1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/core-api/workqueue.rst for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * attach_mutex to avoid changing binding state while 69 * worker_attach_to_pool() is in progress. 70 */ 71 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 73 74 /* worker flags */ 75 WORKER_DIE = 1 << 1, /* die die die */ 76 WORKER_IDLE = 1 << 2, /* is idle */ 77 WORKER_PREP = 1 << 3, /* preparing to run works */ 78 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 79 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 80 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 81 82 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 83 WORKER_UNBOUND | WORKER_REBOUND, 84 85 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 86 87 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 88 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 89 90 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 91 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 92 93 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 94 /* call for help after 10ms 95 (min two ticks) */ 96 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 97 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 98 99 /* 100 * Rescue workers are used only on emergencies and shared by 101 * all cpus. Give MIN_NICE. 102 */ 103 RESCUER_NICE_LEVEL = MIN_NICE, 104 HIGHPRI_NICE_LEVEL = MIN_NICE, 105 106 WQ_NAME_LEN = 24, 107 }; 108 109 /* 110 * Structure fields follow one of the following exclusion rules. 111 * 112 * I: Modifiable by initialization/destruction paths and read-only for 113 * everyone else. 114 * 115 * P: Preemption protected. Disabling preemption is enough and should 116 * only be modified and accessed from the local cpu. 117 * 118 * L: pool->lock protected. Access with pool->lock held. 119 * 120 * X: During normal operation, modification requires pool->lock and should 121 * be done only from local cpu. Either disabling preemption on local 122 * cpu or grabbing pool->lock is enough for read access. If 123 * POOL_DISASSOCIATED is set, it's identical to L. 124 * 125 * A: pool->attach_mutex protected. 126 * 127 * PL: wq_pool_mutex protected. 128 * 129 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 130 * 131 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 132 * 133 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 134 * sched-RCU for reads. 135 * 136 * WQ: wq->mutex protected. 137 * 138 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 139 * 140 * MD: wq_mayday_lock protected. 141 */ 142 143 /* struct worker is defined in workqueue_internal.h */ 144 145 struct worker_pool { 146 spinlock_t lock; /* the pool lock */ 147 int cpu; /* I: the associated cpu */ 148 int node; /* I: the associated node ID */ 149 int id; /* I: pool ID */ 150 unsigned int flags; /* X: flags */ 151 152 unsigned long watchdog_ts; /* L: watchdog timestamp */ 153 154 struct list_head worklist; /* L: list of pending works */ 155 int nr_workers; /* L: total number of workers */ 156 157 /* nr_idle includes the ones off idle_list for rebinding */ 158 int nr_idle; /* L: currently idle ones */ 159 160 struct list_head idle_list; /* X: list of idle workers */ 161 struct timer_list idle_timer; /* L: worker idle timeout */ 162 struct timer_list mayday_timer; /* L: SOS timer for workers */ 163 164 /* a workers is either on busy_hash or idle_list, or the manager */ 165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 166 /* L: hash of busy workers */ 167 168 /* see manage_workers() for details on the two manager mutexes */ 169 struct worker *manager; /* L: purely informational */ 170 struct mutex attach_mutex; /* attach/detach exclusion */ 171 struct list_head workers; /* A: attached workers */ 172 struct completion *detach_completion; /* all workers detached */ 173 174 struct ida worker_ida; /* worker IDs for task name */ 175 176 struct workqueue_attrs *attrs; /* I: worker attributes */ 177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 178 int refcnt; /* PL: refcnt for unbound pools */ 179 180 /* 181 * The current concurrency level. As it's likely to be accessed 182 * from other CPUs during try_to_wake_up(), put it in a separate 183 * cacheline. 184 */ 185 atomic_t nr_running ____cacheline_aligned_in_smp; 186 187 /* 188 * Destruction of pool is sched-RCU protected to allow dereferences 189 * from get_work_pool(). 190 */ 191 struct rcu_head rcu; 192 } ____cacheline_aligned_in_smp; 193 194 /* 195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 196 * of work_struct->data are used for flags and the remaining high bits 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the 198 * number of flag bits. 199 */ 200 struct pool_workqueue { 201 struct worker_pool *pool; /* I: the associated pool */ 202 struct workqueue_struct *wq; /* I: the owning workqueue */ 203 int work_color; /* L: current color */ 204 int flush_color; /* L: flushing color */ 205 int refcnt; /* L: reference count */ 206 int nr_in_flight[WORK_NR_COLORS]; 207 /* L: nr of in_flight works */ 208 int nr_active; /* L: nr of active works */ 209 int max_active; /* L: max active works */ 210 struct list_head delayed_works; /* L: delayed works */ 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 212 struct list_head mayday_node; /* MD: node on wq->maydays */ 213 214 /* 215 * Release of unbound pwq is punted to system_wq. See put_pwq() 216 * and pwq_unbound_release_workfn() for details. pool_workqueue 217 * itself is also sched-RCU protected so that the first pwq can be 218 * determined without grabbing wq->mutex. 219 */ 220 struct work_struct unbound_release_work; 221 struct rcu_head rcu; 222 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 223 224 /* 225 * Structure used to wait for workqueue flush. 226 */ 227 struct wq_flusher { 228 struct list_head list; /* WQ: list of flushers */ 229 int flush_color; /* WQ: flush color waiting for */ 230 struct completion done; /* flush completion */ 231 }; 232 233 struct wq_device; 234 235 /* 236 * The externally visible workqueue. It relays the issued work items to 237 * the appropriate worker_pool through its pool_workqueues. 238 */ 239 struct workqueue_struct { 240 struct list_head pwqs; /* WR: all pwqs of this wq */ 241 struct list_head list; /* PR: list of all workqueues */ 242 243 struct mutex mutex; /* protects this wq */ 244 int work_color; /* WQ: current work color */ 245 int flush_color; /* WQ: current flush color */ 246 atomic_t nr_pwqs_to_flush; /* flush in progress */ 247 struct wq_flusher *first_flusher; /* WQ: first flusher */ 248 struct list_head flusher_queue; /* WQ: flush waiters */ 249 struct list_head flusher_overflow; /* WQ: flush overflow list */ 250 251 struct list_head maydays; /* MD: pwqs requesting rescue */ 252 struct worker *rescuer; /* I: rescue worker */ 253 254 int nr_drainers; /* WQ: drain in progress */ 255 int saved_max_active; /* WQ: saved pwq max_active */ 256 257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 259 260 #ifdef CONFIG_SYSFS 261 struct wq_device *wq_dev; /* I: for sysfs interface */ 262 #endif 263 #ifdef CONFIG_LOCKDEP 264 struct lockdep_map lockdep_map; 265 #endif 266 char name[WQ_NAME_LEN]; /* I: workqueue name */ 267 268 /* 269 * Destruction of workqueue_struct is sched-RCU protected to allow 270 * walking the workqueues list without grabbing wq_pool_mutex. 271 * This is used to dump all workqueues from sysrq. 272 */ 273 struct rcu_head rcu; 274 275 /* hot fields used during command issue, aligned to cacheline */ 276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 279 }; 280 281 static struct kmem_cache *pwq_cache; 282 283 static cpumask_var_t *wq_numa_possible_cpumask; 284 /* possible CPUs of each node */ 285 286 static bool wq_disable_numa; 287 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 288 289 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 291 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 292 293 static bool wq_online; /* can kworkers be created yet? */ 294 295 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 296 297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 299 300 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 301 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 302 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 303 304 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 305 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 306 307 /* PL: allowable cpus for unbound wqs and work items */ 308 static cpumask_var_t wq_unbound_cpumask; 309 310 /* CPU where unbound work was last round robin scheduled from this CPU */ 311 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 312 313 /* 314 * Local execution of unbound work items is no longer guaranteed. The 315 * following always forces round-robin CPU selection on unbound work items 316 * to uncover usages which depend on it. 317 */ 318 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 319 static bool wq_debug_force_rr_cpu = true; 320 #else 321 static bool wq_debug_force_rr_cpu = false; 322 #endif 323 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 324 325 /* the per-cpu worker pools */ 326 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 327 328 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 329 330 /* PL: hash of all unbound pools keyed by pool->attrs */ 331 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 332 333 /* I: attributes used when instantiating standard unbound pools on demand */ 334 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 335 336 /* I: attributes used when instantiating ordered pools on demand */ 337 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 338 339 struct workqueue_struct *system_wq __read_mostly; 340 EXPORT_SYMBOL(system_wq); 341 struct workqueue_struct *system_highpri_wq __read_mostly; 342 EXPORT_SYMBOL_GPL(system_highpri_wq); 343 struct workqueue_struct *system_long_wq __read_mostly; 344 EXPORT_SYMBOL_GPL(system_long_wq); 345 struct workqueue_struct *system_unbound_wq __read_mostly; 346 EXPORT_SYMBOL_GPL(system_unbound_wq); 347 struct workqueue_struct *system_freezable_wq __read_mostly; 348 EXPORT_SYMBOL_GPL(system_freezable_wq); 349 struct workqueue_struct *system_power_efficient_wq __read_mostly; 350 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 351 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 352 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 353 354 static int worker_thread(void *__worker); 355 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 356 357 #define CREATE_TRACE_POINTS 358 #include <trace/events/workqueue.h> 359 360 #define assert_rcu_or_pool_mutex() \ 361 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 362 !lockdep_is_held(&wq_pool_mutex), \ 363 "sched RCU or wq_pool_mutex should be held") 364 365 #define assert_rcu_or_wq_mutex(wq) \ 366 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 367 !lockdep_is_held(&wq->mutex), \ 368 "sched RCU or wq->mutex should be held") 369 370 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 371 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 372 !lockdep_is_held(&wq->mutex) && \ 373 !lockdep_is_held(&wq_pool_mutex), \ 374 "sched RCU, wq->mutex or wq_pool_mutex should be held") 375 376 #define for_each_cpu_worker_pool(pool, cpu) \ 377 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 378 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 379 (pool)++) 380 381 /** 382 * for_each_pool - iterate through all worker_pools in the system 383 * @pool: iteration cursor 384 * @pi: integer used for iteration 385 * 386 * This must be called either with wq_pool_mutex held or sched RCU read 387 * locked. If the pool needs to be used beyond the locking in effect, the 388 * caller is responsible for guaranteeing that the pool stays online. 389 * 390 * The if/else clause exists only for the lockdep assertion and can be 391 * ignored. 392 */ 393 #define for_each_pool(pool, pi) \ 394 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 395 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 396 else 397 398 /** 399 * for_each_pool_worker - iterate through all workers of a worker_pool 400 * @worker: iteration cursor 401 * @pool: worker_pool to iterate workers of 402 * 403 * This must be called with @pool->attach_mutex. 404 * 405 * The if/else clause exists only for the lockdep assertion and can be 406 * ignored. 407 */ 408 #define for_each_pool_worker(worker, pool) \ 409 list_for_each_entry((worker), &(pool)->workers, node) \ 410 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 411 else 412 413 /** 414 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 415 * @pwq: iteration cursor 416 * @wq: the target workqueue 417 * 418 * This must be called either with wq->mutex held or sched RCU read locked. 419 * If the pwq needs to be used beyond the locking in effect, the caller is 420 * responsible for guaranteeing that the pwq stays online. 421 * 422 * The if/else clause exists only for the lockdep assertion and can be 423 * ignored. 424 */ 425 #define for_each_pwq(pwq, wq) \ 426 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 427 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 428 else 429 430 #ifdef CONFIG_DEBUG_OBJECTS_WORK 431 432 static struct debug_obj_descr work_debug_descr; 433 434 static void *work_debug_hint(void *addr) 435 { 436 return ((struct work_struct *) addr)->func; 437 } 438 439 static bool work_is_static_object(void *addr) 440 { 441 struct work_struct *work = addr; 442 443 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 444 } 445 446 /* 447 * fixup_init is called when: 448 * - an active object is initialized 449 */ 450 static bool work_fixup_init(void *addr, enum debug_obj_state state) 451 { 452 struct work_struct *work = addr; 453 454 switch (state) { 455 case ODEBUG_STATE_ACTIVE: 456 cancel_work_sync(work); 457 debug_object_init(work, &work_debug_descr); 458 return true; 459 default: 460 return false; 461 } 462 } 463 464 /* 465 * fixup_free is called when: 466 * - an active object is freed 467 */ 468 static bool work_fixup_free(void *addr, enum debug_obj_state state) 469 { 470 struct work_struct *work = addr; 471 472 switch (state) { 473 case ODEBUG_STATE_ACTIVE: 474 cancel_work_sync(work); 475 debug_object_free(work, &work_debug_descr); 476 return true; 477 default: 478 return false; 479 } 480 } 481 482 static struct debug_obj_descr work_debug_descr = { 483 .name = "work_struct", 484 .debug_hint = work_debug_hint, 485 .is_static_object = work_is_static_object, 486 .fixup_init = work_fixup_init, 487 .fixup_free = work_fixup_free, 488 }; 489 490 static inline void debug_work_activate(struct work_struct *work) 491 { 492 debug_object_activate(work, &work_debug_descr); 493 } 494 495 static inline void debug_work_deactivate(struct work_struct *work) 496 { 497 debug_object_deactivate(work, &work_debug_descr); 498 } 499 500 void __init_work(struct work_struct *work, int onstack) 501 { 502 if (onstack) 503 debug_object_init_on_stack(work, &work_debug_descr); 504 else 505 debug_object_init(work, &work_debug_descr); 506 } 507 EXPORT_SYMBOL_GPL(__init_work); 508 509 void destroy_work_on_stack(struct work_struct *work) 510 { 511 debug_object_free(work, &work_debug_descr); 512 } 513 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 514 515 void destroy_delayed_work_on_stack(struct delayed_work *work) 516 { 517 destroy_timer_on_stack(&work->timer); 518 debug_object_free(&work->work, &work_debug_descr); 519 } 520 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 521 522 #else 523 static inline void debug_work_activate(struct work_struct *work) { } 524 static inline void debug_work_deactivate(struct work_struct *work) { } 525 #endif 526 527 /** 528 * worker_pool_assign_id - allocate ID and assing it to @pool 529 * @pool: the pool pointer of interest 530 * 531 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 532 * successfully, -errno on failure. 533 */ 534 static int worker_pool_assign_id(struct worker_pool *pool) 535 { 536 int ret; 537 538 lockdep_assert_held(&wq_pool_mutex); 539 540 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 541 GFP_KERNEL); 542 if (ret >= 0) { 543 pool->id = ret; 544 return 0; 545 } 546 return ret; 547 } 548 549 /** 550 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 551 * @wq: the target workqueue 552 * @node: the node ID 553 * 554 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 555 * read locked. 556 * If the pwq needs to be used beyond the locking in effect, the caller is 557 * responsible for guaranteeing that the pwq stays online. 558 * 559 * Return: The unbound pool_workqueue for @node. 560 */ 561 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 562 int node) 563 { 564 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 565 566 /* 567 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 568 * delayed item is pending. The plan is to keep CPU -> NODE 569 * mapping valid and stable across CPU on/offlines. Once that 570 * happens, this workaround can be removed. 571 */ 572 if (unlikely(node == NUMA_NO_NODE)) 573 return wq->dfl_pwq; 574 575 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 576 } 577 578 static unsigned int work_color_to_flags(int color) 579 { 580 return color << WORK_STRUCT_COLOR_SHIFT; 581 } 582 583 static int get_work_color(struct work_struct *work) 584 { 585 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 586 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 587 } 588 589 static int work_next_color(int color) 590 { 591 return (color + 1) % WORK_NR_COLORS; 592 } 593 594 /* 595 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 596 * contain the pointer to the queued pwq. Once execution starts, the flag 597 * is cleared and the high bits contain OFFQ flags and pool ID. 598 * 599 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 600 * and clear_work_data() can be used to set the pwq, pool or clear 601 * work->data. These functions should only be called while the work is 602 * owned - ie. while the PENDING bit is set. 603 * 604 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 605 * corresponding to a work. Pool is available once the work has been 606 * queued anywhere after initialization until it is sync canceled. pwq is 607 * available only while the work item is queued. 608 * 609 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 610 * canceled. While being canceled, a work item may have its PENDING set 611 * but stay off timer and worklist for arbitrarily long and nobody should 612 * try to steal the PENDING bit. 613 */ 614 static inline void set_work_data(struct work_struct *work, unsigned long data, 615 unsigned long flags) 616 { 617 WARN_ON_ONCE(!work_pending(work)); 618 atomic_long_set(&work->data, data | flags | work_static(work)); 619 } 620 621 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 622 unsigned long extra_flags) 623 { 624 set_work_data(work, (unsigned long)pwq, 625 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 626 } 627 628 static void set_work_pool_and_keep_pending(struct work_struct *work, 629 int pool_id) 630 { 631 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 632 WORK_STRUCT_PENDING); 633 } 634 635 static void set_work_pool_and_clear_pending(struct work_struct *work, 636 int pool_id) 637 { 638 /* 639 * The following wmb is paired with the implied mb in 640 * test_and_set_bit(PENDING) and ensures all updates to @work made 641 * here are visible to and precede any updates by the next PENDING 642 * owner. 643 */ 644 smp_wmb(); 645 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 646 /* 647 * The following mb guarantees that previous clear of a PENDING bit 648 * will not be reordered with any speculative LOADS or STORES from 649 * work->current_func, which is executed afterwards. This possible 650 * reordering can lead to a missed execution on attempt to qeueue 651 * the same @work. E.g. consider this case: 652 * 653 * CPU#0 CPU#1 654 * ---------------------------- -------------------------------- 655 * 656 * 1 STORE event_indicated 657 * 2 queue_work_on() { 658 * 3 test_and_set_bit(PENDING) 659 * 4 } set_..._and_clear_pending() { 660 * 5 set_work_data() # clear bit 661 * 6 smp_mb() 662 * 7 work->current_func() { 663 * 8 LOAD event_indicated 664 * } 665 * 666 * Without an explicit full barrier speculative LOAD on line 8 can 667 * be executed before CPU#0 does STORE on line 1. If that happens, 668 * CPU#0 observes the PENDING bit is still set and new execution of 669 * a @work is not queued in a hope, that CPU#1 will eventually 670 * finish the queued @work. Meanwhile CPU#1 does not see 671 * event_indicated is set, because speculative LOAD was executed 672 * before actual STORE. 673 */ 674 smp_mb(); 675 } 676 677 static void clear_work_data(struct work_struct *work) 678 { 679 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 680 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 681 } 682 683 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 684 { 685 unsigned long data = atomic_long_read(&work->data); 686 687 if (data & WORK_STRUCT_PWQ) 688 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 689 else 690 return NULL; 691 } 692 693 /** 694 * get_work_pool - return the worker_pool a given work was associated with 695 * @work: the work item of interest 696 * 697 * Pools are created and destroyed under wq_pool_mutex, and allows read 698 * access under sched-RCU read lock. As such, this function should be 699 * called under wq_pool_mutex or with preemption disabled. 