xref: /openbmc/linux/kernel/workqueue.c (revision 022dacdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 
54 #include "workqueue_internal.h"
55 
56 enum {
57 	/*
58 	 * worker_pool flags
59 	 *
60 	 * A bound pool is either associated or disassociated with its CPU.
61 	 * While associated (!DISASSOCIATED), all workers are bound to the
62 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 	 * is in effect.
64 	 *
65 	 * While DISASSOCIATED, the cpu may be offline and all workers have
66 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 	 * be executing on any CPU.  The pool behaves as an unbound one.
68 	 *
69 	 * Note that DISASSOCIATED should be flipped only while holding
70 	 * wq_pool_attach_mutex to avoid changing binding state while
71 	 * worker_attach_to_pool() is in progress.
72 	 */
73 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
74 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
75 
76 	/* worker flags */
77 	WORKER_DIE		= 1 << 1,	/* die die die */
78 	WORKER_IDLE		= 1 << 2,	/* is idle */
79 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83 
84 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
85 				  WORKER_UNBOUND | WORKER_REBOUND,
86 
87 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88 
89 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
90 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91 
92 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
93 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
94 
95 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
96 						/* call for help after 10ms
97 						   (min two ticks) */
98 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
99 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
100 
101 	/*
102 	 * Rescue workers are used only on emergencies and shared by
103 	 * all cpus.  Give MIN_NICE.
104 	 */
105 	RESCUER_NICE_LEVEL	= MIN_NICE,
106 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
107 
108 	WQ_NAME_LEN		= 24,
109 };
110 
111 /*
112  * Structure fields follow one of the following exclusion rules.
113  *
114  * I: Modifiable by initialization/destruction paths and read-only for
115  *    everyone else.
116  *
117  * P: Preemption protected.  Disabling preemption is enough and should
118  *    only be modified and accessed from the local cpu.
119  *
120  * L: pool->lock protected.  Access with pool->lock held.
121  *
122  * X: During normal operation, modification requires pool->lock and should
123  *    be done only from local cpu.  Either disabling preemption on local
124  *    cpu or grabbing pool->lock is enough for read access.  If
125  *    POOL_DISASSOCIATED is set, it's identical to L.
126  *
127  * A: wq_pool_attach_mutex protected.
128  *
129  * PL: wq_pool_mutex protected.
130  *
131  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
132  *
133  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
134  *
135  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
136  *      RCU for reads.
137  *
138  * WQ: wq->mutex protected.
139  *
140  * WR: wq->mutex protected for writes.  RCU protected for reads.
141  *
142  * MD: wq_mayday_lock protected.
143  */
144 
145 /* struct worker is defined in workqueue_internal.h */
146 
147 struct worker_pool {
148 	spinlock_t		lock;		/* the pool lock */
149 	int			cpu;		/* I: the associated cpu */
150 	int			node;		/* I: the associated node ID */
151 	int			id;		/* I: pool ID */
152 	unsigned int		flags;		/* X: flags */
153 
154 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
155 
156 	struct list_head	worklist;	/* L: list of pending works */
157 
158 	int			nr_workers;	/* L: total number of workers */
159 	int			nr_idle;	/* L: currently idle workers */
160 
161 	struct list_head	idle_list;	/* X: list of idle workers */
162 	struct timer_list	idle_timer;	/* L: worker idle timeout */
163 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
164 
165 	/* a workers is either on busy_hash or idle_list, or the manager */
166 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 						/* L: hash of busy workers */
168 
169 	struct worker		*manager;	/* L: purely informational */
170 	struct list_head	workers;	/* A: attached workers */
171 	struct completion	*detach_completion; /* all workers detached */
172 
173 	struct ida		worker_ida;	/* worker IDs for task name */
174 
175 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
176 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
177 	int			refcnt;		/* PL: refcnt for unbound pools */
178 
179 	/*
180 	 * The current concurrency level.  As it's likely to be accessed
181 	 * from other CPUs during try_to_wake_up(), put it in a separate
182 	 * cacheline.
183 	 */
184 	atomic_t		nr_running ____cacheline_aligned_in_smp;
185 
186 	/*
187 	 * Destruction of pool is RCU protected to allow dereferences
188 	 * from get_work_pool().
189 	 */
190 	struct rcu_head		rcu;
191 } ____cacheline_aligned_in_smp;
192 
193 /*
194  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
195  * of work_struct->data are used for flags and the remaining high bits
196  * point to the pwq; thus, pwqs need to be aligned at two's power of the
197  * number of flag bits.
198  */
199 struct pool_workqueue {
200 	struct worker_pool	*pool;		/* I: the associated pool */
201 	struct workqueue_struct *wq;		/* I: the owning workqueue */
202 	int			work_color;	/* L: current color */
203 	int			flush_color;	/* L: flushing color */
204 	int			refcnt;		/* L: reference count */
205 	int			nr_in_flight[WORK_NR_COLORS];
206 						/* L: nr of in_flight works */
207 	int			nr_active;	/* L: nr of active works */
208 	int			max_active;	/* L: max active works */
209 	struct list_head	delayed_works;	/* L: delayed works */
210 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
211 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
212 
213 	/*
214 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
215 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
216 	 * itself is also RCU protected so that the first pwq can be
217 	 * determined without grabbing wq->mutex.
218 	 */
219 	struct work_struct	unbound_release_work;
220 	struct rcu_head		rcu;
221 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
222 
223 /*
224  * Structure used to wait for workqueue flush.
225  */
226 struct wq_flusher {
227 	struct list_head	list;		/* WQ: list of flushers */
228 	int			flush_color;	/* WQ: flush color waiting for */
229 	struct completion	done;		/* flush completion */
230 };
231 
232 struct wq_device;
233 
234 /*
235  * The externally visible workqueue.  It relays the issued work items to
236  * the appropriate worker_pool through its pool_workqueues.
237  */
238 struct workqueue_struct {
239 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
240 	struct list_head	list;		/* PR: list of all workqueues */
241 
242 	struct mutex		mutex;		/* protects this wq */
243 	int			work_color;	/* WQ: current work color */
244 	int			flush_color;	/* WQ: current flush color */
245 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
246 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
247 	struct list_head	flusher_queue;	/* WQ: flush waiters */
248 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
249 
250 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
251 	struct worker		*rescuer;	/* MD: rescue worker */
252 
253 	int			nr_drainers;	/* WQ: drain in progress */
254 	int			saved_max_active; /* WQ: saved pwq max_active */
255 
256 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
257 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
258 
259 #ifdef CONFIG_SYSFS
260 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
261 #endif
262 #ifdef CONFIG_LOCKDEP
263 	char			*lock_name;
264 	struct lock_class_key	key;
265 	struct lockdep_map	lockdep_map;
266 #endif
267 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
268 
269 	/*
270 	 * Destruction of workqueue_struct is RCU protected to allow walking
271 	 * the workqueues list without grabbing wq_pool_mutex.
272 	 * This is used to dump all workqueues from sysrq.
273 	 */
274 	struct rcu_head		rcu;
275 
276 	/* hot fields used during command issue, aligned to cacheline */
277 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281 
282 static struct kmem_cache *pwq_cache;
283 
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 					/* possible CPUs of each node */
286 
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289 
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293 
294 static bool wq_online;			/* can kworkers be created yet? */
295 
296 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
297 
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300 
301 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
304 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
305 
306 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
307 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
308 
309 /* PL: allowable cpus for unbound wqs and work items */
310 static cpumask_var_t wq_unbound_cpumask;
311 
312 /* CPU where unbound work was last round robin scheduled from this CPU */
313 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
314 
315 /*
316  * Local execution of unbound work items is no longer guaranteed.  The
317  * following always forces round-robin CPU selection on unbound work items
318  * to uncover usages which depend on it.
319  */
320 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321 static bool wq_debug_force_rr_cpu = true;
322 #else
323 static bool wq_debug_force_rr_cpu = false;
324 #endif
325 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326 
327 /* the per-cpu worker pools */
328 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
329 
330 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
331 
332 /* PL: hash of all unbound pools keyed by pool->attrs */
333 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334 
335 /* I: attributes used when instantiating standard unbound pools on demand */
336 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337 
338 /* I: attributes used when instantiating ordered pools on demand */
339 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340 
341 struct workqueue_struct *system_wq __read_mostly;
342 EXPORT_SYMBOL(system_wq);
343 struct workqueue_struct *system_highpri_wq __read_mostly;
344 EXPORT_SYMBOL_GPL(system_highpri_wq);
345 struct workqueue_struct *system_long_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_long_wq);
347 struct workqueue_struct *system_unbound_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_unbound_wq);
349 struct workqueue_struct *system_freezable_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_freezable_wq);
351 struct workqueue_struct *system_power_efficient_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
355 
356 static int worker_thread(void *__worker);
357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
358 static void show_pwq(struct pool_workqueue *pwq);
359 
360 #define CREATE_TRACE_POINTS
361 #include <trace/events/workqueue.h>
362 
363 #define assert_rcu_or_pool_mutex()					\
364 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
365 			 !lockdep_is_held(&wq_pool_mutex),		\
366 			 "RCU or wq_pool_mutex should be held")
367 
368 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
369 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
370 			 !lockdep_is_held(&wq->mutex) &&		\
371 			 !lockdep_is_held(&wq_pool_mutex),		\
372 			 "RCU, wq->mutex or wq_pool_mutex should be held")
373 
374 #define for_each_cpu_worker_pool(pool, cpu)				\
375 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
376 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
377 	     (pool)++)
378 
379 /**
380  * for_each_pool - iterate through all worker_pools in the system
381  * @pool: iteration cursor
382  * @pi: integer used for iteration
383  *
384  * This must be called either with wq_pool_mutex held or RCU read
385  * locked.  If the pool needs to be used beyond the locking in effect, the
386  * caller is responsible for guaranteeing that the pool stays online.
387  *
388  * The if/else clause exists only for the lockdep assertion and can be
389  * ignored.
390  */
391 #define for_each_pool(pool, pi)						\
392 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
393 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
394 		else
395 
396 /**
397  * for_each_pool_worker - iterate through all workers of a worker_pool
398  * @worker: iteration cursor
399  * @pool: worker_pool to iterate workers of
400  *
401  * This must be called with wq_pool_attach_mutex.
402  *
403  * The if/else clause exists only for the lockdep assertion and can be
404  * ignored.
405  */
406 #define for_each_pool_worker(worker, pool)				\
407 	list_for_each_entry((worker), &(pool)->workers, node)		\
408 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
409 		else
410 
411 /**
412  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
413  * @pwq: iteration cursor
414  * @wq: the target workqueue
415  *
416  * This must be called either with wq->mutex held or RCU read locked.
417  * If the pwq needs to be used beyond the locking in effect, the caller is
418  * responsible for guaranteeing that the pwq stays online.
419  *
420  * The if/else clause exists only for the lockdep assertion and can be
421  * ignored.
422  */
423 #define for_each_pwq(pwq, wq)						\
424 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
425 				 lockdep_is_held(&(wq->mutex)))
426 
427 #ifdef CONFIG_DEBUG_OBJECTS_WORK
428 
429 static struct debug_obj_descr work_debug_descr;
430 
431 static void *work_debug_hint(void *addr)
432 {
433 	return ((struct work_struct *) addr)->func;
434 }
435 
436 static bool work_is_static_object(void *addr)
437 {
438 	struct work_struct *work = addr;
439 
440 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
441 }
442 
443 /*
444  * fixup_init is called when:
445  * - an active object is initialized
446  */
447 static bool work_fixup_init(void *addr, enum debug_obj_state state)
448 {
449 	struct work_struct *work = addr;
450 
451 	switch (state) {
452 	case ODEBUG_STATE_ACTIVE:
453 		cancel_work_sync(work);
454 		debug_object_init(work, &work_debug_descr);
455 		return true;
456 	default:
457 		return false;
458 	}
459 }
460 
461 /*
462  * fixup_free is called when:
463  * - an active object is freed
464  */
465 static bool work_fixup_free(void *addr, enum debug_obj_state state)
466 {
467 	struct work_struct *work = addr;
468 
469 	switch (state) {
470 	case ODEBUG_STATE_ACTIVE:
471 		cancel_work_sync(work);
472 		debug_object_free(work, &work_debug_descr);
473 		return true;
474 	default:
475 		return false;
476 	}
477 }
478 
479 static struct debug_obj_descr work_debug_descr = {
480 	.name		= "work_struct",
481 	.debug_hint	= work_debug_hint,
482 	.is_static_object = work_is_static_object,
483 	.fixup_init	= work_fixup_init,
484 	.fixup_free	= work_fixup_free,
485 };
486 
487 static inline void debug_work_activate(struct work_struct *work)
488 {
489 	debug_object_activate(work, &work_debug_descr);
490 }
491 
492 static inline void debug_work_deactivate(struct work_struct *work)
493 {
494 	debug_object_deactivate(work, &work_debug_descr);
495 }
496 
497 void __init_work(struct work_struct *work, int onstack)
498 {
499 	if (onstack)
500 		debug_object_init_on_stack(work, &work_debug_descr);
501 	else
502 		debug_object_init(work, &work_debug_descr);
503 }
504 EXPORT_SYMBOL_GPL(__init_work);
505 
506 void destroy_work_on_stack(struct work_struct *work)
507 {
508 	debug_object_free(work, &work_debug_descr);
509 }
510 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
511 
512 void destroy_delayed_work_on_stack(struct delayed_work *work)
513 {
514 	destroy_timer_on_stack(&work->timer);
515 	debug_object_free(&work->work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
518 
519 #else
520 static inline void debug_work_activate(struct work_struct *work) { }
521 static inline void debug_work_deactivate(struct work_struct *work) { }
522 #endif
523 
524 /**
525  * worker_pool_assign_id - allocate ID and assing it to @pool
526  * @pool: the pool pointer of interest
527  *
528  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529  * successfully, -errno on failure.
530  */
531 static int worker_pool_assign_id(struct worker_pool *pool)
532 {
533 	int ret;
534 
535 	lockdep_assert_held(&wq_pool_mutex);
536 
537 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
538 			GFP_KERNEL);
539 	if (ret >= 0) {
540 		pool->id = ret;
541 		return 0;
542 	}
543 	return ret;
544 }
545 
546 /**
547  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548  * @wq: the target workqueue
549  * @node: the node ID
550  *
551  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
552  * read locked.
553  * If the pwq needs to be used beyond the locking in effect, the caller is
554  * responsible for guaranteeing that the pwq stays online.
555  *
556  * Return: The unbound pool_workqueue for @node.
557  */
558 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
559 						  int node)
560 {
561 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
562 
563 	/*
564 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
565 	 * delayed item is pending.  The plan is to keep CPU -> NODE
566 	 * mapping valid and stable across CPU on/offlines.  Once that
567 	 * happens, this workaround can be removed.
568 	 */
569 	if (unlikely(node == NUMA_NO_NODE))
570 		return wq->dfl_pwq;
571 
572 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
573 }
574 
575 static unsigned int work_color_to_flags(int color)
576 {
577 	return color << WORK_STRUCT_COLOR_SHIFT;
578 }
579 
580 static int get_work_color(struct work_struct *work)
581 {
582 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
583 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
584 }
585 
586 static int work_next_color(int color)
587 {
588 	return (color + 1) % WORK_NR_COLORS;
589 }
590 
591 /*
592  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
593  * contain the pointer to the queued pwq.  Once execution starts, the flag
594  * is cleared and the high bits contain OFFQ flags and pool ID.
595  *
596  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
597  * and clear_work_data() can be used to set the pwq, pool or clear
598  * work->data.  These functions should only be called while the work is
599  * owned - ie. while the PENDING bit is set.
600  *
601  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
602  * corresponding to a work.  Pool is available once the work has been
603  * queued anywhere after initialization until it is sync canceled.  pwq is
604  * available only while the work item is queued.
605  *
606  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
607  * canceled.  While being canceled, a work item may have its PENDING set
608  * but stay off timer and worklist for arbitrarily long and nobody should
609  * try to steal the PENDING bit.
610  */
611 static inline void set_work_data(struct work_struct *work, unsigned long data,
612 				 unsigned long flags)
613 {
614 	WARN_ON_ONCE(!work_pending(work));
615 	atomic_long_set(&work->data, data | flags | work_static(work));
616 }
617 
618 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
619 			 unsigned long extra_flags)
620 {
621 	set_work_data(work, (unsigned long)pwq,
622 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
623 }
624 
625 static void set_work_pool_and_keep_pending(struct work_struct *work,
626 					   int pool_id)
627 {
628 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
629 		      WORK_STRUCT_PENDING);
630 }
631 
632 static void set_work_pool_and_clear_pending(struct work_struct *work,
633 					    int pool_id)
634 {
635 	/*
636 	 * The following wmb is paired with the implied mb in
637 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
638 	 * here are visible to and precede any updates by the next PENDING
639 	 * owner.
640 	 */
641 	smp_wmb();
642 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
643 	/*
644 	 * The following mb guarantees that previous clear of a PENDING bit
645 	 * will not be reordered with any speculative LOADS or STORES from
646 	 * work->current_func, which is executed afterwards.  This possible
647 	 * reordering can lead to a missed execution on attempt to queue
648 	 * the same @work.  E.g. consider this case:
649 	 *
650 	 *   CPU#0                         CPU#1
651 	 *   ----------------------------  --------------------------------
652 	 *
653 	 * 1  STORE event_indicated
654 	 * 2  queue_work_on() {
655 	 * 3    test_and_set_bit(PENDING)
656 	 * 4 }                             set_..._and_clear_pending() {
657 	 * 5                                 set_work_data() # clear bit
658 	 * 6                                 smp_mb()
659 	 * 7                               work->current_func() {
660 	 * 8				      LOAD event_indicated
661 	 *				   }
662 	 *
663 	 * Without an explicit full barrier speculative LOAD on line 8 can
664 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
665 	 * CPU#0 observes the PENDING bit is still set and new execution of
666 	 * a @work is not queued in a hope, that CPU#1 will eventually
667 	 * finish the queued @work.  Meanwhile CPU#1 does not see
668 	 * event_indicated is set, because speculative LOAD was executed
669 	 * before actual STORE.
670 	 */
671 	smp_mb();
672 }
673 
674 static void clear_work_data(struct work_struct *work)
675 {
676 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
677 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
678 }
679 
680 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
681 {
682 	unsigned long data = atomic_long_read(&work->data);
683 
684 	if (data & WORK_STRUCT_PWQ)
685 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
686 	else
687 		return NULL;
688 }
689 
690 /**
691  * get_work_pool - return the worker_pool a given work was associated with
692  * @work: the work item of interest
693  *
694  * Pools are created and destroyed under wq_pool_mutex, and allows read
695  * access under RCU read lock.  As such, this function should be
696  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
697  *
698  * All fields of the returned pool are accessible as long as the above
699  * mentioned locking is in effect.  If the returned pool needs to be used
700  * beyond the critical section, the caller is responsible for ensuring the
701  * returned pool is and stays online.
702  *
703  * Return: The worker_pool @work was last associated with.  %NULL if none.
704  */
705 static struct worker_pool *get_work_pool(struct work_struct *work)
706 {
707 	unsigned long data = atomic_long_read(&work->data);
708 	int pool_id;
709 
710 	assert_rcu_or_pool_mutex();
711 
712 	if (data & WORK_STRUCT_PWQ)
713 		return ((struct pool_workqueue *)
714 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
715 
716 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
717 	if (pool_id == WORK_OFFQ_POOL_NONE)
718 		return NULL;
719 
720 	return idr_find(&worker_pool_idr, pool_id);
721 }
722 
723 /**
724  * get_work_pool_id - return the worker pool ID a given work is associated with
725  * @work: the work item of interest
726  *
727  * Return: The worker_pool ID @work was last associated with.
728  * %WORK_OFFQ_POOL_NONE if none.
729  */
730 static int get_work_pool_id(struct work_struct *work)
731 {
732 	unsigned long data = atomic_long_read(&work->data);
733 
734 	if (data & WORK_STRUCT_PWQ)
735 		return ((struct pool_workqueue *)
736 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
737 
738 	return data >> WORK_OFFQ_POOL_SHIFT;
739 }
740 
741 static void mark_work_canceling(struct work_struct *work)
742 {
743 	unsigned long pool_id = get_work_pool_id(work);
744 
745 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
746 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
747 }
748 
749 static bool work_is_canceling(struct work_struct *work)
750 {
751 	unsigned long data = atomic_long_read(&work->data);
752 
753 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
754 }
755 
756 /*
757  * Policy functions.  These define the policies on how the global worker
758  * pools are managed.  Unless noted otherwise, these functions assume that
759  * they're being called with pool->lock held.
760  */
761 
762 static bool __need_more_worker(struct worker_pool *pool)
763 {
764 	return !atomic_read(&pool->nr_running);
765 }
766 
767 /*
768  * Need to wake up a worker?  Called from anything but currently
769  * running workers.
770  *
771  * Note that, because unbound workers never contribute to nr_running, this
772  * function will always return %true for unbound pools as long as the
773  * worklist isn't empty.
774  */
775 static bool need_more_worker(struct worker_pool *pool)
776 {
777 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
778 }
779 
780 /* Can I start working?  Called from busy but !running workers. */
781 static bool may_start_working(struct worker_pool *pool)
782 {
783 	return pool->nr_idle;
784 }
785 
786 /* Do I need to keep working?  Called from currently running workers. */
787 static bool keep_working(struct worker_pool *pool)
788 {
789 	return !list_empty(&pool->worklist) &&
790 		atomic_read(&pool->nr_running) <= 1;
791 }
792 
793 /* Do we need a new worker?  Called from manager. */
794 static bool need_to_create_worker(struct worker_pool *pool)
795 {
796 	return need_more_worker(pool) && !may_start_working(pool);
797 }
798 
799 /* Do we have too many workers and should some go away? */
800 static bool too_many_workers(struct worker_pool *pool)
801 {
802 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
803 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
804 	int nr_busy = pool->nr_workers - nr_idle;
805 
806 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
807 }
808 
809 /*
810  * Wake up functions.
811  */
812 
813 /* Return the first idle worker.  Safe with preemption disabled */
814 static struct worker *first_idle_worker(struct worker_pool *pool)
815 {
816 	if (unlikely(list_empty(&pool->idle_list)))
817 		return NULL;
818 
819 	return list_first_entry(&pool->idle_list, struct worker, entry);
820 }
821 
822 /**
823  * wake_up_worker - wake up an idle worker
824  * @pool: worker pool to wake worker from
825  *
826  * Wake up the first idle worker of @pool.
827  *
828  * CONTEXT:
829  * spin_lock_irq(pool->lock).
830  */
831 static void wake_up_worker(struct worker_pool *pool)
832 {
833 	struct worker *worker = first_idle_worker(pool);
834 
835 	if (likely(worker))
836 		wake_up_process(worker->task);
837 }
838 
839 /**
840  * wq_worker_running - a worker is running again
841  * @task: task waking up
842  *
843  * This function is called when a worker returns from schedule()
844  */
845 void wq_worker_running(struct task_struct *task)
846 {
847 	struct worker *worker = kthread_data(task);
848 
849 	if (!worker->sleeping)
850 		return;
851 	if (!(worker->flags & WORKER_NOT_RUNNING))
852 		atomic_inc(&worker->pool->nr_running);
853 	worker->sleeping = 0;
854 }
855 
856 /**
857  * wq_worker_sleeping - a worker is going to sleep
858  * @task: task going to sleep
859  *
860  * This function is called from schedule() when a busy worker is
861  * going to sleep. Preemption needs to be disabled to protect ->sleeping
862  * assignment.
