xref: /openbmc/linux/kernel/workqueue.c (revision 0bea2a65)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/core-api/workqueue.rst for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
72 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73 
74 	/* worker flags */
75 	WORKER_DIE		= 1 << 1,	/* die die die */
76 	WORKER_IDLE		= 1 << 2,	/* is idle */
77 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
78 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
79 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
80 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
81 
82 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
83 				  WORKER_UNBOUND | WORKER_REBOUND,
84 
85 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
86 
87 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
88 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
89 
90 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
91 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
92 
93 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
94 						/* call for help after 10ms
95 						   (min two ticks) */
96 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
97 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
98 
99 	/*
100 	 * Rescue workers are used only on emergencies and shared by
101 	 * all cpus.  Give MIN_NICE.
102 	 */
103 	RESCUER_NICE_LEVEL	= MIN_NICE,
104 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
105 
106 	WQ_NAME_LEN		= 24,
107 };
108 
109 /*
110  * Structure fields follow one of the following exclusion rules.
111  *
112  * I: Modifiable by initialization/destruction paths and read-only for
113  *    everyone else.
114  *
115  * P: Preemption protected.  Disabling preemption is enough and should
116  *    only be modified and accessed from the local cpu.
117  *
118  * L: pool->lock protected.  Access with pool->lock held.
119  *
120  * X: During normal operation, modification requires pool->lock and should
121  *    be done only from local cpu.  Either disabling preemption on local
122  *    cpu or grabbing pool->lock is enough for read access.  If
123  *    POOL_DISASSOCIATED is set, it's identical to L.
124  *
125  * A: pool->attach_mutex protected.
126  *
127  * PL: wq_pool_mutex protected.
128  *
129  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
130  *
131  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
132  *
133  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
134  *      sched-RCU for reads.
135  *
136  * WQ: wq->mutex protected.
137  *
138  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
139  *
140  * MD: wq_mayday_lock protected.
141  */
142 
143 /* struct worker is defined in workqueue_internal.h */
144 
145 struct worker_pool {
146 	spinlock_t		lock;		/* the pool lock */
147 	int			cpu;		/* I: the associated cpu */
148 	int			node;		/* I: the associated node ID */
149 	int			id;		/* I: pool ID */
150 	unsigned int		flags;		/* X: flags */
151 
152 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
153 
154 	struct list_head	worklist;	/* L: list of pending works */
155 	int			nr_workers;	/* L: total number of workers */
156 
157 	/* nr_idle includes the ones off idle_list for rebinding */
158 	int			nr_idle;	/* L: currently idle ones */
159 
160 	struct list_head	idle_list;	/* X: list of idle workers */
161 	struct timer_list	idle_timer;	/* L: worker idle timeout */
162 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
163 
164 	/* a workers is either on busy_hash or idle_list, or the manager */
165 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 						/* L: hash of busy workers */
167 
168 	/* see manage_workers() for details on the two manager mutexes */
169 	struct worker		*manager;	/* L: purely informational */
170 	struct mutex		attach_mutex;	/* attach/detach exclusion */
171 	struct list_head	workers;	/* A: attached workers */
172 	struct completion	*detach_completion; /* all workers detached */
173 
174 	struct ida		worker_ida;	/* worker IDs for task name */
175 
176 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
178 	int			refcnt;		/* PL: refcnt for unbound pools */
179 
180 	/*
181 	 * The current concurrency level.  As it's likely to be accessed
182 	 * from other CPUs during try_to_wake_up(), put it in a separate
183 	 * cacheline.
184 	 */
185 	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 
187 	/*
188 	 * Destruction of pool is sched-RCU protected to allow dereferences
189 	 * from get_work_pool().
190 	 */
191 	struct rcu_head		rcu;
192 } ____cacheline_aligned_in_smp;
193 
194 /*
195  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
196  * of work_struct->data are used for flags and the remaining high bits
197  * point to the pwq; thus, pwqs need to be aligned at two's power of the
198  * number of flag bits.
199  */
200 struct pool_workqueue {
201 	struct worker_pool	*pool;		/* I: the associated pool */
202 	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 	int			work_color;	/* L: current color */
204 	int			flush_color;	/* L: flushing color */
205 	int			refcnt;		/* L: reference count */
206 	int			nr_in_flight[WORK_NR_COLORS];
207 						/* L: nr of in_flight works */
208 	int			nr_active;	/* L: nr of active works */
209 	int			max_active;	/* L: max active works */
210 	struct list_head	delayed_works;	/* L: delayed works */
211 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
213 
214 	/*
215 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
216 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
217 	 * itself is also sched-RCU protected so that the first pwq can be
218 	 * determined without grabbing wq->mutex.
219 	 */
220 	struct work_struct	unbound_release_work;
221 	struct rcu_head		rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223 
224 /*
225  * Structure used to wait for workqueue flush.
226  */
227 struct wq_flusher {
228 	struct list_head	list;		/* WQ: list of flushers */
229 	int			flush_color;	/* WQ: flush color waiting for */
230 	struct completion	done;		/* flush completion */
231 };
232 
233 struct wq_device;
234 
235 /*
236  * The externally visible workqueue.  It relays the issued work items to
237  * the appropriate worker_pool through its pool_workqueues.
238  */
239 struct workqueue_struct {
240 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241 	struct list_head	list;		/* PR: list of all workqueues */
242 
243 	struct mutex		mutex;		/* protects this wq */
244 	int			work_color;	/* WQ: current work color */
245 	int			flush_color;	/* WQ: current flush color */
246 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
248 	struct list_head	flusher_queue;	/* WQ: flush waiters */
249 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250 
251 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 	struct worker		*rescuer;	/* I: rescue worker */
253 
254 	int			nr_drainers;	/* WQ: drain in progress */
255 	int			saved_max_active; /* WQ: saved pwq max_active */
256 
257 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
258 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259 
260 #ifdef CONFIG_SYSFS
261 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267 
268 	/*
269 	 * Destruction of workqueue_struct is sched-RCU protected to allow
270 	 * walking the workqueues list without grabbing wq_pool_mutex.
271 	 * This is used to dump all workqueues from sysrq.
272 	 */
273 	struct rcu_head		rcu;
274 
275 	/* hot fields used during command issue, aligned to cacheline */
276 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280 
281 static struct kmem_cache *pwq_cache;
282 
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 					/* possible CPUs of each node */
285 
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288 
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292 
293 static bool wq_online;			/* can kworkers be created yet? */
294 
295 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
296 
297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299 
300 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
301 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
302 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
303 
304 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
305 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
306 
307 /* PL: allowable cpus for unbound wqs and work items */
308 static cpumask_var_t wq_unbound_cpumask;
309 
310 /* CPU where unbound work was last round robin scheduled from this CPU */
311 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
312 
313 /*
314  * Local execution of unbound work items is no longer guaranteed.  The
315  * following always forces round-robin CPU selection on unbound work items
316  * to uncover usages which depend on it.
317  */
318 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
319 static bool wq_debug_force_rr_cpu = true;
320 #else
321 static bool wq_debug_force_rr_cpu = false;
322 #endif
323 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
324 
325 /* the per-cpu worker pools */
326 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
327 
328 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
329 
330 /* PL: hash of all unbound pools keyed by pool->attrs */
331 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
332 
333 /* I: attributes used when instantiating standard unbound pools on demand */
334 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
335 
336 /* I: attributes used when instantiating ordered pools on demand */
337 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
338 
339 struct workqueue_struct *system_wq __read_mostly;
340 EXPORT_SYMBOL(system_wq);
341 struct workqueue_struct *system_highpri_wq __read_mostly;
342 EXPORT_SYMBOL_GPL(system_highpri_wq);
343 struct workqueue_struct *system_long_wq __read_mostly;
344 EXPORT_SYMBOL_GPL(system_long_wq);
345 struct workqueue_struct *system_unbound_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_unbound_wq);
347 struct workqueue_struct *system_freezable_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_freezable_wq);
349 struct workqueue_struct *system_power_efficient_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
351 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
353 
354 static int worker_thread(void *__worker);
355 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
356 
357 #define CREATE_TRACE_POINTS
358 #include <trace/events/workqueue.h>
359 
360 #define assert_rcu_or_pool_mutex()					\
361 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
362 			 !lockdep_is_held(&wq_pool_mutex),		\
363 			 "sched RCU or wq_pool_mutex should be held")
364 
365 #define assert_rcu_or_wq_mutex(wq)					\
366 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
367 			 !lockdep_is_held(&wq->mutex),			\
368 			 "sched RCU or wq->mutex should be held")
369 
370 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
371 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
372 			 !lockdep_is_held(&wq->mutex) &&		\
373 			 !lockdep_is_held(&wq_pool_mutex),		\
374 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
375 
376 #define for_each_cpu_worker_pool(pool, cpu)				\
377 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
378 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
379 	     (pool)++)
380 
381 /**
382  * for_each_pool - iterate through all worker_pools in the system
383  * @pool: iteration cursor
384  * @pi: integer used for iteration
385  *
386  * This must be called either with wq_pool_mutex held or sched RCU read
387  * locked.  If the pool needs to be used beyond the locking in effect, the
388  * caller is responsible for guaranteeing that the pool stays online.
389  *
390  * The if/else clause exists only for the lockdep assertion and can be
391  * ignored.
392  */
393 #define for_each_pool(pool, pi)						\
394 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
395 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
396 		else
397 
398 /**
399  * for_each_pool_worker - iterate through all workers of a worker_pool
400  * @worker: iteration cursor
401  * @pool: worker_pool to iterate workers of
402  *
403  * This must be called with @pool->attach_mutex.
404  *
405  * The if/else clause exists only for the lockdep assertion and can be
406  * ignored.
407  */
408 #define for_each_pool_worker(worker, pool)				\
409 	list_for_each_entry((worker), &(pool)->workers, node)		\
410 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
411 		else
412 
413 /**
414  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
415  * @pwq: iteration cursor
416  * @wq: the target workqueue
417  *
418  * This must be called either with wq->mutex held or sched RCU read locked.
419  * If the pwq needs to be used beyond the locking in effect, the caller is
420  * responsible for guaranteeing that the pwq stays online.
421  *
422  * The if/else clause exists only for the lockdep assertion and can be
423  * ignored.
424  */
425 #define for_each_pwq(pwq, wq)						\
426 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
427 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
428 		else
429 
430 #ifdef CONFIG_DEBUG_OBJECTS_WORK
431 
432 static struct debug_obj_descr work_debug_descr;
433 
434 static void *work_debug_hint(void *addr)
435 {
436 	return ((struct work_struct *) addr)->func;
437 }
438 
439 static bool work_is_static_object(void *addr)
440 {
441 	struct work_struct *work = addr;
442 
443 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
444 }
445 
446 /*
447  * fixup_init is called when:
448  * - an active object is initialized
449  */
450 static bool work_fixup_init(void *addr, enum debug_obj_state state)
451 {
452 	struct work_struct *work = addr;
453 
454 	switch (state) {
455 	case ODEBUG_STATE_ACTIVE:
456 		cancel_work_sync(work);
457 		debug_object_init(work, &work_debug_descr);
458 		return true;
459 	default:
460 		return false;
461 	}
462 }
463 
464 /*
465  * fixup_free is called when:
466  * - an active object is freed
467  */
468 static bool work_fixup_free(void *addr, enum debug_obj_state state)
469 {
470 	struct work_struct *work = addr;
471 
472 	switch (state) {
473 	case ODEBUG_STATE_ACTIVE:
474 		cancel_work_sync(work);
475 		debug_object_free(work, &work_debug_descr);
476 		return true;
477 	default:
478 		return false;
479 	}
480 }
481 
482 static struct debug_obj_descr work_debug_descr = {
483 	.name		= "work_struct",
484 	.debug_hint	= work_debug_hint,
485 	.is_static_object = work_is_static_object,
486 	.fixup_init	= work_fixup_init,
487 	.fixup_free	= work_fixup_free,
488 };
489 
490 static inline void debug_work_activate(struct work_struct *work)
491 {
492 	debug_object_activate(work, &work_debug_descr);
493 }
494 
495 static inline void debug_work_deactivate(struct work_struct *work)
496 {
497 	debug_object_deactivate(work, &work_debug_descr);
498 }
499 
500 void __init_work(struct work_struct *work, int onstack)
501 {
502 	if (onstack)
503 		debug_object_init_on_stack(work, &work_debug_descr);
504 	else
505 		debug_object_init(work, &work_debug_descr);
506 }
507 EXPORT_SYMBOL_GPL(__init_work);
508 
509 void destroy_work_on_stack(struct work_struct *work)
510 {
511 	debug_object_free(work, &work_debug_descr);
512 }
513 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
514 
515 void destroy_delayed_work_on_stack(struct delayed_work *work)
516 {
517 	destroy_timer_on_stack(&work->timer);
518 	debug_object_free(&work->work, &work_debug_descr);
519 }
520 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
521 
522 #else
523 static inline void debug_work_activate(struct work_struct *work) { }
524 static inline void debug_work_deactivate(struct work_struct *work) { }
525 #endif
526 
527 /**
528  * worker_pool_assign_id - allocate ID and assing it to @pool
529  * @pool: the pool pointer of interest
530  *
531  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
532  * successfully, -errno on failure.
533  */
534 static int worker_pool_assign_id(struct worker_pool *pool)
535 {
536 	int ret;
537 
538 	lockdep_assert_held(&wq_pool_mutex);
539 
540 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
541 			GFP_KERNEL);
542 	if (ret >= 0) {
543 		pool->id = ret;
544 		return 0;
545 	}
546 	return ret;
547 }
548 
549 /**
550  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
551  * @wq: the target workqueue
552  * @node: the node ID
553  *
554  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
555  * read locked.
556  * If the pwq needs to be used beyond the locking in effect, the caller is
557  * responsible for guaranteeing that the pwq stays online.
558  *
559  * Return: The unbound pool_workqueue for @node.
560  */
561 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
562 						  int node)
563 {
564 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
565 
566 	/*
567 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
568 	 * delayed item is pending.  The plan is to keep CPU -> NODE
569 	 * mapping valid and stable across CPU on/offlines.  Once that
570 	 * happens, this workaround can be removed.
571 	 */
572 	if (unlikely(node == NUMA_NO_NODE))
573 		return wq->dfl_pwq;
574 
575 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
576 }
577 
578 static unsigned int work_color_to_flags(int color)
579 {
580 	return color << WORK_STRUCT_COLOR_SHIFT;
581 }
582 
583 static int get_work_color(struct work_struct *work)
584 {
585 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
586 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
587 }
588 
589 static int work_next_color(int color)
590 {
591 	return (color + 1) % WORK_NR_COLORS;
592 }
593 
594 /*
595  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
596  * contain the pointer to the queued pwq.  Once execution starts, the flag
597  * is cleared and the high bits contain OFFQ flags and pool ID.
598  *
599  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
600  * and clear_work_data() can be used to set the pwq, pool or clear
601  * work->data.  These functions should only be called while the work is
602  * owned - ie. while the PENDING bit is set.
603  *
604  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
605  * corresponding to a work.  Pool is available once the work has been
606  * queued anywhere after initialization until it is sync canceled.  pwq is
607  * available only while the work item is queued.
608  *
609  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
610  * canceled.  While being canceled, a work item may have its PENDING set
611  * but stay off timer and worklist for arbitrarily long and nobody should
612  * try to steal the PENDING bit.
613  */
614 static inline void set_work_data(struct work_struct *work, unsigned long data,
615 				 unsigned long flags)
616 {
617 	WARN_ON_ONCE(!work_pending(work));
618 	atomic_long_set(&work->data, data | flags | work_static(work));
619 }
620 
621 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
622 			 unsigned long extra_flags)
623 {
624 	set_work_data(work, (unsigned long)pwq,
625 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
626 }
627 
628 static void set_work_pool_and_keep_pending(struct work_struct *work,
629 					   int pool_id)
630 {
631 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
632 		      WORK_STRUCT_PENDING);
633 }
634 
635 static void set_work_pool_and_clear_pending(struct work_struct *work,
636 					    int pool_id)
637 {
638 	/*
639 	 * The following wmb is paired with the implied mb in
640 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
641 	 * here are visible to and precede any updates by the next PENDING
642 	 * owner.
643 	 */
644 	smp_wmb();
645 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
646 	/*
647 	 * The following mb guarantees that previous clear of a PENDING bit
648 	 * will not be reordered with any speculative LOADS or STORES from
649 	 * work->current_func, which is executed afterwards.  This possible
650 	 * reordering can lead to a missed execution on attempt to qeueue
651 	 * the same @work.  E.g. consider this case:
652 	 *
653 	 *   CPU#0                         CPU#1
654 	 *   ----------------------------  --------------------------------
655 	 *
656 	 * 1  STORE event_indicated
657 	 * 2  queue_work_on() {
658 	 * 3    test_and_set_bit(PENDING)
659 	 * 4 }                             set_..._and_clear_pending() {
660 	 * 5                                 set_work_data() # clear bit
661 	 * 6                                 smp_mb()
662 	 * 7                               work->current_func() {
663 	 * 8				      LOAD event_indicated
664 	 *				   }
665 	 *
666 	 * Without an explicit full barrier speculative LOAD on line 8 can
667 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
668 	 * CPU#0 observes the PENDING bit is still set and new execution of
669 	 * a @work is not queued in a hope, that CPU#1 will eventually
670 	 * finish the queued @work.  Meanwhile CPU#1 does not see
671 	 * event_indicated is set, because speculative LOAD was executed
672 	 * before actual STORE.
673 	 */
674 	smp_mb();
675 }
676 
677 static void clear_work_data(struct work_struct *work)
678 {
679 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
680 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
681 }
682 
683 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
684 {
685 	unsigned long data = atomic_long_read(&work->data);
686 
687 	if (data & WORK_STRUCT_PWQ)
688 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
689 	else
690 		return NULL;
691 }
692 
693 /**
694  * get_work_pool - return the worker_pool a given work was associated with
695  * @work: the work item of interest
696  *
697  * Pools are created and destroyed under wq_pool_mutex, and allows read
698  * access under sched-RCU read lock.  As such, this function should be
699  * called under wq_pool_mutex or with preemption disabled.
700  *
701  * All fields of the returned pool are accessible as long as the above
702  * mentioned locking is in effect.  If the returned pool needs to be used
703  * beyond the critical section, the caller is responsible for ensuring the
704  * returned pool is and stays online.
705  *
706  * Return: The worker_pool @work was last associated with.  %NULL if none.
707  */
708 static struct worker_pool *get_work_pool(struct work_struct *work)
709 {
710 	unsigned long data = atomic_long_read(&work->data);
711 	int pool_id;
712 
713 	assert_rcu_or_pool_mutex();
714 
715 	if (data & WORK_STRUCT_PWQ)
716 		return ((struct pool_workqueue *)
717 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
718 
719 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
720 	if (pool_id == WORK_OFFQ_POOL_NONE)
721 		return NULL;
722 
723 	return idr_find(&worker_pool_idr, pool_id);
724 }
725 
726 /**
727  * get_work_pool_id - return the worker pool ID a given work is associated with
728  * @work: the work item of interest
729  *
730  * Return: The worker_pool ID @work was last associated with.
731  * %WORK_OFFQ_POOL_NONE if none.
732  */
733 static int get_work_pool_id(struct work_struct *work)
734 {
735 	unsigned long data = atomic_long_read(&work->data);
736 
737 	if (data & WORK_STRUCT_PWQ)
738 		return ((struct pool_workqueue *)
739 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
740 
741 	return data >> WORK_OFFQ_POOL_SHIFT;
742 }
743 
744 static void mark_work_canceling(struct work_struct *work)
745 {
746 	unsigned long pool_id = get_work_pool_id(work);
747 
748 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
749 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
750 }
751 
752 static bool work_is_canceling(struct work_struct *work)
753 {
754 	unsigned long data = atomic_long_read(&work->data);
755 
756 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
757 }
758 
759 /*
760  * Policy functions.  These define the policies on how the global worker
761  * pools are managed.  Unless noted otherwise, these functions assume that
762  * they're being called with pool->lock held.
763  */
764 
765 static bool __need_more_worker(struct worker_pool *pool)
766 {
767 	return !atomic_read(&pool->nr_running);
768 }
769 
770 /*
771  * Need to wake up a worker?  Called from anything but currently
772  * running workers.
773  *
774  * Note that, because unbound workers never contribute to nr_running, this
775  * function will always return %true for unbound pools as long as the
776  * worklist isn't empty.
777  */
778 static bool need_more_worker(struct worker_pool *pool)
779 {
780 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
781 }
782 
783 /* Can I start working?  Called from busy but !running workers. */
784 static bool may_start_working(struct worker_pool *pool)
785 {
786 	return pool->nr_idle;
787 }
788 
789 /* Do I need to keep working?  Called from currently running workers. */
790 static bool keep_working(struct worker_pool *pool)
791 {
792 	return !list_empty(&pool->worklist) &&
793 		atomic_read(&pool->nr_running) <= 1;
794 }
795 
796 /* Do we need a new worker?  Called from manager. */
797 static bool need_to_create_worker(struct worker_pool *pool)
798 {
799 	return need_more_worker(pool) && !may_start_working(pool);
800 }
801 
802 /* Do we have too many workers and should some go away? */
803 static bool too_many_workers(struct worker_pool *pool)
804 {
805 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
806 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
807 	int nr_busy = pool->nr_workers - nr_idle;
808 
809 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
810 }
811 
812 /*
813  * Wake up functions.
814  */
815 
816 /* Return the first idle worker.  Safe with preemption disabled */
817 static struct worker *first_idle_worker(struct worker_pool *pool)
818 {
819 	if (unlikely(list_empty(&pool->idle_list)))
820 		return NULL;
821 
822 	return list_first_entry(&pool->idle_list, struct worker, entry);
823 }
824 
825 /**
826  * wake_up_worker - wake up an idle worker
827  * @pool: worker pool to wake worker from
828  *
829  * Wake up the first idle worker of @pool.
