1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * attach_mutex to avoid changing binding state while 69 * worker_attach_to_pool() is in progress. 70 */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 73 /* worker flags */ 74 WORKER_DIE = 1 << 1, /* die die die */ 75 WORKER_IDLE = 1 << 2, /* is idle */ 76 WORKER_PREP = 1 << 3, /* preparing to run works */ 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 80 81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 82 WORKER_UNBOUND | WORKER_REBOUND, 83 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 85 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 88 89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 91 92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 93 /* call for help after 10ms 94 (min two ticks) */ 95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 96 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 97 98 /* 99 * Rescue workers are used only on emergencies and shared by 100 * all cpus. Give MIN_NICE. 101 */ 102 RESCUER_NICE_LEVEL = MIN_NICE, 103 HIGHPRI_NICE_LEVEL = MIN_NICE, 104 105 WQ_NAME_LEN = 24, 106 }; 107 108 /* 109 * Structure fields follow one of the following exclusion rules. 110 * 111 * I: Modifiable by initialization/destruction paths and read-only for 112 * everyone else. 113 * 114 * P: Preemption protected. Disabling preemption is enough and should 115 * only be modified and accessed from the local cpu. 116 * 117 * L: pool->lock protected. Access with pool->lock held. 118 * 119 * X: During normal operation, modification requires pool->lock and should 120 * be done only from local cpu. Either disabling preemption on local 121 * cpu or grabbing pool->lock is enough for read access. If 122 * POOL_DISASSOCIATED is set, it's identical to L. 123 * 124 * A: pool->attach_mutex protected. 125 * 126 * PL: wq_pool_mutex protected. 127 * 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 129 * 130 * WQ: wq->mutex protected. 131 * 132 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 133 * 134 * MD: wq_mayday_lock protected. 135 */ 136 137 /* struct worker is defined in workqueue_internal.h */ 138 139 struct worker_pool { 140 spinlock_t lock; /* the pool lock */ 141 int cpu; /* I: the associated cpu */ 142 int node; /* I: the associated node ID */ 143 int id; /* I: pool ID */ 144 unsigned int flags; /* X: flags */ 145 146 struct list_head worklist; /* L: list of pending works */ 147 int nr_workers; /* L: total number of workers */ 148 149 /* nr_idle includes the ones off idle_list for rebinding */ 150 int nr_idle; /* L: currently idle ones */ 151 152 struct list_head idle_list; /* X: list of idle workers */ 153 struct timer_list idle_timer; /* L: worker idle timeout */ 154 struct timer_list mayday_timer; /* L: SOS timer for workers */ 155 156 /* a workers is either on busy_hash or idle_list, or the manager */ 157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 158 /* L: hash of busy workers */ 159 160 /* see manage_workers() for details on the two manager mutexes */ 161 struct mutex manager_arb; /* manager arbitration */ 162 struct worker *manager; /* L: purely informational */ 163 struct mutex attach_mutex; /* attach/detach exclusion */ 164 struct list_head workers; /* A: attached workers */ 165 struct completion *detach_completion; /* all workers detached */ 166 167 struct ida worker_ida; /* worker IDs for task name */ 168 169 struct workqueue_attrs *attrs; /* I: worker attributes */ 170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 171 int refcnt; /* PL: refcnt for unbound pools */ 172 173 /* 174 * The current concurrency level. As it's likely to be accessed 175 * from other CPUs during try_to_wake_up(), put it in a separate 176 * cacheline. 177 */ 178 atomic_t nr_running ____cacheline_aligned_in_smp; 179 180 /* 181 * Destruction of pool is sched-RCU protected to allow dereferences 182 * from get_work_pool(). 183 */ 184 struct rcu_head rcu; 185 } ____cacheline_aligned_in_smp; 186 187 /* 188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 189 * of work_struct->data are used for flags and the remaining high bits 190 * point to the pwq; thus, pwqs need to be aligned at two's power of the 191 * number of flag bits. 192 */ 193 struct pool_workqueue { 194 struct worker_pool *pool; /* I: the associated pool */ 195 struct workqueue_struct *wq; /* I: the owning workqueue */ 196 int work_color; /* L: current color */ 197 int flush_color; /* L: flushing color */ 198 int refcnt; /* L: reference count */ 199 int nr_in_flight[WORK_NR_COLORS]; 200 /* L: nr of in_flight works */ 201 int nr_active; /* L: nr of active works */ 202 int max_active; /* L: max active works */ 203 struct list_head delayed_works; /* L: delayed works */ 204 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 205 struct list_head mayday_node; /* MD: node on wq->maydays */ 206 207 /* 208 * Release of unbound pwq is punted to system_wq. See put_pwq() 209 * and pwq_unbound_release_workfn() for details. pool_workqueue 210 * itself is also sched-RCU protected so that the first pwq can be 211 * determined without grabbing wq->mutex. 212 */ 213 struct work_struct unbound_release_work; 214 struct rcu_head rcu; 215 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 216 217 /* 218 * Structure used to wait for workqueue flush. 219 */ 220 struct wq_flusher { 221 struct list_head list; /* WQ: list of flushers */ 222 int flush_color; /* WQ: flush color waiting for */ 223 struct completion done; /* flush completion */ 224 }; 225 226 struct wq_device; 227 228 /* 229 * The externally visible workqueue. It relays the issued work items to 230 * the appropriate worker_pool through its pool_workqueues. 231 */ 232 struct workqueue_struct { 233 struct list_head pwqs; /* WR: all pwqs of this wq */ 234 struct list_head list; /* PR: list of all workqueues */ 235 236 struct mutex mutex; /* protects this wq */ 237 int work_color; /* WQ: current work color */ 238 int flush_color; /* WQ: current flush color */ 239 atomic_t nr_pwqs_to_flush; /* flush in progress */ 240 struct wq_flusher *first_flusher; /* WQ: first flusher */ 241 struct list_head flusher_queue; /* WQ: flush waiters */ 242 struct list_head flusher_overflow; /* WQ: flush overflow list */ 243 244 struct list_head maydays; /* MD: pwqs requesting rescue */ 245 struct worker *rescuer; /* I: rescue worker */ 246 247 int nr_drainers; /* WQ: drain in progress */ 248 int saved_max_active; /* WQ: saved pwq max_active */ 249 250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */ 251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */ 252 253 #ifdef CONFIG_SYSFS 254 struct wq_device *wq_dev; /* I: for sysfs interface */ 255 #endif 256 #ifdef CONFIG_LOCKDEP 257 struct lockdep_map lockdep_map; 258 #endif 259 char name[WQ_NAME_LEN]; /* I: workqueue name */ 260 261 /* 262 * Destruction of workqueue_struct is sched-RCU protected to allow 263 * walking the workqueues list without grabbing wq_pool_mutex. 264 * This is used to dump all workqueues from sysrq. 265 */ 266 struct rcu_head rcu; 267 268 /* hot fields used during command issue, aligned to cacheline */ 269 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 270 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 271 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */ 272 }; 273 274 static struct kmem_cache *pwq_cache; 275 276 static cpumask_var_t *wq_numa_possible_cpumask; 277 /* possible CPUs of each node */ 278 279 static bool wq_disable_numa; 280 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 281 282 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 283 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT 284 static bool wq_power_efficient = true; 285 #else 286 static bool wq_power_efficient; 287 #endif 288 289 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 290 291 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 292 293 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 294 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 295 296 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 297 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 298 299 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 300 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 301 302 /* the per-cpu worker pools */ 303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 304 cpu_worker_pools); 305 306 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 307 308 /* PL: hash of all unbound pools keyed by pool->attrs */ 309 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 310 311 /* I: attributes used when instantiating standard unbound pools on demand */ 312 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 313 314 /* I: attributes used when instantiating ordered pools on demand */ 315 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 316 317 struct workqueue_struct *system_wq __read_mostly; 318 EXPORT_SYMBOL(system_wq); 319 struct workqueue_struct *system_highpri_wq __read_mostly; 320 EXPORT_SYMBOL_GPL(system_highpri_wq); 321 struct workqueue_struct *system_long_wq __read_mostly; 322 EXPORT_SYMBOL_GPL(system_long_wq); 323 struct workqueue_struct *system_unbound_wq __read_mostly; 324 EXPORT_SYMBOL_GPL(system_unbound_wq); 325 struct workqueue_struct *system_freezable_wq __read_mostly; 326 EXPORT_SYMBOL_GPL(system_freezable_wq); 327 struct workqueue_struct *system_power_efficient_wq __read_mostly; 328 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 329 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 330 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 331 332 static int worker_thread(void *__worker); 333 static void copy_workqueue_attrs(struct workqueue_attrs *to, 334 const struct workqueue_attrs *from); 335 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 336 337 #define CREATE_TRACE_POINTS 338 #include <trace/events/workqueue.h> 339 340 #define assert_rcu_or_pool_mutex() \ 341 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 342 lockdep_is_held(&wq_pool_mutex), \ 343 "sched RCU or wq_pool_mutex should be held") 344 345 #define assert_rcu_or_wq_mutex(wq) \ 346 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 347 lockdep_is_held(&wq->mutex), \ 348 "sched RCU or wq->mutex should be held") 349 350 #define for_each_cpu_worker_pool(pool, cpu) \ 351 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 352 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 353 (pool)++) 354 355 /** 356 * for_each_pool - iterate through all worker_pools in the system 357 * @pool: iteration cursor 358 * @pi: integer used for iteration 359 * 360 * This must be called either with wq_pool_mutex held or sched RCU read 361 * locked. If the pool needs to be used beyond the locking in effect, the 362 * caller is responsible for guaranteeing that the pool stays online. 363 * 364 * The if/else clause exists only for the lockdep assertion and can be 365 * ignored. 366 */ 367 #define for_each_pool(pool, pi) \ 368 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 369 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 370 else 371 372 /** 373 * for_each_pool_worker - iterate through all workers of a worker_pool 374 * @worker: iteration cursor 375 * @pool: worker_pool to iterate workers of 376 * 377 * This must be called with @pool->attach_mutex. 378 * 379 * The if/else clause exists only for the lockdep assertion and can be 380 * ignored. 381 */ 382 #define for_each_pool_worker(worker, pool) \ 383 list_for_each_entry((worker), &(pool)->workers, node) \ 384 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 385 else 386 387 /** 388 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 389 * @pwq: iteration cursor 390 * @wq: the target workqueue 391 * 392 * This must be called either with wq->mutex held or sched RCU read locked. 393 * If the pwq needs to be used beyond the locking in effect, the caller is 394 * responsible for guaranteeing that the pwq stays online. 395 * 396 * The if/else clause exists only for the lockdep assertion and can be 397 * ignored. 398 */ 399 #define for_each_pwq(pwq, wq) \ 400 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 401 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 402 else 403 404 #ifdef CONFIG_DEBUG_OBJECTS_WORK 405 406 static struct debug_obj_descr work_debug_descr; 407 408 static void *work_debug_hint(void *addr) 409 { 410 return ((struct work_struct *) addr)->func; 411 } 412 413 /* 414 * fixup_init is called when: 415 * - an active object is initialized 416 */ 417 static int work_fixup_init(void *addr, enum debug_obj_state state) 418 { 419 struct work_struct *work = addr; 420 421 switch (state) { 422 case ODEBUG_STATE_ACTIVE: 423 cancel_work_sync(work); 424 debug_object_init(work, &work_debug_descr); 425 return 1; 426 default: 427 return 0; 428 } 429 } 430 431 /* 432 * fixup_activate is called when: 433 * - an active object is activated 434 * - an unknown object is activated (might be a statically initialized object) 435 */ 436 static int work_fixup_activate(void *addr, enum debug_obj_state state) 437 { 438 struct work_struct *work = addr; 439 440 switch (state) { 441 442 case ODEBUG_STATE_NOTAVAILABLE: 443 /* 444 * This is not really a fixup. The work struct was 445 * statically initialized. We just make sure that it 446 * is tracked in the object tracker. 447 */ 448 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 449 debug_object_init(work, &work_debug_descr); 450 debug_object_activate(work, &work_debug_descr); 451 return 0; 452 } 453 WARN_ON_ONCE(1); 454 return 0; 455 456 case ODEBUG_STATE_ACTIVE: 457 WARN_ON(1); 458 459 default: 460 return 0; 461 } 462 } 463 464 /* 465 * fixup_free is called when: 466 * - an active object is freed 467 */ 468 static int work_fixup_free(void *addr, enum debug_obj_state state) 469 { 470 struct work_struct *work = addr; 471 472 switch (state) { 473 case ODEBUG_STATE_ACTIVE: 474 cancel_work_sync(work); 475 debug_object_free(work, &work_debug_descr); 476 return 1; 477 default: 478 return 0; 479 } 480 } 481 482 static struct debug_obj_descr work_debug_descr = { 483 .name = "work_struct", 484 .debug_hint = work_debug_hint, 485 .fixup_init = work_fixup_init, 486 .fixup_activate = work_fixup_activate, 487 .fixup_free = work_fixup_free, 488 }; 489 490 static inline void debug_work_activate(struct work_struct *work) 491 { 492 debug_object_activate(work, &work_debug_descr); 493 } 494 495 static inline void debug_work_deactivate(struct work_struct *work) 496 { 497 debug_object_deactivate(work, &work_debug_descr); 498 } 499 500 void __init_work(struct work_struct *work, int onstack) 501 { 502 if (onstack) 503 debug_object_init_on_stack(work, &work_debug_descr); 504 else 505 debug_object_init(work, &work_debug_descr); 506 } 507 EXPORT_SYMBOL_GPL(__init_work); 508 509 void destroy_work_on_stack(struct work_struct *work) 510 { 511 debug_object_free(work, &work_debug_descr); 512 } 513 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 514 515 void destroy_delayed_work_on_stack(struct delayed_work *work) 516 { 517 destroy_timer_on_stack(&work->timer); 518 debug_object_free(&work->work, &work_debug_descr); 519 } 520 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 521 522 #else 523 static inline void debug_work_activate(struct work_struct *work) { } 524 static inline void debug_work_deactivate(struct work_struct *work) { } 525 #endif 526 527 /** 528 * worker_pool_assign_id - allocate ID and assing it to @pool 529 * @pool: the pool pointer of interest 530 * 531 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 532 * successfully, -errno on failure. 533 */ 534 static int worker_pool_assign_id(struct worker_pool *pool) 535 { 536 int ret; 537 538 lockdep_assert_held(&wq_pool_mutex); 539 540 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 541 GFP_KERNEL); 542 if (ret >= 0) { 543 pool->id = ret; 544 return 0; 545 } 546 return ret; 547 } 548 549 /** 550 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 551 * @wq: the target workqueue 552 * @node: the node ID 553 * 554 * This must be called either with pwq_lock held or sched RCU read locked. 555 * If the pwq needs to be used beyond the locking in effect, the caller is 556 * responsible for guaranteeing that the pwq stays online. 557 * 558 * Return: The unbound pool_workqueue for @node. 559 */ 560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 561 int node) 562 { 563 assert_rcu_or_wq_mutex(wq); 564 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 565 } 566 567 static unsigned int work_color_to_flags(int color) 568 { 569 return color << WORK_STRUCT_COLOR_SHIFT; 570 } 571 572 static int get_work_color(struct work_struct *work) 573 { 574 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 575 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 576 } 577 578 static int work_next_color(int color) 579 { 580 return (color + 1) % WORK_NR_COLORS; 581 } 582 583 /* 584 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 585 * contain the pointer to the queued pwq. Once execution starts, the flag 586 * is cleared and the high bits contain OFFQ flags and pool ID. 587 * 588 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 589 * and clear_work_data() can be used to set the pwq, pool or clear 590 * work->data. These functions should only be called while the work is 591 * owned - ie. while the PENDING bit is set. 592 * 593 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 594 * corresponding to a work. Pool is available once the work has been 595 * queued anywhere after initialization until it is sync canceled. pwq is 596 * available only while the work item is queued. 597 * 598 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 599 * canceled. While being canceled, a work item may have its PENDING set 600 * but stay off timer and worklist for arbitrarily long and nobody should 601 * try to steal the PENDING bit. 602 */ 603 static inline void set_work_data(struct work_struct *work, unsigned long data, 604 unsigned long flags) 605 { 606 WARN_ON_ONCE(!work_pending(work)); 607 atomic_long_set(&work->data, data | flags | work_static(work)); 608 } 609 610 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 611 unsigned long extra_flags) 612 { 613 set_work_data(work, (unsigned long)pwq, 614 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 615 } 616 617 static void set_work_pool_and_keep_pending(struct work_struct *work, 618 int pool_id) 619 { 620 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 621 WORK_STRUCT_PENDING); 622 } 623 624 static void set_work_pool_and_clear_pending(struct work_struct *work, 625 int pool_id) 626 { 627 /* 628 * The following wmb is paired with the implied mb in 629 * test_and_set_bit(PENDING) and ensures all updates to @work made 630 * here are visible to and precede any updates by the next PENDING 631 * owner. 632 */ 633 smp_wmb(); 634 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 635 } 636 637 static void clear_work_data(struct work_struct *work) 638 { 639 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 640 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 641 } 642 643 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 644 { 645 unsigned long data = atomic_long_read(&work->data); 646 647 if (data & WORK_STRUCT_PWQ) 648 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 649 else 650 return NULL; 651 } 652 653 /** 654 * get_work_pool - return the worker_pool a given work was associated with 655 * @work: the work item of interest 656 * 657 * Pools are created and destroyed under wq_pool_mutex, and allows read 658 * access under sched-RCU read lock. As such, this function should be 659 * called under wq_pool_mutex or with preemption disabled. 