863  */
864 void wq_worker_sleeping(struct task_struct *task)
865 {
866 	struct worker *next, *worker = kthread_data(task);
867 	struct worker_pool *pool;
868 
869 	/*
870 	 * Rescuers, which may not have all the fields set up like normal
871 	 * workers, also reach here, let's not access anything before
872 	 * checking NOT_RUNNING.
873 	 */
874 	if (worker->flags & WORKER_NOT_RUNNING)
875 		return;
876 
877 	pool = worker->pool;
878 
879 	/* Return if preempted before wq_worker_running() was reached */
880 	if (worker->sleeping)
881 		return;
882 
883 	worker->sleeping = 1;
884 	spin_lock_irq(&pool->lock);
885 
886 	/*
887 	 * The counterpart of the following dec_and_test, implied mb,
888 	 * worklist not empty test sequence is in insert_work().
889 	 * Please read comment there.
890 	 *
891 	 * NOT_RUNNING is clear.  This means that we're bound to and
892 	 * running on the local cpu w/ rq lock held and preemption
893 	 * disabled, which in turn means that none else could be
894 	 * manipulating idle_list, so dereferencing idle_list without pool
895 	 * lock is safe.
896 	 */
897 	if (atomic_dec_and_test(&pool->nr_running) &&
898 	    !list_empty(&pool->worklist)) {
899 		next = first_idle_worker(pool);
900 		if (next)
901 			wake_up_process(next->task);
902 	}
903 	spin_unlock_irq(&pool->lock);
904 }
905 
906 /**
907  * wq_worker_last_func - retrieve worker's last work function
908  * @task: Task to retrieve last work function of.
909  *
910  * Determine the last function a worker executed. This is called from
911  * the scheduler to get a worker's last known identity.
912  *
913  * CONTEXT:
914  * spin_lock_irq(rq->lock)
915  *
916  * This function is called during schedule() when a kworker is going
917  * to sleep. It's used by psi to identify aggregation workers during
918  * dequeuing, to allow periodic aggregation to shut-off when that
919  * worker is the last task in the system or cgroup to go to sleep.
920  *
921  * As this function doesn't involve any workqueue-related locking, it
922  * only returns stable values when called from inside the scheduler's
923  * queuing and dequeuing paths, when @task, which must be a kworker,
924  * is guaranteed to not be processing any works.
925  *
926  * Return:
927  * The last work function %current executed as a worker, NULL if it
928  * hasn't executed any work yet.
929  */
930 work_func_t wq_worker_last_func(struct task_struct *task)
931 {
932 	struct worker *worker = kthread_data(task);
933 
934 	return worker->last_func;
935 }
936 
937 /**
938  * worker_set_flags - set worker flags and adjust nr_running accordingly
939  * @worker: self
940  * @flags: flags to set
941  *
942  * Set @flags in @worker->flags and adjust nr_running accordingly.
943  *
944  * CONTEXT:
945  * spin_lock_irq(pool->lock)
946  */
947 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
948 {
949 	struct worker_pool *pool = worker->pool;
950 
951 	WARN_ON_ONCE(worker->task != current);
952 
953 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
954 	if ((flags & WORKER_NOT_RUNNING) &&
955 	    !(worker->flags & WORKER_NOT_RUNNING)) {
956 		atomic_dec(&pool->nr_running);
957 	}
958 
959 	worker->flags |= flags;
960 }
961 
962 /**
963  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
964  * @worker: self
965  * @flags: flags to clear
966  *
967  * Clear @flags in @worker->flags and adjust nr_running accordingly.
968  *
969  * CONTEXT:
970  * spin_lock_irq(pool->lock)
971  */
972 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
973 {
974 	struct worker_pool *pool = worker->pool;
975 	unsigned int oflags = worker->flags;
976 
977 	WARN_ON_ONCE(worker->task != current);
978 
979 	worker->flags &= ~flags;
980 
981 	/*
982 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
983 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
984 	 * of multiple flags, not a single flag.
985 	 */
986 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
987 		if (!(worker->flags & WORKER_NOT_RUNNING))
988 			atomic_inc(&pool->nr_running);
989 }
990 
991 /**
992  * find_worker_executing_work - find worker which is executing a work
993  * @pool: pool of interest
994  * @work: work to find worker for
995  *
996  * Find a worker which is executing @work on @pool by searching
997  * @pool->busy_hash which is keyed by the address of @work.  For a worker
998  * to match, its current execution should match the address of @work and
999  * its work function.  This is to avoid unwanted dependency between
1000  * unrelated work executions through a work item being recycled while still
1001  * being executed.
1002  *
1003  * This is a bit tricky.  A work item may be freed once its execution
1004  * starts and nothing prevents the freed area from being recycled for
1005  * another work item.  If the same work item address ends up being reused
1006  * before the original execution finishes, workqueue will identify the
1007  * recycled work item as currently executing and make it wait until the
1008  * current execution finishes, introducing an unwanted dependency.
1009  *
1010  * This function checks the work item address and work function to avoid
1011  * false positives.  Note that this isn't complete as one may construct a
1012  * work function which can introduce dependency onto itself through a
1013  * recycled work item.  Well, if somebody wants to shoot oneself in the
1014  * foot that badly, there's only so much we can do, and if such deadlock
1015  * actually occurs, it should be easy to locate the culprit work function.
1016  *
1017  * CONTEXT:
1018  * spin_lock_irq(pool->lock).
1019  *
1020  * Return:
1021  * Pointer to worker which is executing @work if found, %NULL
1022  * otherwise.
1023  */
1024 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1025 						 struct work_struct *work)
1026 {
1027 	struct worker *worker;
1028 
1029 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1030 			       (unsigned long)work)
1031 		if (worker->current_work == work &&
1032 		    worker->current_func == work->func)
1033 			return worker;
1034 
1035 	return NULL;
1036 }
1037 
1038 /**
1039  * move_linked_works - move linked works to a list
1040  * @work: start of series of works to be scheduled
1041  * @head: target list to append @work to
1042  * @nextp: out parameter for nested worklist walking
1043  *
1044  * Schedule linked works starting from @work to @head.  Work series to
1045  * be scheduled starts at @work and includes any consecutive work with
1046  * WORK_STRUCT_LINKED set in its predecessor.
1047  *
1048  * If @nextp is not NULL, it's updated to point to the next work of
1049  * the last scheduled work.  This allows move_linked_works() to be
1050  * nested inside outer list_for_each_entry_safe().
1051  *
1052  * CONTEXT:
1053  * spin_lock_irq(pool->lock).
1054  */
1055 static void move_linked_works(struct work_struct *work, struct list_head *head,
1056 			      struct work_struct **nextp)
1057 {
1058 	struct work_struct *n;
1059 
1060 	/*
1061 	 * Linked worklist will always end before the end of the list,
1062 	 * use NULL for list head.
1063 	 */
1064 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1065 		list_move_tail(&work->entry, head);
1066 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1067 			break;
1068 	}
1069 
1070 	/*
1071 	 * If we're already inside safe list traversal and have moved
1072 	 * multiple works to the scheduled queue, the next position
1073 	 * needs to be updated.
1074 	 */
1075 	if (nextp)
1076 		*nextp = n;
1077 }
1078 
1079 /**
1080  * get_pwq - get an extra reference on the specified pool_workqueue
1081  * @pwq: pool_workqueue to get
1082  *
1083  * Obtain an extra reference on @pwq.  The caller should guarantee that
1084  * @pwq has positive refcnt and be holding the matching pool->lock.
1085  */
1086 static void get_pwq(struct pool_workqueue *pwq)
1087 {
1088 	lockdep_assert_held(&pwq->pool->lock);
1089 	WARN_ON_ONCE(pwq->refcnt <= 0);
1090 	pwq->refcnt++;
1091 }
1092 
1093 /**
1094  * put_pwq - put a pool_workqueue reference
1095  * @pwq: pool_workqueue to put
1096  *
1097  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1098  * destruction.  The caller should be holding the matching pool->lock.
1099  */
1100 static void put_pwq(struct pool_workqueue *pwq)
1101 {
1102 	lockdep_assert_held(&pwq->pool->lock);
1103 	if (likely(--pwq->refcnt))
1104 		return;
1105 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1106 		return;
1107 	/*
1108 	 * @pwq can't be released under pool->lock, bounce to
1109 	 * pwq_unbound_release_workfn().  This never recurses on the same
1110 	 * pool->lock as this path is taken only for unbound workqueues and
1111 	 * the release work item is scheduled on a per-cpu workqueue.  To
1112 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1113 	 * subclass of 1 in get_unbound_pool().
1114 	 */
1115 	schedule_work(&pwq->unbound_release_work);
1116 }
1117 
1118 /**
1119  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1120  * @pwq: pool_workqueue to put (can be %NULL)
1121  *
1122  * put_pwq() with locking.  This function also allows %NULL @pwq.
1123  */
1124 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1125 {
1126 	if (pwq) {
1127 		/*
1128 		 * As both pwqs and pools are RCU protected, the
1129 		 * following lock operations are safe.
1130 		 */
1131 		spin_lock_irq(&pwq->pool->lock);
1132 		put_pwq(pwq);
1133 		spin_unlock_irq(&pwq->pool->lock);
1134 	}
1135 }
1136 
1137 static void pwq_activate_delayed_work(struct work_struct *work)
1138 {
1139 	struct pool_workqueue *pwq = get_work_pwq(work);
1140 
1141 	trace_workqueue_activate_work(work);
1142 	if (list_empty(&pwq->pool->worklist))
1143 		pwq->pool->watchdog_ts = jiffies;
1144 	move_linked_works(work, &pwq->pool->worklist, NULL);
1145 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1146 	pwq->nr_active++;
1147 }
1148 
1149 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1150 {
1151 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1152 						    struct work_struct, entry);
1153 
1154 	pwq_activate_delayed_work(work);
1155 }
1156 
1157 /**
1158  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1159  * @pwq: pwq of interest
1160  * @color: color of work which left the queue
1161  *
1162  * A work either has completed or is removed from pending queue,
1163  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1164  *
1165  * CONTEXT:
1166  * spin_lock_irq(pool->lock).
1167  */
1168 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1169 {
1170 	/* uncolored work items don't participate in flushing or nr_active */
1171 	if (color == WORK_NO_COLOR)
1172 		goto out_put;
1173 
1174 	pwq->nr_in_flight[color]--;
1175 
1176 	pwq->nr_active--;
1177 	if (!list_empty(&pwq->delayed_works)) {
1178 		/* one down, submit a delayed one */
1179 		if (pwq->nr_active < pwq->max_active)
1180 			pwq_activate_first_delayed(pwq);
1181 	}
1182 
1183 	/* is flush in progress and are we at the flushing tip? */
1184 	if (likely(pwq->flush_color != color))
1185 		goto out_put;
1186 
1187 	/* are there still in-flight works? */
1188 	if (pwq->nr_in_flight[color])
1189 		goto out_put;
1190 
1191 	/* this pwq is done, clear flush_color */
1192 	pwq->flush_color = -1;
1193 
1194 	/*
1195 	 * If this was the last pwq, wake up the first flusher.  It
1196 	 * will handle the rest.
1197 	 */
1198 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1199 		complete(&pwq->wq->first_flusher->done);
1200 out_put:
1201 	put_pwq(pwq);
1202 }
1203 
1204 /**
1205  * try_to_grab_pending - steal work item from worklist and disable irq
1206  * @work: work item to steal
1207  * @is_dwork: @work is a delayed_work
1208  * @flags: place to store irq state
1209  *
1210  * Try to grab PENDING bit of @work.  This function can handle @work in any
1211  * stable state - idle, on timer or on worklist.
1212  *
1213  * Return:
1214  *  1		if @work was pending and we successfully stole PENDING
1215  *  0		if @work was idle and we claimed PENDING
1216  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1217  *  -ENOENT	if someone else is canceling @work, this state may persist
1218  *		for arbitrarily long
1219  *
1220  * Note:
1221  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1222  * interrupted while holding PENDING and @work off queue, irq must be
1223  * disabled on entry.  This, combined with delayed_work->timer being
1224  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1225  *
1226  * On successful return, >= 0, irq is disabled and the caller is
1227  * responsible for releasing it using local_irq_restore(*@flags).
1228  *
1229  * This function is safe to call from any context including IRQ handler.
1230  */
1231 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1232 			       unsigned long *flags)
1233 {
1234 	struct worker_pool *pool;
1235 	struct pool_workqueue *pwq;
1236 
1237 	local_irq_save(*flags);
1238 
1239 	/* try to steal the timer if it exists */
1240 	if (is_dwork) {
1241 		struct delayed_work *dwork = to_delayed_work(work);
1242 
1243 		/*
1244 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1245 		 * guaranteed that the timer is not queued anywhere and not
1246 		 * running on the local CPU.
1247 		 */
1248 		if (likely(del_timer(&dwork->timer)))
1249 			return 1;
1250 	}
1251 
1252 	/* try to claim PENDING the normal way */
1253 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1254 		return 0;
1255 
1256 	rcu_read_lock();
1257 	/*
1258 	 * The queueing is in progress, or it is already queued. Try to
1259 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1260 	 */
1261 	pool = get_work_pool(work);
1262 	if (!pool)
1263 		goto fail;
1264 
1265 	spin_lock(&pool->lock);
1266 	/*
1267 	 * work->data is guaranteed to point to pwq only while the work
1268 	 * item is queued on pwq->wq, and both updating work->data to point
1269 	 * to pwq on queueing and to pool on dequeueing are done under
1270 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1271 	 * points to pwq which is associated with a locked pool, the work
1272 	 * item is currently queued on that pool.
1273 	 */
1274 	pwq = get_work_pwq(work);
1275 	if (pwq && pwq->pool == pool) {
1276 		debug_work_deactivate(work);
1277 
1278 		/*
1279 		 * A delayed work item cannot be grabbed directly because
1280 		 * it might have linked NO_COLOR work items which, if left
1281 		 * on the delayed_list, will confuse pwq->nr_active
1282 		 * management later on and cause stall.  Make sure the work
1283 		 * item is activated before grabbing.
1284 		 */
1285 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1286 			pwq_activate_delayed_work(work);
1287 
1288 		list_del_init(&work->entry);
1289 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1290 
1291 		/* work->data points to pwq iff queued, point to pool */
1292 		set_work_pool_and_keep_pending(work, pool->id);
1293 
1294 		spin_unlock(&pool->lock);
1295 		rcu_read_unlock();
1296 		return 1;
1297 	}
1298 	spin_unlock(&pool->lock);
1299 fail:
1300 	rcu_read_unlock();
1301 	local_irq_restore(*flags);
1302 	if (work_is_canceling(work))
1303 		return -ENOENT;
1304 	cpu_relax();
1305 	return -EAGAIN;
1306 }
1307 
1308 /**
1309  * insert_work - insert a work into a pool
1310  * @pwq: pwq @work belongs to
1311  * @work: work to insert
1312  * @head: insertion point
1313  * @extra_flags: extra WORK_STRUCT_* flags to set
1314  *
1315  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1316  * work_struct flags.
1317  *
1318  * CONTEXT:
1319  * spin_lock_irq(pool->lock).
1320  */
1321 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1322 			struct list_head *head, unsigned int extra_flags)
1323 {
1324 	struct worker_pool *pool = pwq->pool;
1325 
1326 	/* we own @work, set data and link */
1327 	set_work_pwq(work, pwq, extra_flags);
1328 	list_add_tail(&work->entry, head);
1329 	get_pwq(pwq);
1330 
1331 	/*
1332 	 * Ensure either wq_worker_sleeping() sees the above
1333 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1334 	 * around lazily while there are works to be processed.
1335 	 */
1336 	smp_mb();
1337 
1338 	if (__need_more_worker(pool))
1339 		wake_up_worker(pool);
1340 }
1341 
1342 /*
1343  * Test whether @work is being queued from another work executing on the
1344  * same workqueue.
1345  */
1346 static bool is_chained_work(struct workqueue_struct *wq)
1347 {
1348 	struct worker *worker;
1349 
1350 	worker = current_wq_worker();
1351 	/*
1352 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1353 	 * I'm @worker, it's safe to dereference it without locking.
1354 	 */
1355 	return worker && worker->current_pwq->wq == wq;
1356 }
1357 
1358 /*
1359  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1360  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1361  * avoid perturbing sensitive tasks.
1362  */
1363 static int wq_select_unbound_cpu(int cpu)
1364 {
1365 	static bool printed_dbg_warning;
1366 	int new_cpu;
1367 
1368 	if (likely(!wq_debug_force_rr_cpu)) {
1369 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1370 			return cpu;
1371 	} else if (!printed_dbg_warning) {
1372 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1373 		printed_dbg_warning = true;
1374 	}
1375 
1376 	if (cpumask_empty(wq_unbound_cpumask))
1377 		return cpu;
1378 
1379 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1380 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1381 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1382 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1383 		if (unlikely(new_cpu >= nr_cpu_ids))
1384 			return cpu;
1385 	}
1386 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1387 
1388 	return new_cpu;
1389 }
1390 
1391 static void __queue_work(int cpu, struct workqueue_struct *wq,
1392 			 struct work_struct *work)
1393 {
1394 	struct pool_workqueue *pwq;
1395 	struct worker_pool *last_pool;
1396 	struct list_head *worklist;
1397 	unsigned int work_flags;
1398 	unsigned int req_cpu = cpu;
1399 
1400 	/*
1401 	 * While a work item is PENDING && off queue, a task trying to
1402 	 * steal the PENDING will busy-loop waiting for it to either get
1403 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1404 	 * happen with IRQ disabled.
1405 	 */
1406 	lockdep_assert_irqs_disabled();
1407 
1408 	debug_work_activate(work);
1409 
1410 	/* if draining, only works from the same workqueue are allowed */
1411 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1412 	    WARN_ON_ONCE(!is_chained_work(wq)))
1413 		return;
1414 	rcu_read_lock();
1415 retry:
1416 	/* pwq which will be used unless @work is executing elsewhere */
1417 	if (wq->flags & WQ_UNBOUND) {
1418 		if (req_cpu == WORK_CPU_UNBOUND)
1419 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1420 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1421 	} else {
1422 		if (req_cpu == WORK_CPU_UNBOUND)
1423 			cpu = raw_smp_processor_id();
1424 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1425 	}
1426 
1427 	/*
1428 	 * If @work was previously on a different pool, it might still be
1429 	 * running there, in which case the work needs to be queued on that
1430 	 * pool to guarantee non-reentrancy.
1431 	 */
1432 	last_pool = get_work_pool(work);
1433 	if (last_pool && last_pool != pwq->pool) {
1434 		struct worker *worker;
1435 
1436 		spin_lock(&last_pool->lock);
1437 
1438 		worker = find_worker_executing_work(last_pool, work);
1439 
1440 		if (worker && worker->current_pwq->wq == wq) {
1441 			pwq = worker->current_pwq;
1442 		} else {
1443 			/* meh... not running there, queue here */
1444 			spin_unlock(&last_pool->lock);
1445 			spin_lock(&pwq->pool->lock);
1446 		}
1447 	} else {
1448 		spin_lock(&pwq->pool->lock);
1449 	}
1450 
1451 	/*
1452 	 * pwq is determined and locked.  For unbound pools, we could have
1453 	 * raced with pwq release and it could already be dead.  If its
1454 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1455 	 * without another pwq replacing it in the numa_pwq_tbl or while
1456 	 * work items are executing on it, so the retrying is guaranteed to
1457 	 * make forward-progress.
1458 	 */
1459 	if (unlikely(!pwq->refcnt)) {
1460 		if (wq->flags & WQ_UNBOUND) {
1461 			spin_unlock(&pwq->pool->lock);
1462 			cpu_relax();
1463 			goto retry;
1464 		}
1465 		/* oops */
1466 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1467 			  wq->name, cpu);
1468 	}
1469 
1470 	/* pwq determined, queue */
1471 	trace_workqueue_queue_work(req_cpu, pwq, work);
1472 
1473 	if (WARN_ON(!list_empty(&work->entry)))
1474 		goto out;
1475 
1476 	pwq->nr_in_flight[pwq->work_color]++;
1477 	work_flags = work_color_to_flags(pwq->work_color);
1478 
1479 	if (likely(pwq->nr_active < pwq->max_active)) {
1480 		trace_workqueue_activate_work(work);
1481 		pwq->nr_active++;
1482 		worklist = &pwq->pool->worklist;
1483 		if (list_empty(worklist))
1484 			pwq->pool->watchdog_ts = jiffies;
1485 	} else {
1486 		work_flags |= WORK_STRUCT_DELAYED;
1487 		worklist = &pwq->delayed_works;
1488 	}
1489 
1490 	insert_work(pwq, work, worklist, work_flags);
1491 
1492 out:
1493 	spin_unlock(&pwq->pool->lock);
1494 	rcu_read_unlock();
1495 }
1496 
1497 /**
1498  * queue_work_on - queue work on specific cpu
1499  * @cpu: CPU number to execute work on
1500  * @wq: workqueue to use
1501  * @work: work to queue
1502  *
1503  * We queue the work to a specific CPU, the caller must ensure it
1504  * can't go away.
1505  *
1506  * Return: %false if @work was already on a queue, %true otherwise.
1507  */
1508 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1509 		   struct work_struct *work)
1510 {
1511 	bool ret = false;
1512 	unsigned long flags;
1513 
1514 	local_irq_save(flags);
1515 
1516 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1517 		__queue_work(cpu, wq, work);
1518 		ret = true;
1519 	}
1520 
1521 	local_irq_restore(flags);
1522 	return ret;
1523 }
1524 EXPORT_SYMBOL(queue_work_on);
1525 
1526 /**
1527  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1528  * @node: NUMA node ID that we want to select a CPU from
1529  *
1530  * This function will attempt to find a "random" cpu available on a given
1531  * node. If there are no CPUs available on the given node it will return
1532  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1533  * available CPU if we need to schedule this work.
1534  */
1535 static int workqueue_select_cpu_near(int node)
1536 {
1537 	int cpu;
1538 
1539 	/* No point in doing this if NUMA isn't enabled for workqueues */
1540 	if (!wq_numa_enabled)
1541 		return WORK_CPU_UNBOUND;
1542 
1543 	/* Delay binding to CPU if node is not valid or online */
1544 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1545 		return WORK_CPU_UNBOUND;
1546 
1547 	/* Use local node/cpu if we are already there */
1548 	cpu = raw_smp_processor_id();
1549 	if (node == cpu_to_node(cpu))
1550 		return cpu;
1551 
1552 	/* Use "random" otherwise know as "first" online CPU of node */
1553 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1554 
1555 	/* If CPU is valid return that, otherwise just defer */
1556 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1557 }
1558 
1559 /**
1560  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1561  * @node: NUMA node that we are targeting the work for
1562  * @wq: workqueue to use
1563  * @work: work to queue
1564  *
1565  * We queue the work to a "random" CPU within a given NUMA node. The basic
1566  * idea here is to provide a way to somehow associate work with a given
1567  * NUMA node.
1568  *
1569  * This function will only make a best effort attempt at getting this onto
1570  * the right NUMA node. If no node is requested or the requested node is
1571  * offline then we just fall back to standard queue_work behavior.
1572  *
1573  * Currently the "random" CPU ends up being the first available CPU in the
1574  * intersection of cpu_online_mask and the cpumask of the node, unless we
1575  * are running on the node. In that case we just use the current CPU.
