1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #include <linux/export.h> 4 #include <linux/nsproxy.h> 5 #include <linux/slab.h> 6 #include <linux/sched/signal.h> 7 #include <linux/user_namespace.h> 8 #include <linux/proc_ns.h> 9 #include <linux/highuid.h> 10 #include <linux/cred.h> 11 #include <linux/securebits.h> 12 #include <linux/keyctl.h> 13 #include <linux/key-type.h> 14 #include <keys/user-type.h> 15 #include <linux/seq_file.h> 16 #include <linux/fs.h> 17 #include <linux/uaccess.h> 18 #include <linux/ctype.h> 19 #include <linux/projid.h> 20 #include <linux/fs_struct.h> 21 #include <linux/bsearch.h> 22 #include <linux/sort.h> 23 24 static struct kmem_cache *user_ns_cachep __read_mostly; 25 static DEFINE_MUTEX(userns_state_mutex); 26 27 static bool new_idmap_permitted(const struct file *file, 28 struct user_namespace *ns, int cap_setid, 29 struct uid_gid_map *map); 30 static void free_user_ns(struct work_struct *work); 31 32 static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid) 33 { 34 return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES); 35 } 36 37 static void dec_user_namespaces(struct ucounts *ucounts) 38 { 39 return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES); 40 } 41 42 static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns) 43 { 44 /* Start with the same capabilities as init but useless for doing 45 * anything as the capabilities are bound to the new user namespace. 46 */ 47 cred->securebits = SECUREBITS_DEFAULT; 48 cred->cap_inheritable = CAP_EMPTY_SET; 49 cred->cap_permitted = CAP_FULL_SET; 50 cred->cap_effective = CAP_FULL_SET; 51 cred->cap_ambient = CAP_EMPTY_SET; 52 cred->cap_bset = CAP_FULL_SET; 53 #ifdef CONFIG_KEYS 54 key_put(cred->request_key_auth); 55 cred->request_key_auth = NULL; 56 #endif 57 /* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */ 58 cred->user_ns = user_ns; 59 } 60 61 /* 62 * Create a new user namespace, deriving the creator from the user in the 63 * passed credentials, and replacing that user with the new root user for the 64 * new namespace. 65 * 66 * This is called by copy_creds(), which will finish setting the target task's 67 * credentials. 68 */ 69 int create_user_ns(struct cred *new) 70 { 71 struct user_namespace *ns, *parent_ns = new->user_ns; 72 kuid_t owner = new->euid; 73 kgid_t group = new->egid; 74 struct ucounts *ucounts; 75 int ret, i; 76 77 ret = -ENOSPC; 78 if (parent_ns->level > 32) 79 goto fail; 80 81 ucounts = inc_user_namespaces(parent_ns, owner); 82 if (!ucounts) 83 goto fail; 84 85 /* 86 * Verify that we can not violate the policy of which files 87 * may be accessed that is specified by the root directory, 88 * by verifying that the root directory is at the root of the 89 * mount namespace which allows all files to be accessed. 90 */ 91 ret = -EPERM; 92 if (current_chrooted()) 93 goto fail_dec; 94 95 /* The creator needs a mapping in the parent user namespace 96 * or else we won't be able to reasonably tell userspace who 97 * created a user_namespace. 