830  *
831  * CONTEXT:
832  * spin_lock_irq(pool->lock).
833  */
834 static void wake_up_worker(struct worker_pool *pool)
835 {
836 	struct worker *worker = first_idle_worker(pool);
837 
838 	if (likely(worker))
839 		wake_up_process(worker->task);
840 }
841 
842 /**
843  * wq_worker_waking_up - a worker is waking up
844  * @task: task waking up
845  * @cpu: CPU @task is waking up to
846  *
847  * This function is called during try_to_wake_up() when a worker is
848  * being awoken.
849  *
850  * CONTEXT:
851  * spin_lock_irq(rq->lock)
852  */
853 void wq_worker_waking_up(struct task_struct *task, int cpu)
854 {
855 	struct worker *worker = kthread_data(task);
856 
857 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
858 		WARN_ON_ONCE(worker->pool->cpu != cpu);
859 		atomic_inc(&worker->pool->nr_running);
860 	}
861 }
862 
863 /**
864  * wq_worker_sleeping - a worker is going to sleep
865  * @task: task going to sleep
866  *
867  * This function is called during schedule() when a busy worker is
868  * going to sleep.  Worker on the same cpu can be woken up by
869  * returning pointer to its task.
870  *
871  * CONTEXT:
872  * spin_lock_irq(rq->lock)
873  *
874  * Return:
875  * Worker task on @cpu to wake up, %NULL if none.
876  */
877 struct task_struct *wq_worker_sleeping(struct task_struct *task)
878 {
879 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
880 	struct worker_pool *pool;
881 
882 	/*
883 	 * Rescuers, which may not have all the fields set up like normal
884 	 * workers, also reach here, let's not access anything before
885 	 * checking NOT_RUNNING.
886 	 */
887 	if (worker->flags & WORKER_NOT_RUNNING)
888 		return NULL;
889 
890 	pool = worker->pool;
891 
892 	/* this can only happen on the local cpu */
893 	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
894 		return NULL;
895 
896 	/*
897 	 * The counterpart of the following dec_and_test, implied mb,
898 	 * worklist not empty test sequence is in insert_work().
899 	 * Please read comment there.
900 	 *
901 	 * NOT_RUNNING is clear.  This means that we're bound to and
902 	 * running on the local cpu w/ rq lock held and preemption
903 	 * disabled, which in turn means that none else could be
904 	 * manipulating idle_list, so dereferencing idle_list without pool
905 	 * lock is safe.
906 	 */
907 	if (atomic_dec_and_test(&pool->nr_running) &&
908 	    !list_empty(&pool->worklist))
909 		to_wakeup = first_idle_worker(pool);
910 	return to_wakeup ? to_wakeup->task : NULL;
911 }
912 
913 /**
914  * worker_set_flags - set worker flags and adjust nr_running accordingly
915  * @worker: self
916  * @flags: flags to set
917  *
918  * Set @flags in @worker->flags and adjust nr_running accordingly.
919  *
920  * CONTEXT:
921  * spin_lock_irq(pool->lock)
922  */
923 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
924 {
925 	struct worker_pool *pool = worker->pool;
926 
927 	WARN_ON_ONCE(worker->task != current);
928 
929 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
930 	if ((flags & WORKER_NOT_RUNNING) &&
931 	    !(worker->flags & WORKER_NOT_RUNNING)) {
932 		atomic_dec(&pool->nr_running);
933 	}
934 
935 	worker->flags |= flags;
936 }
937 
938 /**
939  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
940  * @worker: self
941  * @flags: flags to clear
942  *
943  * Clear @flags in @worker->flags and adjust nr_running accordingly.
944  *
945  * CONTEXT:
946  * spin_lock_irq(pool->lock)
947  */
948 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
949 {
950 	struct worker_pool *pool = worker->pool;
951 	unsigned int oflags = worker->flags;
952 
953 	WARN_ON_ONCE(worker->task != current);
954 
955 	worker->flags &= ~flags;
956 
957 	/*
958 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
959 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
960 	 * of multiple flags, not a single flag.
961 	 */
962 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
963 		if (!(worker->flags & WORKER_NOT_RUNNING))
964 			atomic_inc(&pool->nr_running);
965 }
966 
967 /**
968  * find_worker_executing_work - find worker which is executing a work
969  * @pool: pool of interest
970  * @work: work to find worker for
971  *
972  * Find a worker which is executing @work on @pool by searching
973  * @pool->busy_hash which is keyed by the address of @work.  For a worker
974  * to match, its current execution should match the address of @work and
975  * its work function.  This is to avoid unwanted dependency between
976  * unrelated work executions through a work item being recycled while still
977  * being executed.
978  *
979  * This is a bit tricky.  A work item may be freed once its execution
980  * starts and nothing prevents the freed area from being recycled for
981  * another work item.  If the same work item address ends up being reused
982  * before the original execution finishes, workqueue will identify the
983  * recycled work item as currently executing and make it wait until the
984  * current execution finishes, introducing an unwanted dependency.
985  *
986  * This function checks the work item address and work function to avoid
987  * false positives.  Note that this isn't complete as one may construct a
988  * work function which can introduce dependency onto itself through a
989  * recycled work item.  Well, if somebody wants to shoot oneself in the
990  * foot that badly, there's only so much we can do, and if such deadlock
991  * actually occurs, it should be easy to locate the culprit work function.
992  *
993  * CONTEXT:
994  * spin_lock_irq(pool->lock).
995  *
996  * Return:
997  * Pointer to worker which is executing @work if found, %NULL
998  * otherwise.
999  */
1000 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1001 						 struct work_struct *work)
1002 {
1003 	struct worker *worker;
1004 
1005 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1006 			       (unsigned long)work)
1007 		if (worker->current_work == work &&
1008 		    worker->current_func == work->func)
1009 			return worker;
1010 
1011 	return NULL;
1012 }
1013 
1014 /**
1015  * move_linked_works - move linked works to a list
1016  * @work: start of series of works to be scheduled
1017  * @head: target list to append @work to
1018  * @nextp: out parameter for nested worklist walking
1019  *
1020  * Schedule linked works starting from @work to @head.  Work series to
1021  * be scheduled starts at @work and includes any consecutive work with
1022  * WORK_STRUCT_LINKED set in its predecessor.
1023  *
1024  * If @nextp is not NULL, it's updated to point to the next work of
1025  * the last scheduled work.  This allows move_linked_works() to be
1026  * nested inside outer list_for_each_entry_safe().
1027  *
1028  * CONTEXT:
1029  * spin_lock_irq(pool->lock).
1030  */
1031 static void move_linked_works(struct work_struct *work, struct list_head *head,
1032 			      struct work_struct **nextp)
1033 {
1034 	struct work_struct *n;
1035 
1036 	/*
1037 	 * Linked worklist will always end before the end of the list,
1038 	 * use NULL for list head.
1039 	 */
1040 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1041 		list_move_tail(&work->entry, head);
1042 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1043 			break;
1044 	}
1045 
1046 	/*
1047 	 * If we're already inside safe list traversal and have moved
1048 	 * multiple works to the scheduled queue, the next position
1049 	 * needs to be updated.
1050 	 */
1051 	if (nextp)
1052 		*nextp = n;
1053 }
1054 
1055 /**
1056  * get_pwq - get an extra reference on the specified pool_workqueue
1057  * @pwq: pool_workqueue to get
1058  *
1059  * Obtain an extra reference on @pwq.  The caller should guarantee that
1060  * @pwq has positive refcnt and be holding the matching pool->lock.
1061  */
1062 static void get_pwq(struct pool_workqueue *pwq)
1063 {
1064 	lockdep_assert_held(&pwq->pool->lock);
1065 	WARN_ON_ONCE(pwq->refcnt <= 0);
1066 	pwq->refcnt++;
1067 }
1068 
1069 /**
1070  * put_pwq - put a pool_workqueue reference
1071  * @pwq: pool_workqueue to put
1072  *
1073  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1074  * destruction.  The caller should be holding the matching pool->lock.
1075  */
1076 static void put_pwq(struct pool_workqueue *pwq)
1077 {
1078 	lockdep_assert_held(&pwq->pool->lock);
1079 	if (likely(--pwq->refcnt))
1080 		return;
1081 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1082 		return;
1083 	/*
1084 	 * @pwq can't be released under pool->lock, bounce to
1085 	 * pwq_unbound_release_workfn().  This never recurses on the same
1086 	 * pool->lock as this path is taken only for unbound workqueues and
1087 	 * the release work item is scheduled on a per-cpu workqueue.  To
1088 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1089 	 * subclass of 1 in get_unbound_pool().
1090 	 */
1091 	schedule_work(&pwq->unbound_release_work);
1092 }
1093 
1094 /**
1095  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1096  * @pwq: pool_workqueue to put (can be %NULL)
1097  *
1098  * put_pwq() with locking.  This function also allows %NULL @pwq.
1099  */
1100 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1101 {
1102 	if (pwq) {
1103 		/*
1104 		 * As both pwqs and pools are sched-RCU protected, the
1105 		 * following lock operations are safe.
1106 		 */
1107 		spin_lock_irq(&pwq->pool->lock);
1108 		put_pwq(pwq);
1109 		spin_unlock_irq(&pwq->pool->lock);
1110 	}
1111 }
1112 
1113 static void pwq_activate_delayed_work(struct work_struct *work)
1114 {
1115 	struct pool_workqueue *pwq = get_work_pwq(work);
1116 
1117 	trace_workqueue_activate_work(work);
1118 	if (list_empty(&pwq->pool->worklist))
1119 		pwq->pool->watchdog_ts = jiffies;
1120 	move_linked_works(work, &pwq->pool->worklist, NULL);
1121 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1122 	pwq->nr_active++;
1123 }
1124 
1125 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1126 {
1127 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1128 						    struct work_struct, entry);
1129 
1130 	pwq_activate_delayed_work(work);
1131 }
1132 
1133 /**
1134  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1135  * @pwq: pwq of interest
1136  * @color: color of work which left the queue
1137  *
1138  * A work either has completed or is removed from pending queue,
1139  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1140  *
1141  * CONTEXT:
1142  * spin_lock_irq(pool->lock).
1143  */
1144 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1145 {
1146 	/* uncolored work items don't participate in flushing or nr_active */
1147 	if (color == WORK_NO_COLOR)
1148 		goto out_put;
1149 
1150 	pwq->nr_in_flight[color]--;
1151 
1152 	pwq->nr_active--;
1153 	if (!list_empty(&pwq->delayed_works)) {
1154 		/* one down, submit a delayed one */
1155 		if (pwq->nr_active < pwq->max_active)
1156 			pwq_activate_first_delayed(pwq);
1157 	}
1158 
1159 	/* is flush in progress and are we at the flushing tip? */
1160 	if (likely(pwq->flush_color != color))
1161 		goto out_put;
1162 
1163 	/* are there still in-flight works? */
1164 	if (pwq->nr_in_flight[color])
1165 		goto out_put;
1166 
1167 	/* this pwq is done, clear flush_color */
1168 	pwq->flush_color = -1;
1169 
1170 	/*
1171 	 * If this was the last pwq, wake up the first flusher.  It
1172 	 * will handle the rest.
1173 	 */
1174 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1175 		complete(&pwq->wq->first_flusher->done);
1176 out_put:
1177 	put_pwq(pwq);
1178 }
1179 
1180 /**
1181  * try_to_grab_pending - steal work item from worklist and disable irq
1182  * @work: work item to steal
1183  * @is_dwork: @work is a delayed_work
1184  * @flags: place to store irq state
1185  *
1186  * Try to grab PENDING bit of @work.  This function can handle @work in any
1187  * stable state - idle, on timer or on worklist.
1188  *
1189  * Return:
1190  *  1		if @work was pending and we successfully stole PENDING
1191  *  0		if @work was idle and we claimed PENDING
1192  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1193  *  -ENOENT	if someone else is canceling @work, this state may persist
1194  *		for arbitrarily long
1195  *
1196  * Note:
1197  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1198  * interrupted while holding PENDING and @work off queue, irq must be
1199  * disabled on entry.  This, combined with delayed_work->timer being
1200  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1201  *
1202  * On successful return, >= 0, irq is disabled and the caller is
1203  * responsible for releasing it using local_irq_restore(*@flags).
1204  *
1205  * This function is safe to call from any context including IRQ handler.
1206  */
1207 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1208 			       unsigned long *flags)
1209 {
1210 	struct worker_pool *pool;
1211 	struct pool_workqueue *pwq;
1212 
1213 	local_irq_save(*flags);
1214 
1215 	/* try to steal the timer if it exists */
1216 	if (is_dwork) {
1217 		struct delayed_work *dwork = to_delayed_work(work);
1218 
1219 		/*
1220 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1221 		 * guaranteed that the timer is not queued anywhere and not
1222 		 * running on the local CPU.
1223 		 */
1224 		if (likely(del_timer(&dwork->timer)))
1225 			return 1;
1226 	}
1227 
1228 	/* try to claim PENDING the normal way */
1229 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1230 		return 0;
1231 
1232 	/*
1233 	 * The queueing is in progress, or it is already queued. Try to
1234 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1235 	 */
1236 	pool = get_work_pool(work);
1237 	if (!pool)
1238 		goto fail;
1239 
1240 	spin_lock(&pool->lock);
1241 	/*
1242 	 * work->data is guaranteed to point to pwq only while the work
1243 	 * item is queued on pwq->wq, and both updating work->data to point
1244 	 * to pwq on queueing and to pool on dequeueing are done under
1245 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1246 	 * points to pwq which is associated with a locked pool, the work
1247 	 * item is currently queued on that pool.
1248 	 */
1249 	pwq = get_work_pwq(work);
1250 	if (pwq && pwq->pool == pool) {
1251 		debug_work_deactivate(work);
1252 
1253 		/*
1254 		 * A delayed work item cannot be grabbed directly because
1255 		 * it might have linked NO_COLOR work items which, if left
1256 		 * on the delayed_list, will confuse pwq->nr_active
1257 		 * management later on and cause stall.  Make sure the work
1258 		 * item is activated before grabbing.
1259 		 */
1260 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1261 			pwq_activate_delayed_work(work);
1262 
1263 		list_del_init(&work->entry);
1264 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1265 
1266 		/* work->data points to pwq iff queued, point to pool */
1267 		set_work_pool_and_keep_pending(work, pool->id);
1268 
1269 		spin_unlock(&pool->lock);
1270 		return 1;
1271 	}
1272 	spin_unlock(&pool->lock);
1273 fail:
1274 	local_irq_restore(*flags);
1275 	if (work_is_canceling(work))
1276 		return -ENOENT;
1277 	cpu_relax();
1278 	return -EAGAIN;
1279 }
1280 
1281 /**
1282  * insert_work - insert a work into a pool
1283  * @pwq: pwq @work belongs to
1284  * @work: work to insert
1285  * @head: insertion point
1286  * @extra_flags: extra WORK_STRUCT_* flags to set
1287  *
1288  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1289  * work_struct flags.
1290  *
1291  * CONTEXT:
1292  * spin_lock_irq(pool->lock).
1293  */
1294 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1295 			struct list_head *head, unsigned int extra_flags)
1296 {
1297 	struct worker_pool *pool = pwq->pool;
1298 
1299 	/* we own @work, set data and link */
1300 	set_work_pwq(work, pwq, extra_flags);
1301 	list_add_tail(&work->entry, head);
1302 	get_pwq(pwq);
1303 
1304 	/*
1305 	 * Ensure either wq_worker_sleeping() sees the above
1306 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1307 	 * around lazily while there are works to be processed.
1308 	 */
1309 	smp_mb();
1310 
1311 	if (__need_more_worker(pool))
1312 		wake_up_worker(pool);
1313 }
1314 
1315 /*
1316  * Test whether @work is being queued from another work executing on the
1317  * same workqueue.
1318  */
1319 static bool is_chained_work(struct workqueue_struct *wq)
1320 {
1321 	struct worker *worker;
1322 
1323 	worker = current_wq_worker();
1324 	/*
1325 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1326 	 * I'm @worker, it's safe to dereference it without locking.
1327 	 */
1328 	return worker && worker->current_pwq->wq == wq;
1329 }
1330 
1331 /*
1332  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1333  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1334  * avoid perturbing sensitive tasks.
1335  */
1336 static int wq_select_unbound_cpu(int cpu)
1337 {
1338 	static bool printed_dbg_warning;
1339 	int new_cpu;
1340 
1341 	if (likely(!wq_debug_force_rr_cpu)) {
1342 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1343 			return cpu;
1344 	} else if (!printed_dbg_warning) {
1345 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1346 		printed_dbg_warning = true;
1347 	}
1348 
1349 	if (cpumask_empty(wq_unbound_cpumask))
1350 		return cpu;
1351 
1352 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1353 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1354 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1355 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1356 		if (unlikely(new_cpu >= nr_cpu_ids))
1357 			return cpu;
1358 	}
1359 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1360 
1361 	return new_cpu;
1362 }
1363 
1364 static void __queue_work(int cpu, struct workqueue_struct *wq,
1365 			 struct work_struct *work)
1366 {
1367 	struct pool_workqueue *pwq;
1368 	struct worker_pool *last_pool;
1369 	struct list_head *worklist;
1370 	unsigned int work_flags;
1371 	unsigned int req_cpu = cpu;
1372 
1373 	/*
1374 	 * While a work item is PENDING && off queue, a task trying to
1375 	 * steal the PENDING will busy-loop waiting for it to either get
1376 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1377 	 * happen with IRQ disabled.
1378 	 */
1379 	lockdep_assert_irqs_disabled();
1380 
1381 	debug_work_activate(work);
1382 
1383 	/* if draining, only works from the same workqueue are allowed */
1384 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1385 	    WARN_ON_ONCE(!is_chained_work(wq)))
1386 		return;
1387 retry:
1388 	if (req_cpu == WORK_CPU_UNBOUND)
1389 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1390 
1391 	/* pwq which will be used unless @work is executing elsewhere */
1392 	if (!(wq->flags & WQ_UNBOUND))
1393 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1394 	else
1395 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1396 
1397 	/*
1398 	 * If @work was previously on a different pool, it might still be
1399 	 * running there, in which case the work needs to be queued on that
1400 	 * pool to guarantee non-reentrancy.
1401 	 */
1402 	last_pool = get_work_pool(work);
1403 	if (last_pool && last_pool != pwq->pool) {
1404 		struct worker *worker;
1405 
1406 		spin_lock(&last_pool->lock);
1407 
1408 		worker = find_worker_executing_work(last_pool, work);
1409 
1410 		if (worker && worker->current_pwq->wq == wq) {
1411 			pwq = worker->current_pwq;
1412 		} else {
1413 			/* meh... not running there, queue here */
1414 			spin_unlock(&last_pool->lock);
1415 			spin_lock(&pwq->pool->lock);
1416 		}
1417 	} else {
1418 		spin_lock(&pwq->pool->lock);
1419 	}
1420 
1421 	/*
1422 	 * pwq is determined and locked.  For unbound pools, we could have
1423 	 * raced with pwq release and it could already be dead.  If its
1424 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1425 	 * without another pwq replacing it in the numa_pwq_tbl or while
1426 	 * work items are executing on it, so the retrying is guaranteed to
1427 	 * make forward-progress.
1428 	 */
1429 	if (unlikely(!pwq->refcnt)) {
1430 		if (wq->flags & WQ_UNBOUND) {
1431 			spin_unlock(&pwq->pool->lock);
1432 			cpu_relax();
1433 			goto retry;
1434 		}
1435 		/* oops */
1436 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1437 			  wq->name, cpu);
1438 	}
1439 
1440 	/* pwq determined, queue */
1441 	trace_workqueue_queue_work(req_cpu, pwq, work);
1442 
1443 	if (WARN_ON(!list_empty(&work->entry))) {
1444 		spin_unlock(&pwq->pool->lock);
1445 		return;
1446 	}
1447 
1448 	pwq->nr_in_flight[pwq->work_color]++;
1449 	work_flags = work_color_to_flags(pwq->work_color);
1450 
1451 	if (likely(pwq->nr_active < pwq->max_active)) {
1452 		trace_workqueue_activate_work(work);
1453 		pwq->nr_active++;
1454 		worklist = &pwq->pool->worklist;
1455 		if (list_empty(worklist))
1456 			pwq->pool->watchdog_ts = jiffies;
1457 	} else {
1458 		work_flags |= WORK_STRUCT_DELAYED;
1459 		worklist = &pwq->delayed_works;
1460 	}
1461 
1462 	insert_work(pwq, work, worklist, work_flags);
1463 
1464 	spin_unlock(&pwq->pool->lock);
1465 }
1466 
1467 /**
1468  * queue_work_on - queue work on specific cpu
1469  * @cpu: CPU number to execute work on
1470  * @wq: workqueue to use
1471  * @work: work to queue
1472  *
1473  * We queue the work to a specific CPU, the caller must ensure it
1474  * can't go away.
1475  *
1476  * Return: %false if @work was already on a queue, %true otherwise.
1477  */
1478 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1479 		   struct work_struct *work)
1480 {
1481 	bool ret = false;
1482 	unsigned long flags;
1483 
1484 	local_irq_save(flags);
1485 
1486 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1487 		__queue_work(cpu, wq, work);
1488 		ret = true;
1489 	}
1490 
1491 	local_irq_restore(flags);
1492 	return ret;
1493 }
1494 EXPORT_SYMBOL(queue_work_on);
1495 
1496 void delayed_work_timer_fn(struct timer_list *t)
1497 {
1498 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1499 
1500 	/* should have been called from irqsafe timer with irq already off */
1501 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1502 }
1503 EXPORT_SYMBOL(delayed_work_timer_fn);
1504 
1505 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1506 				struct delayed_work *dwork, unsigned long delay)
1507 {
1508 	struct timer_list *timer = &dwork->timer;
1509 	struct work_struct *work = &dwork->work;
1510 
1511 	WARN_ON_ONCE(!wq);
1512 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1513 	WARN_ON_ONCE(timer_pending(timer));
1514 	WARN_ON_ONCE(!list_empty(&work->entry));
1515 
1516 	/*
1517 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1518 	 * both optimization and correctness.  The earliest @timer can
1519 	 * expire is on the closest next tick and delayed_work users depend
1520 	 * on that there's no such delay when @delay is 0.
