xref: /openbmc/linux/kernel/user_namespace.c (revision e3211e41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 #include <linux/export.h>
4 #include <linux/nsproxy.h>
5 #include <linux/slab.h>
6 #include <linux/sched/signal.h>
7 #include <linux/user_namespace.h>
8 #include <linux/proc_ns.h>
9 #include <linux/highuid.h>
10 #include <linux/cred.h>
11 #include <linux/securebits.h>
12 #include <linux/keyctl.h>
13 #include <linux/key-type.h>
14 #include <keys/user-type.h>
15 #include <linux/seq_file.h>
16 #include <linux/fs.h>
17 #include <linux/uaccess.h>
18 #include <linux/ctype.h>
19 #include <linux/projid.h>
20 #include <linux/fs_struct.h>
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 
24 static struct kmem_cache *user_ns_cachep __read_mostly;
25 static DEFINE_MUTEX(userns_state_mutex);
26 
27 static bool new_idmap_permitted(const struct file *file,
28 				struct user_namespace *ns, int cap_setid,
29 				struct uid_gid_map *map);
30 static void free_user_ns(struct work_struct *work);
31 
32 static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid)
33 {
34 	return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES);
35 }
36 
37 static void dec_user_namespaces(struct ucounts *ucounts)
38 {
39 	return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES);
40 }
41 
42 static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns)
43 {
44 	/* Start with the same capabilities as init but useless for doing
45 	 * anything as the capabilities are bound to the new user namespace.
46 	 */
47 	cred->securebits = SECUREBITS_DEFAULT;
48 	cred->cap_inheritable = CAP_EMPTY_SET;
49 	cred->cap_permitted = CAP_FULL_SET;
50 	cred->cap_effective = CAP_FULL_SET;
51 	cred->cap_ambient = CAP_EMPTY_SET;
52 	cred->cap_bset = CAP_FULL_SET;
53 #ifdef CONFIG_KEYS
54 	key_put(cred->request_key_auth);
55 	cred->request_key_auth = NULL;
56 #endif
57 	/* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */
58 	cred->user_ns = user_ns;
59 }
60 
61 /*
62  * Create a new user namespace, deriving the creator from the user in the
63  * passed credentials, and replacing that user with the new root user for the
64  * new namespace.
65  *
66  * This is called by copy_creds(), which will finish setting the target task's
67  * credentials.
68  */
69 int create_user_ns(struct cred *new)
70 {
71 	struct user_namespace *ns, *parent_ns = new->user_ns;
72 	kuid_t owner = new->euid;
73 	kgid_t group = new->egid;
74 	struct ucounts *ucounts;
75 	int ret, i;
76 
77 	ret = -ENOSPC;
78 	if (parent_ns->level > 32)
79 		goto fail;
80 
81 	ucounts = inc_user_namespaces(parent_ns, owner);
82 	if (!ucounts)
83 		goto fail;
84 
85 	/*
86 	 * Verify that we can not violate the policy of which files
87 	 * may be accessed that is specified by the root directory,
88 	 * by verifying that the root directory is at the root of the
89 	 * mount namespace which allows all files to be accessed.
90 	 */
91 	ret = -EPERM;
92 	if (current_chrooted())
93 		goto fail_dec;
94 
95 	/* The creator needs a mapping in the parent user namespace
96 	 * or else we won't be able to reasonably tell userspace who
97 	 * created a user_namespace.
98 	 */
99 	ret = -EPERM;
100 	if (!kuid_has_mapping(parent_ns, owner) ||
101 	    !kgid_has_mapping(parent_ns, group))
102 		goto fail_dec;
103 
104 	ret = -ENOMEM;
105 	ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL);
106 	if (!ns)
107 		goto fail_dec;
108 
109 	ns->parent_could_setfcap = cap_raised(new->cap_effective, CAP_SETFCAP);
110 	ret = ns_alloc_inum(&ns->ns);
111 	if (ret)
112 		goto fail_free;
113 	ns->ns.ops = &userns_operations;
114 
115 	refcount_set(&ns->ns.count, 1);
116 	/* Leave the new->user_ns reference with the new user namespace. */
117 	ns->parent = parent_ns;
118 	ns->level = parent_ns->level + 1;
119 	ns->owner = owner;
120 	ns->group = group;
121 	INIT_WORK(&ns->work, free_user_ns);
122 	for (i = 0; i < UCOUNT_COUNTS; i++) {
123 		ns->ucount_max[i] = INT_MAX;
124 	}
125 	ns->ucounts = ucounts;
126 
127 	/* Inherit USERNS_SETGROUPS_ALLOWED from our parent */
128 	mutex_lock(&userns_state_mutex);
129 	ns->flags = parent_ns->flags;
130 	mutex_unlock(&userns_state_mutex);
131 
132 #ifdef CONFIG_KEYS
133 	INIT_LIST_HEAD(&ns->keyring_name_list);
134 	init_rwsem(&ns->keyring_sem);
135 #endif
136 	ret = -ENOMEM;
137 	if (!setup_userns_sysctls(ns))
138 		goto fail_keyring;
139 
140 	set_cred_user_ns(new, ns);
141 	return 0;
142 fail_keyring:
143 #ifdef CONFIG_PERSISTENT_KEYRINGS
144 	key_put(ns->persistent_keyring_register);
145 #endif
146 	ns_free_inum(&ns->ns);
147 fail_free:
148 	kmem_cache_free(user_ns_cachep, ns);
149 fail_dec:
150 	dec_user_namespaces(ucounts);
151 fail:
152 	return ret;
153 }
154 
155 int unshare_userns(unsigned long unshare_flags, struct cred **new_cred)
156 {
157 	struct cred *cred;
158 	int err = -ENOMEM;
159 
160 	if (!(unshare_flags & CLONE_NEWUSER))
161 		return 0;
162 
163 	cred = prepare_creds();
164 	if (cred) {
165 		err = create_user_ns(cred);
166 		if (err)
167 			put_cred(cred);
168 		else
169 			*new_cred = cred;
170 	}
171 
172 	return err;
173 }
174 
175 static void free_user_ns(struct work_struct *work)
176 {
177 	struct user_namespace *parent, *ns =
178 		container_of(work, struct user_namespace, work);
179 
180 	do {
181 		struct ucounts *ucounts = ns->ucounts;
182 		parent = ns->parent;
183 		if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
184 			kfree(ns->gid_map.forward);
185 			kfree(ns->gid_map.reverse);
186 		}
187 		if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
188 			kfree(ns->uid_map.forward);
189 			kfree(ns->uid_map.reverse);
190 		}
191 		if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
192 			kfree(ns->projid_map.forward);
193 			kfree(ns->projid_map.reverse);
194 		}
195 		retire_userns_sysctls(ns);
196 		key_free_user_ns(ns);
197 		ns_free_inum(&ns->ns);
198 		kmem_cache_free(user_ns_cachep, ns);
199 		dec_user_namespaces(ucounts);
200 		ns = parent;
201 	} while (refcount_dec_and_test(&parent->ns.count));
202 }
203 
204 void __put_user_ns(struct user_namespace *ns)
205 {
206 	schedule_work(&ns->work);
207 }
208 EXPORT_SYMBOL(__put_user_ns);
209 
210 /**
211  * idmap_key struct holds the information necessary to find an idmapping in a
212  * sorted idmap array. It is passed to cmp_map_id() as first argument.
