  * When such condition is possible, the pool summons rescuers of all
2453  * workqueues which have works queued on the pool and let them process
2454  * those works so that forward progress can be guaranteed.
2455  *
2456  * This should happen rarely.
2457  *
2458  * Return: 0
2459  */
2460 static int rescuer_thread(void *__rescuer)
2461 {
2462 	struct worker *rescuer = __rescuer;
2463 	struct workqueue_struct *wq = rescuer->rescue_wq;
2464 	struct list_head *scheduled = &rescuer->scheduled;
2465 	bool should_stop;
2466 
2467 	set_user_nice(current, RESCUER_NICE_LEVEL);
2468 
2469 	/*
2470 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2471 	 * doesn't participate in concurrency management.
2472 	 */
2473 	set_pf_worker(true);
2474 repeat:
2475 	set_current_state(TASK_IDLE);
2476 
2477 	/*
2478 	 * By the time the rescuer is requested to stop, the workqueue
2479 	 * shouldn't have any work pending, but @wq->maydays may still have
2480 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2481 	 * all the work items before the rescuer got to them.  Go through
2482 	 * @wq->maydays processing before acting on should_stop so that the
2483 	 * list is always empty on exit.
2484 	 */
2485 	should_stop = kthread_should_stop();
2486 
2487 	/* see whether any pwq is asking for help */
2488 	spin_lock_irq(&wq_mayday_lock);
2489 
2490 	while (!list_empty(&wq->maydays)) {
2491 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2492 					struct pool_workqueue, mayday_node);
2493 		struct worker_pool *pool = pwq->pool;
2494 		struct work_struct *work, *n;
2495 		bool first = true;
2496 
2497 		__set_current_state(TASK_RUNNING);
2498 		list_del_init(&pwq->mayday_node);
2499 
2500 		spin_unlock_irq(&wq_mayday_lock);
2501 
2502 		worker_attach_to_pool(rescuer, pool);
2503 
2504 		spin_lock_irq(&pool->lock);
2505 
2506 		/*
2507 		 * Slurp in all works issued via this workqueue and
2508 		 * process'em.
2509 		 */
2510 		WARN_ON_ONCE(!list_empty(scheduled));
2511 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2512 			if (get_work_pwq(work) == pwq) {
2513 				if (first)
2514 					pool->watchdog_ts = jiffies;
2515 				move_linked_works(work, scheduled, &n);
2516 			}
2517 			first = false;
2518 		}
2519 
2520 		if (!list_empty(scheduled)) {
2521 			process_scheduled_works(rescuer);
2522 
2523 			/*
2524 			 * The above execution of rescued work items could
2525 			 * have created more to rescue through
2526 			 * pwq_activate_first_delayed() or chained
2527 			 * queueing.  Let's put @pwq back on mayday list so
2528 			 * that such back-to-back work items, which may be
2529 			 * being used to relieve memory pressure, don't
2530 			 * incur MAYDAY_INTERVAL delay inbetween.
2531 			 */
2532 			if (need_to_create_worker(pool)) {
2533 				spin_lock(&wq_mayday_lock);
2534 				get_pwq(pwq);
2535 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2536 				spin_unlock(&wq_mayday_lock);
2537 			}
2538 		}
2539 
2540 		/*
2541 		 * Put the reference grabbed by send_mayday().  @pool won't
2542 		 * go away while we're still attached to it.
2543 		 */
2544 		put_pwq(pwq);
2545 
2546 		/*
2547 		 * Leave this pool.  If need_more_worker() is %true, notify a
2548 		 * regular worker; otherwise, we end up with 0 concurrency
2549 		 * and stalling the execution.
2550 		 */
2551 		if (need_more_worker(pool))
2552 			wake_up_worker(pool);
2553 
2554 		spin_unlock_irq(&pool->lock);
2555 
2556 		worker_detach_from_pool(rescuer);
2557 
2558 		spin_lock_irq(&wq_mayday_lock);
2559 	}
2560 
2561 	spin_unlock_irq(&wq_mayday_lock);
2562 
2563 	if (should_stop) {
2564 		__set_current_state(TASK_RUNNING);
2565 		set_pf_worker(false);
2566 		return 0;
2567 	}
2568 
2569 	/* rescuers should never participate in concurrency management */
2570 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2571 	schedule();
2572 	goto repeat;
2573 }
2574 
2575 /**
2576  * check_flush_dependency - check for flush dependency sanity
2577  * @target_wq: workqueue being flushed
2578  * @target_work: work item being flushed (NULL for workqueue flushes)
2579  *
2580  * %current is trying to flush the whole @target_wq or @target_work on it.
2581  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2582  * reclaiming memory or running on a workqueue which doesn't have
2583  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2584  * a deadlock.
2585  */
2586 static void check_flush_dependency(struct workqueue_struct *target_wq,
2587 				   struct work_struct *target_work)
2588 {
2589 	work_func_t target_func = target_work ? target_work->func : NULL;
2590 	struct worker *worker;
2591 
2592 	if (target_wq->flags & WQ_MEM_RECLAIM)
2593 		return;
2594 
2595 	worker = current_wq_worker();
2596 
2597 	WARN_ONCE(current->flags & PF_MEMALLOC,
2598 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2599 		  current->pid, current->comm, target_wq->name, target_func);
2600 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2601 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2602 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2603 		  worker->current_pwq->wq->name, worker->current_func,
2604 		  target_wq->name, target_func);
2605 }
2606 
2607 struct wq_barrier {
2608 	struct work_struct	work;
2609 	struct completion	done;
2610 	struct task_struct	*task;	/* purely informational */
2611 };
2612 
2613 static void wq_barrier_func(struct work_struct *work)
2614 {
2615 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2616 	complete(&barr->done);
2617 }
2618 
2619 /**
2620  * insert_wq_barrier - insert a barrier work
2621  * @pwq: pwq to insert barrier into
2622  * @barr: wq_barrier to insert
2623  * @target: target work to attach @barr to
2624  * @worker: worker currently executing @target, NULL if @target is not executing
2625  *
2626  * @barr is linked to @target such that @barr is completed only after
2627  * @target finishes execution.  Please note that the ordering
2628  * guarantee is observed only with respect to @target and on the local
2629  * cpu.
2630  *
2631  * Currently, a queued barrier can't be canceled.  This is because
2632  * try_to_grab_pending() can't determine whether the work to be
2633  * grabbed is at the head of the queue and thus can't clear LINKED
2634  * flag of the previous work while there must be a valid next work
2635  * after a work with LINKED flag set.
2636  *
2637  * Note that when @worker is non-NULL, @target may be modified
2638  * underneath us, so we can't reliably determine pwq from @target.
2639  *
2640  * CONTEXT:
2641  * spin_lock_irq(pool->lock).
2642  */
2643 static void insert_wq_barrier(struct pool_workqueue *pwq,
2644 			      struct wq_barrier *barr,
2645 			      struct work_struct *target, struct worker *worker)
2646 {
2647 	struct list_head *head;
2648 	unsigned int linked = 0;
2649 
2650 	/*
2651 	 * debugobject calls are safe here even with pool->lock locked
2652 	 * as we know for sure that this will not trigger any of the
2653 	 * checks and call back into the fixup functions where we
2654 	 * might deadlock.
2655 	 */
2656 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2657 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2658 
2659 	init_completion_map(&barr->done, &target->lockdep_map);
2660 
2661 	barr->task = current;
2662 
2663 	/*
2664 	 * If @target is currently being executed, schedule the
2665 	 * barrier to the worker; otherwise, put it after @target.
2666 	 */
2667 	if (worker)
2668 		head = worker->scheduled.next;
2669 	else {
2670 		unsigned long *bits = work_data_bits(target);
2671 
2672 		head = target->entry.next;
2673 		/* there can already be other linked works, inherit and set */
2674 		linked = *bits & WORK_STRUCT_LINKED;
2675 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2676 	}
2677 
2678 	debug_work_activate(&barr->work);
2679 	insert_work(pwq, &barr->work, head,
2680 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2681 }
2682 
2683 /**
2684  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2685  * @wq: workqueue being flushed
2686  * @flush_color: new flush color, < 0 for no-op
2687  * @work_color: new work color, < 0 for no-op
2688  *
2689  * Prepare pwqs for workqueue flushing.
2690  *
2691  * If @flush_color is non-negative, flush_color on all pwqs should be
2692  * -1.  If no pwq has in-flight commands at the specified color, all
2693  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2694  * has in flight commands, its pwq->flush_color is set to
2695  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2696  * wakeup logic is armed and %true is returned.
2697  *
2698  * The caller should have initialized @wq->first_flusher prior to
2699  * calling this function with non-negative @flush_color.  If
2700  * @flush_color is negative, no flush color update is done and %false
2701  * is returned.
2702  *
2703  * If @work_color is non-negative, all pwqs should have the same
2704  * work_color which is previous to @work_color and all will be
2705  * advanced to @work_color.
2706  *
2707  * CONTEXT:
2708  * mutex_lock(wq->mutex).
2709  *
2710  * Return:
2711  * %true if @flush_color >= 0 and there's something to flush.  %false
2712  * otherwise.
2713  */
2714 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2715 				      int flush_color, int work_color)
2716 {
2717 	bool wait = false;
2718 	struct pool_workqueue *pwq;
2719 
2720 	if (flush_color >= 0) {
2721 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2722 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2723 	}
2724 
2725 	for_each_pwq(pwq, wq) {
2726 		struct worker_pool *pool = pwq->pool;
2727 
2728 		spin_lock_irq(&pool->lock);
2729 
2730 		if (flush_color >= 0) {
2731 			WARN_ON_ONCE(pwq->flush_color != -1);
2732 
2733 			if (pwq->nr_in_flight[flush_color]) {
2734 				pwq->flush_color = flush_color;
2735 				atomic_inc(&wq->nr_pwqs_to_flush);
2736 				wait = true;
2737 			}
2738 		}
2739 
2740 		if (work_color >= 0) {
2741 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2742 			pwq->work_color = work_color;
2743 		}
2744 
2745 		spin_unlock_irq(&pool->lock);
2746 	}
2747 
2748 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2749 		complete(&wq->first_flusher->done);
2750 
2751 	return wait;
2752 }
2753 
2754 /**
2755  * flush_workqueue - ensure that any scheduled work has run to completion.
2756  * @wq: workqueue to flush
2757  *
2758  * This function sleeps until all work items which were queued on entry
2759  * have finished execution, but it is not livelocked by new incoming ones.
2760  */
2761 void flush_workqueue(struct workqueue_struct *wq)
2762 {
2763 	struct wq_flusher this_flusher = {
2764 		.list = LIST_HEAD_INIT(this_flusher.list),
2765 		.flush_color = -1,
2766 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2767 	};
2768 	int next_color;
2769 
2770 	if (WARN_ON(!wq_online))
2771 		return;
2772 
2773 	lock_map_acquire(&wq->lockdep_map);
2774 	lock_map_release(&wq->lockdep_map);
2775 
2776 	mutex_lock(&wq->mutex);
2777 
2778 	/*
2779 	 * Start-to-wait phase
2780 	 */
2781 	next_color = work_next_color(wq->work_color);
2782 
2783 	if (next_color != wq->flush_color) {
2784 		/*
2785 		 * Color space is not full.  The current work_color
2786 		 * becomes our flush_color and work_color is advanced
2787 		 * by one.
2788 		 */
2789 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2790 		this_flusher.flush_color = wq->work_color;
2791 		wq->work_color = next_color;
2792 
2793 		if (!wq->first_flusher) {
2794 			/* no flush in progress, become the first flusher */
2795 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2796 
2797 			wq->first_flusher = &this_flusher;
2798 
2799 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2800 						       wq->work_color)) {
2801 				/* nothing to flush, done */
2802 				wq->flush_color = next_color;
2803 				wq->first_flusher = NULL;
2804 				goto out_unlock;
2805 			}
2806 		} else {
2807 			/* wait in queue */
2808 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2809 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2810 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2811 		}
2812 	} else {
2813 		/*
2814 		 * Oops, color space is full, wait on overflow queue.
2815 		 * The next flush completion will assign us
2816 		 * flush_color and transfer to flusher_queue.
2817 		 */
2818 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2819 	}
2820 
2821 	check_flush_dependency(wq, NULL);
2822 
2823 	mutex_unlock(&wq->mutex);
2824 
2825 	wait_for_completion(&this_flusher.done);
2826 
2827 	/*
2828 	 * Wake-up-and-cascade phase
2829 	 *
2830 	 * First flushers are responsible for cascading flushes and
2831 	 * handling overflow.  Non-first flushers can simply return.
2832 	 */
2833 	if (wq->first_flusher != &this_flusher)
2834 		return;
2835 
2836 	mutex_lock(&wq->mutex);
2837 
2838 	/* we might have raced, check again with mutex held */
2839 	if (wq->first_flusher != &this_flusher)
2840 		goto out_unlock;
2841 
2842 	wq->first_flusher = NULL;
2843 
2844 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2845 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2846 
2847 	while (true) {
2848 		struct wq_flusher *next, *tmp;
2849 
2850 		/* complete all the flushers sharing the current flush color */
2851 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2852 			if (next->flush_color != wq->flush_color)
2853 				break;
2854 			list_del_init(&next->list);
2855 			complete(&next->done);
2856 		}
2857 
2858 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2859 			     wq->flush_color != work_next_color(wq->work_color));
2860 
2861 		/* this flush_color is finished, advance by one */
2862 		wq->flush_color = work_next_color(wq->flush_color);
2863 
2864 		/* one color has been freed, handle overflow queue */
2865 		if (!list_empty(&wq->flusher_overflow)) {
2866 			/*
2867 			 * Assign the same color to all overflowed
2868 			 * flushers, advance work_color and append to
2869 			 * flusher_queue.  This is the start-to-wait
2870 			 * phase for these overflowed flushers.