1521 	 */
1522 	if (!delay) {
1523 		__queue_work(cpu, wq, &dwork->work);
1524 		return;
1525 	}
1526 
1527 	dwork->wq = wq;
1528 	dwork->cpu = cpu;
1529 	timer->expires = jiffies + delay;
1530 
1531 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1532 		add_timer_on(timer, cpu);
1533 	else
1534 		add_timer(timer);
1535 }
1536 
1537 /**
1538  * queue_delayed_work_on - queue work on specific CPU after delay
1539  * @cpu: CPU number to execute work on
1540  * @wq: workqueue to use
1541  * @dwork: work to queue
1542  * @delay: number of jiffies to wait before queueing
1543  *
1544  * Return: %false if @work was already on a queue, %true otherwise.  If
1545  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1546  * execution.
1547  */
1548 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1549 			   struct delayed_work *dwork, unsigned long delay)
1550 {
1551 	struct work_struct *work = &dwork->work;
1552 	bool ret = false;
1553 	unsigned long flags;
1554 
1555 	/* read the comment in __queue_work() */
1556 	local_irq_save(flags);
1557 
1558 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1559 		__queue_delayed_work(cpu, wq, dwork, delay);
1560 		ret = true;
1561 	}
1562 
1563 	local_irq_restore(flags);
1564 	return ret;
1565 }
1566 EXPORT_SYMBOL(queue_delayed_work_on);
1567 
1568 /**
1569  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1570  * @cpu: CPU number to execute work on
1571  * @wq: workqueue to use
1572  * @dwork: work to queue
1573  * @delay: number of jiffies to wait before queueing
1574  *
1575  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1576  * modify @dwork's timer so that it expires after @delay.  If @delay is
1577  * zero, @work is guaranteed to be scheduled immediately regardless of its
1578  * current state.
1579  *
1580  * Return: %false if @dwork was idle and queued, %true if @dwork was
1581  * pending and its timer was modified.
1582  *
1583  * This function is safe to call from any context including IRQ handler.
1584  * See try_to_grab_pending() for details.
1585  */
1586 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1587 			 struct delayed_work *dwork, unsigned long delay)
1588 {
1589 	unsigned long flags;
1590 	int ret;
1591 
1592 	do {
1593 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1594 	} while (unlikely(ret == -EAGAIN));
1595 
1596 	if (likely(ret >= 0)) {
1597 		__queue_delayed_work(cpu, wq, dwork, delay);
1598 		local_irq_restore(flags);
1599 	}
1600 
1601 	/* -ENOENT from try_to_grab_pending() becomes %true */
1602 	return ret;
1603 }
1604 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1605 
1606 /**
1607  * worker_enter_idle - enter idle state
1608  * @worker: worker which is entering idle state
1609  *
1610  * @worker is entering idle state.  Update stats and idle timer if
1611  * necessary.
1612  *
1613  * LOCKING:
1614  * spin_lock_irq(pool->lock).
1615  */
1616 static void worker_enter_idle(struct worker *worker)
1617 {
1618 	struct worker_pool *pool = worker->pool;
1619 
1620 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1621 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1622 			 (worker->hentry.next || worker->hentry.pprev)))
1623 		return;
1624 
1625 	/* can't use worker_set_flags(), also called from create_worker() */
1626 	worker->flags |= WORKER_IDLE;
1627 	pool->nr_idle++;
1628 	worker->last_active = jiffies;
1629 
1630 	/* idle_list is LIFO */
1631 	list_add(&worker->entry, &pool->idle_list);
1632 
1633 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1634 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1635 
1636 	/*
1637 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1638 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1639 	 * nr_running, the warning may trigger spuriously.  Check iff
1640 	 * unbind is not in progress.
1641 	 */
1642 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1643 		     pool->nr_workers == pool->nr_idle &&
1644 		     atomic_read(&pool->nr_running));
1645 }
1646 
1647 /**
1648  * worker_leave_idle - leave idle state
1649  * @worker: worker which is leaving idle state
1650  *
1651  * @worker is leaving idle state.  Update stats.
1652  *
1653  * LOCKING:
1654  * spin_lock_irq(pool->lock).
1655  */
1656 static void worker_leave_idle(struct worker *worker)
1657 {
1658 	struct worker_pool *pool = worker->pool;
1659 
1660 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1661 		return;
1662 	worker_clr_flags(worker, WORKER_IDLE);
1663 	pool->nr_idle--;
1664 	list_del_init(&worker->entry);
1665 }
1666 
1667 static struct worker *alloc_worker(int node)
1668 {
1669 	struct worker *worker;
1670 
1671 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1672 	if (worker) {
1673 		INIT_LIST_HEAD(&worker->entry);
1674 		INIT_LIST_HEAD(&worker->scheduled);
1675 		INIT_LIST_HEAD(&worker->node);
1676 		/* on creation a worker is in !idle && prep state */
1677 		worker->flags = WORKER_PREP;
1678 	}
1679 	return worker;
1680 }
1681 
1682 /**
1683  * worker_attach_to_pool() - attach a worker to a pool
1684  * @worker: worker to be attached
1685  * @pool: the target pool
1686  *
1687  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1688  * cpu-binding of @worker are kept coordinated with the pool across
1689  * cpu-[un]hotplugs.
1690  */
1691 static void worker_attach_to_pool(struct worker *worker,
1692 				   struct worker_pool *pool)
1693 {
1694 	mutex_lock(&pool->attach_mutex);
1695 
1696 	/*
1697 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1698 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1699 	 */
1700 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1701 
1702 	/*
1703 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1704 	 * stable across this function.  See the comments above the
1705 	 * flag definition for details.
1706 	 */
1707 	if (pool->flags & POOL_DISASSOCIATED)
1708 		worker->flags |= WORKER_UNBOUND;
1709 
1710 	list_add_tail(&worker->node, &pool->workers);
1711 
1712 	mutex_unlock(&pool->attach_mutex);
1713 }
1714 
1715 /**
1716  * worker_detach_from_pool() - detach a worker from its pool
1717  * @worker: worker which is attached to its pool
1718  * @pool: the pool @worker is attached to
1719  *
1720  * Undo the attaching which had been done in worker_attach_to_pool().  The
1721  * caller worker shouldn't access to the pool after detached except it has
1722  * other reference to the pool.
1723  */
1724 static void worker_detach_from_pool(struct worker *worker,
1725 				    struct worker_pool *pool)
1726 {
1727 	struct completion *detach_completion = NULL;
1728 
1729 	mutex_lock(&pool->attach_mutex);
1730 	list_del(&worker->node);
1731 	if (list_empty(&pool->workers))
1732 		detach_completion = pool->detach_completion;
1733 	mutex_unlock(&pool->attach_mutex);
1734 
1735 	/* clear leftover flags without pool->lock after it is detached */
1736 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1737 
1738 	if (detach_completion)
1739 		complete(detach_completion);
1740 }
1741 
1742 /**
1743  * create_worker - create a new workqueue worker
1744  * @pool: pool the new worker will belong to
1745  *
1746  * Create and start a new worker which is attached to @pool.
1747  *
1748  * CONTEXT:
1749  * Might sleep.  Does GFP_KERNEL allocations.
1750  *
1751  * Return:
1752  * Pointer to the newly created worker.
1753  */
1754 static struct worker *create_worker(struct worker_pool *pool)
1755 {
1756 	struct worker *worker = NULL;
1757 	int id = -1;
1758 	char id_buf[16];
1759 
1760 	/* ID is needed to determine kthread name */
1761 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1762 	if (id < 0)
1763 		goto fail;
1764 
1765 	worker = alloc_worker(pool->node);
1766 	if (!worker)
1767 		goto fail;
1768 
1769 	worker->pool = pool;
1770 	worker->id = id;
1771 
1772 	if (pool->cpu >= 0)
1773 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1774 			 pool->attrs->nice < 0  ? "H" : "");
1775 	else
1776 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1777 
1778 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1779 					      "kworker/%s", id_buf);
1780 	if (IS_ERR(worker->task))
1781 		goto fail;
1782 
1783 	set_user_nice(worker->task, pool->attrs->nice);
1784 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1785 
1786 	/* successful, attach the worker to the pool */
1787 	worker_attach_to_pool(worker, pool);
1788 
1789 	/* start the newly created worker */
1790 	spin_lock_irq(&pool->lock);
1791 	worker->pool->nr_workers++;
1792 	worker_enter_idle(worker);
1793 	wake_up_process(worker->task);
1794 	spin_unlock_irq(&pool->lock);
1795 
1796 	return worker;
1797 
1798 fail:
1799 	if (id >= 0)
1800 		ida_simple_remove(&pool->worker_ida, id);
1801 	kfree(worker);
1802 	return NULL;
1803 }
1804 
1805 /**
1806  * destroy_worker - destroy a workqueue worker
1807  * @worker: worker to be destroyed
1808  *
1809  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1810  * be idle.
1811  *
1812  * CONTEXT:
1813  * spin_lock_irq(pool->lock).
1814  */
1815 static void destroy_worker(struct worker *worker)
1816 {
1817 	struct worker_pool *pool = worker->pool;
1818 
1819 	lockdep_assert_held(&pool->lock);
1820 
1821 	/* sanity check frenzy */
1822 	if (WARN_ON(worker->current_work) ||
1823 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1824 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1825 		return;
1826 
1827 	pool->nr_workers--;
1828 	pool->nr_idle--;
1829 
1830 	list_del_init(&worker->entry);
1831 	worker->flags |= WORKER_DIE;
1832 	wake_up_process(worker->task);
1833 }
1834 
1835 static void idle_worker_timeout(struct timer_list *t)
1836 {
1837 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1838 
1839 	spin_lock_irq(&pool->lock);
1840 
1841 	while (too_many_workers(pool)) {
1842 		struct worker *worker;
1843 		unsigned long expires;
1844 
1845 		/* idle_list is kept in LIFO order, check the last one */
1846 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1847 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1848 
1849 		if (time_before(jiffies, expires)) {
1850 			mod_timer(&pool->idle_timer, expires);
1851 			break;
1852 		}
1853 
1854 		destroy_worker(worker);
1855 	}
1856 
1857 	spin_unlock_irq(&pool->lock);
1858 }
1859 
1860 static void send_mayday(struct work_struct *work)
1861 {
1862 	struct pool_workqueue *pwq = get_work_pwq(work);
1863 	struct workqueue_struct *wq = pwq->wq;
1864 
1865 	lockdep_assert_held(&wq_mayday_lock);
1866 
1867 	if (!wq->rescuer)
1868 		return;
1869 
1870 	/* mayday mayday mayday */
1871 	if (list_empty(&pwq->mayday_node)) {
1872 		/*
1873 		 * If @pwq is for an unbound wq, its base ref may be put at
1874 		 * any time due to an attribute change.  Pin @pwq until the
1875 		 * rescuer is done with it.
1876 		 */
1877 		get_pwq(pwq);
1878 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1879 		wake_up_process(wq->rescuer->task);
1880 	}
1881 }
1882 
1883 static void pool_mayday_timeout(struct timer_list *t)
1884 {
1885 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1886 	struct work_struct *work;
1887 
1888 	spin_lock_irq(&pool->lock);
1889 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1890 
1891 	if (need_to_create_worker(pool)) {
1892 		/*
1893 		 * We've been trying to create a new worker but
1894 		 * haven't been successful.  We might be hitting an
1895 		 * allocation deadlock.  Send distress signals to
1896 		 * rescuers.
1897 		 */
1898 		list_for_each_entry(work, &pool->worklist, entry)
1899 			send_mayday(work);
1900 	}
1901 
1902 	spin_unlock(&wq_mayday_lock);
1903 	spin_unlock_irq(&pool->lock);
1904 
1905 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1906 }
1907 
1908 /**
1909  * maybe_create_worker - create a new worker if necessary
1910  * @pool: pool to create a new worker for
1911  *
1912  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1913  * have at least one idle worker on return from this function.  If
1914  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1915  * sent to all rescuers with works scheduled on @pool to resolve
1916  * possible allocation deadlock.
1917  *
1918  * On return, need_to_create_worker() is guaranteed to be %false and
1919  * may_start_working() %true.
1920  *
1921  * LOCKING:
1922  * spin_lock_irq(pool->lock) which may be released and regrabbed
1923  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1924  * manager.
1925  */
1926 static void maybe_create_worker(struct worker_pool *pool)
1927 __releases(&pool->lock)
1928 __acquires(&pool->lock)
1929 {
1930 restart:
1931 	spin_unlock_irq(&pool->lock);
1932 
1933 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1934 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1935 
1936 	while (true) {
1937 		if (create_worker(pool) || !need_to_create_worker(pool))
1938 			break;
1939 
1940 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1941 
1942 		if (!need_to_create_worker(pool))
1943 			break;
1944 	}
1945 
1946 	del_timer_sync(&pool->mayday_timer);
1947 	spin_lock_irq(&pool->lock);
1948 	/*
1949 	 * This is necessary even after a new worker was just successfully
1950 	 * created as @pool->lock was dropped and the new worker might have
1951 	 * already become busy.
1952 	 */
1953 	if (need_to_create_worker(pool))
1954 		goto restart;
1955 }
1956 
1957 /**
1958  * manage_workers - manage worker pool
1959  * @worker: self
1960  *
1961  * Assume the manager role and manage the worker pool @worker belongs
1962  * to.  At any given time, there can be only zero or one manager per
1963  * pool.  The exclusion is handled automatically by this function.
1964  *
1965  * The caller can safely start processing works on false return.  On
1966  * true return, it's guaranteed that need_to_create_worker() is false
1967  * and may_start_working() is true.
1968  *
1969  * CONTEXT:
1970  * spin_lock_irq(pool->lock) which may be released and regrabbed
1971  * multiple times.  Does GFP_KERNEL allocations.
1972  *
1973  * Return:
1974  * %false if the pool doesn't need management and the caller can safely
1975  * start processing works, %true if management function was performed and
1976  * the conditions that the caller verified before calling the function may
1977  * no longer be true.
1978  */
1979 static bool manage_workers(struct worker *worker)
1980 {
1981 	struct worker_pool *pool = worker->pool;
1982 
1983 	if (pool->flags & POOL_MANAGER_ACTIVE)
1984 		return false;
1985 
1986 	pool->flags |= POOL_MANAGER_ACTIVE;
1987 	pool->manager = worker;
1988 
1989 	maybe_create_worker(pool);
1990 
1991 	pool->manager = NULL;
1992 	pool->flags &= ~POOL_MANAGER_ACTIVE;
1993 	wake_up(&wq_manager_wait);
1994 	return true;
1995 }
1996 
1997 /**
1998  * process_one_work - process single work
1999  * @worker: self
2000  * @work: work to process
2001  *
2002  * Process @work.  This function contains all the logics necessary to
2003  * process a single work including synchronization against and
2004  * interaction with other workers on the same cpu, queueing and
2005  * flushing.  As long as context requirement is met, any worker can
2006  * call this function to process a work.
2007  *
2008  * CONTEXT:
2009  * spin_lock_irq(pool->lock) which is released and regrabbed.
2010  */
2011 static void process_one_work(struct worker *worker, struct work_struct *work)
2012 __releases(&pool->lock)
2013 __acquires(&pool->lock)
2014 {
2015 	struct pool_workqueue *pwq = get_work_pwq(work);
2016 	struct worker_pool *pool = worker->pool;
2017 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2018 	int work_color;
2019 	struct worker *collision;
2020 #ifdef CONFIG_LOCKDEP
2021 	/*
2022 	 * It is permissible to free the struct work_struct from
2023 	 * inside the function that is called from it, this we need to
2024 	 * take into account for lockdep too.  To avoid bogus "held
2025 	 * lock freed" warnings as well as problems when looking into
2026 	 * work->lockdep_map, make a copy and use that here.
2027 	 */
2028 	struct lockdep_map lockdep_map;
2029 
2030 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2031 #endif
2032 	/* ensure we're on the correct CPU */
2033 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2034 		     raw_smp_processor_id() != pool->cpu);
2035 
2036 	/*
2037 	 * A single work shouldn't be executed concurrently by
2038 	 * multiple workers on a single cpu.  Check whether anyone is
2039 	 * already processing the work.  If so, defer the work to the
2040 	 * currently executing one.
2041 	 */
2042 	collision = find_worker_executing_work(pool, work);
2043 	if (unlikely(collision)) {
2044 		move_linked_works(work, &collision->scheduled, NULL);
2045 		return;
2046 	}
2047 
2048 	/* claim and dequeue */
2049 	debug_work_deactivate(work);
2050 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2051 	worker->current_work = work;
2052 	worker->current_func = work->func;
2053 	worker->current_pwq = pwq;
2054 	work_color = get_work_color(work);
2055 
2056 	list_del_init(&work->entry);
2057 
2058 	/*
2059 	 * CPU intensive works don't participate in concurrency management.
2060 	 * They're the scheduler's responsibility.  This takes @worker out
2061 	 * of concurrency management and the next code block will chain
2062 	 * execution of the pending work items.
2063 	 */
2064 	if (unlikely(cpu_intensive))
2065 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2066 
2067 	/*
2068 	 * Wake up another worker if necessary.  The condition is always
2069 	 * false for normal per-cpu workers since nr_running would always
2070 	 * be >= 1 at this point.  This is used to chain execution of the
2071 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2072 	 * UNBOUND and CPU_INTENSIVE ones.
2073 	 */
2074 	if (need_more_worker(pool))
2075 		wake_up_worker(pool);
2076 
2077 	/*
2078 	 * Record the last pool and clear PENDING which should be the last
2079 	 * update to @work.  Also, do this inside @pool->lock so that
2080 	 * PENDING and queued state changes happen together while IRQ is
2081 	 * disabled.
2082 	 */
2083 	set_work_pool_and_clear_pending(work, pool->id);
2084 
2085 	spin_unlock_irq(&pool->lock);
2086 
2087 	lock_map_acquire(&pwq->wq->lockdep_map);
2088 	lock_map_acquire(&lockdep_map);
2089 	/*
2090 	 * Strictly speaking we should mark the invariant state without holding
2091 	 * any locks, that is, before these two lock_map_acquire()'s.
2092 	 *
2093 	 * However, that would result in:
2094 	 *
2095 	 *   A(W1)
2096 	 *   WFC(C)
2097 	 *		A(W1)
2098 	 *		C(C)
2099 	 *
2100 	 * Which would create W1->C->W1 dependencies, even though there is no
2101 	 * actual deadlock possible. There are two solutions, using a
2102 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2103 	 * hit the lockdep limitation on recursive locks, or simply discard
2104 	 * these locks.
2105 	 *
2106 	 * AFAICT there is no possible deadlock scenario between the
2107 	 * flush_work() and complete() primitives (except for single-threaded
2108 	 * workqueues), so hiding them isn't a problem.
2109 	 */
2110 	lockdep_invariant_state(true);
2111 	trace_workqueue_execute_start(work);
2112 	worker->current_func(work);
2113 	/*
2114 	 * While we must be careful to not use "work" after this, the trace
2115 	 * point will only record its address.
2116 	 */
2117 	trace_workqueue_execute_end(work);
2118 	lock_map_release(&lockdep_map);
2119 	lock_map_release(&pwq->wq->lockdep_map);
2120 
2121 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2122 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2123 		       "     last function: %pf\n",
2124 		       current->comm, preempt_count(), task_pid_nr(current),
2125 		       worker->current_func);
2126 		debug_show_held_locks(current);
2127 		dump_stack();
2128 	}
2129 
2130 	/*
2131 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2132 	 * kernels, where a requeueing work item waiting for something to
2133 	 * happen could deadlock with stop_machine as such work item could
2134 	 * indefinitely requeue itself while all other CPUs are trapped in
2135 	 * stop_machine. At the same time, report a quiescent RCU state so
2136 	 * the same condition doesn't freeze RCU.
2137 	 */
2138 	cond_resched_rcu_qs();
2139 
2140 	spin_lock_irq(&pool->lock);
2141 
2142 	/* clear cpu intensive status */
2143 	if (unlikely(cpu_intensive))
2144 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2145 
2146 	/* we're done with it, release */
2147 	hash_del(&worker->hentry);
2148 	worker->current_work = NULL;
2149 	worker->current_func = NULL;
2150 	worker->current_pwq = NULL;
2151 	worker->desc_valid = false;
2152 	pwq_dec_nr_in_flight(pwq, work_color);
2153 }
2154 
2155 /**
2156  * process_scheduled_works - process scheduled works
2157  * @worker: self
2158  *
2159  * Process all scheduled works.  Please note that the scheduled list
2160  * may change while processing a work, so this function repeatedly
2161  * fetches a work from the top and executes it.
2162  *
2163  * CONTEXT:
2164  * spin_lock_irq(pool->lock) which may be released and regrabbed
2165  * multiple times.
2166  */
2167 static void process_scheduled_works(struct worker *worker)
2168 {
2169 	while (!list_empty(&worker->scheduled)) {
2170 		struct work_struct *work = list_first_entry(&worker->scheduled,
2171 						struct work_struct, entry);
2172 		process_one_work(worker, work);
2173 	}
2174 }
2175 
2176 /**
2177  * worker_thread - the worker thread function
2178  * @__worker: self
2179  *
2180  * The worker thread function.  All workers belong to a worker_pool -
2181  * either a per-cpu one or dynamic unbound one.  These workers process all
2182  * work items regardless of their specific target workqueue.  The only
2183  * exception is work items which belong to workqueues with a rescuer which
2184  * will be explained in rescuer_thread().