213  */
214 struct idmap_key {
215 	bool map_up; /* true  -> id from kid; false -> kid from id */
216 	u32 id; /* id to find */
217 	u32 count; /* == 0 unless used with map_id_range_down() */
218 };
219 
220 /**
221  * cmp_map_id - Function to be passed to bsearch() to find the requested
222  * idmapping. Expects struct idmap_key to be passed via @k.
223  */
224 static int cmp_map_id(const void *k, const void *e)
225 {
226 	u32 first, last, id2;
227 	const struct idmap_key *key = k;
228 	const struct uid_gid_extent *el = e;
229 
230 	id2 = key->id + key->count - 1;
231 
232 	/* handle map_id_{down,up}() */
233 	if (key->map_up)
234 		first = el->lower_first;
235 	else
236 		first = el->first;
237 
238 	last = first + el->count - 1;
239 
240 	if (key->id >= first && key->id <= last &&
241 	    (id2 >= first && id2 <= last))
242 		return 0;
243 
244 	if (key->id < first || id2 < first)
245 		return -1;
246 
247 	return 1;
248 }
249 
250 /**
251  * map_id_range_down_max - Find idmap via binary search in ordered idmap array.
252  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
253  */
254 static struct uid_gid_extent *
255 map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
256 {
257 	struct idmap_key key;
258 
259 	key.map_up = false;
260 	key.count = count;
261 	key.id = id;
262 
263 	return bsearch(&key, map->forward, extents,
264 		       sizeof(struct uid_gid_extent), cmp_map_id);
265 }
266 
267 /**
268  * map_id_range_down_base - Find idmap via binary search in static extent array.
269  * Can only be called if number of mappings is equal or less than
270  * UID_GID_MAP_MAX_BASE_EXTENTS.
271  */
272 static struct uid_gid_extent *
273 map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
274 {
275 	unsigned idx;
276 	u32 first, last, id2;
277 
278 	id2 = id + count - 1;
279 
280 	/* Find the matching extent */
281 	for (idx = 0; idx < extents; idx++) {
282 		first = map->extent[idx].first;
283 		last = first + map->extent[idx].count - 1;
284 		if (id >= first && id <= last &&
285 		    (id2 >= first && id2 <= last))
286 			return &map->extent[idx];
287 	}
288 	return NULL;
289 }
290 
291 static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count)
292 {
293 	struct uid_gid_extent *extent;
294 	unsigned extents = map->nr_extents;
295 	smp_rmb();
296 
297 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
298 		extent = map_id_range_down_base(extents, map, id, count);
299 	else
300 		extent = map_id_range_down_max(extents, map, id, count);
301 
302 	/* Map the id or note failure */
303 	if (extent)
304 		id = (id - extent->first) + extent->lower_first;
305 	else
306 		id = (u32) -1;
307 
308 	return id;
309 }
310 
311 static u32 map_id_down(struct uid_gid_map *map, u32 id)
312 {
313 	return map_id_range_down(map, id, 1);
314 }
315 
316 /**
317  * map_id_up_base - Find idmap via binary search in static extent array.
318  * Can only be called if number of mappings is equal or less than
319  * UID_GID_MAP_MAX_BASE_EXTENTS.
320  */
321 static struct uid_gid_extent *
322 map_id_up_base(unsigned extents, struct uid_gid_map *map, u32 id)
323 {
324 	unsigned idx;
325 	u32 first, last;
326 
327 	/* Find the matching extent */
328 	for (idx = 0; idx < extents; idx++) {
329 		first = map->extent[idx].lower_first;
330 		last = first + map->extent[idx].count - 1;
331 		if (id >= first && id <= last)
332 			return &map->extent[idx];
333 	}
334 	return NULL;
335 }
336 
337 /**
338  * map_id_up_max - Find idmap via binary search in ordered idmap array.
339  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
340  */
341 static struct uid_gid_extent *
342 map_id_up_max(unsigned extents, struct uid_gid_map *map, u32 id)
343 {
344 	struct idmap_key key;
345 
346 	key.map_up = true;
347 	key.count = 1;
348 	key.id = id;
349 
350 	return bsearch(&key, map->reverse, extents,
351 		       sizeof(struct uid_gid_extent), cmp_map_id);
352 }
353 
354 static u32 map_id_up(struct uid_gid_map *map, u32 id)
355 {
356 	struct uid_gid_extent *extent;
357 	unsigned extents = map->nr_extents;
358 	smp_rmb();
359 
360 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
361 		extent = map_id_up_base(extents, map, id);
362 	else
363 		extent = map_id_up_max(extents, map, id);
364 
365 	/* Map the id or note failure */
366 	if (extent)
367 		id = (id - extent->lower_first) + extent->first;
368 	else
369 		id = (u32) -1;
370 
371 	return id;
372 }
373 
374 /**
375  *	make_kuid - Map a user-namespace uid pair into a kuid.