700 * 701 * All fields of the returned pool are accessible as long as the above 702 * mentioned locking is in effect. If the returned pool needs to be used 703 * beyond the critical section, the caller is responsible for ensuring the 704 * returned pool is and stays online. 705 * 706 * Return: The worker_pool @work was last associated with. %NULL if none. 707 */ 708 static struct worker_pool *get_work_pool(struct work_struct *work) 709 { 710 unsigned long data = atomic_long_read(&work->data); 711 int pool_id; 712 713 assert_rcu_or_pool_mutex(); 714 715 if (data & WORK_STRUCT_PWQ) 716 return ((struct pool_workqueue *) 717 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 718 719 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 720 if (pool_id == WORK_OFFQ_POOL_NONE) 721 return NULL; 722 723 return idr_find(&worker_pool_idr, pool_id); 724 } 725 726 /** 727 * get_work_pool_id - return the worker pool ID a given work is associated with 728 * @work: the work item of interest 729 * 730 * Return: The worker_pool ID @work was last associated with. 731 * %WORK_OFFQ_POOL_NONE if none. 732 */ 733 static int get_work_pool_id(struct work_struct *work) 734 { 735 unsigned long data = atomic_long_read(&work->data); 736 737 if (data & WORK_STRUCT_PWQ) 738 return ((struct pool_workqueue *) 739 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 740 741 return data >> WORK_OFFQ_POOL_SHIFT; 742 } 743 744 static void mark_work_canceling(struct work_struct *work) 745 { 746 unsigned long pool_id = get_work_pool_id(work); 747 748 pool_id <<= WORK_OFFQ_POOL_SHIFT; 749 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 750 } 751 752 static bool work_is_canceling(struct work_struct *work) 753 { 754 unsigned long data = atomic_long_read(&work->data); 755 756 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 757 } 758 759 /* 760 * Policy functions. These define the policies on how the global worker 761 * pools are managed. Unless noted otherwise, these functions assume that 762 * they're being called with pool->lock held. 763 */ 764 765 static bool __need_more_worker(struct worker_pool *pool) 766 { 767 return !atomic_read(&pool->nr_running); 768 } 769 770 /* 771 * Need to wake up a worker? Called from anything but currently 772 * running workers. 773 * 774 * Note that, because unbound workers never contribute to nr_running, this 775 * function will always return %true for unbound pools as long as the 776 * worklist isn't empty. 777 */ 778 static bool need_more_worker(struct worker_pool *pool) 779 { 780 return !list_empty(&pool->worklist) && __need_more_worker(pool); 781 } 782 783 /* Can I start working? Called from busy but !running workers. */ 784 static bool may_start_working(struct worker_pool *pool) 785 { 786 return pool->nr_idle; 787 } 788 789 /* Do I need to keep working? Called from currently running workers. */ 790 static bool keep_working(struct worker_pool *pool) 791 { 792 return !list_empty(&pool->worklist) && 793 atomic_read(&pool->nr_running) <= 1; 794 } 795 796 /* Do we need a new worker? Called from manager. */ 797 static bool need_to_create_worker(struct worker_pool *pool) 798 { 799 return need_more_worker(pool) && !may_start_working(pool); 800 } 801 802 /* Do we have too many workers and should some go away? */ 803 static bool too_many_workers(struct worker_pool *pool) 804 { 805 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 806 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 807 int nr_busy = pool->nr_workers - nr_idle; 808 809 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 810 } 811 812 /* 813 * Wake up functions. 814 */ 815 816 /* Return the first idle worker. Safe with preemption disabled */ 817 static struct worker *first_idle_worker(struct worker_pool *pool) 818 { 819 if (unlikely(list_empty(&pool->idle_list))) 820 return NULL; 821 822 return list_first_entry(&pool->idle_list, struct worker, entry); 823 } 824 825 /** 826 * wake_up_worker - wake up an idle worker 827 * @pool: worker pool to wake worker from 828 * 829 * Wake up the first idle worker of @pool. 830 * 831 * CONTEXT: 832 * spin_lock_irq(pool->lock). 833 */ 834 static void wake_up_worker(struct worker_pool *pool) 835 { 836 struct worker *worker = first_idle_worker(pool); 837 838 if (likely(worker)) 839 wake_up_process(worker->task); 840 } 841 842 /** 843 * wq_worker_waking_up - a worker is waking up 844 * @task: task waking up 845 * @cpu: CPU @task is waking up to 846 * 847 * This function is called during try_to_wake_up() when a worker is 848 * being awoken. 849 * 850 * CONTEXT: 851 * spin_lock_irq(rq->lock) 852 */ 853 void wq_worker_waking_up(struct task_struct *task, int cpu) 854 { 855 struct worker *worker = kthread_data(task); 856 857 if (!(worker->flags & WORKER_NOT_RUNNING)) { 858 WARN_ON_ONCE(worker->pool->cpu != cpu); 859 atomic_inc(&worker->pool->nr_running); 860 } 861 } 862 863 /** 864 * wq_worker_sleeping - a worker is going to sleep 865 * @task: task going to sleep 866 * 867 * This function is called during schedule() when a busy worker is 868 * going to sleep. Worker on the same cpu can be woken up by 869 * returning pointer to its task. 870 * 871 * CONTEXT: 872 * spin_lock_irq(rq->lock) 873 * 874 * Return: 875 * Worker task on @cpu to wake up, %NULL if none. 876 */ 877 struct task_struct *wq_worker_sleeping(struct task_struct *task) 878 { 879 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 880 struct worker_pool *pool; 881 882 /* 883 * Rescuers, which may not have all the fields set up like normal 884 * workers, also reach here, let's not access anything before 885 * checking NOT_RUNNING. 886 */ 887 if (worker->flags & WORKER_NOT_RUNNING) 888 return NULL; 889 890 pool = worker->pool; 891 892 /* this can only happen on the local cpu */ 893 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id())) 894 return NULL; 895 896 /* 897 * The counterpart of the following dec_and_test, implied mb, 898 * worklist not empty test sequence is in insert_work(). 899 * Please read comment there. 900 * 901 * NOT_RUNNING is clear. This means that we're bound to and 902 * running on the local cpu w/ rq lock held and preemption 903 * disabled, which in turn means that none else could be 904 * manipulating idle_list, so dereferencing idle_list without pool 905 * lock is safe. 906 */ 907 if (atomic_dec_and_test(&pool->nr_running) && 908 !list_empty(&pool->worklist)) 909 to_wakeup = first_idle_worker(pool); 910 return to_wakeup ? to_wakeup->task : NULL; 911 } 912 913 /** 914 * worker_set_flags - set worker flags and adjust nr_running accordingly 915 * @worker: self 916 * @flags: flags to set 917 * 918 * Set @flags in @worker->flags and adjust nr_running accordingly. 919 * 920 * CONTEXT: 921 * spin_lock_irq(pool->lock) 922 */ 923 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 924 { 925 struct worker_pool *pool = worker->pool; 926 927 WARN_ON_ONCE(worker->task != current); 928 929 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 930 if ((flags & WORKER_NOT_RUNNING) && 931 !(worker->flags & WORKER_NOT_RUNNING)) { 932 atomic_dec(&pool->nr_running); 933 } 934 935 worker->flags |= flags; 936 } 937 938 /** 939 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 940 * @worker: self 941 * @flags: flags to clear 942 * 943 * Clear @flags in @worker->flags and adjust nr_running accordingly. 944 * 945 * CONTEXT: 946 * spin_lock_irq(pool->lock) 947 */ 948 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 949 { 950 struct worker_pool *pool = worker->pool; 951 unsigned int oflags = worker->flags; 952 953 WARN_ON_ONCE(worker->task != current); 954 955 worker->flags &= ~flags; 956 957 /* 958 * If transitioning out of NOT_RUNNING, increment nr_running. Note 959 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 960 * of multiple flags, not a single flag. 961 */ 962 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 963 if (!(worker->flags & WORKER_NOT_RUNNING)) 964 atomic_inc(&pool->nr_running); 965 } 966 967 /** 968 * find_worker_executing_work - find worker which is executing a work 969 * @pool: pool of interest 970 * @work: work to find worker for 971 * 972 * Find a worker which is executing @work on @pool by searching 973 * @pool->busy_hash which is keyed by the address of @work. For a worker 974 * to match, its current execution should match the address of @work and 975 * its work function. This is to avoid unwanted dependency between 976 * unrelated work executions through a work item being recycled while still 977 * being executed. 978 * 979 * This is a bit tricky. A work item may be freed once its execution 980 * starts and nothing prevents the freed area from being recycled for 981 * another work item. If the same work item address ends up being reused 982 * before the original execution finishes, workqueue will identify the 983 * recycled work item as currently executing and make it wait until the 984 * current execution finishes, introducing an unwanted dependency. 985 * 986 * This function checks the work item address and work function to avoid 987 * false positives. Note that this isn't complete as one may construct a 988 * work function which can introduce dependency onto itself through a 989 * recycled work item. Well, if somebody wants to shoot oneself in the 990 * foot that badly, there's only so much we can do, and if such deadlock 991 * actually occurs, it should be easy to locate the culprit work function. 992 * 993 * CONTEXT: 994 * spin_lock_irq(pool->lock). 995 * 996 * Return: 997 * Pointer to worker which is executing @work if found, %NULL 998 * otherwise. 999 */ 1000 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1001 struct work_struct *work) 1002 { 1003 struct worker *worker; 1004 1005 hash_for_each_possible(pool->busy_hash, worker, hentry, 1006 (unsigned long)work) 1007 if (worker->current_work == work && 1008 worker->current_func == work->func) 1009 return worker; 1010 1011 return NULL; 1012 } 1013 1014 /** 1015 * move_linked_works - move linked works to a list 1016 * @work: start of series of works to be scheduled 1017 * @head: target list to append @work to 1018 * @nextp: out parameter for nested worklist walking 1019 * 1020 * Schedule linked works starting from @work to @head. Work series to 1021 * be scheduled starts at @work and includes any consecutive work with 1022 * WORK_STRUCT_LINKED set in its predecessor. 1023 * 1024 * If @nextp is not NULL, it's updated to point to the next work of 1025 * the last scheduled work. This allows move_linked_works() to be 1026 * nested inside outer list_for_each_entry_safe(). 1027 * 1028 * CONTEXT: 1029 * spin_lock_irq(pool->lock). 1030 */ 1031 static void move_linked_works(struct work_struct *work, struct list_head *head, 1032 struct work_struct **nextp) 1033 { 1034 struct work_struct *n; 1035 1036 /* 1037 * Linked worklist will always end before the end of the list, 1038 * use NULL for list head. 1039 */ 1040 list_for_each_entry_safe_from(work, n, NULL, entry) { 1041 list_move_tail(&work->entry, head); 1042 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1043 break; 1044 } 1045 1046 /* 1047 * If we're already inside safe list traversal and have moved 1048 * multiple works to the scheduled queue, the next position 1049 * needs to be updated. 1050 */ 1051 if (nextp) 1052 *nextp = n; 1053 } 1054 1055 /** 1056 * get_pwq - get an extra reference on the specified pool_workqueue 1057 * @pwq: pool_workqueue to get 1058 * 1059 * Obtain an extra reference on @pwq. The caller should guarantee that 1060 * @pwq has positive refcnt and be holding the matching pool->lock. 1061 */ 1062 static void get_pwq(struct pool_workqueue *pwq) 1063 { 1064 lockdep_assert_held(&pwq->pool->lock); 1065 WARN_ON_ONCE(pwq->refcnt <= 0); 1066 pwq->refcnt++; 1067 } 1068 1069 /** 1070 * put_pwq - put a pool_workqueue reference 1071 * @pwq: pool_workqueue to put 1072 * 1073 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1074 * destruction. The caller should be holding the matching pool->lock. 1075 */ 1076 static void put_pwq(struct pool_workqueue *pwq) 1077 { 1078 lockdep_assert_held(&pwq->pool->lock); 1079 if (likely(--pwq->refcnt)) 1080 return; 1081 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1082 return; 1083 /* 1084 * @pwq can't be released under pool->lock, bounce to 1085 * pwq_unbound_release_workfn(). This never recurses on the same 1086 * pool->lock as this path is taken only for unbound workqueues and 1087 * the release work item is scheduled on a per-cpu workqueue. To 1088 * avoid lockdep warning, unbound pool->locks are given lockdep 1089 * subclass of 1 in get_unbound_pool(). 1090 */ 1091 schedule_work(&pwq->unbound_release_work); 1092 } 1093 1094 /** 1095 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1096 * @pwq: pool_workqueue to put (can be %NULL) 1097 * 1098 * put_pwq() with locking. This function also allows %NULL @pwq. 1099 */ 1100 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1101 { 1102 if (pwq) { 1103 /* 1104 * As both pwqs and pools are sched-RCU protected, the 1105 * following lock operations are safe. 1106 */ 1107 spin_lock_irq(&pwq->pool->lock); 1108 put_pwq(pwq); 1109 spin_unlock_irq(&pwq->pool->lock); 1110 } 1111 } 1112 1113 static void pwq_activate_delayed_work(struct work_struct *work) 1114 { 1115 struct pool_workqueue *pwq = get_work_pwq(work); 1116 1117 trace_workqueue_activate_work(work); 1118 if (list_empty(&pwq->pool->worklist)) 1119 pwq->pool->watchdog_ts = jiffies; 1120 move_linked_works(work, &pwq->pool->worklist, NULL); 1121 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1122 pwq->nr_active++; 1123 } 1124 1125 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1126 { 1127 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1128 struct work_struct, entry); 1129 1130 pwq_activate_delayed_work(work); 1131 } 1132 1133 /** 1134 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1135 * @pwq: pwq of interest 1136 * @color: color of work which left the queue 1137 * 1138 * A work either has completed or is removed from pending queue, 1139 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1140 * 1141 * CONTEXT: 1142 * spin_lock_irq(pool->lock). 1143 */ 1144 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1145 { 1146 /* uncolored work items don't participate in flushing or nr_active */ 1147 if (color == WORK_NO_COLOR) 1148 goto out_put; 1149 1150 pwq->nr_in_flight[color]--; 1151 1152 pwq->nr_active--; 1153 if (!list_empty(&pwq->delayed_works)) { 1154 /* one down, submit a delayed one */ 1155 if (pwq->nr_active < pwq->max_active) 1156 pwq_activate_first_delayed(pwq); 1157 } 1158 1159 /* is flush in progress and are we at the flushing tip? */ 1160 if (likely(pwq->flush_color != color)) 1161 goto out_put; 1162 1163 /* are there still in-flight works? */ 1164 if (pwq->nr_in_flight[color]) 1165 goto out_put; 1166 1167 /* this pwq is done, clear flush_color */ 1168 pwq->flush_color = -1; 1169 1170 /* 1171 * If this was the last pwq, wake up the first flusher. It 1172 * will handle the rest. 1173 */ 1174 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1175 complete(&pwq->wq->first_flusher->done); 1176 out_put: 1177 put_pwq(pwq); 1178 } 1179 1180 /** 1181 * try_to_grab_pending - steal work item from worklist and disable irq 1182 * @work: work item to steal 1183 * @is_dwork: @work is a delayed_work 1184 * @flags: place to store irq state 1185 * 1186 * Try to grab PENDING bit of @work. This function can handle @work in any 1187 * stable state - idle, on timer or on worklist. 1188 * 1189 * Return: 1190 * 1 if @work was pending and we successfully stole PENDING 1191 * 0 if @work was idle and we claimed PENDING 1192 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1193 * -ENOENT if someone else is canceling @work, this state may persist 1194 * for arbitrarily long 1195 * 1196 * Note: 1197 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1198 * interrupted while holding PENDING and @work off queue, irq must be 1199 * disabled on entry. This, combined with delayed_work->timer being 1200 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1201 * 1202 * On successful return, >= 0, irq is disabled and the caller is 1203 * responsible for releasing it using local_irq_restore(*@flags). 1204 * 1205 * This function is safe to call from any context including IRQ handler. 1206 */ 1207 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1208 unsigned long *flags) 1209 { 1210 struct worker_pool *pool; 1211 struct pool_workqueue *pwq; 1212 1213 local_irq_save(*flags); 1214 1215 /* try to steal the timer if it exists */ 1216 if (is_dwork) { 1217 struct delayed_work *dwork = to_delayed_work(work); 1218 1219 /* 1220 * dwork->timer is irqsafe. If del_timer() fails, it's 1221 * guaranteed that the timer is not queued anywhere and not 1222 * running on the local CPU. 1223 */ 1224 if (likely(del_timer(&dwork->timer))) 1225 return 1; 1226 } 1227 1228 /* try to claim PENDING the normal way */ 1229 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1230 return 0; 1231 1232 /* 1233 * The queueing is in progress, or it is already queued. Try to 1234 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1235 */ 1236 pool = get_work_pool(work); 1237 if (!pool) 1238 goto fail; 1239 1240 spin_lock(&pool->lock); 1241 /* 1242 * work->data is guaranteed to point to pwq only while the work 1243 * item is queued on pwq->wq, and both updating work->data to point 1244 * to pwq on queueing and to pool on dequeueing are done under 1245 * pwq->pool->lock. This in turn guarantees that, if work->data 1246 * points to pwq which is associated with a locked pool, the work 1247 * item is currently queued on that pool. 1248 */ 1249 pwq = get_work_pwq(work); 1250 if (pwq && pwq->pool == pool) { 1251 debug_work_deactivate(work); 1252 1253 /* 1254 * A delayed work item cannot be grabbed directly because 1255 * it might have linked NO_COLOR work items which, if left 1256 * on the delayed_list, will confuse pwq->nr_active 1257 * management later on and cause stall. Make sure the work 1258 * item is activated before grabbing. 1259 */ 1260 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1261 pwq_activate_delayed_work(work); 1262 1263 list_del_init(&work->entry); 1264 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1265 1266 /* work->data points to pwq iff queued, point to pool */ 1267 set_work_pool_and_keep_pending(work, pool->id); 1268 1269 spin_unlock(&pool->lock); 1270 return 1; 1271 } 1272 spin_unlock(&pool->lock); 1273 fail: 1274 local_irq_restore(*flags); 1275 if (work_is_canceling(work)) 1276 return -ENOENT; 1277 cpu_relax(); 1278 return -EAGAIN; 1279 } 1280 1281 /** 1282 * insert_work - insert a work into a pool 1283 * @pwq: pwq @work belongs to 1284 * @work: work to insert 1285 * @head: insertion point 1286 * @extra_flags: extra WORK_STRUCT_* flags to set 1287 * 1288 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1289 * work_struct flags. 1290 * 1291 * CONTEXT: 1292 * spin_lock_irq(pool->lock). 1293 */ 1294 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1295 struct list_head *head, unsigned int extra_flags) 1296 { 1297 struct worker_pool *pool = pwq->pool; 1298 1299 /* we own @work, set data and link */ 1300 set_work_pwq(work, pwq, extra_flags); 1301 list_add_tail(&work->entry, head); 1302 get_pwq(pwq); 1303 1304 /* 1305 * Ensure either wq_worker_sleeping() sees the above 1306 * list_add_tail() or we see zero nr_running to avoid workers lying 1307 * around lazily while there are works to be processed. 1308 */ 1309 smp_mb(); 1310 1311 if (__need_more_worker(pool)) 1312 wake_up_worker(pool); 1313 } 1314 1315 /* 1316 * Test whether @work is being queued from another work executing on the 1317 * same workqueue. 1318 */ 1319 static bool is_chained_work(struct workqueue_struct *wq) 1320 { 1321 struct worker *worker; 1322 1323 worker = current_wq_worker(); 1324 /* 1325 * Return %true iff I'm a worker execuing a work item on @wq. If 1326 * I'm @worker, it's safe to dereference it without locking. 1327 */ 1328 return worker && worker->current_pwq->wq == wq; 1329 } 1330 1331 /* 1332 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1333 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1334 * avoid perturbing sensitive tasks. 1335 */ 1336 static int wq_select_unbound_cpu(int cpu) 1337 { 1338 static bool printed_dbg_warning; 1339 int new_cpu; 1340 1341 if (likely(!wq_debug_force_rr_cpu)) { 1342 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1343 return cpu; 1344 } else if (!printed_dbg_warning) { 1345 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1346 printed_dbg_warning = true; 1347 } 1348 1349 if (cpumask_empty(wq_unbound_cpumask)) 1350 return cpu; 1351 1352 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1353 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1354 if (unlikely(new_cpu >= nr_cpu_ids)) { 1355 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1356 if (unlikely(new_cpu >= nr_cpu_ids)) 1357 return cpu; 1358 } 1359 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1360 1361 return new_cpu; 1362 } 1363 1364 static void __queue_work(int cpu, struct workqueue_struct *wq, 1365 struct work_struct *work) 1366 { 1367 struct pool_workqueue *pwq; 1368 struct worker_pool *last_pool; 1369 struct list_head *worklist; 1370 unsigned int work_flags; 1371 unsigned int req_cpu = cpu; 1372 1373 /* 1374 * While a work item is PENDING && off queue, a task trying to 1375 * steal the PENDING will busy-loop waiting for it to either get 1376 * queued or lose PENDING. Grabbing PENDING and queueing should 1377 * happen with IRQ disabled. 