xref: /openbmc/linux/kernel/workqueue.c (revision 0d456bad)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 
45 #include "workqueue_sched.h"
46 
47 enum {
48 	/*
49 	 * global_cwq flags
50 	 *
51 	 * A bound gcwq is either associated or disassociated with its CPU.
52 	 * While associated (!DISASSOCIATED), all workers are bound to the
53 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 	 * is in effect.
55 	 *
56 	 * While DISASSOCIATED, the cpu may be offline and all workers have
57 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 	 * be executing on any CPU.  The gcwq behaves as an unbound one.
59 	 *
60 	 * Note that DISASSOCIATED can be flipped only while holding
61 	 * assoc_mutex of all pools on the gcwq to avoid changing binding
62 	 * state while create_worker() is in progress.
63 	 */
64 	GCWQ_DISASSOCIATED	= 1 << 0,	/* cpu can't serve workers */
65 	GCWQ_FREEZING		= 1 << 1,	/* freeze in progress */
66 
67 	/* pool flags */
68 	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
69 	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
70 
71 	/* worker flags */
72 	WORKER_STARTED		= 1 << 0,	/* started */
73 	WORKER_DIE		= 1 << 1,	/* die die die */
74 	WORKER_IDLE		= 1 << 2,	/* is idle */
75 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78 
79 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
80 				  WORKER_CPU_INTENSIVE,
81 
82 	NR_WORKER_POOLS		= 2,		/* # worker pools per gcwq */
83 
84 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
85 	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
86 	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
87 
88 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
89 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
90 
91 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
92 						/* call for help after 10ms
93 						   (min two ticks) */
94 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
95 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
96 
97 	/*
98 	 * Rescue workers are used only on emergencies and shared by
99 	 * all cpus.  Give -20.
100 	 */
101 	RESCUER_NICE_LEVEL	= -20,
102 	HIGHPRI_NICE_LEVEL	= -20,
103 };
104 
105 /*
106  * Structure fields follow one of the following exclusion rules.
107  *
108  * I: Modifiable by initialization/destruction paths and read-only for
109  *    everyone else.
110  *
111  * P: Preemption protected.  Disabling preemption is enough and should
112  *    only be modified and accessed from the local cpu.
113  *
114  * L: gcwq->lock protected.  Access with gcwq->lock held.
115  *
116  * X: During normal operation, modification requires gcwq->lock and
117  *    should be done only from local cpu.  Either disabling preemption
118  *    on local cpu or grabbing gcwq->lock is enough for read access.
119  *    If GCWQ_DISASSOCIATED is set, it's identical to L.
120  *
121  * F: wq->flush_mutex protected.
122  *
123  * W: workqueue_lock protected.
124  */
125 
126 struct global_cwq;
127 struct worker_pool;
128 
129 /*
130  * The poor guys doing the actual heavy lifting.  All on-duty workers
131  * are either serving the manager role, on idle list or on busy hash.
132  */
133 struct worker {
134 	/* on idle list while idle, on busy hash table while busy */
135 	union {
136 		struct list_head	entry;	/* L: while idle */
137 		struct hlist_node	hentry;	/* L: while busy */
138 	};
139 
140 	struct work_struct	*current_work;	/* L: work being processed */
141 	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
142 	struct list_head	scheduled;	/* L: scheduled works */
143 	struct task_struct	*task;		/* I: worker task */
144 	struct worker_pool	*pool;		/* I: the associated pool */
145 	/* 64 bytes boundary on 64bit, 32 on 32bit */
146 	unsigned long		last_active;	/* L: last active timestamp */
147 	unsigned int		flags;		/* X: flags */
148 	int			id;		/* I: worker id */
149 
150 	/* for rebinding worker to CPU */
151 	struct work_struct	rebind_work;	/* L: for busy worker */
152 };
153 
154 struct worker_pool {
155 	struct global_cwq	*gcwq;		/* I: the owning gcwq */
156 	unsigned int		flags;		/* X: flags */
157 
158 	struct list_head	worklist;	/* L: list of pending works */
159 	int			nr_workers;	/* L: total number of workers */
160 
161 	/* nr_idle includes the ones off idle_list for rebinding */
162 	int			nr_idle;	/* L: currently idle ones */
163 
164 	struct list_head	idle_list;	/* X: list of idle workers */
165 	struct timer_list	idle_timer;	/* L: worker idle timeout */
166 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
167 
168 	struct mutex		assoc_mutex;	/* protect GCWQ_DISASSOCIATED */
169 	struct ida		worker_ida;	/* L: for worker IDs */
170 };
171 
172 /*
173  * Global per-cpu workqueue.  There's one and only one for each cpu
174  * and all works are queued and processed here regardless of their
175  * target workqueues.
176  */
177 struct global_cwq {
178 	spinlock_t		lock;		/* the gcwq lock */
179 	unsigned int		cpu;		/* I: the associated cpu */
180 	unsigned int		flags;		/* L: GCWQ_* flags */
181 
182 	/* workers are chained either in busy_hash or pool idle_list */
183 	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
184 						/* L: hash of busy workers */
185 
186 	struct worker_pool	pools[NR_WORKER_POOLS];
187 						/* normal and highpri pools */
188 } ____cacheline_aligned_in_smp;
189 
190 /*
191  * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
192  * work_struct->data are used for flags and thus cwqs need to be
193  * aligned at two's power of the number of flag bits.
194  */
195 struct cpu_workqueue_struct {
196 	struct worker_pool	*pool;		/* I: the associated pool */
197 	struct workqueue_struct *wq;		/* I: the owning workqueue */
198 	int			work_color;	/* L: current color */
199 	int			flush_color;	/* L: flushing color */
200 	int			nr_in_flight[WORK_NR_COLORS];
201 						/* L: nr of in_flight works */
202 	int			nr_active;	/* L: nr of active works */
203 	int			max_active;	/* L: max active works */
204 	struct list_head	delayed_works;	/* L: delayed works */
205 };
206 
207 /*
208  * Structure used to wait for workqueue flush.
209  */
210 struct wq_flusher {
211 	struct list_head	list;		/* F: list of flushers */
212 	int			flush_color;	/* F: flush color waiting for */
213 	struct completion	done;		/* flush completion */
214 };
215 
216 /*
217  * All cpumasks are assumed to be always set on UP and thus can't be
218  * used to determine whether there's something to be done.
219  */
220 #ifdef CONFIG_SMP
221 typedef cpumask_var_t mayday_mask_t;
222 #define mayday_test_and_set_cpu(cpu, mask)	\
223 	cpumask_test_and_set_cpu((cpu), (mask))
224 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
225 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
226 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
227 #define free_mayday_mask(mask)			free_cpumask_var((mask))
228 #else
229 typedef unsigned long mayday_mask_t;
230 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
231 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
232 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
233 #define alloc_mayday_mask(maskp, gfp)		true
234 #define free_mayday_mask(mask)			do { } while (0)
235 #endif
236 
237 /*
238  * The externally visible workqueue abstraction is an array of
239  * per-CPU workqueues:
240  */
241 struct workqueue_struct {
242 	unsigned int		flags;		/* W: WQ_* flags */
243 	union {
244 		struct cpu_workqueue_struct __percpu	*pcpu;
245 		struct cpu_workqueue_struct		*single;
246 		unsigned long				v;
247 	} cpu_wq;				/* I: cwq's */
248 	struct list_head	list;		/* W: list of all workqueues */
249 
250 	struct mutex		flush_mutex;	/* protects wq flushing */
251 	int			work_color;	/* F: current work color */
252 	int			flush_color;	/* F: current flush color */
253 	atomic_t		nr_cwqs_to_flush; /* flush in progress */
254 	struct wq_flusher	*first_flusher;	/* F: first flusher */
255 	struct list_head	flusher_queue;	/* F: flush waiters */
256 	struct list_head	flusher_overflow; /* F: flush overflow list */
257 
258 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
259 	struct worker		*rescuer;	/* I: rescue worker */
260 
261 	int			nr_drainers;	/* W: drain in progress */
262 	int			saved_max_active; /* W: saved cwq max_active */
263 #ifdef CONFIG_LOCKDEP
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[];		/* I: workqueue name */
267 };
268 
269 struct workqueue_struct *system_wq __read_mostly;
270 EXPORT_SYMBOL_GPL(system_wq);
271 struct workqueue_struct *system_highpri_wq __read_mostly;
272 EXPORT_SYMBOL_GPL(system_highpri_wq);
273 struct workqueue_struct *system_long_wq __read_mostly;
274 EXPORT_SYMBOL_GPL(system_long_wq);
275 struct workqueue_struct *system_unbound_wq __read_mostly;
276 EXPORT_SYMBOL_GPL(system_unbound_wq);
277 struct workqueue_struct *system_freezable_wq __read_mostly;
278 EXPORT_SYMBOL_GPL(system_freezable_wq);
279 
280 #define CREATE_TRACE_POINTS
281 #include <trace/events/workqueue.h>
282 
283 #define for_each_worker_pool(pool, gcwq)				\
284 	for ((pool) = &(gcwq)->pools[0];				\
285 	     (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
286 
287 #define for_each_busy_worker(worker, i, pos, gcwq)			\
288 	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
289 		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
290 
291 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
292 				  unsigned int sw)
293 {
294 	if (cpu < nr_cpu_ids) {
295 		if (sw & 1) {
296 			cpu = cpumask_next(cpu, mask);
297 			if (cpu < nr_cpu_ids)
298 				return cpu;
299 		}
300 		if (sw & 2)
301 			return WORK_CPU_UNBOUND;
302 	}
303 	return WORK_CPU_NONE;
304 }
305 
306 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
307 				struct workqueue_struct *wq)
308 {
309 	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
310 }
311 
312 /*
313  * CPU iterators
314  *
315  * An extra gcwq is defined for an invalid cpu number
316  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
317  * specific CPU.  The following iterators are similar to
318  * for_each_*_cpu() iterators but also considers the unbound gcwq.
319  *
320  * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
321  * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
322  * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
323  *				  WORK_CPU_UNBOUND for unbound workqueues
324  */
325 #define for_each_gcwq_cpu(cpu)						\
326 	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
327 	     (cpu) < WORK_CPU_NONE;					\
328 	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
329 
330 #define for_each_online_gcwq_cpu(cpu)					\
331 	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
332 	     (cpu) < WORK_CPU_NONE;					\
333 	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
334 
335 #define for_each_cwq_cpu(cpu, wq)					\
336 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
337 	     (cpu) < WORK_CPU_NONE;					\
338 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
339 
340 #ifdef CONFIG_DEBUG_OBJECTS_WORK
341 
342 static struct debug_obj_descr work_debug_descr;
343 
344 static void *work_debug_hint(void *addr)
345 {
346 	return ((struct work_struct *) addr)->func;
347 }
348 
349 /*
350  * fixup_init is called when:
351  * - an active object is initialized
352  */
353 static int work_fixup_init(void *addr, enum debug_obj_state state)
354 {
355 	struct work_struct *work = addr;
356 
357 	switch (state) {
358 	case ODEBUG_STATE_ACTIVE:
359 		cancel_work_sync(work);
360 		debug_object_init(work, &work_debug_descr);
361 		return 1;
362 	default:
363 		return 0;
364 	}
365 }
366 
367 /*
368  * fixup_activate is called when:
369  * - an active object is activated
370  * - an unknown object is activated (might be a statically initialized object)
371  */
372 static int work_fixup_activate(void *addr, enum debug_obj_state state)
373 {
374 	struct work_struct *work = addr;
375 
376 	switch (state) {
377 
378 	case ODEBUG_STATE_NOTAVAILABLE:
379 		/*
380 		 * This is not really a fixup. The work struct was
381 		 * statically initialized. We just make sure that it
382 		 * is tracked in the object tracker.
383 		 */
384 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
385 			debug_object_init(work, &work_debug_descr);
386 			debug_object_activate(work, &work_debug_descr);
387 			return 0;
388 		}
389 		WARN_ON_ONCE(1);
390 		return 0;
391 
392 	case ODEBUG_STATE_ACTIVE:
393 		WARN_ON(1);
394 
395 	default:
396 		return 0;
397 	}
398 }
399 
400 /*
401  * fixup_free is called when:
402  * - an active object is freed
403  */
404 static int work_fixup_free(void *addr, enum debug_obj_state state)
405 {
406 	struct work_struct *work = addr;
407 
408 	switch (state) {
409 	case ODEBUG_STATE_ACTIVE:
410 		cancel_work_sync(work);
411 		debug_object_free(work, &work_debug_descr);
412 		return 1;
413 	default:
414 		return 0;
415 	}
416 }
417 
418 static struct debug_obj_descr work_debug_descr = {
419 	.name		= "work_struct",
420 	.debug_hint	= work_debug_hint,
421 	.fixup_init	= work_fixup_init,
422 	.fixup_activate	= work_fixup_activate,
423 	.fixup_free	= work_fixup_free,
424 };
425 
426 static inline void debug_work_activate(struct work_struct *work)
427 {
428 	debug_object_activate(work, &work_debug_descr);
429 }
430 
431 static inline void debug_work_deactivate(struct work_struct *work)
432 {
433 	debug_object_deactivate(work, &work_debug_descr);
434 }
435 
436 void __init_work(struct work_struct *work, int onstack)
437 {
438 	if (onstack)
439 		debug_object_init_on_stack(work, &work_debug_descr);
440 	else
441 		debug_object_init(work, &work_debug_descr);
442 }
443 EXPORT_SYMBOL_GPL(__init_work);
444 
445 void destroy_work_on_stack(struct work_struct *work)
446 {
447 	debug_object_free(work, &work_debug_descr);
448 }
449 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
450 
451 #else
452 static inline void debug_work_activate(struct work_struct *work) { }
453 static inline void debug_work_deactivate(struct work_struct *work) { }
454 #endif
455 
456 /* Serializes the accesses to the list of workqueues. */
457 static DEFINE_SPINLOCK(workqueue_lock);
458 static LIST_HEAD(workqueues);
459 static bool workqueue_freezing;		/* W: have wqs started freezing? */
460 
461 /*
462  * The almighty global cpu workqueues.  nr_running is the only field
463  * which is expected to be used frequently by other cpus via
464  * try_to_wake_up().  Put it in a separate cacheline.
465  */
466 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
467 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
468 
469 /*
470  * Global cpu workqueue and nr_running counter for unbound gcwq.  The
471  * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
472  * workers have WORKER_UNBOUND set.
473  */
474 static struct global_cwq unbound_global_cwq;
475 static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
476 	[0 ... NR_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
477 };
478 
479 static int worker_thread(void *__worker);
480 
481 static int worker_pool_pri(struct worker_pool *pool)
482 {
483 	return pool - pool->gcwq->pools;
484 }
485 
486 static struct global_cwq *get_gcwq(unsigned int cpu)
487 {
488 	if (cpu != WORK_CPU_UNBOUND)
489 		return &per_cpu(global_cwq, cpu);
490 	else
491 		return &unbound_global_cwq;
492 }
493 
494 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
495 {
496 	int cpu = pool->gcwq->cpu;
497 	int idx = worker_pool_pri(pool);
498 
499 	if (cpu != WORK_CPU_UNBOUND)
500 		return &per_cpu(pool_nr_running, cpu)[idx];
501 	else
502 		return &unbound_pool_nr_running[idx];
503 }
504 
505 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
506 					    struct workqueue_struct *wq)
507 {
508 	if (!(wq->flags & WQ_UNBOUND)) {
509 		if (likely(cpu < nr_cpu_ids))
510 			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
511 	} else if (likely(cpu == WORK_CPU_UNBOUND))
512 		return wq->cpu_wq.single;
513 	return NULL;
514 }
515 
516 static unsigned int work_color_to_flags(int color)
517 {
518 	return color << WORK_STRUCT_COLOR_SHIFT;
519 }
520 
521 static int get_work_color(struct work_struct *work)
522 {
523 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
524 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
525 }
526 
527 static int work_next_color(int color)
528 {
529 	return (color + 1) % WORK_NR_COLORS;
530 }
531 
532 /*
533  * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
534  * contain the pointer to the queued cwq.  Once execution starts, the flag
535  * is cleared and the high bits contain OFFQ flags and CPU number.