660 * 661 * All fields of the returned pool are accessible as long as the above 662 * mentioned locking is in effect. If the returned pool needs to be used 663 * beyond the critical section, the caller is responsible for ensuring the 664 * returned pool is and stays online. 665 * 666 * Return: The worker_pool @work was last associated with. %NULL if none. 667 */ 668 static struct worker_pool *get_work_pool(struct work_struct *work) 669 { 670 unsigned long data = atomic_long_read(&work->data); 671 int pool_id; 672 673 assert_rcu_or_pool_mutex(); 674 675 if (data & WORK_STRUCT_PWQ) 676 return ((struct pool_workqueue *) 677 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 678 679 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 680 if (pool_id == WORK_OFFQ_POOL_NONE) 681 return NULL; 682 683 return idr_find(&worker_pool_idr, pool_id); 684 } 685 686 /** 687 * get_work_pool_id - return the worker pool ID a given work is associated with 688 * @work: the work item of interest 689 * 690 * Return: The worker_pool ID @work was last associated with. 691 * %WORK_OFFQ_POOL_NONE if none. 692 */ 693 static int get_work_pool_id(struct work_struct *work) 694 { 695 unsigned long data = atomic_long_read(&work->data); 696 697 if (data & WORK_STRUCT_PWQ) 698 return ((struct pool_workqueue *) 699 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 700 701 return data >> WORK_OFFQ_POOL_SHIFT; 702 } 703 704 static void mark_work_canceling(struct work_struct *work) 705 { 706 unsigned long pool_id = get_work_pool_id(work); 707 708 pool_id <<= WORK_OFFQ_POOL_SHIFT; 709 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 710 } 711 712 static bool work_is_canceling(struct work_struct *work) 713 { 714 unsigned long data = atomic_long_read(&work->data); 715 716 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 717 } 718 719 /* 720 * Policy functions. These define the policies on how the global worker 721 * pools are managed. Unless noted otherwise, these functions assume that 722 * they're being called with pool->lock held. 723 */ 724 725 static bool __need_more_worker(struct worker_pool *pool) 726 { 727 return !atomic_read(&pool->nr_running); 728 } 729 730 /* 731 * Need to wake up a worker? Called from anything but currently 732 * running workers. 733 * 734 * Note that, because unbound workers never contribute to nr_running, this 735 * function will always return %true for unbound pools as long as the 736 * worklist isn't empty. 737 */ 738 static bool need_more_worker(struct worker_pool *pool) 739 { 740 return !list_empty(&pool->worklist) && __need_more_worker(pool); 741 } 742 743 /* Can I start working? Called from busy but !running workers. */ 744 static bool may_start_working(struct worker_pool *pool) 745 { 746 return pool->nr_idle; 747 } 748 749 /* Do I need to keep working? Called from currently running workers. */ 750 static bool keep_working(struct worker_pool *pool) 751 { 752 return !list_empty(&pool->worklist) && 753 atomic_read(&pool->nr_running) <= 1; 754 } 755 756 /* Do we need a new worker? Called from manager. */ 757 static bool need_to_create_worker(struct worker_pool *pool) 758 { 759 return need_more_worker(pool) && !may_start_working(pool); 760 } 761 762 /* Do we have too many workers and should some go away? */ 763 static bool too_many_workers(struct worker_pool *pool) 764 { 765 bool managing = mutex_is_locked(&pool->manager_arb); 766 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 767 int nr_busy = pool->nr_workers - nr_idle; 768 769 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 770 } 771 772 /* 773 * Wake up functions. 774 */ 775 776 /* Return the first idle worker. Safe with preemption disabled */ 777 static struct worker *first_idle_worker(struct worker_pool *pool) 778 { 779 if (unlikely(list_empty(&pool->idle_list))) 780 return NULL; 781 782 return list_first_entry(&pool->idle_list, struct worker, entry); 783 } 784 785 /** 786 * wake_up_worker - wake up an idle worker 787 * @pool: worker pool to wake worker from 788 * 789 * Wake up the first idle worker of @pool. 790 * 791 * CONTEXT: 792 * spin_lock_irq(pool->lock). 793 */ 794 static void wake_up_worker(struct worker_pool *pool) 795 { 796 struct worker *worker = first_idle_worker(pool); 797 798 if (likely(worker)) 799 wake_up_process(worker->task); 800 } 801 802 /** 803 * wq_worker_waking_up - a worker is waking up 804 * @task: task waking up 805 * @cpu: CPU @task is waking up to 806 * 807 * This function is called during try_to_wake_up() when a worker is 808 * being awoken. 809 * 810 * CONTEXT: 811 * spin_lock_irq(rq->lock) 812 */ 813 void wq_worker_waking_up(struct task_struct *task, int cpu) 814 { 815 struct worker *worker = kthread_data(task); 816 817 if (!(worker->flags & WORKER_NOT_RUNNING)) { 818 WARN_ON_ONCE(worker->pool->cpu != cpu); 819 atomic_inc(&worker->pool->nr_running); 820 } 821 } 822 823 /** 824 * wq_worker_sleeping - a worker is going to sleep 825 * @task: task going to sleep 826 * @cpu: CPU in question, must be the current CPU number 827 * 828 * This function is called during schedule() when a busy worker is 829 * going to sleep. Worker on the same cpu can be woken up by 830 * returning pointer to its task. 831 * 832 * CONTEXT: 833 * spin_lock_irq(rq->lock) 834 * 835 * Return: 836 * Worker task on @cpu to wake up, %NULL if none. 837 */ 838 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 839 { 840 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 841 struct worker_pool *pool; 842 843 /* 844 * Rescuers, which may not have all the fields set up like normal 845 * workers, also reach here, let's not access anything before 846 * checking NOT_RUNNING. 847 */ 848 if (worker->flags & WORKER_NOT_RUNNING) 849 return NULL; 850 851 pool = worker->pool; 852 853 /* this can only happen on the local cpu */ 854 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu)) 855 return NULL; 856 857 /* 858 * The counterpart of the following dec_and_test, implied mb, 859 * worklist not empty test sequence is in insert_work(). 860 * Please read comment there. 861 * 862 * NOT_RUNNING is clear. This means that we're bound to and 863 * running on the local cpu w/ rq lock held and preemption 864 * disabled, which in turn means that none else could be 865 * manipulating idle_list, so dereferencing idle_list without pool 866 * lock is safe. 867 */ 868 if (atomic_dec_and_test(&pool->nr_running) && 869 !list_empty(&pool->worklist)) 870 to_wakeup = first_idle_worker(pool); 871 return to_wakeup ? to_wakeup->task : NULL; 872 } 873 874 /** 875 * worker_set_flags - set worker flags and adjust nr_running accordingly 876 * @worker: self 877 * @flags: flags to set 878 * 879 * Set @flags in @worker->flags and adjust nr_running accordingly. 880 * 881 * CONTEXT: 882 * spin_lock_irq(pool->lock) 883 */ 884 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 885 { 886 struct worker_pool *pool = worker->pool; 887 888 WARN_ON_ONCE(worker->task != current); 889 890 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 891 if ((flags & WORKER_NOT_RUNNING) && 892 !(worker->flags & WORKER_NOT_RUNNING)) { 893 atomic_dec(&pool->nr_running); 894 } 895 896 worker->flags |= flags; 897 } 898 899 /** 900 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 901 * @worker: self 902 * @flags: flags to clear 903 * 904 * Clear @flags in @worker->flags and adjust nr_running accordingly. 905 * 906 * CONTEXT: 907 * spin_lock_irq(pool->lock) 908 */ 909 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 910 { 911 struct worker_pool *pool = worker->pool; 912 unsigned int oflags = worker->flags; 913 914 WARN_ON_ONCE(worker->task != current); 915 916 worker->flags &= ~flags; 917 918 /* 919 * If transitioning out of NOT_RUNNING, increment nr_running. Note 920 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 921 * of multiple flags, not a single flag. 922 */ 923 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 924 if (!(worker->flags & WORKER_NOT_RUNNING)) 925 atomic_inc(&pool->nr_running); 926 } 927 928 /** 929 * find_worker_executing_work - find worker which is executing a work 930 * @pool: pool of interest 931 * @work: work to find worker for 932 * 933 * Find a worker which is executing @work on @pool by searching 934 * @pool->busy_hash which is keyed by the address of @work. For a worker 935 * to match, its current execution should match the address of @work and 936 * its work function. This is to avoid unwanted dependency between 937 * unrelated work executions through a work item being recycled while still 938 * being executed. 939 * 940 * This is a bit tricky. A work item may be freed once its execution 941 * starts and nothing prevents the freed area from being recycled for 942 * another work item. If the same work item address ends up being reused 943 * before the original execution finishes, workqueue will identify the 944 * recycled work item as currently executing and make it wait until the 945 * current execution finishes, introducing an unwanted dependency. 946 * 947 * This function checks the work item address and work function to avoid 948 * false positives. Note that this isn't complete as one may construct a 949 * work function which can introduce dependency onto itself through a 950 * recycled work item. Well, if somebody wants to shoot oneself in the 951 * foot that badly, there's only so much we can do, and if such deadlock 952 * actually occurs, it should be easy to locate the culprit work function. 953 * 954 * CONTEXT: 955 * spin_lock_irq(pool->lock). 956 * 957 * Return: 958 * Pointer to worker which is executing @work if found, %NULL 959 * otherwise. 960 */ 961 static struct worker *find_worker_executing_work(struct worker_pool *pool, 962 struct work_struct *work) 963 { 964 struct worker *worker; 965 966 hash_for_each_possible(pool->busy_hash, worker, hentry, 967 (unsigned long)work) 968 if (worker->current_work == work && 969 worker->current_func == work->func) 970 return worker; 971 972 return NULL; 973 } 974 975 /** 976 * move_linked_works - move linked works to a list 977 * @work: start of series of works to be scheduled 978 * @head: target list to append @work to 979 * @nextp: out paramter for nested worklist walking 980 * 981 * Schedule linked works starting from @work to @head. Work series to 982 * be scheduled starts at @work and includes any consecutive work with 983 * WORK_STRUCT_LINKED set in its predecessor. 984 * 985 * If @nextp is not NULL, it's updated to point to the next work of 986 * the last scheduled work. This allows move_linked_works() to be 987 * nested inside outer list_for_each_entry_safe(). 988 * 989 * CONTEXT: 990 * spin_lock_irq(pool->lock). 991 */ 992 static void move_linked_works(struct work_struct *work, struct list_head *head, 993 struct work_struct **nextp) 994 { 995 struct work_struct *n; 996 997 /* 998 * Linked worklist will always end before the end of the list, 999 * use NULL for list head. 1000 */ 1001 list_for_each_entry_safe_from(work, n, NULL, entry) { 1002 list_move_tail(&work->entry, head); 1003 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1004 break; 1005 } 1006 1007 /* 1008 * If we're already inside safe list traversal and have moved 1009 * multiple works to the scheduled queue, the next position 1010 * needs to be updated. 1011 */ 1012 if (nextp) 1013 *nextp = n; 1014 } 1015 1016 /** 1017 * get_pwq - get an extra reference on the specified pool_workqueue 1018 * @pwq: pool_workqueue to get 1019 * 1020 * Obtain an extra reference on @pwq. The caller should guarantee that 1021 * @pwq has positive refcnt and be holding the matching pool->lock. 1022 */ 1023 static void get_pwq(struct pool_workqueue *pwq) 1024 { 1025 lockdep_assert_held(&pwq->pool->lock); 1026 WARN_ON_ONCE(pwq->refcnt <= 0); 1027 pwq->refcnt++; 1028 } 1029 1030 /** 1031 * put_pwq - put a pool_workqueue reference 1032 * @pwq: pool_workqueue to put 1033 * 1034 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1035 * destruction. The caller should be holding the matching pool->lock. 1036 */ 1037 static void put_pwq(struct pool_workqueue *pwq) 1038 { 1039 lockdep_assert_held(&pwq->pool->lock); 1040 if (likely(--pwq->refcnt)) 1041 return; 1042 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1043 return; 1044 /* 1045 * @pwq can't be released under pool->lock, bounce to 1046 * pwq_unbound_release_workfn(). This never recurses on the same 1047 * pool->lock as this path is taken only for unbound workqueues and 1048 * the release work item is scheduled on a per-cpu workqueue. To 1049 * avoid lockdep warning, unbound pool->locks are given lockdep 1050 * subclass of 1 in get_unbound_pool(). 1051 */ 1052 schedule_work(&pwq->unbound_release_work); 1053 } 1054 1055 /** 1056 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1057 * @pwq: pool_workqueue to put (can be %NULL) 1058 * 1059 * put_pwq() with locking. This function also allows %NULL @pwq. 1060 */ 1061 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1062 { 1063 if (pwq) { 1064 /* 1065 * As both pwqs and pools are sched-RCU protected, the 1066 * following lock operations are safe. 1067 */ 1068 spin_lock_irq(&pwq->pool->lock); 1069 put_pwq(pwq); 1070 spin_unlock_irq(&pwq->pool->lock); 1071 } 1072 } 1073 1074 static void pwq_activate_delayed_work(struct work_struct *work) 1075 { 1076 struct pool_workqueue *pwq = get_work_pwq(work); 1077 1078 trace_workqueue_activate_work(work); 1079 move_linked_works(work, &pwq->pool->worklist, NULL); 1080 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1081 pwq->nr_active++; 1082 } 1083 1084 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1085 { 1086 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1087 struct work_struct, entry); 1088 1089 pwq_activate_delayed_work(work); 1090 } 1091 1092 /** 1093 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1094 * @pwq: pwq of interest 1095 * @color: color of work which left the queue 1096 * 1097 * A work either has completed or is removed from pending queue, 1098 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1099 * 1100 * CONTEXT: 1101 * spin_lock_irq(pool->lock). 1102 */ 1103 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1104 { 1105 /* uncolored work items don't participate in flushing or nr_active */ 1106 if (color == WORK_NO_COLOR) 1107 goto out_put; 1108 1109 pwq->nr_in_flight[color]--; 1110 1111 pwq->nr_active--; 1112 if (!list_empty(&pwq->delayed_works)) { 1113 /* one down, submit a delayed one */ 1114 if (pwq->nr_active < pwq->max_active) 1115 pwq_activate_first_delayed(pwq); 1116 } 1117 1118 /* is flush in progress and are we at the flushing tip? */ 1119 if (likely(pwq->flush_color != color)) 1120 goto out_put; 1121 1122 /* are there still in-flight works? */ 1123 if (pwq->nr_in_flight[color]) 1124 goto out_put; 1125 1126 /* this pwq is done, clear flush_color */ 1127 pwq->flush_color = -1; 1128 1129 /* 1130 * If this was the last pwq, wake up the first flusher. It 1131 * will handle the rest. 1132 */ 1133 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1134 complete(&pwq->wq->first_flusher->done); 1135 out_put: 1136 put_pwq(pwq); 1137 } 1138 1139 /** 1140 * try_to_grab_pending - steal work item from worklist and disable irq 1141 * @work: work item to steal 1142 * @is_dwork: @work is a delayed_work 1143 * @flags: place to store irq state 1144 * 1145 * Try to grab PENDING bit of @work. This function can handle @work in any 1146 * stable state - idle, on timer or on worklist. 1147 * 1148 * Return: 1149 * 1 if @work was pending and we successfully stole PENDING 1150 * 0 if @work was idle and we claimed PENDING 1151 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1152 * -ENOENT if someone else is canceling @work, this state may persist 1153 * for arbitrarily long 1154 * 1155 * Note: 1156 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1157 * interrupted while holding PENDING and @work off queue, irq must be 1158 * disabled on entry. This, combined with delayed_work->timer being 1159 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1160 * 1161 * On successful return, >= 0, irq is disabled and the caller is 1162 * responsible for releasing it using local_irq_restore(*@flags). 1163 * 1164 * This function is safe to call from any context including IRQ handler. 1165 */ 1166 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1167 unsigned long *flags) 1168 { 1169 struct worker_pool *pool; 1170 struct pool_workqueue *pwq; 1171 1172 local_irq_save(*flags); 1173 1174 /* try to steal the timer if it exists */ 1175 if (is_dwork) { 1176 struct delayed_work *dwork = to_delayed_work(work); 1177 1178 /* 1179 * dwork->timer is irqsafe. If del_timer() fails, it's 1180 * guaranteed that the timer is not queued anywhere and not 1181 * running on the local CPU. 1182 */ 1183 if (likely(del_timer(&dwork->timer))) 1184 return 1; 1185 } 1186 1187 /* try to claim PENDING the normal way */ 1188 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1189 return 0; 1190 1191 /* 1192 * The queueing is in progress, or it is already queued. Try to 1193 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1194 */ 1195 pool = get_work_pool(work); 1196 if (!pool) 1197 goto fail; 1198 1199 spin_lock(&pool->lock); 1200 /* 1201 * work->data is guaranteed to point to pwq only while the work 1202 * item is queued on pwq->wq, and both updating work->data to point 1203 * to pwq on queueing and to pool on dequeueing are done under 1204 * pwq->pool->lock. This in turn guarantees that, if work->data 1205 * points to pwq which is associated with a locked pool, the work 1206 * item is currently queued on that pool. 1207 */ 1208 pwq = get_work_pwq(work); 1209 if (pwq && pwq->pool == pool) { 1210 debug_work_deactivate(work); 1211 1212 /* 1213 * A delayed work item cannot be grabbed directly because 1214 * it might have linked NO_COLOR work items which, if left 1215 * on the delayed_list, will confuse pwq->nr_active 1216 * management later on and cause stall. Make sure the work 1217 * item is activated before grabbing. 1218 */ 1219 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1220 pwq_activate_delayed_work(work); 1221 1222 list_del_init(&work->entry); 1223 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1224 1225 /* work->data points to pwq iff queued, point to pool */ 1226 set_work_pool_and_keep_pending(work, pool->id); 1227 1228 spin_unlock(&pool->lock); 1229 return 1; 1230 } 1231 spin_unlock(&pool->lock); 1232 fail: 1233 local_irq_restore(*flags); 1234 if (work_is_canceling(work)) 1235 return -ENOENT; 1236 cpu_relax(); 1237 return -EAGAIN; 1238 } 1239 1240 /** 1241 * insert_work - insert a work into a pool 1242 * @pwq: pwq @work belongs to 1243 * @work: work to insert 1244 * @head: insertion point 1245 * @extra_flags: extra WORK_STRUCT_* flags to set 1246 * 1247 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1248 * work_struct flags. 1249 * 1250 * CONTEXT: 1251 * spin_lock_irq(pool->lock). 1252 */ 1253 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1254 struct list_head *head, unsigned int extra_flags) 1255 { 1256 struct worker_pool *pool = pwq->pool; 1257 1258 /* we own @work, set data and link */ 1259 set_work_pwq(work, pwq, extra_flags); 1260 list_add_tail(&work->entry, head); 1261 get_pwq(pwq); 1262 1263 /* 1264 * Ensure either wq_worker_sleeping() sees the above 1265 * list_add_tail() or we see zero nr_running to avoid workers lying 1266 * around lazily while there are works to be processed. 