98 */ 99 ret = -EPERM; 100 if (!kuid_has_mapping(parent_ns, owner) || 101 !kgid_has_mapping(parent_ns, group)) 102 goto fail_dec; 103 104 ret = -ENOMEM; 105 ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL); 106 if (!ns) 107 goto fail_dec; 108 109 ns->parent_could_setfcap = cap_raised(new->cap_effective, CAP_SETFCAP); 110 ret = ns_alloc_inum(&ns->ns); 111 if (ret) 112 goto fail_free; 113 ns->ns.ops = &userns_operations; 114 115 refcount_set(&ns->ns.count, 1); 116 /* Leave the new->user_ns reference with the new user namespace. */ 117 ns->parent = parent_ns; 118 ns->level = parent_ns->level + 1; 119 ns->owner = owner; 120 ns->group = group; 121 INIT_WORK(&ns->work, free_user_ns); 122 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++) { 123 ns->ucount_max[i] = INT_MAX; 124 } 125 set_rlimit_ucount_max(ns, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)); 126 set_rlimit_ucount_max(ns, UCOUNT_RLIMIT_MSGQUEUE, rlimit(RLIMIT_MSGQUEUE)); 127 set_rlimit_ucount_max(ns, UCOUNT_RLIMIT_SIGPENDING, rlimit(RLIMIT_SIGPENDING)); 128 set_rlimit_ucount_max(ns, UCOUNT_RLIMIT_MEMLOCK, rlimit(RLIMIT_MEMLOCK)); 129 ns->ucounts = ucounts; 130 131 /* Inherit USERNS_SETGROUPS_ALLOWED from our parent */ 132 mutex_lock(&userns_state_mutex); 133 ns->flags = parent_ns->flags; 134 mutex_unlock(&userns_state_mutex); 135 136 #ifdef CONFIG_KEYS 137 INIT_LIST_HEAD(&ns->keyring_name_list); 138 init_rwsem(&ns->keyring_sem); 139 #endif 140 ret = -ENOMEM; 141 if (!setup_userns_sysctls(ns)) 142 goto fail_keyring; 143 144 set_cred_user_ns(new, ns); 145 return 0; 146 fail_keyring: 147 #ifdef CONFIG_PERSISTENT_KEYRINGS 148 key_put(ns->persistent_keyring_register); 149 #endif 150 ns_free_inum(&ns->ns); 151 fail_free: 152 kmem_cache_free(user_ns_cachep, ns); 153 fail_dec: 154 dec_user_namespaces(ucounts); 155 fail: 156 return ret; 157 } 158 159 int unshare_userns(unsigned long unshare_flags, struct cred **new_cred) 160 { 161 struct cred *cred; 162 int err = -ENOMEM; 163 164 if (!(unshare_flags & CLONE_NEWUSER)) 165 return 0; 166 167 cred = prepare_creds(); 168 if (cred) { 169 err = create_user_ns(cred); 170 if (err) 171 put_cred(cred); 172 else 173 *new_cred = cred; 174 } 175 176 return err; 177 } 178 179 static void free_user_ns(struct work_struct *work) 180 { 181 struct user_namespace *parent, *ns = 182 container_of(work, struct user_namespace, work); 183 184 do { 185 struct ucounts *ucounts = ns->ucounts; 186 parent = ns->parent; 187 if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 188 kfree(ns->gid_map.forward); 189 kfree(ns->gid_map.reverse); 190 } 191 if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 192 kfree(ns->uid_map.forward); 193 kfree(ns->uid_map.reverse); 194 } 195 if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 196 kfree(ns->projid_map.forward); 197 kfree(ns->projid_map.reverse); 198 } 199 retire_userns_sysctls(ns); 200 key_free_user_ns(ns); 201 ns_free_inum(&ns->ns); 202 kmem_cache_free(user_ns_cachep, ns); 203 dec_user_namespaces(ucounts); 204 ns = parent; 205 } while (refcount_dec_and_test(&parent->ns.count)); 206 } 207 208 void __put_user_ns(struct user_namespace *ns) 209 { 210 schedule_work(&ns->work); 211 } 212 EXPORT_SYMBOL(__put_user_ns); 213 214 /** 215 * idmap_key struct holds the information necessary to find an idmapping in a 216 * sorted idmap array. It is passed to cmp_map_id() as first argument. 217 */ 218 struct idmap_key { 219 bool map_up; /* true -> id from kid; false -> kid from id */ 220 u32 id; /* id to find */ 221 u32 count; /* == 0 unless used with map_id_range_down() */ 222 }; 223 224 /** 225 * cmp_map_id - Function to be passed to bsearch() to find the requested 226 * idmapping. Expects struct idmap_key to be passed via @k. 227 */ 228 static int cmp_map_id(const void *k, const void *e) 229 { 230 u32 first, last, id2; 231 const struct idmap_key *key = k; 232 const struct uid_gid_extent *el = e; 233 234 id2 = key->id + key->count - 1; 235 236 /* handle map_id_{down,up}() */ 237 if (key->map_up) 238 first = el->lower_first; 239 else 240 first = el->first; 241 242 last = first + el->count - 1; 243 244 if (key->id >= first && key->id <= last && 245 (id2 >= first && id2 <= last)) 246 return 0; 247 248 if (key->id < first || id2 < first) 249 return -1; 250 251 return 1; 252 } 253 254 /** 255 * map_id_range_down_max - Find idmap via binary search in ordered idmap array. 