536  *
537  * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
538  * and clear_work_data() can be used to set the cwq, cpu or clear
539  * work->data.  These functions should only be called while the work is
540  * owned - ie. while the PENDING bit is set.
541  *
542  * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
543  * a work.  gcwq is available once the work has been queued anywhere after
544  * initialization until it is sync canceled.  cwq is available only while
545  * the work item is queued.
546  *
547  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
548  * canceled.  While being canceled, a work item may have its PENDING set
549  * but stay off timer and worklist for arbitrarily long and nobody should
550  * try to steal the PENDING bit.
551  */
552 static inline void set_work_data(struct work_struct *work, unsigned long data,
553 				 unsigned long flags)
554 {
555 	BUG_ON(!work_pending(work));
556 	atomic_long_set(&work->data, data | flags | work_static(work));
557 }
558 
559 static void set_work_cwq(struct work_struct *work,
560 			 struct cpu_workqueue_struct *cwq,
561 			 unsigned long extra_flags)
562 {
563 	set_work_data(work, (unsigned long)cwq,
564 		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
565 }
566 
567 static void set_work_cpu_and_clear_pending(struct work_struct *work,
568 					   unsigned int cpu)
569 {
570 	/*
571 	 * The following wmb is paired with the implied mb in
572 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
573 	 * here are visible to and precede any updates by the next PENDING
574 	 * owner.
575 	 */
576 	smp_wmb();
577 	set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
578 }
579 
580 static void clear_work_data(struct work_struct *work)
581 {
582 	smp_wmb();	/* see set_work_cpu_and_clear_pending() */
583 	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
584 }
585 
586 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
587 {
588 	unsigned long data = atomic_long_read(&work->data);
589 
590 	if (data & WORK_STRUCT_CWQ)
591 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
592 	else
593 		return NULL;
594 }
595 
596 static struct global_cwq *get_work_gcwq(struct work_struct *work)
597 {
598 	unsigned long data = atomic_long_read(&work->data);
599 	unsigned int cpu;
600 
601 	if (data & WORK_STRUCT_CWQ)
602 		return ((struct cpu_workqueue_struct *)
603 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
604 
605 	cpu = data >> WORK_OFFQ_CPU_SHIFT;
606 	if (cpu == WORK_CPU_NONE)
607 		return NULL;
608 
609 	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
610 	return get_gcwq(cpu);
611 }
612 
613 static void mark_work_canceling(struct work_struct *work)
614 {
615 	struct global_cwq *gcwq = get_work_gcwq(work);
616 	unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
617 
618 	set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
619 		      WORK_STRUCT_PENDING);
620 }
621 
622 static bool work_is_canceling(struct work_struct *work)
623 {
624 	unsigned long data = atomic_long_read(&work->data);
625 
626 	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
627 }
628 
629 /*
630  * Policy functions.  These define the policies on how the global worker
631  * pools are managed.  Unless noted otherwise, these functions assume that
632  * they're being called with gcwq->lock held.
633  */
634 
635 static bool __need_more_worker(struct worker_pool *pool)
636 {
637 	return !atomic_read(get_pool_nr_running(pool));
638 }
639 
640 /*
641  * Need to wake up a worker?  Called from anything but currently
642  * running workers.
643  *
644  * Note that, because unbound workers never contribute to nr_running, this
645  * function will always return %true for unbound gcwq as long as the
646  * worklist isn't empty.
647  */
648 static bool need_more_worker(struct worker_pool *pool)
649 {
650 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
651 }
652 
653 /* Can I start working?  Called from busy but !running workers. */
654 static bool may_start_working(struct worker_pool *pool)
655 {
656 	return pool->nr_idle;
657 }
658 
659 /* Do I need to keep working?  Called from currently running workers. */
660 static bool keep_working(struct worker_pool *pool)
661 {
662 	atomic_t *nr_running = get_pool_nr_running(pool);
663 
664 	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
665 }
666 
667 /* Do we need a new worker?  Called from manager. */
668 static bool need_to_create_worker(struct worker_pool *pool)
669 {
670 	return need_more_worker(pool) && !may_start_working(pool);
671 }
672 
673 /* Do I need to be the manager? */
674 static bool need_to_manage_workers(struct worker_pool *pool)
675 {
676 	return need_to_create_worker(pool) ||
677 		(pool->flags & POOL_MANAGE_WORKERS);
678 }
679 
680 /* Do we have too many workers and should some go away? */
681 static bool too_many_workers(struct worker_pool *pool)
682 {
683 	bool managing = pool->flags & POOL_MANAGING_WORKERS;
684 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
685 	int nr_busy = pool->nr_workers - nr_idle;
686 
687 	/*
688 	 * nr_idle and idle_list may disagree if idle rebinding is in
689 	 * progress.  Never return %true if idle_list is empty.
690 	 */
691 	if (list_empty(&pool->idle_list))
692 		return false;
693 
694 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
695 }
696 
697 /*
698  * Wake up functions.
699  */
700 
701 /* Return the first worker.  Safe with preemption disabled */
702 static struct worker *first_worker(struct worker_pool *pool)
703 {
704 	if (unlikely(list_empty(&pool->idle_list)))
705 		return NULL;
706 
707 	return list_first_entry(&pool->idle_list, struct worker, entry);
708 }
709 
710 /**
711  * wake_up_worker - wake up an idle worker
712  * @pool: worker pool to wake worker from
713  *
714  * Wake up the first idle worker of @pool.
715  *
716  * CONTEXT:
717  * spin_lock_irq(gcwq->lock).
718  */
719 static void wake_up_worker(struct worker_pool *pool)
720 {
721 	struct worker *worker = first_worker(pool);
722 
723 	if (likely(worker))
724 		wake_up_process(worker->task);
725 }
726 
727 /**
728  * wq_worker_waking_up - a worker is waking up
729  * @task: task waking up
730  * @cpu: CPU @task is waking up to
731  *
732  * This function is called during try_to_wake_up() when a worker is
733  * being awoken.
734  *
735  * CONTEXT:
736  * spin_lock_irq(rq->lock)
737  */
738 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
739 {
740 	struct worker *worker = kthread_data(task);
741 
742 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
743 		WARN_ON_ONCE(worker->pool->gcwq->cpu != cpu);
744 		atomic_inc(get_pool_nr_running(worker->pool));
745 	}
746 }
747 
748 /**
749  * wq_worker_sleeping - a worker is going to sleep
750  * @task: task going to sleep
751  * @cpu: CPU in question, must be the current CPU number
752  *
753  * This function is called during schedule() when a busy worker is
754  * going to sleep.  Worker on the same cpu can be woken up by
755  * returning pointer to its task.
756  *
757  * CONTEXT:
758  * spin_lock_irq(rq->lock)
759  *
760  * RETURNS:
761  * Worker task on @cpu to wake up, %NULL if none.
762  */
763 struct task_struct *wq_worker_sleeping(struct task_struct *task,
764 				       unsigned int cpu)
765 {
766 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
767 	struct worker_pool *pool = worker->pool;
768 	atomic_t *nr_running = get_pool_nr_running(pool);
769 
770 	if (worker->flags & WORKER_NOT_RUNNING)
771 		return NULL;
772 
773 	/* this can only happen on the local cpu */
774 	BUG_ON(cpu != raw_smp_processor_id());
775 
776 	/*
777 	 * The counterpart of the following dec_and_test, implied mb,
778 	 * worklist not empty test sequence is in insert_work().
779 	 * Please read comment there.
780 	 *
781 	 * NOT_RUNNING is clear.  This means that we're bound to and
782 	 * running on the local cpu w/ rq lock held and preemption
783 	 * disabled, which in turn means that none else could be
784 	 * manipulating idle_list, so dereferencing idle_list without gcwq
785 	 * lock is safe.
786 	 */
787 	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
788 		to_wakeup = first_worker(pool);
789 	return to_wakeup ? to_wakeup->task : NULL;
790 }
791 
792 /**
793  * worker_set_flags - set worker flags and adjust nr_running accordingly
794  * @worker: self
795  * @flags: flags to set
796  * @wakeup: wakeup an idle worker if necessary
797  *
798  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
799  * nr_running becomes zero and @wakeup is %true, an idle worker is
800  * woken up.
801  *
802  * CONTEXT:
803  * spin_lock_irq(gcwq->lock)
804  */
805 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
806 				    bool wakeup)
807 {
808 	struct worker_pool *pool = worker->pool;
809 
810 	WARN_ON_ONCE(worker->task != current);
811 
812 	/*
813 	 * If transitioning into NOT_RUNNING, adjust nr_running and
814 	 * wake up an idle worker as necessary if requested by
815 	 * @wakeup.
816 	 */
817 	if ((flags & WORKER_NOT_RUNNING) &&
818 	    !(worker->flags & WORKER_NOT_RUNNING)) {
819 		atomic_t *nr_running = get_pool_nr_running(pool);
820 
821 		if (wakeup) {
822 			if (atomic_dec_and_test(nr_running) &&
823 			    !list_empty(&pool->worklist))
824 				wake_up_worker(pool);
825 		} else
826 			atomic_dec(nr_running);
827 	}
828 
829 	worker->flags |= flags;
830 }
831 
832 /**
833  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
834  * @worker: self
835  * @flags: flags to clear
836  *
837  * Clear @flags in @worker->flags and adjust nr_running accordingly.
838  *
839  * CONTEXT:
840  * spin_lock_irq(gcwq->lock)
841  */
842 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
843 {
844 	struct worker_pool *pool = worker->pool;
845 	unsigned int oflags = worker->flags;
846 
847 	WARN_ON_ONCE(worker->task != current);
848 
849 	worker->flags &= ~flags;
850 
851 	/*
852 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
853 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
854 	 * of multiple flags, not a single flag.
855 	 */
856 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
857 		if (!(worker->flags & WORKER_NOT_RUNNING))
858 			atomic_inc(get_pool_nr_running(pool));
859 }
860 
861 /**
862  * busy_worker_head - return the busy hash head for a work
863  * @gcwq: gcwq of interest
864  * @work: work to be hashed
865  *
866  * Return hash head of @gcwq for @work.
867  *
868  * CONTEXT:
869  * spin_lock_irq(gcwq->lock).
870  *
871  * RETURNS:
872  * Pointer to the hash head.
873  */
874 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
875 					   struct work_struct *work)
876 {
877 	const int base_shift = ilog2(sizeof(struct work_struct));
878 	unsigned long v = (unsigned long)work;
879 
880 	/* simple shift and fold hash, do we need something better? */
881 	v >>= base_shift;
882 	v += v >> BUSY_WORKER_HASH_ORDER;
883 	v &= BUSY_WORKER_HASH_MASK;
884 
885 	return &gcwq->busy_hash[v];
886 }
887 
888 /**
889  * __find_worker_executing_work - find worker which is executing a work
890  * @gcwq: gcwq of interest
891  * @bwh: hash head as returned by busy_worker_head()
892  * @work: work to find worker for
893  *
894  * Find a worker which is executing @work on @gcwq.  @bwh should be
895  * the hash head obtained by calling busy_worker_head() with the same
896  * work.
897  *
898  * CONTEXT:
899  * spin_lock_irq(gcwq->lock).
900  *
901  * RETURNS:
902  * Pointer to worker which is executing @work if found, NULL
903  * otherwise.
904  */
905 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
906 						   struct hlist_head *bwh,
907 						   struct work_struct *work)
908 {
909 	struct worker *worker;
910 	struct hlist_node *tmp;
911 
912 	hlist_for_each_entry(worker, tmp, bwh, hentry)
913 		if (worker->current_work == work)
914 			return worker;
915 	return NULL;
916 }
917 
918 /**
919  * find_worker_executing_work - find worker which is executing a work
920  * @gcwq: gcwq of interest
921  * @work: work to find worker for
922  *
923  * Find a worker which is executing @work on @gcwq.  This function is
924  * identical to __find_worker_executing_work() except that this
925  * function calculates @bwh itself.
926  *
927  * CONTEXT:
928  * spin_lock_irq(gcwq->lock).
929  *
930  * RETURNS:
931  * Pointer to worker which is executing @work if found, NULL
932  * otherwise.
933  */
934 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
935 						 struct work_struct *work)
936 {
937 	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
938 					    work);
939 }
940 
941 /**
942  * move_linked_works - move linked works to a list
943  * @work: start of series of works to be scheduled
944  * @head: target list to append @work to
945  * @nextp: out paramter for nested worklist walking
946  *
947  * Schedule linked works starting from @work to @head.  Work series to
948  * be scheduled starts at @work and includes any consecutive work with
949  * WORK_STRUCT_LINKED set in its predecessor.
950  *
951  * If @nextp is not NULL, it's updated to point to the next work of
952  * the last scheduled work.  This allows move_linked_works() to be
953  * nested inside outer list_for_each_entry_safe().
954  *
955  * CONTEXT:
956  * spin_lock_irq(gcwq->lock).
957  */
958 static void move_linked_works(struct work_struct *work, struct list_head *head,
959 			      struct work_struct **nextp)
960 {
961 	struct work_struct *n;
962 
963 	/*
964 	 * Linked worklist will always end before the end of the list,
965 	 * use NULL for list head.
966 	 */
967 	list_for_each_entry_safe_from(work, n, NULL, entry) {
968 		list_move_tail(&work->entry, head);
969 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
970 			break;
971 	}
972 
973 	/*
974 	 * If we're already inside safe list traversal and have moved
975 	 * multiple works to the scheduled queue, the next position
976 	 * needs to be updated.
977 	 */
978 	if (nextp)
979 		*nextp = n;
980 }
981 
982 static void cwq_activate_delayed_work(struct work_struct *work)
983 {
984 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
985 
986 	trace_workqueue_activate_work(work);
987 	move_linked_works(work, &cwq->pool->worklist, NULL);
988 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
989 	cwq->nr_active++;
990 }
991 
992 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
993 {
994 	struct work_struct *work = list_first_entry(&cwq->delayed_works,
995 						    struct work_struct, entry);
996 
997 	cwq_activate_delayed_work(work);
998 }
999 
1000 /**
1001  * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1002  * @cwq: cwq of interest
1003  * @color: color of work which left the queue
1004  *
1005  * A work either has completed or is removed from pending queue,
1006  * decrement nr_in_flight of its cwq and handle workqueue flushing.
1007  *
1008  * CONTEXT:
1009  * spin_lock_irq(gcwq->lock).
1010  */
1011 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1012 {
1013 	/* ignore uncolored works */
1014 	if (color == WORK_NO_COLOR)
1015 		return;
1016 
1017 	cwq->nr_in_flight[color]--;
1018 
1019 	cwq->nr_active--;
1020 	if (!list_empty(&cwq->delayed_works)) {
1021 		/* one down, submit a delayed one */
1022 		if (cwq->nr_active < cwq->max_active)
1023 			cwq_activate_first_delayed(cwq);
1024 	}
1025 
1026 	/* is flush in progress and are we at the flushing tip? */
1027 	if (likely(cwq->flush_color != color))
1028 		return;
1029 
1030 	/* are there still in-flight works? */
1031 	if (cwq->nr_in_flight[color])
1032 		return;
1033 
1034 	/* this cwq is done, clear flush_color */
1035 	cwq->flush_color = -1;
1036 
1037 	/*
1038 	 * If this was the last cwq, wake up the first flusher.  It
1039 	 * will handle the rest.
1040 	 */
1041 	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1042 		complete(&cwq->wq->first_flusher->done);
1043 }
1044 
1045 /**
1046  * try_to_grab_pending - steal work item from worklist and disable irq
1047  * @work: work item to steal
1048  * @is_dwork: @work is a delayed_work
1049  * @flags: place to store irq state
1050  *
1051  * Try to grab PENDING bit of @work.  This function can handle @work in any
1052  * stable state - idle, on timer or on worklist.  Return values are
1053  *
1054  *  1		if @work was pending and we successfully stole PENDING
1055  *  0		if @work was idle and we claimed PENDING
1056  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1057  *  -ENOENT	if someone else is canceling @work, this state may persist
1058  *		for arbitrarily long
1059  *
1060  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1061  * interrupted while holding PENDING and @work off queue, irq must be
1062  * disabled on entry.  This, combined with delayed_work->timer being
1063  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1064  *
1065  * On successful return, >= 0, irq is disabled and the caller is
1066  * responsible for releasing it using local_irq_restore(*@flags).