1267 */ 1268 smp_mb(); 1269 1270 if (__need_more_worker(pool)) 1271 wake_up_worker(pool); 1272 } 1273 1274 /* 1275 * Test whether @work is being queued from another work executing on the 1276 * same workqueue. 1277 */ 1278 static bool is_chained_work(struct workqueue_struct *wq) 1279 { 1280 struct worker *worker; 1281 1282 worker = current_wq_worker(); 1283 /* 1284 * Return %true iff I'm a worker execuing a work item on @wq. If 1285 * I'm @worker, it's safe to dereference it without locking. 1286 */ 1287 return worker && worker->current_pwq->wq == wq; 1288 } 1289 1290 static void __queue_work(int cpu, struct workqueue_struct *wq, 1291 struct work_struct *work) 1292 { 1293 struct pool_workqueue *pwq; 1294 struct worker_pool *last_pool; 1295 struct list_head *worklist; 1296 unsigned int work_flags; 1297 unsigned int req_cpu = cpu; 1298 1299 /* 1300 * While a work item is PENDING && off queue, a task trying to 1301 * steal the PENDING will busy-loop waiting for it to either get 1302 * queued or lose PENDING. Grabbing PENDING and queueing should 1303 * happen with IRQ disabled. 1304 */ 1305 WARN_ON_ONCE(!irqs_disabled()); 1306 1307 debug_work_activate(work); 1308 1309 /* if draining, only works from the same workqueue are allowed */ 1310 if (unlikely(wq->flags & __WQ_DRAINING) && 1311 WARN_ON_ONCE(!is_chained_work(wq))) 1312 return; 1313 retry: 1314 if (req_cpu == WORK_CPU_UNBOUND) 1315 cpu = raw_smp_processor_id(); 1316 1317 /* pwq which will be used unless @work is executing elsewhere */ 1318 if (!(wq->flags & WQ_UNBOUND)) 1319 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1320 else 1321 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1322 1323 /* 1324 * If @work was previously on a different pool, it might still be 1325 * running there, in which case the work needs to be queued on that 1326 * pool to guarantee non-reentrancy. 1327 */ 1328 last_pool = get_work_pool(work); 1329 if (last_pool && last_pool != pwq->pool) { 1330 struct worker *worker; 1331 1332 spin_lock(&last_pool->lock); 1333 1334 worker = find_worker_executing_work(last_pool, work); 1335 1336 if (worker && worker->current_pwq->wq == wq) { 1337 pwq = worker->current_pwq; 1338 } else { 1339 /* meh... not running there, queue here */ 1340 spin_unlock(&last_pool->lock); 1341 spin_lock(&pwq->pool->lock); 1342 } 1343 } else { 1344 spin_lock(&pwq->pool->lock); 1345 } 1346 1347 /* 1348 * pwq is determined and locked. For unbound pools, we could have 1349 * raced with pwq release and it could already be dead. If its 1350 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1351 * without another pwq replacing it in the numa_pwq_tbl or while 1352 * work items are executing on it, so the retrying is guaranteed to 1353 * make forward-progress. 1354 */ 1355 if (unlikely(!pwq->refcnt)) { 1356 if (wq->flags & WQ_UNBOUND) { 1357 spin_unlock(&pwq->pool->lock); 1358 cpu_relax(); 1359 goto retry; 1360 } 1361 /* oops */ 1362 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1363 wq->name, cpu); 1364 } 1365 1366 /* pwq determined, queue */ 1367 trace_workqueue_queue_work(req_cpu, pwq, work); 1368 1369 if (WARN_ON(!list_empty(&work->entry))) { 1370 spin_unlock(&pwq->pool->lock); 1371 return; 1372 } 1373 1374 pwq->nr_in_flight[pwq->work_color]++; 1375 work_flags = work_color_to_flags(pwq->work_color); 1376 1377 if (likely(pwq->nr_active < pwq->max_active)) { 1378 trace_workqueue_activate_work(work); 1379 pwq->nr_active++; 1380 worklist = &pwq->pool->worklist; 1381 } else { 1382 work_flags |= WORK_STRUCT_DELAYED; 1383 worklist = &pwq->delayed_works; 1384 } 1385 1386 insert_work(pwq, work, worklist, work_flags); 1387 1388 spin_unlock(&pwq->pool->lock); 1389 } 1390 1391 /** 1392 * queue_work_on - queue work on specific cpu 1393 * @cpu: CPU number to execute work on 1394 * @wq: workqueue to use 1395 * @work: work to queue 1396 * 1397 * We queue the work to a specific CPU, the caller must ensure it 1398 * can't go away. 1399 * 1400 * Return: %false if @work was already on a queue, %true otherwise. 1401 */ 1402 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1403 struct work_struct *work) 1404 { 1405 bool ret = false; 1406 unsigned long flags; 1407 1408 local_irq_save(flags); 1409 1410 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1411 __queue_work(cpu, wq, work); 1412 ret = true; 1413 } 1414 1415 local_irq_restore(flags); 1416 return ret; 1417 } 1418 EXPORT_SYMBOL(queue_work_on); 1419 1420 void delayed_work_timer_fn(unsigned long __data) 1421 { 1422 struct delayed_work *dwork = (struct delayed_work *)__data; 1423 1424 /* should have been called from irqsafe timer with irq already off */ 1425 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1426 } 1427 EXPORT_SYMBOL(delayed_work_timer_fn); 1428 1429 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1430 struct delayed_work *dwork, unsigned long delay) 1431 { 1432 struct timer_list *timer = &dwork->timer; 1433 struct work_struct *work = &dwork->work; 1434 1435 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1436 timer->data != (unsigned long)dwork); 1437 WARN_ON_ONCE(timer_pending(timer)); 1438 WARN_ON_ONCE(!list_empty(&work->entry)); 1439 1440 /* 1441 * If @delay is 0, queue @dwork->work immediately. This is for 1442 * both optimization and correctness. The earliest @timer can 1443 * expire is on the closest next tick and delayed_work users depend 1444 * on that there's no such delay when @delay is 0. 1445 */ 1446 if (!delay) { 1447 __queue_work(cpu, wq, &dwork->work); 1448 return; 1449 } 1450 1451 timer_stats_timer_set_start_info(&dwork->timer); 1452 1453 dwork->wq = wq; 1454 dwork->cpu = cpu; 1455 timer->expires = jiffies + delay; 1456 1457 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1458 add_timer_on(timer, cpu); 1459 else 1460 add_timer(timer); 1461 } 1462 1463 /** 1464 * queue_delayed_work_on - queue work on specific CPU after delay 1465 * @cpu: CPU number to execute work on 1466 * @wq: workqueue to use 1467 * @dwork: work to queue 1468 * @delay: number of jiffies to wait before queueing 1469 * 1470 * Return: %false if @work was already on a queue, %true otherwise. If 1471 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1472 * execution. 1473 */ 1474 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1475 struct delayed_work *dwork, unsigned long delay) 1476 { 1477 struct work_struct *work = &dwork->work; 1478 bool ret = false; 1479 unsigned long flags; 1480 1481 /* read the comment in __queue_work() */ 1482 local_irq_save(flags); 1483 1484 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1485 __queue_delayed_work(cpu, wq, dwork, delay); 1486 ret = true; 1487 } 1488 1489 local_irq_restore(flags); 1490 return ret; 1491 } 1492 EXPORT_SYMBOL(queue_delayed_work_on); 1493 1494 /** 1495 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1496 * @cpu: CPU number to execute work on 1497 * @wq: workqueue to use 1498 * @dwork: work to queue 1499 * @delay: number of jiffies to wait before queueing 1500 * 1501 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1502 * modify @dwork's timer so that it expires after @delay. If @delay is 1503 * zero, @work is guaranteed to be scheduled immediately regardless of its 1504 * current state. 1505 * 1506 * Return: %false if @dwork was idle and queued, %true if @dwork was 1507 * pending and its timer was modified. 1508 * 1509 * This function is safe to call from any context including IRQ handler. 1510 * See try_to_grab_pending() for details. 1511 */ 1512 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1513 struct delayed_work *dwork, unsigned long delay) 1514 { 1515 unsigned long flags; 1516 int ret; 1517 1518 do { 1519 ret = try_to_grab_pending(&dwork->work, true, &flags); 1520 } while (unlikely(ret == -EAGAIN)); 1521 1522 if (likely(ret >= 0)) { 1523 __queue_delayed_work(cpu, wq, dwork, delay); 1524 local_irq_restore(flags); 1525 } 1526 1527 /* -ENOENT from try_to_grab_pending() becomes %true */ 1528 return ret; 1529 } 1530 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1531 1532 /** 1533 * worker_enter_idle - enter idle state 1534 * @worker: worker which is entering idle state 1535 * 1536 * @worker is entering idle state. Update stats and idle timer if 1537 * necessary. 1538 * 1539 * LOCKING: 1540 * spin_lock_irq(pool->lock). 1541 */ 1542 static void worker_enter_idle(struct worker *worker) 1543 { 1544 struct worker_pool *pool = worker->pool; 1545 1546 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1547 WARN_ON_ONCE(!list_empty(&worker->entry) && 1548 (worker->hentry.next || worker->hentry.pprev))) 1549 return; 1550 1551 /* can't use worker_set_flags(), also called from create_worker() */ 1552 worker->flags |= WORKER_IDLE; 1553 pool->nr_idle++; 1554 worker->last_active = jiffies; 1555 1556 /* idle_list is LIFO */ 1557 list_add(&worker->entry, &pool->idle_list); 1558 1559 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1560 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1561 1562 /* 1563 * Sanity check nr_running. Because wq_unbind_fn() releases 1564 * pool->lock between setting %WORKER_UNBOUND and zapping 1565 * nr_running, the warning may trigger spuriously. Check iff 1566 * unbind is not in progress. 1567 */ 1568 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1569 pool->nr_workers == pool->nr_idle && 1570 atomic_read(&pool->nr_running)); 1571 } 1572 1573 /** 1574 * worker_leave_idle - leave idle state 1575 * @worker: worker which is leaving idle state 1576 * 1577 * @worker is leaving idle state. Update stats. 1578 * 1579 * LOCKING: 1580 * spin_lock_irq(pool->lock). 1581 */ 1582 static void worker_leave_idle(struct worker *worker) 1583 { 1584 struct worker_pool *pool = worker->pool; 1585 1586 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1587 return; 1588 worker_clr_flags(worker, WORKER_IDLE); 1589 pool->nr_idle--; 1590 list_del_init(&worker->entry); 1591 } 1592 1593 static struct worker *alloc_worker(int node) 1594 { 1595 struct worker *worker; 1596 1597 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1598 if (worker) { 1599 INIT_LIST_HEAD(&worker->entry); 1600 INIT_LIST_HEAD(&worker->scheduled); 1601 INIT_LIST_HEAD(&worker->node); 1602 /* on creation a worker is in !idle && prep state */ 1603 worker->flags = WORKER_PREP; 1604 } 1605 return worker; 1606 } 1607 1608 /** 1609 * worker_attach_to_pool() - attach a worker to a pool 1610 * @worker: worker to be attached 1611 * @pool: the target pool 1612 * 1613 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1614 * cpu-binding of @worker are kept coordinated with the pool across 1615 * cpu-[un]hotplugs. 1616 */ 1617 static void worker_attach_to_pool(struct worker *worker, 1618 struct worker_pool *pool) 1619 { 1620 mutex_lock(&pool->attach_mutex); 1621 1622 /* 1623 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1624 * online CPUs. It'll be re-applied when any of the CPUs come up. 1625 */ 1626 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1627 1628 /* 1629 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1630 * stable across this function. See the comments above the 1631 * flag definition for details. 1632 */ 1633 if (pool->flags & POOL_DISASSOCIATED) 1634 worker->flags |= WORKER_UNBOUND; 1635 1636 list_add_tail(&worker->node, &pool->workers); 1637 1638 mutex_unlock(&pool->attach_mutex); 1639 } 1640 1641 /** 1642 * worker_detach_from_pool() - detach a worker from its pool 1643 * @worker: worker which is attached to its pool 1644 * @pool: the pool @worker is attached to 1645 * 1646 * Undo the attaching which had been done in worker_attach_to_pool(). The 1647 * caller worker shouldn't access to the pool after detached except it has 1648 * other reference to the pool. 1649 */ 1650 static void worker_detach_from_pool(struct worker *worker, 1651 struct worker_pool *pool) 1652 { 1653 struct completion *detach_completion = NULL; 1654 1655 mutex_lock(&pool->attach_mutex); 1656 list_del(&worker->node); 1657 if (list_empty(&pool->workers)) 1658 detach_completion = pool->detach_completion; 1659 mutex_unlock(&pool->attach_mutex); 1660 1661 /* clear leftover flags without pool->lock after it is detached */ 1662 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1663 1664 if (detach_completion) 1665 complete(detach_completion); 1666 } 1667 1668 /** 1669 * create_worker - create a new workqueue worker 1670 * @pool: pool the new worker will belong to 1671 * 1672 * Create and start a new worker which is attached to @pool. 1673 * 1674 * CONTEXT: 1675 * Might sleep. Does GFP_KERNEL allocations. 1676 * 1677 * Return: 1678 * Pointer to the newly created worker. 1679 */ 1680 static struct worker *create_worker(struct worker_pool *pool) 1681 { 1682 struct worker *worker = NULL; 1683 int id = -1; 1684 char id_buf[16]; 1685 1686 /* ID is needed to determine kthread name */ 1687 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1688 if (id < 0) 1689 goto fail; 1690 1691 worker = alloc_worker(pool->node); 1692 if (!worker) 1693 goto fail; 1694 1695 worker->pool = pool; 1696 worker->id = id; 1697 1698 if (pool->cpu >= 0) 1699 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1700 pool->attrs->nice < 0 ? "H" : ""); 1701 else 1702 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1703 1704 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1705 "kworker/%s", id_buf); 1706 if (IS_ERR(worker->task)) 1707 goto fail; 1708 1709 set_user_nice(worker->task, pool->attrs->nice); 1710 1711 /* prevent userland from meddling with cpumask of workqueue workers */ 1712 worker->task->flags |= PF_NO_SETAFFINITY; 1713 1714 /* successful, attach the worker to the pool */ 1715 worker_attach_to_pool(worker, pool); 1716 1717 /* start the newly created worker */ 1718 spin_lock_irq(&pool->lock); 1719 worker->pool->nr_workers++; 1720 worker_enter_idle(worker); 1721 wake_up_process(worker->task); 1722 spin_unlock_irq(&pool->lock); 1723 1724 return worker; 1725 1726 fail: 1727 if (id >= 0) 1728 ida_simple_remove(&pool->worker_ida, id); 1729 kfree(worker); 1730 return NULL; 1731 } 1732 1733 /** 1734 * destroy_worker - destroy a workqueue worker 1735 * @worker: worker to be destroyed 1736 * 1737 * Destroy @worker and adjust @pool stats accordingly. The worker should 1738 * be idle. 1739 * 1740 * CONTEXT: 1741 * spin_lock_irq(pool->lock). 1742 */ 1743 static void destroy_worker(struct worker *worker) 1744 { 1745 struct worker_pool *pool = worker->pool; 1746 1747 lockdep_assert_held(&pool->lock); 1748 1749 /* sanity check frenzy */ 1750 if (WARN_ON(worker->current_work) || 1751 WARN_ON(!list_empty(&worker->scheduled)) || 1752 WARN_ON(!(worker->flags & WORKER_IDLE))) 1753 return; 1754 1755 pool->nr_workers--; 1756 pool->nr_idle--; 1757 1758 list_del_init(&worker->entry); 1759 worker->flags |= WORKER_DIE; 1760 wake_up_process(worker->task); 1761 } 1762 1763 static void idle_worker_timeout(unsigned long __pool) 1764 { 1765 struct worker_pool *pool = (void *)__pool; 1766 1767 spin_lock_irq(&pool->lock); 1768 1769 while (too_many_workers(pool)) { 1770 struct worker *worker; 1771 unsigned long expires; 1772 1773 /* idle_list is kept in LIFO order, check the last one */ 1774 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1775 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1776 1777 if (time_before(jiffies, expires)) { 1778 mod_timer(&pool->idle_timer, expires); 1779 break; 1780 } 1781 1782 destroy_worker(worker); 1783 } 1784 1785 spin_unlock_irq(&pool->lock); 1786 } 1787 1788 static void send_mayday(struct work_struct *work) 1789 { 1790 struct pool_workqueue *pwq = get_work_pwq(work); 1791 struct workqueue_struct *wq = pwq->wq; 1792 1793 lockdep_assert_held(&wq_mayday_lock); 1794 1795 if (!wq->rescuer) 1796 return; 1797 1798 /* mayday mayday mayday */ 1799 if (list_empty(&pwq->mayday_node)) { 1800 /* 1801 * If @pwq is for an unbound wq, its base ref may be put at 1802 * any time due to an attribute change. Pin @pwq until the 1803 * rescuer is done with it. 1804 */ 1805 get_pwq(pwq); 1806 list_add_tail(&pwq->mayday_node, &wq->maydays); 1807 wake_up_process(wq->rescuer->task); 1808 } 1809 } 1810 1811 static void pool_mayday_timeout(unsigned long __pool) 1812 { 1813 struct worker_pool *pool = (void *)__pool; 1814 struct work_struct *work; 1815 1816 spin_lock_irq(&pool->lock); 1817 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1818 1819 if (need_to_create_worker(pool)) { 1820 /* 1821 * We've been trying to create a new worker but 1822 * haven't been successful. We might be hitting an 1823 * allocation deadlock. Send distress signals to 1824 * rescuers. 1825 */ 1826 list_for_each_entry(work, &pool->worklist, entry) 1827 send_mayday(work); 1828 } 1829 1830 spin_unlock(&wq_mayday_lock); 1831 spin_unlock_irq(&pool->lock); 1832 1833 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1834 } 1835 1836 /** 1837 * maybe_create_worker - create a new worker if necessary 1838 * @pool: pool to create a new worker for 1839 * 1840 * Create a new worker for @pool if necessary. @pool is guaranteed to 1841 * have at least one idle worker on return from this function. If 1842 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1843 * sent to all rescuers with works scheduled on @pool to resolve 1844 * possible allocation deadlock. 1845 * 1846 * On return, need_to_create_worker() is guaranteed to be %false and 1847 * may_start_working() %true. 1848 * 1849 * LOCKING: 1850 * spin_lock_irq(pool->lock) which may be released and regrabbed 1851 * multiple times. Does GFP_KERNEL allocations. Called only from 1852 * manager. 1853 */ 1854 static void maybe_create_worker(struct worker_pool *pool) 1855 __releases(&pool->lock) 1856 __acquires(&pool->lock) 1857 { 1858 restart: 1859 spin_unlock_irq(&pool->lock); 1860 1861 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1862 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1863 1864 while (true) { 1865 if (create_worker(pool) || !need_to_create_worker(pool)) 1866 break; 1867 1868 schedule_timeout_interruptible(CREATE_COOLDOWN); 1869 1870 if (!need_to_create_worker(pool)) 1871 break; 1872 } 1873 1874 del_timer_sync(&pool->mayday_timer); 1875 spin_lock_irq(&pool->lock); 1876 /* 1877 * This is necessary even after a new worker was just successfully 1878 * created as @pool->lock was dropped and the new worker might have 1879 * already become busy. 1880 */ 1881 if (need_to_create_worker(pool)) 1882 goto restart; 1883 } 1884 1885 /** 1886 * manage_workers - manage worker pool 1887 * @worker: self 1888 * 1889 * Assume the manager role and manage the worker pool @worker belongs 1890 * to. At any given time, there can be only zero or one manager per 1891 * pool. The exclusion is handled automatically by this function. 1892 * 1893 * The caller can safely start processing works on false return. On 1894 * true return, it's guaranteed that need_to_create_worker() is false 1895 * and may_start_working() is true. 1896 * 1897 * CONTEXT: 1898 * spin_lock_irq(pool->lock) which may be released and regrabbed 1899 * multiple times. Does GFP_KERNEL allocations. 1900 * 1901 * Return: 1902 * %false if the pool doesn't need management and the caller can safely 1903 * start processing works, %true if management function was performed and 1904 * the conditions that the caller verified before calling the function may 1905 * no longer be true. 1906 */ 1907 static bool manage_workers(struct worker *worker) 1908 { 1909 struct worker_pool *pool = worker->pool; 1910 1911 /* 1912 * Anyone who successfully grabs manager_arb wins the arbitration 1913 * and becomes the manager. mutex_trylock() on pool->manager_arb 1914 * failure while holding pool->lock reliably indicates that someone 1915 * else is managing the pool and the worker which failed trylock 1916 * can proceed to executing work items. This means that anyone 1917 * grabbing manager_arb is responsible for actually performing 1918 * manager duties. If manager_arb is grabbed and released without 1919 * actual management, the pool may stall indefinitely. 