1378 */ 1379 lockdep_assert_irqs_disabled(); 1380 1381 debug_work_activate(work); 1382 1383 /* if draining, only works from the same workqueue are allowed */ 1384 if (unlikely(wq->flags & __WQ_DRAINING) && 1385 WARN_ON_ONCE(!is_chained_work(wq))) 1386 return; 1387 retry: 1388 if (req_cpu == WORK_CPU_UNBOUND) 1389 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1390 1391 /* pwq which will be used unless @work is executing elsewhere */ 1392 if (!(wq->flags & WQ_UNBOUND)) 1393 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1394 else 1395 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1396 1397 /* 1398 * If @work was previously on a different pool, it might still be 1399 * running there, in which case the work needs to be queued on that 1400 * pool to guarantee non-reentrancy. 1401 */ 1402 last_pool = get_work_pool(work); 1403 if (last_pool && last_pool != pwq->pool) { 1404 struct worker *worker; 1405 1406 spin_lock(&last_pool->lock); 1407 1408 worker = find_worker_executing_work(last_pool, work); 1409 1410 if (worker && worker->current_pwq->wq == wq) { 1411 pwq = worker->current_pwq; 1412 } else { 1413 /* meh... not running there, queue here */ 1414 spin_unlock(&last_pool->lock); 1415 spin_lock(&pwq->pool->lock); 1416 } 1417 } else { 1418 spin_lock(&pwq->pool->lock); 1419 } 1420 1421 /* 1422 * pwq is determined and locked. For unbound pools, we could have 1423 * raced with pwq release and it could already be dead. If its 1424 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1425 * without another pwq replacing it in the numa_pwq_tbl or while 1426 * work items are executing on it, so the retrying is guaranteed to 1427 * make forward-progress. 1428 */ 1429 if (unlikely(!pwq->refcnt)) { 1430 if (wq->flags & WQ_UNBOUND) { 1431 spin_unlock(&pwq->pool->lock); 1432 cpu_relax(); 1433 goto retry; 1434 } 1435 /* oops */ 1436 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1437 wq->name, cpu); 1438 } 1439 1440 /* pwq determined, queue */ 1441 trace_workqueue_queue_work(req_cpu, pwq, work); 1442 1443 if (WARN_ON(!list_empty(&work->entry))) { 1444 spin_unlock(&pwq->pool->lock); 1445 return; 1446 } 1447 1448 pwq->nr_in_flight[pwq->work_color]++; 1449 work_flags = work_color_to_flags(pwq->work_color); 1450 1451 if (likely(pwq->nr_active < pwq->max_active)) { 1452 trace_workqueue_activate_work(work); 1453 pwq->nr_active++; 1454 worklist = &pwq->pool->worklist; 1455 if (list_empty(worklist)) 1456 pwq->pool->watchdog_ts = jiffies; 1457 } else { 1458 work_flags |= WORK_STRUCT_DELAYED; 1459 worklist = &pwq->delayed_works; 1460 } 1461 1462 insert_work(pwq, work, worklist, work_flags); 1463 1464 spin_unlock(&pwq->pool->lock); 1465 } 1466 1467 /** 1468 * queue_work_on - queue work on specific cpu 1469 * @cpu: CPU number to execute work on 1470 * @wq: workqueue to use 1471 * @work: work to queue 1472 * 1473 * We queue the work to a specific CPU, the caller must ensure it 1474 * can't go away. 1475 * 1476 * Return: %false if @work was already on a queue, %true otherwise. 1477 */ 1478 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1479 struct work_struct *work) 1480 { 1481 bool ret = false; 1482 unsigned long flags; 1483 1484 local_irq_save(flags); 1485 1486 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1487 __queue_work(cpu, wq, work); 1488 ret = true; 1489 } 1490 1491 local_irq_restore(flags); 1492 return ret; 1493 } 1494 EXPORT_SYMBOL(queue_work_on); 1495 1496 void delayed_work_timer_fn(struct timer_list *t) 1497 { 1498 struct delayed_work *dwork = from_timer(dwork, t, timer); 1499 1500 /* should have been called from irqsafe timer with irq already off */ 1501 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1502 } 1503 EXPORT_SYMBOL(delayed_work_timer_fn); 1504 1505 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1506 struct delayed_work *dwork, unsigned long delay) 1507 { 1508 struct timer_list *timer = &dwork->timer; 1509 struct work_struct *work = &dwork->work; 1510 1511 WARN_ON_ONCE(!wq); 1512 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1513 WARN_ON_ONCE(timer_pending(timer)); 1514 WARN_ON_ONCE(!list_empty(&work->entry)); 1515 1516 /* 1517 * If @delay is 0, queue @dwork->work immediately. This is for 1518 * both optimization and correctness. The earliest @timer can 1519 * expire is on the closest next tick and delayed_work users depend 1520 * on that there's no such delay when @delay is 0. 1521 */ 1522 if (!delay) { 1523 __queue_work(cpu, wq, &dwork->work); 1524 return; 1525 } 1526 1527 dwork->wq = wq; 1528 dwork->cpu = cpu; 1529 timer->expires = jiffies + delay; 1530 1531 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1532 add_timer_on(timer, cpu); 1533 else 1534 add_timer(timer); 1535 } 1536 1537 /** 1538 * queue_delayed_work_on - queue work on specific CPU after delay 1539 * @cpu: CPU number to execute work on 1540 * @wq: workqueue to use 1541 * @dwork: work to queue 1542 * @delay: number of jiffies to wait before queueing 1543 * 1544 * Return: %false if @work was already on a queue, %true otherwise. If 1545 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1546 * execution. 1547 */ 1548 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1549 struct delayed_work *dwork, unsigned long delay) 1550 { 1551 struct work_struct *work = &dwork->work; 1552 bool ret = false; 1553 unsigned long flags; 1554 1555 /* read the comment in __queue_work() */ 1556 local_irq_save(flags); 1557 1558 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1559 __queue_delayed_work(cpu, wq, dwork, delay); 1560 ret = true; 1561 } 1562 1563 local_irq_restore(flags); 1564 return ret; 1565 } 1566 EXPORT_SYMBOL(queue_delayed_work_on); 1567 1568 /** 1569 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1570 * @cpu: CPU number to execute work on 1571 * @wq: workqueue to use 1572 * @dwork: work to queue 1573 * @delay: number of jiffies to wait before queueing 1574 * 1575 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1576 * modify @dwork's timer so that it expires after @delay. If @delay is 1577 * zero, @work is guaranteed to be scheduled immediately regardless of its 1578 * current state. 1579 * 1580 * Return: %false if @dwork was idle and queued, %true if @dwork was 1581 * pending and its timer was modified. 1582 * 1583 * This function is safe to call from any context including IRQ handler. 1584 * See try_to_grab_pending() for details. 1585 */ 1586 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1587 struct delayed_work *dwork, unsigned long delay) 1588 { 1589 unsigned long flags; 1590 int ret; 1591 1592 do { 1593 ret = try_to_grab_pending(&dwork->work, true, &flags); 1594 } while (unlikely(ret == -EAGAIN)); 1595 1596 if (likely(ret >= 0)) { 1597 __queue_delayed_work(cpu, wq, dwork, delay); 1598 local_irq_restore(flags); 1599 } 1600 1601 /* -ENOENT from try_to_grab_pending() becomes %true */ 1602 return ret; 1603 } 1604 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1605 1606 /** 1607 * worker_enter_idle - enter idle state 1608 * @worker: worker which is entering idle state 1609 * 1610 * @worker is entering idle state. Update stats and idle timer if 1611 * necessary. 1612 * 1613 * LOCKING: 1614 * spin_lock_irq(pool->lock). 1615 */ 1616 static void worker_enter_idle(struct worker *worker) 1617 { 1618 struct worker_pool *pool = worker->pool; 1619 1620 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1621 WARN_ON_ONCE(!list_empty(&worker->entry) && 1622 (worker->hentry.next || worker->hentry.pprev))) 1623 return; 1624 1625 /* can't use worker_set_flags(), also called from create_worker() */ 1626 worker->flags |= WORKER_IDLE; 1627 pool->nr_idle++; 1628 worker->last_active = jiffies; 1629 1630 /* idle_list is LIFO */ 1631 list_add(&worker->entry, &pool->idle_list); 1632 1633 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1634 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1635 1636 /* 1637 * Sanity check nr_running. Because wq_unbind_fn() releases 1638 * pool->lock between setting %WORKER_UNBOUND and zapping 1639 * nr_running, the warning may trigger spuriously. Check iff 1640 * unbind is not in progress. 1641 */ 1642 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1643 pool->nr_workers == pool->nr_idle && 1644 atomic_read(&pool->nr_running)); 1645 } 1646 1647 /** 1648 * worker_leave_idle - leave idle state 1649 * @worker: worker which is leaving idle state 1650 * 1651 * @worker is leaving idle state. Update stats. 1652 * 1653 * LOCKING: 1654 * spin_lock_irq(pool->lock). 1655 */ 1656 static void worker_leave_idle(struct worker *worker) 1657 { 1658 struct worker_pool *pool = worker->pool; 1659 1660 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1661 return; 1662 worker_clr_flags(worker, WORKER_IDLE); 1663 pool->nr_idle--; 1664 list_del_init(&worker->entry); 1665 } 1666 1667 static struct worker *alloc_worker(int node) 1668 { 1669 struct worker *worker; 1670 1671 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1672 if (worker) { 1673 INIT_LIST_HEAD(&worker->entry); 1674 INIT_LIST_HEAD(&worker->scheduled); 1675 INIT_LIST_HEAD(&worker->node); 1676 /* on creation a worker is in !idle && prep state */ 1677 worker->flags = WORKER_PREP; 1678 } 1679 return worker; 1680 } 1681 1682 /** 1683 * worker_attach_to_pool() - attach a worker to a pool 1684 * @worker: worker to be attached 1685 * @pool: the target pool 1686 * 1687 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1688 * cpu-binding of @worker are kept coordinated with the pool across 1689 * cpu-[un]hotplugs. 1690 */ 1691 static void worker_attach_to_pool(struct worker *worker, 1692 struct worker_pool *pool) 1693 { 1694 mutex_lock(&pool->attach_mutex); 1695 1696 /* 1697 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1698 * online CPUs. It'll be re-applied when any of the CPUs come up. 1699 */ 1700 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1701 1702 /* 1703 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1704 * stable across this function. See the comments above the 1705 * flag definition for details. 1706 */ 1707 if (pool->flags & POOL_DISASSOCIATED) 1708 worker->flags |= WORKER_UNBOUND; 1709 1710 list_add_tail(&worker->node, &pool->workers); 1711 1712 mutex_unlock(&pool->attach_mutex); 1713 } 1714 1715 /** 1716 * worker_detach_from_pool() - detach a worker from its pool 1717 * @worker: worker which is attached to its pool 1718 * @pool: the pool @worker is attached to 1719 * 1720 * Undo the attaching which had been done in worker_attach_to_pool(). The 1721 * caller worker shouldn't access to the pool after detached except it has 1722 * other reference to the pool. 1723 */ 1724 static void worker_detach_from_pool(struct worker *worker, 1725 struct worker_pool *pool) 1726 { 1727 struct completion *detach_completion = NULL; 1728 1729 mutex_lock(&pool->attach_mutex); 1730 list_del(&worker->node); 1731 if (list_empty(&pool->workers)) 1732 detach_completion = pool->detach_completion; 1733 mutex_unlock(&pool->attach_mutex); 1734 1735 /* clear leftover flags without pool->lock after it is detached */ 1736 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1737 1738 if (detach_completion) 1739 complete(detach_completion); 1740 } 1741 1742 /** 1743 * create_worker - create a new workqueue worker 1744 * @pool: pool the new worker will belong to 1745 * 1746 * Create and start a new worker which is attached to @pool. 1747 * 1748 * CONTEXT: 1749 * Might sleep. Does GFP_KERNEL allocations. 1750 * 1751 * Return: 1752 * Pointer to the newly created worker. 1753 */ 1754 static struct worker *create_worker(struct worker_pool *pool) 1755 { 1756 struct worker *worker = NULL; 1757 int id = -1; 1758 char id_buf[16]; 1759 1760 /* ID is needed to determine kthread name */ 1761 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1762 if (id < 0) 1763 goto fail; 1764 1765 worker = alloc_worker(pool->node); 1766 if (!worker) 1767 goto fail; 1768 1769 worker->pool = pool; 1770 worker->id = id; 1771 1772 if (pool->cpu >= 0) 1773 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1774 pool->attrs->nice < 0 ? "H" : ""); 1775 else 1776 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1777 1778 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1779 "kworker/%s", id_buf); 1780 if (IS_ERR(worker->task)) 1781 goto fail; 1782 1783 set_user_nice(worker->task, pool->attrs->nice); 1784 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1785 1786 /* successful, attach the worker to the pool */ 1787 worker_attach_to_pool(worker, pool); 1788 1789 /* start the newly created worker */ 1790 spin_lock_irq(&pool->lock); 1791 worker->pool->nr_workers++; 1792 worker_enter_idle(worker); 1793 wake_up_process(worker->task); 1794 spin_unlock_irq(&pool->lock); 1795 1796 return worker; 1797 1798 fail: 1799 if (id >= 0) 1800 ida_simple_remove(&pool->worker_ida, id); 1801 kfree(worker); 1802 return NULL; 1803 } 1804 1805 /** 1806 * destroy_worker - destroy a workqueue worker 1807 * @worker: worker to be destroyed 1808 * 1809 * Destroy @worker and adjust @pool stats accordingly. The worker should 1810 * be idle. 1811 * 1812 * CONTEXT: 1813 * spin_lock_irq(pool->lock). 1814 */ 1815 static void destroy_worker(struct worker *worker) 1816 { 1817 struct worker_pool *pool = worker->pool; 1818 1819 lockdep_assert_held(&pool->lock); 1820 1821 /* sanity check frenzy */ 1822 if (WARN_ON(worker->current_work) || 1823 WARN_ON(!list_empty(&worker->scheduled)) || 1824 WARN_ON(!(worker->flags & WORKER_IDLE))) 1825 return; 1826 1827 pool->nr_workers--; 1828 pool->nr_idle--; 1829 1830 list_del_init(&worker->entry); 1831 worker->flags |= WORKER_DIE; 1832 wake_up_process(worker->task); 1833 } 1834 1835 static void idle_worker_timeout(struct timer_list *t) 1836 { 1837 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1838 1839 spin_lock_irq(&pool->lock); 1840 1841 while (too_many_workers(pool)) { 1842 struct worker *worker; 1843 unsigned long expires; 1844 1845 /* idle_list is kept in LIFO order, check the last one */ 1846 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1847 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1848 1849 if (time_before(jiffies, expires)) { 1850 mod_timer(&pool->idle_timer, expires); 1851 break; 1852 } 1853 1854 destroy_worker(worker); 1855 } 1856 1857 spin_unlock_irq(&pool->lock); 1858 } 1859 1860 static void send_mayday(struct work_struct *work) 1861 { 1862 struct pool_workqueue *pwq = get_work_pwq(work); 1863 struct workqueue_struct *wq = pwq->wq; 1864 1865 lockdep_assert_held(&wq_mayday_lock); 1866 1867 if (!wq->rescuer) 1868 return; 1869 1870 /* mayday mayday mayday */ 1871 if (list_empty(&pwq->mayday_node)) { 1872 /* 1873 * If @pwq is for an unbound wq, its base ref may be put at 1874 * any time due to an attribute change. Pin @pwq until the 1875 * rescuer is done with it. 1876 */ 1877 get_pwq(pwq); 1878 list_add_tail(&pwq->mayday_node, &wq->maydays); 1879 wake_up_process(wq->rescuer->task); 1880 } 1881 } 1882 1883 static void pool_mayday_timeout(struct timer_list *t) 1884 { 1885 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 1886 struct work_struct *work; 1887 1888 spin_lock_irq(&pool->lock); 1889 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1890 1891 if (need_to_create_worker(pool)) { 1892 /* 1893 * We've been trying to create a new worker but 1894 * haven't been successful. We might be hitting an 1895 * allocation deadlock. Send distress signals to 1896 * rescuers. 1897 */ 1898 list_for_each_entry(work, &pool->worklist, entry) 1899 send_mayday(work); 1900 } 1901 1902 spin_unlock(&wq_mayday_lock); 1903 spin_unlock_irq(&pool->lock); 1904 1905 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1906 } 1907 1908 /** 1909 * maybe_create_worker - create a new worker if necessary 1910 * @pool: pool to create a new worker for 1911 * 1912 * Create a new worker for @pool if necessary. @pool is guaranteed to 1913 * have at least one idle worker on return from this function. If 1914 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1915 * sent to all rescuers with works scheduled on @pool to resolve 1916 * possible allocation deadlock. 1917 * 1918 * On return, need_to_create_worker() is guaranteed to be %false and 1919 * may_start_working() %true. 1920 * 1921 * LOCKING: 1922 * spin_lock_irq(pool->lock) which may be released and regrabbed 1923 * multiple times. Does GFP_KERNEL allocations. Called only from 1924 * manager. 1925 */ 1926 static void maybe_create_worker(struct worker_pool *pool) 1927 __releases(&pool->lock) 1928 __acquires(&pool->lock) 1929 { 1930 restart: 1931 spin_unlock_irq(&pool->lock); 1932 1933 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1934 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1935 1936 while (true) { 1937 if (create_worker(pool) || !need_to_create_worker(pool)) 1938 break; 1939 1940 schedule_timeout_interruptible(CREATE_COOLDOWN); 1941 1942 if (!need_to_create_worker(pool)) 1943 break; 1944 } 1945 1946 del_timer_sync(&pool->mayday_timer); 1947 spin_lock_irq(&pool->lock); 1948 /* 1949 * This is necessary even after a new worker was just successfully 1950 * created as @pool->lock was dropped and the new worker might have 1951 * already become busy. 1952 */ 1953 if (need_to_create_worker(pool)) 1954 goto restart; 1955 } 1956 1957 /** 1958 * manage_workers - manage worker pool 1959 * @worker: self 1960 * 1961 * Assume the manager role and manage the worker pool @worker belongs 1962 * to. At any given time, there can be only zero or one manager per 1963 * pool. The exclusion is handled automatically by this function. 1964 * 1965 * The caller can safely start processing works on false return. On 1966 * true return, it's guaranteed that need_to_create_worker() is false 1967 * and may_start_working() is true. 1968 * 1969 * CONTEXT: 1970 * spin_lock_irq(pool->lock) which may be released and regrabbed 1971 * multiple times. Does GFP_KERNEL allocations. 1972 * 1973 * Return: 1974 * %false if the pool doesn't need management and the caller can safely 1975 * start processing works, %true if management function was performed and 1976 * the conditions that the caller verified before calling the function may 1977 * no longer be true. 1978 */ 1979 static bool manage_workers(struct worker *worker) 1980 { 1981 struct worker_pool *pool = worker->pool; 1982 1983 if (pool->flags & POOL_MANAGER_ACTIVE) 1984 return false; 1985 1986 pool->flags |= POOL_MANAGER_ACTIVE; 1987 pool->manager = worker; 1988 1989 maybe_create_worker(pool); 1990 1991 pool->manager = NULL; 1992 pool->flags &= ~POOL_MANAGER_ACTIVE; 1993 wake_up(&wq_manager_wait); 1994 return true; 1995 } 1996 1997 /** 1998 * process_one_work - process single work 1999 * @worker: self 2000 * @work: work to process 2001 * 2002 * Process @work. This function contains all the logics necessary to 2003 * process a single work including synchronization against and 2004 * interaction with other workers on the same cpu, queueing and 2005 * flushing. As long as context requirement is met, any worker can 2006 * call this function to process a work. 2007 * 2008 * CONTEXT: 2009 * spin_lock_irq(pool->lock) which is released and regrabbed. 2010 */ 2011 static void process_one_work(struct worker *worker, struct work_struct *work) 2012 __releases(&pool->lock) 2013 __acquires(&pool->lock) 2014 { 2015 struct pool_workqueue *pwq = get_work_pwq(work); 2016 struct worker_pool *pool = worker->pool; 2017 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2018 int work_color; 2019 struct worker *collision; 2020 #ifdef CONFIG_LOCKDEP 2021 /* 2022 * It is permissible to free the struct work_struct from 2023 * inside the function that is called from it, this we need to 2024 * take into account for lockdep too. To avoid bogus "held 2025 * lock freed" warnings as well as problems when looking into 2026 * work->lockdep_map, make a copy and use that here. 2027 */ 2028 struct lockdep_map lockdep_map; 2029 2030 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2031 #endif 2032 /* ensure we're on the correct CPU */ 2033 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2034 raw_smp_processor_id() != pool->cpu); 2035 2036 /* 2037 * A single work shouldn't be executed concurrently by 2038 * multiple workers on a single cpu. Check whether anyone is 2039 * already processing the work. If so, defer the work to the 2040 * currently executing one. 2041 */ 2042 collision = find_worker_executing_work(pool, work); 2043 if (unlikely(collision)) { 2044 move_linked_works(work, &collision->scheduled, NULL); 2045 return; 2046 } 2047 2048 /* claim and dequeue */ 2049 debug_work_deactivate(work); 2050 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2051 worker->current_work = work; 2052 worker->current_func = work->func; 2053 worker->current_pwq = pwq; 2054 work_color = get_work_color(work); 2055 2056 list_del_init(&work->entry); 2057 2058 /* 2059 * CPU intensive works don't participate in concurrency management. 2060 * They're the scheduler's responsibility. This takes @worker out 2061 * of concurrency management and the next code block will chain 2062 * execution of the pending work items. 2063 */ 2064 if (unlikely(cpu_intensive)) 2065 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2066 2067 /* 2068 * Wake up another worker if necessary. The condition is always 2069 * false for normal per-cpu workers since nr_running would always 2070 * be >= 1 at this point. This is used to chain execution of the 2071 * pending work items for WORKER_NOT_RUNNING workers such as the 2072 * UNBOUND and CPU_INTENSIVE ones. 2073 */ 2074 if (need_more_worker(pool)) 2075 wake_up_worker(pool); 2076 2077 /* 2078 * Record the last pool and clear PENDING which should be the last 2079 * update to @work. Also, do this inside @pool->lock so that 2080 * PENDING and queued state changes happen together while IRQ is 2081 * disabled. 