376  *	@ns:  User namespace that the uid is in
377  *	@uid: User identifier
378  *
379  *	Maps a user-namespace uid pair into a kernel internal kuid,
380  *	and returns that kuid.
381  *
382  *	When there is no mapping defined for the user-namespace uid
383  *	pair INVALID_UID is returned.  Callers are expected to test
384  *	for and handle INVALID_UID being returned.  INVALID_UID
385  *	may be tested for using uid_valid().
386  */
387 kuid_t make_kuid(struct user_namespace *ns, uid_t uid)
388 {
389 	/* Map the uid to a global kernel uid */
390 	return KUIDT_INIT(map_id_down(&ns->uid_map, uid));
391 }
392 EXPORT_SYMBOL(make_kuid);
393 
394 /**
395  *	from_kuid - Create a uid from a kuid user-namespace pair.
396  *	@targ: The user namespace we want a uid in.
397  *	@kuid: The kernel internal uid to start with.
398  *
399  *	Map @kuid into the user-namespace specified by @targ and
400  *	return the resulting uid.
401  *
402  *	There is always a mapping into the initial user_namespace.
403  *
404  *	If @kuid has no mapping in @targ (uid_t)-1 is returned.
405  */
406 uid_t from_kuid(struct user_namespace *targ, kuid_t kuid)
407 {
408 	/* Map the uid from a global kernel uid */
409 	return map_id_up(&targ->uid_map, __kuid_val(kuid));
410 }
411 EXPORT_SYMBOL(from_kuid);
412 
413 /**
414  *	from_kuid_munged - Create a uid from a kuid user-namespace pair.
415  *	@targ: The user namespace we want a uid in.
416  *	@kuid: The kernel internal uid to start with.
417  *
418  *	Map @kuid into the user-namespace specified by @targ and
419  *	return the resulting uid.
420  *
421  *	There is always a mapping into the initial user_namespace.
422  *
423  *	Unlike from_kuid from_kuid_munged never fails and always
424  *	returns a valid uid.  This makes from_kuid_munged appropriate
425  *	for use in syscalls like stat and getuid where failing the
426  *	system call and failing to provide a valid uid are not an
427  *	options.
428  *
429  *	If @kuid has no mapping in @targ overflowuid is returned.
430  */
431 uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid)
432 {
433 	uid_t uid;
434 	uid = from_kuid(targ, kuid);
435 
436 	if (uid == (uid_t) -1)
437 		uid = overflowuid;
438 	return uid;
439 }
440 EXPORT_SYMBOL(from_kuid_munged);
441 
442 /**
443  *	make_kgid - Map a user-namespace gid pair into a kgid.
444  *	@ns:  User namespace that the gid is in
445  *	@gid: group identifier
446  *
447  *	Maps a user-namespace gid pair into a kernel internal kgid,
448  *	and returns that kgid.
449  *
450  *	When there is no mapping defined for the user-namespace gid
451  *	pair INVALID_GID is returned.  Callers are expected to test
452  *	for and handle INVALID_GID being returned.  INVALID_GID may be
453  *	tested for using gid_valid().
454  */
455 kgid_t make_kgid(struct user_namespace *ns, gid_t gid)
456 {
457 	/* Map the gid to a global kernel gid */
458 	return KGIDT_INIT(map_id_down(&ns->gid_map, gid));
459 }
460 EXPORT_SYMBOL(make_kgid);
461 
462 /**
463  *	from_kgid - Create a gid from a kgid user-namespace pair.
464  *	@targ: The user namespace we want a gid in.
465  *	@kgid: The kernel internal gid to start with.
466  *
467  *	Map @kgid into the user-namespace specified by @targ and
468  *	return the resulting gid.
469  *
470  *	There is always a mapping into the initial user_namespace.
471  *
472  *	If @kgid has no mapping in @targ (gid_t)-1 is returned.
473  */
474 gid_t from_kgid(struct user_namespace *targ, kgid_t kgid)
475 {
476 	/* Map the gid from a global kernel gid */
477 	return map_id_up(&targ->gid_map, __kgid_val(kgid));
478 }
479 EXPORT_SYMBOL(from_kgid);
480 
481 /**
482  *	from_kgid_munged - Create a gid from a kgid user-namespace pair.
483  *	@targ: The user namespace we want a gid in.
484  *	@kgid: The kernel internal gid to start with.
485  *
486  *	Map @kgid into the user-namespace specified by @targ and
487  *	return the resulting gid.
488  *
489  *	There is always a mapping into the initial user_namespace.
490  *
491  *	Unlike from_kgid from_kgid_munged never fails and always
492  *	returns a valid gid.  This makes from_kgid_munged appropriate
493  *	for use in syscalls like stat and getgid where failing the
494  *	system call and failing to provide a valid gid are not options.
495  *
496  *	If @kgid has no mapping in @targ overflowgid is returned.
497  */
498 gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid)
499 {
500 	gid_t gid;
501 	gid = from_kgid(targ, kgid);
502 
503 	if (gid == (gid_t) -1)
504 		gid = overflowgid;
505 	return gid;
506 }
507 EXPORT_SYMBOL(from_kgid_munged);
508 
509 /**
510  *	make_kprojid - Map a user-namespace projid pair into a kprojid.
511  *	@ns:  User namespace that the projid is in
512  *	@projid: Project identifier
513  *
514  *	Maps a user-namespace uid pair into a kernel internal kuid,
515  *	and returns that kuid.