2185  *
2186  * Return: 0
2187  */
2188 static int worker_thread(void *__worker)
2189 {
2190 	struct worker *worker = __worker;
2191 	struct worker_pool *pool = worker->pool;
2192 
2193 	/* tell the scheduler that this is a workqueue worker */
2194 	worker->task->flags |= PF_WQ_WORKER;
2195 woke_up:
2196 	spin_lock_irq(&pool->lock);
2197 
2198 	/* am I supposed to die? */
2199 	if (unlikely(worker->flags & WORKER_DIE)) {
2200 		spin_unlock_irq(&pool->lock);
2201 		WARN_ON_ONCE(!list_empty(&worker->entry));
2202 		worker->task->flags &= ~PF_WQ_WORKER;
2203 
2204 		set_task_comm(worker->task, "kworker/dying");
2205 		ida_simple_remove(&pool->worker_ida, worker->id);
2206 		worker_detach_from_pool(worker, pool);
2207 		kfree(worker);
2208 		return 0;
2209 	}
2210 
2211 	worker_leave_idle(worker);
2212 recheck:
2213 	/* no more worker necessary? */
2214 	if (!need_more_worker(pool))
2215 		goto sleep;
2216 
2217 	/* do we need to manage? */
2218 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2219 		goto recheck;
2220 
2221 	/*
2222 	 * ->scheduled list can only be filled while a worker is
2223 	 * preparing to process a work or actually processing it.
2224 	 * Make sure nobody diddled with it while I was sleeping.
2225 	 */
2226 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2227 
2228 	/*
2229 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2230 	 * worker or that someone else has already assumed the manager
2231 	 * role.  This is where @worker starts participating in concurrency
2232 	 * management if applicable and concurrency management is restored
2233 	 * after being rebound.  See rebind_workers() for details.
2234 	 */
2235 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2236 
2237 	do {
2238 		struct work_struct *work =
2239 			list_first_entry(&pool->worklist,
2240 					 struct work_struct, entry);
2241 
2242 		pool->watchdog_ts = jiffies;
2243 
2244 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2245 			/* optimization path, not strictly necessary */
2246 			process_one_work(worker, work);
2247 			if (unlikely(!list_empty(&worker->scheduled)))
2248 				process_scheduled_works(worker);
2249 		} else {
2250 			move_linked_works(work, &worker->scheduled, NULL);
2251 			process_scheduled_works(worker);
2252 		}
2253 	} while (keep_working(pool));
2254 
2255 	worker_set_flags(worker, WORKER_PREP);
2256 sleep:
2257 	/*
2258 	 * pool->lock is held and there's no work to process and no need to
2259 	 * manage, sleep.  Workers are woken up only while holding
2260 	 * pool->lock or from local cpu, so setting the current state
2261 	 * before releasing pool->lock is enough to prevent losing any
2262 	 * event.
2263 	 */
2264 	worker_enter_idle(worker);
2265 	__set_current_state(TASK_IDLE);
2266 	spin_unlock_irq(&pool->lock);
2267 	schedule();
2268 	goto woke_up;
2269 }
2270 
2271 /**
2272  * rescuer_thread - the rescuer thread function
2273  * @__rescuer: self
2274  *
2275  * Workqueue rescuer thread function.  There's one rescuer for each
2276  * workqueue which has WQ_MEM_RECLAIM set.
2277  *
2278  * Regular work processing on a pool may block trying to create a new
2279  * worker which uses GFP_KERNEL allocation which has slight chance of
2280  * developing into deadlock if some works currently on the same queue
2281  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2282  * the problem rescuer solves.
2283  *
2284  * When such condition is possible, the pool summons rescuers of all
2285  * workqueues which have works queued on the pool and let them process
2286  * those works so that forward progress can be guaranteed.
2287  *
2288  * This should happen rarely.
2289  *
2290  * Return: 0
2291  */
2292 static int rescuer_thread(void *__rescuer)
2293 {
2294 	struct worker *rescuer = __rescuer;
2295 	struct workqueue_struct *wq = rescuer->rescue_wq;
2296 	struct list_head *scheduled = &rescuer->scheduled;
2297 	bool should_stop;
2298 
2299 	set_user_nice(current, RESCUER_NICE_LEVEL);
2300 
2301 	/*
2302 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2303 	 * doesn't participate in concurrency management.
2304 	 */
2305 	rescuer->task->flags |= PF_WQ_WORKER;
2306 repeat:
2307 	set_current_state(TASK_IDLE);
2308 
2309 	/*
2310 	 * By the time the rescuer is requested to stop, the workqueue
2311 	 * shouldn't have any work pending, but @wq->maydays may still have
2312 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2313 	 * all the work items before the rescuer got to them.  Go through
2314 	 * @wq->maydays processing before acting on should_stop so that the
2315 	 * list is always empty on exit.
2316 	 */
2317 	should_stop = kthread_should_stop();
2318 
2319 	/* see whether any pwq is asking for help */
2320 	spin_lock_irq(&wq_mayday_lock);
2321 
2322 	while (!list_empty(&wq->maydays)) {
2323 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2324 					struct pool_workqueue, mayday_node);
2325 		struct worker_pool *pool = pwq->pool;
2326 		struct work_struct *work, *n;
2327 		bool first = true;
2328 
2329 		__set_current_state(TASK_RUNNING);
2330 		list_del_init(&pwq->mayday_node);
2331 
2332 		spin_unlock_irq(&wq_mayday_lock);
2333 
2334 		worker_attach_to_pool(rescuer, pool);
2335 
2336 		spin_lock_irq(&pool->lock);
2337 		rescuer->pool = pool;
2338 
2339 		/*
2340 		 * Slurp in all works issued via this workqueue and
2341 		 * process'em.
2342 		 */
2343 		WARN_ON_ONCE(!list_empty(scheduled));
2344 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2345 			if (get_work_pwq(work) == pwq) {
2346 				if (first)
2347 					pool->watchdog_ts = jiffies;
2348 				move_linked_works(work, scheduled, &n);
2349 			}
2350 			first = false;
2351 		}
2352 
2353 		if (!list_empty(scheduled)) {
2354 			process_scheduled_works(rescuer);
2355 
2356 			/*
2357 			 * The above execution of rescued work items could
2358 			 * have created more to rescue through
2359 			 * pwq_activate_first_delayed() or chained
2360 			 * queueing.  Let's put @pwq back on mayday list so
2361 			 * that such back-to-back work items, which may be
2362 			 * being used to relieve memory pressure, don't
2363 			 * incur MAYDAY_INTERVAL delay inbetween.
2364 			 */
2365 			if (need_to_create_worker(pool)) {
2366 				spin_lock(&wq_mayday_lock);
2367 				get_pwq(pwq);
2368 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2369 				spin_unlock(&wq_mayday_lock);
2370 			}
2371 		}
2372 
2373 		/*
2374 		 * Put the reference grabbed by send_mayday().  @pool won't
2375 		 * go away while we're still attached to it.
2376 		 */
2377 		put_pwq(pwq);
2378 
2379 		/*
2380 		 * Leave this pool.  If need_more_worker() is %true, notify a
2381 		 * regular worker; otherwise, we end up with 0 concurrency
2382 		 * and stalling the execution.
2383 		 */
2384 		if (need_more_worker(pool))
2385 			wake_up_worker(pool);
2386 
2387 		rescuer->pool = NULL;
2388 		spin_unlock_irq(&pool->lock);
2389 
2390 		worker_detach_from_pool(rescuer, pool);
2391 
2392 		spin_lock_irq(&wq_mayday_lock);
2393 	}
2394 
2395 	spin_unlock_irq(&wq_mayday_lock);
2396 
2397 	if (should_stop) {
2398 		__set_current_state(TASK_RUNNING);
2399 		rescuer->task->flags &= ~PF_WQ_WORKER;
2400 		return 0;
2401 	}
2402 
2403 	/* rescuers should never participate in concurrency management */
2404 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2405 	schedule();
2406 	goto repeat;
2407 }
2408 
2409 /**
2410  * check_flush_dependency - check for flush dependency sanity
2411  * @target_wq: workqueue being flushed
2412  * @target_work: work item being flushed (NULL for workqueue flushes)
2413  *
2414  * %current is trying to flush the whole @target_wq or @target_work on it.
2415  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2416  * reclaiming memory or running on a workqueue which doesn't have
2417  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2418  * a deadlock.
2419  */
2420 static void check_flush_dependency(struct workqueue_struct *target_wq,
2421 				   struct work_struct *target_work)
2422 {
2423 	work_func_t target_func = target_work ? target_work->func : NULL;
2424 	struct worker *worker;
2425 
2426 	if (target_wq->flags & WQ_MEM_RECLAIM)
2427 		return;
2428 
2429 	worker = current_wq_worker();
2430 
2431 	WARN_ONCE(current->flags & PF_MEMALLOC,
2432 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2433 		  current->pid, current->comm, target_wq->name, target_func);
2434 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2435 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2436 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2437 		  worker->current_pwq->wq->name, worker->current_func,
2438 		  target_wq->name, target_func);
2439 }
2440 
2441 struct wq_barrier {
2442 	struct work_struct	work;
2443 	struct completion	done;
2444 	struct task_struct	*task;	/* purely informational */
2445 };
2446 
2447 static void wq_barrier_func(struct work_struct *work)
2448 {
2449 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2450 	complete(&barr->done);
2451 }
2452 
2453 /**
2454  * insert_wq_barrier - insert a barrier work
2455  * @pwq: pwq to insert barrier into
2456  * @barr: wq_barrier to insert
2457  * @target: target work to attach @barr to
2458  * @worker: worker currently executing @target, NULL if @target is not executing
2459  *
2460  * @barr is linked to @target such that @barr is completed only after
2461  * @target finishes execution.  Please note that the ordering
2462  * guarantee is observed only with respect to @target and on the local
2463  * cpu.
2464  *
2465  * Currently, a queued barrier can't be canceled.  This is because
2466  * try_to_grab_pending() can't determine whether the work to be
2467  * grabbed is at the head of the queue and thus can't clear LINKED
2468  * flag of the previous work while there must be a valid next work
2469  * after a work with LINKED flag set.
2470  *
2471  * Note that when @worker is non-NULL, @target may be modified
2472  * underneath us, so we can't reliably determine pwq from @target.
2473  *
2474  * CONTEXT:
2475  * spin_lock_irq(pool->lock).
2476  */
2477 static void insert_wq_barrier(struct pool_workqueue *pwq,
2478 			      struct wq_barrier *barr,
2479 			      struct work_struct *target, struct worker *worker)
2480 {
2481 	struct list_head *head;
2482 	unsigned int linked = 0;
2483 
2484 	/*
2485 	 * debugobject calls are safe here even with pool->lock locked
2486 	 * as we know for sure that this will not trigger any of the
2487 	 * checks and call back into the fixup functions where we
2488 	 * might deadlock.
2489 	 */
2490 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2491 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2492 
2493 	init_completion_map(&barr->done, &target->lockdep_map);
2494 
2495 	barr->task = current;
2496 
2497 	/*
2498 	 * If @target is currently being executed, schedule the
2499 	 * barrier to the worker; otherwise, put it after @target.
2500 	 */
2501 	if (worker)
2502 		head = worker->scheduled.next;
2503 	else {
2504 		unsigned long *bits = work_data_bits(target);
2505 
2506 		head = target->entry.next;
2507 		/* there can already be other linked works, inherit and set */
2508 		linked = *bits & WORK_STRUCT_LINKED;
2509 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2510 	}
2511 
2512 	debug_work_activate(&barr->work);
2513 	insert_work(pwq, &barr->work, head,
2514 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2515 }
2516 
2517 /**
2518  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2519  * @wq: workqueue being flushed
2520  * @flush_color: new flush color, < 0 for no-op
2521  * @work_color: new work color, < 0 for no-op
2522  *
2523  * Prepare pwqs for workqueue flushing.
2524  *
2525  * If @flush_color is non-negative, flush_color on all pwqs should be
2526  * -1.  If no pwq has in-flight commands at the specified color, all
2527  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2528  * has in flight commands, its pwq->flush_color is set to
2529  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2530  * wakeup logic is armed and %true is returned.
2531  *
2532  * The caller should have initialized @wq->first_flusher prior to
2533  * calling this function with non-negative @flush_color.  If
2534  * @flush_color is negative, no flush color update is done and %false
2535  * is returned.
2536  *
2537  * If @work_color is non-negative, all pwqs should have the same
2538  * work_color which is previous to @work_color and all will be
2539  * advanced to @work_color.
2540  *
2541  * CONTEXT:
2542  * mutex_lock(wq->mutex).
2543  *
2544  * Return:
2545  * %true if @flush_color >= 0 and there's something to flush.  %false
2546  * otherwise.
2547  */
2548 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2549 				      int flush_color, int work_color)
2550 {
2551 	bool wait = false;
2552 	struct pool_workqueue *pwq;
2553 
2554 	if (flush_color >= 0) {
2555 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2556 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2557 	}
2558 
2559 	for_each_pwq(pwq, wq) {
2560 		struct worker_pool *pool = pwq->pool;
2561 
2562 		spin_lock_irq(&pool->lock);
2563 
2564 		if (flush_color >= 0) {
2565 			WARN_ON_ONCE(pwq->flush_color != -1);
2566 
2567 			if (pwq->nr_in_flight[flush_color]) {
2568 				pwq->flush_color = flush_color;
2569 				atomic_inc(&wq->nr_pwqs_to_flush);
2570 				wait = true;
2571 			}
2572 		}
2573 
2574 		if (work_color >= 0) {
2575 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2576 			pwq->work_color = work_color;
2577 		}
2578 
2579 		spin_unlock_irq(&pool->lock);
2580 	}
2581 
2582 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2583 		complete(&wq->first_flusher->done);
2584 
2585 	return wait;
2586 }
2587 
2588 /**
2589  * flush_workqueue - ensure that any scheduled work has run to completion.
2590  * @wq: workqueue to flush
2591  *
2592  * This function sleeps until all work items which were queued on entry
2593  * have finished execution, but it is not livelocked by new incoming ones.
2594  */
2595 void flush_workqueue(struct workqueue_struct *wq)
2596 {
2597 	struct wq_flusher this_flusher = {
2598 		.list = LIST_HEAD_INIT(this_flusher.list),
2599 		.flush_color = -1,
2600 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2601 	};
2602 	int next_color;
2603 
2604 	if (WARN_ON(!wq_online))
2605 		return;
2606 
2607 	mutex_lock(&wq->mutex);
2608 
2609 	/*
2610 	 * Start-to-wait phase
2611 	 */
2612 	next_color = work_next_color(wq->work_color);
2613 
2614 	if (next_color != wq->flush_color) {
2615 		/*
2616 		 * Color space is not full.  The current work_color
2617 		 * becomes our flush_color and work_color is advanced
2618 		 * by one.
2619 		 */
2620 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2621 		this_flusher.flush_color = wq->work_color;
2622 		wq->work_color = next_color;
2623 
2624 		if (!wq->first_flusher) {
2625 			/* no flush in progress, become the first flusher */
2626 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2627 
2628 			wq->first_flusher = &this_flusher;
2629 
2630 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2631 						       wq->work_color)) {
2632 				/* nothing to flush, done */
2633 				wq->flush_color = next_color;
2634 				wq->first_flusher = NULL;
2635 				goto out_unlock;
2636 			}
2637 		} else {
2638 			/* wait in queue */
2639 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2640 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2641 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2642 		}
2643 	} else {
2644 		/*
2645 		 * Oops, color space is full, wait on overflow queue.
2646 		 * The next flush completion will assign us
2647 		 * flush_color and transfer to flusher_queue.
2648 		 */
2649 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2650 	}
2651 
2652 	check_flush_dependency(wq, NULL);
2653 
2654 	mutex_unlock(&wq->mutex);
2655 
2656 	wait_for_completion(&this_flusher.done);
2657 
2658 	/*
2659 	 * Wake-up-and-cascade phase
2660 	 *
2661 	 * First flushers are responsible for cascading flushes and
2662 	 * handling overflow.  Non-first flushers can simply return.
2663 	 */
2664 	if (wq->first_flusher != &this_flusher)
2665 		return;
2666 
2667 	mutex_lock(&wq->mutex);
2668 
2669 	/* we might have raced, check again with mutex held */
2670 	if (wq->first_flusher != &this_flusher)
2671 		goto out_unlock;
2672 
2673 	wq->first_flusher = NULL;
2674 
2675 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2676 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2677 
2678 	while (true) {
2679 		struct wq_flusher *next, *tmp;
2680 
2681 		/* complete all the flushers sharing the current flush color */
2682 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2683 			if (next->flush_color != wq->flush_color)
2684 				break;
2685 			list_del_init(&next->list);
2686 			complete(&next->done);
2687 		}
2688 
2689 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2690 			     wq->flush_color != work_next_color(wq->work_color));
2691 
2692 		/* this flush_color is finished, advance by one */
2693 		wq->flush_color = work_next_color(wq->flush_color);
2694 
2695 		/* one color has been freed, handle overflow queue */
2696 		if (!list_empty(&wq->flusher_overflow)) {
2697 			/*
2698 			 * Assign the same color to all overflowed
2699 			 * flushers, advance work_color and append to
2700 			 * flusher_queue.  This is the start-to-wait
2701 			 * phase for these overflowed flushers.
2702 			 */
2703 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2704 				tmp->flush_color = wq->work_color;
2705 
2706 			wq->work_color = work_next_color(wq->work_color);
2707 
2708 			list_splice_tail_init(&wq->flusher_overflow,
2709 					      &wq->flusher_queue);
2710 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2711 		}
2712 
2713 		if (list_empty(&wq->flusher_queue)) {
2714 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2715 			break;
2716 		}
2717 
2718 		/*
2719 		 * Need to flush more colors.  Make the next flusher
2720 		 * the new first flusher and arm pwqs.
2721 		 */
2722 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2723 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2724 
2725 		list_del_init(&next->list);
2726 		wq->first_flusher = next;
2727 
2728 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2729 			break;
2730 
2731 		/*
2732 		 * Meh... this color is already done, clear first
2733 		 * flusher and repeat cascading.
2734 		 */
2735 		wq->first_flusher = NULL;
2736 	}
2737 
2738 out_unlock:
2739 	mutex_unlock(&wq->mutex);
2740 }
2741 EXPORT_SYMBOL(flush_workqueue);
2742 
2743 /**
2744  * drain_workqueue - drain a workqueue
2745  * @wq: workqueue to drain
2746  *
2747  * Wait until the workqueue becomes empty.  While draining is in progress,
2748  * only chain queueing is allowed.  IOW, only currently pending or running
2749  * work items on @wq can queue further work items on it.  @wq is flushed
2750  * repeatedly until it becomes empty.  The number of flushing is determined
2751  * by the depth of chaining and should be relatively short.  Whine if it
2752  * takes too long.
2753  */
2754 void drain_workqueue(struct workqueue_struct *wq)
2755 {
2756 	unsigned int flush_cnt = 0;
2757 	struct pool_workqueue *pwq;
2758 
2759 	/*
2760 	 * __queue_work() needs to test whether there are drainers, is much
2761 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2762 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2763 	 */
2764 	mutex_lock(&wq->mutex);
2765 	if (!wq->nr_drainers++)
2766 		wq->flags |= __WQ_DRAINING;
2767 	mutex_unlock(&wq->mutex);
2768 reflush:
2769 	flush_workqueue(wq);
2770 
2771 	mutex_lock(&wq->mutex);
2772 
2773 	for_each_pwq(pwq, wq) {
2774 		bool drained;
2775 
2776 		spin_lock_irq(&pwq->pool->lock);
2777 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2778 		spin_unlock_irq(&pwq->pool->lock);
2779 
2780 		if (drained)
2781 			continue;
2782 
2783 		if (++flush_cnt == 10 ||
2784 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2785 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2786 				wq->name, flush_cnt);
2787 
2788 		mutex_unlock(&wq->mutex);
2789 		goto reflush;
2790 	}
2791 
2792 	if (!--wq->nr_drainers)
2793 		wq->flags &= ~__WQ_DRAINING;
2794 	mutex_unlock(&wq->mutex);
2795 }
2796 EXPORT_SYMBOL_GPL(drain_workqueue);
2797 
2798 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2799 {
2800 	struct worker *worker = NULL;
2801 	struct worker_pool *pool;
2802 	struct pool_workqueue *pwq;
2803 
2804 	might_sleep();
2805 
2806 	local_irq_disable();
2807 	pool = get_work_pool(work);
2808 	if (!pool) {
2809 		local_irq_enable();
2810 		return false;
2811 	}
2812 
2813 	spin_lock(&pool->lock);
2814 	/* see the comment in try_to_grab_pending() with the same code */
2815 	pwq = get_work_pwq(work);
2816 	if (pwq) {
2817 		if (unlikely(pwq->pool != pool))
2818 			goto already_gone;
2819 	} else {
2820 		worker = find_worker_executing_work(pool, work);
2821 		if (!worker)
2822 			goto already_gone;
2823 		pwq = worker->current_pwq;
2824 	}
2825 
2826 	check_flush_dependency(pwq->wq, work);
2827 
2828 	insert_wq_barrier(pwq, barr, work, worker);
2829 	spin_unlock_irq(&pool->lock);
2830 
2831 	/*
2832 	 * Force a lock recursion deadlock when using flush_work() inside a
2833 	 * single-threaded or rescuer equipped workqueue.
2834 	 *
2835 	 * For single threaded workqueues the deadlock happens when the work
2836 	 * is after the work issuing the flush_work(). For rescuer equipped
2837 	 * workqueues the deadlock happens when the rescuer stalls, blocking
2838 	 * forward progress.