1576  *
1577  * Return: %false if @work was already on a queue, %true otherwise.
1578  */
1579 bool queue_work_node(int node, struct workqueue_struct *wq,
1580 		     struct work_struct *work)
1581 {
1582 	unsigned long flags;
1583 	bool ret = false;
1584 
1585 	/*
1586 	 * This current implementation is specific to unbound workqueues.
1587 	 * Specifically we only return the first available CPU for a given
1588 	 * node instead of cycling through individual CPUs within the node.
1589 	 *
1590 	 * If this is used with a per-cpu workqueue then the logic in
1591 	 * workqueue_select_cpu_near would need to be updated to allow for
1592 	 * some round robin type logic.
1593 	 */
1594 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1595 
1596 	local_irq_save(flags);
1597 
1598 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1599 		int cpu = workqueue_select_cpu_near(node);
1600 
1601 		__queue_work(cpu, wq, work);
1602 		ret = true;
1603 	}
1604 
1605 	local_irq_restore(flags);
1606 	return ret;
1607 }
1608 EXPORT_SYMBOL_GPL(queue_work_node);
1609 
1610 void delayed_work_timer_fn(struct timer_list *t)
1611 {
1612 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1613 
1614 	/* should have been called from irqsafe timer with irq already off */
1615 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1616 }
1617 EXPORT_SYMBOL(delayed_work_timer_fn);
1618 
1619 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1620 				struct delayed_work *dwork, unsigned long delay)
1621 {
1622 	struct timer_list *timer = &dwork->timer;
1623 	struct work_struct *work = &dwork->work;
1624 
1625 	WARN_ON_ONCE(!wq);
1626 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1627 	WARN_ON_ONCE(timer_pending(timer));
1628 	WARN_ON_ONCE(!list_empty(&work->entry));
1629 
1630 	/*
1631 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1632 	 * both optimization and correctness.  The earliest @timer can
1633 	 * expire is on the closest next tick and delayed_work users depend
1634 	 * on that there's no such delay when @delay is 0.
1635 	 */
1636 	if (!delay) {
1637 		__queue_work(cpu, wq, &dwork->work);
1638 		return;
1639 	}
1640 
1641 	dwork->wq = wq;
1642 	dwork->cpu = cpu;
1643 	timer->expires = jiffies + delay;
1644 
1645 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1646 		add_timer_on(timer, cpu);
1647 	else
1648 		add_timer(timer);
1649 }
1650 
1651 /**
1652  * queue_delayed_work_on - queue work on specific CPU after delay
1653  * @cpu: CPU number to execute work on
1654  * @wq: workqueue to use
1655  * @dwork: work to queue
1656  * @delay: number of jiffies to wait before queueing
1657  *
1658  * Return: %false if @work was already on a queue, %true otherwise.  If
1659  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1660  * execution.
1661  */
1662 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1663 			   struct delayed_work *dwork, unsigned long delay)
1664 {
1665 	struct work_struct *work = &dwork->work;
1666 	bool ret = false;
1667 	unsigned long flags;
1668 
1669 	/* read the comment in __queue_work() */
1670 	local_irq_save(flags);
1671 
1672 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1673 		__queue_delayed_work(cpu, wq, dwork, delay);
1674 		ret = true;
1675 	}
1676 
1677 	local_irq_restore(flags);
1678 	return ret;
1679 }
1680 EXPORT_SYMBOL(queue_delayed_work_on);
1681 
1682 /**
1683  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1684  * @cpu: CPU number to execute work on
1685  * @wq: workqueue to use
1686  * @dwork: work to queue
1687  * @delay: number of jiffies to wait before queueing
1688  *
1689  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1690  * modify @dwork's timer so that it expires after @delay.  If @delay is
1691  * zero, @work is guaranteed to be scheduled immediately regardless of its
1692  * current state.
1693  *
1694  * Return: %false if @dwork was idle and queued, %true if @dwork was
1695  * pending and its timer was modified.
1696  *
1697  * This function is safe to call from any context including IRQ handler.
1698  * See try_to_grab_pending() for details.
1699  */
1700 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1701 			 struct delayed_work *dwork, unsigned long delay)
1702 {
1703 	unsigned long flags;
1704 	int ret;
1705 
1706 	do {
1707 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1708 	} while (unlikely(ret == -EAGAIN));
1709 
1710 	if (likely(ret >= 0)) {
1711 		__queue_delayed_work(cpu, wq, dwork, delay);
1712 		local_irq_restore(flags);
1713 	}
1714 
1715 	/* -ENOENT from try_to_grab_pending() becomes %true */
1716 	return ret;
1717 }
1718 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1719 
1720 static void rcu_work_rcufn(struct rcu_head *rcu)
1721 {
1722 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1723 
1724 	/* read the comment in __queue_work() */
1725 	local_irq_disable();
1726 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1727 	local_irq_enable();
1728 }
1729 
1730 /**
1731  * queue_rcu_work - queue work after a RCU grace period
1732  * @wq: workqueue to use
1733  * @rwork: work to queue
1734  *
1735  * Return: %false if @rwork was already pending, %true otherwise.  Note
1736  * that a full RCU grace period is guaranteed only after a %true return.
1737  * While @rwork is guaranteed to be executed after a %false return, the
1738  * execution may happen before a full RCU grace period has passed.
1739  */
1740 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1741 {
1742 	struct work_struct *work = &rwork->work;
1743 
1744 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1745 		rwork->wq = wq;
1746 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1747 		return true;
1748 	}
1749 
1750 	return false;
1751 }
1752 EXPORT_SYMBOL(queue_rcu_work);
1753 
1754 /**
1755  * worker_enter_idle - enter idle state
1756  * @worker: worker which is entering idle state
1757  *
1758  * @worker is entering idle state.  Update stats and idle timer if
1759  * necessary.
1760  *
1761  * LOCKING:
1762  * spin_lock_irq(pool->lock).
1763  */
1764 static void worker_enter_idle(struct worker *worker)
1765 {
1766 	struct worker_pool *pool = worker->pool;
1767 
1768 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1769 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1770 			 (worker->hentry.next || worker->hentry.pprev)))
1771 		return;
1772 
1773 	/* can't use worker_set_flags(), also called from create_worker() */
1774 	worker->flags |= WORKER_IDLE;
1775 	pool->nr_idle++;
1776 	worker->last_active = jiffies;
1777 
1778 	/* idle_list is LIFO */
1779 	list_add(&worker->entry, &pool->idle_list);
1780 
1781 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1782 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1783 
1784 	/*
1785 	 * Sanity check nr_running.  Because unbind_workers() releases
1786 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1787 	 * nr_running, the warning may trigger spuriously.  Check iff
1788 	 * unbind is not in progress.
1789 	 */
1790 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1791 		     pool->nr_workers == pool->nr_idle &&
1792 		     atomic_read(&pool->nr_running));
1793 }
1794 
1795 /**
1796  * worker_leave_idle - leave idle state
1797  * @worker: worker which is leaving idle state
1798  *
1799  * @worker is leaving idle state.  Update stats.
1800  *
1801  * LOCKING:
1802  * spin_lock_irq(pool->lock).
1803  */
1804 static void worker_leave_idle(struct worker *worker)
1805 {
1806 	struct worker_pool *pool = worker->pool;
1807 
1808 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1809 		return;
1810 	worker_clr_flags(worker, WORKER_IDLE);
1811 	pool->nr_idle--;
1812 	list_del_init(&worker->entry);
1813 }
1814 
1815 static struct worker *alloc_worker(int node)
1816 {
1817 	struct worker *worker;
1818 
1819 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1820 	if (worker) {
1821 		INIT_LIST_HEAD(&worker->entry);
1822 		INIT_LIST_HEAD(&worker->scheduled);
1823 		INIT_LIST_HEAD(&worker->node);
1824 		/* on creation a worker is in !idle && prep state */
1825 		worker->flags = WORKER_PREP;
1826 	}
1827 	return worker;
1828 }
1829 
1830 /**
1831  * worker_attach_to_pool() - attach a worker to a pool
1832  * @worker: worker to be attached
1833  * @pool: the target pool
1834  *
1835  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1836  * cpu-binding of @worker are kept coordinated with the pool across
1837  * cpu-[un]hotplugs.
1838  */
1839 static void worker_attach_to_pool(struct worker *worker,
1840 				   struct worker_pool *pool)
1841 {
1842 	mutex_lock(&wq_pool_attach_mutex);
1843 
1844 	/*
1845 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1846 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1847 	 */
1848 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1849 
1850 	/*
1851 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1852 	 * stable across this function.  See the comments above the flag
1853 	 * definition for details.
1854 	 */
1855 	if (pool->flags & POOL_DISASSOCIATED)
1856 		worker->flags |= WORKER_UNBOUND;
1857 
1858 	list_add_tail(&worker->node, &pool->workers);
1859 	worker->pool = pool;
1860 
1861 	mutex_unlock(&wq_pool_attach_mutex);
1862 }
1863 
1864 /**
1865  * worker_detach_from_pool() - detach a worker from its pool
1866  * @worker: worker which is attached to its pool
1867  *
1868  * Undo the attaching which had been done in worker_attach_to_pool().  The
1869  * caller worker shouldn't access to the pool after detached except it has
1870  * other reference to the pool.
1871  */
1872 static void worker_detach_from_pool(struct worker *worker)
1873 {
1874 	struct worker_pool *pool = worker->pool;
1875 	struct completion *detach_completion = NULL;
1876 
1877 	mutex_lock(&wq_pool_attach_mutex);
1878 
1879 	list_del(&worker->node);
1880 	worker->pool = NULL;
1881 
1882 	if (list_empty(&pool->workers))
1883 		detach_completion = pool->detach_completion;
1884 	mutex_unlock(&wq_pool_attach_mutex);
1885 
1886 	/* clear leftover flags without pool->lock after it is detached */
1887 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1888 
1889 	if (detach_completion)
1890 		complete(detach_completion);
1891 }
1892 
1893 /**
1894  * create_worker - create a new workqueue worker
1895  * @pool: pool the new worker will belong to
1896  *
1897  * Create and start a new worker which is attached to @pool.
1898  *
1899  * CONTEXT:
1900  * Might sleep.  Does GFP_KERNEL allocations.
1901  *
1902  * Return:
1903  * Pointer to the newly created worker.
1904  */
1905 static struct worker *create_worker(struct worker_pool *pool)
1906 {
1907 	struct worker *worker = NULL;
1908 	int id = -1;
1909 	char id_buf[16];
1910 
1911 	/* ID is needed to determine kthread name */
1912 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1913 	if (id < 0)
1914 		goto fail;
1915 
1916 	worker = alloc_worker(pool->node);
1917 	if (!worker)
1918 		goto fail;
1919 
1920 	worker->id = id;
1921 
1922 	if (pool->cpu >= 0)
1923 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1924 			 pool->attrs->nice < 0  ? "H" : "");
1925 	else
1926 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1927 
1928 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1929 					      "kworker/%s", id_buf);
1930 	if (IS_ERR(worker->task))
1931 		goto fail;
1932 
1933 	set_user_nice(worker->task, pool->attrs->nice);
1934 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1935 
1936 	/* successful, attach the worker to the pool */
1937 	worker_attach_to_pool(worker, pool);
1938 
1939 	/* start the newly created worker */
1940 	spin_lock_irq(&pool->lock);
1941 	worker->pool->nr_workers++;
1942 	worker_enter_idle(worker);
1943 	wake_up_process(worker->task);
1944 	spin_unlock_irq(&pool->lock);
1945 
1946 	return worker;
1947 
1948 fail:
1949 	if (id >= 0)
1950 		ida_simple_remove(&pool->worker_ida, id);
1951 	kfree(worker);
1952 	return NULL;
1953 }
1954 
1955 /**
1956  * destroy_worker - destroy a workqueue worker
1957  * @worker: worker to be destroyed
1958  *
1959  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1960  * be idle.
1961  *
1962  * CONTEXT:
1963  * spin_lock_irq(pool->lock).
1964  */
1965 static void destroy_worker(struct worker *worker)
1966 {
1967 	struct worker_pool *pool = worker->pool;
1968 
1969 	lockdep_assert_held(&pool->lock);
1970 
1971 	/* sanity check frenzy */
1972 	if (WARN_ON(worker->current_work) ||
1973 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1974 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1975 		return;
1976 
1977 	pool->nr_workers--;
1978 	pool->nr_idle--;
1979 
1980 	list_del_init(&worker->entry);
1981 	worker->flags |= WORKER_DIE;
1982 	wake_up_process(worker->task);
1983 }
1984 
1985 static void idle_worker_timeout(struct timer_list *t)
1986 {
1987 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1988 
1989 	spin_lock_irq(&pool->lock);
1990 
1991 	while (too_many_workers(pool)) {
1992 		struct worker *worker;
1993 		unsigned long expires;
1994 
1995 		/* idle_list is kept in LIFO order, check the last one */
1996 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1997 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1998 
1999 		if (time_before(jiffies, expires)) {
2000 			mod_timer(&pool->idle_timer, expires);
2001 			break;
2002 		}
2003 
2004 		destroy_worker(worker);
2005 	}
2006 
2007 	spin_unlock_irq(&pool->lock);
2008 }
2009 
2010 static void send_mayday(struct work_struct *work)
2011 {
2012 	struct pool_workqueue *pwq = get_work_pwq(work);
2013 	struct workqueue_struct *wq = pwq->wq;
2014 
2015 	lockdep_assert_held(&wq_mayday_lock);
2016 
2017 	if (!wq->rescuer)
2018 		return;
2019 
2020 	/* mayday mayday mayday */
2021 	if (list_empty(&pwq->mayday_node)) {
2022 		/*
2023 		 * If @pwq is for an unbound wq, its base ref may be put at
2024 		 * any time due to an attribute change.  Pin @pwq until the
2025 		 * rescuer is done with it.
2026 		 */
2027 		get_pwq(pwq);
2028 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2029 		wake_up_process(wq->rescuer->task);
2030 	}
2031 }
2032 
2033 static void pool_mayday_timeout(struct timer_list *t)
2034 {
2035 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2036 	struct work_struct *work;
2037 
2038 	spin_lock_irq(&pool->lock);
2039 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2040 
2041 	if (need_to_create_worker(pool)) {
2042 		/*
2043 		 * We've been trying to create a new worker but
2044 		 * haven't been successful.  We might be hitting an
2045 		 * allocation deadlock.  Send distress signals to
2046 		 * rescuers.
2047 		 */
2048 		list_for_each_entry(work, &pool->worklist, entry)
2049 			send_mayday(work);
2050 	}
2051 
2052 	spin_unlock(&wq_mayday_lock);
2053 	spin_unlock_irq(&pool->lock);
2054 
2055 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2056 }
2057 
2058 /**
2059  * maybe_create_worker - create a new worker if necessary
2060  * @pool: pool to create a new worker for
2061  *
2062  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2063  * have at least one idle worker on return from this function.  If
2064  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2065  * sent to all rescuers with works scheduled on @pool to resolve
2066  * possible allocation deadlock.
2067  *
2068  * On return, need_to_create_worker() is guaranteed to be %false and
2069  * may_start_working() %true.
2070  *
2071  * LOCKING:
2072  * spin_lock_irq(pool->lock) which may be released and regrabbed
2073  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2074  * manager.
2075  */
2076 static void maybe_create_worker(struct worker_pool *pool)
2077 __releases(&pool->lock)
2078 __acquires(&pool->lock)
2079 {
2080 restart:
2081 	spin_unlock_irq(&pool->lock);
2082 
2083 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2084 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2085 
2086 	while (true) {
2087 		if (create_worker(pool) || !need_to_create_worker(pool))
2088 			break;
2089 
2090 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2091 
2092 		if (!need_to_create_worker(pool))
2093 			break;
2094 	}
2095 
2096 	del_timer_sync(&pool->mayday_timer);
2097 	spin_lock_irq(&pool->lock);
2098 	/*
2099 	 * This is necessary even after a new worker was just successfully
2100 	 * created as @pool->lock was dropped and the new worker might have
2101 	 * already become busy.
2102 	 */
2103 	if (need_to_create_worker(pool))
2104 		goto restart;
2105 }
2106 
2107 /**
2108  * manage_workers - manage worker pool
2109  * @worker: self
2110  *
2111  * Assume the manager role and manage the worker pool @worker belongs
2112  * to.  At any given time, there can be only zero or one manager per
2113  * pool.  The exclusion is handled automatically by this function.
2114  *
2115  * The caller can safely start processing works on false return.  On
2116  * true return, it's guaranteed that need_to_create_worker() is false
2117  * and may_start_working() is true.
2118  *
2119  * CONTEXT:
2120  * spin_lock_irq(pool->lock) which may be released and regrabbed
2121  * multiple times.  Does GFP_KERNEL allocations.
2122  *
2123  * Return:
2124  * %false if the pool doesn't need management and the caller can safely
2125  * start processing works, %true if management function was performed and
2126  * the conditions that the caller verified before calling the function may
2127  * no longer be true.
2128  */
2129 static bool manage_workers(struct worker *worker)
2130 {
2131 	struct worker_pool *pool = worker->pool;
2132 
2133 	if (pool->flags & POOL_MANAGER_ACTIVE)
2134 		return false;
2135 
2136 	pool->flags |= POOL_MANAGER_ACTIVE;
2137 	pool->manager = worker;
2138 
2139 	maybe_create_worker(pool);
2140 
2141 	pool->manager = NULL;
2142 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2143 	wake_up(&wq_manager_wait);
2144 	return true;
2145 }
2146 
2147 /**
2148  * process_one_work - process single work
2149  * @worker: self
2150  * @work: work to process
2151  *
2152  * Process @work.  This function contains all the logics necessary to
2153  * process a single work including synchronization against and
2154  * interaction with other workers on the same cpu, queueing and
2155  * flushing.  As long as context requirement is met, any worker can
2156  * call this function to process a work.
2157  *
2158  * CONTEXT:
2159  * spin_lock_irq(pool->lock) which is released and regrabbed.
2160  */
2161 static void process_one_work(struct worker *worker, struct work_struct *work)
2162 __releases(&pool->lock)
2163 __acquires(&pool->lock)
2164 {
2165 	struct pool_workqueue *pwq = get_work_pwq(work);
2166 	struct worker_pool *pool = worker->pool;
2167 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2168 	int work_color;
2169 	struct worker *collision;
2170 #ifdef CONFIG_LOCKDEP
2171 	/*
2172 	 * It is permissible to free the struct work_struct from
2173 	 * inside the function that is called from it, this we need to
2174 	 * take into account for lockdep too.  To avoid bogus "held
2175 	 * lock freed" warnings as well as problems when looking into
2176 	 * work->lockdep_map, make a copy and use that here.
2177 	 */
2178 	struct lockdep_map lockdep_map;
2179 
2180 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2181 #endif
2182 	/* ensure we're on the correct CPU */
2183 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2184 		     raw_smp_processor_id() != pool->cpu);
2185 
2186 	/*
2187 	 * A single work shouldn't be executed concurrently by
2188 	 * multiple workers on a single cpu.  Check whether anyone is
2189 	 * already processing the work.  If so, defer the work to the
2190 	 * currently executing one.
2191 	 */
2192 	collision = find_worker_executing_work(pool, work);
2193 	if (unlikely(collision)) {
2194 		move_linked_works(work, &collision->scheduled, NULL);
2195 		return;
2196 	}
2197 
2198 	/* claim and dequeue */
2199 	debug_work_deactivate(work);
2200 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2201 	worker->current_work = work;
2202 	worker->current_func = work->func;
2203 	worker->current_pwq = pwq;
2204 	work_color = get_work_color(work);
2205 
2206 	/*
2207 	 * Record wq name for cmdline and debug reporting, may get
2208 	 * overridden through set_worker_desc().
2209 	 */
2210 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2211 
2212 	list_del_init(&work->entry);
2213 
2214 	/*
2215 	 * CPU intensive works don't participate in concurrency management.
2216 	 * They're the scheduler's responsibility.  This takes @worker out
2217 	 * of concurrency management and the next code block will chain
2218 	 * execution of the pending work items.
2219 	 */
2220 	if (unlikely(cpu_intensive))
2221 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2222 
2223 	/*
2224 	 * Wake up another worker if necessary.  The condition is always
2225 	 * false for normal per-cpu workers since nr_running would always
2226 	 * be >= 1 at this point.  This is used to chain execution of the
2227 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2228 	 * UNBOUND and CPU_INTENSIVE ones.
2229 	 */
2230 	if (need_more_worker(pool))
2231 		wake_up_worker(pool);
2232 
2233 	/*
2234 	 * Record the last pool and clear PENDING which should be the last
2235 	 * update to @work.  Also, do this inside @pool->lock so that
2236 	 * PENDING and queued state changes happen together while IRQ is
2237 	 * disabled.
2238 	 */
2239 	set_work_pool_and_clear_pending(work, pool->id);
2240 
2241 	spin_unlock_irq(&pool->lock);
2242 
2243 	lock_map_acquire(&pwq->wq->lockdep_map);
2244 	lock_map_acquire(&lockdep_map);
2245 	/*
2246 	 * Strictly speaking we should mark the invariant state without holding
2247 	 * any locks, that is, before these two lock_map_acquire()'s.
2248 	 *
2249 	 * However, that would result in:
2250 	 *
2251 	 *   A(W1)
2252 	 *   WFC(C)
2253 	 *		A(W1)
2254 	 *		C(C)
2255 	 *
2256 	 * Which would create W1->C->W1 dependencies, even though there is no
2257 	 * actual deadlock possible. There are two solutions, using a
2258 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2259 	 * hit the lockdep limitation on recursive locks, or simply discard
2260 	 * these locks.
2261 	 *
2262 	 * AFAICT there is no possible deadlock scenario between the
2263 	 * flush_work() and complete() primitives (except for single-threaded
2264 	 * workqueues), so hiding them isn't a problem.
2265 	 */
2266 	lockdep_invariant_state(true);
2267 	trace_workqueue_execute_start(work);
2268 	worker->current_func(work);
2269 	/*
2270 	 * While we must be careful to not use "work" after this, the trace
2271 	 * point will only record its address.
2272 	 */
2273 	trace_workqueue_execute_end(work, worker->current_func);
2274 	lock_map_release(&lockdep_map);
2275 	lock_map_release(&pwq->wq->lockdep_map);
2276 
2277 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2278 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2279 		       "     last function: %ps\n",
2280 		       current->comm, preempt_count(), task_pid_nr(current),
2281 		       worker->current_func);
2282 		debug_show_held_locks(current);
2283 		dump_stack();
2284 	}
2285 
2286 	/*
2287 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2288 	 * kernels, where a requeueing work item waiting for something to
2289 	 * happen could deadlock with stop_machine as such work item could
2290 	 * indefinitely requeue itself while all other CPUs are trapped in
2291 	 * stop_machine. At the same time, report a quiescent RCU state so
2292 	 * the same condition doesn't freeze RCU.
2293 	 */
2294 	cond_resched();
2295 
2296 	spin_lock_irq(&pool->lock);
2297 
2298 	/* clear cpu intensive status */
2299 	if (unlikely(cpu_intensive))
2300 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2301 
2302 	/* tag the worker for identification in schedule() */
2303 	worker->last_func = worker->current_func;
2304 
2305 	/* we're done with it, release */
2306 	hash_del(&worker->hentry);
2307 	worker->current_work = NULL;
2308 	worker->current_func = NULL;
2309 	worker->current_pwq = NULL;
2310 	pwq_dec_nr_in_flight(pwq, work_color);
2311 }
2312 
2313 /**
2314  * process_scheduled_works - process scheduled works
2315  * @worker: self
2316  *
2317  * Process all scheduled works.  Please note that the scheduled list
2318  * may change while processing a work, so this function repeatedly
2319  * fetches a work from the top and executes it.