516  *
517  *	When there is no mapping defined for the user-namespace projid
518  *	pair INVALID_PROJID is returned.  Callers are expected to test
519  *	for and handle INVALID_PROJID being returned.  INVALID_PROJID
520  *	may be tested for using projid_valid().
521  */
522 kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid)
523 {
524 	/* Map the uid to a global kernel uid */
525 	return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid));
526 }
527 EXPORT_SYMBOL(make_kprojid);
528 
529 /**
530  *	from_kprojid - Create a projid from a kprojid user-namespace pair.
531  *	@targ: The user namespace we want a projid in.
532  *	@kprojid: The kernel internal project identifier to start with.
533  *
534  *	Map @kprojid into the user-namespace specified by @targ and
535  *	return the resulting projid.
536  *
537  *	There is always a mapping into the initial user_namespace.
538  *
539  *	If @kprojid has no mapping in @targ (projid_t)-1 is returned.
540  */
541 projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid)
542 {
543 	/* Map the uid from a global kernel uid */
544 	return map_id_up(&targ->projid_map, __kprojid_val(kprojid));
545 }
546 EXPORT_SYMBOL(from_kprojid);
547 
548 /**
549  *	from_kprojid_munged - Create a projiid from a kprojid user-namespace pair.
550  *	@targ: The user namespace we want a projid in.
551  *	@kprojid: The kernel internal projid to start with.
552  *
553  *	Map @kprojid into the user-namespace specified by @targ and
554  *	return the resulting projid.
555  *
556  *	There is always a mapping into the initial user_namespace.
557  *
558  *	Unlike from_kprojid from_kprojid_munged never fails and always
559  *	returns a valid projid.  This makes from_kprojid_munged
560  *	appropriate for use in syscalls like stat and where
561  *	failing the system call and failing to provide a valid projid are
562  *	not an options.
563  *
564  *	If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned.
565  */
566 projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid)
567 {
568 	projid_t projid;
569 	projid = from_kprojid(targ, kprojid);
570 
571 	if (projid == (projid_t) -1)
572 		projid = OVERFLOW_PROJID;
573 	return projid;
574 }
575 EXPORT_SYMBOL(from_kprojid_munged);
576 
577 
578 static int uid_m_show(struct seq_file *seq, void *v)
579 {
580 	struct user_namespace *ns = seq->private;
581 	struct uid_gid_extent *extent = v;
582 	struct user_namespace *lower_ns;
583 	uid_t lower;
584 
585 	lower_ns = seq_user_ns(seq);
586 	if ((lower_ns == ns) && lower_ns->parent)
587 		lower_ns = lower_ns->parent;
588 
589 	lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first));
590 
591 	seq_printf(seq, "%10u %10u %10u\n",
592 		extent->first,
593 		lower,
594 		extent->count);
595 
596 	return 0;
597 }
598 
599 static int gid_m_show(struct seq_file *seq, void *v)
600 {
601 	struct user_namespace *ns = seq->private;
602 	struct uid_gid_extent *extent = v;
603 	struct user_namespace *lower_ns;
604 	gid_t lower;
605 
606 	lower_ns = seq_user_ns(seq);
607 	if ((lower_ns == ns) && lower_ns->parent)
608 		lower_ns = lower_ns->parent;
609 
610 	lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first));
611 
612 	seq_printf(seq, "%10u %10u %10u\n",
613 		extent->first,
614 		lower,
615 		extent->count);
616 
617 	return 0;
618 }
619 
620 static int projid_m_show(struct seq_file *seq, void *v)
621 {
622 	struct user_namespace *ns = seq->private;
623 	struct uid_gid_extent *extent = v;
624 	struct user_namespace *lower_ns;
625 	projid_t lower;
626 
627 	lower_ns = seq_user_ns(seq);
628 	if ((lower_ns == ns) && lower_ns->parent)
629 		lower_ns = lower_ns->parent;
630 
631 	lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first));
632 
633 	seq_printf(seq, "%10u %10u %10u\n",
634 		extent->first,
635 		lower,
636 		extent->count);
637 
638 	return 0;
639 }
640 
641 static void *m_start(struct seq_file *seq, loff_t *ppos,
642 		     struct uid_gid_map *map)
643 {
644 	loff_t pos = *ppos;
645 	unsigned extents = map->nr_extents;
646 	smp_rmb();
647 
648 	if (pos >= extents)
649 		return NULL;
650 
651 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
652 		return &map->extent[pos];
653 
654 	return &map->forward[pos];
655 }
656 
657 static void *uid_m_start(struct seq_file *seq, loff_t *ppos)
658 {
659 	struct user_namespace *ns = seq->private;
660 
661 	return m_start(seq, ppos, &ns->uid_map);
662 }
663 
664 static void *gid_m_start(struct seq_file *seq, loff_t *ppos)
665 {
666 	struct user_namespace *ns = seq->private;
667 
668 	return m_start(seq, ppos, &ns->gid_map);
669 }
670 
671 static void *projid_m_start(struct seq_file *seq, loff_t *ppos)
672 {
673 	struct user_namespace *ns = seq->private;
674 
675 	return m_start(seq, ppos, &ns->projid_map);
676 }
677 
678 static void *m_next(struct seq_file *seq, void *v, loff_t *pos)
679 {
680 	(*pos)++;
681 	return seq->op->start(seq, pos);
682 }
683 
684 static void m_stop(struct seq_file *seq, void *v)
685 {
686 	return;
687 }
688 
689 const struct seq_operations proc_uid_seq_operations = {
690 	.start = uid_m_start,
691 	.stop = m_stop,
692 	.next = m_next,
693 	.show = uid_m_show,
694 };
695 
696 const struct seq_operations proc_gid_seq_operations = {
697 	.start = gid_m_start,
698 	.stop = m_stop,
699 	.next = m_next,
700 	.show = gid_m_show,
701 };
702 
703 const struct seq_operations proc_projid_seq_operations = {
704 	.start = projid_m_start,
705 	.stop = m_stop,
706 	.next = m_next,
707 	.show = projid_m_show,
708 };
709 
710 static bool mappings_overlap(struct uid_gid_map *new_map,
711 			     struct uid_gid_extent *extent)
712 {
713 	u32 upper_first, lower_first, upper_last, lower_last;
714 	unsigned idx;
715 
716 	upper_first = extent->first;
717 	lower_first = extent->lower_first;
718 	upper_last = upper_first + extent->count - 1;
719 	lower_last = lower_first + extent->count - 1;
720 
721 	for (idx = 0; idx < new_map->nr_extents; idx++) {
722 		u32 prev_upper_first, prev_lower_first;
723 		u32 prev_upper_last, prev_lower_last;
724 		struct uid_gid_extent *prev;
725 
726 		if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
727 			prev = &new_map->extent[idx];
728 		else
729 			prev = &new_map->forward[idx];
730 
731 		prev_upper_first = prev->first;
732 		prev_lower_first = prev->lower_first;
733 		prev_upper_last = prev_upper_first + prev->count - 1;
734 		prev_lower_last = prev_lower_first + prev->count - 1;
735 
736 		/* Does the upper range intersect a previous extent? */
737 		if ((prev_upper_first <= upper_last) &&
738 		    (prev_upper_last >= upper_first))
739 			return true;
740 
741 		/* Does the lower range intersect a previous extent? */
742 		if ((prev_lower_first <= lower_last) &&
743 		    (prev_lower_last >= lower_first))
744 			return true;
745 	}
746 	return false;
747 }
748 
749 /**
750  * insert_extent - Safely insert a new idmap extent into struct uid_gid_map.