2839 	 */
2840 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
2841 		lock_map_acquire(&pwq->wq->lockdep_map);
2842 		lock_map_release(&pwq->wq->lockdep_map);
2843 	}
2844 
2845 	return true;
2846 already_gone:
2847 	spin_unlock_irq(&pool->lock);
2848 	return false;
2849 }
2850 
2851 /**
2852  * flush_work - wait for a work to finish executing the last queueing instance
2853  * @work: the work to flush
2854  *
2855  * Wait until @work has finished execution.  @work is guaranteed to be idle
2856  * on return if it hasn't been requeued since flush started.
2857  *
2858  * Return:
2859  * %true if flush_work() waited for the work to finish execution,
2860  * %false if it was already idle.
2861  */
2862 bool flush_work(struct work_struct *work)
2863 {
2864 	struct wq_barrier barr;
2865 
2866 	if (WARN_ON(!wq_online))
2867 		return false;
2868 
2869 	if (start_flush_work(work, &barr)) {
2870 		wait_for_completion(&barr.done);
2871 		destroy_work_on_stack(&barr.work);
2872 		return true;
2873 	} else {
2874 		return false;
2875 	}
2876 }
2877 EXPORT_SYMBOL_GPL(flush_work);
2878 
2879 struct cwt_wait {
2880 	wait_queue_entry_t		wait;
2881 	struct work_struct	*work;
2882 };
2883 
2884 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2885 {
2886 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2887 
2888 	if (cwait->work != key)
2889 		return 0;
2890 	return autoremove_wake_function(wait, mode, sync, key);
2891 }
2892 
2893 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2894 {
2895 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2896 	unsigned long flags;
2897 	int ret;
2898 
2899 	do {
2900 		ret = try_to_grab_pending(work, is_dwork, &flags);
2901 		/*
2902 		 * If someone else is already canceling, wait for it to
2903 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2904 		 * because we may get scheduled between @work's completion
2905 		 * and the other canceling task resuming and clearing
2906 		 * CANCELING - flush_work() will return false immediately
2907 		 * as @work is no longer busy, try_to_grab_pending() will
2908 		 * return -ENOENT as @work is still being canceled and the
2909 		 * other canceling task won't be able to clear CANCELING as
2910 		 * we're hogging the CPU.
2911 		 *
2912 		 * Let's wait for completion using a waitqueue.  As this
2913 		 * may lead to the thundering herd problem, use a custom
2914 		 * wake function which matches @work along with exclusive
2915 		 * wait and wakeup.
2916 		 */
2917 		if (unlikely(ret == -ENOENT)) {
2918 			struct cwt_wait cwait;
2919 
2920 			init_wait(&cwait.wait);
2921 			cwait.wait.func = cwt_wakefn;
2922 			cwait.work = work;
2923 
2924 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2925 						  TASK_UNINTERRUPTIBLE);
2926 			if (work_is_canceling(work))
2927 				schedule();
2928 			finish_wait(&cancel_waitq, &cwait.wait);
2929 		}
2930 	} while (unlikely(ret < 0));
2931 
2932 	/* tell other tasks trying to grab @work to back off */
2933 	mark_work_canceling(work);
2934 	local_irq_restore(flags);
2935 
2936 	/*
2937 	 * This allows canceling during early boot.  We know that @work
2938 	 * isn't executing.
2939 	 */
2940 	if (wq_online)
2941 		flush_work(work);
2942 
2943 	clear_work_data(work);
2944 
2945 	/*
2946 	 * Paired with prepare_to_wait() above so that either
2947 	 * waitqueue_active() is visible here or !work_is_canceling() is
2948 	 * visible there.
2949 	 */
2950 	smp_mb();
2951 	if (waitqueue_active(&cancel_waitq))
2952 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2953 
2954 	return ret;
2955 }
2956 
2957 /**
2958  * cancel_work_sync - cancel a work and wait for it to finish
2959  * @work: the work to cancel
2960  *
2961  * Cancel @work and wait for its execution to finish.  This function
2962  * can be used even if the work re-queues itself or migrates to
2963  * another workqueue.  On return from this function, @work is
2964  * guaranteed to be not pending or executing on any CPU.
2965  *
2966  * cancel_work_sync(&delayed_work->work) must not be used for
2967  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2968  *
2969  * The caller must ensure that the workqueue on which @work was last
2970  * queued can't be destroyed before this function returns.
2971  *
2972  * Return:
2973  * %true if @work was pending, %false otherwise.
2974  */
2975 bool cancel_work_sync(struct work_struct *work)
2976 {
2977 	return __cancel_work_timer(work, false);
2978 }
2979 EXPORT_SYMBOL_GPL(cancel_work_sync);
2980 
2981 /**
2982  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2983  * @dwork: the delayed work to flush
2984  *
2985  * Delayed timer is cancelled and the pending work is queued for
2986  * immediate execution.  Like flush_work(), this function only
2987  * considers the last queueing instance of @dwork.
2988  *
2989  * Return:
2990  * %true if flush_work() waited for the work to finish execution,
2991  * %false if it was already idle.
2992  */
2993 bool flush_delayed_work(struct delayed_work *dwork)
2994 {
2995 	local_irq_disable();
2996 	if (del_timer_sync(&dwork->timer))
2997 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2998 	local_irq_enable();
2999 	return flush_work(&dwork->work);
3000 }
3001 EXPORT_SYMBOL(flush_delayed_work);
3002 
3003 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3004 {
3005 	unsigned long flags;
3006 	int ret;
3007 
3008 	do {
3009 		ret = try_to_grab_pending(work, is_dwork, &flags);
3010 	} while (unlikely(ret == -EAGAIN));
3011 
3012 	if (unlikely(ret < 0))
3013 		return false;
3014 
3015 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3016 	local_irq_restore(flags);
3017 	return ret;
3018 }
3019 
3020 /*
3021  * See cancel_delayed_work()
3022  */
3023 bool cancel_work(struct work_struct *work)
3024 {
3025 	return __cancel_work(work, false);
3026 }
3027 
3028 /**
3029  * cancel_delayed_work - cancel a delayed work
3030  * @dwork: delayed_work to cancel
3031  *
3032  * Kill off a pending delayed_work.
3033  *
3034  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3035  * pending.
3036  *
3037  * Note:
3038  * The work callback function may still be running on return, unless
3039  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3040  * use cancel_delayed_work_sync() to wait on it.
3041  *
3042  * This function is safe to call from any context including IRQ handler.
3043  */
3044 bool cancel_delayed_work(struct delayed_work *dwork)
3045 {
3046 	return __cancel_work(&dwork->work, true);
3047 }
3048 EXPORT_SYMBOL(cancel_delayed_work);
3049 
3050 /**
3051  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3052  * @dwork: the delayed work cancel
3053  *
3054  * This is cancel_work_sync() for delayed works.
3055  *
3056  * Return:
3057  * %true if @dwork was pending, %false otherwise.
3058  */
3059 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3060 {
3061 	return __cancel_work_timer(&dwork->work, true);
3062 }
3063 EXPORT_SYMBOL(cancel_delayed_work_sync);
3064 
3065 /**
3066  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3067  * @func: the function to call
3068  *
3069  * schedule_on_each_cpu() executes @func on each online CPU using the
3070  * system workqueue and blocks until all CPUs have completed.
3071  * schedule_on_each_cpu() is very slow.
3072  *
3073  * Return:
3074  * 0 on success, -errno on failure.
3075  */
3076 int schedule_on_each_cpu(work_func_t func)
3077 {
3078 	int cpu;
3079 	struct work_struct __percpu *works;
3080 
3081 	works = alloc_percpu(struct work_struct);
3082 	if (!works)
3083 		return -ENOMEM;
3084 
3085 	get_online_cpus();
3086 
3087 	for_each_online_cpu(cpu) {
3088 		struct work_struct *work = per_cpu_ptr(works, cpu);
3089 
3090 		INIT_WORK(work, func);
3091 		schedule_work_on(cpu, work);
3092 	}
3093 
3094 	for_each_online_cpu(cpu)
3095 		flush_work(per_cpu_ptr(works, cpu));
3096 
3097 	put_online_cpus();
3098 	free_percpu(works);
3099 	return 0;
3100 }
3101 
3102 /**
3103  * execute_in_process_context - reliably execute the routine with user context
3104  * @fn:		the function to execute
3105  * @ew:		guaranteed storage for the execute work structure (must
3106  *		be available when the work executes)
3107  *
3108  * Executes the function immediately if process context is available,
3109  * otherwise schedules the function for delayed execution.
3110  *
3111  * Return:	0 - function was executed
3112  *		1 - function was scheduled for execution
3113  */
3114 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3115 {
3116 	if (!in_interrupt()) {
3117 		fn(&ew->work);
3118 		return 0;
3119 	}
3120 
3121 	INIT_WORK(&ew->work, fn);
3122 	schedule_work(&ew->work);
3123 
3124 	return 1;
3125 }
3126 EXPORT_SYMBOL_GPL(execute_in_process_context);
3127 
3128 /**
3129  * free_workqueue_attrs - free a workqueue_attrs
3130  * @attrs: workqueue_attrs to free
3131  *
3132  * Undo alloc_workqueue_attrs().
3133  */
3134 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3135 {
3136 	if (attrs) {
3137 		free_cpumask_var(attrs->cpumask);
3138 		kfree(attrs);
3139 	}
3140 }
3141 
3142 /**
3143  * alloc_workqueue_attrs - allocate a workqueue_attrs
3144  * @gfp_mask: allocation mask to use
3145  *
3146  * Allocate a new workqueue_attrs, initialize with default settings and
3147  * return it.
3148  *
3149  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3150  */
3151 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3152 {
3153 	struct workqueue_attrs *attrs;
3154 
3155 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3156 	if (!attrs)
3157 		goto fail;
3158 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3159 		goto fail;
3160 
3161 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3162 	return attrs;
3163 fail:
3164 	free_workqueue_attrs(attrs);
3165 	return NULL;
3166 }
3167 
3168 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3169 				 const struct workqueue_attrs *from)
3170 {
3171 	to->nice = from->nice;
3172 	cpumask_copy(to->cpumask, from->cpumask);
3173 	/*
3174 	 * Unlike hash and equality test, this function doesn't ignore
3175 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3176 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3177 	 */
3178 	to->no_numa = from->no_numa;
3179 }
3180 
3181 /* hash value of the content of @attr */
3182 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3183 {
3184 	u32 hash = 0;
3185 
3186 	hash = jhash_1word(attrs->nice, hash);
3187 	hash = jhash(cpumask_bits(attrs->cpumask),
3188 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3189 	return hash;
3190 }
3191 
3192 /* content equality test */
3193 static bool wqattrs_equal(const struct workqueue_attrs *a,
3194 			  const struct workqueue_attrs *b)
3195 {
3196 	if (a->nice != b->nice)
3197 		return false;
3198 	if (!cpumask_equal(a->cpumask, b->cpumask))
3199 		return false;
3200 	return true;
3201 }
3202 
3203 /**
3204  * init_worker_pool - initialize a newly zalloc'd worker_pool
3205  * @pool: worker_pool to initialize
3206  *
3207  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3208  *
3209  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3210  * inside @pool proper are initialized and put_unbound_pool() can be called
3211  * on @pool safely to release it.
3212  */
3213 static int init_worker_pool(struct worker_pool *pool)
3214 {
3215 	spin_lock_init(&pool->lock);
3216 	pool->id = -1;
3217 	pool->cpu = -1;
3218 	pool->node = NUMA_NO_NODE;
3219 	pool->flags |= POOL_DISASSOCIATED;
3220 	pool->watchdog_ts = jiffies;
3221 	INIT_LIST_HEAD(&pool->worklist);
3222 	INIT_LIST_HEAD(&pool->idle_list);
3223 	hash_init(pool->busy_hash);
3224 
3225 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3226 
3227 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3228 
3229 	mutex_init(&pool->attach_mutex);
3230 	INIT_LIST_HEAD(&pool->workers);
3231 
3232 	ida_init(&pool->worker_ida);
3233 	INIT_HLIST_NODE(&pool->hash_node);
3234 	pool->refcnt = 1;
3235 
3236 	/* shouldn't fail above this point */
3237 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3238 	if (!pool->attrs)
3239 		return -ENOMEM;
3240 	return 0;
3241 }
3242 
3243 static void rcu_free_wq(struct rcu_head *rcu)
3244 {
3245 	struct workqueue_struct *wq =
3246 		container_of(rcu, struct workqueue_struct, rcu);
3247 
3248 	if (!(wq->flags & WQ_UNBOUND))
3249 		free_percpu(wq->cpu_pwqs);
3250 	else
3251 		free_workqueue_attrs(wq->unbound_attrs);
3252 
3253 	kfree(wq->rescuer);
3254 	kfree(wq);
3255 }
3256 
3257 static void rcu_free_pool(struct rcu_head *rcu)
3258 {
3259 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3260 
3261 	ida_destroy(&pool->worker_ida);
3262 	free_workqueue_attrs(pool->attrs);
3263 	kfree(pool);
3264 }
3265 
3266 /**
3267  * put_unbound_pool - put a worker_pool
3268  * @pool: worker_pool to put
3269  *
3270  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3271  * safe manner.  get_unbound_pool() calls this function on its failure path
3272  * and this function should be able to release pools which went through,
3273  * successfully or not, init_worker_pool().
3274  *
3275  * Should be called with wq_pool_mutex held.
3276  */
3277 static void put_unbound_pool(struct worker_pool *pool)
3278 {
3279 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3280 	struct worker *worker;
3281 
3282 	lockdep_assert_held(&wq_pool_mutex);
3283 
3284 	if (--pool->refcnt)
3285 		return;
3286 
3287 	/* sanity checks */
3288 	if (WARN_ON(!(pool->cpu < 0)) ||
3289 	    WARN_ON(!list_empty(&pool->worklist)))
3290 		return;
3291 
3292 	/* release id and unhash */
3293 	if (pool->id >= 0)
3294 		idr_remove(&worker_pool_idr, pool->id);
3295 	hash_del(&pool->hash_node);
3296 
3297 	/*
3298 	 * Become the manager and destroy all workers.  This prevents
3299 	 * @pool's workers from blocking on attach_mutex.  We're the last
3300 	 * manager and @pool gets freed with the flag set.
3301 	 */
3302 	spin_lock_irq(&pool->lock);
3303 	wait_event_lock_irq(wq_manager_wait,
3304 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3305 	pool->flags |= POOL_MANAGER_ACTIVE;
3306 
3307 	while ((worker = first_idle_worker(pool)))
3308 		destroy_worker(worker);
3309 	WARN_ON(pool->nr_workers || pool->nr_idle);
3310 	spin_unlock_irq(&pool->lock);
3311 
3312 	mutex_lock(&pool->attach_mutex);
3313 	if (!list_empty(&pool->workers))
3314 		pool->detach_completion = &detach_completion;
3315 	mutex_unlock(&pool->attach_mutex);
3316 
3317 	if (pool->detach_completion)
3318 		wait_for_completion(pool->detach_completion);
3319 
3320 	/* shut down the timers */
3321 	del_timer_sync(&pool->idle_timer);
3322 	del_timer_sync(&pool->mayday_timer);
3323 
3324 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3325 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3326 }
3327 
3328 /**
3329  * get_unbound_pool - get a worker_pool with the specified attributes
3330  * @attrs: the attributes of the worker_pool to get
3331  *
3332  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3333  * reference count and return it.  If there already is a matching
3334  * worker_pool, it will be used; otherwise, this function attempts to
3335  * create a new one.
3336  *
3337  * Should be called with wq_pool_mutex held.
3338  *
3339  * Return: On success, a worker_pool with the same attributes as @attrs.
3340  * On failure, %NULL.
3341  */
3342 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3343 {
3344 	u32 hash = wqattrs_hash(attrs);
3345 	struct worker_pool *pool;
3346 	int node;
3347 	int target_node = NUMA_NO_NODE;
3348 
3349 	lockdep_assert_held(&wq_pool_mutex);
3350 
3351 	/* do we already have a matching pool? */
3352 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3353 		if (wqattrs_equal(pool->attrs, attrs)) {
3354 			pool->refcnt++;
3355 			return pool;
3356 		}
3357 	}
3358 
3359 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3360 	if (wq_numa_enabled) {
3361 		for_each_node(node) {
3362 			if (cpumask_subset(attrs->cpumask,
3363 					   wq_numa_possible_cpumask[node])) {
3364 				target_node = node;
3365 				break;
3366 			}
3367 		}
3368 	}
3369 
3370 	/* nope, create a new one */
3371 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3372 	if (!pool || init_worker_pool(pool) < 0)
3373 		goto fail;
3374 
3375 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3376 	copy_workqueue_attrs(pool->attrs, attrs);
3377 	pool->node = target_node;
3378 
3379 	/*
3380 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3381 	 * 'struct workqueue_attrs' comments for detail.
3382 	 */
3383 	pool->attrs->no_numa = false;
3384 
3385 	if (worker_pool_assign_id(pool) < 0)
3386 		goto fail;
3387 
3388 	/* create and start the initial worker */
3389 	if (wq_online && !create_worker(pool))
3390 		goto fail;
3391 
3392 	/* install */
3393 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3394 
3395 	return pool;
3396 fail:
3397 	if (pool)
3398 		put_unbound_pool(pool);
3399 	return NULL;
3400 }
3401 
3402 static void rcu_free_pwq(struct rcu_head *rcu)
3403 {
3404 	kmem_cache_free(pwq_cache,
3405 			container_of(rcu, struct pool_workqueue, rcu));
3406 }
3407 
3408 /*
3409  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3410  * and needs to be destroyed.
3411  */
3412 static void pwq_unbound_release_workfn(struct work_struct *work)
3413 {
3414 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3415 						  unbound_release_work);
3416 	struct workqueue_struct *wq = pwq->wq;
3417 	struct worker_pool *pool = pwq->pool;
3418 	bool is_last;
3419 
3420 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3421 		return;
3422 
3423 	mutex_lock(&wq->mutex);
3424 	list_del_rcu(&pwq->pwqs_node);
3425 	is_last = list_empty(&wq->pwqs);
3426 	mutex_unlock(&wq->mutex);
3427 
3428 	mutex_lock(&wq_pool_mutex);
3429 	put_unbound_pool(pool);
3430 	mutex_unlock(&wq_pool_mutex);
3431 
3432 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3433 
3434 	/*
3435 	 * If we're the last pwq going away, @wq is already dead and no one
3436 	 * is gonna access it anymore.  Schedule RCU free.
3437 	 */
3438 	if (is_last)
3439 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3440 }
3441 
3442 /**
3443  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3444  * @pwq: target pool_workqueue
3445  *
3446  * If @pwq isn't freezing, set @pwq->max_active to the associated
3447  * workqueue's saved_max_active and activate delayed work items
3448  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3449  */
3450 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3451 {
3452 	struct workqueue_struct *wq = pwq->wq;
3453 	bool freezable = wq->flags & WQ_FREEZABLE;
3454 	unsigned long flags;
3455 
3456 	/* for @wq->saved_max_active */
3457 	lockdep_assert_held(&wq->mutex);
3458 
3459 	/* fast exit for non-freezable wqs */
3460 	if (!freezable && pwq->max_active == wq->saved_max_active)
3461 		return;
3462 
3463 	/* this function can be called during early boot w/ irq disabled */
3464 	spin_lock_irqsave(&pwq->pool->lock, flags);
3465 
3466 	/*
3467 	 * During [un]freezing, the caller is responsible for ensuring that
3468 	 * this function is called at least once after @workqueue_freezing
3469 	 * is updated and visible.
3470 	 */
3471 	if (!freezable || !workqueue_freezing) {
3472 		pwq->max_active = wq->saved_max_active;
3473 
3474 		while (!list_empty(&pwq->delayed_works) &&
3475 		       pwq->nr_active < pwq->max_active)
3476 			pwq_activate_first_delayed(pwq);
3477 
3478 		/*
3479 		 * Need to kick a worker after thawed or an unbound wq's
3480 		 * max_active is bumped.  It's a slow path.  Do it always.
3481 		 */
3482 		wake_up_worker(pwq->pool);
3483 	} else {
3484 		pwq->max_active = 0;
3485 	}
3486 
3487 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3488 }
3489 
3490 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3491 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3492 		     struct worker_pool *pool)
3493 {
3494 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3495 
3496 	memset(pwq, 0, sizeof(*pwq));
3497 
3498 	pwq->pool = pool;
3499 	pwq->wq = wq;
3500 	pwq->flush_color = -1;
3501 	pwq->refcnt = 1;
3502 	INIT_LIST_HEAD(&pwq->delayed_works);
3503 	INIT_LIST_HEAD(&pwq->pwqs_node);
3504 	INIT_LIST_HEAD(&pwq->mayday_node);
3505 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3506 }
3507 
3508 /* sync @pwq with the current state of its associated wq and link it */
3509 static void link_pwq(struct pool_workqueue *pwq)
3510 {
3511 	struct workqueue_struct *wq = pwq->wq;
3512 
3513 	lockdep_assert_held(&wq->mutex);
3514 
3515 	/* may be called multiple times, ignore if already linked */
3516 	if (!list_empty(&pwq->pwqs_node))
3517 		return;
3518 
3519 	/* set the matching work_color */
3520 	pwq->work_color = wq->work_color;
3521 
3522 	/* sync max_active to the current setting */
3523 	pwq_adjust_max_active(pwq);
3524 
3525 	/* link in @pwq */
3526 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3527 }
3528 
3529 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3530 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3531 					const struct workqueue_attrs *attrs)
3532 {
3533 	struct worker_pool *pool;
3534 	struct pool_workqueue *pwq;
3535 
3536 	lockdep_assert_held(&wq_pool_mutex);
3537 
3538 	pool = get_unbound_pool(attrs);
3539 	if (!pool)
3540 		return NULL;
3541 
3542 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3543 	if (!pwq) {
3544 		put_unbound_pool(pool);
3545 		return NULL;
3546 	}
3547 
3548 	init_pwq(pwq, wq, pool);
3549 	return pwq;
3550 }
3551 
3552 /**
3553  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3554  * @attrs: the wq_attrs of the default pwq of the target workqueue
3555  * @node: the target NUMA node
3556  * @cpu_going_down: if >= 0, the CPU to consider as offline
3557  * @cpumask: outarg, the resulting cpumask
3558  *
3559  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3560  * @cpu_going_down is >= 0, that cpu is considered offline during
3561  * calculation.  The result is stored in @cpumask.