2871 			 */
2872 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2873 				tmp->flush_color = wq->work_color;
2874 
2875 			wq->work_color = work_next_color(wq->work_color);
2876 
2877 			list_splice_tail_init(&wq->flusher_overflow,
2878 					      &wq->flusher_queue);
2879 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2880 		}
2881 
2882 		if (list_empty(&wq->flusher_queue)) {
2883 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2884 			break;
2885 		}
2886 
2887 		/*
2888 		 * Need to flush more colors.  Make the next flusher
2889 		 * the new first flusher and arm pwqs.
2890 		 */
2891 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2892 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2893 
2894 		list_del_init(&next->list);
2895 		wq->first_flusher = next;
2896 
2897 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2898 			break;
2899 
2900 		/*
2901 		 * Meh... this color is already done, clear first
2902 		 * flusher and repeat cascading.
2903 		 */
2904 		wq->first_flusher = NULL;
2905 	}
2906 
2907 out_unlock:
2908 	mutex_unlock(&wq->mutex);
2909 }
2910 EXPORT_SYMBOL(flush_workqueue);
2911 
2912 /**
2913  * drain_workqueue - drain a workqueue
2914  * @wq: workqueue to drain
2915  *
2916  * Wait until the workqueue becomes empty.  While draining is in progress,
2917  * only chain queueing is allowed.  IOW, only currently pending or running
2918  * work items on @wq can queue further work items on it.  @wq is flushed
2919  * repeatedly until it becomes empty.  The number of flushing is determined
2920  * by the depth of chaining and should be relatively short.  Whine if it
2921  * takes too long.
2922  */
2923 void drain_workqueue(struct workqueue_struct *wq)
2924 {
2925 	unsigned int flush_cnt = 0;
2926 	struct pool_workqueue *pwq;
2927 
2928 	/*
2929 	 * __queue_work() needs to test whether there are drainers, is much
2930 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2931 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2932 	 */
2933 	mutex_lock(&wq->mutex);
2934 	if (!wq->nr_drainers++)
2935 		wq->flags |= __WQ_DRAINING;
2936 	mutex_unlock(&wq->mutex);
2937 reflush:
2938 	flush_workqueue(wq);
2939 
2940 	mutex_lock(&wq->mutex);
2941 
2942 	for_each_pwq(pwq, wq) {
2943 		bool drained;
2944 
2945 		spin_lock_irq(&pwq->pool->lock);
2946 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2947 		spin_unlock_irq(&pwq->pool->lock);
2948 
2949 		if (drained)
2950 			continue;
2951 
2952 		if (++flush_cnt == 10 ||
2953 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2954 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2955 				wq->name, flush_cnt);
2956 
2957 		mutex_unlock(&wq->mutex);
2958 		goto reflush;
2959 	}
2960 
2961 	if (!--wq->nr_drainers)
2962 		wq->flags &= ~__WQ_DRAINING;
2963 	mutex_unlock(&wq->mutex);
2964 }
2965 EXPORT_SYMBOL_GPL(drain_workqueue);
2966 
2967 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2968 			     bool from_cancel)
2969 {
2970 	struct worker *worker = NULL;
2971 	struct worker_pool *pool;
2972 	struct pool_workqueue *pwq;
2973 
2974 	might_sleep();
2975 
2976 	rcu_read_lock();
2977 	pool = get_work_pool(work);
2978 	if (!pool) {
2979 		rcu_read_unlock();
2980 		return false;
2981 	}
2982 
2983 	spin_lock_irq(&pool->lock);
2984 	/* see the comment in try_to_grab_pending() with the same code */
2985 	pwq = get_work_pwq(work);
2986 	if (pwq) {
2987 		if (unlikely(pwq->pool != pool))
2988 			goto already_gone;
2989 	} else {
2990 		worker = find_worker_executing_work(pool, work);
2991 		if (!worker)
2992 			goto already_gone;
2993 		pwq = worker->current_pwq;
2994 	}
2995 
2996 	check_flush_dependency(pwq->wq, work);
2997 
2998 	insert_wq_barrier(pwq, barr, work, worker);
2999 	spin_unlock_irq(&pool->lock);
3000 
3001 	/*
3002 	 * Force a lock recursion deadlock when using flush_work() inside a
3003 	 * single-threaded or rescuer equipped workqueue.
3004 	 *
3005 	 * For single threaded workqueues the deadlock happens when the work
3006 	 * is after the work issuing the flush_work(). For rescuer equipped
3007 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3008 	 * forward progress.
3009 	 */
3010 	if (!from_cancel &&
3011 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3012 		lock_map_acquire(&pwq->wq->lockdep_map);
3013 		lock_map_release(&pwq->wq->lockdep_map);
3014 	}
3015 	rcu_read_unlock();
3016 	return true;
3017 already_gone:
3018 	spin_unlock_irq(&pool->lock);
3019 	rcu_read_unlock();
3020 	return false;
3021 }
3022 
3023 static bool __flush_work(struct work_struct *work, bool from_cancel)
3024 {
3025 	struct wq_barrier barr;
3026 
3027 	if (WARN_ON(!wq_online))
3028 		return false;
3029 
3030 	if (WARN_ON(!work->func))
3031 		return false;
3032 
3033 	if (!from_cancel) {
3034 		lock_map_acquire(&work->lockdep_map);
3035 		lock_map_release(&work->lockdep_map);
3036 	}
3037 
3038 	if (start_flush_work(work, &barr, from_cancel)) {
3039 		wait_for_completion(&barr.done);
3040 		destroy_work_on_stack(&barr.work);
3041 		return true;
3042 	} else {
3043 		return false;
3044 	}
3045 }
3046 
3047 /**
3048  * flush_work - wait for a work to finish executing the last queueing instance
3049  * @work: the work to flush
3050  *
3051  * Wait until @work has finished execution.  @work is guaranteed to be idle
3052  * on return if it hasn't been requeued since flush started.
3053  *
3054  * Return:
3055  * %true if flush_work() waited for the work to finish execution,
3056  * %false if it was already idle.
3057  */
3058 bool flush_work(struct work_struct *work)
3059 {
3060 	return __flush_work(work, false);
3061 }
3062 EXPORT_SYMBOL_GPL(flush_work);
3063 
3064 struct cwt_wait {
3065 	wait_queue_entry_t		wait;
3066 	struct work_struct	*work;
3067 };
3068 
3069 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3070 {
3071 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3072 
3073 	if (cwait->work != key)
3074 		return 0;
3075 	return autoremove_wake_function(wait, mode, sync, key);
3076 }
3077 
3078 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3079 {
3080 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3081 	unsigned long flags;
3082 	int ret;
3083 
3084 	do {
3085 		ret = try_to_grab_pending(work, is_dwork, &flags);
3086 		/*
3087 		 * If someone else is already canceling, wait for it to
3088 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3089 		 * because we may get scheduled between @work's completion
3090 		 * and the other canceling task resuming and clearing
3091 		 * CANCELING - flush_work() will return false immediately
3092 		 * as @work is no longer busy, try_to_grab_pending() will
3093 		 * return -ENOENT as @work is still being canceled and the
3094 		 * other canceling task won't be able to clear CANCELING as
3095 		 * we're hogging the CPU.
3096 		 *
3097 		 * Let's wait for completion using a waitqueue.  As this
3098 		 * may lead to the thundering herd problem, use a custom
3099 		 * wake function which matches @work along with exclusive
3100 		 * wait and wakeup.
3101 		 */
3102 		if (unlikely(ret == -ENOENT)) {
3103 			struct cwt_wait cwait;
3104 
3105 			init_wait(&cwait.wait);
3106 			cwait.wait.func = cwt_wakefn;
3107 			cwait.work = work;
3108 
3109 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3110 						  TASK_UNINTERRUPTIBLE);
3111 			if (work_is_canceling(work))
3112 				schedule();
3113 			finish_wait(&cancel_waitq, &cwait.wait);
3114 		}
3115 	} while (unlikely(ret < 0));
3116 
3117 	/* tell other tasks trying to grab @work to back off */
3118 	mark_work_canceling(work);
3119 	local_irq_restore(flags);
3120 
3121 	/*
3122 	 * This allows canceling during early boot.  We know that @work
3123 	 * isn't executing.
3124 	 */
3125 	if (wq_online)
3126 		__flush_work(work, true);
3127 
3128 	clear_work_data(work);
3129 
3130 	/*
3131 	 * Paired with prepare_to_wait() above so that either
3132 	 * waitqueue_active() is visible here or !work_is_canceling() is
3133 	 * visible there.
3134 	 */
3135 	smp_mb();
3136 	if (waitqueue_active(&cancel_waitq))
3137 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3138 
3139 	return ret;
3140 }
3141 
3142 /**
3143  * cancel_work_sync - cancel a work and wait for it to finish
3144  * @work: the work to cancel
3145  *
3146  * Cancel @work and wait for its execution to finish.  This function
3147  * can be used even if the work re-queues itself or migrates to
3148  * another workqueue.  On return from this function, @work is
3149  * guaranteed to be not pending or executing on any CPU.
3150  *
3151  * cancel_work_sync(&delayed_work->work) must not be used for
3152  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3153  *
3154  * The caller must ensure that the workqueue on which @work was last
3155  * queued can't be destroyed before this function returns.
3156  *
3157  * Return:
3158  * %true if @work was pending, %false otherwise.
3159  */
3160 bool cancel_work_sync(struct work_struct *work)
3161 {
3162 	return __cancel_work_timer(work, false);
3163 }
3164 EXPORT_SYMBOL_GPL(cancel_work_sync);
3165 
3166 /**
3167  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3168  * @dwork: the delayed work to flush
3169  *
3170  * Delayed timer is cancelled and the pending work is queued for
3171  * immediate execution.  Like flush_work(), this function only
3172  * considers the last queueing instance of @dwork.
3173  *
3174  * Return:
3175  * %true if flush_work() waited for the work to finish execution,
3176  * %false if it was already idle.
3177  */
3178 bool flush_delayed_work(struct delayed_work *dwork)
3179 {
3180 	local_irq_disable();
3181 	if (del_timer_sync(&dwork->timer))
3182 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3183 	local_irq_enable();
3184 	return flush_work(&dwork->work);
3185 }
3186 EXPORT_SYMBOL(flush_delayed_work);
3187 
3188 /**
3189  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3190  * @rwork: the rcu work to flush
3191  *
3192  * Return:
3193  * %true if flush_rcu_work() waited for the work to finish execution,
3194  * %false if it was already idle.
3195  */
3196 bool flush_rcu_work(struct rcu_work *rwork)
3197 {
3198 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3199 		rcu_barrier();
3200 		flush_work(&rwork->work);
3201 		return true;
3202 	} else {
3203 		return flush_work(&rwork->work);
3204 	}
3205 }
3206 EXPORT_SYMBOL(flush_rcu_work);
3207 
3208 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3209 {
3210 	unsigned long flags;
3211 	int ret;
3212 
3213 	do {
3214 		ret = try_to_grab_pending(work, is_dwork, &flags);
3215 	} while (unlikely(ret == -EAGAIN));
3216 
3217 	if (unlikely(ret < 0))
3218 		return false;
3219 
3220 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3221 	local_irq_restore(flags);
3222 	return ret;
3223 }
3224 
3225 /**
3226  * cancel_delayed_work - cancel a delayed work
3227  * @dwork: delayed_work to cancel
3228  *
3229  * Kill off a pending delayed_work.
3230  *
3231  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3232  * pending.
3233  *
3234  * Note:
3235  * The work callback function may still be running on return, unless
3236  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3237  * use cancel_delayed_work_sync() to wait on it.
3238  *
3239  * This function is safe to call from any context including IRQ handler.
3240  */
3241 bool cancel_delayed_work(struct delayed_work *dwork)
3242 {
3243 	return __cancel_work(&dwork->work, true);
3244 }
3245 EXPORT_SYMBOL(cancel_delayed_work);
3246 
3247 /**
3248  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3249  * @dwork: the delayed work cancel
3250  *
3251  * This is cancel_work_sync() for delayed works.
3252  *
3253  * Return:
3254  * %true if @dwork was pending, %false otherwise.
3255  */
3256 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3257 {
3258 	return __cancel_work_timer(&dwork->work, true);
3259 }
3260 EXPORT_SYMBOL(cancel_delayed_work_sync);
3261 
3262 /**
3263  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3264  * @func: the function to call
3265  *
3266  * schedule_on_each_cpu() executes @func on each online CPU using the
3267  * system workqueue and blocks until all CPUs have completed.
3268  * schedule_on_each_cpu() is very slow.
3269  *
3270  * Return:
3271  * 0 on success, -errno on failure.
3272  */
3273 int schedule_on_each_cpu(work_func_t func)
3274 {
3275 	int cpu;
3276 	struct work_struct __percpu *works;
3277 
3278 	works = alloc_percpu(struct work_struct);
3279 	if (!works)
3280 		return -ENOMEM;
3281 
3282 	get_online_cpus();
3283 
3284 	for_each_online_cpu(cpu) {
3285 		struct work_struct *work = per_cpu_ptr(works, cpu);
3286 
3287 		INIT_WORK(work, func);
3288 		schedule_work_on(cpu, work);
3289 	}
3290 
3291 	for_each_online_cpu(cpu)
3292 		flush_work(per_cpu_ptr(works, cpu));
3293 
3294 	put_online_cpus();
3295 	free_percpu(works);
3296 	return 0;
3297 }
3298 
3299 /**
3300  * execute_in_process_context - reliably execute the routine with user context
3301  * @fn:		the function to execute
3302  * @ew:		guaranteed storage for the execute work structure (must
3303  *		be available when the work executes)
3304  *
3305  * Executes the function immediately if process context is available,
3306  * otherwise schedules the function for delayed execution.