751  * Takes care to allocate a 4K block of memory if the number of mappings exceeds
752  * UID_GID_MAP_MAX_BASE_EXTENTS.
753  */
754 static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent)
755 {
756 	struct uid_gid_extent *dest;
757 
758 	if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) {
759 		struct uid_gid_extent *forward;
760 
761 		/* Allocate memory for 340 mappings. */
762 		forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS,
763 					sizeof(struct uid_gid_extent),
764 					GFP_KERNEL);
765 		if (!forward)
766 			return -ENOMEM;
767 
768 		/* Copy over memory. Only set up memory for the forward pointer.
769 		 * Defer the memory setup for the reverse pointer.
770 		 */
771 		memcpy(forward, map->extent,
772 		       map->nr_extents * sizeof(map->extent[0]));
773 
774 		map->forward = forward;
775 		map->reverse = NULL;
776 	}
777 
778 	if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS)
779 		dest = &map->extent[map->nr_extents];
780 	else
781 		dest = &map->forward[map->nr_extents];
782 
783 	*dest = *extent;
784 	map->nr_extents++;
785 	return 0;
786 }
787 
788 /* cmp function to sort() forward mappings */
789 static int cmp_extents_forward(const void *a, const void *b)
790 {
791 	const struct uid_gid_extent *e1 = a;
792 	const struct uid_gid_extent *e2 = b;
793 
794 	if (e1->first < e2->first)
795 		return -1;
796 
797 	if (e1->first > e2->first)
798 		return 1;
799 
800 	return 0;
801 }
802 
803 /* cmp function to sort() reverse mappings */
804 static int cmp_extents_reverse(const void *a, const void *b)
805 {
806 	const struct uid_gid_extent *e1 = a;
807 	const struct uid_gid_extent *e2 = b;
808 
809 	if (e1->lower_first < e2->lower_first)
810 		return -1;
811 
812 	if (e1->lower_first > e2->lower_first)
813 		return 1;
814 
815 	return 0;
816 }
817 
818 /**
819  * sort_idmaps - Sorts an array of idmap entries.
820  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
821  */
822 static int sort_idmaps(struct uid_gid_map *map)
823 {
824 	if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
825 		return 0;
826 
827 	/* Sort forward array. */
828 	sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent),
829 	     cmp_extents_forward, NULL);
830 
831 	/* Only copy the memory from forward we actually need. */
832 	map->reverse = kmemdup(map->forward,
833 			       map->nr_extents * sizeof(struct uid_gid_extent),
834 			       GFP_KERNEL);
835 	if (!map->reverse)
836 		return -ENOMEM;
837 
838 	/* Sort reverse array. */
839 	sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent),
840 	     cmp_extents_reverse, NULL);
841 
842 	return 0;
843 }
844 
845 /**
846  * verify_root_map() - check the uid 0 mapping
847  * @file: idmapping file
848  * @map_ns: user namespace of the target process
849  * @new_map: requested idmap
850  *
851  * If a process requests mapping parent uid 0 into the new ns, verify that the
852  * process writing the map had the CAP_SETFCAP capability as the target process
853  * will be able to write fscaps that are valid in ancestor user namespaces.
854  *
855  * Return: true if the mapping is allowed, false if not.
856  */
857 static bool verify_root_map(const struct file *file,
858 			    struct user_namespace *map_ns,
859 			    struct uid_gid_map *new_map)
860 {
861 	int idx;
862 	const struct user_namespace *file_ns = file->f_cred->user_ns;
863 	struct uid_gid_extent *extent0 = NULL;
864 
865 	for (idx = 0; idx < new_map->nr_extents; idx++) {
866 		if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
867 			extent0 = &new_map->extent[idx];
868 		else
869 			extent0 = &new_map->forward[idx];
870 		if (extent0->lower_first == 0)
871 			break;
872 
873 		extent0 = NULL;
874 	}
875 
876 	if (!extent0)
877 		return true;
878 
879 	if (map_ns == file_ns) {
880 		/* The process unshared its ns and is writing to its own
881 		 * /proc/self/uid_map.  User already has full capabilites in
882 		 * the new namespace.  Verify that the parent had CAP_SETFCAP
883 		 * when it unshared.