3562  *
3563  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3564  * enabled and @node has online CPUs requested by @attrs, the returned
3565  * cpumask is the intersection of the possible CPUs of @node and
3566  * @attrs->cpumask.
3567  *
3568  * The caller is responsible for ensuring that the cpumask of @node stays
3569  * stable.
3570  *
3571  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3572  * %false if equal.
3573  */
3574 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3575 				 int cpu_going_down, cpumask_t *cpumask)
3576 {
3577 	if (!wq_numa_enabled || attrs->no_numa)
3578 		goto use_dfl;
3579 
3580 	/* does @node have any online CPUs @attrs wants? */
3581 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3582 	if (cpu_going_down >= 0)
3583 		cpumask_clear_cpu(cpu_going_down, cpumask);
3584 
3585 	if (cpumask_empty(cpumask))
3586 		goto use_dfl;
3587 
3588 	/* yeap, return possible CPUs in @node that @attrs wants */
3589 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3590 
3591 	if (cpumask_empty(cpumask)) {
3592 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3593 				"possible intersect\n");
3594 		return false;
3595 	}
3596 
3597 	return !cpumask_equal(cpumask, attrs->cpumask);
3598 
3599 use_dfl:
3600 	cpumask_copy(cpumask, attrs->cpumask);
3601 	return false;
3602 }
3603 
3604 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3605 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3606 						   int node,
3607 						   struct pool_workqueue *pwq)
3608 {
3609 	struct pool_workqueue *old_pwq;
3610 
3611 	lockdep_assert_held(&wq_pool_mutex);
3612 	lockdep_assert_held(&wq->mutex);
3613 
3614 	/* link_pwq() can handle duplicate calls */
3615 	link_pwq(pwq);
3616 
3617 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3618 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3619 	return old_pwq;
3620 }
3621 
3622 /* context to store the prepared attrs & pwqs before applying */
3623 struct apply_wqattrs_ctx {
3624 	struct workqueue_struct	*wq;		/* target workqueue */
3625 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3626 	struct list_head	list;		/* queued for batching commit */
3627 	struct pool_workqueue	*dfl_pwq;
3628 	struct pool_workqueue	*pwq_tbl[];
3629 };
3630 
3631 /* free the resources after success or abort */
3632 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3633 {
3634 	if (ctx) {
3635 		int node;
3636 
3637 		for_each_node(node)
3638 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3639 		put_pwq_unlocked(ctx->dfl_pwq);
3640 
3641 		free_workqueue_attrs(ctx->attrs);
3642 
3643 		kfree(ctx);
3644 	}
3645 }
3646 
3647 /* allocate the attrs and pwqs for later installation */
3648 static struct apply_wqattrs_ctx *
3649 apply_wqattrs_prepare(struct workqueue_struct *wq,
3650 		      const struct workqueue_attrs *attrs)
3651 {
3652 	struct apply_wqattrs_ctx *ctx;
3653 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3654 	int node;
3655 
3656 	lockdep_assert_held(&wq_pool_mutex);
3657 
3658 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3659 		      GFP_KERNEL);
3660 
3661 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3662 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3663 	if (!ctx || !new_attrs || !tmp_attrs)
3664 		goto out_free;
3665 
3666 	/*
3667 	 * Calculate the attrs of the default pwq.
3668 	 * If the user configured cpumask doesn't overlap with the
3669 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3670 	 */
3671 	copy_workqueue_attrs(new_attrs, attrs);
3672 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3673 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3674 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3675 
3676 	/*
3677 	 * We may create multiple pwqs with differing cpumasks.  Make a
3678 	 * copy of @new_attrs which will be modified and used to obtain
3679 	 * pools.
3680 	 */
3681 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3682 
3683 	/*
3684 	 * If something goes wrong during CPU up/down, we'll fall back to
3685 	 * the default pwq covering whole @attrs->cpumask.  Always create
3686 	 * it even if we don't use it immediately.
3687 	 */
3688 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3689 	if (!ctx->dfl_pwq)
3690 		goto out_free;
3691 
3692 	for_each_node(node) {
3693 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3694 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3695 			if (!ctx->pwq_tbl[node])
3696 				goto out_free;
3697 		} else {
3698 			ctx->dfl_pwq->refcnt++;
3699 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3700 		}
3701 	}
3702 
3703 	/* save the user configured attrs and sanitize it. */
3704 	copy_workqueue_attrs(new_attrs, attrs);
3705 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3706 	ctx->attrs = new_attrs;
3707 
3708 	ctx->wq = wq;
3709 	free_workqueue_attrs(tmp_attrs);
3710 	return ctx;
3711 
3712 out_free:
3713 	free_workqueue_attrs(tmp_attrs);
3714 	free_workqueue_attrs(new_attrs);
3715 	apply_wqattrs_cleanup(ctx);
3716 	return NULL;
3717 }
3718 
3719 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3720 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3721 {
3722 	int node;
3723 
3724 	/* all pwqs have been created successfully, let's install'em */
3725 	mutex_lock(&ctx->wq->mutex);
3726 
3727 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3728 
3729 	/* save the previous pwq and install the new one */
3730 	for_each_node(node)
3731 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3732 							  ctx->pwq_tbl[node]);
3733 
3734 	/* @dfl_pwq might not have been used, ensure it's linked */
3735 	link_pwq(ctx->dfl_pwq);
3736 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3737 
3738 	mutex_unlock(&ctx->wq->mutex);
3739 }
3740 
3741 static void apply_wqattrs_lock(void)
3742 {
3743 	/* CPUs should stay stable across pwq creations and installations */
3744 	get_online_cpus();
3745 	mutex_lock(&wq_pool_mutex);
3746 }
3747 
3748 static void apply_wqattrs_unlock(void)
3749 {
3750 	mutex_unlock(&wq_pool_mutex);
3751 	put_online_cpus();
3752 }
3753 
3754 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3755 					const struct workqueue_attrs *attrs)
3756 {
3757 	struct apply_wqattrs_ctx *ctx;
3758 
3759 	/* only unbound workqueues can change attributes */
3760 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3761 		return -EINVAL;
3762 
3763 	/* creating multiple pwqs breaks ordering guarantee */
3764 	if (!list_empty(&wq->pwqs)) {
3765 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3766 			return -EINVAL;
3767 
3768 		wq->flags &= ~__WQ_ORDERED;
3769 	}
3770 
3771 	ctx = apply_wqattrs_prepare(wq, attrs);
3772 	if (!ctx)
3773 		return -ENOMEM;
3774 
3775 	/* the ctx has been prepared successfully, let's commit it */
3776 	apply_wqattrs_commit(ctx);
3777 	apply_wqattrs_cleanup(ctx);
3778 
3779 	return 0;
3780 }
3781 
3782 /**
3783  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3784  * @wq: the target workqueue
3785  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3786  *
3787  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3788  * machines, this function maps a separate pwq to each NUMA node with
3789  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3790  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3791  * items finish.  Note that a work item which repeatedly requeues itself
3792  * back-to-back will stay on its current pwq.
3793  *
3794  * Performs GFP_KERNEL allocations.
3795  *
3796  * Return: 0 on success and -errno on failure.
3797  */
3798 int apply_workqueue_attrs(struct workqueue_struct *wq,
3799 			  const struct workqueue_attrs *attrs)
3800 {
3801 	int ret;
3802 
3803 	apply_wqattrs_lock();
3804 	ret = apply_workqueue_attrs_locked(wq, attrs);
3805 	apply_wqattrs_unlock();
3806 
3807 	return ret;
3808 }
3809 
3810 /**
3811  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3812  * @wq: the target workqueue
3813  * @cpu: the CPU coming up or going down
3814  * @online: whether @cpu is coming up or going down
3815  *
3816  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3817  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3818  * @wq accordingly.
3819  *
3820  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3821  * falls back to @wq->dfl_pwq which may not be optimal but is always
3822  * correct.
3823  *
3824  * Note that when the last allowed CPU of a NUMA node goes offline for a
3825  * workqueue with a cpumask spanning multiple nodes, the workers which were
3826  * already executing the work items for the workqueue will lose their CPU
3827  * affinity and may execute on any CPU.  This is similar to how per-cpu
3828  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3829  * affinity, it's the user's responsibility to flush the work item from
3830  * CPU_DOWN_PREPARE.
3831  */
3832 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3833 				   bool online)
3834 {
3835 	int node = cpu_to_node(cpu);
3836 	int cpu_off = online ? -1 : cpu;
3837 	struct pool_workqueue *old_pwq = NULL, *pwq;
3838 	struct workqueue_attrs *target_attrs;
3839 	cpumask_t *cpumask;
3840 
3841 	lockdep_assert_held(&wq_pool_mutex);
3842 
3843 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3844 	    wq->unbound_attrs->no_numa)
3845 		return;
3846 
3847 	/*
3848 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3849 	 * Let's use a preallocated one.  The following buf is protected by
3850 	 * CPU hotplug exclusion.
3851 	 */
3852 	target_attrs = wq_update_unbound_numa_attrs_buf;
3853 	cpumask = target_attrs->cpumask;
3854 
3855 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3856 	pwq = unbound_pwq_by_node(wq, node);
3857 
3858 	/*
3859 	 * Let's determine what needs to be done.  If the target cpumask is
3860 	 * different from the default pwq's, we need to compare it to @pwq's
3861 	 * and create a new one if they don't match.  If the target cpumask
3862 	 * equals the default pwq's, the default pwq should be used.
3863 	 */
3864 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3865 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3866 			return;
3867 	} else {
3868 		goto use_dfl_pwq;
3869 	}
3870 
3871 	/* create a new pwq */
3872 	pwq = alloc_unbound_pwq(wq, target_attrs);
3873 	if (!pwq) {
3874 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3875 			wq->name);
3876 		goto use_dfl_pwq;
3877 	}
3878 
3879 	/* Install the new pwq. */
3880 	mutex_lock(&wq->mutex);
3881 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3882 	goto out_unlock;
3883 
3884 use_dfl_pwq:
3885 	mutex_lock(&wq->mutex);
3886 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3887 	get_pwq(wq->dfl_pwq);
3888 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3889 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3890 out_unlock:
3891 	mutex_unlock(&wq->mutex);
3892 	put_pwq_unlocked(old_pwq);
3893 }
3894 
3895 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3896 {
3897 	bool highpri = wq->flags & WQ_HIGHPRI;
3898 	int cpu, ret;
3899 
3900 	if (!(wq->flags & WQ_UNBOUND)) {
3901 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3902 		if (!wq->cpu_pwqs)
3903 			return -ENOMEM;
3904 
3905 		for_each_possible_cpu(cpu) {
3906 			struct pool_workqueue *pwq =
3907 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3908 			struct worker_pool *cpu_pools =
3909 				per_cpu(cpu_worker_pools, cpu);
3910 
3911 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3912 
3913 			mutex_lock(&wq->mutex);
3914 			link_pwq(pwq);
3915 			mutex_unlock(&wq->mutex);
3916 		}
3917 		return 0;
3918 	} else if (wq->flags & __WQ_ORDERED) {
3919 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3920 		/* there should only be single pwq for ordering guarantee */
3921 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3922 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3923 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3924 		return ret;
3925 	} else {
3926 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3927 	}
3928 }
3929 
3930 static int wq_clamp_max_active(int max_active, unsigned int flags,
3931 			       const char *name)
3932 {
3933 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3934 
3935 	if (max_active < 1 || max_active > lim)
3936 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3937 			max_active, name, 1, lim);
3938 
3939 	return clamp_val(max_active, 1, lim);
3940 }
3941 
3942 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3943 					       unsigned int flags,
3944 					       int max_active,
3945 					       struct lock_class_key *key,
3946 					       const char *lock_name, ...)
3947 {
3948 	size_t tbl_size = 0;
3949 	va_list args;
3950 	struct workqueue_struct *wq;
3951 	struct pool_workqueue *pwq;
3952 
3953 	/*
3954 	 * Unbound && max_active == 1 used to imply ordered, which is no
3955 	 * longer the case on NUMA machines due to per-node pools.  While
3956 	 * alloc_ordered_workqueue() is the right way to create an ordered
3957 	 * workqueue, keep the previous behavior to avoid subtle breakages
3958 	 * on NUMA.
3959 	 */
3960 	if ((flags & WQ_UNBOUND) && max_active == 1)
3961 		flags |= __WQ_ORDERED;
3962 
3963 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3964 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3965 		flags |= WQ_UNBOUND;
3966 
3967 	/* allocate wq and format name */
3968 	if (flags & WQ_UNBOUND)
3969 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3970 
3971 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3972 	if (!wq)
3973 		return NULL;
3974 
3975 	if (flags & WQ_UNBOUND) {
3976 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3977 		if (!wq->unbound_attrs)
3978 			goto err_free_wq;
3979 	}
3980 
3981 	va_start(args, lock_name);
3982 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3983 	va_end(args);
3984 
3985 	max_active = max_active ?: WQ_DFL_ACTIVE;
3986 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3987 
3988 	/* init wq */
3989 	wq->flags = flags;
3990 	wq->saved_max_active = max_active;
3991 	mutex_init(&wq->mutex);
3992 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3993 	INIT_LIST_HEAD(&wq->pwqs);
3994 	INIT_LIST_HEAD(&wq->flusher_queue);
3995 	INIT_LIST_HEAD(&wq->flusher_overflow);
3996 	INIT_LIST_HEAD(&wq->maydays);
3997 
3998 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3999 	INIT_LIST_HEAD(&wq->list);
4000 
4001 	if (alloc_and_link_pwqs(wq) < 0)
4002 		goto err_free_wq;
4003 
4004 	/*
4005 	 * Workqueues which may be used during memory reclaim should
4006 	 * have a rescuer to guarantee forward progress.
4007 	 */
4008 	if (flags & WQ_MEM_RECLAIM) {
4009 		struct worker *rescuer;
4010 
4011 		rescuer = alloc_worker(NUMA_NO_NODE);
4012 		if (!rescuer)
4013 			goto err_destroy;
4014 
4015 		rescuer->rescue_wq = wq;
4016 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4017 					       wq->name);
4018 		if (IS_ERR(rescuer->task)) {
4019 			kfree(rescuer);
4020 			goto err_destroy;
4021 		}
4022 
4023 		wq->rescuer = rescuer;
4024 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
4025 		wake_up_process(rescuer->task);
4026 	}
4027 
4028 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4029 		goto err_destroy;
4030 
4031 	/*
4032 	 * wq_pool_mutex protects global freeze state and workqueues list.
4033 	 * Grab it, adjust max_active and add the new @wq to workqueues
4034 	 * list.
4035 	 */
4036 	mutex_lock(&wq_pool_mutex);
4037 
4038 	mutex_lock(&wq->mutex);
4039 	for_each_pwq(pwq, wq)
4040 		pwq_adjust_max_active(pwq);
4041 	mutex_unlock(&wq->mutex);
4042 
4043 	list_add_tail_rcu(&wq->list, &workqueues);
4044 
4045 	mutex_unlock(&wq_pool_mutex);
4046 
4047 	return wq;
4048 
4049 err_free_wq:
4050 	free_workqueue_attrs(wq->unbound_attrs);
4051 	kfree(wq);
4052 	return NULL;
4053 err_destroy:
4054 	destroy_workqueue(wq);
4055 	return NULL;
4056 }
4057 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4058 
4059 /**
4060  * destroy_workqueue - safely terminate a workqueue
4061  * @wq: target workqueue
4062  *
4063  * Safely destroy a workqueue. All work currently pending will be done first.
4064  */
4065 void destroy_workqueue(struct workqueue_struct *wq)
4066 {
4067 	struct pool_workqueue *pwq;
4068 	int node;
4069 
4070 	/* drain it before proceeding with destruction */
4071 	drain_workqueue(wq);
4072 
4073 	/* sanity checks */
4074 	mutex_lock(&wq->mutex);
4075 	for_each_pwq(pwq, wq) {
4076 		int i;
4077 
4078 		for (i = 0; i < WORK_NR_COLORS; i++) {
4079 			if (WARN_ON(pwq->nr_in_flight[i])) {
4080 				mutex_unlock(&wq->mutex);
4081 				show_workqueue_state();
4082 				return;
4083 			}
4084 		}
4085 
4086 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4087 		    WARN_ON(pwq->nr_active) ||
4088 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4089 			mutex_unlock(&wq->mutex);
4090 			show_workqueue_state();
4091 			return;
4092 		}
4093 	}
4094 	mutex_unlock(&wq->mutex);
4095 
4096 	/*
4097 	 * wq list is used to freeze wq, remove from list after
4098 	 * flushing is complete in case freeze races us.
4099 	 */
4100 	mutex_lock(&wq_pool_mutex);
4101 	list_del_rcu(&wq->list);
4102 	mutex_unlock(&wq_pool_mutex);
4103 
4104 	workqueue_sysfs_unregister(wq);
4105 
4106 	if (wq->rescuer)
4107 		kthread_stop(wq->rescuer->task);
4108 
4109 	if (!(wq->flags & WQ_UNBOUND)) {
4110 		/*
4111 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4112 		 * schedule RCU free.
4113 		 */
4114 		call_rcu_sched(&wq->rcu, rcu_free_wq);
4115 	} else {
4116 		/*
4117 		 * We're the sole accessor of @wq at this point.  Directly
4118 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4119 		 * @wq will be freed when the last pwq is released.
4120 		 */
4121 		for_each_node(node) {
4122 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4123 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4124 			put_pwq_unlocked(pwq);
4125 		}
4126 
4127 		/*
4128 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4129 		 * put.  Don't access it afterwards.
4130 		 */
4131 		pwq = wq->dfl_pwq;
4132 		wq->dfl_pwq = NULL;
4133 		put_pwq_unlocked(pwq);
4134 	}
4135 }
4136 EXPORT_SYMBOL_GPL(destroy_workqueue);
4137 
4138 /**
4139  * workqueue_set_max_active - adjust max_active of a workqueue
4140  * @wq: target workqueue
4141  * @max_active: new max_active value.
4142  *
4143  * Set max_active of @wq to @max_active.
4144  *
4145  * CONTEXT:
4146  * Don't call from IRQ context.
4147  */
4148 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4149 {
4150 	struct pool_workqueue *pwq;
4151 
4152 	/* disallow meddling with max_active for ordered workqueues */
4153 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4154 		return;
4155 
4156 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4157 
4158 	mutex_lock(&wq->mutex);
4159 
4160 	wq->flags &= ~__WQ_ORDERED;
4161 	wq->saved_max_active = max_active;
4162 
4163 	for_each_pwq(pwq, wq)
4164 		pwq_adjust_max_active(pwq);
4165 
4166 	mutex_unlock(&wq->mutex);
4167 }
4168 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4169 
4170 /**
4171  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4172  *
4173  * Determine whether %current is a workqueue rescuer.  Can be used from
4174  * work functions to determine whether it's being run off the rescuer task.
4175  *
4176  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4177  */
4178 bool current_is_workqueue_rescuer(void)
4179 {
4180 	struct worker *worker = current_wq_worker();
4181 
4182 	return worker && worker->rescue_wq;
4183 }
4184 
4185 /**
4186  * workqueue_congested - test whether a workqueue is congested
4187  * @cpu: CPU in question
4188  * @wq: target workqueue
4189  *
4190  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4191  * no synchronization around this function and the test result is
4192  * unreliable and only useful as advisory hints or for debugging.
4193  *
4194  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4195  * Note that both per-cpu and unbound workqueues may be associated with
4196  * multiple pool_workqueues which have separate congested states.  A
4197  * workqueue being congested on one CPU doesn't mean the workqueue is also
4198  * contested on other CPUs / NUMA nodes.
4199  *
4200  * Return:
4201  * %true if congested, %false otherwise.
4202  */
4203 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4204 {
4205 	struct pool_workqueue *pwq;
4206 	bool ret;
4207 
4208 	rcu_read_lock_sched();
4209 
4210 	if (cpu == WORK_CPU_UNBOUND)
4211 		cpu = smp_processor_id();
4212 
4213 	if (!(wq->flags & WQ_UNBOUND))
4214 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4215 	else
4216 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4217 
4218 	ret = !list_empty(&pwq->delayed_works);
4219 	rcu_read_unlock_sched();
4220 
4221 	return ret;
4222 }
4223 EXPORT_SYMBOL_GPL(workqueue_congested);
4224 
4225 /**
4226  * work_busy - test whether a work is currently pending or running
4227  * @work: the work to be tested
4228  *
4229  * Test whether @work is currently pending or running.  There is no
4230  * synchronization around this function and the test result is
4231  * unreliable and only useful as advisory hints or for debugging.
4232  *
4233  * Return:
4234  * OR'd bitmask of WORK_BUSY_* bits.
4235  */
4236 unsigned int work_busy(struct work_struct *work)
4237 {
4238 	struct worker_pool *pool;
4239 	unsigned long flags;
4240 	unsigned int ret = 0;
4241 
4242 	if (work_pending(work))
4243 		ret |= WORK_BUSY_PENDING;
4244 
4245 	local_irq_save(flags);
4246 	pool = get_work_pool(work);
4247 	if (pool) {
4248 		spin_lock(&pool->lock);
4249 		if (find_worker_executing_work(pool, work))
4250 			ret |= WORK_BUSY_RUNNING;
4251 		spin_unlock(&pool->lock);
4252 	}
4253 	local_irq_restore(flags);
4254 
4255 	return ret;
4256 }
4257 EXPORT_SYMBOL_GPL(work_busy);
4258 
4259 /**
4260  * set_worker_desc - set description for the current work item
4261  * @fmt: printf-style format string
4262  * @...: arguments for the format string
4263  *
4264  * This function can be called by a running work function to describe what
4265  * the work item is about.  If the worker task gets dumped, this
4266  * information will be printed out together to help debugging.  The
4267  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4268  */
4269 void set_worker_desc(const char *fmt, ...)