3307  *
3308  * Return:	0 - function was executed
3309  *		1 - function was scheduled for execution
3310  */
3311 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3312 {
3313 	if (!in_interrupt()) {
3314 		fn(&ew->work);
3315 		return 0;
3316 	}
3317 
3318 	INIT_WORK(&ew->work, fn);
3319 	schedule_work(&ew->work);
3320 
3321 	return 1;
3322 }
3323 EXPORT_SYMBOL_GPL(execute_in_process_context);
3324 
3325 /**
3326  * free_workqueue_attrs - free a workqueue_attrs
3327  * @attrs: workqueue_attrs to free
3328  *
3329  * Undo alloc_workqueue_attrs().
3330  */
3331 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3332 {
3333 	if (attrs) {
3334 		free_cpumask_var(attrs->cpumask);
3335 		kfree(attrs);
3336 	}
3337 }
3338 
3339 /**
3340  * alloc_workqueue_attrs - allocate a workqueue_attrs
3341  * @gfp_mask: allocation mask to use
3342  *
3343  * Allocate a new workqueue_attrs, initialize with default settings and
3344  * return it.
3345  *
3346  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3347  */
3348 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3349 {
3350 	struct workqueue_attrs *attrs;
3351 
3352 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3353 	if (!attrs)
3354 		goto fail;
3355 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3356 		goto fail;
3357 
3358 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3359 	return attrs;
3360 fail:
3361 	free_workqueue_attrs(attrs);
3362 	return NULL;
3363 }
3364 
3365 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3366 				 const struct workqueue_attrs *from)
3367 {
3368 	to->nice = from->nice;
3369 	cpumask_copy(to->cpumask, from->cpumask);
3370 	/*
3371 	 * Unlike hash and equality test, this function doesn't ignore
3372 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3373 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3374 	 */
3375 	to->no_numa = from->no_numa;
3376 }
3377 
3378 /* hash value of the content of @attr */
3379 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3380 {
3381 	u32 hash = 0;
3382 
3383 	hash = jhash_1word(attrs->nice, hash);
3384 	hash = jhash(cpumask_bits(attrs->cpumask),
3385 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3386 	return hash;
3387 }
3388 
3389 /* content equality test */
3390 static bool wqattrs_equal(const struct workqueue_attrs *a,
3391 			  const struct workqueue_attrs *b)
3392 {
3393 	if (a->nice != b->nice)
3394 		return false;
3395 	if (!cpumask_equal(a->cpumask, b->cpumask))
3396 		return false;
3397 	return true;
3398 }
3399 
3400 /**
3401  * init_worker_pool - initialize a newly zalloc'd worker_pool
3402  * @pool: worker_pool to initialize
3403  *
3404  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3405  *
3406  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3407  * inside @pool proper are initialized and put_unbound_pool() can be called
3408  * on @pool safely to release it.
3409  */
3410 static int init_worker_pool(struct worker_pool *pool)
3411 {
3412 	spin_lock_init(&pool->lock);
3413 	pool->id = -1;
3414 	pool->cpu = -1;
3415 	pool->node = NUMA_NO_NODE;
3416 	pool->flags |= POOL_DISASSOCIATED;
3417 	pool->watchdog_ts = jiffies;
3418 	INIT_LIST_HEAD(&pool->worklist);
3419 	INIT_LIST_HEAD(&pool->idle_list);
3420 	hash_init(pool->busy_hash);
3421 
3422 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3423 
3424 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3425 
3426 	INIT_LIST_HEAD(&pool->workers);
3427 
3428 	ida_init(&pool->worker_ida);
3429 	INIT_HLIST_NODE(&pool->hash_node);
3430 	pool->refcnt = 1;
3431 
3432 	/* shouldn't fail above this point */
3433 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3434 	if (!pool->attrs)
3435 		return -ENOMEM;
3436 	return 0;
3437 }
3438 
3439 #ifdef CONFIG_LOCKDEP
3440 static void wq_init_lockdep(struct workqueue_struct *wq)
3441 {
3442 	char *lock_name;
3443 
3444 	lockdep_register_key(&wq->key);
3445 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3446 	if (!lock_name)
3447 		lock_name = wq->name;
3448 
3449 	wq->lock_name = lock_name;
3450 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3451 }
3452 
3453 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3454 {
3455 	lockdep_unregister_key(&wq->key);
3456 }
3457 
3458 static void wq_free_lockdep(struct workqueue_struct *wq)
3459 {
3460 	if (wq->lock_name != wq->name)
3461 		kfree(wq->lock_name);
3462 }
3463 #else
3464 static void wq_init_lockdep(struct workqueue_struct *wq)
3465 {
3466 }
3467 
3468 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3469 {
3470 }
3471 
3472 static void wq_free_lockdep(struct workqueue_struct *wq)
3473 {
3474 }
3475 #endif
3476 
3477 static void rcu_free_wq(struct rcu_head *rcu)
3478 {
3479 	struct workqueue_struct *wq =
3480 		container_of(rcu, struct workqueue_struct, rcu);
3481 
3482 	wq_free_lockdep(wq);
3483 
3484 	if (!(wq->flags & WQ_UNBOUND))
3485 		free_percpu(wq->cpu_pwqs);
3486 	else
3487 		free_workqueue_attrs(wq->unbound_attrs);
3488 
3489 	kfree(wq->rescuer);
3490 	kfree(wq);
3491 }
3492 
3493 static void rcu_free_pool(struct rcu_head *rcu)
3494 {
3495 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3496 
3497 	ida_destroy(&pool->worker_ida);
3498 	free_workqueue_attrs(pool->attrs);
3499 	kfree(pool);
3500 }
3501 
3502 /**
3503  * put_unbound_pool - put a worker_pool
3504  * @pool: worker_pool to put
3505  *
3506  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3507  * safe manner.  get_unbound_pool() calls this function on its failure path
3508  * and this function should be able to release pools which went through,
3509  * successfully or not, init_worker_pool().
3510  *
3511  * Should be called with wq_pool_mutex held.
3512  */
3513 static void put_unbound_pool(struct worker_pool *pool)
3514 {
3515 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3516 	struct worker *worker;
3517 
3518 	lockdep_assert_held(&wq_pool_mutex);
3519 
3520 	if (--pool->refcnt)
3521 		return;
3522 
3523 	/* sanity checks */
3524 	if (WARN_ON(!(pool->cpu < 0)) ||
3525 	    WARN_ON(!list_empty(&pool->worklist)))
3526 		return;
3527 
3528 	/* release id and unhash */
3529 	if (pool->id >= 0)
3530 		idr_remove(&worker_pool_idr, pool->id);
3531 	hash_del(&pool->hash_node);
3532 
3533 	/*
3534 	 * Become the manager and destroy all workers.  This prevents
3535 	 * @pool's workers from blocking on attach_mutex.  We're the last
3536 	 * manager and @pool gets freed with the flag set.
3537 	 */
3538 	spin_lock_irq(&pool->lock);
3539 	wait_event_lock_irq(wq_manager_wait,
3540 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3541 	pool->flags |= POOL_MANAGER_ACTIVE;
3542 
3543 	while ((worker = first_idle_worker(pool)))
3544 		destroy_worker(worker);
3545 	WARN_ON(pool->nr_workers || pool->nr_idle);
3546 	spin_unlock_irq(&pool->lock);
3547 
3548 	mutex_lock(&wq_pool_attach_mutex);
3549 	if (!list_empty(&pool->workers))
3550 		pool->detach_completion = &detach_completion;
3551 	mutex_unlock(&wq_pool_attach_mutex);
3552 
3553 	if (pool->detach_completion)
3554 		wait_for_completion(pool->detach_completion);
3555 
3556 	/* shut down the timers */
3557 	del_timer_sync(&pool->idle_timer);
3558 	del_timer_sync(&pool->mayday_timer);
3559 
3560 	/* RCU protected to allow dereferences from get_work_pool() */
3561 	call_rcu(&pool->rcu, rcu_free_pool);
3562 }
3563 
3564 /**
3565  * get_unbound_pool - get a worker_pool with the specified attributes
3566  * @attrs: the attributes of the worker_pool to get
3567  *
3568  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3569  * reference count and return it.  If there already is a matching
3570  * worker_pool, it will be used; otherwise, this function attempts to
3571  * create a new one.
3572  *
3573  * Should be called with wq_pool_mutex held.
3574  *
3575  * Return: On success, a worker_pool with the same attributes as @attrs.
3576  * On failure, %NULL.
3577  */
3578 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3579 {
3580 	u32 hash = wqattrs_hash(attrs);
3581 	struct worker_pool *pool;
3582 	int node;
3583 	int target_node = NUMA_NO_NODE;
3584 
3585 	lockdep_assert_held(&wq_pool_mutex);
3586 
3587 	/* do we already have a matching pool? */
3588 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3589 		if (wqattrs_equal(pool->attrs, attrs)) {
3590 			pool->refcnt++;
3591 			return pool;
3592 		}
3593 	}
3594 
3595 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3596 	if (wq_numa_enabled) {
3597 		for_each_node(node) {
3598 			if (cpumask_subset(attrs->cpumask,
3599 					   wq_numa_possible_cpumask[node])) {
3600 				target_node = node;
3601 				break;
3602 			}
3603 		}
3604 	}
3605 
3606 	/* nope, create a new one */
3607 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3608 	if (!pool || init_worker_pool(pool) < 0)
3609 		goto fail;
3610 
3611 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3612 	copy_workqueue_attrs(pool->attrs, attrs);
3613 	pool->node = target_node;
3614 
3615 	/*
3616 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3617 	 * 'struct workqueue_attrs' comments for detail.
3618 	 */
3619 	pool->attrs->no_numa = false;
3620 
3621 	if (worker_pool_assign_id(pool) < 0)
3622 		goto fail;
3623 
3624 	/* create and start the initial worker */
3625 	if (wq_online && !create_worker(pool))
3626 		goto fail;
3627 
3628 	/* install */
3629 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3630 
3631 	return pool;
3632 fail:
3633 	if (pool)
3634 		put_unbound_pool(pool);
3635 	return NULL;
3636 }
3637 
3638 static void rcu_free_pwq(struct rcu_head *rcu)
3639 {
3640 	kmem_cache_free(pwq_cache,
3641 			container_of(rcu, struct pool_workqueue, rcu));
3642 }
3643 
3644 /*
3645  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3646  * and needs to be destroyed.
3647  */
3648 static void pwq_unbound_release_workfn(struct work_struct *work)
3649 {
3650 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3651 						  unbound_release_work);
3652 	struct workqueue_struct *wq = pwq->wq;
3653 	struct worker_pool *pool = pwq->pool;
3654 	bool is_last;
3655 
3656 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3657 		return;
3658 
3659 	mutex_lock(&wq->mutex);
3660 	list_del_rcu(&pwq->pwqs_node);
3661 	is_last = list_empty(&wq->pwqs);
3662 	mutex_unlock(&wq->mutex);
3663 
3664 	mutex_lock(&wq_pool_mutex);
3665 	put_unbound_pool(pool);
3666 	mutex_unlock(&wq_pool_mutex);
3667 
3668 	call_rcu(&pwq->rcu, rcu_free_pwq);
3669 
3670 	/*
3671 	 * If we're the last pwq going away, @wq is already dead and no one
3672 	 * is gonna access it anymore.  Schedule RCU free.
3673 	 */
3674 	if (is_last) {
3675 		wq_unregister_lockdep(wq);
3676 		call_rcu(&wq->rcu, rcu_free_wq);
3677 	}
3678 }
3679 
3680 /**
3681  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3682  * @pwq: target pool_workqueue
3683  *
3684  * If @pwq isn't freezing, set @pwq->max_active to the associated
3685  * workqueue's saved_max_active and activate delayed work items
3686  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3687  */
3688 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3689 {
3690 	struct workqueue_struct *wq = pwq->wq;
3691 	bool freezable = wq->flags & WQ_FREEZABLE;
3692 	unsigned long flags;
3693 
3694 	/* for @wq->saved_max_active */
3695 	lockdep_assert_held(&wq->mutex);
3696 
3697 	/* fast exit for non-freezable wqs */
3698 	if (!freezable && pwq->max_active == wq->saved_max_active)
3699 		return;
3700 
3701 	/* this function can be called during early boot w/ irq disabled */
3702 	spin_lock_irqsave(&pwq->pool->lock, flags);
3703 
3704 	/*
3705 	 * During [un]freezing, the caller is responsible for ensuring that
3706 	 * this function is called at least once after @workqueue_freezing
3707 	 * is updated and visible.
3708 	 */
3709 	if (!freezable || !workqueue_freezing) {
3710 		pwq->max_active = wq->saved_max_active;
3711 
3712 		while (!list_empty(&pwq->delayed_works) &&
3713 		       pwq->nr_active < pwq->max_active)
3714 			pwq_activate_first_delayed(pwq);
3715 
3716 		/*
3717 		 * Need to kick a worker after thawed or an unbound wq's
3718 		 * max_active is bumped.  It's a slow path.  Do it always.
3719 		 */
3720 		wake_up_worker(pwq->pool);
3721 	} else {
3722 		pwq->max_active = 0;
3723 	}
3724 
3725 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3726 }
3727 
3728 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3729 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3730 		     struct worker_pool *pool)
3731 {
3732 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3733 
3734 	memset(pwq, 0, sizeof(*pwq));
3735 
3736 	pwq->pool = pool;
3737 	pwq->wq = wq;
3738 	pwq->flush_color = -1;
3739 	pwq->refcnt = 1;
3740 	INIT_LIST_HEAD(&pwq->delayed_works);
3741 	INIT_LIST_HEAD(&pwq->pwqs_node);
3742 	INIT_LIST_HEAD(&pwq->mayday_node);
3743 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3744 }
3745 
3746 /* sync @pwq with the current state of its associated wq and link it */
3747 static void link_pwq(struct pool_workqueue *pwq)
3748 {
3749 	struct workqueue_struct *wq = pwq->wq;
3750 
3751 	lockdep_assert_held(&wq->mutex);
3752 
3753 	/* may be called multiple times, ignore if already linked */
3754 	if (!list_empty(&pwq->pwqs_node))
3755 		return;
3756 
3757 	/* set the matching work_color */
3758 	pwq->work_color = wq->work_color;
3759 
3760 	/* sync max_active to the current setting */
3761 	pwq_adjust_max_active(pwq);
3762 
3763 	/* link in @pwq */
3764 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3765 }
3766 
3767 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3768 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3769 					const struct workqueue_attrs *attrs)
3770 {
3771 	struct worker_pool *pool;
3772 	struct pool_workqueue *pwq;
3773 
3774 	lockdep_assert_held(&wq_pool_mutex);
3775 
3776 	pool = get_unbound_pool(attrs);
3777 	if (!pool)
3778 		return NULL;
3779 
3780 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3781 	if (!pwq) {
3782 		put_unbound_pool(pool);
3783 		return NULL;
3784 	}
3785 
3786 	init_pwq(pwq, wq, pool);
3787 	return pwq;
3788 }
3789 
3790 /**
3791  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3792  * @attrs: the wq_attrs of the default pwq of the target workqueue
3793  * @node: the target NUMA node
3794  * @cpu_going_down: if >= 0, the CPU to consider as offline
3795  * @cpumask: outarg, the resulting cpumask
3796  *
3797  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3798  * @cpu_going_down is >= 0, that cpu is considered offline during
3799  * calculation.  The result is stored in @cpumask.