256 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 257 */ 258 static struct uid_gid_extent * 259 map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count) 260 { 261 struct idmap_key key; 262 263 key.map_up = false; 264 key.count = count; 265 key.id = id; 266 267 return bsearch(&key, map->forward, extents, 268 sizeof(struct uid_gid_extent), cmp_map_id); 269 } 270 271 /** 272 * map_id_range_down_base - Find idmap via binary search in static extent array. 273 * Can only be called if number of mappings is equal or less than 274 * UID_GID_MAP_MAX_BASE_EXTENTS. 275 */ 276 static struct uid_gid_extent * 277 map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count) 278 { 279 unsigned idx; 280 u32 first, last, id2; 281 282 id2 = id + count - 1; 283 284 /* Find the matching extent */ 285 for (idx = 0; idx < extents; idx++) { 286 first = map->extent[idx].first; 287 last = first + map->extent[idx].count - 1; 288 if (id >= first && id <= last && 289 (id2 >= first && id2 <= last)) 290 return &map->extent[idx]; 291 } 292 return NULL; 293 } 294 295 static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count) 296 { 297 struct uid_gid_extent *extent; 298 unsigned extents = map->nr_extents; 299 smp_rmb(); 300 301 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 302 extent = map_id_range_down_base(extents, map, id, count); 303 else 304 extent = map_id_range_down_max(extents, map, id, count); 305 306 /* Map the id or note failure */ 307 if (extent) 308 id = (id - extent->first) + extent->lower_first; 309 else 310 id = (u32) -1; 311 312 return id; 313 } 314 315 static u32 map_id_down(struct uid_gid_map *map, u32 id) 316 { 317 return map_id_range_down(map, id, 1); 318 } 319 320 /** 321 * map_id_up_base - Find idmap via binary search in static extent array. 322 * Can only be called if number of mappings is equal or less than 323 * UID_GID_MAP_MAX_BASE_EXTENTS. 324 */ 325 static struct uid_gid_extent * 326 map_id_up_base(unsigned extents, struct uid_gid_map *map, u32 id) 327 { 328 unsigned idx; 329 u32 first, last; 330 331 /* Find the matching extent */ 332 for (idx = 0; idx < extents; idx++) { 333 first = map->extent[idx].lower_first; 334 last = first + map->extent[idx].count - 1; 335 if (id >= first && id <= last) 336 return &map->extent[idx]; 337 } 338 return NULL; 339 } 340 341 /** 342 * map_id_up_max - Find idmap via binary search in ordered idmap array. 343 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 344 */ 345 static struct uid_gid_extent * 346 map_id_up_max(unsigned extents, struct uid_gid_map *map, u32 id) 347 { 348 struct idmap_key key; 349 350 key.map_up = true; 351 key.count = 1; 352 key.id = id; 353 354 return bsearch(&key, map->reverse, extents, 355 sizeof(struct uid_gid_extent), cmp_map_id); 356 } 357 358 static u32 map_id_up(struct uid_gid_map *map, u32 id) 359 { 360 struct uid_gid_extent *extent; 361 unsigned extents = map->nr_extents; 362 smp_rmb(); 363 364 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 365 extent = map_id_up_base(extents, map, id); 366 else 367 extent = map_id_up_max(extents, map, id); 368 369 /* Map the id or note