2320  *
2321  * CONTEXT:
2322  * spin_lock_irq(pool->lock) which may be released and regrabbed
2323  * multiple times.
2324  */
2325 static void process_scheduled_works(struct worker *worker)
2326 {
2327 	while (!list_empty(&worker->scheduled)) {
2328 		struct work_struct *work = list_first_entry(&worker->scheduled,
2329 						struct work_struct, entry);
2330 		process_one_work(worker, work);
2331 	}
2332 }
2333 
2334 static void set_pf_worker(bool val)
2335 {
2336 	mutex_lock(&wq_pool_attach_mutex);
2337 	if (val)
2338 		current->flags |= PF_WQ_WORKER;
2339 	else
2340 		current->flags &= ~PF_WQ_WORKER;
2341 	mutex_unlock(&wq_pool_attach_mutex);
2342 }
2343 
2344 /**
2345  * worker_thread - the worker thread function
2346  * @__worker: self
2347  *
2348  * The worker thread function.  All workers belong to a worker_pool -
2349  * either a per-cpu one or dynamic unbound one.  These workers process all
2350  * work items regardless of their specific target workqueue.  The only
2351  * exception is work items which belong to workqueues with a rescuer which
2352  * will be explained in rescuer_thread().
2353  *
2354  * Return: 0
2355  */
2356 static int worker_thread(void *__worker)
2357 {
2358 	struct worker *worker = __worker;
2359 	struct worker_pool *pool = worker->pool;
2360 
2361 	/* tell the scheduler that this is a workqueue worker */
2362 	set_pf_worker(true);
2363 woke_up:
2364 	spin_lock_irq(&pool->lock);
2365 
2366 	/* am I supposed to die? */
2367 	if (unlikely(worker->flags & WORKER_DIE)) {
2368 		spin_unlock_irq(&pool->lock);
2369 		WARN_ON_ONCE(!list_empty(&worker->entry));
2370 		set_pf_worker(false);
2371 
2372 		set_task_comm(worker->task, "kworker/dying");
2373 		ida_simple_remove(&pool->worker_ida, worker->id);
2374 		worker_detach_from_pool(worker);
2375 		kfree(worker);
2376 		return 0;
2377 	}
2378 
2379 	worker_leave_idle(worker);
2380 recheck:
2381 	/* no more worker necessary? */
2382 	if (!need_more_worker(pool))
2383 		goto sleep;
2384 
2385 	/* do we need to manage? */
2386 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2387 		goto recheck;
2388 
2389 	/*
2390 	 * ->scheduled list can only be filled while a worker is
2391 	 * preparing to process a work or actually processing it.
2392 	 * Make sure nobody diddled with it while I was sleeping.
2393 	 */
2394 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2395 
2396 	/*
2397 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2398 	 * worker or that someone else has already assumed the manager
2399 	 * role.  This is where @worker starts participating in concurrency
2400 	 * management if applicable and concurrency management is restored
2401 	 * after being rebound.  See rebind_workers() for details.
2402 	 */
2403 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2404 
2405 	do {
2406 		struct work_struct *work =
2407 			list_first_entry(&pool->worklist,
2408 					 struct work_struct, entry);
2409 
2410 		pool->watchdog_ts = jiffies;
2411 
2412 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2413 			/* optimization path, not strictly necessary */
2414 			process_one_work(worker, work);
2415 			if (unlikely(!list_empty(&worker->scheduled)))
2416 				process_scheduled_works(worker);
2417 		} else {
2418 			move_linked_works(work, &worker->scheduled, NULL);
2419 			process_scheduled_works(worker);
2420 		}
2421 	} while (keep_working(pool));
2422 
2423 	worker_set_flags(worker, WORKER_PREP);
2424 sleep:
2425 	/*
2426 	 * pool->lock is held and there's no work to process and no need to
2427 	 * manage, sleep.  Workers are woken up only while holding
2428 	 * pool->lock or from local cpu, so setting the current state
2429 	 * before releasing pool->lock is enough to prevent losing any
2430 	 * event.
2431 	 */
2432 	worker_enter_idle(worker);
2433 	__set_current_state(TASK_IDLE);
2434 	spin_unlock_irq(&pool->lock);
2435 	schedule();
2436 	goto woke_up;
2437 }
2438 
2439 /**
2440  * rescuer_thread - the rescuer thread function
2441  * @__rescuer: self
2442  *
2443  * Workqueue rescuer thread function.  There's one rescuer for each
2444  * workqueue which has WQ_MEM_RECLAIM set.
2445  *
2446  * Regular work processing on a pool may block trying to create a new
2447  * worker which uses GFP_KERNEL allocation which has slight chance of
2448  * developing into deadlock if some works currently on the same queue
2449  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2450  * the problem rescuer solves.
2451  *
2452  * When such condition is possible, the pool summons rescuers of all
2453  * workqueues which have works queued on the pool and let them process
2454  * those works so that forward progress can be guaranteed.
2455  *
2456  * This should happen rarely.
2457  *
2458  * Return: 0
2459  */
2460 static int rescuer_thread(void *__rescuer)
2461 {
2462 	struct worker *rescuer = __rescuer;
2463 	struct workqueue_struct *wq = rescuer->rescue_wq;
2464 	struct list_head *scheduled = &rescuer->scheduled;
2465 	bool should_stop;
2466 
2467 	set_user_nice(current, RESCUER_NICE_LEVEL);
2468 
2469 	/*
2470 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2471 	 * doesn't participate in concurrency management.
2472 	 */
2473 	set_pf_worker(true);
2474 repeat:
2475 	set_current_state(TASK_IDLE);
2476 
2477 	/*
2478 	 * By the time the rescuer is requested to stop, the workqueue
2479 	 * shouldn't have any work pending, but @wq->maydays may still have
2480 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2481 	 * all the work items before the rescuer got to them.  Go through
2482 	 * @wq->maydays processing before acting on should_stop so that the
2483 	 * list is always empty on exit.
2484 	 */
2485 	should_stop = kthread_should_stop();
2486 
2487 	/* see whether any pwq is asking for help */
2488 	spin_lock_irq(&wq_mayday_lock);
2489 
2490 	while (!list_empty(&wq->maydays)) {
2491 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2492 					struct pool_workqueue, mayday_node);
2493 		struct worker_pool *pool = pwq->pool;
2494 		struct work_struct *work, *n;
2495 		bool first = true;
2496 
2497 		__set_current_state(TASK_RUNNING);
2498 		list_del_init(&pwq->mayday_node);
2499 
2500 		spin_unlock_irq(&wq_mayday_lock);
2501 
2502 		worker_attach_to_pool(rescuer, pool);
2503 
2504 		spin_lock_irq(&pool->lock);
2505 
2506 		/*
2507 		 * Slurp in all works issued via this workqueue and
2508 		 * process'em.
2509 		 */
2510 		WARN_ON_ONCE(!list_empty(scheduled));
2511 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2512 			if (get_work_pwq(work) == pwq) {
2513 				if (first)
2514 					pool->watchdog_ts = jiffies;
2515 				move_linked_works(work, scheduled, &n);
2516 			}
2517 			first = false;
2518 		}
2519 
2520 		if (!list_empty(scheduled)) {
2521 			process_scheduled_works(rescuer);
2522 
2523 			/*
2524 			 * The above execution of rescued work items could
2525 			 * have created more to rescue through
2526 			 * pwq_activate_first_delayed() or chained
2527 			 * queueing.  Let's put @pwq back on mayday list so
2528 			 * that such back-to-back work items, which may be
2529 			 * being used to relieve memory pressure, don't
2530 			 * incur MAYDAY_INTERVAL delay inbetween.
2531 			 */
2532 			if (need_to_create_worker(pool)) {
2533 				spin_lock(&wq_mayday_lock);
2534 				/*
2535 				 * Queue iff we aren't racing destruction
2536 				 * and somebody else hasn't queued it already.
2537 				 */
2538 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2539 					get_pwq(pwq);
2540 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2541 				}
2542 				spin_unlock(&wq_mayday_lock);
2543 			}
2544 		}
2545 
2546 		/*
2547 		 * Put the reference grabbed by send_mayday().  @pool won't
2548 		 * go away while we're still attached to it.
2549 		 */
2550 		put_pwq(pwq);
2551 
2552 		/*
2553 		 * Leave this pool.  If need_more_worker() is %true, notify a
2554 		 * regular worker; otherwise, we end up with 0 concurrency
2555 		 * and stalling the execution.
2556 		 */
2557 		if (need_more_worker(pool))
2558 			wake_up_worker(pool);
2559 
2560 		spin_unlock_irq(&pool->lock);
2561 
2562 		worker_detach_from_pool(rescuer);
2563 
2564 		spin_lock_irq(&wq_mayday_lock);
2565 	}
2566 
2567 	spin_unlock_irq(&wq_mayday_lock);
2568 
2569 	if (should_stop) {
2570 		__set_current_state(TASK_RUNNING);
2571 		set_pf_worker(false);
2572 		return 0;
2573 	}
2574 
2575 	/* rescuers should never participate in concurrency management */
2576 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2577 	schedule();
2578 	goto repeat;
2579 }
2580 
2581 /**
2582  * check_flush_dependency - check for flush dependency sanity
2583  * @target_wq: workqueue being flushed
2584  * @target_work: work item being flushed (NULL for workqueue flushes)
2585  *
2586  * %current is trying to flush the whole @target_wq or @target_work on it.
2587  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2588  * reclaiming memory or running on a workqueue which doesn't have
2589  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2590  * a deadlock.
2591  */
2592 static void check_flush_dependency(struct workqueue_struct *target_wq,
2593 				   struct work_struct *target_work)
2594 {
2595 	work_func_t target_func = target_work ? target_work->func : NULL;
2596 	struct worker *worker;
2597 
2598 	if (target_wq->flags & WQ_MEM_RECLAIM)
2599 		return;
2600 
2601 	worker = current_wq_worker();
2602 
2603 	WARN_ONCE(current->flags & PF_MEMALLOC,
2604 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2605 		  current->pid, current->comm, target_wq->name, target_func);
2606 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2607 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2608 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2609 		  worker->current_pwq->wq->name, worker->current_func,
2610 		  target_wq->name, target_func);
2611 }
2612 
2613 struct wq_barrier {
2614 	struct work_struct	work;
2615 	struct completion	done;
2616 	struct task_struct	*task;	/* purely informational */
2617 };
2618 
2619 static void wq_barrier_func(struct work_struct *work)
2620 {
2621 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2622 	complete(&barr->done);
2623 }
2624 
2625 /**
2626  * insert_wq_barrier - insert a barrier work
2627  * @pwq: pwq to insert barrier into
2628  * @barr: wq_barrier to insert
2629  * @target: target work to attach @barr to
2630  * @worker: worker currently executing @target, NULL if @target is not executing
2631  *
2632  * @barr is linked to @target such that @barr is completed only after
2633  * @target finishes execution.  Please note that the ordering
2634  * guarantee is observed only with respect to @target and on the local
2635  * cpu.
2636  *
2637  * Currently, a queued barrier can't be canceled.  This is because
2638  * try_to_grab_pending() can't determine whether the work to be
2639  * grabbed is at the head of the queue and thus can't clear LINKED
2640  * flag of the previous work while there must be a valid next work
2641  * after a work with LINKED flag set.
2642  *
2643  * Note that when @worker is non-NULL, @target may be modified
2644  * underneath us, so we can't reliably determine pwq from @target.
2645  *
2646  * CONTEXT:
2647  * spin_lock_irq(pool->lock).
2648  */
2649 static void insert_wq_barrier(struct pool_workqueue *pwq,
2650 			      struct wq_barrier *barr,
2651 			      struct work_struct *target, struct worker *worker)
2652 {
2653 	struct list_head *head;
2654 	unsigned int linked = 0;
2655 
2656 	/*
2657 	 * debugobject calls are safe here even with pool->lock locked
2658 	 * as we know for sure that this will not trigger any of the
2659 	 * checks and call back into the fixup functions where we
2660 	 * might deadlock.
2661 	 */
2662 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2663 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2664 
2665 	init_completion_map(&barr->done, &target->lockdep_map);
2666 
2667 	barr->task = current;
2668 
2669 	/*
2670 	 * If @target is currently being executed, schedule the
2671 	 * barrier to the worker; otherwise, put it after @target.
2672 	 */
2673 	if (worker)
2674 		head = worker->scheduled.next;
2675 	else {
2676 		unsigned long *bits = work_data_bits(target);
2677 
2678 		head = target->entry.next;
2679 		/* there can already be other linked works, inherit and set */
2680 		linked = *bits & WORK_STRUCT_LINKED;
2681 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2682 	}
2683 
2684 	debug_work_activate(&barr->work);
2685 	insert_work(pwq, &barr->work, head,
2686 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2687 }
2688 
2689 /**
2690  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2691  * @wq: workqueue being flushed
2692  * @flush_color: new flush color, < 0 for no-op
2693  * @work_color: new work color, < 0 for no-op
2694  *
2695  * Prepare pwqs for workqueue flushing.
2696  *
2697  * If @flush_color is non-negative, flush_color on all pwqs should be
2698  * -1.  If no pwq has in-flight commands at the specified color, all
2699  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2700  * has in flight commands, its pwq->flush_color is set to
2701  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2702  * wakeup logic is armed and %true is returned.
2703  *
2704  * The caller should have initialized @wq->first_flusher prior to
2705  * calling this function with non-negative @flush_color.  If
2706  * @flush_color is negative, no flush color update is done and %false
2707  * is returned.
2708  *
2709  * If @work_color is non-negative, all pwqs should have the same
2710  * work_color which is previous to @work_color and all will be
2711  * advanced to @work_color.
2712  *
2713  * CONTEXT:
2714  * mutex_lock(wq->mutex).
2715  *
2716  * Return:
2717  * %true if @flush_color >= 0 and there's something to flush.  %false
2718  * otherwise.
2719  */
2720 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2721 				      int flush_color, int work_color)
2722 {
2723 	bool wait = false;
2724 	struct pool_workqueue *pwq;
2725 
2726 	if (flush_color >= 0) {
2727 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2728 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2729 	}
2730 
2731 	for_each_pwq(pwq, wq) {
2732 		struct worker_pool *pool = pwq->pool;
2733 
2734 		spin_lock_irq(&pool->lock);
2735 
2736 		if (flush_color >= 0) {
2737 			WARN_ON_ONCE(pwq->flush_color != -1);
2738 
2739 			if (pwq->nr_in_flight[flush_color]) {
2740 				pwq->flush_color = flush_color;
2741 				atomic_inc(&wq->nr_pwqs_to_flush);
2742 				wait = true;
2743 			}
2744 		}
2745 
2746 		if (work_color >= 0) {
2747 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2748 			pwq->work_color = work_color;
2749 		}
2750 
2751 		spin_unlock_irq(&pool->lock);
2752 	}
2753 
2754 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2755 		complete(&wq->first_flusher->done);
2756 
2757 	return wait;
2758 }
2759 
2760 /**
2761  * flush_workqueue - ensure that any scheduled work has run to completion.
2762  * @wq: workqueue to flush
2763  *
2764  * This function sleeps until all work items which were queued on entry
2765  * have finished execution, but it is not livelocked by new incoming ones.
2766  */
2767 void flush_workqueue(struct workqueue_struct *wq)
2768 {
2769 	struct wq_flusher this_flusher = {
2770 		.list = LIST_HEAD_INIT(this_flusher.list),
2771 		.flush_color = -1,
2772 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2773 	};
2774 	int next_color;
2775 
2776 	if (WARN_ON(!wq_online))
2777 		return;
2778 
2779 	lock_map_acquire(&wq->lockdep_map);
2780 	lock_map_release(&wq->lockdep_map);
2781 
2782 	mutex_lock(&wq->mutex);
2783 
2784 	/*
2785 	 * Start-to-wait phase
2786 	 */
2787 	next_color = work_next_color(wq->work_color);
2788 
2789 	if (next_color != wq->flush_color) {
2790 		/*
2791 		 * Color space is not full.  The current work_color
2792 		 * becomes our flush_color and work_color is advanced
2793 		 * by one.
2794 		 */
2795 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2796 		this_flusher.flush_color = wq->work_color;
2797 		wq->work_color = next_color;
2798 
2799 		if (!wq->first_flusher) {
2800 			/* no flush in progress, become the first flusher */
2801 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2802 
2803 			wq->first_flusher = &this_flusher;
2804 
2805 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2806 						       wq->work_color)) {
2807 				/* nothing to flush, done */
2808 				wq->flush_color = next_color;
2809 				wq->first_flusher = NULL;
2810 				goto out_unlock;
2811 			}
2812 		} else {
2813 			/* wait in queue */
2814 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2815 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2816 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2817 		}
2818 	} else {
2819 		/*
2820 		 * Oops, color space is full, wait on overflow queue.
2821 		 * The next flush completion will assign us
2822 		 * flush_color and transfer to flusher_queue.
2823 		 */
2824 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2825 	}
2826 
2827 	check_flush_dependency(wq, NULL);
2828 
2829 	mutex_unlock(&wq->mutex);
2830 
2831 	wait_for_completion(&this_flusher.done);
2832 
2833 	/*
2834 	 * Wake-up-and-cascade phase
2835 	 *
2836 	 * First flushers are responsible for cascading flushes and
2837 	 * handling overflow.  Non-first flushers can simply return.
2838 	 */
2839 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2840 		return;
2841 
2842 	mutex_lock(&wq->mutex);
2843 
2844 	/* we might have raced, check again with mutex held */
2845 	if (wq->first_flusher != &this_flusher)
2846 		goto out_unlock;
2847 
2848 	WRITE_ONCE(wq->first_flusher, NULL);
2849 
2850 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2851 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2852 
2853 	while (true) {
2854 		struct wq_flusher *next, *tmp;
2855 
2856 		/* complete all the flushers sharing the current flush color */
2857 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2858 			if (next->flush_color != wq->flush_color)
2859 				break;
2860 			list_del_init(&next->list);
2861 			complete(&next->done);
2862 		}
2863 
2864 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2865 			     wq->flush_color != work_next_color(wq->work_color));
2866 
2867 		/* this flush_color is finished, advance by one */
2868 		wq->flush_color = work_next_color(wq->flush_color);
2869 
2870 		/* one color has been freed, handle overflow queue */
2871 		if (!list_empty(&wq->flusher_overflow)) {
2872 			/*
2873 			 * Assign the same color to all overflowed
2874 			 * flushers, advance work_color and append to
2875 			 * flusher_queue.  This is the start-to-wait
2876 			 * phase for these overflowed flushers.
2877 			 */
2878 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2879 				tmp->flush_color = wq->work_color;
2880 
2881 			wq->work_color = work_next_color(wq->work_color);
2882 
2883 			list_splice_tail_init(&wq->flusher_overflow,
2884 					      &wq->flusher_queue);
2885 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2886 		}
2887 
2888 		if (list_empty(&wq->flusher_queue)) {
2889 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2890 			break;
2891 		}
2892 
2893 		/*
2894 		 * Need to flush more colors.  Make the next flusher
2895 		 * the new first flusher and arm pwqs.
2896 		 */
2897 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2898 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2899 
2900 		list_del_init(&next->list);
2901 		wq->first_flusher = next;
2902 
2903 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2904 			break;
2905 
2906 		/*
2907 		 * Meh... this color is already done, clear first
2908 		 * flusher and repeat cascading.
2909 		 */
2910 		wq->first_flusher = NULL;
2911 	}
2912 
2913 out_unlock:
2914 	mutex_unlock(&wq->mutex);
2915 }
2916 EXPORT_SYMBOL(flush_workqueue);
2917 
2918 /**
2919  * drain_workqueue - drain a workqueue
2920  * @wq: workqueue to drain
2921  *
2922  * Wait until the workqueue becomes empty.  While draining is in progress,
2923  * only chain queueing is allowed.  IOW, only currently pending or running
2924  * work items on @wq can queue further work items on it.  @wq is flushed
2925  * repeatedly until it becomes empty.  The number of flushing is determined
2926  * by the depth of chaining and should be relatively short.  Whine if it
2927  * takes too long.
2928  */
2929 void drain_workqueue(struct workqueue_struct *wq)
2930 {
2931 	unsigned int flush_cnt = 0;
2932 	struct pool_workqueue *pwq;
2933 
2934 	/*
2935 	 * __queue_work() needs to test whether there are drainers, is much
2936 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2937 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2938 	 */
2939 	mutex_lock(&wq->mutex);
2940 	if (!wq->nr_drainers++)
2941 		wq->flags |= __WQ_DRAINING;
2942 	mutex_unlock(&wq->mutex);
2943 reflush:
2944 	flush_workqueue(wq);
2945 
2946 	mutex_lock(&wq->mutex);
2947 
2948 	for_each_pwq(pwq, wq) {
2949 		bool drained;
2950 
2951 		spin_lock_irq(&pwq->pool->lock);
2952 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2953 		spin_unlock_irq(&pwq->pool->lock);
2954 
2955 		if (drained)
2956 			continue;
2957 
2958 		if (++flush_cnt == 10 ||
2959 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2960 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2961 				wq->name, flush_cnt);
2962 
2963 		mutex_unlock(&wq->mutex);
2964 		goto reflush;
2965 	}
2966 
2967 	if (!--wq->nr_drainers)
2968 		wq->flags &= ~__WQ_DRAINING;
2969 	mutex_unlock(&wq->mutex);
2970 }
2971 EXPORT_SYMBOL_GPL(drain_workqueue);
2972 
2973 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2974 			     bool from_cancel)
2975 {
2976 	struct worker *worker = NULL;
2977 	struct worker_pool *pool;
2978 	struct pool_workqueue *pwq;
2979 
2980 	might_sleep();
2981 
2982 	rcu_read_lock();
2983 	pool = get_work_pool(work);
2984 	if (!pool) {
2985 		rcu_read_unlock();
2986 		return false;
2987 	}
2988 
2989 	spin_lock_irq(&pool->lock);
2990 	/* see the comment in try_to_grab_pending() with the same code */
2991 	pwq = get_work_pwq(work);
2992 	if (pwq) {
2993 		if (unlikely(pwq->pool != pool))
2994 			goto already_gone;
2995 	} else {
2996 		worker = find_worker_executing_work(pool, work);
2997 		if (!worker)
2998 			goto already_gone;
2999 		pwq = worker->current_pwq;
3000 	}
3001 
3002 	check_flush_dependency(pwq->wq, work);
3003 
3004 	insert_wq_barrier(pwq, barr, work, worker);
3005 	spin_unlock_irq(&pool->lock);
3006 
3007 	/*
3008 	 * Force a lock recursion deadlock when using flush_work() inside a
3009 	 * single-threaded or rescuer equipped workqueue.
3010 	 *
3011 	 * For single threaded workqueues the deadlock happens when the work
3012 	 * is after the work issuing the flush_work(). For rescuer equipped
3013 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3014 	 * forward progress.