4270 {
4271 	struct worker *worker = current_wq_worker();
4272 	va_list args;
4273 
4274 	if (worker) {
4275 		va_start(args, fmt);
4276 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4277 		va_end(args);
4278 		worker->desc_valid = true;
4279 	}
4280 }
4281 
4282 /**
4283  * print_worker_info - print out worker information and description
4284  * @log_lvl: the log level to use when printing
4285  * @task: target task
4286  *
4287  * If @task is a worker and currently executing a work item, print out the
4288  * name of the workqueue being serviced and worker description set with
4289  * set_worker_desc() by the currently executing work item.
4290  *
4291  * This function can be safely called on any task as long as the
4292  * task_struct itself is accessible.  While safe, this function isn't
4293  * synchronized and may print out mixups or garbages of limited length.
4294  */
4295 void print_worker_info(const char *log_lvl, struct task_struct *task)
4296 {
4297 	work_func_t *fn = NULL;
4298 	char name[WQ_NAME_LEN] = { };
4299 	char desc[WORKER_DESC_LEN] = { };
4300 	struct pool_workqueue *pwq = NULL;
4301 	struct workqueue_struct *wq = NULL;
4302 	bool desc_valid = false;
4303 	struct worker *worker;
4304 
4305 	if (!(task->flags & PF_WQ_WORKER))
4306 		return;
4307 
4308 	/*
4309 	 * This function is called without any synchronization and @task
4310 	 * could be in any state.  Be careful with dereferences.
4311 	 */
4312 	worker = kthread_probe_data(task);
4313 
4314 	/*
4315 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4316 	 * the original last '\0' in case the original contains garbage.
4317 	 */
4318 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4319 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4320 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4321 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4322 
4323 	/* copy worker description */
4324 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4325 	if (desc_valid)
4326 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4327 
4328 	if (fn || name[0] || desc[0]) {
4329 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4330 		if (desc[0])
4331 			pr_cont(" (%s)", desc);
4332 		pr_cont("\n");
4333 	}
4334 }
4335 
4336 static void pr_cont_pool_info(struct worker_pool *pool)
4337 {
4338 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4339 	if (pool->node != NUMA_NO_NODE)
4340 		pr_cont(" node=%d", pool->node);
4341 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4342 }
4343 
4344 static void pr_cont_work(bool comma, struct work_struct *work)
4345 {
4346 	if (work->func == wq_barrier_func) {
4347 		struct wq_barrier *barr;
4348 
4349 		barr = container_of(work, struct wq_barrier, work);
4350 
4351 		pr_cont("%s BAR(%d)", comma ? "," : "",
4352 			task_pid_nr(barr->task));
4353 	} else {
4354 		pr_cont("%s %pf", comma ? "," : "", work->func);
4355 	}
4356 }
4357 
4358 static void show_pwq(struct pool_workqueue *pwq)
4359 {
4360 	struct worker_pool *pool = pwq->pool;
4361 	struct work_struct *work;
4362 	struct worker *worker;
4363 	bool has_in_flight = false, has_pending = false;
4364 	int bkt;
4365 
4366 	pr_info("  pwq %d:", pool->id);
4367 	pr_cont_pool_info(pool);
4368 
4369 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4370 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4371 
4372 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4373 		if (worker->current_pwq == pwq) {
4374 			has_in_flight = true;
4375 			break;
4376 		}
4377 	}
4378 	if (has_in_flight) {
4379 		bool comma = false;
4380 
4381 		pr_info("    in-flight:");
4382 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4383 			if (worker->current_pwq != pwq)
4384 				continue;
4385 
4386 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4387 				task_pid_nr(worker->task),
4388 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4389 				worker->current_func);
4390 			list_for_each_entry(work, &worker->scheduled, entry)
4391 				pr_cont_work(false, work);
4392 			comma = true;
4393 		}
4394 		pr_cont("\n");
4395 	}
4396 
4397 	list_for_each_entry(work, &pool->worklist, entry) {
4398 		if (get_work_pwq(work) == pwq) {
4399 			has_pending = true;
4400 			break;
4401 		}
4402 	}
4403 	if (has_pending) {
4404 		bool comma = false;
4405 
4406 		pr_info("    pending:");
4407 		list_for_each_entry(work, &pool->worklist, entry) {
4408 			if (get_work_pwq(work) != pwq)
4409 				continue;
4410 
4411 			pr_cont_work(comma, work);
4412 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4413 		}
4414 		pr_cont("\n");
4415 	}
4416 
4417 	if (!list_empty(&pwq->delayed_works)) {
4418 		bool comma = false;
4419 
4420 		pr_info("    delayed:");
4421 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4422 			pr_cont_work(comma, work);
4423 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4424 		}
4425 		pr_cont("\n");
4426 	}
4427 }
4428 
4429 /**
4430  * show_workqueue_state - dump workqueue state
4431  *
4432  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4433  * all busy workqueues and pools.
4434  */
4435 void show_workqueue_state(void)
4436 {
4437 	struct workqueue_struct *wq;
4438 	struct worker_pool *pool;
4439 	unsigned long flags;
4440 	int pi;
4441 
4442 	rcu_read_lock_sched();
4443 
4444 	pr_info("Showing busy workqueues and worker pools:\n");
4445 
4446 	list_for_each_entry_rcu(wq, &workqueues, list) {
4447 		struct pool_workqueue *pwq;
4448 		bool idle = true;
4449 
4450 		for_each_pwq(pwq, wq) {
4451 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4452 				idle = false;
4453 				break;
4454 			}
4455 		}
4456 		if (idle)
4457 			continue;
4458 
4459 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4460 
4461 		for_each_pwq(pwq, wq) {
4462 			spin_lock_irqsave(&pwq->pool->lock, flags);
4463 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4464 				show_pwq(pwq);
4465 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4466 		}
4467 	}
4468 
4469 	for_each_pool(pool, pi) {
4470 		struct worker *worker;
4471 		bool first = true;
4472 
4473 		spin_lock_irqsave(&pool->lock, flags);
4474 		if (pool->nr_workers == pool->nr_idle)
4475 			goto next_pool;
4476 
4477 		pr_info("pool %d:", pool->id);
4478 		pr_cont_pool_info(pool);
4479 		pr_cont(" hung=%us workers=%d",
4480 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4481 			pool->nr_workers);
4482 		if (pool->manager)
4483 			pr_cont(" manager: %d",
4484 				task_pid_nr(pool->manager->task));
4485 		list_for_each_entry(worker, &pool->idle_list, entry) {
4486 			pr_cont(" %s%d", first ? "idle: " : "",
4487 				task_pid_nr(worker->task));
4488 			first = false;
4489 		}
4490 		pr_cont("\n");
4491 	next_pool:
4492 		spin_unlock_irqrestore(&pool->lock, flags);
4493 	}
4494 
4495 	rcu_read_unlock_sched();
4496 }
4497 
4498 /*
4499  * CPU hotplug.
4500  *
4501  * There are two challenges in supporting CPU hotplug.  Firstly, there
4502  * are a lot of assumptions on strong associations among work, pwq and
4503  * pool which make migrating pending and scheduled works very
4504  * difficult to implement without impacting hot paths.  Secondly,
4505  * worker pools serve mix of short, long and very long running works making
4506  * blocked draining impractical.
4507  *
4508  * This is solved by allowing the pools to be disassociated from the CPU
4509  * running as an unbound one and allowing it to be reattached later if the
4510  * cpu comes back online.
4511  */
4512 
4513 static void wq_unbind_fn(struct work_struct *work)
4514 {
4515 	int cpu = smp_processor_id();
4516 	struct worker_pool *pool;
4517 	struct worker *worker;
4518 
4519 	for_each_cpu_worker_pool(pool, cpu) {
4520 		mutex_lock(&pool->attach_mutex);
4521 		spin_lock_irq(&pool->lock);
4522 
4523 		/*
4524 		 * We've blocked all attach/detach operations. Make all workers
4525 		 * unbound and set DISASSOCIATED.  Before this, all workers
4526 		 * except for the ones which are still executing works from
4527 		 * before the last CPU down must be on the cpu.  After
4528 		 * this, they may become diasporas.
4529 		 */
4530 		for_each_pool_worker(worker, pool)
4531 			worker->flags |= WORKER_UNBOUND;
4532 
4533 		pool->flags |= POOL_DISASSOCIATED;
4534 
4535 		spin_unlock_irq(&pool->lock);
4536 		mutex_unlock(&pool->attach_mutex);
4537 
4538 		/*
4539 		 * Call schedule() so that we cross rq->lock and thus can
4540 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4541 		 * This is necessary as scheduler callbacks may be invoked
4542 		 * from other cpus.
4543 		 */
4544 		schedule();
4545 
4546 		/*
4547 		 * Sched callbacks are disabled now.  Zap nr_running.
4548 		 * After this, nr_running stays zero and need_more_worker()
4549 		 * and keep_working() are always true as long as the
4550 		 * worklist is not empty.  This pool now behaves as an
4551 		 * unbound (in terms of concurrency management) pool which
4552 		 * are served by workers tied to the pool.
4553 		 */
4554 		atomic_set(&pool->nr_running, 0);
4555 
4556 		/*
4557 		 * With concurrency management just turned off, a busy
4558 		 * worker blocking could lead to lengthy stalls.  Kick off
4559 		 * unbound chain execution of currently pending work items.
4560 		 */
4561 		spin_lock_irq(&pool->lock);
4562 		wake_up_worker(pool);
4563 		spin_unlock_irq(&pool->lock);
4564 	}
4565 }
4566 
4567 /**
4568  * rebind_workers - rebind all workers of a pool to the associated CPU
4569  * @pool: pool of interest
4570  *
4571  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4572  */
4573 static void rebind_workers(struct worker_pool *pool)
4574 {
4575 	struct worker *worker;
4576 
4577 	lockdep_assert_held(&pool->attach_mutex);
4578 
4579 	/*
4580 	 * Restore CPU affinity of all workers.  As all idle workers should
4581 	 * be on the run-queue of the associated CPU before any local
4582 	 * wake-ups for concurrency management happen, restore CPU affinity
4583 	 * of all workers first and then clear UNBOUND.  As we're called
4584 	 * from CPU_ONLINE, the following shouldn't fail.
4585 	 */
4586 	for_each_pool_worker(worker, pool)
4587 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4588 						  pool->attrs->cpumask) < 0);
4589 
4590 	spin_lock_irq(&pool->lock);
4591 
4592 	/*
4593 	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4594 	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4595 	 * being reworked and this can go away in time.
4596 	 */
4597 	if (!(pool->flags & POOL_DISASSOCIATED)) {
4598 		spin_unlock_irq(&pool->lock);
4599 		return;
4600 	}
4601 
4602 	pool->flags &= ~POOL_DISASSOCIATED;
4603 
4604 	for_each_pool_worker(worker, pool) {
4605 		unsigned int worker_flags = worker->flags;
4606 
4607 		/*
4608 		 * A bound idle worker should actually be on the runqueue
4609 		 * of the associated CPU for local wake-ups targeting it to
4610 		 * work.  Kick all idle workers so that they migrate to the
4611 		 * associated CPU.  Doing this in the same loop as
4612 		 * replacing UNBOUND with REBOUND is safe as no worker will
4613 		 * be bound before @pool->lock is released.
4614 		 */
4615 		if (worker_flags & WORKER_IDLE)
4616 			wake_up_process(worker->task);
4617 
4618 		/*
4619 		 * We want to clear UNBOUND but can't directly call
4620 		 * worker_clr_flags() or adjust nr_running.  Atomically
4621 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4622 		 * @worker will clear REBOUND using worker_clr_flags() when
4623 		 * it initiates the next execution cycle thus restoring
4624 		 * concurrency management.  Note that when or whether
4625 		 * @worker clears REBOUND doesn't affect correctness.
4626 		 *
4627 		 * WRITE_ONCE() is necessary because @worker->flags may be
4628 		 * tested without holding any lock in
4629 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4630 		 * fail incorrectly leading to premature concurrency
4631 		 * management operations.
4632 		 */
4633 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4634 		worker_flags |= WORKER_REBOUND;
4635 		worker_flags &= ~WORKER_UNBOUND;
4636 		WRITE_ONCE(worker->flags, worker_flags);
4637 	}
4638 
4639 	spin_unlock_irq(&pool->lock);
4640 }
4641 
4642 /**
4643  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4644  * @pool: unbound pool of interest
4645  * @cpu: the CPU which is coming up
4646  *
4647  * An unbound pool may end up with a cpumask which doesn't have any online
4648  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4649  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4650  * online CPU before, cpus_allowed of all its workers should be restored.
4651  */
4652 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4653 {
4654 	static cpumask_t cpumask;
4655 	struct worker *worker;
4656 
4657 	lockdep_assert_held(&pool->attach_mutex);
4658 
4659 	/* is @cpu allowed for @pool? */
4660 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4661 		return;
4662 
4663 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4664 
4665 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4666 	for_each_pool_worker(worker, pool)
4667 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4668 }
4669 
4670 int workqueue_prepare_cpu(unsigned int cpu)
4671 {
4672 	struct worker_pool *pool;
4673 
4674 	for_each_cpu_worker_pool(pool, cpu) {
4675 		if (pool->nr_workers)
4676 			continue;
4677 		if (!create_worker(pool))
4678 			return -ENOMEM;
4679 	}
4680 	return 0;
4681 }
4682 
4683 int workqueue_online_cpu(unsigned int cpu)
4684 {
4685 	struct worker_pool *pool;
4686 	struct workqueue_struct *wq;
4687 	int pi;
4688 
4689 	mutex_lock(&wq_pool_mutex);
4690 
4691 	for_each_pool(pool, pi) {
4692 		mutex_lock(&pool->attach_mutex);
4693 
4694 		if (pool->cpu == cpu)
4695 			rebind_workers(pool);
4696 		else if (pool->cpu < 0)
4697 			restore_unbound_workers_cpumask(pool, cpu);
4698 
4699 		mutex_unlock(&pool->attach_mutex);
4700 	}
4701 
4702 	/* update NUMA affinity of unbound workqueues */
4703 	list_for_each_entry(wq, &workqueues, list)
4704 		wq_update_unbound_numa(wq, cpu, true);
4705 
4706 	mutex_unlock(&wq_pool_mutex);
4707 	return 0;
4708 }
4709 
4710 int workqueue_offline_cpu(unsigned int cpu)
4711 {
4712 	struct work_struct unbind_work;
4713 	struct workqueue_struct *wq;
4714 
4715 	/* unbinding per-cpu workers should happen on the local CPU */
4716 	INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4717 	queue_work_on(cpu, system_highpri_wq, &unbind_work);
4718 
4719 	/* update NUMA affinity of unbound workqueues */
4720 	mutex_lock(&wq_pool_mutex);
4721 	list_for_each_entry(wq, &workqueues, list)
4722 		wq_update_unbound_numa(wq, cpu, false);
4723 	mutex_unlock(&wq_pool_mutex);
4724 
4725 	/* wait for per-cpu unbinding to finish */
4726 	flush_work(&unbind_work);
4727 	destroy_work_on_stack(&unbind_work);
4728 	return 0;
4729 }
4730 
4731 #ifdef CONFIG_SMP
4732 
4733 struct work_for_cpu {
4734 	struct work_struct work;
4735 	long (*fn)(void *);
4736 	void *arg;
4737 	long ret;
4738 };
4739 
4740 static void work_for_cpu_fn(struct work_struct *work)
4741 {
4742 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4743 
4744 	wfc->ret = wfc->fn(wfc->arg);
4745 }
4746 
4747 /**
4748  * work_on_cpu - run a function in thread context on a particular cpu
4749  * @cpu: the cpu to run on
4750  * @fn: the function to run
4751  * @arg: the function arg
4752  *
4753  * It is up to the caller to ensure that the cpu doesn't go offline.
4754  * The caller must not hold any locks which would prevent @fn from completing.
4755  *
4756  * Return: The value @fn returns.
4757  */
4758 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4759 {
4760 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4761 
4762 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4763 	schedule_work_on(cpu, &wfc.work);
4764 	flush_work(&wfc.work);
4765 	destroy_work_on_stack(&wfc.work);
4766 	return wfc.ret;
4767 }
4768 EXPORT_SYMBOL_GPL(work_on_cpu);
4769 
4770 /**
4771  * work_on_cpu_safe - run a function in thread context on a particular cpu
4772  * @cpu: the cpu to run on
4773  * @fn:  the function to run
4774  * @arg: the function argument
4775  *
4776  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4777  * any locks which would prevent @fn from completing.
4778  *
4779  * Return: The value @fn returns.
4780  */
4781 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4782 {
4783 	long ret = -ENODEV;
4784 
4785 	get_online_cpus();
4786 	if (cpu_online(cpu))
4787 		ret = work_on_cpu(cpu, fn, arg);
4788 	put_online_cpus();
4789 	return ret;
4790 }
4791 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4792 #endif /* CONFIG_SMP */
4793 
4794 #ifdef CONFIG_FREEZER
4795 
4796 /**
4797  * freeze_workqueues_begin - begin freezing workqueues
4798  *
4799  * Start freezing workqueues.  After this function returns, all freezable
4800  * workqueues will queue new works to their delayed_works list instead of
4801  * pool->worklist.
4802  *
4803  * CONTEXT:
4804  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4805  */
4806 void freeze_workqueues_begin(void)
4807 {
4808 	struct workqueue_struct *wq;
4809 	struct pool_workqueue *pwq;
4810 
4811 	mutex_lock(&wq_pool_mutex);
4812 
4813 	WARN_ON_ONCE(workqueue_freezing);
4814 	workqueue_freezing = true;
4815 
4816 	list_for_each_entry(wq, &workqueues, list) {
4817 		mutex_lock(&wq->mutex);
4818 		for_each_pwq(pwq, wq)
4819 			pwq_adjust_max_active(pwq);
4820 		mutex_unlock(&wq->mutex);
4821 	}
4822 
4823 	mutex_unlock(&wq_pool_mutex);
4824 }
4825 
4826 /**
4827  * freeze_workqueues_busy - are freezable workqueues still busy?
4828  *
4829  * Check whether freezing is complete.  This function must be called
4830  * between freeze_workqueues_begin() and thaw_workqueues().
4831  *
4832  * CONTEXT:
4833  * Grabs and releases wq_pool_mutex.
4834  *
4835  * Return:
4836  * %true if some freezable workqueues are still busy.  %false if freezing
4837  * is complete.
4838  */
4839 bool freeze_workqueues_busy(void)
4840 {
4841 	bool busy = false;
4842 	struct workqueue_struct *wq;
4843 	struct pool_workqueue *pwq;
4844 
4845 	mutex_lock(&wq_pool_mutex);
4846 
4847 	WARN_ON_ONCE(!workqueue_freezing);
4848 
4849 	list_for_each_entry(wq, &workqueues, list) {
4850 		if (!(wq->flags & WQ_FREEZABLE))
4851 			continue;
4852 		/*
4853 		 * nr_active is monotonically decreasing.  It's safe
4854 		 * to peek without lock.
4855 		 */
4856 		rcu_read_lock_sched();
4857 		for_each_pwq(pwq, wq) {
4858 			WARN_ON_ONCE(pwq->nr_active < 0);
4859 			if (pwq->nr_active) {
4860 				busy = true;
4861 				rcu_read_unlock_sched();
4862 				goto out_unlock;
4863 			}
4864 		}
4865 		rcu_read_unlock_sched();
4866 	}
4867 out_unlock:
4868 	mutex_unlock(&wq_pool_mutex);
4869 	return busy;
4870 }
4871 
4872 /**
4873  * thaw_workqueues - thaw workqueues
4874  *
4875  * Thaw workqueues.  Normal queueing is restored and all collected
4876  * frozen works are transferred to their respective pool worklists.
4877  *
4878  * CONTEXT:
4879  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4880  */
4881 void thaw_workqueues(void)
4882 {
4883 	struct workqueue_struct *wq;
4884 	struct pool_workqueue *pwq;
4885 
4886 	mutex_lock(&wq_pool_mutex);
4887 
4888 	if (!workqueue_freezing)
4889 		goto out_unlock;
4890 
4891 	workqueue_freezing = false;
4892 
4893 	/* restore max_active and repopulate worklist */
4894 	list_for_each_entry(wq, &workqueues, list) {
4895 		mutex_lock(&wq->mutex);
4896 		for_each_pwq(pwq, wq)
4897 			pwq_adjust_max_active(pwq);
4898 		mutex_unlock(&wq->mutex);
4899 	}
4900 
4901 out_unlock:
4902 	mutex_unlock(&wq_pool_mutex);
4903 }
4904 #endif /* CONFIG_FREEZER */
4905 
4906 static int workqueue_apply_unbound_cpumask(void)
4907 {
4908 	LIST_HEAD(ctxs);
4909 	int ret = 0;
4910 	struct workqueue_struct *wq;
4911 	struct apply_wqattrs_ctx *ctx, *n;
4912 
4913 	lockdep_assert_held(&wq_pool_mutex);
4914 
4915 	list_for_each_entry(wq, &workqueues, list) {
4916 		if (!(wq->flags & WQ_UNBOUND))
4917 			continue;
4918 		/* creating multiple pwqs breaks ordering guarantee */
4919 		if (wq->flags & __WQ_ORDERED)
4920 			continue;
4921 
4922 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4923 		if (!ctx) {
4924 			ret = -ENOMEM;
4925 			break;
4926 		}
4927 
4928 		list_add_tail(&ctx->list, &ctxs);
4929 	}
4930 
4931 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4932 		if (!ret)
4933 			apply_wqattrs_commit(ctx);
4934 		apply_wqattrs_cleanup(ctx);
4935 	}
4936 
4937 	return ret;
4938 }
4939 
4940 /**
4941  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4942  *  @cpumask: the cpumask to set
4943  *
4944  *  The low-level workqueues cpumask is a global cpumask that limits
4945  *  the affinity of all unbound workqueues.  This function check the @cpumask
4946  *  and apply it to all unbound workqueues and updates all pwqs of them.