1067  *
1068  * This function is safe to call from any context including IRQ handler.
1069  */
1070 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1071 			       unsigned long *flags)
1072 {
1073 	struct global_cwq *gcwq;
1074 
1075 	local_irq_save(*flags);
1076 
1077 	/* try to steal the timer if it exists */
1078 	if (is_dwork) {
1079 		struct delayed_work *dwork = to_delayed_work(work);
1080 
1081 		/*
1082 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1083 		 * guaranteed that the timer is not queued anywhere and not
1084 		 * running on the local CPU.
1085 		 */
1086 		if (likely(del_timer(&dwork->timer)))
1087 			return 1;
1088 	}
1089 
1090 	/* try to claim PENDING the normal way */
1091 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1092 		return 0;
1093 
1094 	/*
1095 	 * The queueing is in progress, or it is already queued. Try to
1096 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1097 	 */
1098 	gcwq = get_work_gcwq(work);
1099 	if (!gcwq)
1100 		goto fail;
1101 
1102 	spin_lock(&gcwq->lock);
1103 	if (!list_empty(&work->entry)) {
1104 		/*
1105 		 * This work is queued, but perhaps we locked the wrong gcwq.
1106 		 * In that case we must see the new value after rmb(), see
1107 		 * insert_work()->wmb().
1108 		 */
1109 		smp_rmb();
1110 		if (gcwq == get_work_gcwq(work)) {
1111 			debug_work_deactivate(work);
1112 
1113 			/*
1114 			 * A delayed work item cannot be grabbed directly
1115 			 * because it might have linked NO_COLOR work items
1116 			 * which, if left on the delayed_list, will confuse
1117 			 * cwq->nr_active management later on and cause
1118 			 * stall.  Make sure the work item is activated
1119 			 * before grabbing.
1120 			 */
1121 			if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1122 				cwq_activate_delayed_work(work);
1123 
1124 			list_del_init(&work->entry);
1125 			cwq_dec_nr_in_flight(get_work_cwq(work),
1126 				get_work_color(work));
1127 
1128 			spin_unlock(&gcwq->lock);
1129 			return 1;
1130 		}
1131 	}
1132 	spin_unlock(&gcwq->lock);
1133 fail:
1134 	local_irq_restore(*flags);
1135 	if (work_is_canceling(work))
1136 		return -ENOENT;
1137 	cpu_relax();
1138 	return -EAGAIN;
1139 }
1140 
1141 /**
1142  * insert_work - insert a work into gcwq
1143  * @cwq: cwq @work belongs to
1144  * @work: work to insert
1145  * @head: insertion point
1146  * @extra_flags: extra WORK_STRUCT_* flags to set
1147  *
1148  * Insert @work which belongs to @cwq into @gcwq after @head.
1149  * @extra_flags is or'd to work_struct flags.
1150  *
1151  * CONTEXT:
1152  * spin_lock_irq(gcwq->lock).
1153  */
1154 static void insert_work(struct cpu_workqueue_struct *cwq,
1155 			struct work_struct *work, struct list_head *head,
1156 			unsigned int extra_flags)
1157 {
1158 	struct worker_pool *pool = cwq->pool;
1159 
1160 	/* we own @work, set data and link */
1161 	set_work_cwq(work, cwq, extra_flags);
1162 
1163 	/*
1164 	 * Ensure that we get the right work->data if we see the
1165 	 * result of list_add() below, see try_to_grab_pending().
1166 	 */
1167 	smp_wmb();
1168 
1169 	list_add_tail(&work->entry, head);
1170 
1171 	/*
1172 	 * Ensure either worker_sched_deactivated() sees the above
1173 	 * list_add_tail() or we see zero nr_running to avoid workers
1174 	 * lying around lazily while there are works to be processed.
1175 	 */
1176 	smp_mb();
1177 
1178 	if (__need_more_worker(pool))
1179 		wake_up_worker(pool);
1180 }
1181 
1182 /*
1183  * Test whether @work is being queued from another work executing on the
1184  * same workqueue.  This is rather expensive and should only be used from
1185  * cold paths.
1186  */
1187 static bool is_chained_work(struct workqueue_struct *wq)
1188 {
1189 	unsigned long flags;
1190 	unsigned int cpu;
1191 
1192 	for_each_gcwq_cpu(cpu) {
1193 		struct global_cwq *gcwq = get_gcwq(cpu);
1194 		struct worker *worker;
1195 		struct hlist_node *pos;
1196 		int i;
1197 
1198 		spin_lock_irqsave(&gcwq->lock, flags);
1199 		for_each_busy_worker(worker, i, pos, gcwq) {
1200 			if (worker->task != current)
1201 				continue;
1202 			spin_unlock_irqrestore(&gcwq->lock, flags);
1203 			/*
1204 			 * I'm @worker, no locking necessary.  See if @work
1205 			 * is headed to the same workqueue.
1206 			 */
1207 			return worker->current_cwq->wq == wq;
1208 		}
1209 		spin_unlock_irqrestore(&gcwq->lock, flags);
1210 	}
1211 	return false;
1212 }
1213 
1214 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1215 			 struct work_struct *work)
1216 {
1217 	struct global_cwq *gcwq;
1218 	struct cpu_workqueue_struct *cwq;
1219 	struct list_head *worklist;
1220 	unsigned int work_flags;
1221 	unsigned int req_cpu = cpu;
1222 
1223 	/*
1224 	 * While a work item is PENDING && off queue, a task trying to
1225 	 * steal the PENDING will busy-loop waiting for it to either get
1226 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1227 	 * happen with IRQ disabled.
1228 	 */
1229 	WARN_ON_ONCE(!irqs_disabled());
1230 
1231 	debug_work_activate(work);
1232 
1233 	/* if dying, only works from the same workqueue are allowed */
1234 	if (unlikely(wq->flags & WQ_DRAINING) &&
1235 	    WARN_ON_ONCE(!is_chained_work(wq)))
1236 		return;
1237 
1238 	/* determine gcwq to use */
1239 	if (!(wq->flags & WQ_UNBOUND)) {
1240 		struct global_cwq *last_gcwq;
1241 
1242 		if (cpu == WORK_CPU_UNBOUND)
1243 			cpu = raw_smp_processor_id();
1244 
1245 		/*
1246 		 * It's multi cpu.  If @work was previously on a different
1247 		 * cpu, it might still be running there, in which case the
1248 		 * work needs to be queued on that cpu to guarantee
1249 		 * non-reentrancy.
1250 		 */
1251 		gcwq = get_gcwq(cpu);
1252 		last_gcwq = get_work_gcwq(work);
1253 
1254 		if (last_gcwq && last_gcwq != gcwq) {
1255 			struct worker *worker;
1256 
1257 			spin_lock(&last_gcwq->lock);
1258 
1259 			worker = find_worker_executing_work(last_gcwq, work);
1260 
1261 			if (worker && worker->current_cwq->wq == wq)
1262 				gcwq = last_gcwq;
1263 			else {
1264 				/* meh... not running there, queue here */
1265 				spin_unlock(&last_gcwq->lock);
1266 				spin_lock(&gcwq->lock);
1267 			}
1268 		} else {
1269 			spin_lock(&gcwq->lock);
1270 		}
1271 	} else {
1272 		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1273 		spin_lock(&gcwq->lock);
1274 	}
1275 
1276 	/* gcwq determined, get cwq and queue */
1277 	cwq = get_cwq(gcwq->cpu, wq);
1278 	trace_workqueue_queue_work(req_cpu, cwq, work);
1279 
1280 	if (WARN_ON(!list_empty(&work->entry))) {
1281 		spin_unlock(&gcwq->lock);
1282 		return;
1283 	}
1284 
1285 	cwq->nr_in_flight[cwq->work_color]++;
1286 	work_flags = work_color_to_flags(cwq->work_color);
1287 
1288 	if (likely(cwq->nr_active < cwq->max_active)) {
1289 		trace_workqueue_activate_work(work);
1290 		cwq->nr_active++;
1291 		worklist = &cwq->pool->worklist;
1292 	} else {
1293 		work_flags |= WORK_STRUCT_DELAYED;
1294 		worklist = &cwq->delayed_works;
1295 	}
1296 
1297 	insert_work(cwq, work, worklist, work_flags);
1298 
1299 	spin_unlock(&gcwq->lock);
1300 }
1301 
1302 /**
1303  * queue_work_on - queue work on specific cpu
1304  * @cpu: CPU number to execute work on
1305  * @wq: workqueue to use
1306  * @work: work to queue
1307  *
1308  * Returns %false if @work was already on a queue, %true otherwise.
1309  *
1310  * We queue the work to a specific CPU, the caller must ensure it
1311  * can't go away.
1312  */
1313 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1314 		   struct work_struct *work)
1315 {
1316 	bool ret = false;
1317 	unsigned long flags;
1318 
1319 	local_irq_save(flags);
1320 
1321 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1322 		__queue_work(cpu, wq, work);
1323 		ret = true;
1324 	}
1325 
1326 	local_irq_restore(flags);
1327 	return ret;
1328 }
1329 EXPORT_SYMBOL_GPL(queue_work_on);
1330 
1331 /**
1332  * queue_work - queue work on a workqueue
1333  * @wq: workqueue to use
1334  * @work: work to queue
1335  *
1336  * Returns %false if @work was already on a queue, %true otherwise.
1337  *
1338  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1339  * it can be processed by another CPU.
1340  */
1341 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1342 {
1343 	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1344 }
1345 EXPORT_SYMBOL_GPL(queue_work);
1346 
1347 void delayed_work_timer_fn(unsigned long __data)
1348 {
1349 	struct delayed_work *dwork = (struct delayed_work *)__data;
1350 	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1351 
1352 	/* should have been called from irqsafe timer with irq already off */
1353 	__queue_work(dwork->cpu, cwq->wq, &dwork->work);
1354 }
1355 EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1356 
1357 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1358 				struct delayed_work *dwork, unsigned long delay)
1359 {
1360 	struct timer_list *timer = &dwork->timer;
1361 	struct work_struct *work = &dwork->work;
1362 	unsigned int lcpu;
1363 
1364 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1365 		     timer->data != (unsigned long)dwork);
1366 	WARN_ON_ONCE(timer_pending(timer));
1367 	WARN_ON_ONCE(!list_empty(&work->entry));
1368 
1369 	/*
1370 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1371 	 * both optimization and correctness.  The earliest @timer can
1372 	 * expire is on the closest next tick and delayed_work users depend
1373 	 * on that there's no such delay when @delay is 0.
1374 	 */
1375 	if (!delay) {
1376 		__queue_work(cpu, wq, &dwork->work);
1377 		return;
1378 	}
1379 
1380 	timer_stats_timer_set_start_info(&dwork->timer);
1381 
1382 	/*
1383 	 * This stores cwq for the moment, for the timer_fn.  Note that the
1384 	 * work's gcwq is preserved to allow reentrance detection for
1385 	 * delayed works.
1386 	 */
1387 	if (!(wq->flags & WQ_UNBOUND)) {
1388 		struct global_cwq *gcwq = get_work_gcwq(work);
1389 
1390 		/*
1391 		 * If we cannot get the last gcwq from @work directly,
1392 		 * select the last CPU such that it avoids unnecessarily
1393 		 * triggering non-reentrancy check in __queue_work().
1394 		 */
1395 		lcpu = cpu;
1396 		if (gcwq)
1397 			lcpu = gcwq->cpu;
1398 		if (lcpu == WORK_CPU_UNBOUND)
1399 			lcpu = raw_smp_processor_id();
1400 	} else {
1401 		lcpu = WORK_CPU_UNBOUND;
1402 	}
1403 
1404 	set_work_cwq(work, get_cwq(lcpu, wq), 0);
1405 
1406 	dwork->cpu = cpu;
1407 	timer->expires = jiffies + delay;
1408 
1409 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1410 		add_timer_on(timer, cpu);
1411 	else
1412 		add_timer(timer);
1413 }
1414 
1415 /**
1416  * queue_delayed_work_on - queue work on specific CPU after delay
1417  * @cpu: CPU number to execute work on
1418  * @wq: workqueue to use
1419  * @dwork: work to queue
1420  * @delay: number of jiffies to wait before queueing
1421  *
1422  * Returns %false if @work was already on a queue, %true otherwise.  If
1423  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1424  * execution.
1425  */
1426 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1427 			   struct delayed_work *dwork, unsigned long delay)
1428 {
1429 	struct work_struct *work = &dwork->work;
1430 	bool ret = false;
1431 	unsigned long flags;
1432 
1433 	/* read the comment in __queue_work() */
1434 	local_irq_save(flags);
1435 
1436 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1437 		__queue_delayed_work(cpu, wq, dwork, delay);
1438 		ret = true;
1439 	}
1440 
1441 	local_irq_restore(flags);
1442 	return ret;
1443 }
1444 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1445 
1446 /**
1447  * queue_delayed_work - queue work on a workqueue after delay
1448  * @wq: workqueue to use
1449  * @dwork: delayable work to queue
1450  * @delay: number of jiffies to wait before queueing
1451  *
1452  * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1453  */
1454 bool queue_delayed_work(struct workqueue_struct *wq,
1455 			struct delayed_work *dwork, unsigned long delay)
1456 {
1457 	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1458 }
1459 EXPORT_SYMBOL_GPL(queue_delayed_work);
1460 
1461 /**
1462  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1463  * @cpu: CPU number to execute work on
1464  * @wq: workqueue to use
1465  * @dwork: work to queue
1466  * @delay: number of jiffies to wait before queueing
1467  *
1468  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1469  * modify @dwork's timer so that it expires after @delay.  If @delay is
1470  * zero, @work is guaranteed to be scheduled immediately regardless of its
1471  * current state.
1472  *
1473  * Returns %false if @dwork was idle and queued, %true if @dwork was
1474  * pending and its timer was modified.
1475  *
1476  * This function is safe to call from any context including IRQ handler.
1477  * See try_to_grab_pending() for details.
1478  */
1479 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1480 			 struct delayed_work *dwork, unsigned long delay)
1481 {
1482 	unsigned long flags;
1483 	int ret;
1484 
1485 	do {
1486 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1487 	} while (unlikely(ret == -EAGAIN));
1488 
1489 	if (likely(ret >= 0)) {
1490 		__queue_delayed_work(cpu, wq, dwork, delay);
1491 		local_irq_restore(flags);
1492 	}
1493 
1494 	/* -ENOENT from try_to_grab_pending() becomes %true */
1495 	return ret;
1496 }
1497 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1498 
1499 /**
1500  * mod_delayed_work - modify delay of or queue a delayed work
1501  * @wq: workqueue to use
1502  * @dwork: work to queue
1503  * @delay: number of jiffies to wait before queueing
1504  *
1505  * mod_delayed_work_on() on local CPU.
1506  */
1507 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1508 		      unsigned long delay)
1509 {
1510 	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1511 }
1512 EXPORT_SYMBOL_GPL(mod_delayed_work);
1513 
1514 /**
1515  * worker_enter_idle - enter idle state
1516  * @worker: worker which is entering idle state
1517  *
1518  * @worker is entering idle state.  Update stats and idle timer if
1519  * necessary.
1520  *
1521  * LOCKING:
1522  * spin_lock_irq(gcwq->lock).