3015 	 */
3016 	if (!from_cancel &&
3017 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3018 		lock_map_acquire(&pwq->wq->lockdep_map);
3019 		lock_map_release(&pwq->wq->lockdep_map);
3020 	}
3021 	rcu_read_unlock();
3022 	return true;
3023 already_gone:
3024 	spin_unlock_irq(&pool->lock);
3025 	rcu_read_unlock();
3026 	return false;
3027 }
3028 
3029 static bool __flush_work(struct work_struct *work, bool from_cancel)
3030 {
3031 	struct wq_barrier barr;
3032 
3033 	if (WARN_ON(!wq_online))
3034 		return false;
3035 
3036 	if (WARN_ON(!work->func))
3037 		return false;
3038 
3039 	if (!from_cancel) {
3040 		lock_map_acquire(&work->lockdep_map);
3041 		lock_map_release(&work->lockdep_map);
3042 	}
3043 
3044 	if (start_flush_work(work, &barr, from_cancel)) {
3045 		wait_for_completion(&barr.done);
3046 		destroy_work_on_stack(&barr.work);
3047 		return true;
3048 	} else {
3049 		return false;
3050 	}
3051 }
3052 
3053 /**
3054  * flush_work - wait for a work to finish executing the last queueing instance
3055  * @work: the work to flush
3056  *
3057  * Wait until @work has finished execution.  @work is guaranteed to be idle
3058  * on return if it hasn't been requeued since flush started.
3059  *
3060  * Return:
3061  * %true if flush_work() waited for the work to finish execution,
3062  * %false if it was already idle.
3063  */
3064 bool flush_work(struct work_struct *work)
3065 {
3066 	return __flush_work(work, false);
3067 }
3068 EXPORT_SYMBOL_GPL(flush_work);
3069 
3070 struct cwt_wait {
3071 	wait_queue_entry_t		wait;
3072 	struct work_struct	*work;
3073 };
3074 
3075 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3076 {
3077 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3078 
3079 	if (cwait->work != key)
3080 		return 0;
3081 	return autoremove_wake_function(wait, mode, sync, key);
3082 }
3083 
3084 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3085 {
3086 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3087 	unsigned long flags;
3088 	int ret;
3089 
3090 	do {
3091 		ret = try_to_grab_pending(work, is_dwork, &flags);
3092 		/*
3093 		 * If someone else is already canceling, wait for it to
3094 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3095 		 * because we may get scheduled between @work's completion
3096 		 * and the other canceling task resuming and clearing
3097 		 * CANCELING - flush_work() will return false immediately
3098 		 * as @work is no longer busy, try_to_grab_pending() will
3099 		 * return -ENOENT as @work is still being canceled and the
3100 		 * other canceling task won't be able to clear CANCELING as
3101 		 * we're hogging the CPU.
3102 		 *
3103 		 * Let's wait for completion using a waitqueue.  As this
3104 		 * may lead to the thundering herd problem, use a custom
3105 		 * wake function which matches @work along with exclusive
3106 		 * wait and wakeup.
3107 		 */
3108 		if (unlikely(ret == -ENOENT)) {
3109 			struct cwt_wait cwait;
3110 
3111 			init_wait(&cwait.wait);
3112 			cwait.wait.func = cwt_wakefn;
3113 			cwait.work = work;
3114 
3115 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3116 						  TASK_UNINTERRUPTIBLE);
3117 			if (work_is_canceling(work))
3118 				schedule();
3119 			finish_wait(&cancel_waitq, &cwait.wait);
3120 		}
3121 	} while (unlikely(ret < 0));
3122 
3123 	/* tell other tasks trying to grab @work to back off */
3124 	mark_work_canceling(work);
3125 	local_irq_restore(flags);
3126 
3127 	/*
3128 	 * This allows canceling during early boot.  We know that @work
3129 	 * isn't executing.
3130 	 */
3131 	if (wq_online)
3132 		__flush_work(work, true);
3133 
3134 	clear_work_data(work);
3135 
3136 	/*
3137 	 * Paired with prepare_to_wait() above so that either
3138 	 * waitqueue_active() is visible here or !work_is_canceling() is
3139 	 * visible there.
3140 	 */
3141 	smp_mb();
3142 	if (waitqueue_active(&cancel_waitq))
3143 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3144 
3145 	return ret;
3146 }
3147 
3148 /**
3149  * cancel_work_sync - cancel a work and wait for it to finish
3150  * @work: the work to cancel
3151  *
3152  * Cancel @work and wait for its execution to finish.  This function
3153  * can be used even if the work re-queues itself or migrates to
3154  * another workqueue.  On return from this function, @work is
3155  * guaranteed to be not pending or executing on any CPU.
3156  *
3157  * cancel_work_sync(&delayed_work->work) must not be used for
3158  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3159  *
3160  * The caller must ensure that the workqueue on which @work was last
3161  * queued can't be destroyed before this function returns.
3162  *
3163  * Return:
3164  * %true if @work was pending, %false otherwise.
3165  */
3166 bool cancel_work_sync(struct work_struct *work)
3167 {
3168 	return __cancel_work_timer(work, false);
3169 }
3170 EXPORT_SYMBOL_GPL(cancel_work_sync);
3171 
3172 /**
3173  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3174  * @dwork: the delayed work to flush
3175  *
3176  * Delayed timer is cancelled and the pending work is queued for
3177  * immediate execution.  Like flush_work(), this function only
3178  * considers the last queueing instance of @dwork.
3179  *
3180  * Return:
3181  * %true if flush_work() waited for the work to finish execution,
3182  * %false if it was already idle.
3183  */
3184 bool flush_delayed_work(struct delayed_work *dwork)
3185 {
3186 	local_irq_disable();
3187 	if (del_timer_sync(&dwork->timer))
3188 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3189 	local_irq_enable();
3190 	return flush_work(&dwork->work);
3191 }
3192 EXPORT_SYMBOL(flush_delayed_work);
3193 
3194 /**
3195  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3196  * @rwork: the rcu work to flush
3197  *
3198  * Return:
3199  * %true if flush_rcu_work() waited for the work to finish execution,
3200  * %false if it was already idle.
3201  */
3202 bool flush_rcu_work(struct rcu_work *rwork)
3203 {
3204 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3205 		rcu_barrier();
3206 		flush_work(&rwork->work);
3207 		return true;
3208 	} else {
3209 		return flush_work(&rwork->work);
3210 	}
3211 }
3212 EXPORT_SYMBOL(flush_rcu_work);
3213 
3214 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3215 {
3216 	unsigned long flags;
3217 	int ret;
3218 
3219 	do {
3220 		ret = try_to_grab_pending(work, is_dwork, &flags);
3221 	} while (unlikely(ret == -EAGAIN));
3222 
3223 	if (unlikely(ret < 0))
3224 		return false;
3225 
3226 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3227 	local_irq_restore(flags);
3228 	return ret;
3229 }
3230 
3231 /**
3232  * cancel_delayed_work - cancel a delayed work
3233  * @dwork: delayed_work to cancel
3234  *
3235  * Kill off a pending delayed_work.
3236  *
3237  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3238  * pending.
3239  *
3240  * Note:
3241  * The work callback function may still be running on return, unless
3242  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3243  * use cancel_delayed_work_sync() to wait on it.
3244  *
3245  * This function is safe to call from any context including IRQ handler.
3246  */
3247 bool cancel_delayed_work(struct delayed_work *dwork)
3248 {
3249 	return __cancel_work(&dwork->work, true);
3250 }
3251 EXPORT_SYMBOL(cancel_delayed_work);
3252 
3253 /**
3254  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3255  * @dwork: the delayed work cancel
3256  *
3257  * This is cancel_work_sync() for delayed works.
3258  *
3259  * Return:
3260  * %true if @dwork was pending, %false otherwise.
3261  */
3262 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3263 {
3264 	return __cancel_work_timer(&dwork->work, true);
3265 }
3266 EXPORT_SYMBOL(cancel_delayed_work_sync);
3267 
3268 /**
3269  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3270  * @func: the function to call
3271  *
3272  * schedule_on_each_cpu() executes @func on each online CPU using the
3273  * system workqueue and blocks until all CPUs have completed.
3274  * schedule_on_each_cpu() is very slow.
3275  *
3276  * Return:
3277  * 0 on success, -errno on failure.
3278  */
3279 int schedule_on_each_cpu(work_func_t func)
3280 {
3281 	int cpu;
3282 	struct work_struct __percpu *works;
3283 
3284 	works = alloc_percpu(struct work_struct);
3285 	if (!works)
3286 		return -ENOMEM;
3287 
3288 	get_online_cpus();
3289 
3290 	for_each_online_cpu(cpu) {
3291 		struct work_struct *work = per_cpu_ptr(works, cpu);
3292 
3293 		INIT_WORK(work, func);
3294 		schedule_work_on(cpu, work);
3295 	}
3296 
3297 	for_each_online_cpu(cpu)
3298 		flush_work(per_cpu_ptr(works, cpu));
3299 
3300 	put_online_cpus();
3301 	free_percpu(works);
3302 	return 0;
3303 }
3304 
3305 /**
3306  * execute_in_process_context - reliably execute the routine with user context
3307  * @fn:		the function to execute
3308  * @ew:		guaranteed storage for the execute work structure (must
3309  *		be available when the work executes)
3310  *
3311  * Executes the function immediately if process context is available,
3312  * otherwise schedules the function for delayed execution.
3313  *
3314  * Return:	0 - function was executed
3315  *		1 - function was scheduled for execution
3316  */
3317 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3318 {
3319 	if (!in_interrupt()) {
3320 		fn(&ew->work);
3321 		return 0;
3322 	}
3323 
3324 	INIT_WORK(&ew->work, fn);
3325 	schedule_work(&ew->work);
3326 
3327 	return 1;
3328 }
3329 EXPORT_SYMBOL_GPL(execute_in_process_context);
3330 
3331 /**
3332  * free_workqueue_attrs - free a workqueue_attrs
3333  * @attrs: workqueue_attrs to free
3334  *
3335  * Undo alloc_workqueue_attrs().
3336  */
3337 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3338 {
3339 	if (attrs) {
3340 		free_cpumask_var(attrs->cpumask);
3341 		kfree(attrs);
3342 	}
3343 }
3344 
3345 /**
3346  * alloc_workqueue_attrs - allocate a workqueue_attrs
3347  *
3348  * Allocate a new workqueue_attrs, initialize with default settings and
3349  * return it.
3350  *
3351  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3352  */
3353 struct workqueue_attrs *alloc_workqueue_attrs(void)
3354 {
3355 	struct workqueue_attrs *attrs;
3356 
3357 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3358 	if (!attrs)
3359 		goto fail;
3360 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3361 		goto fail;
3362 
3363 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3364 	return attrs;
3365 fail:
3366 	free_workqueue_attrs(attrs);
3367 	return NULL;
3368 }
3369 
3370 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3371 				 const struct workqueue_attrs *from)
3372 {
3373 	to->nice = from->nice;
3374 	cpumask_copy(to->cpumask, from->cpumask);
3375 	/*
3376 	 * Unlike hash and equality test, this function doesn't ignore
3377 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3378 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3379 	 */
3380 	to->no_numa = from->no_numa;
3381 }
3382 
3383 /* hash value of the content of @attr */
3384 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3385 {
3386 	u32 hash = 0;
3387 
3388 	hash = jhash_1word(attrs->nice, hash);
3389 	hash = jhash(cpumask_bits(attrs->cpumask),
3390 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3391 	return hash;
3392 }
3393 
3394 /* content equality test */
3395 static bool wqattrs_equal(const struct workqueue_attrs *a,
3396 			  const struct workqueue_attrs *b)
3397 {
3398 	if (a->nice != b->nice)
3399 		return false;
3400 	if (!cpumask_equal(a->cpumask, b->cpumask))
3401 		return false;
3402 	return true;
3403 }
3404 
3405 /**
3406  * init_worker_pool - initialize a newly zalloc'd worker_pool
3407  * @pool: worker_pool to initialize
3408  *
3409  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3410  *
3411  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3412  * inside @pool proper are initialized and put_unbound_pool() can be called
3413  * on @pool safely to release it.
3414  */
3415 static int init_worker_pool(struct worker_pool *pool)
3416 {
3417 	spin_lock_init(&pool->lock);
3418 	pool->id = -1;
3419 	pool->cpu = -1;
3420 	pool->node = NUMA_NO_NODE;
3421 	pool->flags |= POOL_DISASSOCIATED;
3422 	pool->watchdog_ts = jiffies;
3423 	INIT_LIST_HEAD(&pool->worklist);
3424 	INIT_LIST_HEAD(&pool->idle_list);
3425 	hash_init(pool->busy_hash);
3426 
3427 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3428 
3429 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3430 
3431 	INIT_LIST_HEAD(&pool->workers);
3432 
3433 	ida_init(&pool->worker_ida);
3434 	INIT_HLIST_NODE(&pool->hash_node);
3435 	pool->refcnt = 1;
3436 
3437 	/* shouldn't fail above this point */
3438 	pool->attrs = alloc_workqueue_attrs();
3439 	if (!pool->attrs)
3440 		return -ENOMEM;
3441 	return 0;
3442 }
3443 
3444 #ifdef CONFIG_LOCKDEP
3445 static void wq_init_lockdep(struct workqueue_struct *wq)
3446 {
3447 	char *lock_name;
3448 
3449 	lockdep_register_key(&wq->key);
3450 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3451 	if (!lock_name)
3452 		lock_name = wq->name;
3453 
3454 	wq->lock_name = lock_name;
3455 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3456 }
3457 
3458 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3459 {
3460 	lockdep_unregister_key(&wq->key);
3461 }
3462 
3463 static void wq_free_lockdep(struct workqueue_struct *wq)
3464 {
3465 	if (wq->lock_name != wq->name)
3466 		kfree(wq->lock_name);
3467 }
3468 #else
3469 static void wq_init_lockdep(struct workqueue_struct *wq)
3470 {
3471 }
3472 
3473 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3474 {
3475 }
3476 
3477 static void wq_free_lockdep(struct workqueue_struct *wq)
3478 {
3479 }
3480 #endif
3481 
3482 static void rcu_free_wq(struct rcu_head *rcu)
3483 {
3484 	struct workqueue_struct *wq =
3485 		container_of(rcu, struct workqueue_struct, rcu);
3486 
3487 	wq_free_lockdep(wq);
3488 
3489 	if (!(wq->flags & WQ_UNBOUND))
3490 		free_percpu(wq->cpu_pwqs);
3491 	else
3492 		free_workqueue_attrs(wq->unbound_attrs);
3493 
3494 	kfree(wq->rescuer);
3495 	kfree(wq);
3496 }
3497 
3498 static void rcu_free_pool(struct rcu_head *rcu)
3499 {
3500 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3501 
3502 	ida_destroy(&pool->worker_ida);
3503 	free_workqueue_attrs(pool->attrs);
3504 	kfree(pool);
3505 }
3506 
3507 /**
3508  * put_unbound_pool - put a worker_pool
3509  * @pool: worker_pool to put
3510  *
3511  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3512  * safe manner.  get_unbound_pool() calls this function on its failure path
3513  * and this function should be able to release pools which went through,
3514  * successfully or not, init_worker_pool().
3515  *
3516  * Should be called with wq_pool_mutex held.
3517  */
3518 static void put_unbound_pool(struct worker_pool *pool)
3519 {
3520 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3521 	struct worker *worker;
3522 
3523 	lockdep_assert_held(&wq_pool_mutex);
3524 
3525 	if (--pool->refcnt)
3526 		return;
3527 
3528 	/* sanity checks */
3529 	if (WARN_ON(!(pool->cpu < 0)) ||
3530 	    WARN_ON(!list_empty(&pool->worklist)))
3531 		return;
3532 
3533 	/* release id and unhash */
3534 	if (pool->id >= 0)
3535 		idr_remove(&worker_pool_idr, pool->id);
3536 	hash_del(&pool->hash_node);
3537 
3538 	/*
3539 	 * Become the manager and destroy all workers.  This prevents
3540 	 * @pool's workers from blocking on attach_mutex.  We're the last
3541 	 * manager and @pool gets freed with the flag set.
3542 	 */
3543 	spin_lock_irq(&pool->lock);
3544 	wait_event_lock_irq(wq_manager_wait,
3545 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3546 	pool->flags |= POOL_MANAGER_ACTIVE;
3547 
3548 	while ((worker = first_idle_worker(pool)))
3549 		destroy_worker(worker);
3550 	WARN_ON(pool->nr_workers || pool->nr_idle);
3551 	spin_unlock_irq(&pool->lock);
3552 
3553 	mutex_lock(&wq_pool_attach_mutex);
3554 	if (!list_empty(&pool->workers))
3555 		pool->detach_completion = &detach_completion;
3556 	mutex_unlock(&wq_pool_attach_mutex);
3557 
3558 	if (pool->detach_completion)
3559 		wait_for_completion(pool->detach_completion);
3560 
3561 	/* shut down the timers */
3562 	del_timer_sync(&pool->idle_timer);
3563 	del_timer_sync(&pool->mayday_timer);
3564 
3565 	/* RCU protected to allow dereferences from get_work_pool() */
3566 	call_rcu(&pool->rcu, rcu_free_pool);
3567 }
3568 
3569 /**
3570  * get_unbound_pool - get a worker_pool with the specified attributes
3571  * @attrs: the attributes of the worker_pool to get
3572  *
3573  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3574  * reference count and return it.  If there already is a matching
3575  * worker_pool, it will be used; otherwise, this function attempts to
3576  * create a new one.
3577  *
3578  * Should be called with wq_pool_mutex held.
3579  *
3580  * Return: On success, a worker_pool with the same attributes as @attrs.
3581  * On failure, %NULL.
3582  */
3583 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3584 {
3585 	u32 hash = wqattrs_hash(attrs);
3586 	struct worker_pool *pool;
3587 	int node;
3588 	int target_node = NUMA_NO_NODE;
3589 
3590 	lockdep_assert_held(&wq_pool_mutex);
3591 
3592 	/* do we already have a matching pool? */
3593 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3594 		if (wqattrs_equal(pool->attrs, attrs)) {
3595 			pool->refcnt++;
3596 			return pool;
3597 		}
3598 	}
3599 
3600 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3601 	if (wq_numa_enabled) {
3602 		for_each_node(node) {
3603 			if (cpumask_subset(attrs->cpumask,
3604 					   wq_numa_possible_cpumask[node])) {
3605 				target_node = node;
3606 				break;
3607 			}
3608 		}
3609 	}
3610 
3611 	/* nope, create a new one */
3612 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3613 	if (!pool || init_worker_pool(pool) < 0)
3614 		goto fail;
3615 
3616 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3617 	copy_workqueue_attrs(pool->attrs, attrs);
3618 	pool->node = target_node;
3619 
3620 	/*
3621 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3622 	 * 'struct workqueue_attrs' comments for detail.
3623 	 */
3624 	pool->attrs->no_numa = false;
3625 
3626 	if (worker_pool_assign_id(pool) < 0)
3627 		goto fail;
3628 
3629 	/* create and start the initial worker */
3630 	if (wq_online && !create_worker(pool))
3631 		goto fail;
3632 
3633 	/* install */
3634 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3635 
3636 	return pool;
3637 fail:
3638 	if (pool)
3639 		put_unbound_pool(pool);
3640 	return NULL;
3641 }
3642 
3643 static void rcu_free_pwq(struct rcu_head *rcu)
3644 {
3645 	kmem_cache_free(pwq_cache,
3646 			container_of(rcu, struct pool_workqueue, rcu));
3647 }
3648 
3649 /*
3650  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3651  * and needs to be destroyed.
3652  */
3653 static void pwq_unbound_release_workfn(struct work_struct *work)
3654 {
3655 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3656 						  unbound_release_work);
3657 	struct workqueue_struct *wq = pwq->wq;
3658 	struct worker_pool *pool = pwq->pool;
3659 	bool is_last;
3660 
3661 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3662 		return;
3663 
3664 	mutex_lock(&wq->mutex);
3665 	list_del_rcu(&pwq->pwqs_node);
3666 	is_last = list_empty(&wq->pwqs);
3667 	mutex_unlock(&wq->mutex);
3668 
3669 	mutex_lock(&wq_pool_mutex);
3670 	put_unbound_pool(pool);
3671 	mutex_unlock(&wq_pool_mutex);
3672 
3673 	call_rcu(&pwq->rcu, rcu_free_pwq);
3674 
3675 	/*
3676 	 * If we're the last pwq going away, @wq is already dead and no one
3677 	 * is gonna access it anymore.  Schedule RCU free.
3678 	 */
3679 	if (is_last) {
3680 		wq_unregister_lockdep(wq);
3681 		call_rcu(&wq->rcu, rcu_free_wq);
3682 	}
3683 }
3684 
3685 /**
3686  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3687  * @pwq: target pool_workqueue
3688  *
3689  * If @pwq isn't freezing, set @pwq->max_active to the associated
3690  * workqueue's saved_max_active and activate delayed work items
3691  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3692  */
3693 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3694 {
3695 	struct workqueue_struct *wq = pwq->wq;
3696 	bool freezable = wq->flags & WQ_FREEZABLE;
3697 	unsigned long flags;
3698 
3699 	/* for @wq->saved_max_active */
3700 	lockdep_assert_held(&wq->mutex);
3701 
3702 	/* fast exit for non-freezable wqs */
3703 	if (!freezable && pwq->max_active == wq->saved_max_active)
3704 		return;
3705 
3706 	/* this function can be called during early boot w/ irq disabled */
3707 	spin_lock_irqsave(&pwq->pool->lock, flags);
3708 
3709 	/*
3710 	 * During [un]freezing, the caller is responsible for ensuring that
3711 	 * this function is called at least once after @workqueue_freezing
3712 	 * is updated and visible.
3713 	 */
3714 	if (!freezable || !workqueue_freezing) {
3715 		pwq->max_active = wq->saved_max_active;
3716 
3717 		while (!list_empty(&pwq->delayed_works) &&
3718 		       pwq->nr_active < pwq->max_active)
3719 			pwq_activate_first_delayed(pwq);
3720 
3721 		/*
3722 		 * Need to kick a worker after thawed or an unbound wq's
3723 		 * max_active is bumped.  It's a slow path.  Do it always.
3724 		 */
3725 		wake_up_worker(pwq->pool);
3726 	} else {
3727 		pwq->max_active = 0;
3728 	}
3729 
3730 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3731 }
3732 
3733 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3734 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3735 		     struct worker_pool *pool)
3736 {
3737 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3738 
3739 	memset(pwq, 0, sizeof(*pwq));
3740 
3741 	pwq->pool = pool;
3742 	pwq->wq = wq;
3743 	pwq->flush_color = -1;
3744 	pwq->refcnt = 1;
3745 	INIT_LIST_HEAD(&pwq->delayed_works);
3746 	INIT_LIST_HEAD(&pwq->pwqs_node);
3747 	INIT_LIST_HEAD(&pwq->mayday_node);
3748 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3749 }
3750 
3751 /* sync @pwq with the current state of its associated wq and link it */
3752 static void link_pwq(struct pool_workqueue *pwq)
3753 {
3754 	struct workqueue_struct *wq = pwq->wq;
3755 
3756 	lockdep_assert_held(&wq->mutex);
3757 
3758 	/* may be called multiple times, ignore if already linked */
3759 	if (!list_empty(&pwq->pwqs_node))
3760 		return;
3761 
3762 	/* set the matching work_color */
3763 	pwq->work_color = wq->work_color;
3764 
3765 	/* sync max_active to the current setting */
3766 	pwq_adjust_max_active(pwq);
3767 
3768 	/* link in @pwq */
3769 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3770 }
3771 
3772 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3773 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3774 					const struct workqueue_attrs *attrs)
3775 {
3776 	struct worker_pool *pool;
3777 	struct pool_workqueue *pwq;
3778 
3779 	lockdep_assert_held(&wq_pool_mutex);
3780 
3781 	pool = get_unbound_pool(attrs);
3782 	if (!pool)
3783 		return NULL;
3784 
3785 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3786 	if (!pwq) {
3787 		put_unbound_pool(pool);
3788 		return NULL;
3789 	}
3790 
3791 	init_pwq(pwq, wq, pool);
3792 	return pwq;
3793 }
3794 
3795 /**
3796  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3797  * @attrs: the wq_attrs of the default pwq of the target workqueue
3798  * @node: the target NUMA node
3799  * @cpu_going_down: if >= 0, the CPU to consider as offline
3800  * @cpumask: outarg, the resulting cpumask
3801  *
3802  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3803  * @cpu_going_down is >= 0, that cpu is considered offline during
3804  * calculation.  The result is stored in @cpumask.