1920 */ 1921 if (!mutex_trylock(&pool->manager_arb)) 1922 return false; 1923 pool->manager = worker; 1924 1925 maybe_create_worker(pool); 1926 1927 pool->manager = NULL; 1928 mutex_unlock(&pool->manager_arb); 1929 return true; 1930 } 1931 1932 /** 1933 * process_one_work - process single work 1934 * @worker: self 1935 * @work: work to process 1936 * 1937 * Process @work. This function contains all the logics necessary to 1938 * process a single work including synchronization against and 1939 * interaction with other workers on the same cpu, queueing and 1940 * flushing. As long as context requirement is met, any worker can 1941 * call this function to process a work. 1942 * 1943 * CONTEXT: 1944 * spin_lock_irq(pool->lock) which is released and regrabbed. 1945 */ 1946 static void process_one_work(struct worker *worker, struct work_struct *work) 1947 __releases(&pool->lock) 1948 __acquires(&pool->lock) 1949 { 1950 struct pool_workqueue *pwq = get_work_pwq(work); 1951 struct worker_pool *pool = worker->pool; 1952 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 1953 int work_color; 1954 struct worker *collision; 1955 #ifdef CONFIG_LOCKDEP 1956 /* 1957 * It is permissible to free the struct work_struct from 1958 * inside the function that is called from it, this we need to 1959 * take into account for lockdep too. To avoid bogus "held 1960 * lock freed" warnings as well as problems when looking into 1961 * work->lockdep_map, make a copy and use that here. 1962 */ 1963 struct lockdep_map lockdep_map; 1964 1965 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 1966 #endif 1967 /* ensure we're on the correct CPU */ 1968 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1969 raw_smp_processor_id() != pool->cpu); 1970 1971 /* 1972 * A single work shouldn't be executed concurrently by 1973 * multiple workers on a single cpu. Check whether anyone is 1974 * already processing the work. If so, defer the work to the 1975 * currently executing one. 1976 */ 1977 collision = find_worker_executing_work(pool, work); 1978 if (unlikely(collision)) { 1979 move_linked_works(work, &collision->scheduled, NULL); 1980 return; 1981 } 1982 1983 /* claim and dequeue */ 1984 debug_work_deactivate(work); 1985 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 1986 worker->current_work = work; 1987 worker->current_func = work->func; 1988 worker->current_pwq = pwq; 1989 work_color = get_work_color(work); 1990 1991 list_del_init(&work->entry); 1992 1993 /* 1994 * CPU intensive works don't participate in concurrency management. 1995 * They're the scheduler's responsibility. This takes @worker out 1996 * of concurrency management and the next code block will chain 1997 * execution of the pending work items. 1998 */ 1999 if (unlikely(cpu_intensive)) 2000 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2001 2002 /* 2003 * Wake up another worker if necessary. The condition is always 2004 * false for normal per-cpu workers since nr_running would always 2005 * be >= 1 at this point. This is used to chain execution of the 2006 * pending work items for WORKER_NOT_RUNNING workers such as the 2007 * UNBOUND and CPU_INTENSIVE ones. 2008 */ 2009 if (need_more_worker(pool)) 2010 wake_up_worker(pool); 2011 2012 /* 2013 * Record the last pool and clear PENDING which should be the last 2014 * update to @work. Also, do this inside @pool->lock so that 2015 * PENDING and queued state changes happen together while IRQ is 2016 * disabled. 2017 */ 2018 set_work_pool_and_clear_pending(work, pool->id); 2019 2020 spin_unlock_irq(&pool->lock); 2021 2022 lock_map_acquire_read(&pwq->wq->lockdep_map); 2023 lock_map_acquire(&lockdep_map); 2024 trace_workqueue_execute_start(work); 2025 worker->current_func(work); 2026 /* 2027 * While we must be careful to not use "work" after this, the trace 2028 * point will only record its address. 2029 */ 2030 trace_workqueue_execute_end(work); 2031 lock_map_release(&lockdep_map); 2032 lock_map_release(&pwq->wq->lockdep_map); 2033 2034 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2035 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2036 " last function: %pf\n", 2037 current->comm, preempt_count(), task_pid_nr(current), 2038 worker->current_func); 2039 debug_show_held_locks(current); 2040 dump_stack(); 2041 } 2042 2043 /* 2044 * The following prevents a kworker from hogging CPU on !PREEMPT 2045 * kernels, where a requeueing work item waiting for something to 2046 * happen could deadlock with stop_machine as such work item could 2047 * indefinitely requeue itself while all other CPUs are trapped in 2048 * stop_machine. At the same time, report a quiescent RCU state so 2049 * the same condition doesn't freeze RCU. 2050 */ 2051 cond_resched_rcu_qs(); 2052 2053 spin_lock_irq(&pool->lock); 2054 2055 /* clear cpu intensive status */ 2056 if (unlikely(cpu_intensive)) 2057 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2058 2059 /* we're done with it, release */ 2060 hash_del(&worker->hentry); 2061 worker->current_work = NULL; 2062 worker->current_func = NULL; 2063 worker->current_pwq = NULL; 2064 worker->desc_valid = false; 2065 pwq_dec_nr_in_flight(pwq, work_color); 2066 } 2067 2068 /** 2069 * process_scheduled_works - process scheduled works 2070 * @worker: self 2071 * 2072 * Process all scheduled works. Please note that the scheduled list 2073 * may change while processing a work, so this function repeatedly 2074 * fetches a work from the top and executes it. 2075 * 2076 * CONTEXT: 2077 * spin_lock_irq(pool->lock) which may be released and regrabbed 2078 * multiple times. 2079 */ 2080 static void process_scheduled_works(struct worker *worker) 2081 { 2082 while (!list_empty(&worker->scheduled)) { 2083 struct work_struct *work = list_first_entry(&worker->scheduled, 2084 struct work_struct, entry); 2085 process_one_work(worker, work); 2086 } 2087 } 2088 2089 /** 2090 * worker_thread - the worker thread function 2091 * @__worker: self 2092 * 2093 * The worker thread function. All workers belong to a worker_pool - 2094 * either a per-cpu one or dynamic unbound one. These workers process all 2095 * work items regardless of their specific target workqueue. The only 2096 * exception is work items which belong to workqueues with a rescuer which 2097 * will be explained in rescuer_thread(). 2098 * 2099 * Return: 0 2100 */ 2101 static int worker_thread(void *__worker) 2102 { 2103 struct worker *worker = __worker; 2104 struct worker_pool *pool = worker->pool; 2105 2106 /* tell the scheduler that this is a workqueue worker */ 2107 worker->task->flags |= PF_WQ_WORKER; 2108 woke_up: 2109 spin_lock_irq(&pool->lock); 2110 2111 /* am I supposed to die? */ 2112 if (unlikely(worker->flags & WORKER_DIE)) { 2113 spin_unlock_irq(&pool->lock); 2114 WARN_ON_ONCE(!list_empty(&worker->entry)); 2115 worker->task->flags &= ~PF_WQ_WORKER; 2116 2117 set_task_comm(worker->task, "kworker/dying"); 2118 ida_simple_remove(&pool->worker_ida, worker->id); 2119 worker_detach_from_pool(worker, pool); 2120 kfree(worker); 2121 return 0; 2122 } 2123 2124 worker_leave_idle(worker); 2125 recheck: 2126 /* no more worker necessary? */ 2127 if (!need_more_worker(pool)) 2128 goto sleep; 2129 2130 /* do we need to manage? */ 2131 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2132 goto recheck; 2133 2134 /* 2135 * ->scheduled list can only be filled while a worker is 2136 * preparing to process a work or actually processing it. 2137 * Make sure nobody diddled with it while I was sleeping. 2138 */ 2139 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2140 2141 /* 2142 * Finish PREP stage. We're guaranteed to have at least one idle 2143 * worker or that someone else has already assumed the manager 2144 * role. This is where @worker starts participating in concurrency 2145 * management if applicable and concurrency management is restored 2146 * after being rebound. See rebind_workers() for details. 2147 */ 2148 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2149 2150 do { 2151 struct work_struct *work = 2152 list_first_entry(&pool->worklist, 2153 struct work_struct, entry); 2154 2155 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2156 /* optimization path, not strictly necessary */ 2157 process_one_work(worker, work); 2158 if (unlikely(!list_empty(&worker->scheduled))) 2159 process_scheduled_works(worker); 2160 } else { 2161 move_linked_works(work, &worker->scheduled, NULL); 2162 process_scheduled_works(worker); 2163 } 2164 } while (keep_working(pool)); 2165 2166 worker_set_flags(worker, WORKER_PREP); 2167 sleep: 2168 /* 2169 * pool->lock is held and there's no work to process and no need to 2170 * manage, sleep. Workers are woken up only while holding 2171 * pool->lock or from local cpu, so setting the current state 2172 * before releasing pool->lock is enough to prevent losing any 2173 * event. 2174 */ 2175 worker_enter_idle(worker); 2176 __set_current_state(TASK_INTERRUPTIBLE); 2177 spin_unlock_irq(&pool->lock); 2178 schedule(); 2179 goto woke_up; 2180 } 2181 2182 /** 2183 * rescuer_thread - the rescuer thread function 2184 * @__rescuer: self 2185 * 2186 * Workqueue rescuer thread function. There's one rescuer for each 2187 * workqueue which has WQ_MEM_RECLAIM set. 2188 * 2189 * Regular work processing on a pool may block trying to create a new 2190 * worker which uses GFP_KERNEL allocation which has slight chance of 2191 * developing into deadlock if some works currently on the same queue 2192 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2193 * the problem rescuer solves. 2194 * 2195 * When such condition is possible, the pool summons rescuers of all 2196 * workqueues which have works queued on the pool and let them process 2197 * those works so that forward progress can be guaranteed. 2198 * 2199 * This should happen rarely. 2200 * 2201 * Return: 0 2202 */ 2203 static int rescuer_thread(void *__rescuer) 2204 { 2205 struct worker *rescuer = __rescuer; 2206 struct workqueue_struct *wq = rescuer->rescue_wq; 2207 struct list_head *scheduled = &rescuer->scheduled; 2208 bool should_stop; 2209 2210 set_user_nice(current, RESCUER_NICE_LEVEL); 2211 2212 /* 2213 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2214 * doesn't participate in concurrency management. 2215 */ 2216 rescuer->task->flags |= PF_WQ_WORKER; 2217 repeat: 2218 set_current_state(TASK_INTERRUPTIBLE); 2219 2220 /* 2221 * By the time the rescuer is requested to stop, the workqueue 2222 * shouldn't have any work pending, but @wq->maydays may still have 2223 * pwq(s) queued. This can happen by non-rescuer workers consuming 2224 * all the work items before the rescuer got to them. Go through 2225 * @wq->maydays processing before acting on should_stop so that the 2226 * list is always empty on exit. 2227 */ 2228 should_stop = kthread_should_stop(); 2229 2230 /* see whether any pwq is asking for help */ 2231 spin_lock_irq(&wq_mayday_lock); 2232 2233 while (!list_empty(&wq->maydays)) { 2234 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2235 struct pool_workqueue, mayday_node); 2236 struct worker_pool *pool = pwq->pool; 2237 struct work_struct *work, *n; 2238 2239 __set_current_state(TASK_RUNNING); 2240 list_del_init(&pwq->mayday_node); 2241 2242 spin_unlock_irq(&wq_mayday_lock); 2243 2244 worker_attach_to_pool(rescuer, pool); 2245 2246 spin_lock_irq(&pool->lock); 2247 rescuer->pool = pool; 2248 2249 /* 2250 * Slurp in all works issued via this workqueue and 2251 * process'em. 2252 */ 2253 WARN_ON_ONCE(!list_empty(scheduled)); 2254 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2255 if (get_work_pwq(work) == pwq) 2256 move_linked_works(work, scheduled, &n); 2257 2258 if (!list_empty(scheduled)) { 2259 process_scheduled_works(rescuer); 2260 2261 /* 2262 * The above execution of rescued work items could 2263 * have created more to rescue through 2264 * pwq_activate_first_delayed() or chained 2265 * queueing. Let's put @pwq back on mayday list so 2266 * that such back-to-back work items, which may be 2267 * being used to relieve memory pressure, don't 2268 * incur MAYDAY_INTERVAL delay inbetween. 2269 */ 2270 if (need_to_create_worker(pool)) { 2271 spin_lock(&wq_mayday_lock); 2272 get_pwq(pwq); 2273 list_move_tail(&pwq->mayday_node, &wq->maydays); 2274 spin_unlock(&wq_mayday_lock); 2275 } 2276 } 2277 2278 /* 2279 * Put the reference grabbed by send_mayday(). @pool won't 2280 * go away while we're still attached to it. 2281 */ 2282 put_pwq(pwq); 2283 2284 /* 2285 * Leave this pool. If need_more_worker() is %true, notify a 2286 * regular worker; otherwise, we end up with 0 concurrency 2287 * and stalling the execution. 2288 */ 2289 if (need_more_worker(pool)) 2290 wake_up_worker(pool); 2291 2292 rescuer->pool = NULL; 2293 spin_unlock_irq(&pool->lock); 2294 2295 worker_detach_from_pool(rescuer, pool); 2296 2297 spin_lock_irq(&wq_mayday_lock); 2298 } 2299 2300 spin_unlock_irq(&wq_mayday_lock); 2301 2302 if (should_stop) { 2303 __set_current_state(TASK_RUNNING); 2304 rescuer->task->flags &= ~PF_WQ_WORKER; 2305 return 0; 2306 } 2307 2308 /* rescuers should never participate in concurrency management */ 2309 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2310 schedule(); 2311 goto repeat; 2312 } 2313 2314 struct wq_barrier { 2315 struct work_struct work; 2316 struct completion done; 2317 struct task_struct *task; /* purely informational */ 2318 }; 2319 2320 static void wq_barrier_func(struct work_struct *work) 2321 { 2322 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2323 complete(&barr->done); 2324 } 2325 2326 /** 2327 * insert_wq_barrier - insert a barrier work 2328 * @pwq: pwq to insert barrier into 2329 * @barr: wq_barrier to insert 2330 * @target: target work to attach @barr to 2331 * @worker: worker currently executing @target, NULL if @target is not executing 2332 * 2333 * @barr is linked to @target such that @barr is completed only after 2334 * @target finishes execution. Please note that the ordering 2335 * guarantee is observed only with respect to @target and on the local 2336 * cpu. 2337 * 2338 * Currently, a queued barrier can't be canceled. This is because 2339 * try_to_grab_pending() can't determine whether the work to be 2340 * grabbed is at the head of the queue and thus can't clear LINKED 2341 * flag of the previous work while there must be a valid next work 2342 * after a work with LINKED flag set. 2343 * 2344 * Note that when @worker is non-NULL, @target may be modified 2345 * underneath us, so we can't reliably determine pwq from @target. 2346 * 2347 * CONTEXT: 2348 * spin_lock_irq(pool->lock). 2349 */ 2350 static void insert_wq_barrier(struct pool_workqueue *pwq, 2351 struct wq_barrier *barr, 2352 struct work_struct *target, struct worker *worker) 2353 { 2354 struct list_head *head; 2355 unsigned int linked = 0; 2356 2357 /* 2358 * debugobject calls are safe here even with pool->lock locked 2359 * as we know for sure that this will not trigger any of the 2360 * checks and call back into the fixup functions where we 2361 * might deadlock. 2362 */ 2363 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2364 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2365 init_completion(&barr->done); 2366 barr->task = current; 2367 2368 /* 2369 * If @target is currently being executed, schedule the 2370 * barrier to the worker; otherwise, put it after @target. 2371 */ 2372 if (worker) 2373 head = worker->scheduled.next; 2374 else { 2375 unsigned long *bits = work_data_bits(target); 2376 2377 head = target->entry.next; 2378 /* there can already be other linked works, inherit and set */ 2379 linked = *bits & WORK_STRUCT_LINKED; 2380 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2381 } 2382 2383 debug_work_activate(&barr->work); 2384 insert_work(pwq, &barr->work, head, 2385 work_color_to_flags(WORK_NO_COLOR) | linked); 2386 } 2387 2388 /** 2389 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2390 * @wq: workqueue being flushed 2391 * @flush_color: new flush color, < 0 for no-op 2392 * @work_color: new work color, < 0 for no-op 2393 * 2394 * Prepare pwqs for workqueue flushing. 2395 * 2396 * If @flush_color is non-negative, flush_color on all pwqs should be 2397 * -1. If no pwq has in-flight commands at the specified color, all 2398 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2399 * has in flight commands, its pwq->flush_color is set to 2400 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2401 * wakeup logic is armed and %true is returned. 2402 * 2403 * The caller should have initialized @wq->first_flusher prior to 2404 * calling this function with non-negative @flush_color. If 2405 * @flush_color is negative, no flush color update is done and %false 2406 * is returned. 2407 * 2408 * If @work_color is non-negative, all pwqs should have the same 2409 * work_color which is previous to @work_color and all will be 2410 * advanced to @work_color. 2411 * 2412 * CONTEXT: 2413 * mutex_lock(wq->mutex). 2414 * 2415 * Return: 2416 * %true if @flush_color >= 0 and there's something to flush. %false 2417 * otherwise. 2418 */ 2419 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2420 int flush_color, int work_color) 2421 { 2422 bool wait = false; 2423 struct pool_workqueue *pwq; 2424 2425 if (flush_color >= 0) { 2426 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2427 atomic_set(&wq->nr_pwqs_to_flush, 1); 2428 } 2429 2430 for_each_pwq(pwq, wq) { 2431 struct worker_pool *pool = pwq->pool; 2432 2433 spin_lock_irq(&pool->lock); 2434 2435 if (flush_color >= 0) { 2436 WARN_ON_ONCE(pwq->flush_color != -1); 2437 2438 if (pwq->nr_in_flight[flush_color]) { 2439 pwq->flush_color = flush_color; 2440 atomic_inc(&wq->nr_pwqs_to_flush); 2441 wait = true; 2442 } 2443 } 2444 2445 if (work_color >= 0) { 2446 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2447 pwq->work_color = work_color; 2448 } 2449 2450 spin_unlock_irq(&pool->lock); 2451 } 2452 2453 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2454 complete(&wq->first_flusher->done); 2455 2456 return wait; 2457 } 2458 2459 /** 2460 * flush_workqueue - ensure that any scheduled work has run to completion. 2461 * @wq: workqueue to flush 2462 * 2463 * This function sleeps until all work items which were queued on entry 2464 * have finished execution, but it is not livelocked by new incoming ones. 2465 */ 2466 void flush_workqueue(struct workqueue_struct *wq) 2467 { 2468 struct wq_flusher this_flusher = { 2469 .list = LIST_HEAD_INIT(this_flusher.list), 2470 .flush_color = -1, 2471 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2472 }; 2473 int next_color; 2474 2475 lock_map_acquire(&wq->lockdep_map); 2476 lock_map_release(&wq->lockdep_map); 2477 2478 mutex_lock(&wq->mutex); 2479 2480 /* 2481 * Start-to-wait phase 2482 */ 2483 next_color = work_next_color(wq->work_color); 2484 2485 if (next_color != wq->flush_color) { 2486 /* 2487 * Color space is not full. The current work_color 2488 * becomes our flush_color and work_color is advanced 2489 * by one. 2490 */ 2491 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2492 this_flusher.flush_color = wq->work_color; 2493 wq->work_color = next_color; 2494 2495 if (!wq->first_flusher) { 2496 /* no flush in progress, become the first flusher */ 2497 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2498 2499 wq->first_flusher = &this_flusher; 2500 2501 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2502 wq->work_color)) { 2503 /* nothing to flush, done */ 2504 wq->flush_color = next_color; 2505 wq->first_flusher = NULL; 2506 goto out_unlock; 2507 } 2508 } else { 2509 /* wait in queue */ 2510 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2511 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2512 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2513 } 2514 } else { 2515 /* 2516 * Oops, color space is full, wait on overflow queue. 