3800  *
3801  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3802  * enabled and @node has online CPUs requested by @attrs, the returned
3803  * cpumask is the intersection of the possible CPUs of @node and
3804  * @attrs->cpumask.
3805  *
3806  * The caller is responsible for ensuring that the cpumask of @node stays
3807  * stable.
3808  *
3809  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3810  * %false if equal.
3811  */
3812 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3813 				 int cpu_going_down, cpumask_t *cpumask)
3814 {
3815 	if (!wq_numa_enabled || attrs->no_numa)
3816 		goto use_dfl;
3817 
3818 	/* does @node have any online CPUs @attrs wants? */
3819 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3820 	if (cpu_going_down >= 0)
3821 		cpumask_clear_cpu(cpu_going_down, cpumask);
3822 
3823 	if (cpumask_empty(cpumask))
3824 		goto use_dfl;
3825 
3826 	/* yeap, return possible CPUs in @node that @attrs wants */
3827 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3828 
3829 	if (cpumask_empty(cpumask)) {
3830 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3831 				"possible intersect\n");
3832 		return false;
3833 	}
3834 
3835 	return !cpumask_equal(cpumask, attrs->cpumask);
3836 
3837 use_dfl:
3838 	cpumask_copy(cpumask, attrs->cpumask);
3839 	return false;
3840 }
3841 
3842 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3843 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3844 						   int node,
3845 						   struct pool_workqueue *pwq)
3846 {
3847 	struct pool_workqueue *old_pwq;
3848 
3849 	lockdep_assert_held(&wq_pool_mutex);
3850 	lockdep_assert_held(&wq->mutex);
3851 
3852 	/* link_pwq() can handle duplicate calls */
3853 	link_pwq(pwq);
3854 
3855 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3856 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3857 	return old_pwq;
3858 }
3859 
3860 /* context to store the prepared attrs & pwqs before applying */
3861 struct apply_wqattrs_ctx {
3862 	struct workqueue_struct	*wq;		/* target workqueue */
3863 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3864 	struct list_head	list;		/* queued for batching commit */
3865 	struct pool_workqueue	*dfl_pwq;
3866 	struct pool_workqueue	*pwq_tbl[];
3867 };
3868 
3869 /* free the resources after success or abort */
3870 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3871 {
3872 	if (ctx) {
3873 		int node;
3874 
3875 		for_each_node(node)
3876 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3877 		put_pwq_unlocked(ctx->dfl_pwq);
3878 
3879 		free_workqueue_attrs(ctx->attrs);
3880 
3881 		kfree(ctx);
3882 	}
3883 }
3884 
3885 /* allocate the attrs and pwqs for later installation */
3886 static struct apply_wqattrs_ctx *
3887 apply_wqattrs_prepare(struct workqueue_struct *wq,
3888 		      const struct workqueue_attrs *attrs)
3889 {
3890 	struct apply_wqattrs_ctx *ctx;
3891 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3892 	int node;
3893 
3894 	lockdep_assert_held(&wq_pool_mutex);
3895 
3896 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3897 
3898 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3899 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3900 	if (!ctx || !new_attrs || !tmp_attrs)
3901 		goto out_free;
3902 
3903 	/*
3904 	 * Calculate the attrs of the default pwq.
3905 	 * If the user configured cpumask doesn't overlap with the
3906 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3907 	 */
3908 	copy_workqueue_attrs(new_attrs, attrs);
3909 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3910 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3911 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3912 
3913 	/*
3914 	 * We may create multiple pwqs with differing cpumasks.  Make a
3915 	 * copy of @new_attrs which will be modified and used to obtain
3916 	 * pools.
3917 	 */
3918 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3919 
3920 	/*
3921 	 * If something goes wrong during CPU up/down, we'll fall back to
3922 	 * the default pwq covering whole @attrs->cpumask.  Always create
3923 	 * it even if we don't use it immediately.
3924 	 */
3925 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3926 	if (!ctx->dfl_pwq)
3927 		goto out_free;
3928 
3929 	for_each_node(node) {
3930 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3931 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3932 			if (!ctx->pwq_tbl[node])
3933 				goto out_free;
3934 		} else {
3935 			ctx->dfl_pwq->refcnt++;
3936 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3937 		}
3938 	}
3939 
3940 	/* save the user configured attrs and sanitize it. */
3941 	copy_workqueue_attrs(new_attrs, attrs);
3942 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3943 	ctx->attrs = new_attrs;
3944 
3945 	ctx->wq = wq;
3946 	free_workqueue_attrs(tmp_attrs);
3947 	return ctx;
3948 
3949 out_free:
3950 	free_workqueue_attrs(tmp_attrs);
3951 	free_workqueue_attrs(new_attrs);
3952 	apply_wqattrs_cleanup(ctx);
3953 	return NULL;
3954 }
3955 
3956 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3957 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3958 {
3959 	int node;
3960 
3961 	/* all pwqs have been created successfully, let's install'em */
3962 	mutex_lock(&ctx->wq->mutex);
3963 
3964 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3965 
3966 	/* save the previous pwq and install the new one */
3967 	for_each_node(node)
3968 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3969 							  ctx->pwq_tbl[node]);
3970 
3971 	/* @dfl_pwq might not have been used, ensure it's linked */
3972 	link_pwq(ctx->dfl_pwq);
3973 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3974 
3975 	mutex_unlock(&ctx->wq->mutex);
3976 }
3977 
3978 static void apply_wqattrs_lock(void)
3979 {
3980 	/* CPUs should stay stable across pwq creations and installations */
3981 	get_online_cpus();
3982 	mutex_lock(&wq_pool_mutex);
3983 }
3984 
3985 static void apply_wqattrs_unlock(void)
3986 {
3987 	mutex_unlock(&wq_pool_mutex);
3988 	put_online_cpus();
3989 }
3990 
3991 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3992 					const struct workqueue_attrs *attrs)
3993 {
3994 	struct apply_wqattrs_ctx *ctx;
3995 
3996 	/* only unbound workqueues can change attributes */
3997 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3998 		return -EINVAL;
3999 
4000 	/* creating multiple pwqs breaks ordering guarantee */
4001 	if (!list_empty(&wq->pwqs)) {
4002 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4003 			return -EINVAL;
4004 
4005 		wq->flags &= ~__WQ_ORDERED;
4006 	}
4007 
4008 	ctx = apply_wqattrs_prepare(wq, attrs);
4009 	if (!ctx)
4010 		return -ENOMEM;
4011 
4012 	/* the ctx has been prepared successfully, let's commit it */
4013 	apply_wqattrs_commit(ctx);
4014 	apply_wqattrs_cleanup(ctx);
4015 
4016 	return 0;
4017 }
4018 
4019 /**
4020  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4021  * @wq: the target workqueue
4022  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4023  *
4024  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4025  * machines, this function maps a separate pwq to each NUMA node with
4026  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4027  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4028  * items finish.  Note that a work item which repeatedly requeues itself
4029  * back-to-back will stay on its current pwq.
4030  *
4031  * Performs GFP_KERNEL allocations.
4032  *
4033  * Return: 0 on success and -errno on failure.
4034  */
4035 int apply_workqueue_attrs(struct workqueue_struct *wq,
4036 			  const struct workqueue_attrs *attrs)
4037 {
4038 	int ret;
4039 
4040 	apply_wqattrs_lock();
4041 	ret = apply_workqueue_attrs_locked(wq, attrs);
4042 	apply_wqattrs_unlock();
4043 
4044 	return ret;
4045 }
4046 EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
4047 
4048 /**
4049  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4050  * @wq: the target workqueue
4051  * @cpu: the CPU coming up or going down
4052  * @online: whether @cpu is coming up or going down
4053  *
4054  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4055  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4056  * @wq accordingly.
4057  *
4058  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4059  * falls back to @wq->dfl_pwq which may not be optimal but is always
4060  * correct.
4061  *
4062  * Note that when the last allowed CPU of a NUMA node goes offline for a
4063  * workqueue with a cpumask spanning multiple nodes, the workers which were
4064  * already executing the work items for the workqueue will lose their CPU
4065  * affinity and may execute on any CPU.  This is similar to how per-cpu
4066  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4067  * affinity, it's the user's responsibility to flush the work item from
4068  * CPU_DOWN_PREPARE.
4069  */
4070 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4071 				   bool online)
4072 {
4073 	int node = cpu_to_node(cpu);
4074 	int cpu_off = online ? -1 : cpu;
4075 	struct pool_workqueue *old_pwq = NULL, *pwq;
4076 	struct workqueue_attrs *target_attrs;
4077 	cpumask_t *cpumask;
4078 
4079 	lockdep_assert_held(&wq_pool_mutex);
4080 
4081 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4082 	    wq->unbound_attrs->no_numa)
4083 		return;
4084 
4085 	/*
4086 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4087 	 * Let's use a preallocated one.  The following buf is protected by
4088 	 * CPU hotplug exclusion.
4089 	 */
4090 	target_attrs = wq_update_unbound_numa_attrs_buf;
4091 	cpumask = target_attrs->cpumask;
4092 
4093 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4094 	pwq = unbound_pwq_by_node(wq, node);
4095 
4096 	/*
4097 	 * Let's determine what needs to be done.  If the target cpumask is
4098 	 * different from the default pwq's, we need to compare it to @pwq's
4099 	 * and create a new one if they don't match.  If the target cpumask
4100 	 * equals the default pwq's, the default pwq should be used.
4101 	 */
4102 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4103 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4104 			return;
4105 	} else {
4106 		goto use_dfl_pwq;
4107 	}
4108 
4109 	/* create a new pwq */
4110 	pwq = alloc_unbound_pwq(wq, target_attrs);
4111 	if (!pwq) {
4112 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4113 			wq->name);
4114 		goto use_dfl_pwq;
4115 	}
4116 
4117 	/* Install the new pwq. */
4118 	mutex_lock(&wq->mutex);
4119 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4120 	goto out_unlock;
4121 
4122 use_dfl_pwq:
4123 	mutex_lock(&wq->mutex);
4124 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4125 	get_pwq(wq->dfl_pwq);
4126 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4127 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4128 out_unlock:
4129 	mutex_unlock(&wq->mutex);
4130 	put_pwq_unlocked(old_pwq);
4131 }
4132 
4133 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4134 {
4135 	bool highpri = wq->flags & WQ_HIGHPRI;
4136 	int cpu, ret;
4137 
4138 	if (!(wq->flags & WQ_UNBOUND)) {
4139 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4140 		if (!wq->cpu_pwqs)
4141 			return -ENOMEM;
4142 
4143 		for_each_possible_cpu(cpu) {
4144 			struct pool_workqueue *pwq =
4145 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4146 			struct worker_pool *cpu_pools =
4147 				per_cpu(cpu_worker_pools, cpu);
4148 
4149 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4150 
4151 			mutex_lock(&wq->mutex);
4152 			link_pwq(pwq);
4153 			mutex_unlock(&wq->mutex);
4154 		}
4155 		return 0;
4156 	} else if (wq->flags & __WQ_ORDERED) {
4157 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4158 		/* there should only be single pwq for ordering guarantee */
4159 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4160 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4161 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4162 		return ret;
4163 	} else {
4164 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4165 	}
4166 }
4167 
4168 static int wq_clamp_max_active(int max_active, unsigned int flags,
4169 			       const char *name)
4170 {
4171 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4172 
4173 	if (max_active < 1 || max_active > lim)
4174 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4175 			max_active, name, 1, lim);
4176 
4177 	return clamp_val(max_active, 1, lim);
4178 }
4179 
4180 /*
4181  * Workqueues which may be used during memory reclaim should have a rescuer
4182  * to guarantee forward progress.
4183  */
4184 static int init_rescuer(struct workqueue_struct *wq)
4185 {
4186 	struct worker *rescuer;
4187 	int ret;
4188 
4189 	if (!(wq->flags & WQ_MEM_RECLAIM))
4190 		return 0;
4191 
4192 	rescuer = alloc_worker(NUMA_NO_NODE);
4193 	if (!rescuer)
4194 		return -ENOMEM;
4195 
4196 	rescuer->rescue_wq = wq;
4197 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4198 	ret = PTR_ERR_OR_ZERO(rescuer->task);
4199 	if (ret) {
4200 		kfree(rescuer);
4201 		return ret;
4202 	}
4203 
4204 	wq->rescuer = rescuer;
4205 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4206 	wake_up_process(rescuer->task);
4207 
4208 	return 0;
4209 }
4210 
4211 __printf(1, 4)
4212 struct workqueue_struct *alloc_workqueue(const char *fmt,
4213 					 unsigned int flags,
4214 					 int max_active, ...)