3805  *
3806  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3807  * enabled and @node has online CPUs requested by @attrs, the returned
3808  * cpumask is the intersection of the possible CPUs of @node and
3809  * @attrs->cpumask.
3810  *
3811  * The caller is responsible for ensuring that the cpumask of @node stays
3812  * stable.
3813  *
3814  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3815  * %false if equal.
3816  */
3817 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3818 				 int cpu_going_down, cpumask_t *cpumask)
3819 {
3820 	if (!wq_numa_enabled || attrs->no_numa)
3821 		goto use_dfl;
3822 
3823 	/* does @node have any online CPUs @attrs wants? */
3824 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3825 	if (cpu_going_down >= 0)
3826 		cpumask_clear_cpu(cpu_going_down, cpumask);
3827 
3828 	if (cpumask_empty(cpumask))
3829 		goto use_dfl;
3830 
3831 	/* yeap, return possible CPUs in @node that @attrs wants */
3832 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3833 
3834 	if (cpumask_empty(cpumask)) {
3835 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3836 				"possible intersect\n");
3837 		return false;
3838 	}
3839 
3840 	return !cpumask_equal(cpumask, attrs->cpumask);
3841 
3842 use_dfl:
3843 	cpumask_copy(cpumask, attrs->cpumask);
3844 	return false;
3845 }
3846 
3847 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3848 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3849 						   int node,
3850 						   struct pool_workqueue *pwq)
3851 {
3852 	struct pool_workqueue *old_pwq;
3853 
3854 	lockdep_assert_held(&wq_pool_mutex);
3855 	lockdep_assert_held(&wq->mutex);
3856 
3857 	/* link_pwq() can handle duplicate calls */
3858 	link_pwq(pwq);
3859 
3860 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3861 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3862 	return old_pwq;
3863 }
3864 
3865 /* context to store the prepared attrs & pwqs before applying */
3866 struct apply_wqattrs_ctx {
3867 	struct workqueue_struct	*wq;		/* target workqueue */
3868 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3869 	struct list_head	list;		/* queued for batching commit */
3870 	struct pool_workqueue	*dfl_pwq;
3871 	struct pool_workqueue	*pwq_tbl[];
3872 };
3873 
3874 /* free the resources after success or abort */
3875 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3876 {
3877 	if (ctx) {
3878 		int node;
3879 
3880 		for_each_node(node)
3881 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3882 		put_pwq_unlocked(ctx->dfl_pwq);
3883 
3884 		free_workqueue_attrs(ctx->attrs);
3885 
3886 		kfree(ctx);
3887 	}
3888 }
3889 
3890 /* allocate the attrs and pwqs for later installation */
3891 static struct apply_wqattrs_ctx *
3892 apply_wqattrs_prepare(struct workqueue_struct *wq,
3893 		      const struct workqueue_attrs *attrs)
3894 {
3895 	struct apply_wqattrs_ctx *ctx;
3896 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3897 	int node;
3898 
3899 	lockdep_assert_held(&wq_pool_mutex);
3900 
3901 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3902 
3903 	new_attrs = alloc_workqueue_attrs();
3904 	tmp_attrs = alloc_workqueue_attrs();
3905 	if (!ctx || !new_attrs || !tmp_attrs)
3906 		goto out_free;
3907 
3908 	/*
3909 	 * Calculate the attrs of the default pwq.
3910 	 * If the user configured cpumask doesn't overlap with the
3911 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3912 	 */
3913 	copy_workqueue_attrs(new_attrs, attrs);
3914 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3915 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3916 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3917 
3918 	/*
3919 	 * We may create multiple pwqs with differing cpumasks.  Make a
3920 	 * copy of @new_attrs which will be modified and used to obtain
3921 	 * pools.
3922 	 */
3923 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3924 
3925 	/*
3926 	 * If something goes wrong during CPU up/down, we'll fall back to
3927 	 * the default pwq covering whole @attrs->cpumask.  Always create
3928 	 * it even if we don't use it immediately.
3929 	 */
3930 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3931 	if (!ctx->dfl_pwq)
3932 		goto out_free;
3933 
3934 	for_each_node(node) {
3935 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3936 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3937 			if (!ctx->pwq_tbl[node])
3938 				goto out_free;
3939 		} else {
3940 			ctx->dfl_pwq->refcnt++;
3941 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3942 		}
3943 	}
3944 
3945 	/* save the user configured attrs and sanitize it. */
3946 	copy_workqueue_attrs(new_attrs, attrs);
3947 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3948 	ctx->attrs = new_attrs;
3949 
3950 	ctx->wq = wq;
3951 	free_workqueue_attrs(tmp_attrs);
3952 	return ctx;
3953 
3954 out_free:
3955 	free_workqueue_attrs(tmp_attrs);
3956 	free_workqueue_attrs(new_attrs);
3957 	apply_wqattrs_cleanup(ctx);
3958 	return NULL;
3959 }
3960 
3961 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3962 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3963 {
3964 	int node;
3965 
3966 	/* all pwqs have been created successfully, let's install'em */
3967 	mutex_lock(&ctx->wq->mutex);
3968 
3969 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3970 
3971 	/* save the previous pwq and install the new one */
3972 	for_each_node(node)
3973 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3974 							  ctx->pwq_tbl[node]);
3975 
3976 	/* @dfl_pwq might not have been used, ensure it's linked */
3977 	link_pwq(ctx->dfl_pwq);
3978 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3979 
3980 	mutex_unlock(&ctx->wq->mutex);
3981 }
3982 
3983 static void apply_wqattrs_lock(void)
3984 {
3985 	/* CPUs should stay stable across pwq creations and installations */
3986 	get_online_cpus();
3987 	mutex_lock(&wq_pool_mutex);
3988 }
3989 
3990 static void apply_wqattrs_unlock(void)
3991 {
3992 	mutex_unlock(&wq_pool_mutex);
3993 	put_online_cpus();
3994 }
3995 
3996 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3997 					const struct workqueue_attrs *attrs)
3998 {
3999 	struct apply_wqattrs_ctx *ctx;
4000 
4001 	/* only unbound workqueues can change attributes */
4002 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4003 		return -EINVAL;
4004 
4005 	/* creating multiple pwqs breaks ordering guarantee */
4006 	if (!list_empty(&wq->pwqs)) {
4007 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4008 			return -EINVAL;
4009 
4010 		wq->flags &= ~__WQ_ORDERED;
4011 	}
4012 
4013 	ctx = apply_wqattrs_prepare(wq, attrs);
4014 	if (!ctx)
4015 		return -ENOMEM;
4016 
4017 	/* the ctx has been prepared successfully, let's commit it */
4018 	apply_wqattrs_commit(ctx);
4019 	apply_wqattrs_cleanup(ctx);
4020 
4021 	return 0;
4022 }
4023 
4024 /**
4025  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4026  * @wq: the target workqueue
4027  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4028  *
4029  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4030  * machines, this function maps a separate pwq to each NUMA node with
4031  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4032  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4033  * items finish.  Note that a work item which repeatedly requeues itself
4034  * back-to-back will stay on its current pwq.
4035  *
4036  * Performs GFP_KERNEL allocations.
4037  *
4038  * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4039  *
4040  * Return: 0 on success and -errno on failure.
4041  */
4042 int apply_workqueue_attrs(struct workqueue_struct *wq,
4043 			  const struct workqueue_attrs *attrs)
4044 {
4045 	int ret;
4046 
4047 	lockdep_assert_cpus_held();
4048 
4049 	mutex_lock(&wq_pool_mutex);
4050 	ret = apply_workqueue_attrs_locked(wq, attrs);
4051 	mutex_unlock(&wq_pool_mutex);
4052 
4053 	return ret;
4054 }
4055 
4056 /**
4057  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4058  * @wq: the target workqueue
4059  * @cpu: the CPU coming up or going down
4060  * @online: whether @cpu is coming up or going down
4061  *
4062  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4063  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4064  * @wq accordingly.
4065  *
4066  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4067  * falls back to @wq->dfl_pwq which may not be optimal but is always
4068  * correct.
4069  *
4070  * Note that when the last allowed CPU of a NUMA node goes offline for a
4071  * workqueue with a cpumask spanning multiple nodes, the workers which were
4072  * already executing the work items for the workqueue will lose their CPU
4073  * affinity and may execute on any CPU.  This is similar to how per-cpu
4074  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4075  * affinity, it's the user's responsibility to flush the work item from
4076  * CPU_DOWN_PREPARE.
4077  */
4078 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4079 				   bool online)
4080 {
4081 	int node = cpu_to_node(cpu);
4082 	int cpu_off = online ? -1 : cpu;
4083 	struct pool_workqueue *old_pwq = NULL, *pwq;
4084 	struct workqueue_attrs *target_attrs;
4085 	cpumask_t *cpumask;
4086 
4087 	lockdep_assert_held(&wq_pool_mutex);
4088 
4089 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4090 	    wq->unbound_attrs->no_numa)
4091 		return;
4092 
4093 	/*
4094 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4095 	 * Let's use a preallocated one.  The following buf is protected by
4096 	 * CPU hotplug exclusion.
4097 	 */
4098 	target_attrs = wq_update_unbound_numa_attrs_buf;
4099 	cpumask = target_attrs->cpumask;
4100 
4101 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4102 	pwq = unbound_pwq_by_node(wq, node);
4103 
4104 	/*
4105 	 * Let's determine what needs to be done.  If the target cpumask is
4106 	 * different from the default pwq's, we need to compare it to @pwq's
4107 	 * and create a new one if they don't match.  If the target cpumask
4108 	 * equals the default pwq's, the default pwq should be used.
4109 	 */
4110 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4111 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4112 			return;
4113 	} else {
4114 		goto use_dfl_pwq;
4115 	}
4116 
4117 	/* create a new pwq */
4118 	pwq = alloc_unbound_pwq(wq, target_attrs);
4119 	if (!pwq) {
4120 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4121 			wq->name);
4122 		goto use_dfl_pwq;
4123 	}
4124 
4125 	/* Install the new pwq. */
4126 	mutex_lock(&wq->mutex);
4127 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4128 	goto out_unlock;
4129 
4130 use_dfl_pwq:
4131 	mutex_lock(&wq->mutex);
4132 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4133 	get_pwq(wq->dfl_pwq);
4134 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4135 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4136 out_unlock:
4137 	mutex_unlock(&wq->mutex);
4138 	put_pwq_unlocked(old_pwq);
4139 }
4140 
4141 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4142 {
4143 	bool highpri = wq->flags & WQ_HIGHPRI;
4144 	int cpu, ret;
4145 
4146 	if (!(wq->flags & WQ_UNBOUND)) {
4147 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4148 		if (!wq->cpu_pwqs)
4149 			return -ENOMEM;
4150 
4151 		for_each_possible_cpu(cpu) {
4152 			struct pool_workqueue *pwq =
4153 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4154 			struct worker_pool *cpu_pools =
4155 				per_cpu(cpu_worker_pools, cpu);
4156 
4157 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4158 
4159 			mutex_lock(&wq->mutex);
4160 			link_pwq(pwq);
4161 			mutex_unlock(&wq->mutex);
4162 		}
4163 		return 0;
4164 	}
4165 
4166 	get_online_cpus();
4167 	if (wq->flags & __WQ_ORDERED) {
4168 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4169 		/* there should only be single pwq for ordering guarantee */
4170 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4171 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4172 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4173 	} else {
4174 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4175 	}
4176 	put_online_cpus();
4177 
4178 	return ret;
4179 }
4180 
4181 static int wq_clamp_max_active(int max_active, unsigned int flags,
4182 			       const char *name)
4183 {
4184 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4185 
4186 	if (max_active < 1 || max_active > lim)
4187 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4188 			max_active, name, 1, lim);
4189 
4190 	return clamp_val(max_active, 1, lim);
4191 }
4192 
4193 /*
4194  * Workqueues which may be used during memory reclaim should have a rescuer
4195  * to guarantee forward progress.
4196  */
4197 static int init_rescuer(struct workqueue_struct *wq)
4198 {
4199 	struct worker *rescuer;
4200 	int ret;
4201 
4202 	if (!(wq->flags & WQ_MEM_RECLAIM))
4203 		return 0;
4204 
4205 	rescuer = alloc_worker(NUMA_NO_NODE);
4206 	if (!rescuer)
4207 		return -ENOMEM;
4208 
4209 	rescuer->rescue_wq = wq;
4210 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4211 	ret = PTR_ERR_OR_ZERO(rescuer->task);
4212 	if (ret) {
4213 		kfree(rescuer);
4214 		return ret;
4215 	}
4216 
4217 	wq->rescuer = rescuer;
4218 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4219 	wake_up_process(rescuer->task);
4220 
4221 	return 0;
4222 }
4223 
4224 __printf(1, 4)
4225 struct workqueue_struct *alloc_workqueue(const char *fmt,
4226 					 unsigned int flags,
4227 					 int max_active, ...)
4228 {
4229 	size_t tbl_size = 0;
4230 	va_list args;
4231 	struct workqueue_struct *wq;
4232 	struct pool_workqueue *pwq;
4233 
4234 	/*
4235 	 * Unbound && max_active == 1 used to imply ordered, which is no
4236 	 * longer the case on NUMA machines due to per-node pools.  While
4237 	 * alloc_ordered_workqueue() is the right way to create an ordered
4238 	 * workqueue, keep the previous behavior to avoid subtle breakages
4239 	 * on NUMA.
4240 	 */
4241 	if ((flags & WQ_UNBOUND) && max_active == 1)
4242 		flags |= __WQ_ORDERED;
4243 
4244 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4245 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4246 		flags |= WQ_UNBOUND;
4247 
4248 	/* allocate wq and format name */
4249 	if (flags & WQ_UNBOUND)
4250 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4251 
4252 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4253 	if (!wq)
4254 		return NULL;
4255 
4256 	if (flags & WQ_UNBOUND) {
4257 		wq->unbound_attrs = alloc_workqueue_attrs();
4258 		if (!wq->unbound_attrs)
4259 			goto err_free_wq;
4260 	}
4261 
4262 	va_start(args, max_active);
4263 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4264 	va_end(args);
4265 
4266 	max_active = max_active ?: WQ_DFL_ACTIVE;
4267 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4268 
4269 	/* init wq */
4270 	wq->flags = flags;
4271 	wq->saved_max_active = max_active;
4272 	mutex_init(&wq->mutex);
4273 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4274 	INIT_LIST_HEAD(&wq->pwqs);
4275 	INIT_LIST_HEAD(&wq->flusher_queue);
4276 	INIT_LIST_HEAD(&wq->flusher_overflow);
4277 	INIT_LIST_HEAD(&wq->maydays);
4278 
4279 	wq_init_lockdep(wq);
4280 	INIT_LIST_HEAD(&wq->list);
4281 
4282 	if (alloc_and_link_pwqs(wq) < 0)
4283 		goto err_unreg_lockdep;
4284 
4285 	if (wq_online && init_rescuer(wq) < 0)
4286 		goto err_destroy;
4287 
4288 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4289 		goto err_destroy;
4290 
4291 	/*
4292 	 * wq_pool_mutex protects global freeze state and workqueues list.
4293 	 * Grab it, adjust max_active and add the new @wq to workqueues
4294 	 * list.
4295 	 */
4296 	mutex_lock(&wq_pool_mutex);
4297 
4298 	mutex_lock(&wq->mutex);
4299 	for_each_pwq(pwq, wq)
4300 		pwq_adjust_max_active(pwq);
4301 	mutex_unlock(&wq->mutex);
4302 
4303 	list_add_tail_rcu(&wq->list, &workqueues);
4304 
4305 	mutex_unlock(&wq_pool_mutex);
4306 
4307 	return wq;
4308 
4309 err_unreg_lockdep:
4310 	wq_unregister_lockdep(wq);
4311 	wq_free_lockdep(wq);
4312 err_free_wq:
4313 	free_workqueue_attrs(wq->unbound_attrs);
4314 	kfree(wq);
4315 	return NULL;
4316 err_destroy:
4317 	destroy_workqueue(wq);
4318 	return NULL;
4319 }
4320 EXPORT_SYMBOL_GPL(alloc_workqueue);
4321 
4322 static bool pwq_busy(struct pool_workqueue *pwq)
4323 {
4324 	int i;
4325 
4326 	for (i = 0; i < WORK_NR_COLORS; i++)
4327 		if (pwq->nr_in_flight[i])
4328 			return true;
4329 
4330 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4331 		return true;
4332 	if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4333 		return true;
4334 
4335 	return false;
4336 }
4337 
4338 /**
4339  * destroy_workqueue - safely terminate a workqueue
4340  * @wq: target workqueue
4341  *
4342  * Safely destroy a workqueue. All work currently pending will be done first.
4343  */
4344 void destroy_workqueue(struct workqueue_struct *wq)
4345 {
4346 	struct pool_workqueue *pwq;
4347 	int node;
4348 
4349 	/*
4350 	 * Remove it from sysfs first so that sanity check failure doesn't
4351 	 * lead to sysfs name conflicts.
4352 	 */
4353 	workqueue_sysfs_unregister(wq);
4354 
4355 	/* drain it before proceeding with destruction */
4356 	drain_workqueue(wq);
4357 
4358 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4359 	if (wq->rescuer) {
4360 		struct worker *rescuer = wq->rescuer;
4361 
4362 		/* this prevents new queueing */
4363 		spin_lock_irq(&wq_mayday_lock);
4364 		wq->rescuer = NULL;
4365 		spin_unlock_irq(&wq_mayday_lock);
4366 
4367 		/* rescuer will empty maydays list before exiting */
4368 		kthread_stop(rescuer->task);
4369 		kfree(rescuer);
4370 	}
4371 
4372 	/*
4373 	 * Sanity checks - grab all the locks so that we wait for all
4374 	 * in-flight operations which may do put_pwq().
4375 	 */
4376 	mutex_lock(&wq_pool_mutex);
4377 	mutex_lock(&wq->mutex);
4378 	for_each_pwq(pwq, wq) {
4379 		spin_lock_irq(&pwq->pool->lock);
4380 		if (WARN_ON(pwq_busy(pwq))) {
4381 			pr_warn("%s: %s has the following busy pwq\n",
4382 				__func__, wq->name);
4383 			show_pwq(pwq);
4384 			spin_unlock_irq(&pwq->pool->lock);
4385 			mutex_unlock(&wq->mutex);
4386 			mutex_unlock(&wq_pool_mutex);
4387 			show_workqueue_state();
4388 			return;
4389 		}
4390 		spin_unlock_irq(&pwq->pool->lock);
4391 	}
4392 	mutex_unlock(&wq->mutex);
4393 	mutex_unlock(&wq_pool_mutex);
4394 
4395 	/*
4396 	 * wq list is used to freeze wq, remove from list after
4397 	 * flushing is complete in case freeze races us.
4398 	 */
4399 	mutex_lock(&wq_pool_mutex);
4400 	list_del_rcu(&wq->list);
4401 	mutex_unlock(&wq_pool_mutex);
4402 
4403 	if (!(wq->flags & WQ_UNBOUND)) {
4404 		wq_unregister_lockdep(wq);
4405 		/*
4406 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4407 		 * schedule RCU free.
4408 		 */
4409 		call_rcu(&wq->rcu, rcu_free_wq);
4410 	} else {
4411 		/*
4412 		 * We're the sole accessor of @wq at this point.  Directly
4413 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4414 		 * @wq will be freed when the last pwq is released.
4415 		 */
4416 		for_each_node(node) {
4417 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4418 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4419 			put_pwq_unlocked(pwq);
4420 		}
4421 
4422 		/*
4423 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4424 		 * put.  Don't access it afterwards.
4425 		 */
4426 		pwq = wq->dfl_pwq;
4427 		wq->dfl_pwq = NULL;
4428 		put_pwq_unlocked(pwq);
4429 	}
4430 }
4431 EXPORT_SYMBOL_GPL(destroy_workqueue);
4432 
4433 /**
4434  * workqueue_set_max_active - adjust max_active of a workqueue
4435  * @wq: target workqueue
4436  * @max_active: new max_active value.
4437  *
4438  * Set max_active of @wq to @max_active.
4439  *
4440  * CONTEXT:
4441  * Don't call from IRQ context.
4442  */
4443 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4444 {
4445 	struct pool_workqueue *pwq;
4446 
4447 	/* disallow meddling with max_active for ordered workqueues */
4448 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4449 		return;
4450 
4451 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4452 
4453 	mutex_lock(&wq->mutex);
4454 
4455 	wq->flags &= ~__WQ_ORDERED;
4456 	wq->saved_max_active = max_active;
4457 
4458 	for_each_pwq(pwq, wq)
4459 		pwq_adjust_max_active(pwq);
4460 
4461 	mutex_unlock(&wq->mutex);
4462 }
4463 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4464 
4465 /**
4466  * current_work - retrieve %current task's work struct
4467  *
4468  * Determine if %current task is a workqueue worker and what it's working on.
4469  * Useful to find out the context that the %current task is running in.
4470  *
4471  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4472  */
4473 struct work_struct *current_work(void)
4474 {
4475 	struct worker *worker = current_wq_worker();
4476 
4477 	return worker ? worker->current_work : NULL;
4478 }
4479 EXPORT_SYMBOL(current_work);
4480 
4481 /**
4482  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4483  *
4484  * Determine whether %current is a workqueue rescuer.  Can be used from
4485  * work functions to determine whether it's being run off the rescuer task.
4486  *
4487  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4488  */
4489 bool current_is_workqueue_rescuer(void)
4490 {
4491 	struct worker *worker = current_wq_worker();
4492 
4493 	return worker && worker->rescue_wq;
4494 }
4495 
4496 /**
4497  * workqueue_congested - test whether a workqueue is congested
4498  * @cpu: CPU in question
4499  * @wq: target workqueue
4500  *
4501  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4502  * no synchronization around this function and the test result is
4503  * unreliable and only useful as advisory hints or for debugging.
4504  *
4505  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4506  * Note that both per-cpu and unbound workqueues may be associated with
4507  * multiple pool_workqueues which have separate congested states.  A
4508  * workqueue being congested on one CPU doesn't mean the workqueue is also
4509  * contested on other CPUs / NUMA nodes.
4510  *
4511  * Return:
4512  * %true if congested, %false otherwise.