2517 * The next flush completion will assign us 2518 * flush_color and transfer to flusher_queue. 2519 */ 2520 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2521 } 2522 2523 mutex_unlock(&wq->mutex); 2524 2525 wait_for_completion(&this_flusher.done); 2526 2527 /* 2528 * Wake-up-and-cascade phase 2529 * 2530 * First flushers are responsible for cascading flushes and 2531 * handling overflow. Non-first flushers can simply return. 2532 */ 2533 if (wq->first_flusher != &this_flusher) 2534 return; 2535 2536 mutex_lock(&wq->mutex); 2537 2538 /* we might have raced, check again with mutex held */ 2539 if (wq->first_flusher != &this_flusher) 2540 goto out_unlock; 2541 2542 wq->first_flusher = NULL; 2543 2544 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2545 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2546 2547 while (true) { 2548 struct wq_flusher *next, *tmp; 2549 2550 /* complete all the flushers sharing the current flush color */ 2551 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2552 if (next->flush_color != wq->flush_color) 2553 break; 2554 list_del_init(&next->list); 2555 complete(&next->done); 2556 } 2557 2558 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2559 wq->flush_color != work_next_color(wq->work_color)); 2560 2561 /* this flush_color is finished, advance by one */ 2562 wq->flush_color = work_next_color(wq->flush_color); 2563 2564 /* one color has been freed, handle overflow queue */ 2565 if (!list_empty(&wq->flusher_overflow)) { 2566 /* 2567 * Assign the same color to all overflowed 2568 * flushers, advance work_color and append to 2569 * flusher_queue. This is the start-to-wait 2570 * phase for these overflowed flushers. 2571 */ 2572 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2573 tmp->flush_color = wq->work_color; 2574 2575 wq->work_color = work_next_color(wq->work_color); 2576 2577 list_splice_tail_init(&wq->flusher_overflow, 2578 &wq->flusher_queue); 2579 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2580 } 2581 2582 if (list_empty(&wq->flusher_queue)) { 2583 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2584 break; 2585 } 2586 2587 /* 2588 * Need to flush more colors. Make the next flusher 2589 * the new first flusher and arm pwqs. 2590 */ 2591 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2592 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2593 2594 list_del_init(&next->list); 2595 wq->first_flusher = next; 2596 2597 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2598 break; 2599 2600 /* 2601 * Meh... this color is already done, clear first 2602 * flusher and repeat cascading. 2603 */ 2604 wq->first_flusher = NULL; 2605 } 2606 2607 out_unlock: 2608 mutex_unlock(&wq->mutex); 2609 } 2610 EXPORT_SYMBOL_GPL(flush_workqueue); 2611 2612 /** 2613 * drain_workqueue - drain a workqueue 2614 * @wq: workqueue to drain 2615 * 2616 * Wait until the workqueue becomes empty. While draining is in progress, 2617 * only chain queueing is allowed. IOW, only currently pending or running 2618 * work items on @wq can queue further work items on it. @wq is flushed 2619 * repeatedly until it becomes empty. The number of flushing is detemined 2620 * by the depth of chaining and should be relatively short. Whine if it 2621 * takes too long. 2622 */ 2623 void drain_workqueue(struct workqueue_struct *wq) 2624 { 2625 unsigned int flush_cnt = 0; 2626 struct pool_workqueue *pwq; 2627 2628 /* 2629 * __queue_work() needs to test whether there are drainers, is much 2630 * hotter than drain_workqueue() and already looks at @wq->flags. 2631 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2632 */ 2633 mutex_lock(&wq->mutex); 2634 if (!wq->nr_drainers++) 2635 wq->flags |= __WQ_DRAINING; 2636 mutex_unlock(&wq->mutex); 2637 reflush: 2638 flush_workqueue(wq); 2639 2640 mutex_lock(&wq->mutex); 2641 2642 for_each_pwq(pwq, wq) { 2643 bool drained; 2644 2645 spin_lock_irq(&pwq->pool->lock); 2646 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2647 spin_unlock_irq(&pwq->pool->lock); 2648 2649 if (drained) 2650 continue; 2651 2652 if (++flush_cnt == 10 || 2653 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2654 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2655 wq->name, flush_cnt); 2656 2657 mutex_unlock(&wq->mutex); 2658 goto reflush; 2659 } 2660 2661 if (!--wq->nr_drainers) 2662 wq->flags &= ~__WQ_DRAINING; 2663 mutex_unlock(&wq->mutex); 2664 } 2665 EXPORT_SYMBOL_GPL(drain_workqueue); 2666 2667 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2668 { 2669 struct worker *worker = NULL; 2670 struct worker_pool *pool; 2671 struct pool_workqueue *pwq; 2672 2673 might_sleep(); 2674 2675 local_irq_disable(); 2676 pool = get_work_pool(work); 2677 if (!pool) { 2678 local_irq_enable(); 2679 return false; 2680 } 2681 2682 spin_lock(&pool->lock); 2683 /* see the comment in try_to_grab_pending() with the same code */ 2684 pwq = get_work_pwq(work); 2685 if (pwq) { 2686 if (unlikely(pwq->pool != pool)) 2687 goto already_gone; 2688 } else { 2689 worker = find_worker_executing_work(pool, work); 2690 if (!worker) 2691 goto already_gone; 2692 pwq = worker->current_pwq; 2693 } 2694 2695 insert_wq_barrier(pwq, barr, work, worker); 2696 spin_unlock_irq(&pool->lock); 2697 2698 /* 2699 * If @max_active is 1 or rescuer is in use, flushing another work 2700 * item on the same workqueue may lead to deadlock. Make sure the 2701 * flusher is not running on the same workqueue by verifying write 2702 * access. 2703 */ 2704 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2705 lock_map_acquire(&pwq->wq->lockdep_map); 2706 else 2707 lock_map_acquire_read(&pwq->wq->lockdep_map); 2708 lock_map_release(&pwq->wq->lockdep_map); 2709 2710 return true; 2711 already_gone: 2712 spin_unlock_irq(&pool->lock); 2713 return false; 2714 } 2715 2716 /** 2717 * flush_work - wait for a work to finish executing the last queueing instance 2718 * @work: the work to flush 2719 * 2720 * Wait until @work has finished execution. @work is guaranteed to be idle 2721 * on return if it hasn't been requeued since flush started. 2722 * 2723 * Return: 2724 * %true if flush_work() waited for the work to finish execution, 2725 * %false if it was already idle. 2726 */ 2727 bool flush_work(struct work_struct *work) 2728 { 2729 struct wq_barrier barr; 2730 2731 lock_map_acquire(&work->lockdep_map); 2732 lock_map_release(&work->lockdep_map); 2733 2734 if (start_flush_work(work, &barr)) { 2735 wait_for_completion(&barr.done); 2736 destroy_work_on_stack(&barr.work); 2737 return true; 2738 } else { 2739 return false; 2740 } 2741 } 2742 EXPORT_SYMBOL_GPL(flush_work); 2743 2744 struct cwt_wait { 2745 wait_queue_t wait; 2746 struct work_struct *work; 2747 }; 2748 2749 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key) 2750 { 2751 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2752 2753 if (cwait->work != key) 2754 return 0; 2755 return autoremove_wake_function(wait, mode, sync, key); 2756 } 2757 2758 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2759 { 2760 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2761 unsigned long flags; 2762 int ret; 2763 2764 do { 2765 ret = try_to_grab_pending(work, is_dwork, &flags); 2766 /* 2767 * If someone else is already canceling, wait for it to 2768 * finish. flush_work() doesn't work for PREEMPT_NONE 2769 * because we may get scheduled between @work's completion 2770 * and the other canceling task resuming and clearing 2771 * CANCELING - flush_work() will return false immediately 2772 * as @work is no longer busy, try_to_grab_pending() will 2773 * return -ENOENT as @work is still being canceled and the 2774 * other canceling task won't be able to clear CANCELING as 2775 * we're hogging the CPU. 2776 * 2777 * Let's wait for completion using a waitqueue. As this 2778 * may lead to the thundering herd problem, use a custom 2779 * wake function which matches @work along with exclusive 2780 * wait and wakeup. 2781 */ 2782 if (unlikely(ret == -ENOENT)) { 2783 struct cwt_wait cwait; 2784 2785 init_wait(&cwait.wait); 2786 cwait.wait.func = cwt_wakefn; 2787 cwait.work = work; 2788 2789 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2790 TASK_UNINTERRUPTIBLE); 2791 if (work_is_canceling(work)) 2792 schedule(); 2793 finish_wait(&cancel_waitq, &cwait.wait); 2794 } 2795 } while (unlikely(ret < 0)); 2796 2797 /* tell other tasks trying to grab @work to back off */ 2798 mark_work_canceling(work); 2799 local_irq_restore(flags); 2800 2801 flush_work(work); 2802 clear_work_data(work); 2803 2804 /* 2805 * Paired with prepare_to_wait() above so that either 2806 * waitqueue_active() is visible here or !work_is_canceling() is 2807 * visible there. 2808 */ 2809 smp_mb(); 2810 if (waitqueue_active(&cancel_waitq)) 2811 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 2812 2813 return ret; 2814 } 2815 2816 /** 2817 * cancel_work_sync - cancel a work and wait for it to finish 2818 * @work: the work to cancel 2819 * 2820 * Cancel @work and wait for its execution to finish. This function 2821 * can be used even if the work re-queues itself or migrates to 2822 * another workqueue. On return from this function, @work is 2823 * guaranteed to be not pending or executing on any CPU. 2824 * 2825 * cancel_work_sync(&delayed_work->work) must not be used for 2826 * delayed_work's. Use cancel_delayed_work_sync() instead. 2827 * 2828 * The caller must ensure that the workqueue on which @work was last 2829 * queued can't be destroyed before this function returns. 2830 * 2831 * Return: 2832 * %true if @work was pending, %false otherwise. 2833 */ 2834 bool cancel_work_sync(struct work_struct *work) 2835 { 2836 return __cancel_work_timer(work, false); 2837 } 2838 EXPORT_SYMBOL_GPL(cancel_work_sync); 2839 2840 /** 2841 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2842 * @dwork: the delayed work to flush 2843 * 2844 * Delayed timer is cancelled and the pending work is queued for 2845 * immediate execution. Like flush_work(), this function only 2846 * considers the last queueing instance of @dwork. 2847 * 2848 * Return: 2849 * %true if flush_work() waited for the work to finish execution, 2850 * %false if it was already idle. 2851 */ 2852 bool flush_delayed_work(struct delayed_work *dwork) 2853 { 2854 local_irq_disable(); 2855 if (del_timer_sync(&dwork->timer)) 2856 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2857 local_irq_enable(); 2858 return flush_work(&dwork->work); 2859 } 2860 EXPORT_SYMBOL(flush_delayed_work); 2861 2862 /** 2863 * cancel_delayed_work - cancel a delayed work 2864 * @dwork: delayed_work to cancel 2865 * 2866 * Kill off a pending delayed_work. 2867 * 2868 * Return: %true if @dwork was pending and canceled; %false if it wasn't 2869 * pending. 2870 * 2871 * Note: 2872 * The work callback function may still be running on return, unless 2873 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 2874 * use cancel_delayed_work_sync() to wait on it. 2875 * 2876 * This function is safe to call from any context including IRQ handler. 2877 */ 2878 bool cancel_delayed_work(struct delayed_work *dwork) 2879 { 2880 unsigned long flags; 2881 int ret; 2882 2883 do { 2884 ret = try_to_grab_pending(&dwork->work, true, &flags); 2885 } while (unlikely(ret == -EAGAIN)); 2886 2887 if (unlikely(ret < 0)) 2888 return false; 2889 2890 set_work_pool_and_clear_pending(&dwork->work, 2891 get_work_pool_id(&dwork->work)); 2892 local_irq_restore(flags); 2893 return ret; 2894 } 2895 EXPORT_SYMBOL(cancel_delayed_work); 2896 2897 /** 2898 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2899 * @dwork: the delayed work cancel 2900 * 2901 * This is cancel_work_sync() for delayed works. 2902 * 2903 * Return: 2904 * %true if @dwork was pending, %false otherwise. 2905 */ 2906 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2907 { 2908 return __cancel_work_timer(&dwork->work, true); 2909 } 2910 EXPORT_SYMBOL(cancel_delayed_work_sync); 2911 2912 /** 2913 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2914 * @func: the function to call 2915 * 2916 * schedule_on_each_cpu() executes @func on each online CPU using the 2917 * system workqueue and blocks until all CPUs have completed. 2918 * schedule_on_each_cpu() is very slow. 2919 * 2920 * Return: 2921 * 0 on success, -errno on failure. 2922 */ 2923 int schedule_on_each_cpu(work_func_t func) 2924 { 2925 int cpu; 2926 struct work_struct __percpu *works; 2927 2928 works = alloc_percpu(struct work_struct); 2929 if (!works) 2930 return -ENOMEM; 2931 2932 get_online_cpus(); 2933 2934 for_each_online_cpu(cpu) { 2935 struct work_struct *work = per_cpu_ptr(works, cpu); 2936 2937 INIT_WORK(work, func); 2938 schedule_work_on(cpu, work); 2939 } 2940 2941 for_each_online_cpu(cpu) 2942 flush_work(per_cpu_ptr(works, cpu)); 2943 2944 put_online_cpus(); 2945 free_percpu(works); 2946 return 0; 2947 } 2948 2949 /** 2950 * flush_scheduled_work - ensure that any scheduled work has run to completion. 2951 * 2952 * Forces execution of the kernel-global workqueue and blocks until its 2953 * completion. 2954 * 2955 * Think twice before calling this function! It's very easy to get into 2956 * trouble if you don't take great care. Either of the following situations 2957 * will lead to deadlock: 2958 * 2959 * One of the work items currently on the workqueue needs to acquire 2960 * a lock held by your code or its caller. 2961 * 2962 * Your code is running in the context of a work routine. 2963 * 2964 * They will be detected by lockdep when they occur, but the first might not 2965 * occur very often. It depends on what work items are on the workqueue and 2966 * what locks they need, which you have no control over. 2967 * 2968 * In most situations flushing the entire workqueue is overkill; you merely 2969 * need to know that a particular work item isn't queued and isn't running. 2970 * In such cases you should use cancel_delayed_work_sync() or 2971 * cancel_work_sync() instead. 2972 */ 2973 void flush_scheduled_work(void) 2974 { 2975 flush_workqueue(system_wq); 2976 } 2977 EXPORT_SYMBOL(flush_scheduled_work); 2978 2979 /** 2980 * execute_in_process_context - reliably execute the routine with user context 2981 * @fn: the function to execute 2982 * @ew: guaranteed storage for the execute work structure (must 2983 * be available when the work executes) 2984 * 2985 * Executes the function immediately if process context is available, 2986 * otherwise schedules the function for delayed execution. 2987 * 2988 * Return: 0 - function was executed 2989 * 1 - function was scheduled for execution 2990 */ 2991 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2992 { 2993 if (!in_interrupt()) { 2994 fn(&ew->work); 2995 return 0; 2996 } 2997 2998 INIT_WORK(&ew->work, fn); 2999 schedule_work(&ew->work); 3000 3001 return 1; 3002 } 3003 EXPORT_SYMBOL_GPL(execute_in_process_context); 3004 3005 /** 3006 * free_workqueue_attrs - free a workqueue_attrs 3007 * @attrs: workqueue_attrs to free 3008 * 3009 * Undo alloc_workqueue_attrs(). 3010 */ 3011 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3012 { 3013 if (attrs) { 3014 free_cpumask_var(attrs->cpumask); 3015 kfree(attrs); 3016 } 3017 } 3018 3019 /** 3020 * alloc_workqueue_attrs - allocate a workqueue_attrs 3021 * @gfp_mask: allocation mask to use 3022 * 3023 * Allocate a new workqueue_attrs, initialize with default settings and 3024 * return it. 3025 * 3026 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3027 */ 3028 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3029 { 3030 struct workqueue_attrs *attrs; 3031 3032 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3033 if (!attrs) 3034 goto fail; 3035 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3036 goto fail; 3037 3038 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3039 return attrs; 3040 fail: 3041 free_workqueue_attrs(attrs); 3042 return NULL; 3043 } 3044 3045 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3046 const struct workqueue_attrs *from) 3047 { 3048 to->nice = from->nice; 3049 cpumask_copy(to->cpumask, from->cpumask); 3050 /* 3051 * Unlike hash and equality test, this function doesn't ignore 3052 * ->no_numa as it is used for both pool and wq attrs. Instead, 3053 * get_unbound_pool() explicitly clears ->no_numa after copying. 3054 */ 3055 to->no_numa = from->no_numa; 3056 } 3057 3058 /* hash value of the content of @attr */ 3059 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3060 { 3061 u32 hash = 0; 3062 3063 hash = jhash_1word(attrs->nice, hash); 3064 hash = jhash(cpumask_bits(attrs->cpumask), 3065 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3066 return hash; 3067 } 3068 3069 /* content equality test */ 3070 static bool wqattrs_equal(const struct workqueue_attrs *a, 3071 const struct workqueue_attrs *b) 3072 { 3073 if (a->nice != b->nice) 3074 return false; 3075 if (!cpumask_equal(a->cpumask, b->cpumask)) 3076 return false; 3077 return true; 3078 } 3079 3080 /** 3081 * init_worker_pool - initialize a newly zalloc'd worker_pool 3082 * @pool: worker_pool to initialize 3083 * 3084 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs. 3085 * 3086 * Return: 0 on success, -errno on failure. Even on failure, all fields 3087 * inside @pool proper are initialized and put_unbound_pool() can be called 3088 * on @pool safely to release it. 3089 */ 3090 static int init_worker_pool(struct worker_pool *pool) 3091 { 3092 spin_lock_init(&pool->lock); 3093 pool->id = -1; 3094 pool->cpu = -1; 3095 pool->node = NUMA_NO_NODE; 3096 pool->flags |= POOL_DISASSOCIATED; 3097 INIT_LIST_HEAD(&pool->worklist); 3098 INIT_LIST_HEAD(&pool->idle_list); 3099 hash_init(pool->busy_hash); 3100 3101 init_timer_deferrable(&pool->idle_timer); 3102 pool->idle_timer.function = idle_worker_timeout; 3103 pool->idle_timer.data = (unsigned long)pool; 3104 3105 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3106 (unsigned long)pool); 3107 3108 mutex_init(&pool->manager_arb); 3109 mutex_init(&pool->attach_mutex); 3110 INIT_LIST_HEAD(&pool->workers); 3111 3112 ida_init(&pool->worker_ida); 3113 INIT_HLIST_NODE(&pool->hash_node); 3114 pool->refcnt = 1; 3115 3116 /* shouldn't fail above this point */ 3117 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3118 if (!pool->attrs) 3119 return -ENOMEM; 3120 return 0; 3121 } 3122 3123 static void rcu_free_wq(struct rcu_head *rcu) 3124 { 3125 struct workqueue_struct *wq = 3126 container_of(rcu, struct workqueue_struct, rcu); 3127 3128 if (!(wq->flags & WQ_UNBOUND)) 3129 free_percpu(wq->cpu_pwqs); 3130 else 3131 free_workqueue_attrs(wq->unbound_attrs); 3132 3133 kfree(wq->rescuer); 3134 kfree(wq); 3135 } 3136 3137 static void rcu_free_pool(struct rcu_head *rcu) 3138 { 3139 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3140 3141 ida_destroy(&pool->worker_ida); 3142 free_workqueue_attrs(pool->attrs); 3143 kfree(pool); 3144 } 3145 3146 /** 3147 * put_unbound_pool - put a worker_pool 3148 * @pool: worker_pool to put 3149 * 3150 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3151 * safe manner. get_unbound_pool() calls this function on its failure path 3152 * and this function should be able to release pools which went through, 3153 * successfully or not, init_worker_pool(). 