4215 {
4216 	size_t tbl_size = 0;
4217 	va_list args;
4218 	struct workqueue_struct *wq;
4219 	struct pool_workqueue *pwq;
4220 
4221 	/*
4222 	 * Unbound && max_active == 1 used to imply ordered, which is no
4223 	 * longer the case on NUMA machines due to per-node pools.  While
4224 	 * alloc_ordered_workqueue() is the right way to create an ordered
4225 	 * workqueue, keep the previous behavior to avoid subtle breakages
4226 	 * on NUMA.
4227 	 */
4228 	if ((flags & WQ_UNBOUND) && max_active == 1)
4229 		flags |= __WQ_ORDERED;
4230 
4231 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4232 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4233 		flags |= WQ_UNBOUND;
4234 
4235 	/* allocate wq and format name */
4236 	if (flags & WQ_UNBOUND)
4237 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4238 
4239 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4240 	if (!wq)
4241 		return NULL;
4242 
4243 	if (flags & WQ_UNBOUND) {
4244 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4245 		if (!wq->unbound_attrs)
4246 			goto err_free_wq;
4247 	}
4248 
4249 	va_start(args, max_active);
4250 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4251 	va_end(args);
4252 
4253 	max_active = max_active ?: WQ_DFL_ACTIVE;
4254 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4255 
4256 	/* init wq */
4257 	wq->flags = flags;
4258 	wq->saved_max_active = max_active;
4259 	mutex_init(&wq->mutex);
4260 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4261 	INIT_LIST_HEAD(&wq->pwqs);
4262 	INIT_LIST_HEAD(&wq->flusher_queue);
4263 	INIT_LIST_HEAD(&wq->flusher_overflow);
4264 	INIT_LIST_HEAD(&wq->maydays);
4265 
4266 	wq_init_lockdep(wq);
4267 	INIT_LIST_HEAD(&wq->list);
4268 
4269 	if (alloc_and_link_pwqs(wq) < 0)
4270 		goto err_unreg_lockdep;
4271 
4272 	if (wq_online && init_rescuer(wq) < 0)
4273 		goto err_destroy;
4274 
4275 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4276 		goto err_destroy;
4277 
4278 	/*
4279 	 * wq_pool_mutex protects global freeze state and workqueues list.
4280 	 * Grab it, adjust max_active and add the new @wq to workqueues
4281 	 * list.
4282 	 */
4283 	mutex_lock(&wq_pool_mutex);
4284 
4285 	mutex_lock(&wq->mutex);
4286 	for_each_pwq(pwq, wq)
4287 		pwq_adjust_max_active(pwq);
4288 	mutex_unlock(&wq->mutex);
4289 
4290 	list_add_tail_rcu(&wq->list, &workqueues);
4291 
4292 	mutex_unlock(&wq_pool_mutex);
4293 
4294 	return wq;
4295 
4296 err_unreg_lockdep:
4297 	wq_unregister_lockdep(wq);
4298 	wq_free_lockdep(wq);
4299 err_free_wq:
4300 	free_workqueue_attrs(wq->unbound_attrs);
4301 	kfree(wq);
4302 	return NULL;
4303 err_destroy:
4304 	destroy_workqueue(wq);
4305 	return NULL;
4306 }
4307 EXPORT_SYMBOL_GPL(alloc_workqueue);
4308 
4309 /**
4310  * destroy_workqueue - safely terminate a workqueue
4311  * @wq: target workqueue
4312  *
4313  * Safely destroy a workqueue. All work currently pending will be done first.
4314  */
4315 void destroy_workqueue(struct workqueue_struct *wq)
4316 {
4317 	struct pool_workqueue *pwq;
4318 	int node;
4319 
4320 	/* drain it before proceeding with destruction */
4321 	drain_workqueue(wq);
4322 
4323 	/* sanity checks */
4324 	mutex_lock(&wq->mutex);
4325 	for_each_pwq(pwq, wq) {
4326 		int i;
4327 
4328 		for (i = 0; i < WORK_NR_COLORS; i++) {
4329 			if (WARN_ON(pwq->nr_in_flight[i])) {
4330 				mutex_unlock(&wq->mutex);
4331 				show_workqueue_state();
4332 				return;
4333 			}
4334 		}
4335 
4336 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4337 		    WARN_ON(pwq->nr_active) ||
4338 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4339 			mutex_unlock(&wq->mutex);
4340 			show_workqueue_state();
4341 			return;
4342 		}
4343 	}
4344 	mutex_unlock(&wq->mutex);
4345 
4346 	/*
4347 	 * wq list is used to freeze wq, remove from list after
4348 	 * flushing is complete in case freeze races us.
4349 	 */
4350 	mutex_lock(&wq_pool_mutex);
4351 	list_del_rcu(&wq->list);
4352 	mutex_unlock(&wq_pool_mutex);
4353 
4354 	workqueue_sysfs_unregister(wq);
4355 
4356 	if (wq->rescuer)
4357 		kthread_stop(wq->rescuer->task);
4358 
4359 	if (!(wq->flags & WQ_UNBOUND)) {
4360 		wq_unregister_lockdep(wq);
4361 		/*
4362 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4363 		 * schedule RCU free.
4364 		 */
4365 		call_rcu(&wq->rcu, rcu_free_wq);
4366 	} else {
4367 		/*
4368 		 * We're the sole accessor of @wq at this point.  Directly
4369 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4370 		 * @wq will be freed when the last pwq is released.
4371 		 */
4372 		for_each_node(node) {
4373 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4374 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4375 			put_pwq_unlocked(pwq);
4376 		}
4377 
4378 		/*
4379 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4380 		 * put.  Don't access it afterwards.
4381 		 */
4382 		pwq = wq->dfl_pwq;
4383 		wq->dfl_pwq = NULL;
4384 		put_pwq_unlocked(pwq);
4385 	}
4386 }
4387 EXPORT_SYMBOL_GPL(destroy_workqueue);
4388 
4389 /**
4390  * workqueue_set_max_active - adjust max_active of a workqueue
4391  * @wq: target workqueue
4392  * @max_active: new max_active value.
4393  *
4394  * Set max_active of @wq to @max_active.
4395  *
4396  * CONTEXT:
4397  * Don't call from IRQ context.
4398  */
4399 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4400 {
4401 	struct pool_workqueue *pwq;
4402 
4403 	/* disallow meddling with max_active for ordered workqueues */
4404 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4405 		return;
4406 
4407 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4408 
4409 	mutex_lock(&wq->mutex);
4410 
4411 	wq->flags &= ~__WQ_ORDERED;
4412 	wq->saved_max_active = max_active;
4413 
4414 	for_each_pwq(pwq, wq)
4415 		pwq_adjust_max_active(pwq);
4416 
4417 	mutex_unlock(&wq->mutex);
4418 }
4419 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4420 
4421 /**
4422  * current_work - retrieve %current task's work struct
4423  *
4424  * Determine if %current task is a workqueue worker and what it's working on.
4425  * Useful to find out the context that the %current task is running in.
4426  *
4427  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4428  */
4429 struct work_struct *current_work(void)
4430 {
4431 	struct worker *worker = current_wq_worker();
4432 
4433 	return worker ? worker->current_work : NULL;
4434 }
4435 EXPORT_SYMBOL(current_work);
4436 
4437 /**
4438  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4439  *
4440  * Determine whether %current is a workqueue rescuer.  Can be used from
4441  * work functions to determine whether it's being run off the rescuer task.
4442  *
4443  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4444  */
4445 bool current_is_workqueue_rescuer(void)
4446 {
4447 	struct worker *worker = current_wq_worker();
4448 
4449 	return worker && worker->rescue_wq;
4450 }
4451 
4452 /**
4453  * workqueue_congested - test whether a workqueue is congested
4454  * @cpu: CPU in question
4455  * @wq: target workqueue
4456  *
4457  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4458  * no synchronization around this function and the test result is
4459  * unreliable and only useful as advisory hints or for debugging.
4460  *
4461  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4462  * Note that both per-cpu and unbound workqueues may be associated with
4463  * multiple pool_workqueues which have separate congested states.  A
4464  * workqueue being congested on one CPU doesn't mean the workqueue is also
4465  * contested on other CPUs / NUMA nodes.
4466  *
4467  * Return:
4468  * %true if congested, %false otherwise.
4469  */
4470 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4471 {
4472 	struct pool_workqueue *pwq;
4473 	bool ret;
4474 
4475 	rcu_read_lock();
4476 	preempt_disable();
4477 
4478 	if (cpu == WORK_CPU_UNBOUND)
4479 		cpu = smp_processor_id();
4480 
4481 	if (!(wq->flags & WQ_UNBOUND))
4482 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4483 	else
4484 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4485 
4486 	ret = !list_empty(&pwq->delayed_works);
4487 	preempt_enable();
4488 	rcu_read_unlock();
4489 
4490 	return ret;
4491 }
4492 EXPORT_SYMBOL_GPL(workqueue_congested);
4493 
4494 /**
4495  * work_busy - test whether a work is currently pending or running
4496  * @work: the work to be tested
4497  *
4498  * Test whether @work is currently pending or running.  There is no
4499  * synchronization around this function and the test result is
4500  * unreliable and only useful as advisory hints or for debugging.
4501  *
4502  * Return:
4503  * OR'd bitmask of WORK_BUSY_* bits.
4504  */
4505 unsigned int work_busy(struct work_struct *work)
4506 {
4507 	struct worker_pool *pool;
4508 	unsigned long flags;
4509 	unsigned int ret = 0;
4510 
4511 	if (work_pending(work))
4512 		ret |= WORK_BUSY_PENDING;
4513 
4514 	rcu_read_lock();
4515 	pool = get_work_pool(work);
4516 	if (pool) {
4517 		spin_lock_irqsave(&pool->lock, flags);
4518 		if (find_worker_executing_work(pool, work))
4519 			ret |= WORK_BUSY_RUNNING;
4520 		spin_unlock_irqrestore(&pool->lock, flags);
4521 	}
4522 	rcu_read_unlock();
4523 
4524 	return ret;
4525 }
4526 EXPORT_SYMBOL_GPL(work_busy);
4527 
4528 /**
4529  * set_worker_desc - set description for the current work item
4530  * @fmt: printf-style format string
4531  * @...: arguments for the format string
4532  *
4533  * This function can be called by a running work function to describe what
4534  * the work item is about.  If the worker task gets dumped, this
4535  * information will be printed out together to help debugging.  The
4536  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4537  */
4538 void set_worker_desc(const char *fmt, ...)
4539 {
4540 	struct worker *worker = current_wq_worker();
4541 	va_list args;
4542 
4543 	if (worker) {
4544 		va_start(args, fmt);
4545 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4546 		va_end(args);
4547 	}
4548 }
4549 EXPORT_SYMBOL_GPL(set_worker_desc);
4550 
4551 /**
4552  * print_worker_info - print out worker information and description
4553  * @log_lvl: the log level to use when printing
4554  * @task: target task
4555  *
4556  * If @task is a worker and currently executing a work item, print out the
4557  * name of the workqueue being serviced and worker description set with
4558  * set_worker_desc() by the currently executing work item.
4559  *
4560  * This function can be safely called on any task as long as the
4561  * task_struct itself is accessible.  While safe, this function isn't
4562  * synchronized and may print out mixups or garbages of limited length.
4563  */
4564 void print_worker_info(const char *log_lvl, struct task_struct *task)
4565 {
4566 	work_func_t *fn = NULL;
4567 	char name[WQ_NAME_LEN] = { };
4568 	char desc[WORKER_DESC_LEN] = { };
4569 	struct pool_workqueue *pwq = NULL;
4570 	struct workqueue_struct *wq = NULL;
4571 	struct worker *worker;
4572 
4573 	if (!(task->flags & PF_WQ_WORKER))
4574 		return;
4575 
4576 	/*
4577 	 * This function is called without any synchronization and @task
4578 	 * could be in any state.  Be careful with dereferences.
4579 	 */
4580 	worker = kthread_probe_data(task);
4581 
4582 	/*
4583 	 * Carefully copy the associated workqueue's workfn, name and desc.
4584 	 * Keep the original last '\0' in case the original is garbage.
4585 	 */
4586 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4587 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4588 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4589 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4590 	probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4591 
4592 	if (fn || name[0] || desc[0]) {
4593 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4594 		if (strcmp(name, desc))
4595 			pr_cont(" (%s)", desc);
4596 		pr_cont("\n");
4597 	}
4598 }
4599 
4600 static void pr_cont_pool_info(struct worker_pool *pool)
4601 {
4602 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4603 	if (pool->node != NUMA_NO_NODE)
4604 		pr_cont(" node=%d", pool->node);
4605 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4606 }
4607 
4608 static void pr_cont_work(bool comma, struct work_struct *work)
4609 {
4610 	if (work->func == wq_barrier_func) {
4611 		struct wq_barrier *barr;
4612 
4613 		barr = container_of(work, struct wq_barrier, work);
4614 
4615 		pr_cont("%s BAR(%d)", comma ? "," : "",
4616 			task_pid_nr(barr->task));
4617 	} else {
4618 		pr_cont("%s %ps", comma ? "," : "", work->func);
4619 	}
4620 }
4621 
4622 static void show_pwq(struct pool_workqueue *pwq)
4623 {
4624 	struct worker_pool *pool = pwq->pool;
4625 	struct work_struct *work;
4626 	struct worker *worker;
4627 	bool has_in_flight = false, has_pending = false;
4628 	int bkt;
4629 
4630 	pr_info("  pwq %d:", pool->id);
4631 	pr_cont_pool_info(pool);
4632 
4633 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4634 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4635 
4636 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4637 		if (worker->current_pwq == pwq) {
4638 			has_in_flight = true;
4639 			break;
4640 		}
4641 	}
4642 	if (has_in_flight) {
4643 		bool comma = false;
4644 
4645 		pr_info("    in-flight:");
4646 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4647 			if (worker->current_pwq != pwq)
4648 				continue;
4649 
4650 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4651 				task_pid_nr(worker->task),
4652 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4653 				worker->current_func);
4654 			list_for_each_entry(work, &worker->scheduled, entry)
4655 				pr_cont_work(false, work);
4656 			comma = true;
4657 		}
4658 		pr_cont("\n");
4659 	}
4660 
4661 	list_for_each_entry(work, &pool->worklist, entry) {
4662 		if (get_work_pwq(work) == pwq) {
4663 			has_pending = true;
4664 			break;
4665 		}
4666 	}
4667 	if (has_pending) {
4668 		bool comma = false;
4669 
4670 		pr_info("    pending:");
4671 		list_for_each_entry(work, &pool->worklist, entry) {
4672 			if (get_work_pwq(work) != pwq)
4673 				continue;
4674 
4675 			pr_cont_work(comma, work);
4676 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4677 		}
4678 		pr_cont("\n");
4679 	}
4680 
4681 	if (!list_empty(&pwq->delayed_works)) {
4682 		bool comma = false;
4683 
4684 		pr_info("    delayed:");
4685 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4686 			pr_cont_work(comma, work);
4687 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4688 		}
4689 		pr_cont("\n");
4690 	}
4691 }
4692 
4693 /**
4694  * show_workqueue_state - dump workqueue state
4695  *
4696  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4697  * all busy workqueues and pools.