1523  */
1524 static void worker_enter_idle(struct worker *worker)
1525 {
1526 	struct worker_pool *pool = worker->pool;
1527 	struct global_cwq *gcwq = pool->gcwq;
1528 
1529 	BUG_ON(worker->flags & WORKER_IDLE);
1530 	BUG_ON(!list_empty(&worker->entry) &&
1531 	       (worker->hentry.next || worker->hentry.pprev));
1532 
1533 	/* can't use worker_set_flags(), also called from start_worker() */
1534 	worker->flags |= WORKER_IDLE;
1535 	pool->nr_idle++;
1536 	worker->last_active = jiffies;
1537 
1538 	/* idle_list is LIFO */
1539 	list_add(&worker->entry, &pool->idle_list);
1540 
1541 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1542 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1543 
1544 	/*
1545 	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
1546 	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1547 	 * nr_running, the warning may trigger spuriously.  Check iff
1548 	 * unbind is not in progress.
1549 	 */
1550 	WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1551 		     pool->nr_workers == pool->nr_idle &&
1552 		     atomic_read(get_pool_nr_running(pool)));
1553 }
1554 
1555 /**
1556  * worker_leave_idle - leave idle state
1557  * @worker: worker which is leaving idle state
1558  *
1559  * @worker is leaving idle state.  Update stats.
1560  *
1561  * LOCKING:
1562  * spin_lock_irq(gcwq->lock).
1563  */
1564 static void worker_leave_idle(struct worker *worker)
1565 {
1566 	struct worker_pool *pool = worker->pool;
1567 
1568 	BUG_ON(!(worker->flags & WORKER_IDLE));
1569 	worker_clr_flags(worker, WORKER_IDLE);
1570 	pool->nr_idle--;
1571 	list_del_init(&worker->entry);
1572 }
1573 
1574 /**
1575  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1576  * @worker: self
1577  *
1578  * Works which are scheduled while the cpu is online must at least be
1579  * scheduled to a worker which is bound to the cpu so that if they are
1580  * flushed from cpu callbacks while cpu is going down, they are
1581  * guaranteed to execute on the cpu.
1582  *
1583  * This function is to be used by rogue workers and rescuers to bind
1584  * themselves to the target cpu and may race with cpu going down or
1585  * coming online.  kthread_bind() can't be used because it may put the
1586  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1587  * verbatim as it's best effort and blocking and gcwq may be
1588  * [dis]associated in the meantime.
1589  *
1590  * This function tries set_cpus_allowed() and locks gcwq and verifies the
1591  * binding against %GCWQ_DISASSOCIATED which is set during
1592  * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1593  * enters idle state or fetches works without dropping lock, it can
1594  * guarantee the scheduling requirement described in the first paragraph.
1595  *
1596  * CONTEXT:
1597  * Might sleep.  Called without any lock but returns with gcwq->lock
1598  * held.
1599  *
1600  * RETURNS:
1601  * %true if the associated gcwq is online (@worker is successfully
1602  * bound), %false if offline.
1603  */
1604 static bool worker_maybe_bind_and_lock(struct worker *worker)
1605 __acquires(&gcwq->lock)
1606 {
1607 	struct global_cwq *gcwq = worker->pool->gcwq;
1608 	struct task_struct *task = worker->task;
1609 
1610 	while (true) {
1611 		/*
1612 		 * The following call may fail, succeed or succeed
1613 		 * without actually migrating the task to the cpu if
1614 		 * it races with cpu hotunplug operation.  Verify
1615 		 * against GCWQ_DISASSOCIATED.
1616 		 */
1617 		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1618 			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1619 
1620 		spin_lock_irq(&gcwq->lock);
1621 		if (gcwq->flags & GCWQ_DISASSOCIATED)
1622 			return false;
1623 		if (task_cpu(task) == gcwq->cpu &&
1624 		    cpumask_equal(&current->cpus_allowed,
1625 				  get_cpu_mask(gcwq->cpu)))
1626 			return true;
1627 		spin_unlock_irq(&gcwq->lock);
1628 
1629 		/*
1630 		 * We've raced with CPU hot[un]plug.  Give it a breather
1631 		 * and retry migration.  cond_resched() is required here;
1632 		 * otherwise, we might deadlock against cpu_stop trying to
1633 		 * bring down the CPU on non-preemptive kernel.
1634 		 */
1635 		cpu_relax();
1636 		cond_resched();
1637 	}
1638 }
1639 
1640 /*
1641  * Rebind an idle @worker to its CPU.  worker_thread() will test
1642  * list_empty(@worker->entry) before leaving idle and call this function.
1643  */
1644 static void idle_worker_rebind(struct worker *worker)
1645 {
1646 	struct global_cwq *gcwq = worker->pool->gcwq;
1647 
1648 	/* CPU may go down again inbetween, clear UNBOUND only on success */
1649 	if (worker_maybe_bind_and_lock(worker))
1650 		worker_clr_flags(worker, WORKER_UNBOUND);
1651 
1652 	/* rebind complete, become available again */
1653 	list_add(&worker->entry, &worker->pool->idle_list);
1654 	spin_unlock_irq(&gcwq->lock);
1655 }
1656 
1657 /*
1658  * Function for @worker->rebind.work used to rebind unbound busy workers to
1659  * the associated cpu which is coming back online.  This is scheduled by
1660  * cpu up but can race with other cpu hotplug operations and may be
1661  * executed twice without intervening cpu down.
1662  */
1663 static void busy_worker_rebind_fn(struct work_struct *work)
1664 {
1665 	struct worker *worker = container_of(work, struct worker, rebind_work);
1666 	struct global_cwq *gcwq = worker->pool->gcwq;
1667 
1668 	if (worker_maybe_bind_and_lock(worker))
1669 		worker_clr_flags(worker, WORKER_UNBOUND);
1670 
1671 	spin_unlock_irq(&gcwq->lock);
1672 }
1673 
1674 /**
1675  * rebind_workers - rebind all workers of a gcwq to the associated CPU
1676  * @gcwq: gcwq of interest
1677  *
1678  * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1679  * is different for idle and busy ones.
1680  *
1681  * Idle ones will be removed from the idle_list and woken up.  They will
1682  * add themselves back after completing rebind.  This ensures that the
1683  * idle_list doesn't contain any unbound workers when re-bound busy workers
1684  * try to perform local wake-ups for concurrency management.
1685  *
1686  * Busy workers can rebind after they finish their current work items.
1687  * Queueing the rebind work item at the head of the scheduled list is
1688  * enough.  Note that nr_running will be properly bumped as busy workers
1689  * rebind.
1690  *
1691  * On return, all non-manager workers are scheduled for rebind - see
1692  * manage_workers() for the manager special case.  Any idle worker
1693  * including the manager will not appear on @idle_list until rebind is
1694  * complete, making local wake-ups safe.
1695  */
1696 static void rebind_workers(struct global_cwq *gcwq)
1697 {
1698 	struct worker_pool *pool;
1699 	struct worker *worker, *n;
1700 	struct hlist_node *pos;
1701 	int i;
1702 
1703 	lockdep_assert_held(&gcwq->lock);
1704 
1705 	for_each_worker_pool(pool, gcwq)
1706 		lockdep_assert_held(&pool->assoc_mutex);
1707 
1708 	/* dequeue and kick idle ones */
1709 	for_each_worker_pool(pool, gcwq) {
1710 		list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1711 			/*
1712 			 * idle workers should be off @pool->idle_list
1713 			 * until rebind is complete to avoid receiving
1714 			 * premature local wake-ups.
1715 			 */
1716 			list_del_init(&worker->entry);
1717 
1718 			/*
1719 			 * worker_thread() will see the above dequeuing
1720 			 * and call idle_worker_rebind().
1721 			 */
1722 			wake_up_process(worker->task);
1723 		}
1724 	}
1725 
1726 	/* rebind busy workers */
1727 	for_each_busy_worker(worker, i, pos, gcwq) {
1728 		struct work_struct *rebind_work = &worker->rebind_work;
1729 		struct workqueue_struct *wq;
1730 
1731 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1732 				     work_data_bits(rebind_work)))
1733 			continue;
1734 
1735 		debug_work_activate(rebind_work);
1736 
1737 		/*
1738 		 * wq doesn't really matter but let's keep @worker->pool
1739 		 * and @cwq->pool consistent for sanity.
1740 		 */
1741 		if (worker_pool_pri(worker->pool))
1742 			wq = system_highpri_wq;
1743 		else
1744 			wq = system_wq;
1745 
1746 		insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1747 			worker->scheduled.next,
1748 			work_color_to_flags(WORK_NO_COLOR));
1749 	}
1750 }
1751 
1752 static struct worker *alloc_worker(void)
1753 {
1754 	struct worker *worker;
1755 
1756 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1757 	if (worker) {
1758 		INIT_LIST_HEAD(&worker->entry);
1759 		INIT_LIST_HEAD(&worker->scheduled);
1760 		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1761 		/* on creation a worker is in !idle && prep state */
1762 		worker->flags = WORKER_PREP;
1763 	}
1764 	return worker;
1765 }
1766 
1767 /**
1768  * create_worker - create a new workqueue worker
1769  * @pool: pool the new worker will belong to
1770  *
1771  * Create a new worker which is bound to @pool.  The returned worker
1772  * can be started by calling start_worker() or destroyed using
1773  * destroy_worker().
1774  *
1775  * CONTEXT:
1776  * Might sleep.  Does GFP_KERNEL allocations.
1777  *
1778  * RETURNS:
1779  * Pointer to the newly created worker.
1780  */
1781 static struct worker *create_worker(struct worker_pool *pool)
1782 {
1783 	struct global_cwq *gcwq = pool->gcwq;
1784 	const char *pri = worker_pool_pri(pool) ? "H" : "";
1785 	struct worker *worker = NULL;
1786 	int id = -1;
1787 
1788 	spin_lock_irq(&gcwq->lock);
1789 	while (ida_get_new(&pool->worker_ida, &id)) {
1790 		spin_unlock_irq(&gcwq->lock);
1791 		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1792 			goto fail;
1793 		spin_lock_irq(&gcwq->lock);
1794 	}
1795 	spin_unlock_irq(&gcwq->lock);
1796 
1797 	worker = alloc_worker();
1798 	if (!worker)
1799 		goto fail;
1800 
1801 	worker->pool = pool;
1802 	worker->id = id;
1803 
1804 	if (gcwq->cpu != WORK_CPU_UNBOUND)
1805 		worker->task = kthread_create_on_node(worker_thread,
1806 					worker, cpu_to_node(gcwq->cpu),
1807 					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1808 	else
1809 		worker->task = kthread_create(worker_thread, worker,
1810 					      "kworker/u:%d%s", id, pri);
1811 	if (IS_ERR(worker->task))
1812 		goto fail;
1813 
1814 	if (worker_pool_pri(pool))
1815 		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1816 
1817 	/*
1818 	 * Determine CPU binding of the new worker depending on
1819 	 * %GCWQ_DISASSOCIATED.  The caller is responsible for ensuring the
1820 	 * flag remains stable across this function.  See the comments
1821 	 * above the flag definition for details.
1822 	 *
1823 	 * As an unbound worker may later become a regular one if CPU comes
1824 	 * online, make sure every worker has %PF_THREAD_BOUND set.
1825 	 */
1826 	if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1827 		kthread_bind(worker->task, gcwq->cpu);
1828 	} else {
1829 		worker->task->flags |= PF_THREAD_BOUND;
1830 		worker->flags |= WORKER_UNBOUND;
1831 	}
1832 
1833 	return worker;
1834 fail:
1835 	if (id >= 0) {
1836 		spin_lock_irq(&gcwq->lock);
1837 		ida_remove(&pool->worker_ida, id);
1838 		spin_unlock_irq(&gcwq->lock);
1839 	}
1840 	kfree(worker);
1841 	return NULL;
1842 }
1843 
1844 /**
1845  * start_worker - start a newly created worker
1846  * @worker: worker to start
1847  *
1848  * Make the gcwq aware of @worker and start it.
1849  *
1850  * CONTEXT:
1851  * spin_lock_irq(gcwq->lock).
1852  */
1853 static void start_worker(struct worker *worker)
1854 {
1855 	worker->flags |= WORKER_STARTED;
1856 	worker->pool->nr_workers++;
1857 	worker_enter_idle(worker);
1858 	wake_up_process(worker->task);
1859 }
1860 
1861 /**
1862  * destroy_worker - destroy a workqueue worker
1863  * @worker: worker to be destroyed
1864  *
1865  * Destroy @worker and adjust @gcwq stats accordingly.
1866  *
1867  * CONTEXT:
1868  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1869  */
1870 static void destroy_worker(struct worker *worker)
1871 {
1872 	struct worker_pool *pool = worker->pool;
1873 	struct global_cwq *gcwq = pool->gcwq;
1874 	int id = worker->id;
1875 
1876 	/* sanity check frenzy */
1877 	BUG_ON(worker->current_work);
1878 	BUG_ON(!list_empty(&worker->scheduled));
1879 
1880 	if (worker->flags & WORKER_STARTED)
1881 		pool->nr_workers--;
1882 	if (worker->flags & WORKER_IDLE)
1883 		pool->nr_idle--;
1884 
1885 	list_del_init(&worker->entry);
1886 	worker->flags |= WORKER_DIE;
1887 
1888 	spin_unlock_irq(&gcwq->lock);
1889 
1890 	kthread_stop(worker->task);
1891 	kfree(worker);
1892 
1893 	spin_lock_irq(&gcwq->lock);
1894 	ida_remove(&pool->worker_ida, id);
1895 }
1896 
1897 static void idle_worker_timeout(unsigned long __pool)
1898 {
1899 	struct worker_pool *pool = (void *)__pool;
1900 	struct global_cwq *gcwq = pool->gcwq;
1901 
1902 	spin_lock_irq(&gcwq->lock);
1903 
1904 	if (too_many_workers(pool)) {
1905 		struct worker *worker;
1906 		unsigned long expires;
1907 
1908 		/* idle_list is kept in LIFO order, check the last one */
1909 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1910 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1911 
1912 		if (time_before(jiffies, expires))
1913 			mod_timer(&pool->idle_timer, expires);
1914 		else {
1915 			/* it's been idle for too long, wake up manager */
1916 			pool->flags |= POOL_MANAGE_WORKERS;
1917 			wake_up_worker(pool);
1918 		}
1919 	}
1920 
1921 	spin_unlock_irq(&gcwq->lock);
1922 }
1923 
1924 static bool send_mayday(struct work_struct *work)
1925 {
1926 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1927 	struct workqueue_struct *wq = cwq->wq;
1928 	unsigned int cpu;
1929 
1930 	if (!(wq->flags & WQ_RESCUER))
1931 		return false;
1932 
1933 	/* mayday mayday mayday */
1934 	cpu = cwq->pool->gcwq->cpu;
1935 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1936 	if (cpu == WORK_CPU_UNBOUND)
1937 		cpu = 0;
1938 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1939 		wake_up_process(wq->rescuer->task);
1940 	return true;
1941 }
1942 
1943 static void gcwq_mayday_timeout(unsigned long __pool)
1944 {
1945 	struct worker_pool *pool = (void *)__pool;
1946 	struct global_cwq *gcwq = pool->gcwq;
1947 	struct work_struct *work;
1948 
1949 	spin_lock_irq(&gcwq->lock);
1950 
1951 	if (need_to_create_worker(pool)) {
1952 		/*
1953 		 * We've been trying to create a new worker but
1954 		 * haven't been successful.  We might be hitting an
1955 		 * allocation deadlock.  Send distress signals to
1956 		 * rescuers.
1957 		 */
1958 		list_for_each_entry(work, &pool->worklist, entry)
1959 			send_mayday(work);
1960 	}
1961 
1962 	spin_unlock_irq(&gcwq->lock);
1963 
1964 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1965 }
1966 
1967 /**
1968  * maybe_create_worker - create a new worker if necessary
1969  * @pool: pool to create a new worker for
1970  *
1971  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1972  * have at least one idle worker on return from this function.  If
1973  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1974  * sent to all rescuers with works scheduled on @pool to resolve
1975  * possible allocation deadlock.
1976  *
1977  * On return, need_to_create_worker() is guaranteed to be false and
1978  * may_start_working() true.
1979  *
1980  * LOCKING:
1981  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1982  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1983  * manager.
1984  *
1985  * RETURNS:
1986  * false if no action was taken and gcwq->lock stayed locked, true
1987  * otherwise.