3154 * 3155 * Should be called with wq_pool_mutex held. 3156 */ 3157 static void put_unbound_pool(struct worker_pool *pool) 3158 { 3159 DECLARE_COMPLETION_ONSTACK(detach_completion); 3160 struct worker *worker; 3161 3162 lockdep_assert_held(&wq_pool_mutex); 3163 3164 if (--pool->refcnt) 3165 return; 3166 3167 /* sanity checks */ 3168 if (WARN_ON(!(pool->cpu < 0)) || 3169 WARN_ON(!list_empty(&pool->worklist))) 3170 return; 3171 3172 /* release id and unhash */ 3173 if (pool->id >= 0) 3174 idr_remove(&worker_pool_idr, pool->id); 3175 hash_del(&pool->hash_node); 3176 3177 /* 3178 * Become the manager and destroy all workers. Grabbing 3179 * manager_arb prevents @pool's workers from blocking on 3180 * attach_mutex. 3181 */ 3182 mutex_lock(&pool->manager_arb); 3183 3184 spin_lock_irq(&pool->lock); 3185 while ((worker = first_idle_worker(pool))) 3186 destroy_worker(worker); 3187 WARN_ON(pool->nr_workers || pool->nr_idle); 3188 spin_unlock_irq(&pool->lock); 3189 3190 mutex_lock(&pool->attach_mutex); 3191 if (!list_empty(&pool->workers)) 3192 pool->detach_completion = &detach_completion; 3193 mutex_unlock(&pool->attach_mutex); 3194 3195 if (pool->detach_completion) 3196 wait_for_completion(pool->detach_completion); 3197 3198 mutex_unlock(&pool->manager_arb); 3199 3200 /* shut down the timers */ 3201 del_timer_sync(&pool->idle_timer); 3202 del_timer_sync(&pool->mayday_timer); 3203 3204 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3205 call_rcu_sched(&pool->rcu, rcu_free_pool); 3206 } 3207 3208 /** 3209 * get_unbound_pool - get a worker_pool with the specified attributes 3210 * @attrs: the attributes of the worker_pool to get 3211 * 3212 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3213 * reference count and return it. If there already is a matching 3214 * worker_pool, it will be used; otherwise, this function attempts to 3215 * create a new one. 3216 * 3217 * Should be called with wq_pool_mutex held. 3218 * 3219 * Return: On success, a worker_pool with the same attributes as @attrs. 3220 * On failure, %NULL. 3221 */ 3222 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3223 { 3224 u32 hash = wqattrs_hash(attrs); 3225 struct worker_pool *pool; 3226 int node; 3227 3228 lockdep_assert_held(&wq_pool_mutex); 3229 3230 /* do we already have a matching pool? */ 3231 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3232 if (wqattrs_equal(pool->attrs, attrs)) { 3233 pool->refcnt++; 3234 return pool; 3235 } 3236 } 3237 3238 /* nope, create a new one */ 3239 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 3240 if (!pool || init_worker_pool(pool) < 0) 3241 goto fail; 3242 3243 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3244 copy_workqueue_attrs(pool->attrs, attrs); 3245 3246 /* 3247 * no_numa isn't a worker_pool attribute, always clear it. See 3248 * 'struct workqueue_attrs' comments for detail. 3249 */ 3250 pool->attrs->no_numa = false; 3251 3252 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3253 if (wq_numa_enabled) { 3254 for_each_node(node) { 3255 if (cpumask_subset(pool->attrs->cpumask, 3256 wq_numa_possible_cpumask[node])) { 3257 pool->node = node; 3258 break; 3259 } 3260 } 3261 } 3262 3263 if (worker_pool_assign_id(pool) < 0) 3264 goto fail; 3265 3266 /* create and start the initial worker */ 3267 if (!create_worker(pool)) 3268 goto fail; 3269 3270 /* install */ 3271 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3272 3273 return pool; 3274 fail: 3275 if (pool) 3276 put_unbound_pool(pool); 3277 return NULL; 3278 } 3279 3280 static void rcu_free_pwq(struct rcu_head *rcu) 3281 { 3282 kmem_cache_free(pwq_cache, 3283 container_of(rcu, struct pool_workqueue, rcu)); 3284 } 3285 3286 /* 3287 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3288 * and needs to be destroyed. 3289 */ 3290 static void pwq_unbound_release_workfn(struct work_struct *work) 3291 { 3292 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3293 unbound_release_work); 3294 struct workqueue_struct *wq = pwq->wq; 3295 struct worker_pool *pool = pwq->pool; 3296 bool is_last; 3297 3298 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3299 return; 3300 3301 mutex_lock(&wq->mutex); 3302 list_del_rcu(&pwq->pwqs_node); 3303 is_last = list_empty(&wq->pwqs); 3304 mutex_unlock(&wq->mutex); 3305 3306 mutex_lock(&wq_pool_mutex); 3307 put_unbound_pool(pool); 3308 mutex_unlock(&wq_pool_mutex); 3309 3310 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3311 3312 /* 3313 * If we're the last pwq going away, @wq is already dead and no one 3314 * is gonna access it anymore. Schedule RCU free. 3315 */ 3316 if (is_last) 3317 call_rcu_sched(&wq->rcu, rcu_free_wq); 3318 } 3319 3320 /** 3321 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3322 * @pwq: target pool_workqueue 3323 * 3324 * If @pwq isn't freezing, set @pwq->max_active to the associated 3325 * workqueue's saved_max_active and activate delayed work items 3326 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3327 */ 3328 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3329 { 3330 struct workqueue_struct *wq = pwq->wq; 3331 bool freezable = wq->flags & WQ_FREEZABLE; 3332 3333 /* for @wq->saved_max_active */ 3334 lockdep_assert_held(&wq->mutex); 3335 3336 /* fast exit for non-freezable wqs */ 3337 if (!freezable && pwq->max_active == wq->saved_max_active) 3338 return; 3339 3340 spin_lock_irq(&pwq->pool->lock); 3341 3342 /* 3343 * During [un]freezing, the caller is responsible for ensuring that 3344 * this function is called at least once after @workqueue_freezing 3345 * is updated and visible. 3346 */ 3347 if (!freezable || !workqueue_freezing) { 3348 pwq->max_active = wq->saved_max_active; 3349 3350 while (!list_empty(&pwq->delayed_works) && 3351 pwq->nr_active < pwq->max_active) 3352 pwq_activate_first_delayed(pwq); 3353 3354 /* 3355 * Need to kick a worker after thawed or an unbound wq's 3356 * max_active is bumped. It's a slow path. Do it always. 3357 */ 3358 wake_up_worker(pwq->pool); 3359 } else { 3360 pwq->max_active = 0; 3361 } 3362 3363 spin_unlock_irq(&pwq->pool->lock); 3364 } 3365 3366 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3367 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3368 struct worker_pool *pool) 3369 { 3370 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3371 3372 memset(pwq, 0, sizeof(*pwq)); 3373 3374 pwq->pool = pool; 3375 pwq->wq = wq; 3376 pwq->flush_color = -1; 3377 pwq->refcnt = 1; 3378 INIT_LIST_HEAD(&pwq->delayed_works); 3379 INIT_LIST_HEAD(&pwq->pwqs_node); 3380 INIT_LIST_HEAD(&pwq->mayday_node); 3381 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3382 } 3383 3384 /* sync @pwq with the current state of its associated wq and link it */ 3385 static void link_pwq(struct pool_workqueue *pwq) 3386 { 3387 struct workqueue_struct *wq = pwq->wq; 3388 3389 lockdep_assert_held(&wq->mutex); 3390 3391 /* may be called multiple times, ignore if already linked */ 3392 if (!list_empty(&pwq->pwqs_node)) 3393 return; 3394 3395 /* set the matching work_color */ 3396 pwq->work_color = wq->work_color; 3397 3398 /* sync max_active to the current setting */ 3399 pwq_adjust_max_active(pwq); 3400 3401 /* link in @pwq */ 3402 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3403 } 3404 3405 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3406 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3407 const struct workqueue_attrs *attrs) 3408 { 3409 struct worker_pool *pool; 3410 struct pool_workqueue *pwq; 3411 3412 lockdep_assert_held(&wq_pool_mutex); 3413 3414 pool = get_unbound_pool(attrs); 3415 if (!pool) 3416 return NULL; 3417 3418 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3419 if (!pwq) { 3420 put_unbound_pool(pool); 3421 return NULL; 3422 } 3423 3424 init_pwq(pwq, wq, pool); 3425 return pwq; 3426 } 3427 3428 /* undo alloc_unbound_pwq(), used only in the error path */ 3429 static void free_unbound_pwq(struct pool_workqueue *pwq) 3430 { 3431 lockdep_assert_held(&wq_pool_mutex); 3432 3433 if (pwq) { 3434 put_unbound_pool(pwq->pool); 3435 kmem_cache_free(pwq_cache, pwq); 3436 } 3437 } 3438 3439 /** 3440 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node 3441 * @attrs: the wq_attrs of interest 3442 * @node: the target NUMA node 3443 * @cpu_going_down: if >= 0, the CPU to consider as offline 3444 * @cpumask: outarg, the resulting cpumask 3445 * 3446 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3447 * @cpu_going_down is >= 0, that cpu is considered offline during 3448 * calculation. The result is stored in @cpumask. 3449 * 3450 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3451 * enabled and @node has online CPUs requested by @attrs, the returned 3452 * cpumask is the intersection of the possible CPUs of @node and 3453 * @attrs->cpumask. 3454 * 3455 * The caller is responsible for ensuring that the cpumask of @node stays 3456 * stable. 3457 * 3458 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3459 * %false if equal. 3460 */ 3461 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3462 int cpu_going_down, cpumask_t *cpumask) 3463 { 3464 if (!wq_numa_enabled || attrs->no_numa) 3465 goto use_dfl; 3466 3467 /* does @node have any online CPUs @attrs wants? */ 3468 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3469 if (cpu_going_down >= 0) 3470 cpumask_clear_cpu(cpu_going_down, cpumask); 3471 3472 if (cpumask_empty(cpumask)) 3473 goto use_dfl; 3474 3475 /* yeap, return possible CPUs in @node that @attrs wants */ 3476 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3477 return !cpumask_equal(cpumask, attrs->cpumask); 3478 3479 use_dfl: 3480 cpumask_copy(cpumask, attrs->cpumask); 3481 return false; 3482 } 3483 3484 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3485 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3486 int node, 3487 struct pool_workqueue *pwq) 3488 { 3489 struct pool_workqueue *old_pwq; 3490 3491 lockdep_assert_held(&wq->mutex); 3492 3493 /* link_pwq() can handle duplicate calls */ 3494 link_pwq(pwq); 3495 3496 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3497 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3498 return old_pwq; 3499 } 3500 3501 /** 3502 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3503 * @wq: the target workqueue 3504 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3505 * 3506 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3507 * machines, this function maps a separate pwq to each NUMA node with 3508 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3509 * NUMA node it was issued on. Older pwqs are released as in-flight work 3510 * items finish. Note that a work item which repeatedly requeues itself 3511 * back-to-back will stay on its current pwq. 3512 * 3513 * Performs GFP_KERNEL allocations. 3514 * 3515 * Return: 0 on success and -errno on failure. 3516 */ 3517 int apply_workqueue_attrs(struct workqueue_struct *wq, 3518 const struct workqueue_attrs *attrs) 3519 { 3520 struct workqueue_attrs *new_attrs, *tmp_attrs; 3521 struct pool_workqueue **pwq_tbl, *dfl_pwq; 3522 int node, ret; 3523 3524 /* only unbound workqueues can change attributes */ 3525 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3526 return -EINVAL; 3527 3528 /* creating multiple pwqs breaks ordering guarantee */ 3529 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3530 return -EINVAL; 3531 3532 pwq_tbl = kzalloc(nr_node_ids * sizeof(pwq_tbl[0]), GFP_KERNEL); 3533 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3534 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3535 if (!pwq_tbl || !new_attrs || !tmp_attrs) 3536 goto enomem; 3537 3538 /* make a copy of @attrs and sanitize it */ 3539 copy_workqueue_attrs(new_attrs, attrs); 3540 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3541 3542 /* 3543 * We may create multiple pwqs with differing cpumasks. Make a 3544 * copy of @new_attrs which will be modified and used to obtain 3545 * pools. 3546 */ 3547 copy_workqueue_attrs(tmp_attrs, new_attrs); 3548 3549 /* 3550 * CPUs should stay stable across pwq creations and installations. 3551 * Pin CPUs, determine the target cpumask for each node and create 3552 * pwqs accordingly. 3553 */ 3554 get_online_cpus(); 3555 3556 mutex_lock(&wq_pool_mutex); 3557 3558 /* 3559 * If something goes wrong during CPU up/down, we'll fall back to 3560 * the default pwq covering whole @attrs->cpumask. Always create 3561 * it even if we don't use it immediately. 3562 */ 3563 dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3564 if (!dfl_pwq) 3565 goto enomem_pwq; 3566 3567 for_each_node(node) { 3568 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) { 3569 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3570 if (!pwq_tbl[node]) 3571 goto enomem_pwq; 3572 } else { 3573 dfl_pwq->refcnt++; 3574 pwq_tbl[node] = dfl_pwq; 3575 } 3576 } 3577 3578 mutex_unlock(&wq_pool_mutex); 3579 3580 /* all pwqs have been created successfully, let's install'em */ 3581 mutex_lock(&wq->mutex); 3582 3583 copy_workqueue_attrs(wq->unbound_attrs, new_attrs); 3584 3585 /* save the previous pwq and install the new one */ 3586 for_each_node(node) 3587 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]); 3588 3589 /* @dfl_pwq might not have been used, ensure it's linked */ 3590 link_pwq(dfl_pwq); 3591 swap(wq->dfl_pwq, dfl_pwq); 3592 3593 mutex_unlock(&wq->mutex); 3594 3595 /* put the old pwqs */ 3596 for_each_node(node) 3597 put_pwq_unlocked(pwq_tbl[node]); 3598 put_pwq_unlocked(dfl_pwq); 3599 3600 put_online_cpus(); 3601 ret = 0; 3602 /* fall through */ 3603 out_free: 3604 free_workqueue_attrs(tmp_attrs); 3605 free_workqueue_attrs(new_attrs); 3606 kfree(pwq_tbl); 3607 return ret; 3608 3609 enomem_pwq: 3610 free_unbound_pwq(dfl_pwq); 3611 for_each_node(node) 3612 if (pwq_tbl && pwq_tbl[node] != dfl_pwq) 3613 free_unbound_pwq(pwq_tbl[node]); 3614 mutex_unlock(&wq_pool_mutex); 3615 put_online_cpus(); 3616 enomem: 3617 ret = -ENOMEM; 3618 goto out_free; 3619 } 3620 3621 /** 3622 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3623 * @wq: the target workqueue 3624 * @cpu: the CPU coming up or going down 3625 * @online: whether @cpu is coming up or going down 3626 * 3627 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3628 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3629 * @wq accordingly. 3630 * 3631 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3632 * falls back to @wq->dfl_pwq which may not be optimal but is always 3633 * correct. 3634 * 3635 * Note that when the last allowed CPU of a NUMA node goes offline for a 3636 * workqueue with a cpumask spanning multiple nodes, the workers which were 3637 * already executing the work items for the workqueue will lose their CPU 3638 * affinity and may execute on any CPU. This is similar to how per-cpu 3639 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3640 * affinity, it's the user's responsibility to flush the work item from 3641 * CPU_DOWN_PREPARE. 3642 */ 3643 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3644 bool online) 3645 { 3646 int node = cpu_to_node(cpu); 3647 int cpu_off = online ? -1 : cpu; 3648 struct pool_workqueue *old_pwq = NULL, *pwq; 3649 struct workqueue_attrs *target_attrs; 3650 cpumask_t *cpumask; 3651 3652 lockdep_assert_held(&wq_pool_mutex); 3653 3654 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND)) 3655 return; 3656 3657 /* 3658 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3659 * Let's use a preallocated one. The following buf is protected by 3660 * CPU hotplug exclusion. 3661 */ 3662 target_attrs = wq_update_unbound_numa_attrs_buf; 3663 cpumask = target_attrs->cpumask; 3664 3665 mutex_lock(&wq->mutex); 3666 if (wq->unbound_attrs->no_numa) 3667 goto out_unlock; 3668 3669 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3670 pwq = unbound_pwq_by_node(wq, node); 3671 3672 /* 3673 * Let's determine what needs to be done. If the target cpumask is 3674 * different from wq's, we need to compare it to @pwq's and create 3675 * a new one if they don't match. If the target cpumask equals 3676 * wq's, the default pwq should be used. 3677 */ 3678 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) { 3679 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3680 goto out_unlock; 3681 } else { 3682 goto use_dfl_pwq; 3683 } 3684 3685 mutex_unlock(&wq->mutex); 3686 3687 /* create a new pwq */ 3688 pwq = alloc_unbound_pwq(wq, target_attrs); 3689 if (!pwq) { 3690 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3691 wq->name); 3692 mutex_lock(&wq->mutex); 3693 goto use_dfl_pwq; 3694 } 3695 3696 /* 3697 * Install the new pwq. As this function is called only from CPU 3698 * hotplug callbacks and applying a new attrs is wrapped with 3699 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed 3700 * inbetween. 3701 */ 3702 mutex_lock(&wq->mutex); 3703 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3704 goto out_unlock; 3705 3706 use_dfl_pwq: 3707 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3708 get_pwq(wq->dfl_pwq); 3709 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3710 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3711 out_unlock: 3712 mutex_unlock(&wq->mutex); 3713 put_pwq_unlocked(old_pwq); 3714 } 3715 3716 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3717 { 3718 bool highpri = wq->flags & WQ_HIGHPRI; 3719 int cpu, ret; 3720 3721 if (!(wq->flags & WQ_UNBOUND)) { 3722 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3723 if (!wq->cpu_pwqs) 3724 return -ENOMEM; 3725 3726 for_each_possible_cpu(cpu) { 3727 struct pool_workqueue *pwq = 3728 per_cpu_ptr(wq->cpu_pwqs, cpu); 3729 struct worker_pool *cpu_pools = 3730 per_cpu(cpu_worker_pools, cpu); 3731 3732 init_pwq(pwq, wq, &cpu_pools[highpri]); 3733 3734 mutex_lock(&wq->mutex); 3735 link_pwq(pwq); 3736 mutex_unlock(&wq->mutex); 3737 } 3738 return 0; 3739 } else if (wq->flags & __WQ_ORDERED) { 3740 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3741 /* there should only be single pwq for ordering guarantee */ 3742 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3743 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3744 "ordering guarantee broken for workqueue %s\n", wq->name); 3745 return ret; 3746 } else { 3747 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3748 } 3749 } 3750 3751 static int wq_clamp_max_active(int max_active, unsigned int flags, 3752 const char *name) 3753 { 3754 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3755 3756 if (max_active < 1 || max_active > lim) 3757 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3758 max_active, name, 1, lim); 3759 3760 return clamp_val(max_active, 1, lim); 3761 } 3762 3763 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3764 unsigned int flags, 3765 int max_active, 3766 struct lock_class_key *key, 3767 const char *lock_name, ...) 