2082 */ 2083 set_work_pool_and_clear_pending(work, pool->id); 2084 2085 spin_unlock_irq(&pool->lock); 2086 2087 lock_map_acquire(&pwq->wq->lockdep_map); 2088 lock_map_acquire(&lockdep_map); 2089 /* 2090 * Strictly speaking we should mark the invariant state without holding 2091 * any locks, that is, before these two lock_map_acquire()'s. 2092 * 2093 * However, that would result in: 2094 * 2095 * A(W1) 2096 * WFC(C) 2097 * A(W1) 2098 * C(C) 2099 * 2100 * Which would create W1->C->W1 dependencies, even though there is no 2101 * actual deadlock possible. There are two solutions, using a 2102 * read-recursive acquire on the work(queue) 'locks', but this will then 2103 * hit the lockdep limitation on recursive locks, or simply discard 2104 * these locks. 2105 * 2106 * AFAICT there is no possible deadlock scenario between the 2107 * flush_work() and complete() primitives (except for single-threaded 2108 * workqueues), so hiding them isn't a problem. 2109 */ 2110 lockdep_invariant_state(true); 2111 trace_workqueue_execute_start(work); 2112 worker->current_func(work); 2113 /* 2114 * While we must be careful to not use "work" after this, the trace 2115 * point will only record its address. 2116 */ 2117 trace_workqueue_execute_end(work); 2118 lock_map_release(&lockdep_map); 2119 lock_map_release(&pwq->wq->lockdep_map); 2120 2121 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2122 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2123 " last function: %pf\n", 2124 current->comm, preempt_count(), task_pid_nr(current), 2125 worker->current_func); 2126 debug_show_held_locks(current); 2127 dump_stack(); 2128 } 2129 2130 /* 2131 * The following prevents a kworker from hogging CPU on !PREEMPT 2132 * kernels, where a requeueing work item waiting for something to 2133 * happen could deadlock with stop_machine as such work item could 2134 * indefinitely requeue itself while all other CPUs are trapped in 2135 * stop_machine. At the same time, report a quiescent RCU state so 2136 * the same condition doesn't freeze RCU. 2137 */ 2138 cond_resched_rcu_qs(); 2139 2140 spin_lock_irq(&pool->lock); 2141 2142 /* clear cpu intensive status */ 2143 if (unlikely(cpu_intensive)) 2144 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2145 2146 /* we're done with it, release */ 2147 hash_del(&worker->hentry); 2148 worker->current_work = NULL; 2149 worker->current_func = NULL; 2150 worker->current_pwq = NULL; 2151 worker->desc_valid = false; 2152 pwq_dec_nr_in_flight(pwq, work_color); 2153 } 2154 2155 /** 2156 * process_scheduled_works - process scheduled works 2157 * @worker: self 2158 * 2159 * Process all scheduled works. Please note that the scheduled list 2160 * may change while processing a work, so this function repeatedly 2161 * fetches a work from the top and executes it. 2162 * 2163 * CONTEXT: 2164 * spin_lock_irq(pool->lock) which may be released and regrabbed 2165 * multiple times. 2166 */ 2167 static void process_scheduled_works(struct worker *worker) 2168 { 2169 while (!list_empty(&worker->scheduled)) { 2170 struct work_struct *work = list_first_entry(&worker->scheduled, 2171 struct work_struct, entry); 2172 process_one_work(worker, work); 2173 } 2174 } 2175 2176 /** 2177 * worker_thread - the worker thread function 2178 * @__worker: self 2179 * 2180 * The worker thread function. All workers belong to a worker_pool - 2181 * either a per-cpu one or dynamic unbound one. These workers process all 2182 * work items regardless of their specific target workqueue. The only 2183 * exception is work items which belong to workqueues with a rescuer which 2184 * will be explained in rescuer_thread(). 2185 * 2186 * Return: 0 2187 */ 2188 static int worker_thread(void *__worker) 2189 { 2190 struct worker *worker = __worker; 2191 struct worker_pool *pool = worker->pool; 2192 2193 /* tell the scheduler that this is a workqueue worker */ 2194 worker->task->flags |= PF_WQ_WORKER; 2195 woke_up: 2196 spin_lock_irq(&pool->lock); 2197 2198 /* am I supposed to die? */ 2199 if (unlikely(worker->flags & WORKER_DIE)) { 2200 spin_unlock_irq(&pool->lock); 2201 WARN_ON_ONCE(!list_empty(&worker->entry)); 2202 worker->task->flags &= ~PF_WQ_WORKER; 2203 2204 set_task_comm(worker->task, "kworker/dying"); 2205 ida_simple_remove(&pool->worker_ida, worker->id); 2206 worker_detach_from_pool(worker, pool); 2207 kfree(worker); 2208 return 0; 2209 } 2210 2211 worker_leave_idle(worker); 2212 recheck: 2213 /* no more worker necessary? */ 2214 if (!need_more_worker(pool)) 2215 goto sleep; 2216 2217 /* do we need to manage? */ 2218 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2219 goto recheck; 2220 2221 /* 2222 * ->scheduled list can only be filled while a worker is 2223 * preparing to process a work or actually processing it. 2224 * Make sure nobody diddled with it while I was sleeping. 2225 */ 2226 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2227 2228 /* 2229 * Finish PREP stage. We're guaranteed to have at least one idle 2230 * worker or that someone else has already assumed the manager 2231 * role. This is where @worker starts participating in concurrency 2232 * management if applicable and concurrency management is restored 2233 * after being rebound. See rebind_workers() for details. 2234 */ 2235 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2236 2237 do { 2238 struct work_struct *work = 2239 list_first_entry(&pool->worklist, 2240 struct work_struct, entry); 2241 2242 pool->watchdog_ts = jiffies; 2243 2244 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2245 /* optimization path, not strictly necessary */ 2246 process_one_work(worker, work); 2247 if (unlikely(!list_empty(&worker->scheduled))) 2248 process_scheduled_works(worker); 2249 } else { 2250 move_linked_works(work, &worker->scheduled, NULL); 2251 process_scheduled_works(worker); 2252 } 2253 } while (keep_working(pool)); 2254 2255 worker_set_flags(worker, WORKER_PREP); 2256 sleep: 2257 /* 2258 * pool->lock is held and there's no work to process and no need to 2259 * manage, sleep. Workers are woken up only while holding 2260 * pool->lock or from local cpu, so setting the current state 2261 * before releasing pool->lock is enough to prevent losing any 2262 * event. 2263 */ 2264 worker_enter_idle(worker); 2265 __set_current_state(TASK_IDLE); 2266 spin_unlock_irq(&pool->lock); 2267 schedule(); 2268 goto woke_up; 2269 } 2270 2271 /** 2272 * rescuer_thread - the rescuer thread function 2273 * @__rescuer: self 2274 * 2275 * Workqueue rescuer thread function. There's one rescuer for each 2276 * workqueue which has WQ_MEM_RECLAIM set. 2277 * 2278 * Regular work processing on a pool may block trying to create a new 2279 * worker which uses GFP_KERNEL allocation which has slight chance of 2280 * developing into deadlock if some works currently on the same queue 2281 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2282 * the problem rescuer solves. 2283 * 2284 * When such condition is possible, the pool summons rescuers of all 2285 * workqueues which have works queued on the pool and let them process 2286 * those works so that forward progress can be guaranteed. 2287 * 2288 * This should happen rarely. 2289 * 2290 * Return: 0 2291 */ 2292 static int rescuer_thread(void *__rescuer) 2293 { 2294 struct worker *rescuer = __rescuer; 2295 struct workqueue_struct *wq = rescuer->rescue_wq; 2296 struct list_head *scheduled = &rescuer->scheduled; 2297 bool should_stop; 2298 2299 set_user_nice(current, RESCUER_NICE_LEVEL); 2300 2301 /* 2302 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2303 * doesn't participate in concurrency management. 2304 */ 2305 rescuer->task->flags |= PF_WQ_WORKER; 2306 repeat: 2307 set_current_state(TASK_IDLE); 2308 2309 /* 2310 * By the time the rescuer is requested to stop, the workqueue 2311 * shouldn't have any work pending, but @wq->maydays may still have 2312 * pwq(s) queued. This can happen by non-rescuer workers consuming 2313 * all the work items before the rescuer got to them. Go through 2314 * @wq->maydays processing before acting on should_stop so that the 2315 * list is always empty on exit. 2316 */ 2317 should_stop = kthread_should_stop(); 2318 2319 /* see whether any pwq is asking for help */ 2320 spin_lock_irq(&wq_mayday_lock); 2321 2322 while (!list_empty(&wq->maydays)) { 2323 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2324 struct pool_workqueue, mayday_node); 2325 struct worker_pool *pool = pwq->pool; 2326 struct work_struct *work, *n; 2327 bool first = true; 2328 2329 __set_current_state(TASK_RUNNING); 2330 list_del_init(&pwq->mayday_node); 2331 2332 spin_unlock_irq(&wq_mayday_lock); 2333 2334 worker_attach_to_pool(rescuer, pool); 2335 2336 spin_lock_irq(&pool->lock); 2337 rescuer->pool = pool; 2338 2339 /* 2340 * Slurp in all works issued via this workqueue and 2341 * process'em. 2342 */ 2343 WARN_ON_ONCE(!list_empty(scheduled)); 2344 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2345 if (get_work_pwq(work) == pwq) { 2346 if (first) 2347 pool->watchdog_ts = jiffies; 2348 move_linked_works(work, scheduled, &n); 2349 } 2350 first = false; 2351 } 2352 2353 if (!list_empty(scheduled)) { 2354 process_scheduled_works(rescuer); 2355 2356 /* 2357 * The above execution of rescued work items could 2358 * have created more to rescue through 2359 * pwq_activate_first_delayed() or chained 2360 * queueing. Let's put @pwq back on mayday list so 2361 * that such back-to-back work items, which may be 2362 * being used to relieve memory pressure, don't 2363 * incur MAYDAY_INTERVAL delay inbetween. 2364 */ 2365 if (need_to_create_worker(pool)) { 2366 spin_lock(&wq_mayday_lock); 2367 get_pwq(pwq); 2368 list_move_tail(&pwq->mayday_node, &wq->maydays); 2369 spin_unlock(&wq_mayday_lock); 2370 } 2371 } 2372 2373 /* 2374 * Put the reference grabbed by send_mayday(). @pool won't 2375 * go away while we're still attached to it. 2376 */ 2377 put_pwq(pwq); 2378 2379 /* 2380 * Leave this pool. If need_more_worker() is %true, notify a 2381 * regular worker; otherwise, we end up with 0 concurrency 2382 * and stalling the execution. 2383 */ 2384 if (need_more_worker(pool)) 2385 wake_up_worker(pool); 2386 2387 rescuer->pool = NULL; 2388 spin_unlock_irq(&pool->lock); 2389 2390 worker_detach_from_pool(rescuer, pool); 2391 2392 spin_lock_irq(&wq_mayday_lock); 2393 } 2394 2395 spin_unlock_irq(&wq_mayday_lock); 2396 2397 if (should_stop) { 2398 __set_current_state(TASK_RUNNING); 2399 rescuer->task->flags &= ~PF_WQ_WORKER; 2400 return 0; 2401 } 2402 2403 /* rescuers should never participate in concurrency management */ 2404 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2405 schedule(); 2406 goto repeat; 2407 } 2408 2409 /** 2410 * check_flush_dependency - check for flush dependency sanity 2411 * @target_wq: workqueue being flushed 2412 * @target_work: work item being flushed (NULL for workqueue flushes) 2413 * 2414 * %current is trying to flush the whole @target_wq or @target_work on it. 2415 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2416 * reclaiming memory or running on a workqueue which doesn't have 2417 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2418 * a deadlock. 2419 */ 2420 static void check_flush_dependency(struct workqueue_struct *target_wq, 2421 struct work_struct *target_work) 2422 { 2423 work_func_t target_func = target_work ? target_work->func : NULL; 2424 struct worker *worker; 2425 2426 if (target_wq->flags & WQ_MEM_RECLAIM) 2427 return; 2428 2429 worker = current_wq_worker(); 2430 2431 WARN_ONCE(current->flags & PF_MEMALLOC, 2432 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2433 current->pid, current->comm, target_wq->name, target_func); 2434 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2435 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2436 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2437 worker->current_pwq->wq->name, worker->current_func, 2438 target_wq->name, target_func); 2439 } 2440 2441 struct wq_barrier { 2442 struct work_struct work; 2443 struct completion done; 2444 struct task_struct *task; /* purely informational */ 2445 }; 2446 2447 static void wq_barrier_func(struct work_struct *work) 2448 { 2449 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2450 complete(&barr->done); 2451 } 2452 2453 /** 2454 * insert_wq_barrier - insert a barrier work 2455 * @pwq: pwq to insert barrier into 2456 * @barr: wq_barrier to insert 2457 * @target: target work to attach @barr to 2458 * @worker: worker currently executing @target, NULL if @target is not executing 2459 * 2460 * @barr is linked to @target such that @barr is completed only after 2461 * @target finishes execution. Please note that the ordering 2462 * guarantee is observed only with respect to @target and on the local 2463 * cpu. 2464 * 2465 * Currently, a queued barrier can't be canceled. This is because 2466 * try_to_grab_pending() can't determine whether the work to be 2467 * grabbed is at the head of the queue and thus can't clear LINKED 2468 * flag of the previous work while there must be a valid next work 2469 * after a work with LINKED flag set. 2470 * 2471 * Note that when @worker is non-NULL, @target may be modified 2472 * underneath us, so we can't reliably determine pwq from @target. 2473 * 2474 * CONTEXT: 2475 * spin_lock_irq(pool->lock). 2476 */ 2477 static void insert_wq_barrier(struct pool_workqueue *pwq, 2478 struct wq_barrier *barr, 2479 struct work_struct *target, struct worker *worker) 2480 { 2481 struct list_head *head; 2482 unsigned int linked = 0; 2483 2484 /* 2485 * debugobject calls are safe here even with pool->lock locked 2486 * as we know for sure that this will not trigger any of the 2487 * checks and call back into the fixup functions where we 2488 * might deadlock. 2489 */ 2490 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2491 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2492 2493 init_completion_map(&barr->done, &target->lockdep_map); 2494 2495 barr->task = current; 2496 2497 /* 2498 * If @target is currently being executed, schedule the 2499 * barrier to the worker; otherwise, put it after @target. 2500 */ 2501 if (worker) 2502 head = worker->scheduled.next; 2503 else { 2504 unsigned long *bits = work_data_bits(target); 2505 2506 head = target->entry.next; 2507 /* there can already be other linked works, inherit and set */ 2508 linked = *bits & WORK_STRUCT_LINKED; 2509 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2510 } 2511 2512 debug_work_activate(&barr->work); 2513 insert_work(pwq, &barr->work, head, 2514 work_color_to_flags(WORK_NO_COLOR) | linked); 2515 } 2516 2517 /** 2518 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2519 * @wq: workqueue being flushed 2520 * @flush_color: new flush color, < 0 for no-op 2521 * @work_color: new work color, < 0 for no-op 2522 * 2523 * Prepare pwqs for workqueue flushing. 2524 * 2525 * If @flush_color is non-negative, flush_color on all pwqs should be 2526 * -1. If no pwq has in-flight commands at the specified color, all 2527 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2528 * has in flight commands, its pwq->flush_color is set to 2529 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2530 * wakeup logic is armed and %true is returned. 2531 * 2532 * The caller should have initialized @wq->first_flusher prior to 2533 * calling this function with non-negative @flush_color. If 2534 * @flush_color is negative, no flush color update is done and %false 2535 * is returned. 2536 * 2537 * If @work_color is non-negative, all pwqs should have the same 2538 * work_color which is previous to @work_color and all will be 2539 * advanced to @work_color. 2540 * 2541 * CONTEXT: 2542 * mutex_lock(wq->mutex). 2543 * 2544 * Return: 2545 * %true if @flush_color >= 0 and there's something to flush. %false 2546 * otherwise. 2547 */ 2548 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2549 int flush_color, int work_color) 2550 { 2551 bool wait = false; 2552 struct pool_workqueue *pwq; 2553 2554 if (flush_color >= 0) { 2555 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2556 atomic_set(&wq->nr_pwqs_to_flush, 1); 2557 } 2558 2559 for_each_pwq(pwq, wq) { 2560 struct worker_pool *pool = pwq->pool; 2561 2562 spin_lock_irq(&pool->lock); 2563 2564 if (flush_color >= 0) { 2565 WARN_ON_ONCE(pwq->flush_color != -1); 2566 2567 if (pwq->nr_in_flight[flush_color]) { 2568 pwq->flush_color = flush_color; 2569 atomic_inc(&wq->nr_pwqs_to_flush); 2570 wait = true; 2571 } 2572 } 2573 2574 if (work_color >= 0) { 2575 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2576 pwq->work_color = work_color; 2577 } 2578 2579 spin_unlock_irq(&pool->lock); 2580 } 2581 2582 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2583 complete(&wq->first_flusher->done); 2584 2585 return wait; 2586 } 2587 2588 /** 2589 * flush_workqueue - ensure that any scheduled work has run to completion. 2590 * @wq: workqueue to flush 2591 * 2592 * This function sleeps until all work items which were queued on entry 2593 * have finished execution, but it is not livelocked by new incoming ones. 2594 */ 2595 void flush_workqueue(struct workqueue_struct *wq) 2596 { 2597 struct wq_flusher this_flusher = { 2598 .list = LIST_HEAD_INIT(this_flusher.list), 2599 .flush_color = -1, 2600 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2601 }; 2602 int next_color; 2603 2604 if (WARN_ON(!wq_online)) 2605 return; 2606 2607 mutex_lock(&wq->mutex); 2608 2609 /* 2610 * Start-to-wait phase 2611 */ 2612 next_color = work_next_color(wq->work_color); 2613 2614 if (next_color != wq->flush_color) { 2615 /* 2616 * Color space is not full. The current work_color 2617 * becomes our flush_color and work_color is advanced 2618 * by one. 2619 */ 2620 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2621 this_flusher.flush_color = wq->work_color; 2622 wq->work_color = next_color; 2623 2624 if (!wq->first_flusher) { 2625 /* no flush in progress, become the first flusher */ 2626 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2627 2628 wq->first_flusher = &this_flusher; 2629 2630 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2631 wq->work_color)) { 2632 /* nothing to flush, done */ 2633 wq->flush_color = next_color; 2634 wq->first_flusher = NULL; 2635 goto out_unlock; 2636 } 2637 } else { 2638 /* wait in queue */ 2639 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2640 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2641 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2642 } 2643 } else { 2644 /* 2645 * Oops, color space is full, wait on overflow queue. 2646 * The next flush completion will assign us 2647 * flush_color and transfer to flusher_queue. 2648 */ 2649 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2650 } 2651 2652 check_flush_dependency(wq, NULL); 2653 2654 mutex_unlock(&wq->mutex); 2655 2656 wait_for_completion(&this_flusher.done); 2657 2658 /* 2659 * Wake-up-and-cascade phase 2660 * 2661 * First flushers are responsible for cascading flushes and 2662 * handling overflow. Non-first flushers can simply return. 2663 */ 2664 if (wq->first_flusher != &this_flusher) 2665 return; 2666 2667 mutex_lock(&wq->mutex); 2668 2669 /* we might have raced, check again with mutex held */ 2670 if (wq->first_flusher != &this_flusher) 2671 goto out_unlock; 2672 2673 wq->first_flusher = NULL; 2674 2675 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2676 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2677 2678 while (true) { 2679 struct wq_flusher *next, *tmp; 2680 2681 /* complete all the flushers sharing the current flush color */ 2682 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2683 if (next->flush_color != wq->flush_color) 2684 break; 2685 list_del_init(&next->list); 2686 complete(&next->done); 2687 } 2688 2689 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2690 wq->flush_color != work_next_color(wq->work_color)); 2691 2692 /* this flush_color is finished, advance by one */ 2693 wq->flush_color = work_next_color(wq->flush_color); 2694 2695 /* one color has been freed, handle overflow queue */ 2696 if (!list_empty(&wq->flusher_overflow)) { 2697 /* 2698 * Assign the same color to all overflowed 2699 * flushers, advance work_color and append to 2700 * flusher_queue. This is the start-to-wait 2701 * phase for these overflowed flushers. 2702 */ 2703 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2704 tmp->flush_color = wq->work_color; 2705 2706 wq->work_color = work_next_color(wq->work_color); 2707 2708 list_splice_tail_init(&wq->flusher_overflow, 2709 &wq->flusher_queue); 2710 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2711 } 2712 2713 if (list_empty(&wq->flusher_queue)) { 2714 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2715 break; 2716 } 2717 2718 /* 2719 * Need to flush more colors. Make the next flusher 2720 * the new first flusher and arm pwqs. 2721 */ 2722 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2723 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2724 2725 list_del_init(&next->list); 2726 wq->first_flusher = next; 2727 2728 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2729 break; 2730 2731 /* 2732 * Meh... this color is already done, clear first 2733 * flusher and repeat cascading. 