1988  */
1989 static bool maybe_create_worker(struct worker_pool *pool)
1990 __releases(&gcwq->lock)
1991 __acquires(&gcwq->lock)
1992 {
1993 	struct global_cwq *gcwq = pool->gcwq;
1994 
1995 	if (!need_to_create_worker(pool))
1996 		return false;
1997 restart:
1998 	spin_unlock_irq(&gcwq->lock);
1999 
2000 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2001 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2002 
2003 	while (true) {
2004 		struct worker *worker;
2005 
2006 		worker = create_worker(pool);
2007 		if (worker) {
2008 			del_timer_sync(&pool->mayday_timer);
2009 			spin_lock_irq(&gcwq->lock);
2010 			start_worker(worker);
2011 			BUG_ON(need_to_create_worker(pool));
2012 			return true;
2013 		}
2014 
2015 		if (!need_to_create_worker(pool))
2016 			break;
2017 
2018 		__set_current_state(TASK_INTERRUPTIBLE);
2019 		schedule_timeout(CREATE_COOLDOWN);
2020 
2021 		if (!need_to_create_worker(pool))
2022 			break;
2023 	}
2024 
2025 	del_timer_sync(&pool->mayday_timer);
2026 	spin_lock_irq(&gcwq->lock);
2027 	if (need_to_create_worker(pool))
2028 		goto restart;
2029 	return true;
2030 }
2031 
2032 /**
2033  * maybe_destroy_worker - destroy workers which have been idle for a while
2034  * @pool: pool to destroy workers for
2035  *
2036  * Destroy @pool workers which have been idle for longer than
2037  * IDLE_WORKER_TIMEOUT.
2038  *
2039  * LOCKING:
2040  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2041  * multiple times.  Called only from manager.
2042  *
2043  * RETURNS:
2044  * false if no action was taken and gcwq->lock stayed locked, true
2045  * otherwise.
2046  */
2047 static bool maybe_destroy_workers(struct worker_pool *pool)
2048 {
2049 	bool ret = false;
2050 
2051 	while (too_many_workers(pool)) {
2052 		struct worker *worker;
2053 		unsigned long expires;
2054 
2055 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2056 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2057 
2058 		if (time_before(jiffies, expires)) {
2059 			mod_timer(&pool->idle_timer, expires);
2060 			break;
2061 		}
2062 
2063 		destroy_worker(worker);
2064 		ret = true;
2065 	}
2066 
2067 	return ret;
2068 }
2069 
2070 /**
2071  * manage_workers - manage worker pool
2072  * @worker: self
2073  *
2074  * Assume the manager role and manage gcwq worker pool @worker belongs
2075  * to.  At any given time, there can be only zero or one manager per
2076  * gcwq.  The exclusion is handled automatically by this function.
2077  *
2078  * The caller can safely start processing works on false return.  On
2079  * true return, it's guaranteed that need_to_create_worker() is false
2080  * and may_start_working() is true.
2081  *
2082  * CONTEXT:
2083  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2084  * multiple times.  Does GFP_KERNEL allocations.
2085  *
2086  * RETURNS:
2087  * false if no action was taken and gcwq->lock stayed locked, true if
2088  * some action was taken.
2089  */
2090 static bool manage_workers(struct worker *worker)
2091 {
2092 	struct worker_pool *pool = worker->pool;
2093 	bool ret = false;
2094 
2095 	if (pool->flags & POOL_MANAGING_WORKERS)
2096 		return ret;
2097 
2098 	pool->flags |= POOL_MANAGING_WORKERS;
2099 
2100 	/*
2101 	 * To simplify both worker management and CPU hotplug, hold off
2102 	 * management while hotplug is in progress.  CPU hotplug path can't
2103 	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2104 	 * lead to idle worker depletion (all become busy thinking someone
2105 	 * else is managing) which in turn can result in deadlock under
2106 	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2107 	 * manager against CPU hotplug.
2108 	 *
2109 	 * assoc_mutex would always be free unless CPU hotplug is in
2110 	 * progress.  trylock first without dropping @gcwq->lock.
2111 	 */
2112 	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2113 		spin_unlock_irq(&pool->gcwq->lock);
2114 		mutex_lock(&pool->assoc_mutex);
2115 		/*
2116 		 * CPU hotplug could have happened while we were waiting
2117 		 * for assoc_mutex.  Hotplug itself can't handle us
2118 		 * because manager isn't either on idle or busy list, and
2119 		 * @gcwq's state and ours could have deviated.
2120 		 *
2121 		 * As hotplug is now excluded via assoc_mutex, we can
2122 		 * simply try to bind.  It will succeed or fail depending
2123 		 * on @gcwq's current state.  Try it and adjust
2124 		 * %WORKER_UNBOUND accordingly.
2125 		 */
2126 		if (worker_maybe_bind_and_lock(worker))
2127 			worker->flags &= ~WORKER_UNBOUND;
2128 		else
2129 			worker->flags |= WORKER_UNBOUND;
2130 
2131 		ret = true;
2132 	}
2133 
2134 	pool->flags &= ~POOL_MANAGE_WORKERS;
2135 
2136 	/*
2137 	 * Destroy and then create so that may_start_working() is true
2138 	 * on return.
2139 	 */
2140 	ret |= maybe_destroy_workers(pool);
2141 	ret |= maybe_create_worker(pool);
2142 
2143 	pool->flags &= ~POOL_MANAGING_WORKERS;
2144 	mutex_unlock(&pool->assoc_mutex);
2145 	return ret;
2146 }
2147 
2148 /**
2149  * process_one_work - process single work
2150  * @worker: self
2151  * @work: work to process
2152  *
2153  * Process @work.  This function contains all the logics necessary to
2154  * process a single work including synchronization against and
2155  * interaction with other workers on the same cpu, queueing and
2156  * flushing.  As long as context requirement is met, any worker can
2157  * call this function to process a work.
2158  *
2159  * CONTEXT:
2160  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2161  */
2162 static void process_one_work(struct worker *worker, struct work_struct *work)
2163 __releases(&gcwq->lock)
2164 __acquires(&gcwq->lock)
2165 {
2166 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2167 	struct worker_pool *pool = worker->pool;
2168 	struct global_cwq *gcwq = pool->gcwq;
2169 	struct hlist_head *bwh = busy_worker_head(gcwq, work);
2170 	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2171 	work_func_t f = work->func;
2172 	int work_color;
2173 	struct worker *collision;
2174 #ifdef CONFIG_LOCKDEP
2175 	/*
2176 	 * It is permissible to free the struct work_struct from
2177 	 * inside the function that is called from it, this we need to
2178 	 * take into account for lockdep too.  To avoid bogus "held
2179 	 * lock freed" warnings as well as problems when looking into
2180 	 * work->lockdep_map, make a copy and use that here.
2181 	 */
2182 	struct lockdep_map lockdep_map;
2183 
2184 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2185 #endif
2186 	/*
2187 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2188 	 * necessary to avoid spurious warnings from rescuers servicing the
2189 	 * unbound or a disassociated gcwq.
2190 	 */
2191 	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2192 		     !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2193 		     raw_smp_processor_id() != gcwq->cpu);
2194 
2195 	/*
2196 	 * A single work shouldn't be executed concurrently by
2197 	 * multiple workers on a single cpu.  Check whether anyone is
2198 	 * already processing the work.  If so, defer the work to the
2199 	 * currently executing one.
2200 	 */
2201 	collision = __find_worker_executing_work(gcwq, bwh, work);
2202 	if (unlikely(collision)) {
2203 		move_linked_works(work, &collision->scheduled, NULL);
2204 		return;
2205 	}
2206 
2207 	/* claim and dequeue */
2208 	debug_work_deactivate(work);
2209 	hlist_add_head(&worker->hentry, bwh);
2210 	worker->current_work = work;
2211 	worker->current_cwq = cwq;
2212 	work_color = get_work_color(work);
2213 
2214 	list_del_init(&work->entry);
2215 
2216 	/*
2217 	 * CPU intensive works don't participate in concurrency
2218 	 * management.  They're the scheduler's responsibility.
2219 	 */
2220 	if (unlikely(cpu_intensive))
2221 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2222 
2223 	/*
2224 	 * Unbound gcwq isn't concurrency managed and work items should be
2225 	 * executed ASAP.  Wake up another worker if necessary.
2226 	 */
2227 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2228 		wake_up_worker(pool);
2229 
2230 	/*
2231 	 * Record the last CPU and clear PENDING which should be the last
2232 	 * update to @work.  Also, do this inside @gcwq->lock so that
2233 	 * PENDING and queued state changes happen together while IRQ is
2234 	 * disabled.
2235 	 */
2236 	set_work_cpu_and_clear_pending(work, gcwq->cpu);
2237 
2238 	spin_unlock_irq(&gcwq->lock);
2239 
2240 	lock_map_acquire_read(&cwq->wq->lockdep_map);
2241 	lock_map_acquire(&lockdep_map);
2242 	trace_workqueue_execute_start(work);
2243 	f(work);
2244 	/*
2245 	 * While we must be careful to not use "work" after this, the trace
2246 	 * point will only record its address.
2247 	 */
2248 	trace_workqueue_execute_end(work);
2249 	lock_map_release(&lockdep_map);
2250 	lock_map_release(&cwq->wq->lockdep_map);
2251 
2252 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2253 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2254 		       "     last function: %pf\n",
2255 		       current->comm, preempt_count(), task_pid_nr(current), f);
2256 		debug_show_held_locks(current);
2257 		dump_stack();
2258 	}
2259 
2260 	spin_lock_irq(&gcwq->lock);
2261 
2262 	/* clear cpu intensive status */
2263 	if (unlikely(cpu_intensive))
2264 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2265 
2266 	/* we're done with it, release */
2267 	hlist_del_init(&worker->hentry);
2268 	worker->current_work = NULL;
2269 	worker->current_cwq = NULL;
2270 	cwq_dec_nr_in_flight(cwq, work_color);
2271 }
2272 
2273 /**
2274  * process_scheduled_works - process scheduled works
2275  * @worker: self
2276  *
2277  * Process all scheduled works.  Please note that the scheduled list
2278  * may change while processing a work, so this function repeatedly
2279  * fetches a work from the top and executes it.
2280  *
2281  * CONTEXT:
2282  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2283  * multiple times.
2284  */
2285 static void process_scheduled_works(struct worker *worker)
2286 {
2287 	while (!list_empty(&worker->scheduled)) {
2288 		struct work_struct *work = list_first_entry(&worker->scheduled,
2289 						struct work_struct, entry);
2290 		process_one_work(worker, work);
2291 	}
2292 }
2293 
2294 /**
2295  * worker_thread - the worker thread function
2296  * @__worker: self
2297  *
2298  * The gcwq worker thread function.  There's a single dynamic pool of
2299  * these per each cpu.  These workers process all works regardless of
2300  * their specific target workqueue.  The only exception is works which
2301  * belong to workqueues with a rescuer which will be explained in
2302  * rescuer_thread().
2303  */
2304 static int worker_thread(void *__worker)
2305 {
2306 	struct worker *worker = __worker;
2307 	struct worker_pool *pool = worker->pool;
2308 	struct global_cwq *gcwq = pool->gcwq;
2309 
2310 	/* tell the scheduler that this is a workqueue worker */
2311 	worker->task->flags |= PF_WQ_WORKER;
2312 woke_up:
2313 	spin_lock_irq(&gcwq->lock);
2314 
2315 	/* we are off idle list if destruction or rebind is requested */
2316 	if (unlikely(list_empty(&worker->entry))) {
2317 		spin_unlock_irq(&gcwq->lock);
2318 
2319 		/* if DIE is set, destruction is requested */
2320 		if (worker->flags & WORKER_DIE) {
2321 			worker->task->flags &= ~PF_WQ_WORKER;
2322 			return 0;
2323 		}
2324 
2325 		/* otherwise, rebind */
2326 		idle_worker_rebind(worker);
2327 		goto woke_up;
2328 	}
2329 
2330 	worker_leave_idle(worker);
2331 recheck:
2332 	/* no more worker necessary? */
2333 	if (!need_more_worker(pool))
2334 		goto sleep;
2335 
2336 	/* do we need to manage? */
2337 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2338 		goto recheck;
2339 
2340 	/*
2341 	 * ->scheduled list can only be filled while a worker is
2342 	 * preparing to process a work or actually processing it.
2343 	 * Make sure nobody diddled with it while I was sleeping.
2344 	 */
2345 	BUG_ON(!list_empty(&worker->scheduled));
2346 
2347 	/*
2348 	 * When control reaches this point, we're guaranteed to have
2349 	 * at least one idle worker or that someone else has already
2350 	 * assumed the manager role.
2351 	 */
2352 	worker_clr_flags(worker, WORKER_PREP);
2353 
2354 	do {
2355 		struct work_struct *work =
2356 			list_first_entry(&pool->worklist,
2357 					 struct work_struct, entry);
2358 
2359 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2360 			/* optimization path, not strictly necessary */
2361 			process_one_work(worker, work);
2362 			if (unlikely(!list_empty(&worker->scheduled)))
2363 				process_scheduled_works(worker);
2364 		} else {
2365 			move_linked_works(work, &worker->scheduled, NULL);
2366 			process_scheduled_works(worker);
2367 		}
2368 	} while (keep_working(pool));
2369 
2370 	worker_set_flags(worker, WORKER_PREP, false);
2371 sleep:
2372 	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2373 		goto recheck;
2374 
2375 	/*
2376 	 * gcwq->lock is held and there's no work to process and no
2377 	 * need to manage, sleep.  Workers are woken up only while
2378 	 * holding gcwq->lock or from local cpu, so setting the
2379 	 * current state before releasing gcwq->lock is enough to
2380 	 * prevent losing any event.
2381 	 */
2382 	worker_enter_idle(worker);
2383 	__set_current_state(TASK_INTERRUPTIBLE);
2384 	spin_unlock_irq(&gcwq->lock);
2385 	schedule();
2386 	goto woke_up;
2387 }
2388 
2389 /**
2390  * rescuer_thread - the rescuer thread function
2391  * @__wq: the associated workqueue
2392  *
2393  * Workqueue rescuer thread function.  There's one rescuer for each
2394  * workqueue which has WQ_RESCUER set.
2395  *
2396  * Regular work processing on a gcwq may block trying to create a new
2397  * worker which uses GFP_KERNEL allocation which has slight chance of
2398  * developing into deadlock if some works currently on the same queue
2399  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2400  * the problem rescuer solves.
2401  *
2402  * When such condition is possible, the gcwq summons rescuers of all
2403  * workqueues which have works queued on the gcwq and let them process
2404  * those works so that forward progress can be guaranteed.
2405  *
2406  * This should happen rarely.
2407  */
2408 static int rescuer_thread(void *__wq)
2409 {
2410 	struct workqueue_struct *wq = __wq;
2411 	struct worker *rescuer = wq->rescuer;
2412 	struct list_head *scheduled = &rescuer->scheduled;
2413 	bool is_unbound = wq->flags & WQ_UNBOUND;
2414 	unsigned int cpu;
2415 
2416 	set_user_nice(current, RESCUER_NICE_LEVEL);
2417 repeat:
2418 	set_current_state(TASK_INTERRUPTIBLE);
2419 
2420 	if (kthread_should_stop()) {
2421 		__set_current_state(TASK_RUNNING);
2422 		return 0;
2423 	}
2424 
2425 	/*
2426 	 * See whether any cpu is asking for help.  Unbounded
2427 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2428 	 */
2429 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2430 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2431 		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2432 		struct worker_pool *pool = cwq->pool;
2433 		struct global_cwq *gcwq = pool->gcwq;
2434 		struct work_struct *work, *n;
2435 
2436 		__set_current_state(TASK_RUNNING);
2437 		mayday_clear_cpu(cpu, wq->mayday_mask);
2438 
2439 		/* migrate to the target cpu if possible */
2440 		rescuer->pool = pool;
2441 		worker_maybe_bind_and_lock(rescuer);
2442 
2443 		/*
2444 		 * Slurp in all works issued via this workqueue and
2445 		 * process'em.