3768 { 3769 size_t tbl_size = 0; 3770 va_list args; 3771 struct workqueue_struct *wq; 3772 struct pool_workqueue *pwq; 3773 3774 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 3775 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 3776 flags |= WQ_UNBOUND; 3777 3778 /* allocate wq and format name */ 3779 if (flags & WQ_UNBOUND) 3780 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 3781 3782 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 3783 if (!wq) 3784 return NULL; 3785 3786 if (flags & WQ_UNBOUND) { 3787 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3788 if (!wq->unbound_attrs) 3789 goto err_free_wq; 3790 } 3791 3792 va_start(args, lock_name); 3793 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 3794 va_end(args); 3795 3796 max_active = max_active ?: WQ_DFL_ACTIVE; 3797 max_active = wq_clamp_max_active(max_active, flags, wq->name); 3798 3799 /* init wq */ 3800 wq->flags = flags; 3801 wq->saved_max_active = max_active; 3802 mutex_init(&wq->mutex); 3803 atomic_set(&wq->nr_pwqs_to_flush, 0); 3804 INIT_LIST_HEAD(&wq->pwqs); 3805 INIT_LIST_HEAD(&wq->flusher_queue); 3806 INIT_LIST_HEAD(&wq->flusher_overflow); 3807 INIT_LIST_HEAD(&wq->maydays); 3808 3809 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3810 INIT_LIST_HEAD(&wq->list); 3811 3812 if (alloc_and_link_pwqs(wq) < 0) 3813 goto err_free_wq; 3814 3815 /* 3816 * Workqueues which may be used during memory reclaim should 3817 * have a rescuer to guarantee forward progress. 3818 */ 3819 if (flags & WQ_MEM_RECLAIM) { 3820 struct worker *rescuer; 3821 3822 rescuer = alloc_worker(NUMA_NO_NODE); 3823 if (!rescuer) 3824 goto err_destroy; 3825 3826 rescuer->rescue_wq = wq; 3827 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 3828 wq->name); 3829 if (IS_ERR(rescuer->task)) { 3830 kfree(rescuer); 3831 goto err_destroy; 3832 } 3833 3834 wq->rescuer = rescuer; 3835 rescuer->task->flags |= PF_NO_SETAFFINITY; 3836 wake_up_process(rescuer->task); 3837 } 3838 3839 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 3840 goto err_destroy; 3841 3842 /* 3843 * wq_pool_mutex protects global freeze state and workqueues list. 3844 * Grab it, adjust max_active and add the new @wq to workqueues 3845 * list. 3846 */ 3847 mutex_lock(&wq_pool_mutex); 3848 3849 mutex_lock(&wq->mutex); 3850 for_each_pwq(pwq, wq) 3851 pwq_adjust_max_active(pwq); 3852 mutex_unlock(&wq->mutex); 3853 3854 list_add_tail_rcu(&wq->list, &workqueues); 3855 3856 mutex_unlock(&wq_pool_mutex); 3857 3858 return wq; 3859 3860 err_free_wq: 3861 free_workqueue_attrs(wq->unbound_attrs); 3862 kfree(wq); 3863 return NULL; 3864 err_destroy: 3865 destroy_workqueue(wq); 3866 return NULL; 3867 } 3868 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 3869 3870 /** 3871 * destroy_workqueue - safely terminate a workqueue 3872 * @wq: target workqueue 3873 * 3874 * Safely destroy a workqueue. All work currently pending will be done first. 3875 */ 3876 void destroy_workqueue(struct workqueue_struct *wq) 3877 { 3878 struct pool_workqueue *pwq; 3879 int node; 3880 3881 /* drain it before proceeding with destruction */ 3882 drain_workqueue(wq); 3883 3884 /* sanity checks */ 3885 mutex_lock(&wq->mutex); 3886 for_each_pwq(pwq, wq) { 3887 int i; 3888 3889 for (i = 0; i < WORK_NR_COLORS; i++) { 3890 if (WARN_ON(pwq->nr_in_flight[i])) { 3891 mutex_unlock(&wq->mutex); 3892 return; 3893 } 3894 } 3895 3896 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 3897 WARN_ON(pwq->nr_active) || 3898 WARN_ON(!list_empty(&pwq->delayed_works))) { 3899 mutex_unlock(&wq->mutex); 3900 return; 3901 } 3902 } 3903 mutex_unlock(&wq->mutex); 3904 3905 /* 3906 * wq list is used to freeze wq, remove from list after 3907 * flushing is complete in case freeze races us. 3908 */ 3909 mutex_lock(&wq_pool_mutex); 3910 list_del_rcu(&wq->list); 3911 mutex_unlock(&wq_pool_mutex); 3912 3913 workqueue_sysfs_unregister(wq); 3914 3915 if (wq->rescuer) 3916 kthread_stop(wq->rescuer->task); 3917 3918 if (!(wq->flags & WQ_UNBOUND)) { 3919 /* 3920 * The base ref is never dropped on per-cpu pwqs. Directly 3921 * schedule RCU free. 3922 */ 3923 call_rcu_sched(&wq->rcu, rcu_free_wq); 3924 } else { 3925 /* 3926 * We're the sole accessor of @wq at this point. Directly 3927 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 3928 * @wq will be freed when the last pwq is released. 3929 */ 3930 for_each_node(node) { 3931 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3932 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 3933 put_pwq_unlocked(pwq); 3934 } 3935 3936 /* 3937 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 3938 * put. Don't access it afterwards. 3939 */ 3940 pwq = wq->dfl_pwq; 3941 wq->dfl_pwq = NULL; 3942 put_pwq_unlocked(pwq); 3943 } 3944 } 3945 EXPORT_SYMBOL_GPL(destroy_workqueue); 3946 3947 /** 3948 * workqueue_set_max_active - adjust max_active of a workqueue 3949 * @wq: target workqueue 3950 * @max_active: new max_active value. 3951 * 3952 * Set max_active of @wq to @max_active. 3953 * 3954 * CONTEXT: 3955 * Don't call from IRQ context. 3956 */ 3957 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 3958 { 3959 struct pool_workqueue *pwq; 3960 3961 /* disallow meddling with max_active for ordered workqueues */ 3962 if (WARN_ON(wq->flags & __WQ_ORDERED)) 3963 return; 3964 3965 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 3966 3967 mutex_lock(&wq->mutex); 3968 3969 wq->saved_max_active = max_active; 3970 3971 for_each_pwq(pwq, wq) 3972 pwq_adjust_max_active(pwq); 3973 3974 mutex_unlock(&wq->mutex); 3975 } 3976 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 3977 3978 /** 3979 * current_is_workqueue_rescuer - is %current workqueue rescuer? 3980 * 3981 * Determine whether %current is a workqueue rescuer. Can be used from 3982 * work functions to determine whether it's being run off the rescuer task. 3983 * 3984 * Return: %true if %current is a workqueue rescuer. %false otherwise. 3985 */ 3986 bool current_is_workqueue_rescuer(void) 3987 { 3988 struct worker *worker = current_wq_worker(); 3989 3990 return worker && worker->rescue_wq; 3991 } 3992 3993 /** 3994 * workqueue_congested - test whether a workqueue is congested 3995 * @cpu: CPU in question 3996 * @wq: target workqueue 3997 * 3998 * Test whether @wq's cpu workqueue for @cpu is congested. There is 3999 * no synchronization around this function and the test result is 4000 * unreliable and only useful as advisory hints or for debugging. 4001 * 4002 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4003 * Note that both per-cpu and unbound workqueues may be associated with 4004 * multiple pool_workqueues which have separate congested states. A 4005 * workqueue being congested on one CPU doesn't mean the workqueue is also 4006 * contested on other CPUs / NUMA nodes. 4007 * 4008 * Return: 4009 * %true if congested, %false otherwise. 4010 */ 4011 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4012 { 4013 struct pool_workqueue *pwq; 4014 bool ret; 4015 4016 rcu_read_lock_sched(); 4017 4018 if (cpu == WORK_CPU_UNBOUND) 4019 cpu = smp_processor_id(); 4020 4021 if (!(wq->flags & WQ_UNBOUND)) 4022 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4023 else 4024 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4025 4026 ret = !list_empty(&pwq->delayed_works); 4027 rcu_read_unlock_sched(); 4028 4029 return ret; 4030 } 4031 EXPORT_SYMBOL_GPL(workqueue_congested); 4032 4033 /** 4034 * work_busy - test whether a work is currently pending or running 4035 * @work: the work to be tested 4036 * 4037 * Test whether @work is currently pending or running. There is no 4038 * synchronization around this function and the test result is 4039 * unreliable and only useful as advisory hints or for debugging. 4040 * 4041 * Return: 4042 * OR'd bitmask of WORK_BUSY_* bits. 4043 */ 4044 unsigned int work_busy(struct work_struct *work) 4045 { 4046 struct worker_pool *pool; 4047 unsigned long flags; 4048 unsigned int ret = 0; 4049 4050 if (work_pending(work)) 4051 ret |= WORK_BUSY_PENDING; 4052 4053 local_irq_save(flags); 4054 pool = get_work_pool(work); 4055 if (pool) { 4056 spin_lock(&pool->lock); 4057 if (find_worker_executing_work(pool, work)) 4058 ret |= WORK_BUSY_RUNNING; 4059 spin_unlock(&pool->lock); 4060 } 4061 local_irq_restore(flags); 4062 4063 return ret; 4064 } 4065 EXPORT_SYMBOL_GPL(work_busy); 4066 4067 /** 4068 * set_worker_desc - set description for the current work item 4069 * @fmt: printf-style format string 4070 * @...: arguments for the format string 4071 * 4072 * This function can be called by a running work function to describe what 4073 * the work item is about. If the worker task gets dumped, this 4074 * information will be printed out together to help debugging. The 4075 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4076 */ 4077 void set_worker_desc(const char *fmt, ...) 4078 { 4079 struct worker *worker = current_wq_worker(); 4080 va_list args; 4081 4082 if (worker) { 4083 va_start(args, fmt); 4084 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4085 va_end(args); 4086 worker->desc_valid = true; 4087 } 4088 } 4089 4090 /** 4091 * print_worker_info - print out worker information and description 4092 * @log_lvl: the log level to use when printing 4093 * @task: target task 4094 * 4095 * If @task is a worker and currently executing a work item, print out the 4096 * name of the workqueue being serviced and worker description set with 4097 * set_worker_desc() by the currently executing work item. 4098 * 4099 * This function can be safely called on any task as long as the 4100 * task_struct itself is accessible. While safe, this function isn't 4101 * synchronized and may print out mixups or garbages of limited length. 4102 */ 4103 void print_worker_info(const char *log_lvl, struct task_struct *task) 4104 { 4105 work_func_t *fn = NULL; 4106 char name[WQ_NAME_LEN] = { }; 4107 char desc[WORKER_DESC_LEN] = { }; 4108 struct pool_workqueue *pwq = NULL; 4109 struct workqueue_struct *wq = NULL; 4110 bool desc_valid = false; 4111 struct worker *worker; 4112 4113 if (!(task->flags & PF_WQ_WORKER)) 4114 return; 4115 4116 /* 4117 * This function is called without any synchronization and @task 4118 * could be in any state. Be careful with dereferences. 4119 */ 4120 worker = probe_kthread_data(task); 4121 4122 /* 4123 * Carefully copy the associated workqueue's workfn and name. Keep 4124 * the original last '\0' in case the original contains garbage. 4125 */ 4126 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4127 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4128 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4129 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4130 4131 /* copy worker description */ 4132 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4133 if (desc_valid) 4134 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4135 4136 if (fn || name[0] || desc[0]) { 4137 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4138 if (desc[0]) 4139 pr_cont(" (%s)", desc); 4140 pr_cont("\n"); 4141 } 4142 } 4143 4144 static void pr_cont_pool_info(struct worker_pool *pool) 4145 { 4146 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4147 if (pool->node != NUMA_NO_NODE) 4148 pr_cont(" node=%d", pool->node); 4149 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4150 } 4151 4152 static void pr_cont_work(bool comma, struct work_struct *work) 4153 { 4154 if (work->func == wq_barrier_func) { 4155 struct wq_barrier *barr; 4156 4157 barr = container_of(work, struct wq_barrier, work); 4158 4159 pr_cont("%s BAR(%d)", comma ? "," : "", 4160 task_pid_nr(barr->task)); 4161 } else { 4162 pr_cont("%s %pf", comma ? "," : "", work->func); 4163 } 4164 } 4165 4166 static void show_pwq(struct pool_workqueue *pwq) 4167 { 4168 struct worker_pool *pool = pwq->pool; 4169 struct work_struct *work; 4170 struct worker *worker; 4171 bool has_in_flight = false, has_pending = false; 4172 int bkt; 4173 4174 pr_info(" pwq %d:", pool->id); 4175 pr_cont_pool_info(pool); 4176 4177 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4178 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4179 4180 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4181 if (worker->current_pwq == pwq) { 4182 has_in_flight = true; 4183 break; 4184 } 4185 } 4186 if (has_in_flight) { 4187 bool comma = false; 4188 4189 pr_info(" in-flight:"); 4190 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4191 if (worker->current_pwq != pwq) 4192 continue; 4193 4194 pr_cont("%s %d%s:%pf", comma ? "," : "", 4195 task_pid_nr(worker->task), 4196 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4197 worker->current_func); 4198 list_for_each_entry(work, &worker->scheduled, entry) 4199 pr_cont_work(false, work); 4200 comma = true; 4201 } 4202 pr_cont("\n"); 4203 } 4204 4205 list_for_each_entry(work, &pool->worklist, entry) { 4206 if (get_work_pwq(work) == pwq) { 4207 has_pending = true; 4208 break; 4209 } 4210 } 4211 if (has_pending) { 4212 bool comma = false; 4213 4214 pr_info(" pending:"); 4215 list_for_each_entry(work, &pool->worklist, entry) { 4216 if (get_work_pwq(work) != pwq) 4217 continue; 4218 4219 pr_cont_work(comma, work); 4220 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4221 } 4222 pr_cont("\n"); 4223 } 4224 4225 if (!list_empty(&pwq->delayed_works)) { 4226 bool comma = false; 4227 4228 pr_info(" delayed:"); 4229 list_for_each_entry(work, &pwq->delayed_works, entry) { 4230 pr_cont_work(comma, work); 4231 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4232 } 4233 pr_cont("\n"); 4234 } 4235 } 4236 4237 /** 4238 * show_workqueue_state - dump workqueue state 4239 * 4240 * Called from a sysrq handler and prints out all busy workqueues and 4241 * pools. 4242 */ 4243 void show_workqueue_state(void) 4244 { 4245 struct workqueue_struct *wq; 4246 struct worker_pool *pool; 4247 unsigned long flags; 4248 int pi; 4249 4250 rcu_read_lock_sched(); 4251 4252 pr_info("Showing busy workqueues and worker pools:\n"); 4253 4254 list_for_each_entry_rcu(wq, &workqueues, list) { 4255 struct pool_workqueue *pwq; 4256 bool idle = true; 4257 4258 for_each_pwq(pwq, wq) { 4259 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4260 idle = false; 4261 break; 4262 } 4263 } 4264 if (idle) 4265 continue; 4266 4267 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4268 4269 for_each_pwq(pwq, wq) { 4270 spin_lock_irqsave(&pwq->pool->lock, flags); 4271 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4272 show_pwq(pwq); 4273 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4274 } 4275 } 4276 4277 for_each_pool(pool, pi) { 4278 struct worker *worker; 4279 bool first = true; 4280 4281 spin_lock_irqsave(&pool->lock, flags); 4282 if (pool->nr_workers == pool->nr_idle) 4283 goto next_pool; 4284 4285 pr_info("pool %d:", pool->id); 4286 pr_cont_pool_info(pool); 4287 pr_cont(" workers=%d", pool->nr_workers); 4288 if (pool->manager) 4289 pr_cont(" manager: %d", 4290 task_pid_nr(pool->manager->task)); 4291 list_for_each_entry(worker, &pool->idle_list, entry) { 4292 pr_cont(" %s%d", first ? "idle: " : "", 4293 task_pid_nr(worker->task)); 4294 first = false; 4295 } 4296 pr_cont("\n"); 4297 next_pool: 4298 spin_unlock_irqrestore(&pool->lock, flags); 4299 } 4300 4301 rcu_read_unlock_sched(); 4302 } 4303 4304 /* 4305 * CPU hotplug. 4306 * 4307 * There are two challenges in supporting CPU hotplug. Firstly, there 4308 * are a lot of assumptions on strong associations among work, pwq and 4309 * pool which make migrating pending and scheduled works very 4310 * difficult to implement without impacting hot paths. Secondly, 4311 * worker pools serve mix of short, long and very long running works making 4312 * blocked draining impractical. 4313 * 4314 * This is solved by allowing the pools to be disassociated from the CPU 4315 * running as an unbound one and allowing it to be reattached later if the 4316 * cpu comes back online. 4317 */ 4318 4319 static void wq_unbind_fn(struct work_struct *work) 4320 { 4321 int cpu = smp_processor_id(); 4322 struct worker_pool *pool; 4323 struct worker *worker; 4324 4325 for_each_cpu_worker_pool(pool, cpu) { 4326 mutex_lock(&pool->attach_mutex); 4327 spin_lock_irq(&pool->lock); 4328 4329 /* 4330 * We've blocked all attach/detach operations. Make all workers 4331 * unbound and set DISASSOCIATED. Before this, all workers 4332 * except for the ones which are still executing works from 4333 * before the last CPU down must be on the cpu. After 4334 * this, they may become diasporas. 4335 */ 4336 for_each_pool_worker(worker, pool) 4337 worker->flags |= WORKER_UNBOUND; 4338 4339 pool->flags |= POOL_DISASSOCIATED; 4340 4341 spin_unlock_irq(&pool->lock); 4342 mutex_unlock(&pool->attach_mutex); 4343 4344 /* 4345 * Call schedule() so that we cross rq->lock and thus can 4346 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4347 * This is necessary as scheduler callbacks may be invoked 4348 * from other cpus. 4349 */ 4350 schedule(); 4351 4352 /* 4353 * Sched callbacks are disabled now. Zap nr_running. 4354 * After this, nr_running stays zero and need_more_worker() 4355 * and keep_working() are always true as long as the 4356 * worklist is not empty. This pool now behaves as an 4357 * unbound (in terms of concurrency management) pool which 4358 * are served by workers tied to the pool. 4359 */ 4360 atomic_set(&pool->nr_running, 0); 4361 4362 /* 4363 * With concurrency management just turned off, a busy 4364 * worker blocking could lead to lengthy stalls. Kick off 4365 * unbound chain execution of currently pending work items. 4366 */ 4367 spin_lock_irq(&pool->lock); 4368 wake_up_worker(pool); 4369 spin_unlock_irq(&pool->lock); 4370 } 4371 } 4372 4373 /** 4374 * rebind_workers - rebind all workers of a pool to the associated CPU 4375 * @pool: pool of interest 4376 * 4377 * @pool->cpu is coming online. Rebind all workers to the CPU. 4378 */ 4379 static void rebind_workers(struct worker_pool *pool) 4380 { 4381 struct worker *worker; 4382 4383 lockdep_assert_held(&pool->attach_mutex); 4384 4385 /* 4386 * Restore CPU affinity of all workers. As all idle workers should 4387 * be on the run-queue of the associated CPU before any local 4388 * wake-ups for concurrency management happen, restore CPU affinty 4389 * of all workers first and then clear UNBOUND. As we're called 4390 * from CPU_ONLINE, the following shouldn't fail. 4391 */ 4392 for_each_pool_worker(worker, pool) 4393 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4394 pool->attrs->cpumask) < 0); 4395 4396 spin_lock_irq(&pool->lock); 4397 pool->flags &= ~POOL_DISASSOCIATED; 4398 4399 for_each_pool_worker(worker, pool) { 4400 unsigned int worker_flags = worker->flags; 4401 4402 /* 4403 * A bound idle worker should actually be on the runqueue 4404 * of the associated CPU for local wake-ups targeting it to 4405 * work. Kick all idle workers so that they migrate to the 4406 * associated CPU. Doing this in the same loop as 4407 * replacing UNBOUND with REBOUND is safe as no worker will 4408 * be bound before @pool->lock is released. 4409 */ 4410 if (worker_flags & WORKER_IDLE) 4411 wake_up_process(worker->task); 4412 4413 /* 4414 * We want to clear UNBOUND but can't directly call 4415 * worker_clr_flags() or adjust nr_running. Atomically 4416 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4417 * @worker will clear REBOUND using worker_clr_flags() when 4418 * it initiates the next execution cycle thus restoring 4419 * concurrency management. Note that when or whether 4420 * @worker clears REBOUND doesn't affect correctness. 4421 * 4422 * ACCESS_ONCE() is necessary because @worker->flags may be 4423 * tested without holding any lock in 4424 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4425 * fail incorrectly leading to premature concurrency 4426 * management operations. 4427 */ 4428 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4429 worker_flags |= WORKER_REBOUND; 4430 worker_flags &= ~WORKER_UNBOUND; 4431 ACCESS_ONCE(worker->flags) = worker_flags; 4432 } 4433 4434 spin_unlock_irq(&pool->lock); 4435 } 4436 4437 /** 4438 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4439 * @pool: unbound pool of interest 4440 * @cpu: the CPU which is coming up 4441 * 4442 * An unbound pool may end up with a cpumask which doesn't have any online 4443 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4444 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4445 * online CPU before, cpus_allowed of all its workers should be restored. 