failure */ 370 if (extent) 371 id = (id - extent->lower_first) + extent->first; 372 else 373 id = (u32) -1; 374 375 return id; 376 } 377 378 /** 379 * make_kuid - Map a user-namespace uid pair into a kuid. 380 * @ns: User namespace that the uid is in 381 * @uid: User identifier 382 * 383 * Maps a user-namespace uid pair into a kernel internal kuid, 384 * and returns that kuid. 385 * 386 * When there is no mapping defined for the user-namespace uid 387 * pair INVALID_UID is returned. Callers are expected to test 388 * for and handle INVALID_UID being returned. INVALID_UID 389 * may be tested for using uid_valid(). 390 */ 391 kuid_t make_kuid(struct user_namespace *ns, uid_t uid) 392 { 393 /* Map the uid to a global kernel uid */ 394 return KUIDT_INIT(map_id_down(&ns->uid_map, uid)); 395 } 396 EXPORT_SYMBOL(make_kuid); 397 398 /** 399 * from_kuid - Create a uid from a kuid user-namespace pair. 400 * @targ: The user namespace we want a uid in. 401 * @kuid: The kernel internal uid to start with. 402 * 403 * Map @kuid into the user-namespace specified by @targ and 404 * return the resulting uid. 405 * 406 * There is always a mapping into the initial user_namespace. 407 * 408 * If @kuid has no mapping in @targ (uid_t)-1 is returned. 409 */ 410 uid_t from_kuid(struct user_namespace *targ, kuid_t kuid) 411 { 412 /* Map the uid from a global kernel uid */ 413 return map_id_up(&targ->uid_map, __kuid_val(kuid)); 414 } 415 EXPORT_SYMBOL(from_kuid); 416 417 /** 418 * from_kuid_munged - Create a uid from a kuid user-namespace pair. 419 * @targ: The user namespace we want a uid in. 420 * @kuid: The kernel internal uid to start with. 421 * 422 * Map @kuid into the user-namespace specified by @targ and 423 * return the resulting uid. 424 * 425 * There is always a mapping into the initial user_namespace. 426 * 427 * Unlike from_kuid from_kuid_munged never fails and always 428 * returns a valid uid. This makes from_kuid_munged appropriate 429 * for use in syscalls like stat and getuid where failing the 430 * system call and failing to provide a valid uid are not an 431 * options. 432 * 433 * If @kuid has no mapping in @targ overflowuid is returned. 434 */ 435 uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid) 436 { 437 uid_t uid; 438 uid = from_kuid(targ, kuid); 439 440 if (uid == (uid_t) -1) 441 uid = overflowuid; 442 return uid; 443 } 444 EXPORT_SYMBOL(from_kuid_munged); 445 446 /** 447 * make_kgid - Map a user-namespace gid pair into a kgid. 448 * @ns: User namespace that the gid is in 449 * @gid: group identifier 450 * 451 * Maps a user-namespace gid pair into a kernel internal kgid, 452 * and returns that kgid. 453 * 454 * When there is no mapping defined for the user-namespace gid 455 * pair INVALID_GID is returned. Callers are expected to test 456 * for and handle INVALID_GID being returned. INVALID_GID may be 457 * tested for using gid_valid(). 458 */ 459 kgid_t make_kgid(struct user_namespace *ns, gid_t gid) 460 { 461 /* Map the gid to a global kernel gid */ 462 return KGIDT_INIT(map_id_down(&ns->gid_map, gid)); 463 } 464 EXPORT_SYMBOL(make_kgid); 465 466 /** 467 * from_kgid - Create a gid from a kgid user-namespace pair. 468 * @targ: The user namespace we want a gid in. 469 * @kgid: The kernel internal gid to start with. 470 * 471 * Map @kgid into the user-namespace specified by @targ and 472 * return the resulting gid. 473 * 474 * There is always a mapping into the initial user_namespace. 475 * 476 * If @kgid has no mapping in @targ (gid_t)-1 is returned. 