4698  */
4699 void show_workqueue_state(void)
4700 {
4701 	struct workqueue_struct *wq;
4702 	struct worker_pool *pool;
4703 	unsigned long flags;
4704 	int pi;
4705 
4706 	rcu_read_lock();
4707 
4708 	pr_info("Showing busy workqueues and worker pools:\n");
4709 
4710 	list_for_each_entry_rcu(wq, &workqueues, list) {
4711 		struct pool_workqueue *pwq;
4712 		bool idle = true;
4713 
4714 		for_each_pwq(pwq, wq) {
4715 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4716 				idle = false;
4717 				break;
4718 			}
4719 		}
4720 		if (idle)
4721 			continue;
4722 
4723 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4724 
4725 		for_each_pwq(pwq, wq) {
4726 			spin_lock_irqsave(&pwq->pool->lock, flags);
4727 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4728 				show_pwq(pwq);
4729 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4730 			/*
4731 			 * We could be printing a lot from atomic context, e.g.
4732 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4733 			 * hard lockup.
4734 			 */
4735 			touch_nmi_watchdog();
4736 		}
4737 	}
4738 
4739 	for_each_pool(pool, pi) {
4740 		struct worker *worker;
4741 		bool first = true;
4742 
4743 		spin_lock_irqsave(&pool->lock, flags);
4744 		if (pool->nr_workers == pool->nr_idle)
4745 			goto next_pool;
4746 
4747 		pr_info("pool %d:", pool->id);
4748 		pr_cont_pool_info(pool);
4749 		pr_cont(" hung=%us workers=%d",
4750 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4751 			pool->nr_workers);
4752 		if (pool->manager)
4753 			pr_cont(" manager: %d",
4754 				task_pid_nr(pool->manager->task));
4755 		list_for_each_entry(worker, &pool->idle_list, entry) {
4756 			pr_cont(" %s%d", first ? "idle: " : "",
4757 				task_pid_nr(worker->task));
4758 			first = false;
4759 		}
4760 		pr_cont("\n");
4761 	next_pool:
4762 		spin_unlock_irqrestore(&pool->lock, flags);
4763 		/*
4764 		 * We could be printing a lot from atomic context, e.g.
4765 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4766 		 * hard lockup.
4767 		 */
4768 		touch_nmi_watchdog();
4769 	}
4770 
4771 	rcu_read_unlock();
4772 }
4773 
4774 /* used to show worker information through /proc/PID/{comm,stat,status} */
4775 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4776 {
4777 	int off;
4778 
4779 	/* always show the actual comm */
4780 	off = strscpy(buf, task->comm, size);
4781 	if (off < 0)
4782 		return;
4783 
4784 	/* stabilize PF_WQ_WORKER and worker pool association */
4785 	mutex_lock(&wq_pool_attach_mutex);
4786 
4787 	if (task->flags & PF_WQ_WORKER) {
4788 		struct worker *worker = kthread_data(task);
4789 		struct worker_pool *pool = worker->pool;
4790 
4791 		if (pool) {
4792 			spin_lock_irq(&pool->lock);
4793 			/*
4794 			 * ->desc tracks information (wq name or
4795 			 * set_worker_desc()) for the latest execution.  If
4796 			 * current, prepend '+', otherwise '-'.
4797 			 */
4798 			if (worker->desc[0] != '\0') {
4799 				if (worker->current_work)
4800 					scnprintf(buf + off, size - off, "+%s",
4801 						  worker->desc);
4802 				else
4803 					scnprintf(buf + off, size - off, "-%s",
4804 						  worker->desc);
4805 			}
4806 			spin_unlock_irq(&pool->lock);
4807 		}
4808 	}
4809 
4810 	mutex_unlock(&wq_pool_attach_mutex);
4811 }
4812 
4813 #ifdef CONFIG_SMP
4814 
4815 /*
4816  * CPU hotplug.
4817  *
4818  * There are two challenges in supporting CPU hotplug.  Firstly, there
4819  * are a lot of assumptions on strong associations among work, pwq and
4820  * pool which make migrating pending and scheduled works very
4821  * difficult to implement without impacting hot paths.  Secondly,
4822  * worker pools serve mix of short, long and very long running works making
4823  * blocked draining impractical.
4824  *
4825  * This is solved by allowing the pools to be disassociated from the CPU
4826  * running as an unbound one and allowing it to be reattached later if the
4827  * cpu comes back online.
4828  */
4829 
4830 static void unbind_workers(int cpu)
4831 {
4832 	struct worker_pool *pool;
4833 	struct worker *worker;
4834 
4835 	for_each_cpu_worker_pool(pool, cpu) {
4836 		mutex_lock(&wq_pool_attach_mutex);
4837 		spin_lock_irq(&pool->lock);
4838 
4839 		/*
4840 		 * We've blocked all attach/detach operations. Make all workers
4841 		 * unbound and set DISASSOCIATED.  Before this, all workers
4842 		 * except for the ones which are still executing works from
4843 		 * before the last CPU down must be on the cpu.  After
4844 		 * this, they may become diasporas.
4845 		 */
4846 		for_each_pool_worker(worker, pool)
4847 			worker->flags |= WORKER_UNBOUND;
4848 
4849 		pool->flags |= POOL_DISASSOCIATED;
4850 
4851 		spin_unlock_irq(&pool->lock);
4852 		mutex_unlock(&wq_pool_attach_mutex);
4853 
4854 		/*
4855 		 * Call schedule() so that we cross rq->lock and thus can
4856 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4857 		 * This is necessary as scheduler callbacks may be invoked
4858 		 * from other cpus.
4859 		 */
4860 		schedule();
4861 
4862 		/*
4863 		 * Sched callbacks are disabled now.  Zap nr_running.
4864 		 * After this, nr_running stays zero and need_more_worker()
4865 		 * and keep_working() are always true as long as the
4866 		 * worklist is not empty.  This pool now behaves as an
4867 		 * unbound (in terms of concurrency management) pool which
4868 		 * are served by workers tied to the pool.
4869 		 */
4870 		atomic_set(&pool->nr_running, 0);
4871 
4872 		/*
4873 		 * With concurrency management just turned off, a busy
4874 		 * worker blocking could lead to lengthy stalls.  Kick off
4875 		 * unbound chain execution of currently pending work items.
4876 		 */
4877 		spin_lock_irq(&pool->lock);
4878 		wake_up_worker(pool);
4879 		spin_unlock_irq(&pool->lock);
4880 	}
4881 }
4882 
4883 /**
4884  * rebind_workers - rebind all workers of a pool to the associated CPU
4885  * @pool: pool of interest
4886  *
4887  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4888  */
4889 static void rebind_workers(struct worker_pool *pool)
4890 {
4891 	struct worker *worker;
4892 
4893 	lockdep_assert_held(&wq_pool_attach_mutex);
4894 
4895 	/*
4896 	 * Restore CPU affinity of all workers.  As all idle workers should
4897 	 * be on the run-queue of the associated CPU before any local
4898 	 * wake-ups for concurrency management happen, restore CPU affinity
4899 	 * of all workers first and then clear UNBOUND.  As we're called
4900 	 * from CPU_ONLINE, the following shouldn't fail.
4901 	 */
4902 	for_each_pool_worker(worker, pool)
4903 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4904 						  pool->attrs->cpumask) < 0);
4905 
4906 	spin_lock_irq(&pool->lock);
4907 
4908 	pool->flags &= ~POOL_DISASSOCIATED;
4909 
4910 	for_each_pool_worker(worker, pool) {
4911 		unsigned int worker_flags = worker->flags;
4912 
4913 		/*
4914 		 * A bound idle worker should actually be on the runqueue
4915 		 * of the associated CPU for local wake-ups targeting it to
4916 		 * work.  Kick all idle workers so that they migrate to the
4917 		 * associated CPU.  Doing this in the same loop as
4918 		 * replacing UNBOUND with REBOUND is safe as no worker will
4919 		 * be bound before @pool->lock is released.
4920 		 */
4921 		if (worker_flags & WORKER_IDLE)
4922 			wake_up_process(worker->task);
4923 
4924 		/*
4925 		 * We want to clear UNBOUND but can't directly call
4926 		 * worker_clr_flags() or adjust nr_running.  Atomically
4927 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4928 		 * @worker will clear REBOUND using worker_clr_flags() when
4929 		 * it initiates the next execution cycle thus restoring
4930 		 * concurrency management.  Note that when or whether
4931 		 * @worker clears REBOUND doesn't affect correctness.
4932 		 *
4933 		 * WRITE_ONCE() is necessary because @worker->flags may be
4934 		 * tested without holding any lock in
4935 		 * wq_worker_running().  Without it, NOT_RUNNING test may
4936 		 * fail incorrectly leading to premature concurrency
4937 		 * management operations.
4938 		 */
4939 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4940 		worker_flags |= WORKER_REBOUND;
4941 		worker_flags &= ~WORKER_UNBOUND;
4942 		WRITE_ONCE(worker->flags, worker_flags);
4943 	}
4944 
4945 	spin_unlock_irq(&pool->lock);
4946 }
4947 
4948 /**
4949  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4950  * @pool: unbound pool of interest
4951  * @cpu: the CPU which is coming up
4952  *
4953  * An unbound pool may end up with a cpumask which doesn't have any online
4954  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4955  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4956  * online CPU before, cpus_allowed of all its workers should be restored.
4957  */
4958 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4959 {
4960 	static cpumask_t cpumask;
4961 	struct worker *worker;
4962 
4963 	lockdep_assert_held(&wq_pool_attach_mutex);
4964 
4965 	/* is @cpu allowed for @pool? */
4966 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4967 		return;
4968 
4969 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4970 
4971 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4972 	for_each_pool_worker(worker, pool)
4973 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4974 }
4975 
4976 int workqueue_prepare_cpu(unsigned int cpu)
4977 {
4978 	struct worker_pool *pool;
4979 
4980 	for_each_cpu_worker_pool(pool, cpu) {
4981 		if (pool->nr_workers)
4982 			continue;
4983 		if (!create_worker(pool))
4984 			return -ENOMEM;
4985 	}
4986 	return 0;
4987 }
4988 
4989 int workqueue_online_cpu(unsigned int cpu)
4990 {
4991 	struct worker_pool *pool;
4992 	struct workqueue_struct *wq;
4993 	int pi;
4994 
4995 	mutex_lock(&wq_pool_mutex);
4996 
4997 	for_each_pool(pool, pi) {
4998 		mutex_lock(&wq_pool_attach_mutex);
4999 
5000 		if (pool->cpu == cpu)
5001 			rebind_workers(pool);
5002 		else if (pool->cpu < 0)
5003 			restore_unbound_workers_cpumask(pool, cpu);
5004 
5005 		mutex_unlock(&wq_pool_attach_mutex);
5006 	}
5007 
5008 	/* update NUMA affinity of unbound workqueues */
5009 	list_for_each_entry(wq, &workqueues, list)
5010 		wq_update_unbound_numa(wq, cpu, true);
5011 
5012 	mutex_unlock(&wq_pool_mutex);
5013 	return 0;
5014 }
5015 
5016 int workqueue_offline_cpu(unsigned int cpu)
5017 {
5018 	struct workqueue_struct *wq;
5019 
5020 	/* unbinding per-cpu workers should happen on the local CPU */
5021 	if (WARN_ON(cpu != smp_processor_id()))
5022 		return -1;
5023 
5024 	unbind_workers(cpu);
5025 
5026 	/* update NUMA affinity of unbound workqueues */
5027 	mutex_lock(&wq_pool_mutex);
5028 	list_for_each_entry(wq, &workqueues, list)
5029 		wq_update_unbound_numa(wq, cpu, false);
5030 	mutex_unlock(&wq_pool_mutex);
5031 
5032 	return 0;
5033 }
5034 
5035 struct work_for_cpu {
5036 	struct work_struct work;
5037 	long (*fn)(void *);
5038 	void *arg;
5039 	long ret;
5040 };
5041 
5042 static void work_for_cpu_fn(struct work_struct *work)
5043 {
5044 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5045 
5046 	wfc->ret = wfc->fn(wfc->arg);
5047 }
5048 
5049 /**
5050  * work_on_cpu - run a function in thread context on a particular cpu
5051  * @cpu: the cpu to run on
5052  * @fn: the function to run
5053  * @arg: the function arg
5054  *
5055  * It is up to the caller to ensure that the cpu doesn't go offline.
5056  * The caller must not hold any locks which would prevent @fn from completing.
5057  *
5058  * Return: The value @fn returns.
5059  */
5060 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5061 {
5062 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5063 
5064 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5065 	schedule_work_on(cpu, &wfc.work);
5066 	flush_work(&wfc.work);
5067 	destroy_work_on_stack(&wfc.work);
5068 	return wfc.ret;
5069 }
5070 EXPORT_SYMBOL_GPL(work_on_cpu);
5071 
5072 /**
5073  * work_on_cpu_safe - run a function in thread context on a particular cpu
5074  * @cpu: the cpu to run on
5075  * @fn:  the function to run
5076  * @arg: the function argument
5077  *
5078  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5079  * any locks which would prevent @fn from completing.