2734 */ 2735 wq->first_flusher = NULL; 2736 } 2737 2738 out_unlock: 2739 mutex_unlock(&wq->mutex); 2740 } 2741 EXPORT_SYMBOL(flush_workqueue); 2742 2743 /** 2744 * drain_workqueue - drain a workqueue 2745 * @wq: workqueue to drain 2746 * 2747 * Wait until the workqueue becomes empty. While draining is in progress, 2748 * only chain queueing is allowed. IOW, only currently pending or running 2749 * work items on @wq can queue further work items on it. @wq is flushed 2750 * repeatedly until it becomes empty. The number of flushing is determined 2751 * by the depth of chaining and should be relatively short. Whine if it 2752 * takes too long. 2753 */ 2754 void drain_workqueue(struct workqueue_struct *wq) 2755 { 2756 unsigned int flush_cnt = 0; 2757 struct pool_workqueue *pwq; 2758 2759 /* 2760 * __queue_work() needs to test whether there are drainers, is much 2761 * hotter than drain_workqueue() and already looks at @wq->flags. 2762 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2763 */ 2764 mutex_lock(&wq->mutex); 2765 if (!wq->nr_drainers++) 2766 wq->flags |= __WQ_DRAINING; 2767 mutex_unlock(&wq->mutex); 2768 reflush: 2769 flush_workqueue(wq); 2770 2771 mutex_lock(&wq->mutex); 2772 2773 for_each_pwq(pwq, wq) { 2774 bool drained; 2775 2776 spin_lock_irq(&pwq->pool->lock); 2777 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2778 spin_unlock_irq(&pwq->pool->lock); 2779 2780 if (drained) 2781 continue; 2782 2783 if (++flush_cnt == 10 || 2784 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2785 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2786 wq->name, flush_cnt); 2787 2788 mutex_unlock(&wq->mutex); 2789 goto reflush; 2790 } 2791 2792 if (!--wq->nr_drainers) 2793 wq->flags &= ~__WQ_DRAINING; 2794 mutex_unlock(&wq->mutex); 2795 } 2796 EXPORT_SYMBOL_GPL(drain_workqueue); 2797 2798 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2799 { 2800 struct worker *worker = NULL; 2801 struct worker_pool *pool; 2802 struct pool_workqueue *pwq; 2803 2804 might_sleep(); 2805 2806 local_irq_disable(); 2807 pool = get_work_pool(work); 2808 if (!pool) { 2809 local_irq_enable(); 2810 return false; 2811 } 2812 2813 spin_lock(&pool->lock); 2814 /* see the comment in try_to_grab_pending() with the same code */ 2815 pwq = get_work_pwq(work); 2816 if (pwq) { 2817 if (unlikely(pwq->pool != pool)) 2818 goto already_gone; 2819 } else { 2820 worker = find_worker_executing_work(pool, work); 2821 if (!worker) 2822 goto already_gone; 2823 pwq = worker->current_pwq; 2824 } 2825 2826 check_flush_dependency(pwq->wq, work); 2827 2828 insert_wq_barrier(pwq, barr, work, worker); 2829 spin_unlock_irq(&pool->lock); 2830 2831 /* 2832 * Force a lock recursion deadlock when using flush_work() inside a 2833 * single-threaded or rescuer equipped workqueue. 2834 * 2835 * For single threaded workqueues the deadlock happens when the work 2836 * is after the work issuing the flush_work(). For rescuer equipped 2837 * workqueues the deadlock happens when the rescuer stalls, blocking 2838 * forward progress. 2839 */ 2840 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) { 2841 lock_map_acquire(&pwq->wq->lockdep_map); 2842 lock_map_release(&pwq->wq->lockdep_map); 2843 } 2844 2845 return true; 2846 already_gone: 2847 spin_unlock_irq(&pool->lock); 2848 return false; 2849 } 2850 2851 /** 2852 * flush_work - wait for a work to finish executing the last queueing instance 2853 * @work: the work to flush 2854 * 2855 * Wait until @work has finished execution. @work is guaranteed to be idle 2856 * on return if it hasn't been requeued since flush started. 2857 * 2858 * Return: 2859 * %true if flush_work() waited for the work to finish execution, 2860 * %false if it was already idle. 2861 */ 2862 bool flush_work(struct work_struct *work) 2863 { 2864 struct wq_barrier barr; 2865 2866 if (WARN_ON(!wq_online)) 2867 return false; 2868 2869 if (start_flush_work(work, &barr)) { 2870 wait_for_completion(&barr.done); 2871 destroy_work_on_stack(&barr.work); 2872 return true; 2873 } else { 2874 return false; 2875 } 2876 } 2877 EXPORT_SYMBOL_GPL(flush_work); 2878 2879 struct cwt_wait { 2880 wait_queue_entry_t wait; 2881 struct work_struct *work; 2882 }; 2883 2884 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2885 { 2886 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2887 2888 if (cwait->work != key) 2889 return 0; 2890 return autoremove_wake_function(wait, mode, sync, key); 2891 } 2892 2893 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2894 { 2895 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2896 unsigned long flags; 2897 int ret; 2898 2899 do { 2900 ret = try_to_grab_pending(work, is_dwork, &flags); 2901 /* 2902 * If someone else is already canceling, wait for it to 2903 * finish. flush_work() doesn't work for PREEMPT_NONE 2904 * because we may get scheduled between @work's completion 2905 * and the other canceling task resuming and clearing 2906 * CANCELING - flush_work() will return false immediately 2907 * as @work is no longer busy, try_to_grab_pending() will 2908 * return -ENOENT as @work is still being canceled and the 2909 * other canceling task won't be able to clear CANCELING as 2910 * we're hogging the CPU. 2911 * 2912 * Let's wait for completion using a waitqueue. As this 2913 * may lead to the thundering herd problem, use a custom 2914 * wake function which matches @work along with exclusive 2915 * wait and wakeup. 2916 */ 2917 if (unlikely(ret == -ENOENT)) { 2918 struct cwt_wait cwait; 2919 2920 init_wait(&cwait.wait); 2921 cwait.wait.func = cwt_wakefn; 2922 cwait.work = work; 2923 2924 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2925 TASK_UNINTERRUPTIBLE); 2926 if (work_is_canceling(work)) 2927 schedule(); 2928 finish_wait(&cancel_waitq, &cwait.wait); 2929 } 2930 } while (unlikely(ret < 0)); 2931 2932 /* tell other tasks trying to grab @work to back off */ 2933 mark_work_canceling(work); 2934 local_irq_restore(flags); 2935 2936 /* 2937 * This allows canceling during early boot. We know that @work 2938 * isn't executing. 2939 */ 2940 if (wq_online) 2941 flush_work(work); 2942 2943 clear_work_data(work); 2944 2945 /* 2946 * Paired with prepare_to_wait() above so that either 2947 * waitqueue_active() is visible here or !work_is_canceling() is 2948 * visible there. 2949 */ 2950 smp_mb(); 2951 if (waitqueue_active(&cancel_waitq)) 2952 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 2953 2954 return ret; 2955 } 2956 2957 /** 2958 * cancel_work_sync - cancel a work and wait for it to finish 2959 * @work: the work to cancel 2960 * 2961 * Cancel @work and wait for its execution to finish. This function 2962 * can be used even if the work re-queues itself or migrates to 2963 * another workqueue. On return from this function, @work is 2964 * guaranteed to be not pending or executing on any CPU. 2965 * 2966 * cancel_work_sync(&delayed_work->work) must not be used for 2967 * delayed_work's. Use cancel_delayed_work_sync() instead. 2968 * 2969 * The caller must ensure that the workqueue on which @work was last 2970 * queued can't be destroyed before this function returns. 2971 * 2972 * Return: 2973 * %true if @work was pending, %false otherwise. 2974 */ 2975 bool cancel_work_sync(struct work_struct *work) 2976 { 2977 return __cancel_work_timer(work, false); 2978 } 2979 EXPORT_SYMBOL_GPL(cancel_work_sync); 2980 2981 /** 2982 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2983 * @dwork: the delayed work to flush 2984 * 2985 * Delayed timer is cancelled and the pending work is queued for 2986 * immediate execution. Like flush_work(), this function only 2987 * considers the last queueing instance of @dwork. 2988 * 2989 * Return: 2990 * %true if flush_work() waited for the work to finish execution, 2991 * %false if it was already idle. 2992 */ 2993 bool flush_delayed_work(struct delayed_work *dwork) 2994 { 2995 local_irq_disable(); 2996 if (del_timer_sync(&dwork->timer)) 2997 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2998 local_irq_enable(); 2999 return flush_work(&dwork->work); 3000 } 3001 EXPORT_SYMBOL(flush_delayed_work); 3002 3003 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3004 { 3005 unsigned long flags; 3006 int ret; 3007 3008 do { 3009 ret = try_to_grab_pending(work, is_dwork, &flags); 3010 } while (unlikely(ret == -EAGAIN)); 3011 3012 if (unlikely(ret < 0)) 3013 return false; 3014 3015 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3016 local_irq_restore(flags); 3017 return ret; 3018 } 3019 3020 /* 3021 * See cancel_delayed_work() 3022 */ 3023 bool cancel_work(struct work_struct *work) 3024 { 3025 return __cancel_work(work, false); 3026 } 3027 3028 /** 3029 * cancel_delayed_work - cancel a delayed work 3030 * @dwork: delayed_work to cancel 3031 * 3032 * Kill off a pending delayed_work. 3033 * 3034 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3035 * pending. 3036 * 3037 * Note: 3038 * The work callback function may still be running on return, unless 3039 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3040 * use cancel_delayed_work_sync() to wait on it. 3041 * 3042 * This function is safe to call from any context including IRQ handler. 3043 */ 3044 bool cancel_delayed_work(struct delayed_work *dwork) 3045 { 3046 return __cancel_work(&dwork->work, true); 3047 } 3048 EXPORT_SYMBOL(cancel_delayed_work); 3049 3050 /** 3051 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3052 * @dwork: the delayed work cancel 3053 * 3054 * This is cancel_work_sync() for delayed works. 3055 * 3056 * Return: 3057 * %true if @dwork was pending, %false otherwise. 3058 */ 3059 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3060 { 3061 return __cancel_work_timer(&dwork->work, true); 3062 } 3063 EXPORT_SYMBOL(cancel_delayed_work_sync); 3064 3065 /** 3066 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3067 * @func: the function to call 3068 * 3069 * schedule_on_each_cpu() executes @func on each online CPU using the 3070 * system workqueue and blocks until all CPUs have completed. 3071 * schedule_on_each_cpu() is very slow. 3072 * 3073 * Return: 3074 * 0 on success, -errno on failure. 3075 */ 3076 int schedule_on_each_cpu(work_func_t func) 3077 { 3078 int cpu; 3079 struct work_struct __percpu *works; 3080 3081 works = alloc_percpu(struct work_struct); 3082 if (!works) 3083 return -ENOMEM; 3084 3085 get_online_cpus(); 3086 3087 for_each_online_cpu(cpu) { 3088 struct work_struct *work = per_cpu_ptr(works, cpu); 3089 3090 INIT_WORK(work, func); 3091 schedule_work_on(cpu, work); 3092 } 3093 3094 for_each_online_cpu(cpu) 3095 flush_work(per_cpu_ptr(works, cpu)); 3096 3097 put_online_cpus(); 3098 free_percpu(works); 3099 return 0; 3100 } 3101 3102 /** 3103 * execute_in_process_context - reliably execute the routine with user context 3104 * @fn: the function to execute 3105 * @ew: guaranteed storage for the execute work structure (must 3106 * be available when the work executes) 3107 * 3108 * Executes the function immediately if process context is available, 3109 * otherwise schedules the function for delayed execution. 3110 * 3111 * Return: 0 - function was executed 3112 * 1 - function was scheduled for execution 3113 */ 3114 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3115 { 3116 if (!in_interrupt()) { 3117 fn(&ew->work); 3118 return 0; 3119 } 3120 3121 INIT_WORK(&ew->work, fn); 3122 schedule_work(&ew->work); 3123 3124 return 1; 3125 } 3126 EXPORT_SYMBOL_GPL(execute_in_process_context); 3127 3128 /** 3129 * free_workqueue_attrs - free a workqueue_attrs 3130 * @attrs: workqueue_attrs to free 3131 * 3132 * Undo alloc_workqueue_attrs(). 3133 */ 3134 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3135 { 3136 if (attrs) { 3137 free_cpumask_var(attrs->cpumask); 3138 kfree(attrs); 3139 } 3140 } 3141 3142 /** 3143 * alloc_workqueue_attrs - allocate a workqueue_attrs 3144 * @gfp_mask: allocation mask to use 3145 * 3146 * Allocate a new workqueue_attrs, initialize with default settings and 3147 * return it. 3148 * 3149 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3150 */ 3151 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3152 { 3153 struct workqueue_attrs *attrs; 3154 3155 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3156 if (!attrs) 3157 goto fail; 3158 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3159 goto fail; 3160 3161 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3162 return attrs; 3163 fail: 3164 free_workqueue_attrs(attrs); 3165 return NULL; 3166 } 3167 3168 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3169 const struct workqueue_attrs *from) 3170 { 3171 to->nice = from->nice; 3172 cpumask_copy(to->cpumask, from->cpumask); 3173 /* 3174 * Unlike hash and equality test, this function doesn't ignore 3175 * ->no_numa as it is used for both pool and wq attrs. Instead, 3176 * get_unbound_pool() explicitly clears ->no_numa after copying. 3177 */ 3178 to->no_numa = from->no_numa; 3179 } 3180 3181 /* hash value of the content of @attr */ 3182 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3183 { 3184 u32 hash = 0; 3185 3186 hash = jhash_1word(attrs->nice, hash); 3187 hash = jhash(cpumask_bits(attrs->cpumask), 3188 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3189 return hash; 3190 } 3191 3192 /* content equality test */ 3193 static bool wqattrs_equal(const struct workqueue_attrs *a, 3194 const struct workqueue_attrs *b) 3195 { 3196 if (a->nice != b->nice) 3197 return false; 3198 if (!cpumask_equal(a->cpumask, b->cpumask)) 3199 return false; 3200 return true; 3201 } 3202 3203 /** 3204 * init_worker_pool - initialize a newly zalloc'd worker_pool 3205 * @pool: worker_pool to initialize 3206 * 3207 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3208 * 3209 * Return: 0 on success, -errno on failure. Even on failure, all fields 3210 * inside @pool proper are initialized and put_unbound_pool() can be called 3211 * on @pool safely to release it. 3212 */ 3213 static int init_worker_pool(struct worker_pool *pool) 3214 { 3215 spin_lock_init(&pool->lock); 3216 pool->id = -1; 3217 pool->cpu = -1; 3218 pool->node = NUMA_NO_NODE; 3219 pool->flags |= POOL_DISASSOCIATED; 3220 pool->watchdog_ts = jiffies; 3221 INIT_LIST_HEAD(&pool->worklist); 3222 INIT_LIST_HEAD(&pool->idle_list); 3223 hash_init(pool->busy_hash); 3224 3225 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3226 3227 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3228 3229 mutex_init(&pool->attach_mutex); 3230 INIT_LIST_HEAD(&pool->workers); 3231 3232 ida_init(&pool->worker_ida); 3233 INIT_HLIST_NODE(&pool->hash_node); 3234 pool->refcnt = 1; 3235 3236 /* shouldn't fail above this point */ 3237 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3238 if (!pool->attrs) 3239 return -ENOMEM; 3240 return 0; 3241 } 3242 3243 static void rcu_free_wq(struct rcu_head *rcu) 3244 { 3245 struct workqueue_struct *wq = 3246 container_of(rcu, struct workqueue_struct, rcu); 3247 3248 if (!(wq->flags & WQ_UNBOUND)) 3249 free_percpu(wq->cpu_pwqs); 3250 else 3251 free_workqueue_attrs(wq->unbound_attrs); 3252 3253 kfree(wq->rescuer); 3254 kfree(wq); 3255 } 3256 3257 static void rcu_free_pool(struct rcu_head *rcu) 3258 { 3259 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3260 3261 ida_destroy(&pool->worker_ida); 3262 free_workqueue_attrs(pool->attrs); 3263 kfree(pool); 3264 } 3265 3266 /** 3267 * put_unbound_pool - put a worker_pool 3268 * @pool: worker_pool to put 3269 * 3270 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3271 * safe manner. get_unbound_pool() calls this function on its failure path 3272 * and this function should be able to release pools which went through, 3273 * successfully or not, init_worker_pool(). 3274 * 3275 * Should be called with wq_pool_mutex held. 3276 */ 3277 static void put_unbound_pool(struct worker_pool *pool) 3278 { 3279 DECLARE_COMPLETION_ONSTACK(detach_completion); 3280 struct worker *worker; 3281 3282 lockdep_assert_held(&wq_pool_mutex); 3283 3284 if (--pool->refcnt) 3285 return; 3286 3287 /* sanity checks */ 3288 if (WARN_ON(!(pool->cpu < 0)) || 3289 WARN_ON(!list_empty(&pool->worklist))) 3290 return; 3291 3292 /* release id and unhash */ 3293 if (pool->id >= 0) 3294 idr_remove(&worker_pool_idr, pool->id); 3295 hash_del(&pool->hash_node); 3296 3297 /* 3298 * Become the manager and destroy all workers. This prevents 3299 * @pool's workers from blocking on attach_mutex. We're the last 3300 * manager and @pool gets freed with the flag set. 3301 */ 3302 spin_lock_irq(&pool->lock); 3303 wait_event_lock_irq(wq_manager_wait, 3304 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3305 pool->flags |= POOL_MANAGER_ACTIVE; 3306 3307 while ((worker = first_idle_worker(pool))) 3308 destroy_worker(worker); 3309 WARN_ON(pool->nr_workers || pool->nr_idle); 3310 spin_unlock_irq(&pool->lock); 3311 3312 mutex_lock(&pool->attach_mutex); 3313 if (!list_empty(&pool->workers)) 3314 pool->detach_completion = &detach_completion; 3315 mutex_unlock(&pool->attach_mutex); 3316 3317 if (pool->detach_completion) 3318 wait_for_completion(pool->detach_completion); 3319 3320 /* shut down the timers */ 3321 del_timer_sync(&pool->idle_timer); 3322 del_timer_sync(&pool->mayday_timer); 3323 3324 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3325 call_rcu_sched(&pool->rcu, rcu_free_pool); 3326 } 3327 3328 /** 3329 * get_unbound_pool - get a worker_pool with the specified attributes 3330 * @attrs: the attributes of the worker_pool to get 3331 * 3332 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3333 * reference count and return it. If there already is a matching 3334 * worker_pool, it will be used; otherwise, this function attempts to 3335 * create a new one. 3336 * 3337 * Should be called with wq_pool_mutex held. 3338 * 3339 * Return: On success, a worker_pool with the same attributes as @attrs. 3340 * On failure, %NULL. 3341 */ 3342 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3343 { 3344 u32 hash = wqattrs_hash(attrs); 3345 struct worker_pool *pool; 3346 int node; 3347 int target_node = NUMA_NO_NODE; 3348 3349 lockdep_assert_held(&wq_pool_mutex); 3350 3351 /* do we already have a matching pool? */ 3352 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3353 if (wqattrs_equal(pool->attrs, attrs)) { 3354 pool->refcnt++; 3355 return pool; 3356 } 3357 } 3358 3359 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3360 if (wq_numa_enabled) { 3361 for_each_node(node) { 3362 if (cpumask_subset(attrs->cpumask, 3363 wq_numa_possible_cpumask[node])) { 3364 target_node = node; 3365 break; 3366 } 3367 } 3368 } 3369 3370 /* nope, create a new one */ 3371 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3372 if (!pool || init_worker_pool(pool) < 0) 3373 goto fail; 3374 3375 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3376 copy_workqueue_attrs(pool->attrs, attrs); 3377 pool->node = target_node; 3378 3379 /* 3380 * no_numa isn't a worker_pool attribute, always clear it. See 3381 * 'struct workqueue_attrs' comments for detail. 3382 */ 3383 pool->attrs->no_numa = false; 3384 3385 if (worker_pool_assign_id(pool) < 0) 3386 goto fail; 3387 3388 /* create and start the initial worker */ 3389 if (wq_online && !create_worker(pool)) 3390 goto fail; 3391 3392 /* install */ 3393 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3394 3395 return pool; 3396 fail: 3397 if (pool) 3398 put_unbound_pool(pool); 3399 return NULL; 3400 } 3401 3402 static void rcu_free_pwq(struct rcu_head *rcu) 3403 { 3404 kmem_cache_free(pwq_cache, 3405 container_of(rcu, struct pool_workqueue, rcu)); 3406 } 3407 3408 /* 3409 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3410 * and needs to be destroyed. 3411 */ 3412 static void pwq_unbound_release_workfn(struct work_struct *work) 3413 { 3414 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3415 unbound_release_work); 3416 struct workqueue_struct *wq = pwq->wq; 3417 struct worker_pool *pool = pwq->pool; 3418 bool is_last; 3419 3420 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3421 return; 3422 3423 mutex_lock(&wq->mutex); 3424 list_del_rcu(&pwq->pwqs_node); 3425 is_last = list_empty(&wq->pwqs); 3426 mutex_unlock(&wq->mutex); 3427 3428 mutex_lock(&wq_pool_mutex); 3429 put_unbound_pool(pool); 3430 mutex_unlock(&wq_pool_mutex); 3431 3432 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3433 3434 /* 3435 * If we're the last pwq going away, @wq is already dead and no one 3436 * is gonna access it anymore. Schedule RCU free. 3437 */ 3438 if (is_last) 3439 call_rcu_sched(&wq->rcu, rcu_free_wq); 3440 } 3441 3442 /** 3443 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3444 * @pwq: target pool_workqueue 3445 * 3446 * If @pwq isn't freezing, set @pwq->max_active to the associated 3447 * workqueue's saved_max_active and activate delayed work items 3448 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3449 */ 3450 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3451 { 3452 struct workqueue_struct *wq = pwq->wq; 3453 bool freezable = wq->flags & WQ_FREEZABLE; 3454 unsigned long flags; 3455 3456 /* for @wq->saved_max_active */ 3457 lockdep_assert_held(&wq->mutex); 3458 3459 /* fast exit for non-freezable wqs */ 3460 if (!freezable && pwq->max_active == wq->saved_max_active) 3461 return; 3462 3463 /* this function can be called during early boot w/ irq disabled */ 3464 spin_lock_irqsave(&pwq->pool->lock, flags); 3465 3466 /* 3467 * During [un]freezing, the caller is responsible for ensuring that 3468 * this function is called at least once after @workqueue_freezing 3469 * is updated and visible. 