477 */ 478 gid_t from_kgid(struct user_namespace *targ, kgid_t kgid) 479 { 480 /* Map the gid from a global kernel gid */ 481 return map_id_up(&targ->gid_map, __kgid_val(kgid)); 482 } 483 EXPORT_SYMBOL(from_kgid); 484 485 /** 486 * from_kgid_munged - Create a gid from a kgid user-namespace pair. 487 * @targ: The user namespace we want a gid in. 488 * @kgid: The kernel internal gid to start with. 489 * 490 * Map @kgid into the user-namespace specified by @targ and 491 * return the resulting gid. 492 * 493 * There is always a mapping into the initial user_namespace. 494 * 495 * Unlike from_kgid from_kgid_munged never fails and always 496 * returns a valid gid. This makes from_kgid_munged appropriate 497 * for use in syscalls like stat and getgid where failing the 498 * system call and failing to provide a valid gid are not options. 499 * 500 * If @kgid has no mapping in @targ overflowgid is returned. 501 */ 502 gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid) 503 { 504 gid_t gid; 505 gid = from_kgid(targ, kgid); 506 507 if (gid == (gid_t) -1) 508 gid = overflowgid; 509 return gid; 510 } 511 EXPORT_SYMBOL(from_kgid_munged); 512 513 /** 514 * make_kprojid - Map a user-namespace projid pair into a kprojid. 515 * @ns: User namespace that the projid is in 516 * @projid: Project identifier 517 * 518 * Maps a user-namespace uid pair into a kernel internal kuid, 519 * and returns that kuid. 520 * 521 * When there is no mapping defined for the user-namespace projid 522 * pair INVALID_PROJID is returned. Callers are expected to test 523 * for and handle INVALID_PROJID being returned. INVALID_PROJID 524 * may be tested for using projid_valid(). 525 */ 526 kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid) 527 { 528 /* Map the uid to a global kernel uid */ 529 return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid)); 530 } 531 EXPORT_SYMBOL(make_kprojid); 532 533 /** 534 * from_kprojid - Create a projid from a kprojid user-namespace pair. 535 * @targ: The user namespace we want a projid in. 536 * @kprojid: The kernel internal project identifier to start with. 537 * 538 * Map @kprojid into the user-namespace specified by @targ and 539 * return the resulting projid. 540 * 541 * There is always a mapping into the initial user_namespace. 542 * 543 * If @kprojid has no mapping in @targ (projid_t)-1 is returned. 544 */ 545 projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid) 546 { 547 /* Map the uid from a global kernel uid */ 548 return map_id_up(&targ->projid_map, __kprojid_val(kprojid)); 549 } 550 EXPORT_SYMBOL(from_kprojid); 551 552 /** 553 * from_kprojid_munged - Create a projiid from a kprojid user-namespace pair. 554 * @targ: The user namespace we want a projid in. 555 * @kprojid: The kernel internal projid to start with. 556 * 557 * Map @kprojid into the user-namespace specified by @targ and 558 * return the resulting projid. 559 * 560 * There is always a mapping into the initial user_namespace. 561 * 562 * Unlike from_kprojid from_kprojid_munged never fails and always 563 * returns a valid projid. This makes from_kprojid_munged 564 * appropriate for use in syscalls like stat and where 565 * failing the system call and failing to provide a valid projid are 566 * not an options. 