4513  */
4514 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4515 {
4516 	struct pool_workqueue *pwq;
4517 	bool ret;
4518 
4519 	rcu_read_lock();
4520 	preempt_disable();
4521 
4522 	if (cpu == WORK_CPU_UNBOUND)
4523 		cpu = smp_processor_id();
4524 
4525 	if (!(wq->flags & WQ_UNBOUND))
4526 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4527 	else
4528 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4529 
4530 	ret = !list_empty(&pwq->delayed_works);
4531 	preempt_enable();
4532 	rcu_read_unlock();
4533 
4534 	return ret;
4535 }
4536 EXPORT_SYMBOL_GPL(workqueue_congested);
4537 
4538 /**
4539  * work_busy - test whether a work is currently pending or running
4540  * @work: the work to be tested
4541  *
4542  * Test whether @work is currently pending or running.  There is no
4543  * synchronization around this function and the test result is
4544  * unreliable and only useful as advisory hints or for debugging.
4545  *
4546  * Return:
4547  * OR'd bitmask of WORK_BUSY_* bits.
4548  */
4549 unsigned int work_busy(struct work_struct *work)
4550 {
4551 	struct worker_pool *pool;
4552 	unsigned long flags;
4553 	unsigned int ret = 0;
4554 
4555 	if (work_pending(work))
4556 		ret |= WORK_BUSY_PENDING;
4557 
4558 	rcu_read_lock();
4559 	pool = get_work_pool(work);
4560 	if (pool) {
4561 		spin_lock_irqsave(&pool->lock, flags);
4562 		if (find_worker_executing_work(pool, work))
4563 			ret |= WORK_BUSY_RUNNING;
4564 		spin_unlock_irqrestore(&pool->lock, flags);
4565 	}
4566 	rcu_read_unlock();
4567 
4568 	return ret;
4569 }
4570 EXPORT_SYMBOL_GPL(work_busy);
4571 
4572 /**
4573  * set_worker_desc - set description for the current work item
4574  * @fmt: printf-style format string
4575  * @...: arguments for the format string
4576  *
4577  * This function can be called by a running work function to describe what
4578  * the work item is about.  If the worker task gets dumped, this
4579  * information will be printed out together to help debugging.  The
4580  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4581  */
4582 void set_worker_desc(const char *fmt, ...)
4583 {
4584 	struct worker *worker = current_wq_worker();
4585 	va_list args;
4586 
4587 	if (worker) {
4588 		va_start(args, fmt);
4589 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4590 		va_end(args);
4591 	}
4592 }
4593 EXPORT_SYMBOL_GPL(set_worker_desc);
4594 
4595 /**
4596  * print_worker_info - print out worker information and description
4597  * @log_lvl: the log level to use when printing
4598  * @task: target task
4599  *
4600  * If @task is a worker and currently executing a work item, print out the
4601  * name of the workqueue being serviced and worker description set with
4602  * set_worker_desc() by the currently executing work item.
4603  *
4604  * This function can be safely called on any task as long as the
4605  * task_struct itself is accessible.  While safe, this function isn't
4606  * synchronized and may print out mixups or garbages of limited length.
4607  */
4608 void print_worker_info(const char *log_lvl, struct task_struct *task)
4609 {
4610 	work_func_t *fn = NULL;
4611 	char name[WQ_NAME_LEN] = { };
4612 	char desc[WORKER_DESC_LEN] = { };
4613 	struct pool_workqueue *pwq = NULL;
4614 	struct workqueue_struct *wq = NULL;
4615 	struct worker *worker;
4616 
4617 	if (!(task->flags & PF_WQ_WORKER))
4618 		return;
4619 
4620 	/*
4621 	 * This function is called without any synchronization and @task
4622 	 * could be in any state.  Be careful with dereferences.
4623 	 */
4624 	worker = kthread_probe_data(task);
4625 
4626 	/*
4627 	 * Carefully copy the associated workqueue's workfn, name and desc.
4628 	 * Keep the original last '\0' in case the original is garbage.
4629 	 */
4630 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4631 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4632 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4633 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4634 	probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4635 
4636 	if (fn || name[0] || desc[0]) {
4637 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4638 		if (strcmp(name, desc))
4639 			pr_cont(" (%s)", desc);
4640 		pr_cont("\n");
4641 	}
4642 }
4643 
4644 static void pr_cont_pool_info(struct worker_pool *pool)
4645 {
4646 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4647 	if (pool->node != NUMA_NO_NODE)
4648 		pr_cont(" node=%d", pool->node);
4649 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4650 }
4651 
4652 static void pr_cont_work(bool comma, struct work_struct *work)
4653 {
4654 	if (work->func == wq_barrier_func) {
4655 		struct wq_barrier *barr;
4656 
4657 		barr = container_of(work, struct wq_barrier, work);
4658 
4659 		pr_cont("%s BAR(%d)", comma ? "," : "",
4660 			task_pid_nr(barr->task));
4661 	} else {
4662 		pr_cont("%s %ps", comma ? "," : "", work->func);
4663 	}
4664 }
4665 
4666 static void show_pwq(struct pool_workqueue *pwq)
4667 {
4668 	struct worker_pool *pool = pwq->pool;
4669 	struct work_struct *work;
4670 	struct worker *worker;
4671 	bool has_in_flight = false, has_pending = false;
4672 	int bkt;
4673 
4674 	pr_info("  pwq %d:", pool->id);
4675 	pr_cont_pool_info(pool);
4676 
4677 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4678 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4679 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4680 
4681 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4682 		if (worker->current_pwq == pwq) {
4683 			has_in_flight = true;
4684 			break;
4685 		}
4686 	}
4687 	if (has_in_flight) {
4688 		bool comma = false;
4689 
4690 		pr_info("    in-flight:");
4691 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4692 			if (worker->current_pwq != pwq)
4693 				continue;
4694 
4695 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4696 				task_pid_nr(worker->task),
4697 				worker->rescue_wq ? "(RESCUER)" : "",
4698 				worker->current_func);
4699 			list_for_each_entry(work, &worker->scheduled, entry)
4700 				pr_cont_work(false, work);
4701 			comma = true;
4702 		}
4703 		pr_cont("\n");
4704 	}
4705 
4706 	list_for_each_entry(work, &pool->worklist, entry) {
4707 		if (get_work_pwq(work) == pwq) {
4708 			has_pending = true;
4709 			break;
4710 		}
4711 	}
4712 	if (has_pending) {
4713 		bool comma = false;
4714 
4715 		pr_info("    pending:");
4716 		list_for_each_entry(work, &pool->worklist, entry) {
4717 			if (get_work_pwq(work) != pwq)
4718 				continue;
4719 
4720 			pr_cont_work(comma, work);
4721 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4722 		}
4723 		pr_cont("\n");
4724 	}
4725 
4726 	if (!list_empty(&pwq->delayed_works)) {
4727 		bool comma = false;
4728 
4729 		pr_info("    delayed:");
4730 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4731 			pr_cont_work(comma, work);
4732 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4733 		}
4734 		pr_cont("\n");
4735 	}
4736 }
4737 
4738 /**
4739  * show_workqueue_state - dump workqueue state
4740  *
4741  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4742  * all busy workqueues and pools.
4743  */
4744 void show_workqueue_state(void)
4745 {
4746 	struct workqueue_struct *wq;
4747 	struct worker_pool *pool;
4748 	unsigned long flags;
4749 	int pi;
4750 
4751 	rcu_read_lock();
4752 
4753 	pr_info("Showing busy workqueues and worker pools:\n");
4754 
4755 	list_for_each_entry_rcu(wq, &workqueues, list) {
4756 		struct pool_workqueue *pwq;
4757 		bool idle = true;
4758 
4759 		for_each_pwq(pwq, wq) {
4760 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4761 				idle = false;
4762 				break;
4763 			}
4764 		}
4765 		if (idle)
4766 			continue;
4767 
4768 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4769 
4770 		for_each_pwq(pwq, wq) {
4771 			spin_lock_irqsave(&pwq->pool->lock, flags);
4772 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4773 				show_pwq(pwq);
4774 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4775 			/*
4776 			 * We could be printing a lot from atomic context, e.g.
4777 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4778 			 * hard lockup.
4779 			 */
4780 			touch_nmi_watchdog();
4781 		}
4782 	}
4783 
4784 	for_each_pool(pool, pi) {
4785 		struct worker *worker;
4786 		bool first = true;
4787 
4788 		spin_lock_irqsave(&pool->lock, flags);
4789 		if (pool->nr_workers == pool->nr_idle)
4790 			goto next_pool;
4791 
4792 		pr_info("pool %d:", pool->id);
4793 		pr_cont_pool_info(pool);
4794 		pr_cont(" hung=%us workers=%d",
4795 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4796 			pool->nr_workers);
4797 		if (pool->manager)
4798 			pr_cont(" manager: %d",
4799 				task_pid_nr(pool->manager->task));
4800 		list_for_each_entry(worker, &pool->idle_list, entry) {
4801 			pr_cont(" %s%d", first ? "idle: " : "",
4802 				task_pid_nr(worker->task));
4803 			first = false;
4804 		}
4805 		pr_cont("\n");
4806 	next_pool:
4807 		spin_unlock_irqrestore(&pool->lock, flags);
4808 		/*
4809 		 * We could be printing a lot from atomic context, e.g.
4810 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4811 		 * hard lockup.
4812 		 */
4813 		touch_nmi_watchdog();
4814 	}
4815 
4816 	rcu_read_unlock();
4817 }
4818 
4819 /* used to show worker information through /proc/PID/{comm,stat,status} */
4820 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4821 {
4822 	int off;
4823 
4824 	/* always show the actual comm */
4825 	off = strscpy(buf, task->comm, size);
4826 	if (off < 0)
4827 		return;
4828 
4829 	/* stabilize PF_WQ_WORKER and worker pool association */
4830 	mutex_lock(&wq_pool_attach_mutex);
4831 
4832 	if (task->flags & PF_WQ_WORKER) {
4833 		struct worker *worker = kthread_data(task);
4834 		struct worker_pool *pool = worker->pool;
4835 
4836 		if (pool) {
4837 			spin_lock_irq(&pool->lock);
4838 			/*
4839 			 * ->desc tracks information (wq name or
4840 			 * set_worker_desc()) for the latest execution.  If
4841 			 * current, prepend '+', otherwise '-'.
4842 			 */
4843 			if (worker->desc[0] != '\0') {
4844 				if (worker->current_work)
4845 					scnprintf(buf + off, size - off, "+%s",
4846 						  worker->desc);
4847 				else
4848 					scnprintf(buf + off, size - off, "-%s",
4849 						  worker->desc);
4850 			}
4851 			spin_unlock_irq(&pool->lock);
4852 		}
4853 	}
4854 
4855 	mutex_unlock(&wq_pool_attach_mutex);
4856 }
4857 
4858 #ifdef CONFIG_SMP
4859 
4860 /*
4861  * CPU hotplug.
4862  *
4863  * There are two challenges in supporting CPU hotplug.  Firstly, there
4864  * are a lot of assumptions on strong associations among work, pwq and
4865  * pool which make migrating pending and scheduled works very
4866  * difficult to implement without impacting hot paths.  Secondly,
4867  * worker pools serve mix of short, long and very long running works making
4868  * blocked draining impractical.
4869  *
4870  * This is solved by allowing the pools to be disassociated from the CPU
4871  * running as an unbound one and allowing it to be reattached later if the
4872  * cpu comes back online.
4873  */
4874 
4875 static void unbind_workers(int cpu)
4876 {
4877 	struct worker_pool *pool;
4878 	struct worker *worker;
4879 
4880 	for_each_cpu_worker_pool(pool, cpu) {
4881 		mutex_lock(&wq_pool_attach_mutex);
4882 		spin_lock_irq(&pool->lock);
4883 
4884 		/*
4885 		 * We've blocked all attach/detach operations. Make all workers
4886 		 * unbound and set DISASSOCIATED.  Before this, all workers
4887 		 * except for the ones which are still executing works from
4888 		 * before the last CPU down must be on the cpu.  After
4889 		 * this, they may become diasporas.
4890 		 */
4891 		for_each_pool_worker(worker, pool)
4892 			worker->flags |= WORKER_UNBOUND;
4893 
4894 		pool->flags |= POOL_DISASSOCIATED;
4895 
4896 		spin_unlock_irq(&pool->lock);
4897 		mutex_unlock(&wq_pool_attach_mutex);
4898 
4899 		/*
4900 		 * Call schedule() so that we cross rq->lock and thus can
4901 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4902 		 * This is necessary as scheduler callbacks may be invoked
4903 		 * from other cpus.
4904 		 */
4905 		schedule();
4906 
4907 		/*
4908 		 * Sched callbacks are disabled now.  Zap nr_running.
4909 		 * After this, nr_running stays zero and need_more_worker()
4910 		 * and keep_working() are always true as long as the
4911 		 * worklist is not empty.  This pool now behaves as an
4912 		 * unbound (in terms of concurrency management) pool which
4913 		 * are served by workers tied to the pool.
4914 		 */
4915 		atomic_set(&pool->nr_running, 0);
4916 
4917 		/*
4918 		 * With concurrency management just turned off, a busy
4919 		 * worker blocking could lead to lengthy stalls.  Kick off
4920 		 * unbound chain execution of currently pending work items.
4921 		 */
4922 		spin_lock_irq(&pool->lock);
4923 		wake_up_worker(pool);
4924 		spin_unlock_irq(&pool->lock);
4925 	}
4926 }
4927 
4928 /**
4929  * rebind_workers - rebind all workers of a pool to the associated CPU
4930  * @pool: pool of interest
4931  *
4932  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4933  */
4934 static void rebind_workers(struct worker_pool *pool)
4935 {
4936 	struct worker *worker;
4937 
4938 	lockdep_assert_held(&wq_pool_attach_mutex);
4939 
4940 	/*
4941 	 * Restore CPU affinity of all workers.  As all idle workers should
4942 	 * be on the run-queue of the associated CPU before any local
4943 	 * wake-ups for concurrency management happen, restore CPU affinity
4944 	 * of all workers first and then clear UNBOUND.  As we're called
4945 	 * from CPU_ONLINE, the following shouldn't fail.
4946 	 */
4947 	for_each_pool_worker(worker, pool)
4948 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4949 						  pool->attrs->cpumask) < 0);
4950 
4951 	spin_lock_irq(&pool->lock);
4952 
4953 	pool->flags &= ~POOL_DISASSOCIATED;
4954 
4955 	for_each_pool_worker(worker, pool) {
4956 		unsigned int worker_flags = worker->flags;
4957 
4958 		/*
4959 		 * A bound idle worker should actually be on the runqueue
4960 		 * of the associated CPU for local wake-ups targeting it to
4961 		 * work.  Kick all idle workers so that they migrate to the
4962 		 * associated CPU.  Doing this in the same loop as
4963 		 * replacing UNBOUND with REBOUND is safe as no worker will
4964 		 * be bound before @pool->lock is released.
4965 		 */
4966 		if (worker_flags & WORKER_IDLE)
4967 			wake_up_process(worker->task);
4968 
4969 		/*
4970 		 * We want to clear UNBOUND but can't directly call
4971 		 * worker_clr_flags() or adjust nr_running.  Atomically
4972 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4973 		 * @worker will clear REBOUND using worker_clr_flags() when
4974 		 * it initiates the next execution cycle thus restoring
4975 		 * concurrency management.  Note that when or whether
4976 		 * @worker clears REBOUND doesn't affect correctness.
4977 		 *
4978 		 * WRITE_ONCE() is necessary because @worker->flags may be
4979 		 * tested without holding any lock in
4980 		 * wq_worker_running().  Without it, NOT_RUNNING test may
4981 		 * fail incorrectly leading to premature concurrency
4982 		 * management operations.
4983 		 */
4984 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4985 		worker_flags |= WORKER_REBOUND;
4986 		worker_flags &= ~WORKER_UNBOUND;
4987 		WRITE_ONCE(worker->flags, worker_flags);
4988 	}
4989 
4990 	spin_unlock_irq(&pool->lock);
4991 }
4992 
4993 /**
4994  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4995  * @pool: unbound pool of interest
4996  * @cpu: the CPU which is coming up
4997  *
4998  * An unbound pool may end up with a cpumask which doesn't have any online
4999  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5000  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5001  * online CPU before, cpus_allowed of all its workers should be restored.
5002  */
5003 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5004 {
5005 	static cpumask_t cpumask;
5006 	struct worker *worker;
5007 
5008 	lockdep_assert_held(&wq_pool_attach_mutex);
5009 
5010 	/* is @cpu allowed for @pool? */
5011 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5012 		return;
5013 
5014 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5015 
5016 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5017 	for_each_pool_worker(worker, pool)
5018 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5019 }
5020 
5021 int workqueue_prepare_cpu(unsigned int cpu)
5022 {
5023 	struct worker_pool *pool;
5024 
5025 	for_each_cpu_worker_pool(pool, cpu) {
5026 		if (pool->nr_workers)
5027 			continue;
5028 		if (!create_worker(pool))
5029 			return -ENOMEM;
5030 	}
5031 	return 0;
5032 }
5033 
5034 int workqueue_online_cpu(unsigned int cpu)
5035 {
5036 	struct worker_pool *pool;
5037 	struct workqueue_struct *wq;
5038 	int pi;
5039 
5040 	mutex_lock(&wq_pool_mutex);
5041 
5042 	for_each_pool(pool, pi) {
5043 		mutex_lock(&wq_pool_attach_mutex);
5044 
5045 		if (pool->cpu == cpu)
5046 			rebind_workers(pool);
5047 		else if (pool->cpu < 0)
5048 			restore_unbound_workers_cpumask(pool, cpu);
5049 
5050 		mutex_unlock(&wq_pool_attach_mutex);
5051 	}
5052 
5053 	/* update NUMA affinity of unbound workqueues */
5054 	list_for_each_entry(wq, &workqueues, list)
5055 		wq_update_unbound_numa(wq, cpu, true);
5056 
5057 	mutex_unlock(&wq_pool_mutex);
5058 	return 0;
5059 }
5060 
5061 int workqueue_offline_cpu(unsigned int cpu)
5062 {
5063 	struct workqueue_struct *wq;
5064 
5065 	/* unbinding per-cpu workers should happen on the local CPU */
5066 	if (WARN_ON(cpu != smp_processor_id()))
5067 		return -1;
5068 
5069 	unbind_workers(cpu);
5070 
5071 	/* update NUMA affinity of unbound workqueues */
5072 	mutex_lock(&wq_pool_mutex);
5073 	list_for_each_entry(wq, &workqueues, list)
5074 		wq_update_unbound_numa(wq, cpu, false);
5075 	mutex_unlock(&wq_pool_mutex);
5076 
5077 	return 0;
5078 }
5079 
5080 struct work_for_cpu {
5081 	struct work_struct work;
5082 	long (*fn)(void *);
5083 	void *arg;
5084 	long ret;
5085 };
5086 
5087 static void work_for_cpu_fn(struct work_struct *work)
5088 {
5089 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5090 
5091 	wfc->ret = wfc->fn(wfc->arg);
5092 }
5093 
5094 /**
5095  * work_on_cpu - run a function in thread context on a particular cpu
5096  * @cpu: the cpu to run on
5097  * @fn: the function to run
5098  * @arg: the function arg
5099  *
5100  * It is up to the caller to ensure that the cpu doesn't go offline.
5101  * The caller must not hold any locks which would prevent @fn from completing.
5102  *
5103  * Return: The value @fn returns.
5104  */
5105 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5106 {
5107 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5108 
5109 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5110 	schedule_work_on(cpu, &wfc.work);
5111 	flush_work(&wfc.work);
5112 	destroy_work_on_stack(&wfc.work);
5113 	return wfc.ret;
5114 }
5115 EXPORT_SYMBOL_GPL(work_on_cpu);
5116 
5117 /**
5118  * work_on_cpu_safe - run a function in thread context on a particular cpu
5119  * @cpu: the cpu to run on
5120  * @fn:  the function to run
5121  * @arg: the function argument
5122  *
5123  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5124  * any locks which would prevent @fn from completing.
5125  *
5126  * Return: The value @fn returns.
5127  */
5128 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5129 {
5130 	long ret = -ENODEV;
5131 
5132 	get_online_cpus();
5133 	if (cpu_online(cpu))
5134 		ret = work_on_cpu(cpu, fn, arg);
5135 	put_online_cpus();
5136 	return ret;
5137 }
5138 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5139 #endif /* CONFIG_SMP */
5140 
5141 #ifdef CONFIG_FREEZER
5142 
5143 /**
5144  * freeze_workqueues_begin - begin freezing workqueues
5145  *
5146  * Start freezing workqueues.  After this function returns, all freezable
5147  * workqueues will queue new works to their delayed_works list instead of
5148  * pool->worklist.
5149  *
5150  * CONTEXT:
5151  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5152  */
5153 void freeze_workqueues_begin(void)
5154 {
5155 	struct workqueue_struct *wq;
5156 	struct pool_workqueue *pwq;
5157 
5158 	mutex_lock(&wq_pool_mutex);
5159 
5160 	WARN_ON_ONCE(workqueue_freezing);
5161 	workqueue_freezing = true;
5162 
5163 	list_for_each_entry(wq, &workqueues, list) {
5164 		mutex_lock(&wq->mutex);
5165 		for_each_pwq(pwq, wq)
5166 			pwq_adjust_max_active(pwq);
5167 		mutex_unlock(&wq->mutex);
5168 	}
5169 
5170 	mutex_unlock(&wq_pool_mutex);
5171 }
5172 
5173 /**
5174  * freeze_workqueues_busy - are freezable workqueues still busy?
5175  *
5176  * Check whether freezing is complete.  This function must be called
5177  * between freeze_workqueues_begin() and thaw_workqueues().
5178  *
5179  * CONTEXT:
5180  * Grabs and releases wq_pool_mutex.
5181  *
5182  * Return:
5183  * %true if some freezable workqueues are still busy.  %false if freezing
5184  * is complete.
5185  */
5186 bool freeze_workqueues_busy(void)
5187 {
5188 	bool busy = false;
5189 	struct workqueue_struct *wq;
5190 	struct pool_workqueue *pwq;
5191 
5192 	mutex_lock(&wq_pool_mutex);
5193 
5194 	WARN_ON_ONCE(!workqueue_freezing);
5195 
5196 	list_for_each_entry(wq, &workqueues, list) {
5197 		if (!(wq->flags & WQ_FREEZABLE))
5198 			continue;
5199 		/*
5200 		 * nr_active is monotonically decreasing.  It's safe
5201 		 * to peek without lock.
5202 		 */
5203 		rcu_read_lock();
5204 		for_each_pwq(pwq, wq) {
5205 			WARN_ON_ONCE(pwq->nr_active < 0);
5206 			if (pwq->nr_active) {
5207 				busy = true;
5208 				rcu_read_unlock();
5209 				goto out_unlock;
5210 			}
5211 		}
5212 		rcu_read_unlock();
5213 	}
5214 out_unlock:
5215 	mutex_unlock(&wq_pool_mutex);
5216 	return busy;
5217 }
5218 
5219 /**
5220  * thaw_workqueues - thaw workqueues
5221  *
5222  * Thaw workqueues.  Normal queueing is restored and all collected
5223  * frozen works are transferred to their respective pool worklists.