3470 */ 3471 if (!freezable || !workqueue_freezing) { 3472 pwq->max_active = wq->saved_max_active; 3473 3474 while (!list_empty(&pwq->delayed_works) && 3475 pwq->nr_active < pwq->max_active) 3476 pwq_activate_first_delayed(pwq); 3477 3478 /* 3479 * Need to kick a worker after thawed or an unbound wq's 3480 * max_active is bumped. It's a slow path. Do it always. 3481 */ 3482 wake_up_worker(pwq->pool); 3483 } else { 3484 pwq->max_active = 0; 3485 } 3486 3487 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3488 } 3489 3490 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3491 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3492 struct worker_pool *pool) 3493 { 3494 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3495 3496 memset(pwq, 0, sizeof(*pwq)); 3497 3498 pwq->pool = pool; 3499 pwq->wq = wq; 3500 pwq->flush_color = -1; 3501 pwq->refcnt = 1; 3502 INIT_LIST_HEAD(&pwq->delayed_works); 3503 INIT_LIST_HEAD(&pwq->pwqs_node); 3504 INIT_LIST_HEAD(&pwq->mayday_node); 3505 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3506 } 3507 3508 /* sync @pwq with the current state of its associated wq and link it */ 3509 static void link_pwq(struct pool_workqueue *pwq) 3510 { 3511 struct workqueue_struct *wq = pwq->wq; 3512 3513 lockdep_assert_held(&wq->mutex); 3514 3515 /* may be called multiple times, ignore if already linked */ 3516 if (!list_empty(&pwq->pwqs_node)) 3517 return; 3518 3519 /* set the matching work_color */ 3520 pwq->work_color = wq->work_color; 3521 3522 /* sync max_active to the current setting */ 3523 pwq_adjust_max_active(pwq); 3524 3525 /* link in @pwq */ 3526 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3527 } 3528 3529 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3530 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3531 const struct workqueue_attrs *attrs) 3532 { 3533 struct worker_pool *pool; 3534 struct pool_workqueue *pwq; 3535 3536 lockdep_assert_held(&wq_pool_mutex); 3537 3538 pool = get_unbound_pool(attrs); 3539 if (!pool) 3540 return NULL; 3541 3542 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3543 if (!pwq) { 3544 put_unbound_pool(pool); 3545 return NULL; 3546 } 3547 3548 init_pwq(pwq, wq, pool); 3549 return pwq; 3550 } 3551 3552 /** 3553 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3554 * @attrs: the wq_attrs of the default pwq of the target workqueue 3555 * @node: the target NUMA node 3556 * @cpu_going_down: if >= 0, the CPU to consider as offline 3557 * @cpumask: outarg, the resulting cpumask 3558 * 3559 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3560 * @cpu_going_down is >= 0, that cpu is considered offline during 3561 * calculation. The result is stored in @cpumask. 3562 * 3563 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3564 * enabled and @node has online CPUs requested by @attrs, the returned 3565 * cpumask is the intersection of the possible CPUs of @node and 3566 * @attrs->cpumask. 3567 * 3568 * The caller is responsible for ensuring that the cpumask of @node stays 3569 * stable. 3570 * 3571 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3572 * %false if equal. 3573 */ 3574 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3575 int cpu_going_down, cpumask_t *cpumask) 3576 { 3577 if (!wq_numa_enabled || attrs->no_numa) 3578 goto use_dfl; 3579 3580 /* does @node have any online CPUs @attrs wants? */ 3581 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3582 if (cpu_going_down >= 0) 3583 cpumask_clear_cpu(cpu_going_down, cpumask); 3584 3585 if (cpumask_empty(cpumask)) 3586 goto use_dfl; 3587 3588 /* yeap, return possible CPUs in @node that @attrs wants */ 3589 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3590 3591 if (cpumask_empty(cpumask)) { 3592 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3593 "possible intersect\n"); 3594 return false; 3595 } 3596 3597 return !cpumask_equal(cpumask, attrs->cpumask); 3598 3599 use_dfl: 3600 cpumask_copy(cpumask, attrs->cpumask); 3601 return false; 3602 } 3603 3604 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3605 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3606 int node, 3607 struct pool_workqueue *pwq) 3608 { 3609 struct pool_workqueue *old_pwq; 3610 3611 lockdep_assert_held(&wq_pool_mutex); 3612 lockdep_assert_held(&wq->mutex); 3613 3614 /* link_pwq() can handle duplicate calls */ 3615 link_pwq(pwq); 3616 3617 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3618 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3619 return old_pwq; 3620 } 3621 3622 /* context to store the prepared attrs & pwqs before applying */ 3623 struct apply_wqattrs_ctx { 3624 struct workqueue_struct *wq; /* target workqueue */ 3625 struct workqueue_attrs *attrs; /* attrs to apply */ 3626 struct list_head list; /* queued for batching commit */ 3627 struct pool_workqueue *dfl_pwq; 3628 struct pool_workqueue *pwq_tbl[]; 3629 }; 3630 3631 /* free the resources after success or abort */ 3632 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3633 { 3634 if (ctx) { 3635 int node; 3636 3637 for_each_node(node) 3638 put_pwq_unlocked(ctx->pwq_tbl[node]); 3639 put_pwq_unlocked(ctx->dfl_pwq); 3640 3641 free_workqueue_attrs(ctx->attrs); 3642 3643 kfree(ctx); 3644 } 3645 } 3646 3647 /* allocate the attrs and pwqs for later installation */ 3648 static struct apply_wqattrs_ctx * 3649 apply_wqattrs_prepare(struct workqueue_struct *wq, 3650 const struct workqueue_attrs *attrs) 3651 { 3652 struct apply_wqattrs_ctx *ctx; 3653 struct workqueue_attrs *new_attrs, *tmp_attrs; 3654 int node; 3655 3656 lockdep_assert_held(&wq_pool_mutex); 3657 3658 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]), 3659 GFP_KERNEL); 3660 3661 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3662 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3663 if (!ctx || !new_attrs || !tmp_attrs) 3664 goto out_free; 3665 3666 /* 3667 * Calculate the attrs of the default pwq. 3668 * If the user configured cpumask doesn't overlap with the 3669 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3670 */ 3671 copy_workqueue_attrs(new_attrs, attrs); 3672 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3673 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3674 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3675 3676 /* 3677 * We may create multiple pwqs with differing cpumasks. Make a 3678 * copy of @new_attrs which will be modified and used to obtain 3679 * pools. 3680 */ 3681 copy_workqueue_attrs(tmp_attrs, new_attrs); 3682 3683 /* 3684 * If something goes wrong during CPU up/down, we'll fall back to 3685 * the default pwq covering whole @attrs->cpumask. Always create 3686 * it even if we don't use it immediately. 3687 */ 3688 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3689 if (!ctx->dfl_pwq) 3690 goto out_free; 3691 3692 for_each_node(node) { 3693 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3694 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3695 if (!ctx->pwq_tbl[node]) 3696 goto out_free; 3697 } else { 3698 ctx->dfl_pwq->refcnt++; 3699 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3700 } 3701 } 3702 3703 /* save the user configured attrs and sanitize it. */ 3704 copy_workqueue_attrs(new_attrs, attrs); 3705 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3706 ctx->attrs = new_attrs; 3707 3708 ctx->wq = wq; 3709 free_workqueue_attrs(tmp_attrs); 3710 return ctx; 3711 3712 out_free: 3713 free_workqueue_attrs(tmp_attrs); 3714 free_workqueue_attrs(new_attrs); 3715 apply_wqattrs_cleanup(ctx); 3716 return NULL; 3717 } 3718 3719 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3720 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3721 { 3722 int node; 3723 3724 /* all pwqs have been created successfully, let's install'em */ 3725 mutex_lock(&ctx->wq->mutex); 3726 3727 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3728 3729 /* save the previous pwq and install the new one */ 3730 for_each_node(node) 3731 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3732 ctx->pwq_tbl[node]); 3733 3734 /* @dfl_pwq might not have been used, ensure it's linked */ 3735 link_pwq(ctx->dfl_pwq); 3736 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3737 3738 mutex_unlock(&ctx->wq->mutex); 3739 } 3740 3741 static void apply_wqattrs_lock(void) 3742 { 3743 /* CPUs should stay stable across pwq creations and installations */ 3744 get_online_cpus(); 3745 mutex_lock(&wq_pool_mutex); 3746 } 3747 3748 static void apply_wqattrs_unlock(void) 3749 { 3750 mutex_unlock(&wq_pool_mutex); 3751 put_online_cpus(); 3752 } 3753 3754 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3755 const struct workqueue_attrs *attrs) 3756 { 3757 struct apply_wqattrs_ctx *ctx; 3758 3759 /* only unbound workqueues can change attributes */ 3760 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3761 return -EINVAL; 3762 3763 /* creating multiple pwqs breaks ordering guarantee */ 3764 if (!list_empty(&wq->pwqs)) { 3765 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 3766 return -EINVAL; 3767 3768 wq->flags &= ~__WQ_ORDERED; 3769 } 3770 3771 ctx = apply_wqattrs_prepare(wq, attrs); 3772 if (!ctx) 3773 return -ENOMEM; 3774 3775 /* the ctx has been prepared successfully, let's commit it */ 3776 apply_wqattrs_commit(ctx); 3777 apply_wqattrs_cleanup(ctx); 3778 3779 return 0; 3780 } 3781 3782 /** 3783 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3784 * @wq: the target workqueue 3785 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3786 * 3787 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3788 * machines, this function maps a separate pwq to each NUMA node with 3789 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3790 * NUMA node it was issued on. Older pwqs are released as in-flight work 3791 * items finish. Note that a work item which repeatedly requeues itself 3792 * back-to-back will stay on its current pwq. 3793 * 3794 * Performs GFP_KERNEL allocations. 3795 * 3796 * Return: 0 on success and -errno on failure. 3797 */ 3798 int apply_workqueue_attrs(struct workqueue_struct *wq, 3799 const struct workqueue_attrs *attrs) 3800 { 3801 int ret; 3802 3803 apply_wqattrs_lock(); 3804 ret = apply_workqueue_attrs_locked(wq, attrs); 3805 apply_wqattrs_unlock(); 3806 3807 return ret; 3808 } 3809 3810 /** 3811 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3812 * @wq: the target workqueue 3813 * @cpu: the CPU coming up or going down 3814 * @online: whether @cpu is coming up or going down 3815 * 3816 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3817 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3818 * @wq accordingly. 3819 * 3820 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3821 * falls back to @wq->dfl_pwq which may not be optimal but is always 3822 * correct. 3823 * 3824 * Note that when the last allowed CPU of a NUMA node goes offline for a 3825 * workqueue with a cpumask spanning multiple nodes, the workers which were 3826 * already executing the work items for the workqueue will lose their CPU 3827 * affinity and may execute on any CPU. This is similar to how per-cpu 3828 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3829 * affinity, it's the user's responsibility to flush the work item from 3830 * CPU_DOWN_PREPARE. 3831 */ 3832 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3833 bool online) 3834 { 3835 int node = cpu_to_node(cpu); 3836 int cpu_off = online ? -1 : cpu; 3837 struct pool_workqueue *old_pwq = NULL, *pwq; 3838 struct workqueue_attrs *target_attrs; 3839 cpumask_t *cpumask; 3840 3841 lockdep_assert_held(&wq_pool_mutex); 3842 3843 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3844 wq->unbound_attrs->no_numa) 3845 return; 3846 3847 /* 3848 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3849 * Let's use a preallocated one. The following buf is protected by 3850 * CPU hotplug exclusion. 3851 */ 3852 target_attrs = wq_update_unbound_numa_attrs_buf; 3853 cpumask = target_attrs->cpumask; 3854 3855 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3856 pwq = unbound_pwq_by_node(wq, node); 3857 3858 /* 3859 * Let's determine what needs to be done. If the target cpumask is 3860 * different from the default pwq's, we need to compare it to @pwq's 3861 * and create a new one if they don't match. If the target cpumask 3862 * equals the default pwq's, the default pwq should be used. 3863 */ 3864 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3865 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3866 return; 3867 } else { 3868 goto use_dfl_pwq; 3869 } 3870 3871 /* create a new pwq */ 3872 pwq = alloc_unbound_pwq(wq, target_attrs); 3873 if (!pwq) { 3874 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3875 wq->name); 3876 goto use_dfl_pwq; 3877 } 3878 3879 /* Install the new pwq. */ 3880 mutex_lock(&wq->mutex); 3881 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3882 goto out_unlock; 3883 3884 use_dfl_pwq: 3885 mutex_lock(&wq->mutex); 3886 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3887 get_pwq(wq->dfl_pwq); 3888 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3889 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3890 out_unlock: 3891 mutex_unlock(&wq->mutex); 3892 put_pwq_unlocked(old_pwq); 3893 } 3894 3895 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3896 { 3897 bool highpri = wq->flags & WQ_HIGHPRI; 3898 int cpu, ret; 3899 3900 if (!(wq->flags & WQ_UNBOUND)) { 3901 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3902 if (!wq->cpu_pwqs) 3903 return -ENOMEM; 3904 3905 for_each_possible_cpu(cpu) { 3906 struct pool_workqueue *pwq = 3907 per_cpu_ptr(wq->cpu_pwqs, cpu); 3908 struct worker_pool *cpu_pools = 3909 per_cpu(cpu_worker_pools, cpu); 3910 3911 init_pwq(pwq, wq, &cpu_pools[highpri]); 3912 3913 mutex_lock(&wq->mutex); 3914 link_pwq(pwq); 3915 mutex_unlock(&wq->mutex); 3916 } 3917 return 0; 3918 } else if (wq->flags & __WQ_ORDERED) { 3919 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3920 /* there should only be single pwq for ordering guarantee */ 3921 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3922 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3923 "ordering guarantee broken for workqueue %s\n", wq->name); 3924 return ret; 3925 } else { 3926 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3927 } 3928 } 3929 3930 static int wq_clamp_max_active(int max_active, unsigned int flags, 3931 const char *name) 3932 { 3933 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3934 3935 if (max_active < 1 || max_active > lim) 3936 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3937 max_active, name, 1, lim); 3938 3939 return clamp_val(max_active, 1, lim); 3940 } 3941 3942 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3943 unsigned int flags, 3944 int max_active, 3945 struct lock_class_key *key, 3946 const char *lock_name, ...) 3947 { 3948 size_t tbl_size = 0; 3949 va_list args; 3950 struct workqueue_struct *wq; 3951 struct pool_workqueue *pwq; 3952 3953 /* 3954 * Unbound && max_active == 1 used to imply ordered, which is no 3955 * longer the case on NUMA machines due to per-node pools. While 3956 * alloc_ordered_workqueue() is the right way to create an ordered 3957 * workqueue, keep the previous behavior to avoid subtle breakages 3958 * on NUMA. 3959 */ 3960 if ((flags & WQ_UNBOUND) && max_active == 1) 3961 flags |= __WQ_ORDERED; 3962 3963 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 3964 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 3965 flags |= WQ_UNBOUND; 3966 3967 /* allocate wq and format name */ 3968 if (flags & WQ_UNBOUND) 3969 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 3970 3971 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 3972 if (!wq) 3973 return NULL; 3974 3975 if (flags & WQ_UNBOUND) { 3976 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3977 if (!wq->unbound_attrs) 3978 goto err_free_wq; 3979 } 3980 3981 va_start(args, lock_name); 3982 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 3983 va_end(args); 3984 3985 max_active = max_active ?: WQ_DFL_ACTIVE; 3986 max_active = wq_clamp_max_active(max_active, flags, wq->name); 3987 3988 /* init wq */ 3989 wq->flags = flags; 3990 wq->saved_max_active = max_active; 3991 mutex_init(&wq->mutex); 3992 atomic_set(&wq->nr_pwqs_to_flush, 0); 3993 INIT_LIST_HEAD(&wq->pwqs); 3994 INIT_LIST_HEAD(&wq->flusher_queue); 3995 INIT_LIST_HEAD(&wq->flusher_overflow); 3996 INIT_LIST_HEAD(&wq->maydays); 3997 3998 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3999 INIT_LIST_HEAD(&wq->list); 4000 4001 if (alloc_and_link_pwqs(wq) < 0) 4002 goto err_free_wq; 4003 4004 /* 4005 * Workqueues which may be used during memory reclaim should 4006 * have a rescuer to guarantee forward progress. 4007 */ 4008 if (flags & WQ_MEM_RECLAIM) { 4009 struct worker *rescuer; 4010 4011 rescuer = alloc_worker(NUMA_NO_NODE); 4012 if (!rescuer) 4013 goto err_destroy; 4014 4015 rescuer->rescue_wq = wq; 4016 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 4017 wq->name); 4018 if (IS_ERR(rescuer->task)) { 4019 kfree(rescuer); 4020 goto err_destroy; 4021 } 4022 4023 wq->rescuer = rescuer; 4024 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4025 wake_up_process(rescuer->task); 4026 } 4027 4028 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4029 goto err_destroy; 4030 4031 /* 4032 * wq_pool_mutex protects global freeze state and workqueues list. 4033 * Grab it, adjust max_active and add the new @wq to workqueues 4034 * list. 4035 */ 4036 mutex_lock(&wq_pool_mutex); 4037 4038 mutex_lock(&wq->mutex); 4039 for_each_pwq(pwq, wq) 4040 pwq_adjust_max_active(pwq); 4041 mutex_unlock(&wq->mutex); 4042 4043 list_add_tail_rcu(&wq->list, &workqueues); 4044 4045 mutex_unlock(&wq_pool_mutex); 4046 4047 return wq; 4048 4049 err_free_wq: 4050 free_workqueue_attrs(wq->unbound_attrs); 4051 kfree(wq); 4052 return NULL; 4053 err_destroy: 4054 destroy_workqueue(wq); 4055 return NULL; 4056 } 4057 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4058 4059 /** 4060 * destroy_workqueue - safely terminate a workqueue 4061 * @wq: target workqueue 4062 * 4063 * Safely destroy a workqueue. All work currently pending will be done first. 4064 */ 4065 void destroy_workqueue(struct workqueue_struct *wq) 4066 { 4067 struct pool_workqueue *pwq; 4068 int node; 4069 4070 /* drain it before proceeding with destruction */ 4071 drain_workqueue(wq); 4072 4073 /* sanity checks */ 4074 mutex_lock(&wq->mutex); 4075 for_each_pwq(pwq, wq) { 4076 int i; 4077 4078 for (i = 0; i < WORK_NR_COLORS; i++) { 4079 if (WARN_ON(pwq->nr_in_flight[i])) { 4080 mutex_unlock(&wq->mutex); 4081 show_workqueue_state(); 4082 return; 4083 } 4084 } 4085 4086 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4087 WARN_ON(pwq->nr_active) || 4088 WARN_ON(!list_empty(&pwq->delayed_works))) { 4089 mutex_unlock(&wq->mutex); 4090 show_workqueue_state(); 4091 return; 4092 } 4093 } 4094 mutex_unlock(&wq->mutex); 4095 4096 /* 4097 * wq list is used to freeze wq, remove from list after 4098 * flushing is complete in case freeze races us. 4099 */ 4100 mutex_lock(&wq_pool_mutex); 4101 list_del_rcu(&wq->list); 4102 mutex_unlock(&wq_pool_mutex); 4103 4104 workqueue_sysfs_unregister(wq); 4105 4106 if (wq->rescuer) 4107 kthread_stop(wq->rescuer->task); 4108 4109 if (!(wq->flags & WQ_UNBOUND)) { 4110 /* 4111 * The base ref is never dropped on per-cpu pwqs. Directly 4112 * schedule RCU free. 4113 */ 4114 call_rcu_sched(&wq->rcu, rcu_free_wq); 4115 } else { 4116 /* 4117 * We're the sole accessor of @wq at this point. Directly 4118 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4119 * @wq will be freed when the last pwq is released. 4120 */ 4121 for_each_node(node) { 4122 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4123 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4124 put_pwq_unlocked(pwq); 4125 } 4126 4127 /* 4128 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4129 * put. Don't access it afterwards. 4130 */ 4131 pwq = wq->dfl_pwq; 4132 wq->dfl_pwq = NULL; 4133 put_pwq_unlocked(pwq); 4134 } 4135 } 4136 EXPORT_SYMBOL_GPL(destroy_workqueue); 4137 4138 /** 4139 * workqueue_set_max_active - adjust max_active of a workqueue 4140 * @wq: target workqueue 4141 * @max_active: new max_active value. 4142 * 4143 * Set max_active of @wq to @max_active. 4144 * 4145 * CONTEXT: 4146 * Don't call from IRQ context. 4147 */ 4148 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4149 { 4150 struct pool_workqueue *pwq; 4151 4152 /* disallow meddling with max_active for ordered workqueues */ 4153 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4154 return; 4155 4156 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4157 4158 mutex_lock(&wq->mutex); 4159 4160 wq->flags &= ~__WQ_ORDERED; 4161 wq->saved_max_active = max_active; 4162 4163 for_each_pwq(pwq, wq) 4164 pwq_adjust_max_active(pwq); 4165 4166 mutex_unlock(&wq->mutex); 4167 } 4168 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4169 4170 /** 4171 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4172 * 4173 * Determine whether %current is a workqueue rescuer. Can be used from 4174 * work functions to determine whether it's being run off the rescuer task. 4175 * 4176 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4177 */ 4178 bool current_is_workqueue_rescuer(void) 4179 { 4180 struct worker *worker = current_wq_worker(); 4181 4182 return worker && worker->rescue_wq; 4183 } 4184 4185 /** 4186 * workqueue_congested - test whether a workqueue is congested 4187 * @cpu: CPU in question 4188 * @wq: target workqueue 4189 * 4190 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4191 * no synchronization around this function and the test result is 4192 * unreliable and only useful as advisory hints or for debugging. 