884 		 * */
885 		if (!file_ns->parent_could_setfcap)
886 			return false;
887 	} else {
888 		/* Process p1 is writing to uid_map of p2, who is in a child
889 		 * user namespace to p1's.  Verify that the opener of the map
890 		 * file has CAP_SETFCAP against the parent of the new map
891 		 * namespace */
892 		if (!file_ns_capable(file, map_ns->parent, CAP_SETFCAP))
893 			return false;
894 	}
895 
896 	return true;
897 }
898 
899 static ssize_t map_write(struct file *file, const char __user *buf,
900 			 size_t count, loff_t *ppos,
901 			 int cap_setid,
902 			 struct uid_gid_map *map,
903 			 struct uid_gid_map *parent_map)
904 {
905 	struct seq_file *seq = file->private_data;
906 	struct user_namespace *map_ns = seq->private;
907 	struct uid_gid_map new_map;
908 	unsigned idx;
909 	struct uid_gid_extent extent;
910 	char *kbuf = NULL, *pos, *next_line;
911 	ssize_t ret;
912 
913 	/* Only allow < page size writes at the beginning of the file */
914 	if ((*ppos != 0) || (count >= PAGE_SIZE))
915 		return -EINVAL;
916 
917 	/* Slurp in the user data */
918 	kbuf = memdup_user_nul(buf, count);
919 	if (IS_ERR(kbuf))
920 		return PTR_ERR(kbuf);
921 
922 	/*
923 	 * The userns_state_mutex serializes all writes to any given map.
924 	 *
925 	 * Any map is only ever written once.
926 	 *
927 	 * An id map fits within 1 cache line on most architectures.
928 	 *
929 	 * On read nothing needs to be done unless you are on an
930 	 * architecture with a crazy cache coherency model like alpha.
931 	 *
932 	 * There is a one time data dependency between reading the
933 	 * count of the extents and the values of the extents.  The
934 	 * desired behavior is to see the values of the extents that
935 	 * were written before the count of the extents.
936 	 *
937 	 * To achieve this smp_wmb() is used on guarantee the write
938 	 * order and smp_rmb() is guaranteed that we don't have crazy
939 	 * architectures returning stale data.
940 	 */
941 	mutex_lock(&userns_state_mutex);
942 
943 	memset(&new_map, 0, sizeof(struct uid_gid_map));
944 
945 	ret = -EPERM;
946 	/* Only allow one successful write to the map */
947 	if (map->nr_extents != 0)
948 		goto out;
949 
950 	/*
951 	 * Adjusting namespace settings requires capabilities on the target.
952 	 */
953 	if (cap_valid(cap_setid) && !file_ns_capable(file, map_ns, CAP_SYS_ADMIN))
954 		goto out;
955 
956 	/* Parse the user data */
957 	ret = -EINVAL;
958 	pos = kbuf;
959 	for (; pos; pos = next_line) {
960 
961 		/* Find the end of line and ensure I don't look past it */
962 		next_line = strchr(pos, '\n');
963 		if (next_line) {
964 			*next_line = '\0';
965 			next_line++;
966 			if (*next_line == '\0')
967 				next_line = NULL;
968 		}
969 
970 		pos = skip_spaces(pos);
971 		extent.first = simple_strtoul(pos, &pos, 10);
972 		if (!isspace(*pos))
973 			goto out;
974 
975 		pos = skip_spaces(pos);
976 		extent.lower_first = simple_strtoul(pos, &pos, 10);
977 		if (!isspace(*pos))
978 			goto out;
979 
980 		pos = skip_spaces(pos);
981 		extent.count = simple_strtoul(pos, &pos, 10);
982 		if (*pos && !isspace(*pos))
983 			goto out;
984 
985 		/* Verify there is not trailing junk on the line */
986 		pos = skip_spaces(pos);
987 		if (*pos != '\0')
988 			goto out;
989 
990 		/* Verify we have been given valid starting values */
991 		if ((extent.first == (u32) -1) ||
992 		    (extent.lower_first == (u32) -1))
993 			goto out;
994 
995 		/* Verify count is not zero and does not cause the
996 		 * extent to wrap
997 		 */
998 		if ((extent.first + extent.count) <= extent.first)
999 			goto out;
1000 		if ((extent.lower_first + extent.count) <=
1001 		     extent.lower_first)
1002 			goto out;
1003 
1004 		/* Do the ranges in extent overlap any previous extents? */
1005 		if (mappings_overlap(&new_map, &extent))
1006 			goto out;
1007 
1008 		if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS &&
1009 		    (next_line != NULL))
1010 			goto out;
1011 
1012 		ret = insert_extent(&new_map, &extent);
1013 		if (ret < 0)
1014 			goto out;
1015 		ret = -EINVAL;
1016 	}
1017 	/* Be very certain the new map actually exists */
1018 	if (new_map.nr_extents == 0)
1019 		goto out;
1020 
1021 	ret = -EPERM;
1022 	/* Validate the user is allowed to use user id's mapped to. */
1023 	if (!new_idmap_permitted(file, map_ns, cap_setid, &new_map))
1024 		goto out;
1025 
1026 	ret = -EPERM;
1027 	/* Map the lower ids from the parent user namespace to the
1028 	 * kernel global id space.
1029 	 */
1030 	for (idx = 0; idx < new_map.nr_extents; idx++) {
1031 		struct uid_gid_extent *e;
1032 		u32 lower_first;
1033 
1034 		if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
1035 			e = &new_map.extent[idx];
1036 		else
1037 			e = &new_map.forward[idx];
1038 
1039 		lower_first = map_id_range_down(parent_map,
1040 						e->lower_first,
1041 						e->count);
1042 
1043 		/* Fail if we can not map the specified extent to
1044 		 * the kernel global id space.
1045 		 */
1046 		if (lower_first == (u32) -1)
1047 			goto out;
1048 
1049 		e->lower_first = lower_first;
1050 	}
1051 
1052 	/*
1053 	 * If we want to use binary search for lookup, this clones the extent
1054 	 * array and sorts both copies.