5080  *
5081  * Return: The value @fn returns.
5082  */
5083 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5084 {
5085 	long ret = -ENODEV;
5086 
5087 	get_online_cpus();
5088 	if (cpu_online(cpu))
5089 		ret = work_on_cpu(cpu, fn, arg);
5090 	put_online_cpus();
5091 	return ret;
5092 }
5093 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5094 #endif /* CONFIG_SMP */
5095 
5096 #ifdef CONFIG_FREEZER
5097 
5098 /**
5099  * freeze_workqueues_begin - begin freezing workqueues
5100  *
5101  * Start freezing workqueues.  After this function returns, all freezable
5102  * workqueues will queue new works to their delayed_works list instead of
5103  * pool->worklist.
5104  *
5105  * CONTEXT:
5106  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5107  */
5108 void freeze_workqueues_begin(void)
5109 {
5110 	struct workqueue_struct *wq;
5111 	struct pool_workqueue *pwq;
5112 
5113 	mutex_lock(&wq_pool_mutex);
5114 
5115 	WARN_ON_ONCE(workqueue_freezing);
5116 	workqueue_freezing = true;
5117 
5118 	list_for_each_entry(wq, &workqueues, list) {
5119 		mutex_lock(&wq->mutex);
5120 		for_each_pwq(pwq, wq)
5121 			pwq_adjust_max_active(pwq);
5122 		mutex_unlock(&wq->mutex);
5123 	}
5124 
5125 	mutex_unlock(&wq_pool_mutex);
5126 }
5127 
5128 /**
5129  * freeze_workqueues_busy - are freezable workqueues still busy?
5130  *
5131  * Check whether freezing is complete.  This function must be called
5132  * between freeze_workqueues_begin() and thaw_workqueues().
5133  *
5134  * CONTEXT:
5135  * Grabs and releases wq_pool_mutex.
5136  *
5137  * Return:
5138  * %true if some freezable workqueues are still busy.  %false if freezing
5139  * is complete.
5140  */
5141 bool freeze_workqueues_busy(void)
5142 {
5143 	bool busy = false;
5144 	struct workqueue_struct *wq;
5145 	struct pool_workqueue *pwq;
5146 
5147 	mutex_lock(&wq_pool_mutex);
5148 
5149 	WARN_ON_ONCE(!workqueue_freezing);
5150 
5151 	list_for_each_entry(wq, &workqueues, list) {
5152 		if (!(wq->flags & WQ_FREEZABLE))
5153 			continue;
5154 		/*
5155 		 * nr_active is monotonically decreasing.  It's safe
5156 		 * to peek without lock.
5157 		 */
5158 		rcu_read_lock();
5159 		for_each_pwq(pwq, wq) {
5160 			WARN_ON_ONCE(pwq->nr_active < 0);
5161 			if (pwq->nr_active) {
5162 				busy = true;
5163 				rcu_read_unlock();
5164 				goto out_unlock;
5165 			}
5166 		}
5167 		rcu_read_unlock();
5168 	}
5169 out_unlock:
5170 	mutex_unlock(&wq_pool_mutex);
5171 	return busy;
5172 }
5173 
5174 /**
5175  * thaw_workqueues - thaw workqueues
5176  *
5177  * Thaw workqueues.  Normal queueing is restored and all collected
5178  * frozen works are transferred to their respective pool worklists.
5179  *
5180  * CONTEXT:
5181  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5182  */
5183 void thaw_workqueues(void)
5184 {
5185 	struct workqueue_struct *wq;
5186 	struct pool_workqueue *pwq;
5187 
5188 	mutex_lock(&wq_pool_mutex);
5189 
5190 	if (!workqueue_freezing)
5191 		goto out_unlock;
5192 
5193 	workqueue_freezing = false;
5194 
5195 	/* restore max_active and repopulate worklist */
5196 	list_for_each_entry(wq, &workqueues, list) {
5197 		mutex_lock(&wq->mutex);
5198 		for_each_pwq(pwq, wq)
5199 			pwq_adjust_max_active(pwq);
5200 		mutex_unlock(&wq->mutex);
5201 	}
5202 
5203 out_unlock:
5204 	mutex_unlock(&wq_pool_mutex);
5205 }
5206 #endif /* CONFIG_FREEZER */
5207 
5208 static int workqueue_apply_unbound_cpumask(void)
5209 {
5210 	LIST_HEAD(ctxs);
5211 	int ret = 0;
5212 	struct workqueue_struct *wq;
5213 	struct apply_wqattrs_ctx *ctx, *n;
5214 
5215 	lockdep_assert_held(&wq_pool_mutex);
5216 
5217 	list_for_each_entry(wq, &workqueues, list) {
5218 		if (!(wq->flags & WQ_UNBOUND))
5219 			continue;
5220 		/* creating multiple pwqs breaks ordering guarantee */
5221 		if (wq->flags & __WQ_ORDERED)
5222 			continue;
5223 
5224 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5225 		if (!ctx) {
5226 			ret = -ENOMEM;
5227 			break;
5228 		}
5229 
5230 		list_add_tail(&ctx->list, &ctxs);
5231 	}
5232 
5233 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5234 		if (!ret)
5235 			apply_wqattrs_commit(ctx);
5236 		apply_wqattrs_cleanup(ctx);
5237 	}
5238 
5239 	return ret;
5240 }
5241 
5242 /**
5243  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5244  *  @cpumask: the cpumask to set
5245  *
5246  *  The low-level workqueues cpumask is a global cpumask that limits
5247  *  the affinity of all unbound workqueues.  This function check the @cpumask
5248  *  and apply it to all unbound workqueues and updates all pwqs of them.
5249  *
5250  *  Retun:	0	- Success
5251  *  		-EINVAL	- Invalid @cpumask
5252  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5253  */
5254 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5255 {
5256 	int ret = -EINVAL;
5257 	cpumask_var_t saved_cpumask;
5258 
5259 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5260 		return -ENOMEM;
5261 
5262 	/*
5263 	 * Not excluding isolated cpus on purpose.
5264 	 * If the user wishes to include them, we allow that.
5265 	 */
5266 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5267 	if (!cpumask_empty(cpumask)) {
5268 		apply_wqattrs_lock();
5269 
5270 		/* save the old wq_unbound_cpumask. */
5271 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5272 
5273 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5274 		cpumask_copy(wq_unbound_cpumask, cpumask);
5275 		ret = workqueue_apply_unbound_cpumask();
5276 
5277 		/* restore the wq_unbound_cpumask when failed. */
5278 		if (ret < 0)
5279 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5280 
5281 		apply_wqattrs_unlock();
5282 	}
5283 
5284 	free_cpumask_var(saved_cpumask);
5285 	return ret;
5286 }
5287 
5288 #ifdef CONFIG_SYSFS
5289 /*
5290  * Workqueues with WQ_SYSFS flag set is visible to userland via
5291  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5292  * following attributes.
5293  *
5294  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5295  *  max_active	RW int	: maximum number of in-flight work items
5296  *
5297  * Unbound workqueues have the following extra attributes.
5298  *
5299  *  pool_ids	RO int	: the associated pool IDs for each node
5300  *  nice	RW int	: nice value of the workers
5301  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5302  *  numa	RW bool	: whether enable NUMA affinity
5303  */
5304 struct wq_device {
5305 	struct workqueue_struct		*wq;
5306 	struct device			dev;
5307 };
5308 
5309 static struct workqueue_struct *dev_to_wq(struct device *dev)
5310 {
5311 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5312 
5313 	return wq_dev->wq;
5314 }
5315 
5316 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5317 			    char *buf)
5318 {
5319 	struct workqueue_struct *wq = dev_to_wq(dev);
5320 
5321 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5322 }
5323 static DEVICE_ATTR_RO(per_cpu);
5324 
5325 static ssize_t max_active_show(struct device *dev,
5326 			       struct device_attribute *attr, char *buf)
5327 {
5328 	struct workqueue_struct *wq = dev_to_wq(dev);
5329 
5330 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5331 }
5332 
5333 static ssize_t max_active_store(struct device *dev,
5334 				struct device_attribute *attr, const char *buf,
5335 				size_t count)
5336 {
5337 	struct workqueue_struct *wq = dev_to_wq(dev);
5338 	int val;
5339 
5340 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5341 		return -EINVAL;
5342 
5343 	workqueue_set_max_active(wq, val);
5344 	return count;
5345 }
5346 static DEVICE_ATTR_RW(max_active);
5347 
5348 static struct attribute *wq_sysfs_attrs[] = {
5349 	&dev_attr_per_cpu.attr,
5350 	&dev_attr_max_active.attr,
5351 	NULL,
5352 };
5353 ATTRIBUTE_GROUPS(wq_sysfs);
5354 
5355 static ssize_t wq_pool_ids_show(struct device *dev,
5356 				struct device_attribute *attr, char *buf)
5357 {
5358 	struct workqueue_struct *wq = dev_to_wq(dev);
5359 	const char *delim = "";
5360 	int node, written = 0;
5361 
5362 	get_online_cpus();
5363 	rcu_read_lock();
5364 	for_each_node(node) {
5365 		written += scnprintf(buf + written, PAGE_SIZE - written,
5366 				     "%s%d:%d", delim, node,
5367 				     unbound_pwq_by_node(wq, node)->pool->id);
5368 		delim = " ";
5369 	}
5370 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5371 	rcu_read_unlock();
5372 	put_online_cpus();
5373 
5374 	return written;
5375 }
5376 
5377 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5378 			    char *buf)
5379 {
5380 	struct workqueue_struct *wq = dev_to_wq(dev);
5381 	int written;
5382 
5383 	mutex_lock(&wq->mutex);
5384 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5385 	mutex_unlock(&wq->mutex);
5386 
5387 	return written;
5388 }
5389 
5390 /* prepare workqueue_attrs for sysfs store operations */
5391 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5392 {
5393 	struct workqueue_attrs *attrs;
5394 
5395 	lockdep_assert_held(&wq_pool_mutex);
5396 
5397 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5398 	if (!attrs)
5399 		return NULL;
5400 
5401 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5402 	return attrs;
5403 }
5404 
5405 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5406 			     const char *buf, size_t count)
5407 {
5408 	struct workqueue_struct *wq = dev_to_wq(dev);
5409 	struct workqueue_attrs *attrs;
5410 	int ret = -ENOMEM;
5411 
5412 	apply_wqattrs_lock();
5413 
5414 	attrs = wq_sysfs_prep_attrs(wq);
5415 	if (!attrs)
5416 		goto out_unlock;
5417 
5418 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5419 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5420 		ret = apply_workqueue_attrs_locked(wq, attrs);
5421 	else
5422 		ret = -EINVAL;
5423 
5424 out_unlock:
5425 	apply_wqattrs_unlock();
5426 	free_workqueue_attrs(attrs);
5427 	return ret ?: count;
5428 }
5429 
5430 static ssize_t wq_cpumask_show(struct device *dev,
5431 			       struct device_attribute *attr, char *buf)
5432 {
5433 	struct workqueue_struct *wq = dev_to_wq(dev);
5434 	int written;
5435 
5436 	mutex_lock(&wq->mutex);
5437 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5438 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5439 	mutex_unlock(&wq->mutex);
5440 	return written;
5441 }
5442 
5443 static ssize_t wq_cpumask_store(struct device *dev,
5444 				struct device_attribute *attr,
5445 				const char *buf, size_t count)
5446 {
5447 	struct workqueue_struct *wq = dev_to_wq(dev);
5448 	struct workqueue_attrs *attrs;
5449 	int ret = -ENOMEM;
5450 
5451 	apply_wqattrs_lock();
5452 
5453 	attrs = wq_sysfs_prep_attrs(wq);
5454 	if (!attrs)
5455 		goto out_unlock;
5456 
5457 	ret = cpumask_parse(buf, attrs->cpumask);
5458 	if (!ret)
5459 		ret = apply_workqueue_attrs_locked(wq, attrs);
5460 
5461 out_unlock:
5462 	apply_wqattrs_unlock();
5463 	free_workqueue_attrs(attrs);
5464 	return ret ?: count;
5465 }
5466 
5467 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5468 			    char *buf)
5469 {
5470 	struct workqueue_struct *wq = dev_to_wq(dev);
5471 	int written;
5472 
5473 	mutex_lock(&wq->mutex);
5474 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5475 			    !wq->unbound_attrs->no_numa);
5476 	mutex_unlock(&wq->mutex);
5477 
5478 	return written;
5479 }
5480 
5481 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5482 			     const char *buf, size_t count)
5483 {
5484 	struct workqueue_struct *wq = dev_to_wq(dev);
5485 	struct workqueue_attrs *attrs;
5486 	int v, ret = -ENOMEM;
5487 
5488 	apply_wqattrs_lock();
5489 
5490 	attrs = wq_sysfs_prep_attrs(wq);
5491 	if (!attrs)
5492 		goto out_unlock;
5493 
5494 	ret = -EINVAL;
5495 	if (sscanf(buf, "%d", &v) == 1) {
5496 		attrs->no_numa = !v;
5497 		ret = apply_workqueue_attrs_locked(wq, attrs);
5498 	}
5499 
5500 out_unlock:
5501 	apply_wqattrs_unlock();
5502 	free_workqueue_attrs(attrs);
5503 	return ret ?: count;
5504 }
5505 
5506 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5507 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5508 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5509 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5510 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5511 	__ATTR_NULL,
5512 };
5513 
5514 static struct bus_type wq_subsys = {
5515 	.name				= "workqueue",
5516 	.dev_groups			= wq_sysfs_groups,
5517 };
5518 
5519 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5520 		struct device_attribute *attr, char *buf)
5521 {
5522 	int written;
5523 
5524 	mutex_lock(&wq_pool_mutex);
5525 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5526 			    cpumask_pr_args(wq_unbound_cpumask));
5527 	mutex_unlock(&wq_pool_mutex);
5528 
5529 	return written;
5530 }
5531 
5532 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5533 		struct device_attribute *attr, const char *buf, size_t count)
5534 {
5535 	cpumask_var_t cpumask;
5536 	int ret;
5537 
5538 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5539 		return -ENOMEM;
5540 
5541 	ret = cpumask_parse(buf, cpumask);
5542 	if (!ret)
5543 		ret = workqueue_set_unbound_cpumask(cpumask);
5544 
5545 	free_cpumask_var(cpumask);
5546 	return ret ? ret : count;
5547 }
5548 
5549 static struct device_attribute wq_sysfs_cpumask_attr =
5550 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5551 	       wq_unbound_cpumask_store);
5552 
5553 static int __init wq_sysfs_init(void)
5554 {
5555 	int err;
5556 
5557 	err = subsys_virtual_register(&wq_subsys, NULL);
5558 	if (err)
5559 		return err;
5560 
5561 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5562 }
5563 core_initcall(wq_sysfs_init);
5564 
5565 static void wq_device_release(struct device *dev)
5566 {
5567 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5568 
5569 	kfree(wq_dev);
5570 }
5571 
5572 /**
5573  * workqueue_sysfs_register - make a workqueue visible in sysfs
5574  * @wq: the workqueue to register
5575  *
5576  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5577  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5578  * which is the preferred method.