2446 		 */
2447 		BUG_ON(!list_empty(&rescuer->scheduled));
2448 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2449 			if (get_work_cwq(work) == cwq)
2450 				move_linked_works(work, scheduled, &n);
2451 
2452 		process_scheduled_works(rescuer);
2453 
2454 		/*
2455 		 * Leave this gcwq.  If keep_working() is %true, notify a
2456 		 * regular worker; otherwise, we end up with 0 concurrency
2457 		 * and stalling the execution.
2458 		 */
2459 		if (keep_working(pool))
2460 			wake_up_worker(pool);
2461 
2462 		spin_unlock_irq(&gcwq->lock);
2463 	}
2464 
2465 	schedule();
2466 	goto repeat;
2467 }
2468 
2469 struct wq_barrier {
2470 	struct work_struct	work;
2471 	struct completion	done;
2472 };
2473 
2474 static void wq_barrier_func(struct work_struct *work)
2475 {
2476 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2477 	complete(&barr->done);
2478 }
2479 
2480 /**
2481  * insert_wq_barrier - insert a barrier work
2482  * @cwq: cwq to insert barrier into
2483  * @barr: wq_barrier to insert
2484  * @target: target work to attach @barr to
2485  * @worker: worker currently executing @target, NULL if @target is not executing
2486  *
2487  * @barr is linked to @target such that @barr is completed only after
2488  * @target finishes execution.  Please note that the ordering
2489  * guarantee is observed only with respect to @target and on the local
2490  * cpu.
2491  *
2492  * Currently, a queued barrier can't be canceled.  This is because
2493  * try_to_grab_pending() can't determine whether the work to be
2494  * grabbed is at the head of the queue and thus can't clear LINKED
2495  * flag of the previous work while there must be a valid next work
2496  * after a work with LINKED flag set.
2497  *
2498  * Note that when @worker is non-NULL, @target may be modified
2499  * underneath us, so we can't reliably determine cwq from @target.
2500  *
2501  * CONTEXT:
2502  * spin_lock_irq(gcwq->lock).
2503  */
2504 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2505 			      struct wq_barrier *barr,
2506 			      struct work_struct *target, struct worker *worker)
2507 {
2508 	struct list_head *head;
2509 	unsigned int linked = 0;
2510 
2511 	/*
2512 	 * debugobject calls are safe here even with gcwq->lock locked
2513 	 * as we know for sure that this will not trigger any of the
2514 	 * checks and call back into the fixup functions where we
2515 	 * might deadlock.
2516 	 */
2517 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2518 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2519 	init_completion(&barr->done);
2520 
2521 	/*
2522 	 * If @target is currently being executed, schedule the
2523 	 * barrier to the worker; otherwise, put it after @target.
2524 	 */
2525 	if (worker)
2526 		head = worker->scheduled.next;
2527 	else {
2528 		unsigned long *bits = work_data_bits(target);
2529 
2530 		head = target->entry.next;
2531 		/* there can already be other linked works, inherit and set */
2532 		linked = *bits & WORK_STRUCT_LINKED;
2533 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2534 	}
2535 
2536 	debug_work_activate(&barr->work);
2537 	insert_work(cwq, &barr->work, head,
2538 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2539 }
2540 
2541 /**
2542  * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2543  * @wq: workqueue being flushed
2544  * @flush_color: new flush color, < 0 for no-op
2545  * @work_color: new work color, < 0 for no-op
2546  *
2547  * Prepare cwqs for workqueue flushing.
2548  *
2549  * If @flush_color is non-negative, flush_color on all cwqs should be
2550  * -1.  If no cwq has in-flight commands at the specified color, all
2551  * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2552  * has in flight commands, its cwq->flush_color is set to
2553  * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2554  * wakeup logic is armed and %true is returned.
2555  *
2556  * The caller should have initialized @wq->first_flusher prior to
2557  * calling this function with non-negative @flush_color.  If
2558  * @flush_color is negative, no flush color update is done and %false
2559  * is returned.
2560  *
2561  * If @work_color is non-negative, all cwqs should have the same
2562  * work_color which is previous to @work_color and all will be
2563  * advanced to @work_color.
2564  *
2565  * CONTEXT:
2566  * mutex_lock(wq->flush_mutex).
2567  *
2568  * RETURNS:
2569  * %true if @flush_color >= 0 and there's something to flush.  %false
2570  * otherwise.
2571  */
2572 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2573 				      int flush_color, int work_color)
2574 {
2575 	bool wait = false;
2576 	unsigned int cpu;
2577 
2578 	if (flush_color >= 0) {
2579 		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2580 		atomic_set(&wq->nr_cwqs_to_flush, 1);
2581 	}
2582 
2583 	for_each_cwq_cpu(cpu, wq) {
2584 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2585 		struct global_cwq *gcwq = cwq->pool->gcwq;
2586 
2587 		spin_lock_irq(&gcwq->lock);
2588 
2589 		if (flush_color >= 0) {
2590 			BUG_ON(cwq->flush_color != -1);
2591 
2592 			if (cwq->nr_in_flight[flush_color]) {
2593 				cwq->flush_color = flush_color;
2594 				atomic_inc(&wq->nr_cwqs_to_flush);
2595 				wait = true;
2596 			}
2597 		}
2598 
2599 		if (work_color >= 0) {
2600 			BUG_ON(work_color != work_next_color(cwq->work_color));
2601 			cwq->work_color = work_color;
2602 		}
2603 
2604 		spin_unlock_irq(&gcwq->lock);
2605 	}
2606 
2607 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2608 		complete(&wq->first_flusher->done);
2609 
2610 	return wait;
2611 }
2612 
2613 /**
2614  * flush_workqueue - ensure that any scheduled work has run to completion.
2615  * @wq: workqueue to flush
2616  *
2617  * Forces execution of the workqueue and blocks until its completion.
2618  * This is typically used in driver shutdown handlers.
2619  *
2620  * We sleep until all works which were queued on entry have been handled,
2621  * but we are not livelocked by new incoming ones.
2622  */
2623 void flush_workqueue(struct workqueue_struct *wq)
2624 {
2625 	struct wq_flusher this_flusher = {
2626 		.list = LIST_HEAD_INIT(this_flusher.list),
2627 		.flush_color = -1,
2628 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2629 	};
2630 	int next_color;
2631 
2632 	lock_map_acquire(&wq->lockdep_map);
2633 	lock_map_release(&wq->lockdep_map);
2634 
2635 	mutex_lock(&wq->flush_mutex);
2636 
2637 	/*
2638 	 * Start-to-wait phase
2639 	 */
2640 	next_color = work_next_color(wq->work_color);
2641 
2642 	if (next_color != wq->flush_color) {
2643 		/*
2644 		 * Color space is not full.  The current work_color
2645 		 * becomes our flush_color and work_color is advanced
2646 		 * by one.
2647 		 */
2648 		BUG_ON(!list_empty(&wq->flusher_overflow));
2649 		this_flusher.flush_color = wq->work_color;
2650 		wq->work_color = next_color;
2651 
2652 		if (!wq->first_flusher) {
2653 			/* no flush in progress, become the first flusher */
2654 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2655 
2656 			wq->first_flusher = &this_flusher;
2657 
2658 			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2659 						       wq->work_color)) {
2660 				/* nothing to flush, done */
2661 				wq->flush_color = next_color;
2662 				wq->first_flusher = NULL;
2663 				goto out_unlock;
2664 			}
2665 		} else {
2666 			/* wait in queue */
2667 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2668 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2669 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2670 		}
2671 	} else {
2672 		/*
2673 		 * Oops, color space is full, wait on overflow queue.
2674 		 * The next flush completion will assign us
2675 		 * flush_color and transfer to flusher_queue.
2676 		 */
2677 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2678 	}
2679 
2680 	mutex_unlock(&wq->flush_mutex);
2681 
2682 	wait_for_completion(&this_flusher.done);
2683 
2684 	/*
2685 	 * Wake-up-and-cascade phase
2686 	 *
2687 	 * First flushers are responsible for cascading flushes and
2688 	 * handling overflow.  Non-first flushers can simply return.
2689 	 */
2690 	if (wq->first_flusher != &this_flusher)
2691 		return;
2692 
2693 	mutex_lock(&wq->flush_mutex);
2694 
2695 	/* we might have raced, check again with mutex held */
2696 	if (wq->first_flusher != &this_flusher)
2697 		goto out_unlock;
2698 
2699 	wq->first_flusher = NULL;
2700 
2701 	BUG_ON(!list_empty(&this_flusher.list));
2702 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2703 
2704 	while (true) {
2705 		struct wq_flusher *next, *tmp;
2706 
2707 		/* complete all the flushers sharing the current flush color */
2708 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2709 			if (next->flush_color != wq->flush_color)
2710 				break;
2711 			list_del_init(&next->list);
2712 			complete(&next->done);
2713 		}
2714 
2715 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2716 		       wq->flush_color != work_next_color(wq->work_color));
2717 
2718 		/* this flush_color is finished, advance by one */
2719 		wq->flush_color = work_next_color(wq->flush_color);
2720 
2721 		/* one color has been freed, handle overflow queue */
2722 		if (!list_empty(&wq->flusher_overflow)) {
2723 			/*
2724 			 * Assign the same color to all overflowed
2725 			 * flushers, advance work_color and append to
2726 			 * flusher_queue.  This is the start-to-wait
2727 			 * phase for these overflowed flushers.
2728 			 */
2729 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2730 				tmp->flush_color = wq->work_color;
2731 
2732 			wq->work_color = work_next_color(wq->work_color);
2733 
2734 			list_splice_tail_init(&wq->flusher_overflow,
2735 					      &wq->flusher_queue);
2736 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2737 		}
2738 
2739 		if (list_empty(&wq->flusher_queue)) {
2740 			BUG_ON(wq->flush_color != wq->work_color);
2741 			break;
2742 		}
2743 
2744 		/*
2745 		 * Need to flush more colors.  Make the next flusher
2746 		 * the new first flusher and arm cwqs.
2747 		 */
2748 		BUG_ON(wq->flush_color == wq->work_color);
2749 		BUG_ON(wq->flush_color != next->flush_color);
2750 
2751 		list_del_init(&next->list);
2752 		wq->first_flusher = next;
2753 
2754 		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2755 			break;
2756 
2757 		/*
2758 		 * Meh... this color is already done, clear first
2759 		 * flusher and repeat cascading.
2760 		 */
2761 		wq->first_flusher = NULL;
2762 	}
2763 
2764 out_unlock:
2765 	mutex_unlock(&wq->flush_mutex);
2766 }
2767 EXPORT_SYMBOL_GPL(flush_workqueue);
2768 
2769 /**
2770  * drain_workqueue - drain a workqueue
2771  * @wq: workqueue to drain
2772  *
2773  * Wait until the workqueue becomes empty.  While draining is in progress,
2774  * only chain queueing is allowed.  IOW, only currently pending or running
2775  * work items on @wq can queue further work items on it.  @wq is flushed
2776  * repeatedly until it becomes empty.  The number of flushing is detemined
2777  * by the depth of chaining and should be relatively short.  Whine if it
2778  * takes too long.
2779  */
2780 void drain_workqueue(struct workqueue_struct *wq)
2781 {
2782 	unsigned int flush_cnt = 0;
2783 	unsigned int cpu;
2784 
2785 	/*
2786 	 * __queue_work() needs to test whether there are drainers, is much
2787 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2788 	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2789 	 */
2790 	spin_lock(&workqueue_lock);
2791 	if (!wq->nr_drainers++)
2792 		wq->flags |= WQ_DRAINING;
2793 	spin_unlock(&workqueue_lock);
2794 reflush:
2795 	flush_workqueue(wq);
2796 
2797 	for_each_cwq_cpu(cpu, wq) {
2798 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2799 		bool drained;
2800 
2801 		spin_lock_irq(&cwq->pool->gcwq->lock);
2802 		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2803 		spin_unlock_irq(&cwq->pool->gcwq->lock);
2804 
2805 		if (drained)
2806 			continue;
2807 
2808 		if (++flush_cnt == 10 ||
2809 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2810 			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2811 				wq->name, flush_cnt);
2812 		goto reflush;
2813 	}
2814 
2815 	spin_lock(&workqueue_lock);
2816 	if (!--wq->nr_drainers)
2817 		wq->flags &= ~WQ_DRAINING;
2818 	spin_unlock(&workqueue_lock);
2819 }
2820 EXPORT_SYMBOL_GPL(drain_workqueue);
2821 
2822 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2823 {
2824 	struct worker *worker = NULL;
2825 	struct global_cwq *gcwq;
2826 	struct cpu_workqueue_struct *cwq;
2827 
2828 	might_sleep();
2829 	gcwq = get_work_gcwq(work);
2830 	if (!gcwq)
2831 		return false;
2832 
2833 	spin_lock_irq(&gcwq->lock);
2834 	if (!list_empty(&work->entry)) {
2835 		/*
2836 		 * See the comment near try_to_grab_pending()->smp_rmb().
2837 		 * If it was re-queued to a different gcwq under us, we
2838 		 * are not going to wait.
2839 		 */
2840 		smp_rmb();
2841 		cwq = get_work_cwq(work);
2842 		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2843 			goto already_gone;
2844 	} else {
2845 		worker = find_worker_executing_work(gcwq, work);
2846 		if (!worker)
2847 			goto already_gone;
2848 		cwq = worker->current_cwq;
2849 	}
2850 
2851 	insert_wq_barrier(cwq, barr, work, worker);
2852 	spin_unlock_irq(&gcwq->lock);
2853 
2854 	/*
2855 	 * If @max_active is 1 or rescuer is in use, flushing another work
2856 	 * item on the same workqueue may lead to deadlock.  Make sure the
2857 	 * flusher is not running on the same workqueue by verifying write
2858 	 * access.
2859 	 */
2860 	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2861 		lock_map_acquire(&cwq->wq->lockdep_map);
2862 	else
2863 		lock_map_acquire_read(&cwq->wq->lockdep_map);
2864 	lock_map_release(&cwq->wq->lockdep_map);
2865 
2866 	return true;
2867 already_gone:
2868 	spin_unlock_irq(&gcwq->lock);
2869 	return false;
2870 }
2871 
2872 /**
2873  * flush_work - wait for a work to finish executing the last queueing instance
2874  * @work: the work to flush
2875  *
2876  * Wait until @work has finished execution.  @work is guaranteed to be idle
2877  * on return if it hasn't been requeued since flush started.
2878  *
2879  * RETURNS:
2880  * %true if flush_work() waited for the work to finish execution,
2881  * %false if it was already idle.
2882  */
2883 bool flush_work(struct work_struct *work)
2884 {
2885 	struct wq_barrier barr;
2886 
2887 	lock_map_acquire(&work->lockdep_map);
2888 	lock_map_release(&work->lockdep_map);
2889 
2890 	if (start_flush_work(work, &barr)) {
2891 		wait_for_completion(&barr.done);
2892 		destroy_work_on_stack(&barr.work);
2893 		return true;
2894 	} else {
2895 		return false;
2896 	}
2897 }
2898 EXPORT_SYMBOL_GPL(flush_work);
2899 
2900 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2901 {
2902 	unsigned long flags;
2903 	int ret;
2904 
2905 	do {
2906 		ret = try_to_grab_pending(work, is_dwork, &flags);
2907 		/*
2908 		 * If someone else is canceling, wait for the same event it
2909 		 * would be waiting for before retrying.
2910 		 */
2911 		if (unlikely(ret == -ENOENT))
2912 			flush_work(work);
2913 	} while (unlikely(ret < 0));
2914 
2915 	/* tell other tasks trying to grab @work to back off */
2916 	mark_work_canceling(work);
2917 	local_irq_restore(flags);
2918 
2919 	flush_work(work);
2920 	clear_work_data(work);
2921 	return ret;
2922 }
2923 
2924 /**
2925  * cancel_work_sync - cancel a work and wait for it to finish
2926  * @work: the work to cancel
2927  *
2928  * Cancel @work and wait for its execution to finish.  This function
2929  * can be used even if the work re-queues itself or migrates to
2930  * another workqueue.  On return from this function, @work is
2931  * guaranteed to be not pending or executing on any CPU.