1055 	 */
1056 	ret = sort_idmaps(&new_map);
1057 	if (ret < 0)
1058 		goto out;
1059 
1060 	/* Install the map */
1061 	if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) {
1062 		memcpy(map->extent, new_map.extent,
1063 		       new_map.nr_extents * sizeof(new_map.extent[0]));
1064 	} else {
1065 		map->forward = new_map.forward;
1066 		map->reverse = new_map.reverse;
1067 	}
1068 	smp_wmb();
1069 	map->nr_extents = new_map.nr_extents;
1070 
1071 	*ppos = count;
1072 	ret = count;
1073 out:
1074 	if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
1075 		kfree(new_map.forward);
1076 		kfree(new_map.reverse);
1077 		map->forward = NULL;
1078 		map->reverse = NULL;
1079 		map->nr_extents = 0;
1080 	}
1081 
1082 	mutex_unlock(&userns_state_mutex);
1083 	kfree(kbuf);
1084 	return ret;
1085 }
1086 
1087 ssize_t proc_uid_map_write(struct file *file, const char __user *buf,
1088 			   size_t size, loff_t *ppos)
1089 {
1090 	struct seq_file *seq = file->private_data;
1091 	struct user_namespace *ns = seq->private;
1092 	struct user_namespace *seq_ns = seq_user_ns(seq);
1093 
1094 	if (!ns->parent)
1095 		return -EPERM;
1096 
1097 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1098 		return -EPERM;
1099 
1100 	return map_write(file, buf, size, ppos, CAP_SETUID,
1101 			 &ns->uid_map, &ns->parent->uid_map);
1102 }
1103 
1104 ssize_t proc_gid_map_write(struct file *file, const char __user *buf,
1105 			   size_t size, loff_t *ppos)
1106 {
1107 	struct seq_file *seq = file->private_data;
1108 	struct user_namespace *ns = seq->private;
1109 	struct user_namespace *seq_ns = seq_user_ns(seq);
1110 
1111 	if (!ns->parent)
1112 		return -EPERM;
1113 
1114 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1115 		return -EPERM;
1116 
1117 	return map_write(file, buf, size, ppos, CAP_SETGID,
1118 			 &ns->gid_map, &ns->parent->gid_map);
1119 }
1120 
1121 ssize_t proc_projid_map_write(struct file *file, const char __user *buf,
1122 			      size_t size, loff_t *ppos)
1123 {
1124 	struct seq_file *seq = file->private_data;
1125 	struct user_namespace *ns = seq->private;
1126 	struct user_namespace *seq_ns = seq_user_ns(seq);
1127 
1128 	if (!ns->parent)
1129 		return -EPERM;
1130 
1131 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1132 		return -EPERM;
1133 
1134 	/* Anyone can set any valid project id no capability needed */
1135 	return map_write(file, buf, size, ppos, -1,
1136 			 &ns->projid_map, &ns->parent->projid_map);
1137 }
1138 
1139 static bool new_idmap_permitted(const struct file *file,
1140 				struct user_namespace *ns, int cap_setid,
1141 				struct uid_gid_map *new_map)
1142 {
1143 	const struct cred *cred = file->f_cred;
1144 
1145 	if (cap_setid == CAP_SETUID && !verify_root_map(file, ns, new_map))
1146 		return false;
1147 
1148 	/* Don't allow mappings that would allow anything that wouldn't
1149 	 * be allowed without the establishment of unprivileged mappings.
1150 	 */
1151 	if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) &&
1152 	    uid_eq(ns->owner, cred->euid)) {
1153 		u32 id = new_map->extent[0].lower_first;
1154 		if (cap_setid == CAP_SETUID) {
1155 			kuid_t uid = make_kuid(ns->parent, id);
1156 			if (uid_eq(uid, cred->euid))
1157 				return true;
1158 		} else if (cap_setid == CAP_SETGID) {
1159 			kgid_t gid = make_kgid(ns->parent, id);
1160 			if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) &&
1161 			    gid_eq(gid, cred->egid))
1162 				return true;
1163 		}
1164 	}
1165 
1166 	/* Allow anyone to set a mapping that doesn't require privilege */
1167 	if (!cap_valid(cap_setid))
1168 		return true;
1169 
1170 	/* Allow the specified ids if we have the appropriate capability
1171 	 * (CAP_SETUID or CAP_SETGID) over the parent user namespace.
1172 	 * And the opener of the id file also has the appropriate capability.
1173 	 */
1174 	if (ns_capable(ns->parent, cap_setid) &&
1175 	    file_ns_capable(file, ns->parent, cap_setid))
1176 		return true;
1177 
1178 	return false;
1179 }
1180 
1181 int proc_setgroups_show(struct seq_file *seq, void *v)
1182 {
1183 	struct user_namespace *ns = seq->private;
1184 	unsigned long userns_flags = READ_ONCE(ns->flags);
1185 
1186 	seq_printf(seq, "%s\n",
1187 		   (userns_flags & USERNS_SETGROUPS_ALLOWED) ?