4193 * 4194 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4195 * Note that both per-cpu and unbound workqueues may be associated with 4196 * multiple pool_workqueues which have separate congested states. A 4197 * workqueue being congested on one CPU doesn't mean the workqueue is also 4198 * contested on other CPUs / NUMA nodes. 4199 * 4200 * Return: 4201 * %true if congested, %false otherwise. 4202 */ 4203 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4204 { 4205 struct pool_workqueue *pwq; 4206 bool ret; 4207 4208 rcu_read_lock_sched(); 4209 4210 if (cpu == WORK_CPU_UNBOUND) 4211 cpu = smp_processor_id(); 4212 4213 if (!(wq->flags & WQ_UNBOUND)) 4214 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4215 else 4216 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4217 4218 ret = !list_empty(&pwq->delayed_works); 4219 rcu_read_unlock_sched(); 4220 4221 return ret; 4222 } 4223 EXPORT_SYMBOL_GPL(workqueue_congested); 4224 4225 /** 4226 * work_busy - test whether a work is currently pending or running 4227 * @work: the work to be tested 4228 * 4229 * Test whether @work is currently pending or running. There is no 4230 * synchronization around this function and the test result is 4231 * unreliable and only useful as advisory hints or for debugging. 4232 * 4233 * Return: 4234 * OR'd bitmask of WORK_BUSY_* bits. 4235 */ 4236 unsigned int work_busy(struct work_struct *work) 4237 { 4238 struct worker_pool *pool; 4239 unsigned long flags; 4240 unsigned int ret = 0; 4241 4242 if (work_pending(work)) 4243 ret |= WORK_BUSY_PENDING; 4244 4245 local_irq_save(flags); 4246 pool = get_work_pool(work); 4247 if (pool) { 4248 spin_lock(&pool->lock); 4249 if (find_worker_executing_work(pool, work)) 4250 ret |= WORK_BUSY_RUNNING; 4251 spin_unlock(&pool->lock); 4252 } 4253 local_irq_restore(flags); 4254 4255 return ret; 4256 } 4257 EXPORT_SYMBOL_GPL(work_busy); 4258 4259 /** 4260 * set_worker_desc - set description for the current work item 4261 * @fmt: printf-style format string 4262 * @...: arguments for the format string 4263 * 4264 * This function can be called by a running work function to describe what 4265 * the work item is about. If the worker task gets dumped, this 4266 * information will be printed out together to help debugging. The 4267 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4268 */ 4269 void set_worker_desc(const char *fmt, ...) 4270 { 4271 struct worker *worker = current_wq_worker(); 4272 va_list args; 4273 4274 if (worker) { 4275 va_start(args, fmt); 4276 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4277 va_end(args); 4278 worker->desc_valid = true; 4279 } 4280 } 4281 4282 /** 4283 * print_worker_info - print out worker information and description 4284 * @log_lvl: the log level to use when printing 4285 * @task: target task 4286 * 4287 * If @task is a worker and currently executing a work item, print out the 4288 * name of the workqueue being serviced and worker description set with 4289 * set_worker_desc() by the currently executing work item. 4290 * 4291 * This function can be safely called on any task as long as the 4292 * task_struct itself is accessible. While safe, this function isn't 4293 * synchronized and may print out mixups or garbages of limited length. 4294 */ 4295 void print_worker_info(const char *log_lvl, struct task_struct *task) 4296 { 4297 work_func_t *fn = NULL; 4298 char name[WQ_NAME_LEN] = { }; 4299 char desc[WORKER_DESC_LEN] = { }; 4300 struct pool_workqueue *pwq = NULL; 4301 struct workqueue_struct *wq = NULL; 4302 bool desc_valid = false; 4303 struct worker *worker; 4304 4305 if (!(task->flags & PF_WQ_WORKER)) 4306 return; 4307 4308 /* 4309 * This function is called without any synchronization and @task 4310 * could be in any state. Be careful with dereferences. 4311 */ 4312 worker = kthread_probe_data(task); 4313 4314 /* 4315 * Carefully copy the associated workqueue's workfn and name. Keep 4316 * the original last '\0' in case the original contains garbage. 4317 */ 4318 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4319 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4320 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4321 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4322 4323 /* copy worker description */ 4324 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4325 if (desc_valid) 4326 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4327 4328 if (fn || name[0] || desc[0]) { 4329 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4330 if (desc[0]) 4331 pr_cont(" (%s)", desc); 4332 pr_cont("\n"); 4333 } 4334 } 4335 4336 static void pr_cont_pool_info(struct worker_pool *pool) 4337 { 4338 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4339 if (pool->node != NUMA_NO_NODE) 4340 pr_cont(" node=%d", pool->node); 4341 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4342 } 4343 4344 static void pr_cont_work(bool comma, struct work_struct *work) 4345 { 4346 if (work->func == wq_barrier_func) { 4347 struct wq_barrier *barr; 4348 4349 barr = container_of(work, struct wq_barrier, work); 4350 4351 pr_cont("%s BAR(%d)", comma ? "," : "", 4352 task_pid_nr(barr->task)); 4353 } else { 4354 pr_cont("%s %pf", comma ? "," : "", work->func); 4355 } 4356 } 4357 4358 static void show_pwq(struct pool_workqueue *pwq) 4359 { 4360 struct worker_pool *pool = pwq->pool; 4361 struct work_struct *work; 4362 struct worker *worker; 4363 bool has_in_flight = false, has_pending = false; 4364 int bkt; 4365 4366 pr_info(" pwq %d:", pool->id); 4367 pr_cont_pool_info(pool); 4368 4369 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4370 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4371 4372 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4373 if (worker->current_pwq == pwq) { 4374 has_in_flight = true; 4375 break; 4376 } 4377 } 4378 if (has_in_flight) { 4379 bool comma = false; 4380 4381 pr_info(" in-flight:"); 4382 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4383 if (worker->current_pwq != pwq) 4384 continue; 4385 4386 pr_cont("%s %d%s:%pf", comma ? "," : "", 4387 task_pid_nr(worker->task), 4388 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4389 worker->current_func); 4390 list_for_each_entry(work, &worker->scheduled, entry) 4391 pr_cont_work(false, work); 4392 comma = true; 4393 } 4394 pr_cont("\n"); 4395 } 4396 4397 list_for_each_entry(work, &pool->worklist, entry) { 4398 if (get_work_pwq(work) == pwq) { 4399 has_pending = true; 4400 break; 4401 } 4402 } 4403 if (has_pending) { 4404 bool comma = false; 4405 4406 pr_info(" pending:"); 4407 list_for_each_entry(work, &pool->worklist, entry) { 4408 if (get_work_pwq(work) != pwq) 4409 continue; 4410 4411 pr_cont_work(comma, work); 4412 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4413 } 4414 pr_cont("\n"); 4415 } 4416 4417 if (!list_empty(&pwq->delayed_works)) { 4418 bool comma = false; 4419 4420 pr_info(" delayed:"); 4421 list_for_each_entry(work, &pwq->delayed_works, entry) { 4422 pr_cont_work(comma, work); 4423 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4424 } 4425 pr_cont("\n"); 4426 } 4427 } 4428 4429 /** 4430 * show_workqueue_state - dump workqueue state 4431 * 4432 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4433 * all busy workqueues and pools. 4434 */ 4435 void show_workqueue_state(void) 4436 { 4437 struct workqueue_struct *wq; 4438 struct worker_pool *pool; 4439 unsigned long flags; 4440 int pi; 4441 4442 rcu_read_lock_sched(); 4443 4444 pr_info("Showing busy workqueues and worker pools:\n"); 4445 4446 list_for_each_entry_rcu(wq, &workqueues, list) { 4447 struct pool_workqueue *pwq; 4448 bool idle = true; 4449 4450 for_each_pwq(pwq, wq) { 4451 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4452 idle = false; 4453 break; 4454 } 4455 } 4456 if (idle) 4457 continue; 4458 4459 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4460 4461 for_each_pwq(pwq, wq) { 4462 spin_lock_irqsave(&pwq->pool->lock, flags); 4463 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4464 show_pwq(pwq); 4465 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4466 } 4467 } 4468 4469 for_each_pool(pool, pi) { 4470 struct worker *worker; 4471 bool first = true; 4472 4473 spin_lock_irqsave(&pool->lock, flags); 4474 if (pool->nr_workers == pool->nr_idle) 4475 goto next_pool; 4476 4477 pr_info("pool %d:", pool->id); 4478 pr_cont_pool_info(pool); 4479 pr_cont(" hung=%us workers=%d", 4480 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4481 pool->nr_workers); 4482 if (pool->manager) 4483 pr_cont(" manager: %d", 4484 task_pid_nr(pool->manager->task)); 4485 list_for_each_entry(worker, &pool->idle_list, entry) { 4486 pr_cont(" %s%d", first ? "idle: " : "", 4487 task_pid_nr(worker->task)); 4488 first = false; 4489 } 4490 pr_cont("\n"); 4491 next_pool: 4492 spin_unlock_irqrestore(&pool->lock, flags); 4493 } 4494 4495 rcu_read_unlock_sched(); 4496 } 4497 4498 /* 4499 * CPU hotplug. 4500 * 4501 * There are two challenges in supporting CPU hotplug. Firstly, there 4502 * are a lot of assumptions on strong associations among work, pwq and 4503 * pool which make migrating pending and scheduled works very 4504 * difficult to implement without impacting hot paths. Secondly, 4505 * worker pools serve mix of short, long and very long running works making 4506 * blocked draining impractical. 4507 * 4508 * This is solved by allowing the pools to be disassociated from the CPU 4509 * running as an unbound one and allowing it to be reattached later if the 4510 * cpu comes back online. 4511 */ 4512 4513 static void wq_unbind_fn(struct work_struct *work) 4514 { 4515 int cpu = smp_processor_id(); 4516 struct worker_pool *pool; 4517 struct worker *worker; 4518 4519 for_each_cpu_worker_pool(pool, cpu) { 4520 mutex_lock(&pool->attach_mutex); 4521 spin_lock_irq(&pool->lock); 4522 4523 /* 4524 * We've blocked all attach/detach operations. Make all workers 4525 * unbound and set DISASSOCIATED. Before this, all workers 4526 * except for the ones which are still executing works from 4527 * before the last CPU down must be on the cpu. After 4528 * this, they may become diasporas. 4529 */ 4530 for_each_pool_worker(worker, pool) 4531 worker->flags |= WORKER_UNBOUND; 4532 4533 pool->flags |= POOL_DISASSOCIATED; 4534 4535 spin_unlock_irq(&pool->lock); 4536 mutex_unlock(&pool->attach_mutex); 4537 4538 /* 4539 * Call schedule() so that we cross rq->lock and thus can 4540 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4541 * This is necessary as scheduler callbacks may be invoked 4542 * from other cpus. 4543 */ 4544 schedule(); 4545 4546 /* 4547 * Sched callbacks are disabled now. Zap nr_running. 4548 * After this, nr_running stays zero and need_more_worker() 4549 * and keep_working() are always true as long as the 4550 * worklist is not empty. This pool now behaves as an 4551 * unbound (in terms of concurrency management) pool which 4552 * are served by workers tied to the pool. 4553 */ 4554 atomic_set(&pool->nr_running, 0); 4555 4556 /* 4557 * With concurrency management just turned off, a busy 4558 * worker blocking could lead to lengthy stalls. Kick off 4559 * unbound chain execution of currently pending work items. 4560 */ 4561 spin_lock_irq(&pool->lock); 4562 wake_up_worker(pool); 4563 spin_unlock_irq(&pool->lock); 4564 } 4565 } 4566 4567 /** 4568 * rebind_workers - rebind all workers of a pool to the associated CPU 4569 * @pool: pool of interest 4570 * 4571 * @pool->cpu is coming online. Rebind all workers to the CPU. 4572 */ 4573 static void rebind_workers(struct worker_pool *pool) 4574 { 4575 struct worker *worker; 4576 4577 lockdep_assert_held(&pool->attach_mutex); 4578 4579 /* 4580 * Restore CPU affinity of all workers. As all idle workers should 4581 * be on the run-queue of the associated CPU before any local 4582 * wake-ups for concurrency management happen, restore CPU affinity 4583 * of all workers first and then clear UNBOUND. As we're called 4584 * from CPU_ONLINE, the following shouldn't fail. 4585 */ 4586 for_each_pool_worker(worker, pool) 4587 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4588 pool->attrs->cpumask) < 0); 4589 4590 spin_lock_irq(&pool->lock); 4591 4592 /* 4593 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED 4594 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is 4595 * being reworked and this can go away in time. 4596 */ 4597 if (!(pool->flags & POOL_DISASSOCIATED)) { 4598 spin_unlock_irq(&pool->lock); 4599 return; 4600 } 4601 4602 pool->flags &= ~POOL_DISASSOCIATED; 4603 4604 for_each_pool_worker(worker, pool) { 4605 unsigned int worker_flags = worker->flags; 4606 4607 /* 4608 * A bound idle worker should actually be on the runqueue 4609 * of the associated CPU for local wake-ups targeting it to 4610 * work. Kick all idle workers so that they migrate to the 4611 * associated CPU. Doing this in the same loop as 4612 * replacing UNBOUND with REBOUND is safe as no worker will 4613 * be bound before @pool->lock is released. 4614 */ 4615 if (worker_flags & WORKER_IDLE) 4616 wake_up_process(worker->task); 4617 4618 /* 4619 * We want to clear UNBOUND but can't directly call 4620 * worker_clr_flags() or adjust nr_running. Atomically 4621 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4622 * @worker will clear REBOUND using worker_clr_flags() when 4623 * it initiates the next execution cycle thus restoring 4624 * concurrency management. Note that when or whether 4625 * @worker clears REBOUND doesn't affect correctness. 4626 * 4627 * WRITE_ONCE() is necessary because @worker->flags may be 4628 * tested without holding any lock in 4629 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4630 * fail incorrectly leading to premature concurrency 4631 * management operations. 4632 */ 4633 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4634 worker_flags |= WORKER_REBOUND; 4635 worker_flags &= ~WORKER_UNBOUND; 4636 WRITE_ONCE(worker->flags, worker_flags); 4637 } 4638 4639 spin_unlock_irq(&pool->lock); 4640 } 4641 4642 /** 4643 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4644 * @pool: unbound pool of interest 4645 * @cpu: the CPU which is coming up 4646 * 4647 * An unbound pool may end up with a cpumask which doesn't have any online 4648 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4649 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4650 * online CPU before, cpus_allowed of all its workers should be restored. 4651 */ 4652 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4653 { 4654 static cpumask_t cpumask; 4655 struct worker *worker; 4656 4657 lockdep_assert_held(&pool->attach_mutex); 4658 4659 /* is @cpu allowed for @pool? */ 4660 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4661 return; 4662 4663 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4664 4665 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4666 for_each_pool_worker(worker, pool) 4667 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4668 } 4669 4670 int workqueue_prepare_cpu(unsigned int cpu) 4671 { 4672 struct worker_pool *pool; 4673 4674 for_each_cpu_worker_pool(pool, cpu) { 4675 if (pool->nr_workers) 4676 continue; 4677 if (!create_worker(pool)) 4678 return -ENOMEM; 4679 } 4680 return 0; 4681 } 4682 4683 int workqueue_online_cpu(unsigned int cpu) 4684 { 4685 struct worker_pool *pool; 4686 struct workqueue_struct *wq; 4687 int pi; 4688 4689 mutex_lock(&wq_pool_mutex); 4690 4691 for_each_pool(pool, pi) { 4692 mutex_lock(&pool->attach_mutex); 4693 4694 if (pool->cpu == cpu) 4695 rebind_workers(pool); 4696 else if (pool->cpu < 0) 4697 restore_unbound_workers_cpumask(pool, cpu); 4698 4699 mutex_unlock(&pool->attach_mutex); 4700 } 4701 4702 /* update NUMA affinity of unbound workqueues */ 4703 list_for_each_entry(wq, &workqueues, list) 4704 wq_update_unbound_numa(wq, cpu, true); 4705 4706 mutex_unlock(&wq_pool_mutex); 4707 return 0; 4708 } 4709 4710 int workqueue_offline_cpu(unsigned int cpu) 4711 { 4712 struct work_struct unbind_work; 4713 struct workqueue_struct *wq; 4714 4715 /* unbinding per-cpu workers should happen on the local CPU */ 4716 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4717 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4718 4719 /* update NUMA affinity of unbound workqueues */ 4720 mutex_lock(&wq_pool_mutex); 4721 list_for_each_entry(wq, &workqueues, list) 4722 wq_update_unbound_numa(wq, cpu, false); 4723 mutex_unlock(&wq_pool_mutex); 4724 4725 /* wait for per-cpu unbinding to finish */ 4726 flush_work(&unbind_work); 4727 destroy_work_on_stack(&unbind_work); 4728 return 0; 4729 } 4730 4731 #ifdef CONFIG_SMP 4732 4733 struct work_for_cpu { 4734 struct work_struct work; 4735 long (*fn)(void *); 4736 void *arg; 4737 long ret; 4738 }; 4739 4740 static void work_for_cpu_fn(struct work_struct *work) 4741 { 4742 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4743 4744 wfc->ret = wfc->fn(wfc->arg); 4745 } 4746 4747 /** 4748 * work_on_cpu - run a function in thread context on a particular cpu 4749 * @cpu: the cpu to run on 4750 * @fn: the function to run 4751 * @arg: the function arg 4752 * 4753 * It is up to the caller to ensure that the cpu doesn't go offline. 4754 * The caller must not hold any locks which would prevent @fn from completing. 4755 * 4756 * Return: The value @fn returns. 4757 */ 4758 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4759 { 4760 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4761 4762 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4763 schedule_work_on(cpu, &wfc.work); 4764 flush_work(&wfc.work); 4765 destroy_work_on_stack(&wfc.work); 4766 return wfc.ret; 4767 } 4768 EXPORT_SYMBOL_GPL(work_on_cpu); 4769 4770 /** 4771 * work_on_cpu_safe - run a function in thread context on a particular cpu 4772 * @cpu: the cpu to run on 4773 * @fn: the function to run 4774 * @arg: the function argument 4775 * 4776 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 4777 * any locks which would prevent @fn from completing. 4778 * 4779 * Return: The value @fn returns. 4780 */ 4781 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 4782 { 4783 long ret = -ENODEV; 4784 4785 get_online_cpus(); 4786 if (cpu_online(cpu)) 4787 ret = work_on_cpu(cpu, fn, arg); 4788 put_online_cpus(); 4789 return ret; 4790 } 4791 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 4792 #endif /* CONFIG_SMP */ 4793 4794 #ifdef CONFIG_FREEZER 4795 4796 /** 4797 * freeze_workqueues_begin - begin freezing workqueues 4798 * 4799 * Start freezing workqueues. After this function returns, all freezable 4800 * workqueues will queue new works to their delayed_works list instead of 4801 * pool->worklist. 4802 * 4803 * CONTEXT: 4804 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4805 */ 4806 void freeze_workqueues_begin(void) 4807 { 4808 struct workqueue_struct *wq; 4809 struct pool_workqueue *pwq; 4810 4811 mutex_lock(&wq_pool_mutex); 4812 4813 WARN_ON_ONCE(workqueue_freezing); 4814 workqueue_freezing = true; 4815 4816 list_for_each_entry(wq, &workqueues, list) { 4817 mutex_lock(&wq->mutex); 4818 for_each_pwq(pwq, wq) 4819 pwq_adjust_max_active(pwq); 4820 mutex_unlock(&wq->mutex); 4821 } 4822 4823 mutex_unlock(&wq_pool_mutex); 4824 } 4825 4826 /** 4827 * freeze_workqueues_busy - are freezable workqueues still busy? 4828 * 4829 * Check whether freezing is complete. This function must be called 4830 * between freeze_workqueues_begin() and thaw_workqueues(). 4831 * 4832 * CONTEXT: 4833 * Grabs and releases wq_pool_mutex. 4834 * 4835 * Return: 4836 * %true if some freezable workqueues are still busy. %false if freezing 4837 * is complete. 4838 */ 4839 bool freeze_workqueues_busy(void) 4840 { 4841 bool busy = false; 4842 struct workqueue_struct *wq; 4843 struct pool_workqueue *pwq; 4844 4845 mutex_lock(&wq_pool_mutex); 4846 4847 WARN_ON_ONCE(!workqueue_freezing); 4848 4849 list_for_each_entry(wq, &workqueues, list) { 4850 if (!(wq->flags & WQ_FREEZABLE)) 4851 continue; 4852 /* 4853 * nr_active is monotonically decreasing. It's safe 4854 * to peek without lock. 4855 */ 4856 rcu_read_lock_sched(); 4857 for_each_pwq(pwq, wq) { 4858 WARN_ON_ONCE(pwq->nr_active < 0); 4859 if (pwq->nr_active) { 4860 busy = true; 4861 rcu_read_unlock_sched(); 4862 goto out_unlock; 4863 } 4864 } 4865 rcu_read_unlock_sched(); 4866 } 4867 out_unlock: 4868 mutex_unlock(&wq_pool_mutex); 4869 return busy; 4870 } 4871 4872 /** 4873 * thaw_workqueues - thaw workqueues 4874 * 4875 * Thaw workqueues. Normal queueing is restored and all collected 4876 * frozen works are transferred to their respective pool worklists. 4877 * 4878 * CONTEXT: 4879 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4880 */ 4881 void thaw_workqueues(void) 4882 { 4883 struct workqueue_struct *wq; 4884 struct pool_workqueue *pwq; 4885 4886 mutex_lock(&wq_pool_mutex); 4887 4888 if (!workqueue_freezing) 4889 goto out_unlock; 4890 4891 workqueue_freezing = false; 4892 4893 /* restore max_active and repopulate worklist */ 4894 list_for_each_entry(wq, &workqueues, list) { 4895 mutex_lock(&wq->mutex); 4896 for_each_pwq(pwq, wq) 4897 pwq_adjust_max_active(pwq); 4898 mutex_unlock(&wq->mutex); 4899 } 4900 4901 out_unlock: 4902 mutex_unlock(&wq_pool_mutex); 4903 } 4904 #endif /* CONFIG_FREEZER */ 4905 4906 static int workqueue_apply_unbound_cpumask(void) 4907 { 4908 LIST_HEAD(ctxs); 4909 int ret = 0; 4910 struct workqueue_struct *wq; 4911 struct apply_wqattrs_ctx *ctx, *n; 4912 4913 lockdep_assert_held(&wq_pool_mutex); 4914 4915 list_for_each_entry(wq, &workqueues, list) { 4916 if (!