5224  *
5225  * CONTEXT:
5226  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5227  */
5228 void thaw_workqueues(void)
5229 {
5230 	struct workqueue_struct *wq;
5231 	struct pool_workqueue *pwq;
5232 
5233 	mutex_lock(&wq_pool_mutex);
5234 
5235 	if (!workqueue_freezing)
5236 		goto out_unlock;
5237 
5238 	workqueue_freezing = false;
5239 
5240 	/* restore max_active and repopulate worklist */
5241 	list_for_each_entry(wq, &workqueues, list) {
5242 		mutex_lock(&wq->mutex);
5243 		for_each_pwq(pwq, wq)
5244 			pwq_adjust_max_active(pwq);
5245 		mutex_unlock(&wq->mutex);
5246 	}
5247 
5248 out_unlock:
5249 	mutex_unlock(&wq_pool_mutex);
5250 }
5251 #endif /* CONFIG_FREEZER */
5252 
5253 static int workqueue_apply_unbound_cpumask(void)
5254 {
5255 	LIST_HEAD(ctxs);
5256 	int ret = 0;
5257 	struct workqueue_struct *wq;
5258 	struct apply_wqattrs_ctx *ctx, *n;
5259 
5260 	lockdep_assert_held(&wq_pool_mutex);
5261 
5262 	list_for_each_entry(wq, &workqueues, list) {
5263 		if (!(wq->flags & WQ_UNBOUND))
5264 			continue;
5265 		/* creating multiple pwqs breaks ordering guarantee */
5266 		if (wq->flags & __WQ_ORDERED)
5267 			continue;
5268 
5269 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5270 		if (!ctx) {
5271 			ret = -ENOMEM;
5272 			break;
5273 		}
5274 
5275 		list_add_tail(&ctx->list, &ctxs);
5276 	}
5277 
5278 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5279 		if (!ret)
5280 			apply_wqattrs_commit(ctx);
5281 		apply_wqattrs_cleanup(ctx);
5282 	}
5283 
5284 	return ret;
5285 }
5286 
5287 /**
5288  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5289  *  @cpumask: the cpumask to set
5290  *
5291  *  The low-level workqueues cpumask is a global cpumask that limits
5292  *  the affinity of all unbound workqueues.  This function check the @cpumask
5293  *  and apply it to all unbound workqueues and updates all pwqs of them.
5294  *
5295  *  Retun:	0	- Success
5296  *  		-EINVAL	- Invalid @cpumask
5297  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5298  */
5299 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5300 {
5301 	int ret = -EINVAL;
5302 	cpumask_var_t saved_cpumask;
5303 
5304 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5305 		return -ENOMEM;
5306 
5307 	/*
5308 	 * Not excluding isolated cpus on purpose.
5309 	 * If the user wishes to include them, we allow that.
5310 	 */
5311 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5312 	if (!cpumask_empty(cpumask)) {
5313 		apply_wqattrs_lock();
5314 
5315 		/* save the old wq_unbound_cpumask. */
5316 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5317 
5318 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5319 		cpumask_copy(wq_unbound_cpumask, cpumask);
5320 		ret = workqueue_apply_unbound_cpumask();
5321 
5322 		/* restore the wq_unbound_cpumask when failed. */
5323 		if (ret < 0)
5324 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5325 
5326 		apply_wqattrs_unlock();
5327 	}
5328 
5329 	free_cpumask_var(saved_cpumask);
5330 	return ret;
5331 }
5332 
5333 #ifdef CONFIG_SYSFS
5334 /*
5335  * Workqueues with WQ_SYSFS flag set is visible to userland via
5336  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5337  * following attributes.
5338  *
5339  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5340  *  max_active	RW int	: maximum number of in-flight work items
5341  *
5342  * Unbound workqueues have the following extra attributes.
5343  *
5344  *  pool_ids	RO int	: the associated pool IDs for each node
5345  *  nice	RW int	: nice value of the workers
5346  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5347  *  numa	RW bool	: whether enable NUMA affinity
5348  */
5349 struct wq_device {
5350 	struct workqueue_struct		*wq;
5351 	struct device			dev;
5352 };
5353 
5354 static struct workqueue_struct *dev_to_wq(struct device *dev)
5355 {
5356 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5357 
5358 	return wq_dev->wq;
5359 }
5360 
5361 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5362 			    char *buf)
5363 {
5364 	struct workqueue_struct *wq = dev_to_wq(dev);
5365 
5366 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5367 }
5368 static DEVICE_ATTR_RO(per_cpu);
5369 
5370 static ssize_t max_active_show(struct device *dev,
5371 			       struct device_attribute *attr, char *buf)
5372 {
5373 	struct workqueue_struct *wq = dev_to_wq(dev);
5374 
5375 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5376 }
5377 
5378 static ssize_t max_active_store(struct device *dev,
5379 				struct device_attribute *attr, const char *buf,
5380 				size_t count)
5381 {
5382 	struct workqueue_struct *wq = dev_to_wq(dev);
5383 	int val;
5384 
5385 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5386 		return -EINVAL;
5387 
5388 	workqueue_set_max_active(wq, val);
5389 	return count;
5390 }
5391 static DEVICE_ATTR_RW(max_active);
5392 
5393 static struct attribute *wq_sysfs_attrs[] = {
5394 	&dev_attr_per_cpu.attr,
5395 	&dev_attr_max_active.attr,
5396 	NULL,
5397 };
5398 ATTRIBUTE_GROUPS(wq_sysfs);
5399 
5400 static ssize_t wq_pool_ids_show(struct device *dev,
5401 				struct device_attribute *attr, char *buf)
5402 {
5403 	struct workqueue_struct *wq = dev_to_wq(dev);
5404 	const char *delim = "";
5405 	int node, written = 0;
5406 
5407 	get_online_cpus();
5408 	rcu_read_lock();
5409 	for_each_node(node) {
5410 		written += scnprintf(buf + written, PAGE_SIZE - written,
5411 				     "%s%d:%d", delim, node,
5412 				     unbound_pwq_by_node(wq, node)->pool->id);
5413 		delim = " ";
5414 	}
5415 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5416 	rcu_read_unlock();
5417 	put_online_cpus();
5418 
5419 	return written;
5420 }
5421 
5422 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5423 			    char *buf)
5424 {
5425 	struct workqueue_struct *wq = dev_to_wq(dev);
5426 	int written;
5427 
5428 	mutex_lock(&wq->mutex);
5429 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5430 	mutex_unlock(&wq->mutex);
5431 
5432 	return written;
5433 }
5434 
5435 /* prepare workqueue_attrs for sysfs store operations */
5436 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5437 {
5438 	struct workqueue_attrs *attrs;
5439 
5440 	lockdep_assert_held(&wq_pool_mutex);
5441 
5442 	attrs = alloc_workqueue_attrs();
5443 	if (!attrs)
5444 		return NULL;
5445 
5446 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5447 	return attrs;
5448 }
5449 
5450 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5451 			     const char *buf, size_t count)
5452 {
5453 	struct workqueue_struct *wq = dev_to_wq(dev);
5454 	struct workqueue_attrs *attrs;
5455 	int ret = -ENOMEM;
5456 
5457 	apply_wqattrs_lock();
5458 
5459 	attrs = wq_sysfs_prep_attrs(wq);
5460 	if (!attrs)
5461 		goto out_unlock;
5462 
5463 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5464 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5465 		ret = apply_workqueue_attrs_locked(wq, attrs);
5466 	else
5467 		ret = -EINVAL;
5468 
5469 out_unlock:
5470 	apply_wqattrs_unlock();
5471 	free_workqueue_attrs(attrs);
5472 	return ret ?: count;
5473 }
5474 
5475 static ssize_t wq_cpumask_show(struct device *dev,
5476 			       struct device_attribute *attr, char *buf)
5477 {
5478 	struct workqueue_struct *wq = dev_to_wq(dev);
5479 	int written;
5480 
5481 	mutex_lock(&wq->mutex);
5482 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5483 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5484 	mutex_unlock(&wq->mutex);
5485 	return written;
5486 }
5487 
5488 static ssize_t wq_cpumask_store(struct device *dev,
5489 				struct device_attribute *attr,
5490 				const char *buf, size_t count)
5491 {
5492 	struct workqueue_struct *wq = dev_to_wq(dev);
5493 	struct workqueue_attrs *attrs;
5494 	int ret = -ENOMEM;
5495 
5496 	apply_wqattrs_lock();
5497 
5498 	attrs = wq_sysfs_prep_attrs(wq);
5499 	if (!attrs)
5500 		goto out_unlock;
5501 
5502 	ret = cpumask_parse(buf, attrs->cpumask);
5503 	if (!ret)
5504 		ret = apply_workqueue_attrs_locked(wq, attrs);
5505 
5506 out_unlock:
5507 	apply_wqattrs_unlock();
5508 	free_workqueue_attrs(attrs);
5509 	return ret ?: count;
5510 }
5511 
5512 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5513 			    char *buf)
5514 {
5515 	struct workqueue_struct *wq = dev_to_wq(dev);
5516 	int written;
5517 
5518 	mutex_lock(&wq->mutex);
5519 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5520 			    !wq->unbound_attrs->no_numa);
5521 	mutex_unlock(&wq->mutex);
5522 
5523 	return written;
5524 }
5525 
5526 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5527 			     const char *buf, size_t count)
5528 {
5529 	struct workqueue_struct *wq = dev_to_wq(dev);
5530 	struct workqueue_attrs *attrs;
5531 	int v, ret = -ENOMEM;
5532 
5533 	apply_wqattrs_lock();
5534 
5535 	attrs = wq_sysfs_prep_attrs(wq);
5536 	if (!attrs)
5537 		goto out_unlock;
5538 
5539 	ret = -EINVAL;
5540 	if (sscanf(buf, "%d", &v) == 1) {
5541 		attrs->no_numa = !v;
5542 		ret = apply_workqueue_attrs_locked(wq, attrs);
5543 	}
5544 
5545 out_unlock:
5546 	apply_wqattrs_unlock();
5547 	free_workqueue_attrs(attrs);
5548 	return ret ?: count;
5549 }
5550 
5551 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5552 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5553 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5554 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5555 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5556 	__ATTR_NULL,
5557 };
5558 
5559 static struct bus_type wq_subsys = {
5560 	.name				= "workqueue",
5561 	.dev_groups			= wq_sysfs_groups,
5562 };
5563 
5564 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5565 		struct device_attribute *attr, char *buf)
5566 {
5567 	int written;
5568 
5569 	mutex_lock(&wq_pool_mutex);
5570 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5571 			    cpumask_pr_args(wq_unbound_cpumask));
5572 	mutex_unlock(&wq_pool_mutex);
5573 
5574 	return written;
5575 }
5576 
5577 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5578 		struct device_attribute *attr, const char *buf, size_t count)
5579 {
5580 	cpumask_var_t cpumask;
5581 	int ret;
5582 
5583 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5584 		return -ENOMEM;
5585 
5586 	ret = cpumask_parse(buf, cpumask);
5587 	if (!ret)
5588 		ret = workqueue_set_unbound_cpumask(cpumask);
5589 
5590 	free_cpumask_var(cpumask);
5591 	return ret ? ret : count;
5592 }
5593 
5594 static struct device_attribute wq_sysfs_cpumask_attr =
5595 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5596 	       wq_unbound_cpumask_store);
5597 
5598 static int __init wq_sysfs_init(void)
5599 {
5600 	int err;
5601 
5602 	err = subsys_virtual_register(&wq_subsys, NULL);
5603 	if (err)
5604 		return err;
5605 
5606 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5607 }
5608 core_initcall(wq_sysfs_init);
5609 
5610 static void wq_device_release(struct device *dev)
5611 {
5612 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5613 
5614 	kfree(wq_dev);
5615 }
5616 
5617 /**
5618  * workqueue_sysfs_register - make a workqueue visible in sysfs
5619  * @wq: the workqueue to register
5620  *
5621  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5622  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5623  * which is the preferred method.
5624  *
5625  * Workqueue user should use this function directly iff it wants to apply
5626  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5627  * apply_workqueue_attrs() may race against userland updating the
5628  * attributes.
5629  *
5630  * Return: 0 on success, -errno on failure.
5631  */
5632 int workqueue_sysfs_register(struct workqueue_struct *wq)
5633 {
5634 	struct wq_device *wq_dev;
5635 	int ret;
5636 
5637 	/*
5638 	 * Adjusting max_active or creating new pwqs by applying
5639 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5640 	 * workqueues.
5641 	 */
5642 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5643 		return -EINVAL;
5644 
5645 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5646 	if (!wq_dev)
5647 		return -ENOMEM;
5648 
5649 	wq_dev->wq = wq;
5650 	wq_dev->dev.bus = &wq_subsys;
5651 	wq_dev->dev.release = wq_device_release;
5652 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5653 
5654 	/*
5655 	 * unbound_attrs are created separately.  Suppress uevent until
5656 	 * everything is ready.
5657 	 */
5658 	dev_set_uevent_suppress(&wq_dev->dev, true);
5659 
5660 	ret = device_register(&wq_dev->dev);
5661 	if (ret) {
5662 		put_device(&wq_dev->dev);
5663 		wq->wq_dev = NULL;
5664 		return ret;
5665 	}
5666 
5667 	if (wq->flags & WQ_UNBOUND) {
5668 		struct device_attribute *attr;
5669 
5670 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5671 			ret = device_create_file(&wq_dev->dev, attr);
5672 			if (ret) {
5673 				device_unregister(&wq_dev->dev);
5674 				wq->wq_dev = NULL;
5675 				return ret;
5676 			}
5677 		}
5678 	}
5679 
5680 	dev_set_uevent_suppress(&wq_dev->dev, false);
5681 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5682 	return 0;
5683 }
5684 
5685 /**
5686  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5687  * @wq: the workqueue to unregister
5688  *
5689  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5690  */
5691 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5692 {
5693 	struct wq_device *wq_dev = wq->wq_dev;
5694 
5695 	if (!wq->wq_dev)
5696 		return;
5697 
5698 	wq->wq_dev = NULL;
5699 	device_unregister(&wq_dev->dev);
5700 }
5701 #else	/* CONFIG_SYSFS */
5702 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5703 #endif	/* CONFIG_SYSFS */
5704 
5705 /*
5706  * Workqueue watchdog.
5707  *
5708  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5709  * flush dependency, a concurrency managed work item which stays RUNNING
5710  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5711  * usual warning mechanisms don't trigger and internal workqueue state is
5712  * largely opaque.
5713  *
5714  * Workqueue watchdog monitors all worker pools periodically and dumps
5715  * state if some pools failed to make forward progress for a while where
5716  * forward progress is defined as the first item on ->worklist changing.
5717  *
5718  * This mechanism is controlled through the kernel parameter
5719  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5720  * corresponding sysfs parameter file.
5721  */
5722 #ifdef CONFIG_WQ_WATCHDOG
5723 
5724 static unsigned long wq_watchdog_thresh = 30;
5725 static struct timer_list wq_watchdog_timer;
5726 
5727 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5728 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5729 
5730 static void wq_watchdog_reset_touched(void)
5731 {
5732 	int cpu;
5733 
5734 	wq_watchdog_touched = jiffies;
5735 	for_each_possible_cpu(cpu)
5736 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5737 }
5738 
5739 static void wq_watchdog_timer_fn(struct timer_list *unused)
5740 {
5741 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5742 	bool lockup_detected = false;
5743 	struct worker_pool *pool;
5744 	int pi;
5745 
5746 	if (!thresh)
5747 		return;
5748 
5749 	rcu_read_lock();
5750 
5751 	for_each_pool(pool, pi) {
5752 		unsigned long pool_ts, touched, ts;
5753 
5754 		if (list_empty(&pool->worklist))
5755 			continue;
5756 
5757 		/* get the latest of pool and touched timestamps */
5758 		pool_ts = READ_ONCE(pool->watchdog_ts);
5759 		touched = READ_ONCE(wq_watchdog_touched);
5760 
5761 		if (time_after(pool_ts, touched))
5762 			ts = pool_ts;
5763 		else
5764 			ts = touched;
5765 
5766 		if (pool->cpu >= 0) {
5767 			unsigned long cpu_touched =
5768 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5769 						  pool->cpu));
5770 			if (time_after(cpu_touched, ts))
5771 				ts = cpu_touched;
5772 		}
5773 
5774 		/* did we stall? */
5775 		if (time_after(jiffies, ts + thresh)) {
5776 			lockup_detected = true;
5777 			pr_emerg("BUG: workqueue lockup - pool");
5778 			pr_cont_pool_info(pool);
5779 			pr_cont(" stuck for %us!\n",
5780 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5781 		}
5782 	}
5783 
5784 	rcu_read_unlock();
5785 
5786 	if (lockup_detected)
5787 		show_workqueue_state();
5788 
5789 	wq_watchdog_reset_touched();
5790 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5791 }
5792 
5793 notrace void wq_watchdog_touch(int cpu)
5794 {
5795 	if (cpu >= 0)
5796 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5797 	else
5798 		wq_watchdog_touched = jiffies;
5799 }
5800 
5801 static void wq_watchdog_set_thresh(unsigned long thresh)
5802 {
5803 	wq_watchdog_thresh = 0;
5804 	del_timer_sync(&wq_watchdog_timer);
5805 
5806 	if (thresh) {
5807 		wq_watchdog_thresh = thresh;
5808 		wq_watchdog_reset_touched();
5809 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5810 	}
5811 }
5812 
5813 static int wq_watchdog_param_set_thresh(const char *val,
5814 					const struct kernel_param *kp)
5815 {
5816 	unsigned long thresh;
5817 	int ret;
5818 
5819 	ret = kstrtoul(val, 0, &thresh);
5820 	if (ret)
5821 		return ret;
5822 
5823 	if (system_wq)
5824 		wq_watchdog_set_thresh(thresh);
5825 	else
5826 		wq_watchdog_thresh = thresh;
5827 
5828 	return 0;
5829 }
5830 
5831 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5832 	.set	= wq_watchdog_param_set_thresh,
5833 	.get	= param_get_ulong,
5834 };
5835 
5836 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5837 		0644);
5838 
5839 static void wq_watchdog_init(void)
5840 {
5841 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5842 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5843 }
5844 
5845 #else	/* CONFIG_WQ_WATCHDOG */
5846 
5847 static inline void wq_watchdog_init(void) { }
5848 
5849 #endif	/* CONFIG_WQ_WATCHDOG */
5850 
5851 static void __init wq_numa_init(void)
5852 {
5853 	cpumask_var_t *tbl;
5854 	int node, cpu;
5855 
5856 	if (num_possible_nodes() <= 1)
5857 		return;
5858 
5859 	if (wq_disable_numa) {
5860 		pr_info("workqueue: NUMA affinity support disabled\n");
5861 		return;
5862 	}
5863 
5864 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5865 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5866 
5867 	/*
5868 	 * We want masks of possible CPUs of each node which isn't readily
5869 	 * available.  Build one from cpu_to_node() which should have been
5870 	 * fully initialized by now.
5871 	 */
5872 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5873 	BUG_ON(!tbl);
5874 
5875 	for_each_node(node)
5876 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5877 				node_online(node) ? node : NUMA_NO_NODE));
5878 
5879 	for_each_possible_cpu(cpu) {
5880 		node = cpu_to_node(cpu);
5881 		if (WARN_ON(node == NUMA_NO_NODE)) {
5882 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5883 			/* happens iff arch is bonkers, let's just proceed */
5884 			return;
5885 		}
5886 		cpumask_set_cpu(cpu, tbl[node]);
5887 	}
5888 
5889 	wq_numa_possible_cpumask = tbl;
5890 	wq_numa_enabled = true;
5891 }
5892 
5893 /**
5894  * workqueue_init_early - early init for workqueue subsystem
5895  *
5896  * This is the first half of two-staged workqueue subsystem initialization
5897  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5898  * idr are up.  It sets up all the data structures and system workqueues
5899  * and allows early boot code to create workqueues and queue/cancel work
5900  * items.  Actual work item execution starts only after kthreads can be
5901  * created and scheduled right before early initcalls.
5902  */
5903 void __init workqueue_init_early(void)
5904 {
5905 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5906 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5907 	int i, cpu;
5908 
5909 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5910 
5911 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5912 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5913 
5914 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5915 
5916 	/* initialize CPU pools */
5917 	for_each_possible_cpu(cpu) {
5918 		struct worker_pool *pool;
5919 
5920 		i = 0;
5921 		for_each_cpu_worker_pool(pool, cpu) {
5922 			BUG_ON(init_worker_pool(pool));
5923 			pool->cpu = cpu;
5924 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5925 			pool->attrs->nice = std_nice[i++];
5926 			pool->node = cpu_to_node(cpu);
5927 
5928 			/* alloc pool ID */
5929 			mutex_lock(&wq_pool_mutex);
5930 			BUG_ON(worker_pool_assign_id(pool));
5931 			mutex_unlock(&wq_pool_mutex);
5932 		}
5933 	}
5934 
5935 	/* create default unbound and ordered wq attrs */
5936 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5937 		struct workqueue_attrs *attrs;
5938 
5939 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5940 		attrs->nice = std_nice[i];
5941 		unbound_std_wq_attrs[i] = attrs;
5942 
5943 		/*
5944 		 * An ordered wq should have only one pwq as ordering is
5945 		 * guaranteed by max_active which is enforced by pwqs.
5946 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5947 		 */
5948 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5949 		attrs->nice = std_nice[i];
5950 		attrs->no_numa = true;
5951 		ordered_wq_attrs[i] = attrs;
5952 	}
5953 
5954 	system_wq = alloc_workqueue("events", 0, 0);
5955 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5956 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5957 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5958 					    WQ_UNBOUND_MAX_ACTIVE);
5959 	system_freezable_wq = alloc_workqueue("events_freezable",
5960 					      WQ_FREEZABLE, 0);
5961 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5962 					      WQ_POWER_EFFICIENT, 0);
5963 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5964 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5965 					      0);
5966 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5967 	       !system_unbound_wq || !system_freezable_wq ||
5968 	       !system_power_efficient_wq ||
5969 	       !system_freezable_power_efficient_wq);
5970 }
5971 
5972 /**
5973  * workqueue_init - bring workqueue subsystem fully online
5974  *
5975  * This is the latter half of two-staged workqueue subsystem initialization
5976  * and invoked as soon as kthreads can be created and scheduled.
5977  * Workqueues have been created and work items queued on them, but there
5978  * are no kworkers executing the work items yet.  Populate the worker pools
5979  * with the initial workers and enable future kworker creations.
5980  */
5981 void __init workqueue_init(void)
5982 {
5983 	struct workqueue_struct *wq;
5984 	struct worker_pool *pool;
5985 	int cpu, bkt;
5986 
5987 	/*
5988 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5989 	 * CPU to node mapping may not be available that early on some
5990 	 * archs such as power and arm64.  As per-cpu pools created
5991 	 * previously could be missing node hint and unbound pools NUMA
5992 	 * affinity, fix them up.
5993 	 *
5994 	 * Also, while iterating workqueues, create rescuers if requested.
5995 	 */
5996 	wq_numa_init();
5997 
5998 	mutex_lock(&wq_pool_mutex);
5999 
6000 	for_each_possible_cpu(cpu) {
6001 		for_each_cpu_worker_pool(pool, cpu) {
6002 			pool->node = cpu_to_node(cpu);
6003 		}
6004 	}
6005 
6006 	list_for_each_entry(wq, &workqueues, list) {
6007 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6008 		WARN(init_rescuer(wq),
6009 		     "workqueue: failed to create early rescuer for %s",
6010 		     wq->name);
6011 	}
6012 
6013 	mutex_unlock(&wq_pool_mutex);
6014 
6015 	/* create the initial workers */
6016 	for_each_online_cpu(cpu) {
6017 		for_each_cpu_worker_pool(pool, cpu) {
6018 			pool->flags &= ~POOL_DISASSOCIATED;
6019 			BUG_ON(!create_worker(pool));
6020 		}
6021 	}
6022 
6023 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6024 		BUG_ON(!create_worker(pool));
6025 
6026 	wq_online = true;
6027 	wq_watchdog_init();
6028 }
6029