1188 		   "allow" : "deny");
1189 	return 0;
1190 }
1191 
1192 ssize_t proc_setgroups_write(struct file *file, const char __user *buf,
1193 			     size_t count, loff_t *ppos)
1194 {
1195 	struct seq_file *seq = file->private_data;
1196 	struct user_namespace *ns = seq->private;
1197 	char kbuf[8], *pos;
1198 	bool setgroups_allowed;
1199 	ssize_t ret;
1200 
1201 	/* Only allow a very narrow range of strings to be written */
1202 	ret = -EINVAL;
1203 	if ((*ppos != 0) || (count >= sizeof(kbuf)))
1204 		goto out;
1205 
1206 	/* What was written? */
1207 	ret = -EFAULT;
1208 	if (copy_from_user(kbuf, buf, count))
1209 		goto out;
1210 	kbuf[count] = '\0';
1211 	pos = kbuf;
1212 
1213 	/* What is being requested? */
1214 	ret = -EINVAL;
1215 	if (strncmp(pos, "allow", 5) == 0) {
1216 		pos += 5;
1217 		setgroups_allowed = true;
1218 	}
1219 	else if (strncmp(pos, "deny", 4) == 0) {
1220 		pos += 4;
1221 		setgroups_allowed = false;
1222 	}
1223 	else
1224 		goto out;
1225 
1226 	/* Verify there is not trailing junk on the line */
1227 	pos = skip_spaces(pos);
1228 	if (*pos != '\0')
1229 		goto out;
1230 
1231 	ret = -EPERM;
1232 	mutex_lock(&userns_state_mutex);
1233 	if (setgroups_allowed) {
1234 		/* Enabling setgroups after setgroups has been disabled
1235 		 * is not allowed.
1236 		 */
1237 		if (!(ns->flags & USERNS_SETGROUPS_ALLOWED))
1238 			goto out_unlock;
1239 	} else {
1240 		/* Permanently disabling setgroups after setgroups has
1241 		 * been enabled by writing the gid_map is not allowed.
1242 		 */
1243 		if (ns->gid_map.nr_extents != 0)
1244 			goto out_unlock;
1245 		ns->flags &= ~USERNS_SETGROUPS_ALLOWED;
1246 	}
1247 	mutex_unlock(&userns_state_mutex);
1248 
1249 	/* Report a successful write */
1250 	*ppos = count;
1251 	ret = count;
1252 out:
1253 	return ret;
1254 out_unlock:
1255 	mutex_unlock(&userns_state_mutex);
1256 	goto out;
1257 }
1258 
1259 bool userns_may_setgroups(const struct user_namespace *ns)
1260 {
1261 	bool allowed;
1262 
1263 	mutex_lock(&userns_state_mutex);
1264 	/* It is not safe to use setgroups until a gid mapping in
1265 	 * the user namespace has been established.
1266 	 */
1267 	allowed = ns->gid_map.nr_extents != 0;
1268 	/* Is setgroups allowed? */
1269 	allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED);
1270 	mutex_unlock(&userns_state_mutex);
1271 
1272 	return allowed;
1273 }
1274 
1275 /*
1276  * Returns true if @child is the same namespace or a descendant of
1277  * @ancestor.
1278  */
1279 bool in_userns(const struct user_namespace *ancestor,
1280 	       const struct user_namespace *child)
1281 {
1282 	const struct user_namespace *ns;
1283 	for (ns = child; ns->level > ancestor->level; ns = ns->parent)
1284 		;
1285 	return (ns == ancestor);
1286 }
1287 
1288 bool current_in_userns(const struct user_namespace *target_ns)
1289 {
1290 	return in_userns(target_ns, current_user_ns());
1291 }
1292 EXPORT_SYMBOL(current_in_userns);
1293 
1294 static inline struct user_namespace *to_user_ns(struct ns_common *ns)
1295 {
1296 	return container_of(ns, struct user_namespace, ns);
1297 }
1298 
1299 static struct ns_common *userns_get(struct task_struct *task)
1300 {
1301 	struct user_namespace *user_ns;
1302 
1303 	rcu_read_lock();
1304 	user_ns = get_user_ns(__task_cred(task)->user_ns);
1305 	rcu_read_unlock();
1306 
1307 	return user_ns ? &user_ns->ns : NULL;
1308 }
1309 
1310 static void userns_put(struct ns_common *ns)
1311 {
1312 	put_user_ns(to_user_ns(ns));
1313 }
1314 
1315 static int userns_install(struct nsset *nsset, struct ns_common *ns)
1316 {
1317 	struct user_namespace *user_ns = to_user_ns(ns);
1318 	struct cred *cred;
1319 
1320 	/* Don't allow gaining capabilities by reentering
1321 	 * the same user namespace.
1322 	 */
1323 	if (user_ns == current_user_ns())
1324 		return -EINVAL;
1325 
1326 	/* Tasks that share a thread group must share a user namespace */
1327 	if (!thread_group_empty(current))
1328 		return -EINVAL;
1329 
1330 	if (current->fs->users != 1)
1331 		return -EINVAL;
1332 
1333 	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1334 		return -EPERM;
1335 
1336 	cred = nsset_cred(nsset);
1337 	if (!cred)
1338 		return -EINVAL;
1339 
1340 	put_user_ns(cred->user_ns);
1341 	set_cred_user_ns(cred, get_user_ns(user_ns));
1342 
1343 	return 0;
1344 }
1345 
1346 struct ns_common *ns_get_owner(struct ns_common *ns)
1347 {
1348 	struct user_namespace *my_user_ns = current_user_ns();
1349 	struct user_namespace *owner, *p;
1350 
1351 	/* See if the owner is in the current user namespace */
1352 	owner = p = ns->ops->owner(ns);
1353 	for (;;) {
1354 		if (!p)
1355 			return ERR_PTR(-EPERM);
1356 		if (p == my_user_ns)
1357 			break;
1358 		p = p->parent;
1359 	}
1360 
1361 	return &get_user_ns(owner)->ns;
1362 }
1363 
1364 static struct user_namespace *userns_owner(struct ns_common *ns)
1365 {
1366 	return to_user_ns(ns)->parent;
1367 }
1368 
1369 const struct proc_ns_operations userns_operations = {
1370 	.name		= "user",
1371 	.type		= CLONE_NEWUSER,
1372 	.get		= userns_get,
1373 	.put		= userns_put,
1374 	.install	= userns_install,
1375 	.owner		= userns_owner,
1376 	.get_parent	= ns_get_owner,
1377 };
1378 
1379 static __init int user_namespaces_init(void)
1380 {
1381 	user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC);
1382 	return 0;
1383 }
1384 subsys_initcall(user_namespaces_init);
1385