567 * 568 * If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned. 569 */ 570 projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid) 571 { 572 projid_t projid; 573 projid = from_kprojid(targ, kprojid); 574 575 if (projid == (projid_t) -1) 576 projid = OVERFLOW_PROJID; 577 return projid; 578 } 579 EXPORT_SYMBOL(from_kprojid_munged); 580 581 582 static int uid_m_show(struct seq_file *seq, void *v) 583 { 584 struct user_namespace *ns = seq->private; 585 struct uid_gid_extent *extent = v; 586 struct user_namespace *lower_ns; 587 uid_t lower; 588 589 lower_ns = seq_user_ns(seq); 590 if ((lower_ns == ns) && lower_ns->parent) 591 lower_ns = lower_ns->parent; 592 593 lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first)); 594 595 seq_printf(seq, "%10u %10u %10u\n", 596 extent->first, 597 lower, 598 extent->count); 599 600 return 0; 601 } 602 603 static int gid_m_show(struct seq_file *seq, void *v) 604 { 605 struct user_namespace *ns = seq->private; 606 struct uid_gid_extent *extent = v; 607 struct user_namespace *lower_ns; 608 gid_t lower; 609 610 lower_ns = seq_user_ns(seq); 611 if ((lower_ns == ns) && lower_ns->parent) 612 lower_ns = lower_ns->parent; 613 614 lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first)); 615 616 seq_printf(seq, "%10u %10u %10u\n", 617 extent->first, 618 lower, 619 extent->count); 620 621 return 0; 622 } 623 624 static int projid_m_show(struct seq_file *seq, void *v) 625 { 626 struct user_namespace *ns = seq->private; 627 struct uid_gid_extent *extent = v; 628 struct user_namespace *lower_ns; 629 projid_t lower; 630 631 lower_ns = seq_user_ns(seq); 632 if ((lower_ns == ns) && lower_ns->parent) 633 lower_ns = lower_ns->parent; 634 635 lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first)); 636 637 seq_printf(seq, "%10u %10u %10u\n", 638 extent->first, 639 lower, 640 extent->count); 641 642 return 0; 643 } 644 645 static void *m_start(struct seq_file *seq, loff_t *ppos, 646 struct uid_gid_map *map) 647 { 648 loff_t pos = *ppos; 649 unsigned extents = map->nr_extents; 650 smp_rmb(); 651 652 if (pos >= extents) 653 return NULL; 654 655 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 656 return &map->extent[pos]; 657 658 return &map->forward[pos]; 659 } 660 661 static void *uid_m_start(struct seq_file *seq, loff_t *ppos) 662 { 663 struct user_namespace *ns = seq->private; 664 665 return m_start(seq, ppos, &ns->uid_map); 666 } 667 668 static void *gid_m_start(struct seq_file *seq, loff_t *ppos) 669 { 670 struct user_namespace *ns = seq->private; 671 672 return m_start(seq, ppos, &ns->gid_map); 673 } 674 675 static void *projid_m_start(struct seq_file *seq, loff_t *ppos) 676 { 677 struct user_namespace *ns = seq->private; 678 679 return m_start(seq, ppos, &ns->projid_map); 680 } 681 682 static void *m_next(struct seq_file *seq, void *v, loff_t *pos) 683 { 684 (*pos)++; 685 return seq->op->start(seq, pos); 686 } 687 688 static void m_stop(struct seq_file *seq, void *v) 689 { 690 return; 691 } 692 693 const struct seq_operations proc_uid_seq_operations = { 694 .start = uid_m_start, 695 .stop = m_stop, 696 .next = m_next, 697 .show = uid_m_show, 698 }; 699 700 const struct seq_operations proc_gid_seq_operations = { 701 .start = gid_m_start, 702 .stop = m_stop, 703 .next = m_next, 704 .show = gid_m_show, 705 }; 706 707 const struct seq_operations proc_projid_seq_operations = { 708 .start = projid_m_start, 709 .stop = m_stop, 710 .next = m_next, 711 .show = projid_m_show, 712 }; 713 714 static bool mappings_overlap(struct uid_gid_map *new_map, 715 struct uid_gid_extent *extent) 716 { 717 u32 upper_first, lower_first, upper_last, lower_last; 718 unsigned idx; 719 720 upper_first = extent->first; 721 lower_first = extent->lower_first; 