2932  *
2933  * cancel_work_sync(&delayed_work->work) must not be used for
2934  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2935  *
2936  * The caller must ensure that the workqueue on which @work was last
2937  * queued can't be destroyed before this function returns.
2938  *
2939  * RETURNS:
2940  * %true if @work was pending, %false otherwise.
2941  */
2942 bool cancel_work_sync(struct work_struct *work)
2943 {
2944 	return __cancel_work_timer(work, false);
2945 }
2946 EXPORT_SYMBOL_GPL(cancel_work_sync);
2947 
2948 /**
2949  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2950  * @dwork: the delayed work to flush
2951  *
2952  * Delayed timer is cancelled and the pending work is queued for
2953  * immediate execution.  Like flush_work(), this function only
2954  * considers the last queueing instance of @dwork.
2955  *
2956  * RETURNS:
2957  * %true if flush_work() waited for the work to finish execution,
2958  * %false if it was already idle.
2959  */
2960 bool flush_delayed_work(struct delayed_work *dwork)
2961 {
2962 	local_irq_disable();
2963 	if (del_timer_sync(&dwork->timer))
2964 		__queue_work(dwork->cpu,
2965 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2966 	local_irq_enable();
2967 	return flush_work(&dwork->work);
2968 }
2969 EXPORT_SYMBOL(flush_delayed_work);
2970 
2971 /**
2972  * cancel_delayed_work - cancel a delayed work
2973  * @dwork: delayed_work to cancel
2974  *
2975  * Kill off a pending delayed_work.  Returns %true if @dwork was pending
2976  * and canceled; %false if wasn't pending.  Note that the work callback
2977  * function may still be running on return, unless it returns %true and the
2978  * work doesn't re-arm itself.  Explicitly flush or use
2979  * cancel_delayed_work_sync() to wait on it.
2980  *
2981  * This function is safe to call from any context including IRQ handler.
2982  */
2983 bool cancel_delayed_work(struct delayed_work *dwork)
2984 {
2985 	unsigned long flags;
2986 	int ret;
2987 
2988 	do {
2989 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2990 	} while (unlikely(ret == -EAGAIN));
2991 
2992 	if (unlikely(ret < 0))
2993 		return false;
2994 
2995 	set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
2996 	local_irq_restore(flags);
2997 	return ret;
2998 }
2999 EXPORT_SYMBOL(cancel_delayed_work);
3000 
3001 /**
3002  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3003  * @dwork: the delayed work cancel
3004  *
3005  * This is cancel_work_sync() for delayed works.
3006  *
3007  * RETURNS:
3008  * %true if @dwork was pending, %false otherwise.
3009  */
3010 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3011 {
3012 	return __cancel_work_timer(&dwork->work, true);
3013 }
3014 EXPORT_SYMBOL(cancel_delayed_work_sync);
3015 
3016 /**
3017  * schedule_work_on - put work task on a specific cpu
3018  * @cpu: cpu to put the work task on
3019  * @work: job to be done
3020  *
3021  * This puts a job on a specific cpu
3022  */
3023 bool schedule_work_on(int cpu, struct work_struct *work)
3024 {
3025 	return queue_work_on(cpu, system_wq, work);
3026 }
3027 EXPORT_SYMBOL(schedule_work_on);
3028 
3029 /**
3030  * schedule_work - put work task in global workqueue
3031  * @work: job to be done
3032  *
3033  * Returns %false if @work was already on the kernel-global workqueue and
3034  * %true otherwise.
3035  *
3036  * This puts a job in the kernel-global workqueue if it was not already
3037  * queued and leaves it in the same position on the kernel-global
3038  * workqueue otherwise.
3039  */
3040 bool schedule_work(struct work_struct *work)
3041 {
3042 	return queue_work(system_wq, work);
3043 }
3044 EXPORT_SYMBOL(schedule_work);
3045 
3046 /**
3047  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3048  * @cpu: cpu to use
3049  * @dwork: job to be done
3050  * @delay: number of jiffies to wait
3051  *
3052  * After waiting for a given time this puts a job in the kernel-global
3053  * workqueue on the specified CPU.
3054  */
3055 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3056 			      unsigned long delay)
3057 {
3058 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3059 }
3060 EXPORT_SYMBOL(schedule_delayed_work_on);
3061 
3062 /**
3063  * schedule_delayed_work - put work task in global workqueue after delay
3064  * @dwork: job to be done
3065  * @delay: number of jiffies to wait or 0 for immediate execution
3066  *
3067  * After waiting for a given time this puts a job in the kernel-global
3068  * workqueue.
3069  */
3070 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
3071 {
3072 	return queue_delayed_work(system_wq, dwork, delay);
3073 }
3074 EXPORT_SYMBOL(schedule_delayed_work);
3075 
3076 /**
3077  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3078  * @func: the function to call
3079  *
3080  * schedule_on_each_cpu() executes @func on each online CPU using the
3081  * system workqueue and blocks until all CPUs have completed.
3082  * schedule_on_each_cpu() is very slow.
3083  *
3084  * RETURNS:
3085  * 0 on success, -errno on failure.
3086  */
3087 int schedule_on_each_cpu(work_func_t func)
3088 {
3089 	int cpu;
3090 	struct work_struct __percpu *works;
3091 
3092 	works = alloc_percpu(struct work_struct);
3093 	if (!works)
3094 		return -ENOMEM;
3095 
3096 	get_online_cpus();
3097 
3098 	for_each_online_cpu(cpu) {
3099 		struct work_struct *work = per_cpu_ptr(works, cpu);
3100 
3101 		INIT_WORK(work, func);
3102 		schedule_work_on(cpu, work);
3103 	}
3104 
3105 	for_each_online_cpu(cpu)
3106 		flush_work(per_cpu_ptr(works, cpu));
3107 
3108 	put_online_cpus();
3109 	free_percpu(works);
3110 	return 0;
3111 }
3112 
3113 /**
3114  * flush_scheduled_work - ensure that any scheduled work has run to completion.
3115  *
3116  * Forces execution of the kernel-global workqueue and blocks until its
3117  * completion.
3118  *
3119  * Think twice before calling this function!  It's very easy to get into
3120  * trouble if you don't take great care.  Either of the following situations
3121  * will lead to deadlock:
3122  *
3123  *	One of the work items currently on the workqueue needs to acquire
3124  *	a lock held by your code or its caller.
3125  *
3126  *	Your code is running in the context of a work routine.
3127  *
3128  * They will be detected by lockdep when they occur, but the first might not
3129  * occur very often.  It depends on what work items are on the workqueue and
3130  * what locks they need, which you have no control over.
3131  *
3132  * In most situations flushing the entire workqueue is overkill; you merely
3133  * need to know that a particular work item isn't queued and isn't running.
3134  * In such cases you should use cancel_delayed_work_sync() or
3135  * cancel_work_sync() instead.
3136  */
3137 void flush_scheduled_work(void)
3138 {
3139 	flush_workqueue(system_wq);
3140 }
3141 EXPORT_SYMBOL(flush_scheduled_work);
3142 
3143 /**
3144  * execute_in_process_context - reliably execute the routine with user context
3145  * @fn:		the function to execute
3146  * @ew:		guaranteed storage for the execute work structure (must
3147  *		be available when the work executes)
3148  *
3149  * Executes the function immediately if process context is available,
3150  * otherwise schedules the function for delayed execution.
3151  *
3152  * Returns:	0 - function was executed
3153  *		1 - function was scheduled for execution
3154  */
3155 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3156 {
3157 	if (!in_interrupt()) {
3158 		fn(&ew->work);
3159 		return 0;
3160 	}
3161 
3162 	INIT_WORK(&ew->work, fn);
3163 	schedule_work(&ew->work);
3164 
3165 	return 1;
3166 }
3167 EXPORT_SYMBOL_GPL(execute_in_process_context);
3168 
3169 int keventd_up(void)
3170 {
3171 	return system_wq != NULL;
3172 }
3173 
3174 static int alloc_cwqs(struct workqueue_struct *wq)
3175 {
3176 	/*
3177 	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3178 	 * Make sure that the alignment isn't lower than that of
3179 	 * unsigned long long.
3180 	 */
3181 	const size_t size = sizeof(struct cpu_workqueue_struct);
3182 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3183 				   __alignof__(unsigned long long));
3184 
3185 	if (!(wq->flags & WQ_UNBOUND))
3186 		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3187 	else {
3188 		void *ptr;
3189 
3190 		/*
3191 		 * Allocate enough room to align cwq and put an extra
3192 		 * pointer at the end pointing back to the originally
3193 		 * allocated pointer which will be used for free.
3194 		 */
3195 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3196 		if (ptr) {
3197 			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3198 			*(void **)(wq->cpu_wq.single + 1) = ptr;
3199 		}
3200 	}
3201 
3202 	/* just in case, make sure it's actually aligned */
3203 	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3204 	return wq->cpu_wq.v ? 0 : -ENOMEM;
3205 }
3206 
3207 static void free_cwqs(struct workqueue_struct *wq)
3208 {
3209 	if (!(wq->flags & WQ_UNBOUND))
3210 		free_percpu(wq->cpu_wq.pcpu);
3211 	else if (wq->cpu_wq.single) {
3212 		/* the pointer to free is stored right after the cwq */
3213 		kfree(*(void **)(wq->cpu_wq.single + 1));
3214 	}
3215 }
3216 
3217 static int wq_clamp_max_active(int max_active, unsigned int flags,
3218 			       const char *name)
3219 {
3220 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3221 
3222 	if (max_active < 1 || max_active > lim)
3223 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3224 			max_active, name, 1, lim);
3225 
3226 	return clamp_val(max_active, 1, lim);
3227 }
3228 
3229 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3230 					       unsigned int flags,
3231 					       int max_active,
3232 					       struct lock_class_key *key,
3233 					       const char *lock_name, ...)
3234 {
3235 	va_list args, args1;
3236 	struct workqueue_struct *wq;
3237 	unsigned int cpu;
3238 	size_t namelen;
3239 
3240 	/* determine namelen, allocate wq and format name */
3241 	va_start(args, lock_name);
3242 	va_copy(args1, args);
3243 	namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3244 
3245 	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3246 	if (!wq)
3247 		goto err;
3248 
3249 	vsnprintf(wq->name, namelen, fmt, args1);
3250 	va_end(args);
3251 	va_end(args1);
3252 
3253 	/*
3254 	 * Workqueues which may be used during memory reclaim should
3255 	 * have a rescuer to guarantee forward progress.
3256 	 */
3257 	if (flags & WQ_MEM_RECLAIM)
3258 		flags |= WQ_RESCUER;
3259 
3260 	max_active = max_active ?: WQ_DFL_ACTIVE;
3261 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3262 
3263 	/* init wq */
3264 	wq->flags = flags;
3265 	wq->saved_max_active = max_active;
3266 	mutex_init(&wq->flush_mutex);
3267 	atomic_set(&wq->nr_cwqs_to_flush, 0);
3268 	INIT_LIST_HEAD(&wq->flusher_queue);
3269 	INIT_LIST_HEAD(&wq->flusher_overflow);
3270 
3271 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3272 	INIT_LIST_HEAD(&wq->list);
3273 
3274 	if (alloc_cwqs(wq) < 0)
3275 		goto err;
3276 
3277 	for_each_cwq_cpu(cpu, wq) {
3278 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3279 		struct global_cwq *gcwq = get_gcwq(cpu);
3280 		int pool_idx = (bool)(flags & WQ_HIGHPRI);
3281 
3282 		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3283 		cwq->pool = &gcwq->pools[pool_idx];
3284 		cwq->wq = wq;
3285 		cwq->flush_color = -1;
3286 		cwq->max_active = max_active;
3287 		INIT_LIST_HEAD(&cwq->delayed_works);
3288 	}
3289 
3290 	if (flags & WQ_RESCUER) {
3291 		struct worker *rescuer;
3292 
3293 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3294 			goto err;
3295 
3296 		wq->rescuer = rescuer = alloc_worker();
3297 		if (!rescuer)
3298 			goto err;
3299 
3300 		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3301 					       wq->name);
3302 		if (IS_ERR(rescuer->task))
3303 			goto err;
3304 
3305 		rescuer->task->flags |= PF_THREAD_BOUND;
3306 		wake_up_process(rescuer->task);
3307 	}
3308 
3309 	/*
3310 	 * workqueue_lock protects global freeze state and workqueues
3311 	 * list.  Grab it, set max_active accordingly and add the new
3312 	 * workqueue to workqueues list.
3313 	 */
3314 	spin_lock(&workqueue_lock);
3315 
3316 	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3317 		for_each_cwq_cpu(cpu, wq)
3318 			get_cwq(cpu, wq)->max_active = 0;
3319 
3320 	list_add(&wq->list, &workqueues);
3321 
3322 	spin_unlock(&workqueue_lock);
3323 
3324 	return wq;
3325 err:
3326 	if (wq) {
3327 		free_cwqs(wq);
3328 		free_mayday_mask(wq->mayday_mask);
3329 		kfree(wq->rescuer);
3330 		kfree(wq);
3331 	}
3332 	return NULL;
3333 }
3334 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3335 
3336 /**
3337  * destroy_workqueue - safely terminate a workqueue
3338  * @wq: target workqueue
3339  *
3340  * Safely destroy a workqueue. All work currently pending will be done first.
3341  */
3342 void destroy_workqueue(struct workqueue_struct *wq)
3343 {
3344 	unsigned int cpu;
3345 
3346 	/* drain it before proceeding with destruction */
3347 	drain_workqueue(wq);
3348 
3349 	/*
3350 	 * wq list is used to freeze wq, remove from list after
3351 	 * flushing is complete in case freeze races us.
3352 	 */
3353 	spin_lock(&workqueue_lock);
3354 	list_del(&wq->list);
3355 	spin_unlock(&workqueue_lock);
3356 
3357 	/* sanity check */
3358 	for_each_cwq_cpu(cpu, wq) {
3359 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3360 		int i;
3361 
3362 		for (i = 0; i < WORK_NR_COLORS; i++)
3363 			BUG_ON(cwq->nr_in_flight[i]);
3364 		BUG_ON(cwq->nr_active);
3365 		BUG_ON(!list_empty(&cwq->delayed_works));
3366 	}
3367 
3368 	if (wq->flags & WQ_RESCUER) {
3369 		kthread_stop(wq->rescuer->task);
3370 		free_mayday_mask(wq->mayday_mask);
3371 		kfree(wq->rescuer);
3372 	}
3373 
3374 	free_cwqs(wq);
3375 	kfree(wq);
3376 }
3377 EXPORT_SYMBOL_GPL(destroy_workqueue);
3378 
3379 /**
3380  * cwq_set_max_active - adjust max_active of a cwq
3381  * @cwq: target cpu_workqueue_struct
3382  * @max_active: new max_active value.
3383  *
3384  * Set @cwq->max_active to @max_active and activate delayed works if
3385  * increased.
3386  *
3387  * CONTEXT:
3388  * spin_lock_irq(gcwq->lock).
3389  */
3390 static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3391 {
3392 	cwq->max_active = max_active;
3393 
3394 	while (!list_empty(&cwq->delayed_works) &&
3395 	       cwq->nr_active < cwq->max_active)
3396 		cwq_activate_first_delayed(cwq);
3397 }
3398 
3399 /**
3400  * workqueue_set_max_active - adjust max_active of a workqueue
3401  * @wq: target workqueue
3402  * @max_active: new max_active value.
3403  *
3404  * Set max_active of @wq to @max_active.
3405  *
3406  * CONTEXT:
3407  * Don't call from IRQ context.