(wq->flags & WQ_UNBOUND)) 4917 continue; 4918 /* creating multiple pwqs breaks ordering guarantee */ 4919 if (wq->flags & __WQ_ORDERED) 4920 continue; 4921 4922 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 4923 if (!ctx) { 4924 ret = -ENOMEM; 4925 break; 4926 } 4927 4928 list_add_tail(&ctx->list, &ctxs); 4929 } 4930 4931 list_for_each_entry_safe(ctx, n, &ctxs, list) { 4932 if (!ret) 4933 apply_wqattrs_commit(ctx); 4934 apply_wqattrs_cleanup(ctx); 4935 } 4936 4937 return ret; 4938 } 4939 4940 /** 4941 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 4942 * @cpumask: the cpumask to set 4943 * 4944 * The low-level workqueues cpumask is a global cpumask that limits 4945 * the affinity of all unbound workqueues. This function check the @cpumask 4946 * and apply it to all unbound workqueues and updates all pwqs of them. 4947 * 4948 * Retun: 0 - Success 4949 * -EINVAL - Invalid @cpumask 4950 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 4951 */ 4952 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 4953 { 4954 int ret = -EINVAL; 4955 cpumask_var_t saved_cpumask; 4956 4957 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 4958 return -ENOMEM; 4959 4960 cpumask_and(cpumask, cpumask, cpu_possible_mask); 4961 if (!cpumask_empty(cpumask)) { 4962 apply_wqattrs_lock(); 4963 4964 /* save the old wq_unbound_cpumask. */ 4965 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 4966 4967 /* update wq_unbound_cpumask at first and apply it to wqs. */ 4968 cpumask_copy(wq_unbound_cpumask, cpumask); 4969 ret = workqueue_apply_unbound_cpumask(); 4970 4971 /* restore the wq_unbound_cpumask when failed. */ 4972 if (ret < 0) 4973 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 4974 4975 apply_wqattrs_unlock(); 4976 } 4977 4978 free_cpumask_var(saved_cpumask); 4979 return ret; 4980 } 4981 4982 #ifdef CONFIG_SYSFS 4983 /* 4984 * Workqueues with WQ_SYSFS flag set is visible to userland via 4985 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 4986 * following attributes. 4987 * 4988 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 4989 * max_active RW int : maximum number of in-flight work items 4990 * 4991 * Unbound workqueues have the following extra attributes. 4992 * 4993 * pool_ids RO int : the associated pool IDs for each node 4994 * nice RW int : nice value of the workers 4995 * cpumask RW mask : bitmask of allowed CPUs for the workers 4996 * numa RW bool : whether enable NUMA affinity 4997 */ 4998 struct wq_device { 4999 struct workqueue_struct *wq; 5000 struct device dev; 5001 }; 5002 5003 static struct workqueue_struct *dev_to_wq(struct device *dev) 5004 { 5005 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5006 5007 return wq_dev->wq; 5008 } 5009 5010 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5011 char *buf) 5012 { 5013 struct workqueue_struct *wq = dev_to_wq(dev); 5014 5015 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5016 } 5017 static DEVICE_ATTR_RO(per_cpu); 5018 5019 static ssize_t max_active_show(struct device *dev, 5020 struct device_attribute *attr, char *buf) 5021 { 5022 struct workqueue_struct *wq = dev_to_wq(dev); 5023 5024 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5025 } 5026 5027 static ssize_t max_active_store(struct device *dev, 5028 struct device_attribute *attr, const char *buf, 5029 size_t count) 5030 { 5031 struct workqueue_struct *wq = dev_to_wq(dev); 5032 int val; 5033 5034 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5035 return -EINVAL; 5036 5037 workqueue_set_max_active(wq, val); 5038 return count; 5039 } 5040 static DEVICE_ATTR_RW(max_active); 5041 5042 static struct attribute *wq_sysfs_attrs[] = { 5043 &dev_attr_per_cpu.attr, 5044 &dev_attr_max_active.attr, 5045 NULL, 5046 }; 5047 ATTRIBUTE_GROUPS(wq_sysfs); 5048 5049 static ssize_t wq_pool_ids_show(struct device *dev, 5050 struct device_attribute *attr, char *buf) 5051 { 5052 struct workqueue_struct *wq = dev_to_wq(dev); 5053 const char *delim = ""; 5054 int node, written = 0; 5055 5056 rcu_read_lock_sched(); 5057 for_each_node(node) { 5058 written += scnprintf(buf + written, PAGE_SIZE - written, 5059 "%s%d:%d", delim, node, 5060 unbound_pwq_by_node(wq, node)->pool->id); 5061 delim = " "; 5062 } 5063 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5064 rcu_read_unlock_sched(); 5065 5066 return written; 5067 } 5068 5069 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5070 char *buf) 5071 { 5072 struct workqueue_struct *wq = dev_to_wq(dev); 5073 int written; 5074 5075 mutex_lock(&wq->mutex); 5076 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5077 mutex_unlock(&wq->mutex); 5078 5079 return written; 5080 } 5081 5082 /* prepare workqueue_attrs for sysfs store operations */ 5083 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5084 { 5085 struct workqueue_attrs *attrs; 5086 5087 lockdep_assert_held(&wq_pool_mutex); 5088 5089 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5090 if (!attrs) 5091 return NULL; 5092 5093 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5094 return attrs; 5095 } 5096 5097 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5098 const char *buf, size_t count) 5099 { 5100 struct workqueue_struct *wq = dev_to_wq(dev); 5101 struct workqueue_attrs *attrs; 5102 int ret = -ENOMEM; 5103 5104 apply_wqattrs_lock(); 5105 5106 attrs = wq_sysfs_prep_attrs(wq); 5107 if (!attrs) 5108 goto out_unlock; 5109 5110 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5111 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5112 ret = apply_workqueue_attrs_locked(wq, attrs); 5113 else 5114 ret = -EINVAL; 5115 5116 out_unlock: 5117 apply_wqattrs_unlock(); 5118 free_workqueue_attrs(attrs); 5119 return ret ?: count; 5120 } 5121 5122 static ssize_t wq_cpumask_show(struct device *dev, 5123 struct device_attribute *attr, char *buf) 5124 { 5125 struct workqueue_struct *wq = dev_to_wq(dev); 5126 int written; 5127 5128 mutex_lock(&wq->mutex); 5129 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5130 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5131 mutex_unlock(&wq->mutex); 5132 return written; 5133 } 5134 5135 static ssize_t wq_cpumask_store(struct device *dev, 5136 struct device_attribute *attr, 5137 const char *buf, size_t count) 5138 { 5139 struct workqueue_struct *wq = dev_to_wq(dev); 5140 struct workqueue_attrs *attrs; 5141 int ret = -ENOMEM; 5142 5143 apply_wqattrs_lock(); 5144 5145 attrs = wq_sysfs_prep_attrs(wq); 5146 if (!attrs) 5147 goto out_unlock; 5148 5149 ret = cpumask_parse(buf, attrs->cpumask); 5150 if (!ret) 5151 ret = apply_workqueue_attrs_locked(wq, attrs); 5152 5153 out_unlock: 5154 apply_wqattrs_unlock(); 5155 free_workqueue_attrs(attrs); 5156 return ret ?: count; 5157 } 5158 5159 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5160 char *buf) 5161 { 5162 struct workqueue_struct *wq = dev_to_wq(dev); 5163 int written; 5164 5165 mutex_lock(&wq->mutex); 5166 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5167 !wq->unbound_attrs->no_numa); 5168 mutex_unlock(&wq->mutex); 5169 5170 return written; 5171 } 5172 5173 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5174 const char *buf, size_t count) 5175 { 5176 struct workqueue_struct *wq = dev_to_wq(dev); 5177 struct workqueue_attrs *attrs; 5178 int v, ret = -ENOMEM; 5179 5180 apply_wqattrs_lock(); 5181 5182 attrs = wq_sysfs_prep_attrs(wq); 5183 if (!attrs) 5184 goto out_unlock; 5185 5186 ret = -EINVAL; 5187 if (sscanf(buf, "%d", &v) == 1) { 5188 attrs->no_numa = !v; 5189 ret = apply_workqueue_attrs_locked(wq, attrs); 5190 } 5191 5192 out_unlock: 5193 apply_wqattrs_unlock(); 5194 free_workqueue_attrs(attrs); 5195 return ret ?: count; 5196 } 5197 5198 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5199 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5200 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5201 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5202 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5203 __ATTR_NULL, 5204 }; 5205 5206 static struct bus_type wq_subsys = { 5207 .name = "workqueue", 5208 .dev_groups = wq_sysfs_groups, 5209 }; 5210 5211 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5212 struct device_attribute *attr, char *buf) 5213 { 5214 int written; 5215 5216 mutex_lock(&wq_pool_mutex); 5217 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5218 cpumask_pr_args(wq_unbound_cpumask)); 5219 mutex_unlock(&wq_pool_mutex); 5220 5221 return written; 5222 } 5223 5224 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5225 struct device_attribute *attr, const char *buf, size_t count) 5226 { 5227 cpumask_var_t cpumask; 5228 int ret; 5229 5230 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5231 return -ENOMEM; 5232 5233 ret = cpumask_parse(buf, cpumask); 5234 if (!ret) 5235 ret = workqueue_set_unbound_cpumask(cpumask); 5236 5237 free_cpumask_var(cpumask); 5238 return ret ? ret : count; 5239 } 5240 5241 static struct device_attribute wq_sysfs_cpumask_attr = 5242 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5243 wq_unbound_cpumask_store); 5244 5245 static int __init wq_sysfs_init(void) 5246 { 5247 int err; 5248 5249 err = subsys_virtual_register(&wq_subsys, NULL); 5250 if (err) 5251 return err; 5252 5253 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5254 } 5255 core_initcall(wq_sysfs_init); 5256 5257 static void wq_device_release(struct device *dev) 5258 { 5259 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5260 5261 kfree(wq_dev); 5262 } 5263 5264 /** 5265 * workqueue_sysfs_register - make a workqueue visible in sysfs 5266 * @wq: the workqueue to register 5267 * 5268 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5269 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5270 * which is the preferred method. 5271 * 5272 * Workqueue user should use this function directly iff it wants to apply 5273 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5274 * apply_workqueue_attrs() may race against userland updating the 5275 * attributes. 5276 * 5277 * Return: 0 on success, -errno on failure. 5278 */ 5279 int workqueue_sysfs_register(struct workqueue_struct *wq) 5280 { 5281 struct wq_device *wq_dev; 5282 int ret; 5283 5284 /* 5285 * Adjusting max_active or creating new pwqs by applying 5286 * attributes breaks ordering guarantee. Disallow exposing ordered 5287 * workqueues. 5288 */ 5289 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5290 return -EINVAL; 5291 5292 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5293 if (!wq_dev) 5294 return -ENOMEM; 5295 5296 wq_dev->wq = wq; 5297 wq_dev->dev.bus = &wq_subsys; 5298 wq_dev->dev.release = wq_device_release; 5299 dev_set_name(&wq_dev->dev, "%s", wq->name); 5300 5301 /* 5302 * unbound_attrs are created separately. Suppress uevent until 5303 * everything is ready. 5304 */ 5305 dev_set_uevent_suppress(&wq_dev->dev, true); 5306 5307 ret = device_register(&wq_dev->dev); 5308 if (ret) { 5309 kfree(wq_dev); 5310 wq->wq_dev = NULL; 5311 return ret; 5312 } 5313 5314 if (wq->flags & WQ_UNBOUND) { 5315 struct device_attribute *attr; 5316 5317 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5318 ret = device_create_file(&wq_dev->dev, attr); 5319 if (ret) { 5320 device_unregister(&wq_dev->dev); 5321 wq->wq_dev = NULL; 5322 return ret; 5323 } 5324 } 5325 } 5326 5327 dev_set_uevent_suppress(&wq_dev->dev, false); 5328 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5329 return 0; 5330 } 5331 5332 /** 5333 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5334 * @wq: the workqueue to unregister 5335 * 5336 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5337 */ 5338 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5339 { 5340 struct wq_device *wq_dev = wq->wq_dev; 5341 5342 if (!wq->wq_dev) 5343 return; 5344 5345 wq->wq_dev = NULL; 5346 device_unregister(&wq_dev->dev); 5347 } 5348 #else /* CONFIG_SYSFS */ 5349 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5350 #endif /* CONFIG_SYSFS */ 5351 5352 /* 5353 * Workqueue watchdog. 5354 * 5355 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5356 * flush dependency, a concurrency managed work item which stays RUNNING 5357 * indefinitely. Workqueue stalls can be very difficult to debug as the 5358 * usual warning mechanisms don't trigger and internal workqueue state is 5359 * largely opaque. 5360 * 5361 * Workqueue watchdog monitors all worker pools periodically and dumps 5362 * state if some pools failed to make forward progress for a while where 5363 * forward progress is defined as the first item on ->worklist changing. 5364 * 5365 * This mechanism is controlled through the kernel parameter 5366 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5367 * corresponding sysfs parameter file. 5368 */ 5369 #ifdef CONFIG_WQ_WATCHDOG 5370 5371 static unsigned long wq_watchdog_thresh = 30; 5372 static struct timer_list wq_watchdog_timer; 5373 5374 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5375 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5376 5377 static void wq_watchdog_reset_touched(void) 5378 { 5379 int cpu; 5380 5381 wq_watchdog_touched = jiffies; 5382 for_each_possible_cpu(cpu) 5383 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5384 } 5385 5386 static void wq_watchdog_timer_fn(struct timer_list *unused) 5387 { 5388 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5389 bool lockup_detected = false; 5390 struct worker_pool *pool; 5391 int pi; 5392 5393 if (!thresh) 5394 return; 5395 5396 rcu_read_lock(); 5397 5398 for_each_pool(pool, pi) { 5399 unsigned long pool_ts, touched, ts; 5400 5401 if (list_empty(&pool->worklist)) 5402 continue; 5403 5404 /* get the latest of pool and touched timestamps */ 5405 pool_ts = READ_ONCE(pool->watchdog_ts); 5406 touched = READ_ONCE(wq_watchdog_touched); 5407 5408 if (time_after(pool_ts, touched)) 5409 ts = pool_ts; 5410 else 5411 ts = touched; 5412 5413 if (pool->cpu >= 0) { 5414 unsigned long cpu_touched = 5415 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5416 pool->cpu)); 5417 if (time_after(cpu_touched, ts)) 5418 ts = cpu_touched; 5419 } 5420 5421 /* did we stall? */ 5422 if (time_after(jiffies, ts + thresh)) { 5423 lockup_detected = true; 5424 pr_emerg("BUG: workqueue lockup - pool"); 5425 pr_cont_pool_info(pool); 5426 pr_cont(" stuck for %us!\n", 5427 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5428 } 5429 } 5430 5431 rcu_read_unlock(); 5432 5433 if (lockup_detected) 5434 show_workqueue_state(); 5435 5436 wq_watchdog_reset_touched(); 5437 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5438 } 5439 5440 void wq_watchdog_touch(int cpu) 5441 { 5442 if (cpu >= 0) 5443 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5444 else 5445 wq_watchdog_touched = jiffies; 5446 } 5447 5448 static void wq_watchdog_set_thresh(unsigned long thresh) 5449 { 5450 wq_watchdog_thresh = 0; 5451 del_timer_sync(&wq_watchdog_timer); 5452 5453 if (thresh) { 5454 wq_watchdog_thresh = thresh; 5455 wq_watchdog_reset_touched(); 5456 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5457 } 5458 } 5459 5460 static int wq_watchdog_param_set_thresh(const char *val, 5461 const struct kernel_param *kp) 5462 { 5463 unsigned long thresh; 5464 int ret; 5465 5466 ret = kstrtoul(val, 0, &thresh); 5467 if (ret) 5468 return ret; 5469 5470 if (system_wq) 5471 wq_watchdog_set_thresh(thresh); 5472 else 5473 wq_watchdog_thresh = thresh; 5474 5475 return 0; 5476 } 5477 5478 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5479 .set = wq_watchdog_param_set_thresh, 5480 .get = param_get_ulong, 5481 }; 5482 5483 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5484 0644); 5485 5486 static void wq_watchdog_init(void) 5487 { 5488 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5489 wq_watchdog_set_thresh(wq_watchdog_thresh); 5490 } 5491 5492 #else /* CONFIG_WQ_WATCHDOG */ 5493 5494 static inline void wq_watchdog_init(void) { } 5495 5496 #endif /* CONFIG_WQ_WATCHDOG */ 5497 5498 static void __init wq_numa_init(void) 5499 { 5500 cpumask_var_t *tbl; 5501 int node, cpu; 5502 5503 if (num_possible_nodes() <= 1) 5504 return; 5505 5506 if (wq_disable_numa) { 5507 pr_info("workqueue: NUMA affinity support disabled\n"); 5508 return; 5509 } 5510 5511 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5512 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5513 5514 /* 5515 * We want masks of possible CPUs of each node which isn't readily 5516 * available. Build one from cpu_to_node() which should have been 5517 * fully initialized by now. 5518 */ 5519 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 5520 BUG_ON(!tbl); 5521 5522 for_each_node(node) 5523 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5524 node_online(node) ? node : NUMA_NO_NODE)); 5525 5526 for_each_possible_cpu(cpu) { 5527 node = cpu_to_node(cpu); 5528 if (WARN_ON(node == NUMA_NO_NODE)) { 5529 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5530 /* happens iff arch is bonkers, let's just proceed */ 5531 return; 5532 } 5533 cpumask_set_cpu(cpu, tbl[node]); 5534 } 5535 5536 wq_numa_possible_cpumask = tbl; 5537 wq_numa_enabled = true; 5538 } 5539 5540 /** 5541 * workqueue_init_early - early init for workqueue subsystem 5542 * 5543 * This is the first half of two-staged workqueue subsystem initialization 5544 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5545 * idr are up. It sets up all the data structures and system workqueues 5546 * and allows early boot code to create workqueues and queue/cancel work 5547 * items. Actual work item execution starts only after kthreads can be 5548 * created and scheduled right before early initcalls. 5549 */ 5550 int __init workqueue_init_early(void) 5551 { 5552 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5553 int i, cpu; 5554 5555 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5556 5557 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5558 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 5559 5560 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5561 5562 /* initialize CPU pools */ 5563 for_each_possible_cpu(cpu) { 5564 struct worker_pool *pool; 5565 5566 i = 0; 5567 for_each_cpu_worker_pool(pool, cpu) { 5568 BUG_ON(init_worker_pool(pool)); 5569 pool->cpu = cpu; 5570 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5571 pool->attrs->nice = std_nice[i++]; 5572 pool->node = cpu_to_node(cpu); 5573 5574 /* alloc pool ID */ 5575 mutex_lock(&wq_pool_mutex); 5576 BUG_ON(worker_pool_assign_id(pool)); 5577 mutex_unlock(&wq_pool_mutex); 5578 } 5579 } 5580 5581 /* create default unbound and ordered wq attrs */ 5582 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5583 struct workqueue_attrs *attrs; 5584 5585 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5586 attrs->nice = std_nice[i]; 5587 unbound_std_wq_attrs[i] = attrs; 5588 5589 /* 5590 * An ordered wq should have only one pwq as ordering is 5591 * guaranteed by max_active which is enforced by pwqs. 5592 * Turn off NUMA so that dfl_pwq is used for all nodes. 5593 */ 5594 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5595 attrs->nice = std_nice[i]; 5596 attrs->no_numa = true; 5597 ordered_wq_attrs[i] = attrs; 5598 } 5599 5600 system_wq = alloc_workqueue("events", 0, 0); 5601 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5602 system_long_wq = alloc_workqueue("events_long", 0, 0); 5603 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5604 WQ_UNBOUND_MAX_ACTIVE); 5605 system_freezable_wq = alloc_workqueue("events_freezable", 5606 WQ_FREEZABLE, 0); 5607 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5608 WQ_POWER_EFFICIENT, 0); 5609 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5610 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5611 0); 5612 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5613 !system_unbound_wq || !system_freezable_wq || 5614 !system_power_efficient_wq || 5615 !system_freezable_power_efficient_wq); 5616 5617 return 0; 5618 } 5619 5620 /** 5621 * workqueue_init - bring workqueue subsystem fully online 5622 * 5623 * This is the latter half of two-staged workqueue subsystem initialization 5624 * and invoked as soon as kthreads can be created and scheduled. 5625 * Workqueues have been created and work items queued on them, but there 5626 * are no kworkers executing the work items yet. Populate the worker pools 5627 * with the initial workers and enable future kworker creations. 5628 */ 5629 int __init workqueue_init(void) 5630 { 5631 struct workqueue_struct *wq; 5632 struct worker_pool *pool; 5633 int cpu, bkt; 5634 5635 /* 5636 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5637 * CPU to node mapping may not be available that early on some 5638 * archs such as power and arm64. As per-cpu pools created 5639 * previously could be missing node hint and unbound pools NUMA 5640 * affinity, fix them up. 5641 */ 5642 wq_numa_init(); 5643 5644 mutex_lock(&wq_pool_mutex); 5645 5646 for_each_possible_cpu(cpu) { 5647 for_each_cpu_worker_pool(pool, cpu) { 5648 pool->node = cpu_to_node(cpu); 5649 } 5650 } 5651 5652 list_for_each_entry(wq, &workqueues, list) 5653 wq_update_unbound_numa(wq, smp_processor_id(), true); 5654 5655 mutex_unlock(&wq_pool_mutex); 5656 5657 /* create the initial workers */ 5658 for_each_online_cpu(cpu) { 5659 for_each_cpu_worker_pool(pool, cpu) { 5660 pool->flags &= ~POOL_DISASSOCIATED; 5661 BUG_ON(!create_worker(pool)); 5662 } 5663 } 5664 5665 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 5666 BUG_ON(!create_worker(pool)); 5667 5668 wq_online = true; 5669 wq_watchdog_init(); 5670 5671 return 0; 5672 } 5673