4446 */ 4447 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4448 { 4449 static cpumask_t cpumask; 4450 struct worker *worker; 4451 4452 lockdep_assert_held(&pool->attach_mutex); 4453 4454 /* is @cpu allowed for @pool? */ 4455 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4456 return; 4457 4458 /* is @cpu the only online CPU? */ 4459 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4460 if (cpumask_weight(&cpumask) != 1) 4461 return; 4462 4463 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4464 for_each_pool_worker(worker, pool) 4465 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4466 pool->attrs->cpumask) < 0); 4467 } 4468 4469 /* 4470 * Workqueues should be brought up before normal priority CPU notifiers. 4471 * This will be registered high priority CPU notifier. 4472 */ 4473 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4474 unsigned long action, 4475 void *hcpu) 4476 { 4477 int cpu = (unsigned long)hcpu; 4478 struct worker_pool *pool; 4479 struct workqueue_struct *wq; 4480 int pi; 4481 4482 switch (action & ~CPU_TASKS_FROZEN) { 4483 case CPU_UP_PREPARE: 4484 for_each_cpu_worker_pool(pool, cpu) { 4485 if (pool->nr_workers) 4486 continue; 4487 if (!create_worker(pool)) 4488 return NOTIFY_BAD; 4489 } 4490 break; 4491 4492 case CPU_DOWN_FAILED: 4493 case CPU_ONLINE: 4494 mutex_lock(&wq_pool_mutex); 4495 4496 for_each_pool(pool, pi) { 4497 mutex_lock(&pool->attach_mutex); 4498 4499 if (pool->cpu == cpu) 4500 rebind_workers(pool); 4501 else if (pool->cpu < 0) 4502 restore_unbound_workers_cpumask(pool, cpu); 4503 4504 mutex_unlock(&pool->attach_mutex); 4505 } 4506 4507 /* update NUMA affinity of unbound workqueues */ 4508 list_for_each_entry(wq, &workqueues, list) 4509 wq_update_unbound_numa(wq, cpu, true); 4510 4511 mutex_unlock(&wq_pool_mutex); 4512 break; 4513 } 4514 return NOTIFY_OK; 4515 } 4516 4517 /* 4518 * Workqueues should be brought down after normal priority CPU notifiers. 4519 * This will be registered as low priority CPU notifier. 4520 */ 4521 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4522 unsigned long action, 4523 void *hcpu) 4524 { 4525 int cpu = (unsigned long)hcpu; 4526 struct work_struct unbind_work; 4527 struct workqueue_struct *wq; 4528 4529 switch (action & ~CPU_TASKS_FROZEN) { 4530 case CPU_DOWN_PREPARE: 4531 /* unbinding per-cpu workers should happen on the local CPU */ 4532 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4533 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4534 4535 /* update NUMA affinity of unbound workqueues */ 4536 mutex_lock(&wq_pool_mutex); 4537 list_for_each_entry(wq, &workqueues, list) 4538 wq_update_unbound_numa(wq, cpu, false); 4539 mutex_unlock(&wq_pool_mutex); 4540 4541 /* wait for per-cpu unbinding to finish */ 4542 flush_work(&unbind_work); 4543 destroy_work_on_stack(&unbind_work); 4544 break; 4545 } 4546 return NOTIFY_OK; 4547 } 4548 4549 #ifdef CONFIG_SMP 4550 4551 struct work_for_cpu { 4552 struct work_struct work; 4553 long (*fn)(void *); 4554 void *arg; 4555 long ret; 4556 }; 4557 4558 static void work_for_cpu_fn(struct work_struct *work) 4559 { 4560 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4561 4562 wfc->ret = wfc->fn(wfc->arg); 4563 } 4564 4565 /** 4566 * work_on_cpu - run a function in user context on a particular cpu 4567 * @cpu: the cpu to run on 4568 * @fn: the function to run 4569 * @arg: the function arg 4570 * 4571 * It is up to the caller to ensure that the cpu doesn't go offline. 4572 * The caller must not hold any locks which would prevent @fn from completing. 4573 * 4574 * Return: The value @fn returns. 4575 */ 4576 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4577 { 4578 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4579 4580 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4581 schedule_work_on(cpu, &wfc.work); 4582 flush_work(&wfc.work); 4583 destroy_work_on_stack(&wfc.work); 4584 return wfc.ret; 4585 } 4586 EXPORT_SYMBOL_GPL(work_on_cpu); 4587 #endif /* CONFIG_SMP */ 4588 4589 #ifdef CONFIG_FREEZER 4590 4591 /** 4592 * freeze_workqueues_begin - begin freezing workqueues 4593 * 4594 * Start freezing workqueues. After this function returns, all freezable 4595 * workqueues will queue new works to their delayed_works list instead of 4596 * pool->worklist. 4597 * 4598 * CONTEXT: 4599 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4600 */ 4601 void freeze_workqueues_begin(void) 4602 { 4603 struct workqueue_struct *wq; 4604 struct pool_workqueue *pwq; 4605 4606 mutex_lock(&wq_pool_mutex); 4607 4608 WARN_ON_ONCE(workqueue_freezing); 4609 workqueue_freezing = true; 4610 4611 list_for_each_entry(wq, &workqueues, list) { 4612 mutex_lock(&wq->mutex); 4613 for_each_pwq(pwq, wq) 4614 pwq_adjust_max_active(pwq); 4615 mutex_unlock(&wq->mutex); 4616 } 4617 4618 mutex_unlock(&wq_pool_mutex); 4619 } 4620 4621 /** 4622 * freeze_workqueues_busy - are freezable workqueues still busy? 4623 * 4624 * Check whether freezing is complete. This function must be called 4625 * between freeze_workqueues_begin() and thaw_workqueues(). 4626 * 4627 * CONTEXT: 4628 * Grabs and releases wq_pool_mutex. 4629 * 4630 * Return: 4631 * %true if some freezable workqueues are still busy. %false if freezing 4632 * is complete. 4633 */ 4634 bool freeze_workqueues_busy(void) 4635 { 4636 bool busy = false; 4637 struct workqueue_struct *wq; 4638 struct pool_workqueue *pwq; 4639 4640 mutex_lock(&wq_pool_mutex); 4641 4642 WARN_ON_ONCE(!workqueue_freezing); 4643 4644 list_for_each_entry(wq, &workqueues, list) { 4645 if (!(wq->flags & WQ_FREEZABLE)) 4646 continue; 4647 /* 4648 * nr_active is monotonically decreasing. It's safe 4649 * to peek without lock. 4650 */ 4651 rcu_read_lock_sched(); 4652 for_each_pwq(pwq, wq) { 4653 WARN_ON_ONCE(pwq->nr_active < 0); 4654 if (pwq->nr_active) { 4655 busy = true; 4656 rcu_read_unlock_sched(); 4657 goto out_unlock; 4658 } 4659 } 4660 rcu_read_unlock_sched(); 4661 } 4662 out_unlock: 4663 mutex_unlock(&wq_pool_mutex); 4664 return busy; 4665 } 4666 4667 /** 4668 * thaw_workqueues - thaw workqueues 4669 * 4670 * Thaw workqueues. Normal queueing is restored and all collected 4671 * frozen works are transferred to their respective pool worklists. 4672 * 4673 * CONTEXT: 4674 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4675 */ 4676 void thaw_workqueues(void) 4677 { 4678 struct workqueue_struct *wq; 4679 struct pool_workqueue *pwq; 4680 4681 mutex_lock(&wq_pool_mutex); 4682 4683 if (!workqueue_freezing) 4684 goto out_unlock; 4685 4686 workqueue_freezing = false; 4687 4688 /* restore max_active and repopulate worklist */ 4689 list_for_each_entry(wq, &workqueues, list) { 4690 mutex_lock(&wq->mutex); 4691 for_each_pwq(pwq, wq) 4692 pwq_adjust_max_active(pwq); 4693 mutex_unlock(&wq->mutex); 4694 } 4695 4696 out_unlock: 4697 mutex_unlock(&wq_pool_mutex); 4698 } 4699 #endif /* CONFIG_FREEZER */ 4700 4701 #ifdef CONFIG_SYSFS 4702 /* 4703 * Workqueues with WQ_SYSFS flag set is visible to userland via 4704 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 4705 * following attributes. 4706 * 4707 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 4708 * max_active RW int : maximum number of in-flight work items 4709 * 4710 * Unbound workqueues have the following extra attributes. 4711 * 4712 * id RO int : the associated pool ID 4713 * nice RW int : nice value of the workers 4714 * cpumask RW mask : bitmask of allowed CPUs for the workers 4715 */ 4716 struct wq_device { 4717 struct workqueue_struct *wq; 4718 struct device dev; 4719 }; 4720 4721 static struct workqueue_struct *dev_to_wq(struct device *dev) 4722 { 4723 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 4724 4725 return wq_dev->wq; 4726 } 4727 4728 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 4729 char *buf) 4730 { 4731 struct workqueue_struct *wq = dev_to_wq(dev); 4732 4733 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 4734 } 4735 static DEVICE_ATTR_RO(per_cpu); 4736 4737 static ssize_t max_active_show(struct device *dev, 4738 struct device_attribute *attr, char *buf) 4739 { 4740 struct workqueue_struct *wq = dev_to_wq(dev); 4741 4742 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 4743 } 4744 4745 static ssize_t max_active_store(struct device *dev, 4746 struct device_attribute *attr, const char *buf, 4747 size_t count) 4748 { 4749 struct workqueue_struct *wq = dev_to_wq(dev); 4750 int val; 4751 4752 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 4753 return -EINVAL; 4754 4755 workqueue_set_max_active(wq, val); 4756 return count; 4757 } 4758 static DEVICE_ATTR_RW(max_active); 4759 4760 static struct attribute *wq_sysfs_attrs[] = { 4761 &dev_attr_per_cpu.attr, 4762 &dev_attr_max_active.attr, 4763 NULL, 4764 }; 4765 ATTRIBUTE_GROUPS(wq_sysfs); 4766 4767 static ssize_t wq_pool_ids_show(struct device *dev, 4768 struct device_attribute *attr, char *buf) 4769 { 4770 struct workqueue_struct *wq = dev_to_wq(dev); 4771 const char *delim = ""; 4772 int node, written = 0; 4773 4774 rcu_read_lock_sched(); 4775 for_each_node(node) { 4776 written += scnprintf(buf + written, PAGE_SIZE - written, 4777 "%s%d:%d", delim, node, 4778 unbound_pwq_by_node(wq, node)->pool->id); 4779 delim = " "; 4780 } 4781 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 4782 rcu_read_unlock_sched(); 4783 4784 return written; 4785 } 4786 4787 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 4788 char *buf) 4789 { 4790 struct workqueue_struct *wq = dev_to_wq(dev); 4791 int written; 4792 4793 mutex_lock(&wq->mutex); 4794 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 4795 mutex_unlock(&wq->mutex); 4796 4797 return written; 4798 } 4799 4800 /* prepare workqueue_attrs for sysfs store operations */ 4801 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 4802 { 4803 struct workqueue_attrs *attrs; 4804 4805 attrs = alloc_workqueue_attrs(GFP_KERNEL); 4806 if (!attrs) 4807 return NULL; 4808 4809 mutex_lock(&wq->mutex); 4810 copy_workqueue_attrs(attrs, wq->unbound_attrs); 4811 mutex_unlock(&wq->mutex); 4812 return attrs; 4813 } 4814 4815 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 4816 const char *buf, size_t count) 4817 { 4818 struct workqueue_struct *wq = dev_to_wq(dev); 4819 struct workqueue_attrs *attrs; 4820 int ret; 4821 4822 attrs = wq_sysfs_prep_attrs(wq); 4823 if (!attrs) 4824 return -ENOMEM; 4825 4826 if (sscanf(buf, "%d", &attrs->nice) == 1 && 4827 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 4828 ret = apply_workqueue_attrs(wq, attrs); 4829 else 4830 ret = -EINVAL; 4831 4832 free_workqueue_attrs(attrs); 4833 return ret ?: count; 4834 } 4835 4836 static ssize_t wq_cpumask_show(struct device *dev, 4837 struct device_attribute *attr, char *buf) 4838 { 4839 struct workqueue_struct *wq = dev_to_wq(dev); 4840 int written; 4841 4842 mutex_lock(&wq->mutex); 4843 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 4844 cpumask_pr_args(wq->unbound_attrs->cpumask)); 4845 mutex_unlock(&wq->mutex); 4846 return written; 4847 } 4848 4849 static ssize_t wq_cpumask_store(struct device *dev, 4850 struct device_attribute *attr, 4851 const char *buf, size_t count) 4852 { 4853 struct workqueue_struct *wq = dev_to_wq(dev); 4854 struct workqueue_attrs *attrs; 4855 int ret; 4856 4857 attrs = wq_sysfs_prep_attrs(wq); 4858 if (!attrs) 4859 return -ENOMEM; 4860 4861 ret = cpumask_parse(buf, attrs->cpumask); 4862 if (!ret) 4863 ret = apply_workqueue_attrs(wq, attrs); 4864 4865 free_workqueue_attrs(attrs); 4866 return ret ?: count; 4867 } 4868 4869 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 4870 char *buf) 4871 { 4872 struct workqueue_struct *wq = dev_to_wq(dev); 4873 int written; 4874 4875 mutex_lock(&wq->mutex); 4876 written = scnprintf(buf, PAGE_SIZE, "%d\n", 4877 !wq->unbound_attrs->no_numa); 4878 mutex_unlock(&wq->mutex); 4879 4880 return written; 4881 } 4882 4883 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 4884 const char *buf, size_t count) 4885 { 4886 struct workqueue_struct *wq = dev_to_wq(dev); 4887 struct workqueue_attrs *attrs; 4888 int v, ret; 4889 4890 attrs = wq_sysfs_prep_attrs(wq); 4891 if (!attrs) 4892 return -ENOMEM; 4893 4894 ret = -EINVAL; 4895 if (sscanf(buf, "%d", &v) == 1) { 4896 attrs->no_numa = !v; 4897 ret = apply_workqueue_attrs(wq, attrs); 4898 } 4899 4900 free_workqueue_attrs(attrs); 4901 return ret ?: count; 4902 } 4903 4904 static struct device_attribute wq_sysfs_unbound_attrs[] = { 4905 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 4906 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 4907 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 4908 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 4909 __ATTR_NULL, 4910 }; 4911 4912 static struct bus_type wq_subsys = { 4913 .name = "workqueue", 4914 .dev_groups = wq_sysfs_groups, 4915 }; 4916 4917 static int __init wq_sysfs_init(void) 4918 { 4919 return subsys_virtual_register(&wq_subsys, NULL); 4920 } 4921 core_initcall(wq_sysfs_init); 4922 4923 static void wq_device_release(struct device *dev) 4924 { 4925 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 4926 4927 kfree(wq_dev); 4928 } 4929 4930 /** 4931 * workqueue_sysfs_register - make a workqueue visible in sysfs 4932 * @wq: the workqueue to register 4933 * 4934 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 4935 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 4936 * which is the preferred method. 4937 * 4938 * Workqueue user should use this function directly iff it wants to apply 4939 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 4940 * apply_workqueue_attrs() may race against userland updating the 4941 * attributes. 4942 * 4943 * Return: 0 on success, -errno on failure. 4944 */ 4945 int workqueue_sysfs_register(struct workqueue_struct *wq) 4946 { 4947 struct wq_device *wq_dev; 4948 int ret; 4949 4950 /* 4951 * Adjusting max_active or creating new pwqs by applyting 4952 * attributes breaks ordering guarantee. Disallow exposing ordered 4953 * workqueues. 4954 */ 4955 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4956 return -EINVAL; 4957 4958 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 4959 if (!wq_dev) 4960 return -ENOMEM; 4961 4962 wq_dev->wq = wq; 4963 wq_dev->dev.bus = &wq_subsys; 4964 wq_dev->dev.init_name = wq->name; 4965 wq_dev->dev.release = wq_device_release; 4966 4967 /* 4968 * unbound_attrs are created separately. Suppress uevent until 4969 * everything is ready. 4970 */ 4971 dev_set_uevent_suppress(&wq_dev->dev, true); 4972 4973 ret = device_register(&wq_dev->dev); 4974 if (ret) { 4975 kfree(wq_dev); 4976 wq->wq_dev = NULL; 4977 return ret; 4978 } 4979 4980 if (wq->flags & WQ_UNBOUND) { 4981 struct device_attribute *attr; 4982 4983 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 4984 ret = device_create_file(&wq_dev->dev, attr); 4985 if (ret) { 4986 device_unregister(&wq_dev->dev); 4987 wq->wq_dev = NULL; 4988 return ret; 4989 } 4990 } 4991 } 4992 4993 dev_set_uevent_suppress(&wq_dev->dev, false); 4994 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 4995 return 0; 4996 } 4997 4998 /** 4999 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5000 * @wq: the workqueue to unregister 5001 * 5002 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5003 */ 5004 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5005 { 5006 struct wq_device *wq_dev = wq->wq_dev; 5007 5008 if (!wq->wq_dev) 5009 return; 5010 5011 wq->wq_dev = NULL; 5012 device_unregister(&wq_dev->dev); 5013 } 5014 #else /* CONFIG_SYSFS */ 5015 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5016 #endif /* CONFIG_SYSFS */ 5017 5018 static void __init wq_numa_init(void) 5019 { 5020 cpumask_var_t *tbl; 5021 int node, cpu; 5022 5023 if (num_possible_nodes() <= 1) 5024 return; 5025 5026 if (wq_disable_numa) { 5027 pr_info("workqueue: NUMA affinity support disabled\n"); 5028 return; 5029 } 5030 5031 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5032 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5033 5034 /* 5035 * We want masks of possible CPUs of each node which isn't readily 5036 * available. Build one from cpu_to_node() which should have been 5037 * fully initialized by now. 5038 */ 5039 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 5040 BUG_ON(!tbl); 5041 5042 for_each_node(node) 5043 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5044 node_online(node) ? node : NUMA_NO_NODE)); 5045 5046 for_each_possible_cpu(cpu) { 5047 node = cpu_to_node(cpu); 5048 if (WARN_ON(node == NUMA_NO_NODE)) { 5049 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5050 /* happens iff arch is bonkers, let's just proceed */ 5051 return; 5052 } 5053 cpumask_set_cpu(cpu, tbl[node]); 5054 } 5055 5056 wq_numa_possible_cpumask = tbl; 5057 wq_numa_enabled = true; 5058 } 5059 5060 static int __init init_workqueues(void) 5061 { 5062 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5063 int i, cpu; 5064 5065 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5066 5067 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5068 5069 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 5070 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 5071 5072 wq_numa_init(); 5073 5074 /* initialize CPU pools */ 5075 for_each_possible_cpu(cpu) { 5076 struct worker_pool *pool; 5077 5078 i = 0; 5079 for_each_cpu_worker_pool(pool, cpu) { 5080 BUG_ON(init_worker_pool(pool)); 5081 pool->cpu = cpu; 5082 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5083 pool->attrs->nice = std_nice[i++]; 5084 pool->node = cpu_to_node(cpu); 5085 5086 /* alloc pool ID */ 5087 mutex_lock(&wq_pool_mutex); 5088 BUG_ON(worker_pool_assign_id(pool)); 5089 mutex_unlock(&wq_pool_mutex); 5090 } 5091 } 5092 5093 /* create the initial worker */ 5094 for_each_online_cpu(cpu) { 5095 struct worker_pool *pool; 5096 5097 for_each_cpu_worker_pool(pool, cpu) { 5098 pool->flags &= ~POOL_DISASSOCIATED; 5099 BUG_ON(!create_worker(pool)); 5100 } 5101 } 5102 5103 /* create default unbound and ordered wq attrs */ 5104 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5105 struct workqueue_attrs *attrs; 5106 5107 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5108 attrs->nice = std_nice[i]; 5109 unbound_std_wq_attrs[i] = attrs; 5110 5111 /* 5112 * An ordered wq should have only one pwq as ordering is 5113 * guaranteed by max_active which is enforced by pwqs. 5114 * Turn off NUMA so that dfl_pwq is used for all nodes. 5115 */ 5116 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5117 attrs->nice = std_nice[i]; 5118 attrs->no_numa = true; 5119 ordered_wq_attrs[i] = attrs; 5120 } 5121 5122 system_wq = alloc_workqueue("events", 0, 0); 5123 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5124 system_long_wq = alloc_workqueue("events_long", 0, 0); 5125 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5126 WQ_UNBOUND_MAX_ACTIVE); 5127 system_freezable_wq = alloc_workqueue("events_freezable", 5128 WQ_FREEZABLE, 0); 5129 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5130 WQ_POWER_EFFICIENT, 0); 5131 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5132 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5133 0); 5134 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5135 !system_unbound_wq || !system_freezable_wq || 5136 !system_power_efficient_wq || 5137 !system_freezable_power_efficient_wq); 5138 return 0; 5139 } 5140 early_initcall(init_workqueues); 5141