3408  */
3409 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3410 {
3411 	unsigned int cpu;
3412 
3413 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3414 
3415 	spin_lock(&workqueue_lock);
3416 
3417 	wq->saved_max_active = max_active;
3418 
3419 	for_each_cwq_cpu(cpu, wq) {
3420 		struct global_cwq *gcwq = get_gcwq(cpu);
3421 
3422 		spin_lock_irq(&gcwq->lock);
3423 
3424 		if (!(wq->flags & WQ_FREEZABLE) ||
3425 		    !(gcwq->flags & GCWQ_FREEZING))
3426 			cwq_set_max_active(get_cwq(gcwq->cpu, wq), max_active);
3427 
3428 		spin_unlock_irq(&gcwq->lock);
3429 	}
3430 
3431 	spin_unlock(&workqueue_lock);
3432 }
3433 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3434 
3435 /**
3436  * workqueue_congested - test whether a workqueue is congested
3437  * @cpu: CPU in question
3438  * @wq: target workqueue
3439  *
3440  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3441  * no synchronization around this function and the test result is
3442  * unreliable and only useful as advisory hints or for debugging.
3443  *
3444  * RETURNS:
3445  * %true if congested, %false otherwise.
3446  */
3447 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3448 {
3449 	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3450 
3451 	return !list_empty(&cwq->delayed_works);
3452 }
3453 EXPORT_SYMBOL_GPL(workqueue_congested);
3454 
3455 /**
3456  * work_cpu - return the last known associated cpu for @work
3457  * @work: the work of interest
3458  *
3459  * RETURNS:
3460  * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3461  */
3462 unsigned int work_cpu(struct work_struct *work)
3463 {
3464 	struct global_cwq *gcwq = get_work_gcwq(work);
3465 
3466 	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3467 }
3468 EXPORT_SYMBOL_GPL(work_cpu);
3469 
3470 /**
3471  * work_busy - test whether a work is currently pending or running
3472  * @work: the work to be tested
3473  *
3474  * Test whether @work is currently pending or running.  There is no
3475  * synchronization around this function and the test result is
3476  * unreliable and only useful as advisory hints or for debugging.
3477  * Especially for reentrant wqs, the pending state might hide the
3478  * running state.
3479  *
3480  * RETURNS:
3481  * OR'd bitmask of WORK_BUSY_* bits.
3482  */
3483 unsigned int work_busy(struct work_struct *work)
3484 {
3485 	struct global_cwq *gcwq = get_work_gcwq(work);
3486 	unsigned long flags;
3487 	unsigned int ret = 0;
3488 
3489 	if (!gcwq)
3490 		return 0;
3491 
3492 	spin_lock_irqsave(&gcwq->lock, flags);
3493 
3494 	if (work_pending(work))
3495 		ret |= WORK_BUSY_PENDING;
3496 	if (find_worker_executing_work(gcwq, work))
3497 		ret |= WORK_BUSY_RUNNING;
3498 
3499 	spin_unlock_irqrestore(&gcwq->lock, flags);
3500 
3501 	return ret;
3502 }
3503 EXPORT_SYMBOL_GPL(work_busy);
3504 
3505 /*
3506  * CPU hotplug.
3507  *
3508  * There are two challenges in supporting CPU hotplug.  Firstly, there
3509  * are a lot of assumptions on strong associations among work, cwq and
3510  * gcwq which make migrating pending and scheduled works very
3511  * difficult to implement without impacting hot paths.  Secondly,
3512  * gcwqs serve mix of short, long and very long running works making
3513  * blocked draining impractical.
3514  *
3515  * This is solved by allowing a gcwq to be disassociated from the CPU
3516  * running as an unbound one and allowing it to be reattached later if the
3517  * cpu comes back online.
3518  */
3519 
3520 /* claim manager positions of all pools */
3521 static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
3522 {
3523 	struct worker_pool *pool;
3524 
3525 	for_each_worker_pool(pool, gcwq)
3526 		mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
3527 	spin_lock_irq(&gcwq->lock);
3528 }
3529 
3530 /* release manager positions */
3531 static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
3532 {
3533 	struct worker_pool *pool;
3534 
3535 	spin_unlock_irq(&gcwq->lock);
3536 	for_each_worker_pool(pool, gcwq)
3537 		mutex_unlock(&pool->assoc_mutex);
3538 }
3539 
3540 static void gcwq_unbind_fn(struct work_struct *work)
3541 {
3542 	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3543 	struct worker_pool *pool;
3544 	struct worker *worker;
3545 	struct hlist_node *pos;
3546 	int i;
3547 
3548 	BUG_ON(gcwq->cpu != smp_processor_id());
3549 
3550 	gcwq_claim_assoc_and_lock(gcwq);
3551 
3552 	/*
3553 	 * We've claimed all manager positions.  Make all workers unbound
3554 	 * and set DISASSOCIATED.  Before this, all workers except for the
3555 	 * ones which are still executing works from before the last CPU
3556 	 * down must be on the cpu.  After this, they may become diasporas.
3557 	 */
3558 	for_each_worker_pool(pool, gcwq)
3559 		list_for_each_entry(worker, &pool->idle_list, entry)
3560 			worker->flags |= WORKER_UNBOUND;
3561 
3562 	for_each_busy_worker(worker, i, pos, gcwq)
3563 		worker->flags |= WORKER_UNBOUND;
3564 
3565 	gcwq->flags |= GCWQ_DISASSOCIATED;
3566 
3567 	gcwq_release_assoc_and_unlock(gcwq);
3568 
3569 	/*
3570 	 * Call schedule() so that we cross rq->lock and thus can guarantee
3571 	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
3572 	 * as scheduler callbacks may be invoked from other cpus.
3573 	 */
3574 	schedule();
3575 
3576 	/*
3577 	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
3578 	 * nr_running stays zero and need_more_worker() and keep_working()
3579 	 * are always true as long as the worklist is not empty.  @gcwq now
3580 	 * behaves as unbound (in terms of concurrency management) gcwq
3581 	 * which is served by workers tied to the CPU.
3582 	 *
3583 	 * On return from this function, the current worker would trigger
3584 	 * unbound chain execution of pending work items if other workers
3585 	 * didn't already.
3586 	 */
3587 	for_each_worker_pool(pool, gcwq)
3588 		atomic_set(get_pool_nr_running(pool), 0);
3589 }
3590 
3591 /*
3592  * Workqueues should be brought up before normal priority CPU notifiers.
3593  * This will be registered high priority CPU notifier.
3594  */
3595 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3596 					       unsigned long action,
3597 					       void *hcpu)
3598 {
3599 	unsigned int cpu = (unsigned long)hcpu;
3600 	struct global_cwq *gcwq = get_gcwq(cpu);
3601 	struct worker_pool *pool;
3602 
3603 	switch (action & ~CPU_TASKS_FROZEN) {
3604 	case CPU_UP_PREPARE:
3605 		for_each_worker_pool(pool, gcwq) {
3606 			struct worker *worker;
3607 
3608 			if (pool->nr_workers)
3609 				continue;
3610 
3611 			worker = create_worker(pool);
3612 			if (!worker)
3613 				return NOTIFY_BAD;
3614 
3615 			spin_lock_irq(&gcwq->lock);
3616 			start_worker(worker);
3617 			spin_unlock_irq(&gcwq->lock);
3618 		}
3619 		break;
3620 
3621 	case CPU_DOWN_FAILED:
3622 	case CPU_ONLINE:
3623 		gcwq_claim_assoc_and_lock(gcwq);
3624 		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3625 		rebind_workers(gcwq);
3626 		gcwq_release_assoc_and_unlock(gcwq);
3627 		break;
3628 	}
3629 	return NOTIFY_OK;
3630 }
3631 
3632 /*
3633  * Workqueues should be brought down after normal priority CPU notifiers.
3634  * This will be registered as low priority CPU notifier.
3635  */
3636 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3637 						 unsigned long action,
3638 						 void *hcpu)
3639 {
3640 	unsigned int cpu = (unsigned long)hcpu;
3641 	struct work_struct unbind_work;
3642 
3643 	switch (action & ~CPU_TASKS_FROZEN) {
3644 	case CPU_DOWN_PREPARE:
3645 		/* unbinding should happen on the local CPU */
3646 		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3647 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
3648 		flush_work(&unbind_work);
3649 		break;
3650 	}
3651 	return NOTIFY_OK;
3652 }
3653 
3654 #ifdef CONFIG_SMP
3655 
3656 struct work_for_cpu {
3657 	struct work_struct work;
3658 	long (*fn)(void *);
3659 	void *arg;
3660 	long ret;
3661 };
3662 
3663 static void work_for_cpu_fn(struct work_struct *work)
3664 {
3665 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3666 
3667 	wfc->ret = wfc->fn(wfc->arg);
3668 }
3669 
3670 /**
3671  * work_on_cpu - run a function in user context on a particular cpu
3672  * @cpu: the cpu to run on
3673  * @fn: the function to run
3674  * @arg: the function arg
3675  *
3676  * This will return the value @fn returns.
3677  * It is up to the caller to ensure that the cpu doesn't go offline.
3678  * The caller must not hold any locks which would prevent @fn from completing.
3679  */
3680 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3681 {
3682 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3683 
3684 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3685 	schedule_work_on(cpu, &wfc.work);
3686 	flush_work(&wfc.work);
3687 	return wfc.ret;
3688 }
3689 EXPORT_SYMBOL_GPL(work_on_cpu);
3690 #endif /* CONFIG_SMP */
3691 
3692 #ifdef CONFIG_FREEZER
3693 
3694 /**
3695  * freeze_workqueues_begin - begin freezing workqueues
3696  *
3697  * Start freezing workqueues.  After this function returns, all freezable
3698  * workqueues will queue new works to their frozen_works list instead of
3699  * gcwq->worklist.
3700  *
3701  * CONTEXT:
3702  * Grabs and releases workqueue_lock and gcwq->lock's.
3703  */
3704 void freeze_workqueues_begin(void)
3705 {
3706 	unsigned int cpu;
3707 
3708 	spin_lock(&workqueue_lock);
3709 
3710 	BUG_ON(workqueue_freezing);
3711 	workqueue_freezing = true;
3712 
3713 	for_each_gcwq_cpu(cpu) {
3714 		struct global_cwq *gcwq = get_gcwq(cpu);
3715 		struct workqueue_struct *wq;
3716 
3717 		spin_lock_irq(&gcwq->lock);
3718 
3719 		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3720 		gcwq->flags |= GCWQ_FREEZING;
3721 
3722 		list_for_each_entry(wq, &workqueues, list) {
3723 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3724 
3725 			if (cwq && wq->flags & WQ_FREEZABLE)
3726 				cwq->max_active = 0;
3727 		}
3728 
3729 		spin_unlock_irq(&gcwq->lock);
3730 	}
3731 
3732 	spin_unlock(&workqueue_lock);
3733 }
3734 
3735 /**
3736  * freeze_workqueues_busy - are freezable workqueues still busy?
3737  *
3738  * Check whether freezing is complete.  This function must be called
3739  * between freeze_workqueues_begin() and thaw_workqueues().
3740  *
3741  * CONTEXT:
3742  * Grabs and releases workqueue_lock.
3743  *
3744  * RETURNS:
3745  * %true if some freezable workqueues are still busy.  %false if freezing
3746  * is complete.
3747  */
3748 bool freeze_workqueues_busy(void)
3749 {
3750 	unsigned int cpu;
3751 	bool busy = false;
3752 
3753 	spin_lock(&workqueue_lock);
3754 
3755 	BUG_ON(!workqueue_freezing);
3756 
3757 	for_each_gcwq_cpu(cpu) {
3758 		struct workqueue_struct *wq;
3759 		/*
3760 		 * nr_active is monotonically decreasing.  It's safe
3761 		 * to peek without lock.
3762 		 */
3763 		list_for_each_entry(wq, &workqueues, list) {
3764 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3765 
3766 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3767 				continue;
3768 
3769 			BUG_ON(cwq->nr_active < 0);
3770 			if (cwq->nr_active) {
3771 				busy = true;
3772 				goto out_unlock;
3773 			}
3774 		}
3775 	}
3776 out_unlock:
3777 	spin_unlock(&workqueue_lock);
3778 	return busy;
3779 }
3780 
3781 /**
3782  * thaw_workqueues - thaw workqueues
3783  *
3784  * Thaw workqueues.  Normal queueing is restored and all collected
3785  * frozen works are transferred to their respective gcwq worklists.
3786  *
3787  * CONTEXT:
3788  * Grabs and releases workqueue_lock and gcwq->lock's.
3789  */
3790 void thaw_workqueues(void)
3791 {
3792 	unsigned int cpu;
3793 
3794 	spin_lock(&workqueue_lock);
3795 
3796 	if (!workqueue_freezing)
3797 		goto out_unlock;
3798 
3799 	for_each_gcwq_cpu(cpu) {
3800 		struct global_cwq *gcwq = get_gcwq(cpu);
3801 		struct worker_pool *pool;
3802 		struct workqueue_struct *wq;
3803 
3804 		spin_lock_irq(&gcwq->lock);
3805 
3806 		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3807 		gcwq->flags &= ~GCWQ_FREEZING;
3808 
3809 		list_for_each_entry(wq, &workqueues, list) {
3810 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3811 
3812 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3813 				continue;
3814 
3815 			/* restore max_active and repopulate worklist */
3816 			cwq_set_max_active(cwq, wq->saved_max_active);
3817 		}
3818 
3819 		for_each_worker_pool(pool, gcwq)
3820 			wake_up_worker(pool);
3821 
3822 		spin_unlock_irq(&gcwq->lock);
3823 	}
3824 
3825 	workqueue_freezing = false;
3826 out_unlock:
3827 	spin_unlock(&workqueue_lock);
3828 }
3829 #endif /* CONFIG_FREEZER */
3830 
3831 static int __init init_workqueues(void)
3832 {
3833 	unsigned int cpu;
3834 	int i;
3835 
3836 	/* make sure we have enough bits for OFFQ CPU number */
3837 	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3838 		     WORK_CPU_LAST);
3839 
3840 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3841 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3842 
3843 	/* initialize gcwqs */
3844 	for_each_gcwq_cpu(cpu) {
3845 		struct global_cwq *gcwq = get_gcwq(cpu);
3846 		struct worker_pool *pool;
3847 
3848 		spin_lock_init(&gcwq->lock);
3849 		gcwq->cpu = cpu;
3850 		gcwq->flags |= GCWQ_DISASSOCIATED;
3851 
3852 		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3853 			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3854 
3855 		for_each_worker_pool(pool, gcwq) {
3856 			pool->gcwq = gcwq;
3857 			INIT_LIST_HEAD(&pool->worklist);
3858 			INIT_LIST_HEAD(&pool->idle_list);
3859 
3860 			init_timer_deferrable(&pool->idle_timer);
3861 			pool->idle_timer.function = idle_worker_timeout;
3862 			pool->idle_timer.data = (unsigned long)pool;
3863 
3864 			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3865 				    (unsigned long)pool);
3866 
3867 			mutex_init(&pool->assoc_mutex);
3868 			ida_init(&pool->worker_ida);
3869 		}
3870 	}
3871 
3872 	/* create the initial worker */
3873 	for_each_online_gcwq_cpu(cpu) {
3874 		struct global_cwq *gcwq = get_gcwq(cpu);
3875 		struct worker_pool *pool;
3876 
3877 		if (cpu != WORK_CPU_UNBOUND)
3878 			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3879 
3880 		for_each_worker_pool(pool, gcwq) {
3881 			struct worker *worker;
3882 
3883 			worker = create_worker(pool);
3884 			BUG_ON(!worker);
3885 			spin_lock_irq(&gcwq->lock);
3886 			start_worker(worker);
3887 			spin_unlock_irq(&gcwq->lock);
3888 		}
3889 	}
3890 
3891 	system_wq = alloc_workqueue("events", 0, 0);
3892 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3893 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3894 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3895 					    WQ_UNBOUND_MAX_ACTIVE);
3896 	system_freezable_wq = alloc_workqueue("events_freezable",
3897 					      WQ_FREEZABLE, 0);
3898 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3899 	       !system_unbound_wq || !system_freezable_wq);
3900 	return 0;
3901 }
3902 early_initcall(init_workqueues);
3903