4947  *
4948  *  Retun:	0	- Success
4949  *  		-EINVAL	- Invalid @cpumask
4950  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4951  */
4952 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4953 {
4954 	int ret = -EINVAL;
4955 	cpumask_var_t saved_cpumask;
4956 
4957 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4958 		return -ENOMEM;
4959 
4960 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4961 	if (!cpumask_empty(cpumask)) {
4962 		apply_wqattrs_lock();
4963 
4964 		/* save the old wq_unbound_cpumask. */
4965 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4966 
4967 		/* update wq_unbound_cpumask at first and apply it to wqs. */
4968 		cpumask_copy(wq_unbound_cpumask, cpumask);
4969 		ret = workqueue_apply_unbound_cpumask();
4970 
4971 		/* restore the wq_unbound_cpumask when failed. */
4972 		if (ret < 0)
4973 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4974 
4975 		apply_wqattrs_unlock();
4976 	}
4977 
4978 	free_cpumask_var(saved_cpumask);
4979 	return ret;
4980 }
4981 
4982 #ifdef CONFIG_SYSFS
4983 /*
4984  * Workqueues with WQ_SYSFS flag set is visible to userland via
4985  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4986  * following attributes.
4987  *
4988  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4989  *  max_active	RW int	: maximum number of in-flight work items
4990  *
4991  * Unbound workqueues have the following extra attributes.
4992  *
4993  *  pool_ids	RO int	: the associated pool IDs for each node
4994  *  nice	RW int	: nice value of the workers
4995  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4996  *  numa	RW bool	: whether enable NUMA affinity
4997  */
4998 struct wq_device {
4999 	struct workqueue_struct		*wq;
5000 	struct device			dev;
5001 };
5002 
5003 static struct workqueue_struct *dev_to_wq(struct device *dev)
5004 {
5005 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5006 
5007 	return wq_dev->wq;
5008 }
5009 
5010 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5011 			    char *buf)
5012 {
5013 	struct workqueue_struct *wq = dev_to_wq(dev);
5014 
5015 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5016 }
5017 static DEVICE_ATTR_RO(per_cpu);
5018 
5019 static ssize_t max_active_show(struct device *dev,
5020 			       struct device_attribute *attr, char *buf)
5021 {
5022 	struct workqueue_struct *wq = dev_to_wq(dev);
5023 
5024 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5025 }
5026 
5027 static ssize_t max_active_store(struct device *dev,
5028 				struct device_attribute *attr, const char *buf,
5029 				size_t count)
5030 {
5031 	struct workqueue_struct *wq = dev_to_wq(dev);
5032 	int val;
5033 
5034 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5035 		return -EINVAL;
5036 
5037 	workqueue_set_max_active(wq, val);
5038 	return count;
5039 }
5040 static DEVICE_ATTR_RW(max_active);
5041 
5042 static struct attribute *wq_sysfs_attrs[] = {
5043 	&dev_attr_per_cpu.attr,
5044 	&dev_attr_max_active.attr,
5045 	NULL,
5046 };
5047 ATTRIBUTE_GROUPS(wq_sysfs);
5048 
5049 static ssize_t wq_pool_ids_show(struct device *dev,
5050 				struct device_attribute *attr, char *buf)
5051 {
5052 	struct workqueue_struct *wq = dev_to_wq(dev);
5053 	const char *delim = "";
5054 	int node, written = 0;
5055 
5056 	rcu_read_lock_sched();
5057 	for_each_node(node) {
5058 		written += scnprintf(buf + written, PAGE_SIZE - written,
5059 				     "%s%d:%d", delim, node,
5060 				     unbound_pwq_by_node(wq, node)->pool->id);
5061 		delim = " ";
5062 	}
5063 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5064 	rcu_read_unlock_sched();
5065 
5066 	return written;
5067 }
5068 
5069 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5070 			    char *buf)
5071 {
5072 	struct workqueue_struct *wq = dev_to_wq(dev);
5073 	int written;
5074 
5075 	mutex_lock(&wq->mutex);
5076 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5077 	mutex_unlock(&wq->mutex);
5078 
5079 	return written;
5080 }
5081 
5082 /* prepare workqueue_attrs for sysfs store operations */
5083 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5084 {
5085 	struct workqueue_attrs *attrs;
5086 
5087 	lockdep_assert_held(&wq_pool_mutex);
5088 
5089 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5090 	if (!attrs)
5091 		return NULL;
5092 
5093 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5094 	return attrs;
5095 }
5096 
5097 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5098 			     const char *buf, size_t count)
5099 {
5100 	struct workqueue_struct *wq = dev_to_wq(dev);
5101 	struct workqueue_attrs *attrs;
5102 	int ret = -ENOMEM;
5103 
5104 	apply_wqattrs_lock();
5105 
5106 	attrs = wq_sysfs_prep_attrs(wq);
5107 	if (!attrs)
5108 		goto out_unlock;
5109 
5110 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5111 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5112 		ret = apply_workqueue_attrs_locked(wq, attrs);
5113 	else
5114 		ret = -EINVAL;
5115 
5116 out_unlock:
5117 	apply_wqattrs_unlock();
5118 	free_workqueue_attrs(attrs);
5119 	return ret ?: count;
5120 }
5121 
5122 static ssize_t wq_cpumask_show(struct device *dev,
5123 			       struct device_attribute *attr, char *buf)
5124 {
5125 	struct workqueue_struct *wq = dev_to_wq(dev);
5126 	int written;
5127 
5128 	mutex_lock(&wq->mutex);
5129 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5130 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5131 	mutex_unlock(&wq->mutex);
5132 	return written;
5133 }
5134 
5135 static ssize_t wq_cpumask_store(struct device *dev,
5136 				struct device_attribute *attr,
5137 				const char *buf, size_t count)
5138 {
5139 	struct workqueue_struct *wq = dev_to_wq(dev);
5140 	struct workqueue_attrs *attrs;
5141 	int ret = -ENOMEM;
5142 
5143 	apply_wqattrs_lock();
5144 
5145 	attrs = wq_sysfs_prep_attrs(wq);
5146 	if (!attrs)
5147 		goto out_unlock;
5148 
5149 	ret = cpumask_parse(buf, attrs->cpumask);
5150 	if (!ret)
5151 		ret = apply_workqueue_attrs_locked(wq, attrs);
5152 
5153 out_unlock:
5154 	apply_wqattrs_unlock();
5155 	free_workqueue_attrs(attrs);
5156 	return ret ?: count;
5157 }
5158 
5159 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5160 			    char *buf)
5161 {
5162 	struct workqueue_struct *wq = dev_to_wq(dev);
5163 	int written;
5164 
5165 	mutex_lock(&wq->mutex);
5166 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5167 			    !wq->unbound_attrs->no_numa);
5168 	mutex_unlock(&wq->mutex);
5169 
5170 	return written;
5171 }
5172 
5173 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5174 			     const char *buf, size_t count)
5175 {
5176 	struct workqueue_struct *wq = dev_to_wq(dev);
5177 	struct workqueue_attrs *attrs;
5178 	int v, ret = -ENOMEM;
5179 
5180 	apply_wqattrs_lock();
5181 
5182 	attrs = wq_sysfs_prep_attrs(wq);
5183 	if (!attrs)
5184 		goto out_unlock;
5185 
5186 	ret = -EINVAL;
5187 	if (sscanf(buf, "%d", &v) == 1) {
5188 		attrs->no_numa = !v;
5189 		ret = apply_workqueue_attrs_locked(wq, attrs);
5190 	}
5191 
5192 out_unlock:
5193 	apply_wqattrs_unlock();
5194 	free_workqueue_attrs(attrs);
5195 	return ret ?: count;
5196 }
5197 
5198 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5199 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5200 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5201 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5202 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5203 	__ATTR_NULL,
5204 };
5205 
5206 static struct bus_type wq_subsys = {
5207 	.name				= "workqueue",
5208 	.dev_groups			= wq_sysfs_groups,
5209 };
5210 
5211 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5212 		struct device_attribute *attr, char *buf)
5213 {
5214 	int written;
5215 
5216 	mutex_lock(&wq_pool_mutex);
5217 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5218 			    cpumask_pr_args(wq_unbound_cpumask));
5219 	mutex_unlock(&wq_pool_mutex);
5220 
5221 	return written;
5222 }
5223 
5224 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5225 		struct device_attribute *attr, const char *buf, size_t count)
5226 {
5227 	cpumask_var_t cpumask;
5228 	int ret;
5229 
5230 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5231 		return -ENOMEM;
5232 
5233 	ret = cpumask_parse(buf, cpumask);
5234 	if (!ret)
5235 		ret = workqueue_set_unbound_cpumask(cpumask);
5236 
5237 	free_cpumask_var(cpumask);
5238 	return ret ? ret : count;
5239 }
5240 
5241 static struct device_attribute wq_sysfs_cpumask_attr =
5242 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5243 	       wq_unbound_cpumask_store);
5244 
5245 static int __init wq_sysfs_init(void)
5246 {
5247 	int err;
5248 
5249 	err = subsys_virtual_register(&wq_subsys, NULL);
5250 	if (err)
5251 		return err;
5252 
5253 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5254 }
5255 core_initcall(wq_sysfs_init);
5256 
5257 static void wq_device_release(struct device *dev)
5258 {
5259 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5260 
5261 	kfree(wq_dev);
5262 }
5263 
5264 /**
5265  * workqueue_sysfs_register - make a workqueue visible in sysfs
5266  * @wq: the workqueue to register
5267  *
5268  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5269  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5270  * which is the preferred method.
5271  *
5272  * Workqueue user should use this function directly iff it wants to apply
5273  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5274  * apply_workqueue_attrs() may race against userland updating the
5275  * attributes.
5276  *
5277  * Return: 0 on success, -errno on failure.
5278  */
5279 int workqueue_sysfs_register(struct workqueue_struct *wq)
5280 {
5281 	struct wq_device *wq_dev;
5282 	int ret;
5283 
5284 	/*
5285 	 * Adjusting max_active or creating new pwqs by applying
5286 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5287 	 * workqueues.
5288 	 */
5289 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5290 		return -EINVAL;
5291 
5292 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5293 	if (!wq_dev)
5294 		return -ENOMEM;
5295 
5296 	wq_dev->wq = wq;
5297 	wq_dev->dev.bus = &wq_subsys;
5298 	wq_dev->dev.release = wq_device_release;
5299 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5300 
5301 	/*
5302 	 * unbound_attrs are created separately.  Suppress uevent until
5303 	 * everything is ready.
5304 	 */
5305 	dev_set_uevent_suppress(&wq_dev->dev, true);
5306 
5307 	ret = device_register(&wq_dev->dev);
5308 	if (ret) {
5309 		kfree(wq_dev);
5310 		wq->wq_dev = NULL;
5311 		return ret;
5312 	}
5313 
5314 	if (wq->flags & WQ_UNBOUND) {
5315 		struct device_attribute *attr;
5316 
5317 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5318 			ret = device_create_file(&wq_dev->dev, attr);
5319 			if (ret) {
5320 				device_unregister(&wq_dev->dev);
5321 				wq->wq_dev = NULL;
5322 				return ret;
5323 			}
5324 		}
5325 	}
5326 
5327 	dev_set_uevent_suppress(&wq_dev->dev, false);
5328 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5329 	return 0;
5330 }
5331 
5332 /**
5333  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5334  * @wq: the workqueue to unregister
5335  *
5336  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5337  */
5338 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5339 {
5340 	struct wq_device *wq_dev = wq->wq_dev;
5341 
5342 	if (!wq->wq_dev)
5343 		return;
5344 
5345 	wq->wq_dev = NULL;
5346 	device_unregister(&wq_dev->dev);
5347 }
5348 #else	/* CONFIG_SYSFS */
5349 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5350 #endif	/* CONFIG_SYSFS */
5351 
5352 /*
5353  * Workqueue watchdog.
5354  *
5355  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5356  * flush dependency, a concurrency managed work item which stays RUNNING
5357  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5358  * usual warning mechanisms don't trigger and internal workqueue state is
5359  * largely opaque.
5360  *
5361  * Workqueue watchdog monitors all worker pools periodically and dumps
5362  * state if some pools failed to make forward progress for a while where
5363  * forward progress is defined as the first item on ->worklist changing.
5364  *
5365  * This mechanism is controlled through the kernel parameter
5366  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5367  * corresponding sysfs parameter file.
5368  */
5369 #ifdef CONFIG_WQ_WATCHDOG
5370 
5371 static unsigned long wq_watchdog_thresh = 30;
5372 static struct timer_list wq_watchdog_timer;
5373 
5374 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5375 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5376 
5377 static void wq_watchdog_reset_touched(void)
5378 {
5379 	int cpu;
5380 
5381 	wq_watchdog_touched = jiffies;
5382 	for_each_possible_cpu(cpu)
5383 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5384 }
5385 
5386 static void wq_watchdog_timer_fn(struct timer_list *unused)
5387 {
5388 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5389 	bool lockup_detected = false;
5390 	struct worker_pool *pool;
5391 	int pi;
5392 
5393 	if (!thresh)
5394 		return;
5395 
5396 	rcu_read_lock();
5397 
5398 	for_each_pool(pool, pi) {
5399 		unsigned long pool_ts, touched, ts;
5400 
5401 		if (list_empty(&pool->worklist))
5402 			continue;
5403 
5404 		/* get the latest of pool and touched timestamps */
5405 		pool_ts = READ_ONCE(pool->watchdog_ts);
5406 		touched = READ_ONCE(wq_watchdog_touched);
5407 
5408 		if (time_after(pool_ts, touched))
5409 			ts = pool_ts;
5410 		else
5411 			ts = touched;
5412 
5413 		if (pool->cpu >= 0) {
5414 			unsigned long cpu_touched =
5415 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5416 						  pool->cpu));
5417 			if (time_after(cpu_touched, ts))
5418 				ts = cpu_touched;
5419 		}
5420 
5421 		/* did we stall? */
5422 		if (time_after(jiffies, ts + thresh)) {
5423 			lockup_detected = true;
5424 			pr_emerg("BUG: workqueue lockup - pool");
5425 			pr_cont_pool_info(pool);
5426 			pr_cont(" stuck for %us!\n",
5427 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5428 		}
5429 	}
5430 
5431 	rcu_read_unlock();
5432 
5433 	if (lockup_detected)
5434 		show_workqueue_state();
5435 
5436 	wq_watchdog_reset_touched();
5437 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5438 }
5439 
5440 void wq_watchdog_touch(int cpu)
5441 {
5442 	if (cpu >= 0)
5443 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5444 	else
5445 		wq_watchdog_touched = jiffies;
5446 }
5447 
5448 static void wq_watchdog_set_thresh(unsigned long thresh)
5449 {
5450 	wq_watchdog_thresh = 0;
5451 	del_timer_sync(&wq_watchdog_timer);
5452 
5453 	if (thresh) {
5454 		wq_watchdog_thresh = thresh;
5455 		wq_watchdog_reset_touched();
5456 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5457 	}
5458 }
5459 
5460 static int wq_watchdog_param_set_thresh(const char *val,
5461 					const struct kernel_param *kp)
5462 {
5463 	unsigned long thresh;
5464 	int ret;
5465 
5466 	ret = kstrtoul(val, 0, &thresh);
5467 	if (ret)
5468 		return ret;
5469 
5470 	if (system_wq)
5471 		wq_watchdog_set_thresh(thresh);
5472 	else
5473 		wq_watchdog_thresh = thresh;
5474 
5475 	return 0;
5476 }
5477 
5478 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5479 	.set	= wq_watchdog_param_set_thresh,
5480 	.get	= param_get_ulong,
5481 };
5482 
5483 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5484 		0644);
5485 
5486 static void wq_watchdog_init(void)
5487 {
5488 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5489 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5490 }
5491 
5492 #else	/* CONFIG_WQ_WATCHDOG */
5493 
5494 static inline void wq_watchdog_init(void) { }
5495 
5496 #endif	/* CONFIG_WQ_WATCHDOG */
5497 
5498 static void __init wq_numa_init(void)
5499 {
5500 	cpumask_var_t *tbl;
5501 	int node, cpu;
5502 
5503 	if (num_possible_nodes() <= 1)
5504 		return;
5505 
5506 	if (wq_disable_numa) {
5507 		pr_info("workqueue: NUMA affinity support disabled\n");
5508 		return;
5509 	}
5510 
5511 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5512 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5513 
5514 	/*
5515 	 * We want masks of possible CPUs of each node which isn't readily
5516 	 * available.  Build one from cpu_to_node() which should have been
5517 	 * fully initialized by now.
5518 	 */
5519 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5520 	BUG_ON(!tbl);
5521 
5522 	for_each_node(node)
5523 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5524 				node_online(node) ? node : NUMA_NO_NODE));
5525 
5526 	for_each_possible_cpu(cpu) {
5527 		node = cpu_to_node(cpu);
5528 		if (WARN_ON(node == NUMA_NO_NODE)) {
5529 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5530 			/* happens iff arch is bonkers, let's just proceed */
5531 			return;
5532 		}
5533 		cpumask_set_cpu(cpu, tbl[node]);
5534 	}
5535 
5536 	wq_numa_possible_cpumask = tbl;
5537 	wq_numa_enabled = true;
5538 }
5539 
5540 /**
5541  * workqueue_init_early - early init for workqueue subsystem
5542  *
5543  * This is the first half of two-staged workqueue subsystem initialization
5544  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5545  * idr are up.  It sets up all the data structures and system workqueues
5546  * and allows early boot code to create workqueues and queue/cancel work
5547  * items.  Actual work item execution starts only after kthreads can be
5548  * created and scheduled right before early initcalls.
5549  */
5550 int __init workqueue_init_early(void)
5551 {
5552 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5553 	int i, cpu;
5554 
5555 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5556 
5557 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5558 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5559 
5560 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5561 
5562 	/* initialize CPU pools */
5563 	for_each_possible_cpu(cpu) {
5564 		struct worker_pool *pool;
5565 
5566 		i = 0;
5567 		for_each_cpu_worker_pool(pool, cpu) {
5568 			BUG_ON(init_worker_pool(pool));
5569 			pool->cpu = cpu;
5570 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5571 			pool->attrs->nice = std_nice[i++];
5572 			pool->node = cpu_to_node(cpu);
5573 
5574 			/* alloc pool ID */
5575 			mutex_lock(&wq_pool_mutex);
5576 			BUG_ON(worker_pool_assign_id(pool));
5577 			mutex_unlock(&wq_pool_mutex);
5578 		}
5579 	}
5580 
5581 	/* create default unbound and ordered wq attrs */
5582 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5583 		struct workqueue_attrs *attrs;
5584 
5585 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5586 		attrs->nice = std_nice[i];
5587 		unbound_std_wq_attrs[i] = attrs;
5588 
5589 		/*
5590 		 * An ordered wq should have only one pwq as ordering is
5591 		 * guaranteed by max_active which is enforced by pwqs.
5592 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5593 		 */
5594 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5595 		attrs->nice = std_nice[i];
5596 		attrs->no_numa = true;
5597 		ordered_wq_attrs[i] = attrs;
5598 	}
5599 
5600 	system_wq = alloc_workqueue("events", 0, 0);
5601 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5602 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5603 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5604 					    WQ_UNBOUND_MAX_ACTIVE);
5605 	system_freezable_wq = alloc_workqueue("events_freezable",
5606 					      WQ_FREEZABLE, 0);
5607 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5608 					      WQ_POWER_EFFICIENT, 0);
5609 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5610 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5611 					      0);
5612 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5613 	       !system_unbound_wq || !system_freezable_wq ||
5614 	       !system_power_efficient_wq ||
5615 	       !system_freezable_power_efficient_wq);
5616 
5617 	return 0;
5618 }
5619 
5620 /**
5621  * workqueue_init - bring workqueue subsystem fully online
5622  *
5623  * This is the latter half of two-staged workqueue subsystem initialization
5624  * and invoked as soon as kthreads can be created and scheduled.
5625  * Workqueues have been created and work items queued on them, but there
5626  * are no kworkers executing the work items yet.  Populate the worker pools
5627  * with the initial workers and enable future kworker creations.
5628  */
5629 int __init workqueue_init(void)
5630 {
5631 	struct workqueue_struct *wq;
5632 	struct worker_pool *pool;
5633 	int cpu, bkt;
5634 
5635 	/*
5636 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5637 	 * CPU to node mapping may not be available that early on some
5638 	 * archs such as power and arm64.  As per-cpu pools created
5639 	 * previously could be missing node hint and unbound pools NUMA
5640 	 * affinity, fix them up.
5641 	 */
5642 	wq_numa_init();
5643 
5644 	mutex_lock(&wq_pool_mutex);
5645 
5646 	for_each_possible_cpu(cpu) {
5647 		for_each_cpu_worker_pool(pool, cpu) {
5648 			pool->node = cpu_to_node(cpu);
5649 		}
5650 	}
5651 
5652 	list_for_each_entry(wq, &workqueues, list)
5653 		wq_update_unbound_numa(wq, smp_processor_id(), true);
5654 
5655 	mutex_unlock(&wq_pool_mutex);
5656 
5657 	/* create the initial workers */
5658 	for_each_online_cpu(cpu) {
5659 		for_each_cpu_worker_pool(pool, cpu) {
5660 			pool->flags &= ~POOL_DISASSOCIATED;
5661 			BUG_ON(!create_worker(pool));
5662 		}
5663 	}
5664 
5665 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5666 		BUG_ON(!create_worker(pool));
5667 
5668 	wq_online = true;
5669 	wq_watchdog_init();
5670 
5671 	return 0;
5672 }
5673