5579  *
5580  * Workqueue user should use this function directly iff it wants to apply
5581  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5582  * apply_workqueue_attrs() may race against userland updating the
5583  * attributes.
5584  *
5585  * Return: 0 on success, -errno on failure.
5586  */
5587 int workqueue_sysfs_register(struct workqueue_struct *wq)
5588 {
5589 	struct wq_device *wq_dev;
5590 	int ret;
5591 
5592 	/*
5593 	 * Adjusting max_active or creating new pwqs by applying
5594 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5595 	 * workqueues.
5596 	 */
5597 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5598 		return -EINVAL;
5599 
5600 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5601 	if (!wq_dev)
5602 		return -ENOMEM;
5603 
5604 	wq_dev->wq = wq;
5605 	wq_dev->dev.bus = &wq_subsys;
5606 	wq_dev->dev.release = wq_device_release;
5607 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5608 
5609 	/*
5610 	 * unbound_attrs are created separately.  Suppress uevent until
5611 	 * everything is ready.
5612 	 */
5613 	dev_set_uevent_suppress(&wq_dev->dev, true);
5614 
5615 	ret = device_register(&wq_dev->dev);
5616 	if (ret) {
5617 		put_device(&wq_dev->dev);
5618 		wq->wq_dev = NULL;
5619 		return ret;
5620 	}
5621 
5622 	if (wq->flags & WQ_UNBOUND) {
5623 		struct device_attribute *attr;
5624 
5625 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5626 			ret = device_create_file(&wq_dev->dev, attr);
5627 			if (ret) {
5628 				device_unregister(&wq_dev->dev);
5629 				wq->wq_dev = NULL;
5630 				return ret;
5631 			}
5632 		}
5633 	}
5634 
5635 	dev_set_uevent_suppress(&wq_dev->dev, false);
5636 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5637 	return 0;
5638 }
5639 
5640 /**
5641  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5642  * @wq: the workqueue to unregister
5643  *
5644  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5645  */
5646 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5647 {
5648 	struct wq_device *wq_dev = wq->wq_dev;
5649 
5650 	if (!wq->wq_dev)
5651 		return;
5652 
5653 	wq->wq_dev = NULL;
5654 	device_unregister(&wq_dev->dev);
5655 }
5656 #else	/* CONFIG_SYSFS */
5657 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5658 #endif	/* CONFIG_SYSFS */
5659 
5660 /*
5661  * Workqueue watchdog.
5662  *
5663  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5664  * flush dependency, a concurrency managed work item which stays RUNNING
5665  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5666  * usual warning mechanisms don't trigger and internal workqueue state is
5667  * largely opaque.
5668  *
5669  * Workqueue watchdog monitors all worker pools periodically and dumps
5670  * state if some pools failed to make forward progress for a while where
5671  * forward progress is defined as the first item on ->worklist changing.
5672  *
5673  * This mechanism is controlled through the kernel parameter
5674  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5675  * corresponding sysfs parameter file.
5676  */
5677 #ifdef CONFIG_WQ_WATCHDOG
5678 
5679 static unsigned long wq_watchdog_thresh = 30;
5680 static struct timer_list wq_watchdog_timer;
5681 
5682 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5683 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5684 
5685 static void wq_watchdog_reset_touched(void)
5686 {
5687 	int cpu;
5688 
5689 	wq_watchdog_touched = jiffies;
5690 	for_each_possible_cpu(cpu)
5691 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5692 }
5693 
5694 static void wq_watchdog_timer_fn(struct timer_list *unused)
5695 {
5696 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5697 	bool lockup_detected = false;
5698 	struct worker_pool *pool;
5699 	int pi;
5700 
5701 	if (!thresh)
5702 		return;
5703 
5704 	rcu_read_lock();
5705 
5706 	for_each_pool(pool, pi) {
5707 		unsigned long pool_ts, touched, ts;
5708 
5709 		if (list_empty(&pool->worklist))
5710 			continue;
5711 
5712 		/* get the latest of pool and touched timestamps */
5713 		pool_ts = READ_ONCE(pool->watchdog_ts);
5714 		touched = READ_ONCE(wq_watchdog_touched);
5715 
5716 		if (time_after(pool_ts, touched))
5717 			ts = pool_ts;
5718 		else
5719 			ts = touched;
5720 
5721 		if (pool->cpu >= 0) {
5722 			unsigned long cpu_touched =
5723 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5724 						  pool->cpu));
5725 			if (time_after(cpu_touched, ts))
5726 				ts = cpu_touched;
5727 		}
5728 
5729 		/* did we stall? */
5730 		if (time_after(jiffies, ts + thresh)) {
5731 			lockup_detected = true;
5732 			pr_emerg("BUG: workqueue lockup - pool");
5733 			pr_cont_pool_info(pool);
5734 			pr_cont(" stuck for %us!\n",
5735 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5736 		}
5737 	}
5738 
5739 	rcu_read_unlock();
5740 
5741 	if (lockup_detected)
5742 		show_workqueue_state();
5743 
5744 	wq_watchdog_reset_touched();
5745 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5746 }
5747 
5748 notrace void wq_watchdog_touch(int cpu)
5749 {
5750 	if (cpu >= 0)
5751 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5752 	else
5753 		wq_watchdog_touched = jiffies;
5754 }
5755 
5756 static void wq_watchdog_set_thresh(unsigned long thresh)
5757 {
5758 	wq_watchdog_thresh = 0;
5759 	del_timer_sync(&wq_watchdog_timer);
5760 
5761 	if (thresh) {
5762 		wq_watchdog_thresh = thresh;
5763 		wq_watchdog_reset_touched();
5764 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5765 	}
5766 }
5767 
5768 static int wq_watchdog_param_set_thresh(const char *val,
5769 					const struct kernel_param *kp)
5770 {
5771 	unsigned long thresh;
5772 	int ret;
5773 
5774 	ret = kstrtoul(val, 0, &thresh);
5775 	if (ret)
5776 		return ret;
5777 
5778 	if (system_wq)
5779 		wq_watchdog_set_thresh(thresh);
5780 	else
5781 		wq_watchdog_thresh = thresh;
5782 
5783 	return 0;
5784 }
5785 
5786 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5787 	.set	= wq_watchdog_param_set_thresh,
5788 	.get	= param_get_ulong,
5789 };
5790 
5791 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5792 		0644);
5793 
5794 static void wq_watchdog_init(void)
5795 {
5796 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5797 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5798 }
5799 
5800 #else	/* CONFIG_WQ_WATCHDOG */
5801 
5802 static inline void wq_watchdog_init(void) { }
5803 
5804 #endif	/* CONFIG_WQ_WATCHDOG */
5805 
5806 static void __init wq_numa_init(void)
5807 {
5808 	cpumask_var_t *tbl;
5809 	int node, cpu;
5810 
5811 	if (num_possible_nodes() <= 1)
5812 		return;
5813 
5814 	if (wq_disable_numa) {
5815 		pr_info("workqueue: NUMA affinity support disabled\n");
5816 		return;
5817 	}
5818 
5819 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5820 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5821 
5822 	/*
5823 	 * We want masks of possible CPUs of each node which isn't readily
5824 	 * available.  Build one from cpu_to_node() which should have been
5825 	 * fully initialized by now.
5826 	 */
5827 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5828 	BUG_ON(!tbl);
5829 
5830 	for_each_node(node)
5831 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5832 				node_online(node) ? node : NUMA_NO_NODE));
5833 
5834 	for_each_possible_cpu(cpu) {
5835 		node = cpu_to_node(cpu);
5836 		if (WARN_ON(node == NUMA_NO_NODE)) {
5837 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5838 			/* happens iff arch is bonkers, let's just proceed */
5839 			return;
5840 		}
5841 		cpumask_set_cpu(cpu, tbl[node]);
5842 	}
5843 
5844 	wq_numa_possible_cpumask = tbl;
5845 	wq_numa_enabled = true;
5846 }
5847 
5848 /**
5849  * workqueue_init_early - early init for workqueue subsystem
5850  *
5851  * This is the first half of two-staged workqueue subsystem initialization
5852  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5853  * idr are up.  It sets up all the data structures and system workqueues
5854  * and allows early boot code to create workqueues and queue/cancel work
5855  * items.  Actual work item execution starts only after kthreads can be
5856  * created and scheduled right before early initcalls.
5857  */
5858 int __init workqueue_init_early(void)
5859 {
5860 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5861 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5862 	int i, cpu;
5863 
5864 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5865 
5866 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5867 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5868 
5869 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5870 
5871 	/* initialize CPU pools */
5872 	for_each_possible_cpu(cpu) {
5873 		struct worker_pool *pool;
5874 
5875 		i = 0;
5876 		for_each_cpu_worker_pool(pool, cpu) {
5877 			BUG_ON(init_worker_pool(pool));
5878 			pool->cpu = cpu;
5879 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5880 			pool->attrs->nice = std_nice[i++];
5881 			pool->node = cpu_to_node(cpu);
5882 
5883 			/* alloc pool ID */
5884 			mutex_lock(&wq_pool_mutex);
5885 			BUG_ON(worker_pool_assign_id(pool));
5886 			mutex_unlock(&wq_pool_mutex);
5887 		}
5888 	}
5889 
5890 	/* create default unbound and ordered wq attrs */
5891 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5892 		struct workqueue_attrs *attrs;
5893 
5894 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5895 		attrs->nice = std_nice[i];
5896 		unbound_std_wq_attrs[i] = attrs;
5897 
5898 		/*
5899 		 * An ordered wq should have only one pwq as ordering is
5900 		 * guaranteed by max_active which is enforced by pwqs.
5901 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5902 		 */
5903 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5904 		attrs->nice = std_nice[i];
5905 		attrs->no_numa = true;
5906 		ordered_wq_attrs[i] = attrs;
5907 	}
5908 
5909 	system_wq = alloc_workqueue("events", 0, 0);
5910 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5911 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5912 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5913 					    WQ_UNBOUND_MAX_ACTIVE);
5914 	system_freezable_wq = alloc_workqueue("events_freezable",
5915 					      WQ_FREEZABLE, 0);
5916 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5917 					      WQ_POWER_EFFICIENT, 0);
5918 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5919 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5920 					      0);
5921 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5922 	       !system_unbound_wq || !system_freezable_wq ||
5923 	       !system_power_efficient_wq ||
5924 	       !system_freezable_power_efficient_wq);
5925 
5926 	return 0;
5927 }
5928 
5929 /**
5930  * workqueue_init - bring workqueue subsystem fully online
5931  *
5932  * This is the latter half of two-staged workqueue subsystem initialization
5933  * and invoked as soon as kthreads can be created and scheduled.
5934  * Workqueues have been created and work items queued on them, but there
5935  * are no kworkers executing the work items yet.  Populate the worker pools
5936  * with the initial workers and enable future kworker creations.
5937  */
5938 int __init workqueue_init(void)
5939 {
5940 	struct workqueue_struct *wq;
5941 	struct worker_pool *pool;
5942 	int cpu, bkt;
5943 
5944 	/*
5945 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5946 	 * CPU to node mapping may not be available that early on some
5947 	 * archs such as power and arm64.  As per-cpu pools created
5948 	 * previously could be missing node hint and unbound pools NUMA
5949 	 * affinity, fix them up.
5950 	 *
5951 	 * Also, while iterating workqueues, create rescuers if requested.
5952 	 */
5953 	wq_numa_init();
5954 
5955 	mutex_lock(&wq_pool_mutex);
5956 
5957 	for_each_possible_cpu(cpu) {
5958 		for_each_cpu_worker_pool(pool, cpu) {
5959 			pool->node = cpu_to_node(cpu);
5960 		}
5961 	}
5962 
5963 	list_for_each_entry(wq, &workqueues, list) {
5964 		wq_update_unbound_numa(wq, smp_processor_id(), true);
5965 		WARN(init_rescuer(wq),
5966 		     "workqueue: failed to create early rescuer for %s",
5967 		     wq->name);
5968 	}
5969 
5970 	mutex_unlock(&wq_pool_mutex);
5971 
5972 	/* create the initial workers */
5973 	for_each_online_cpu(cpu) {
5974 		for_each_cpu_worker_pool(pool, cpu) {
5975 			pool->flags &= ~POOL_DISASSOCIATED;
5976 			BUG_ON(!create_worker(pool));
5977 		}
5978 	}
5979 
5980 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5981 		BUG_ON(!create_worker(pool));
5982 
5983 	wq_online = true;
5984 	wq_watchdog_init();
5985 
5986 	return 0;
5987 }
5988