722 upper_last = upper_first + extent->count - 1; 723 lower_last = lower_first + extent->count - 1; 724 725 for (idx = 0; idx < new_map->nr_extents; idx++) { 726 u32 prev_upper_first, prev_lower_first; 727 u32 prev_upper_last, prev_lower_last; 728 struct uid_gid_extent *prev; 729 730 if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 731 prev = &new_map->extent[idx]; 732 else 733 prev = &new_map->forward[idx]; 734 735 prev_upper_first = prev->first; 736 prev_lower_first = prev->lower_first; 737 prev_upper_last = prev_upper_first + prev->count - 1; 738 prev_lower_last = prev_lower_first + prev->count - 1; 739 740 /* Does the upper range intersect a previous extent? */ 741 if ((prev_upper_first <= upper_last) && 742 (prev_upper_last >= upper_first)) 743 return true; 744 745 /* Does the lower range intersect a previous extent? */ 746 if ((prev_lower_first <= lower_last) && 747 (prev_lower_last >= lower_first)) 748 return true; 749 } 750 return false; 751 } 752 753 /** 754 * insert_extent - Safely insert a new idmap extent into struct uid_gid_map. 755 * Takes care to allocate a 4K block of memory if the number of mappings exceeds 756 * UID_GID_MAP_MAX_BASE_EXTENTS. 757 */ 758 static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent) 759 { 760 struct uid_gid_extent *dest; 761 762 if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) { 763 struct uid_gid_extent *forward; 764 765 /* Allocate memory for 340 mappings. */ 766 forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS, 767 sizeof(struct uid_gid_extent), 768 GFP_KERNEL); 769 if (!forward) 770 return -ENOMEM; 771 772 /* Copy over memory. Only set up memory for the forward pointer. 773 * Defer the memory setup for the reverse pointer. 774 */ 775 memcpy(forward, map->extent, 776 map->nr_extents * sizeof(map->extent[0])); 777 778 map->forward = forward; 779 map->reverse = NULL; 780 } 781 782 if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS) 783 dest = &map->extent[map->nr_extents]; 784 else 785 dest = &map->forward[map->nr_extents]; 786 787 *dest = *extent; 788 map->nr_extents++; 789 return 0; 790 } 791 792 /* cmp function to sort() forward mappings */ 793 static int cmp_extents_forward(const void *a, const void *b) 794 { 795 const struct uid_gid_extent *e1 = a; 796 const struct uid_gid_extent *e2 = b; 797 798 if (e1->first < e2->first) 799 return -1; 800 801 if (e1->first > e2->first) 802 return 1; 803 804 return 0; 805 } 806 807 /* cmp function to sort() reverse mappings */ 808 static int cmp_extents_reverse(const void *a, const void *b) 809 { 810 const struct uid_gid_extent *e1 = a; 811 const struct uid_gid_extent *e2 = b; 812 813 if (e1->lower_first < e2->lower_first) 814 return -1; 815 816 if (e1->lower_first > e2->lower_first) 817 return 1; 818 819 return 0; 820 } 821 822 /** 823 * sort_idmaps - Sorts an array of idmap entries. 824 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 825 */ 826 static int sort_idmaps(struct uid_gid_map *map) 827 { 828 if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 829 return 0; 830 831 /* Sort forward array. */ 832 sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent), 833 cmp_extents_forward, NULL); 834 835 /* Only copy the memory from forward we actually need. */ 836 map->reverse = kmemdup(map->forward, 837 map->nr_extents * sizeof(struct uid_gid_extent), 838 GFP_KERNEL); 839 if (!map->reverse) 840 return -ENOMEM; 841 842 /* Sort reverse array. */ 843 sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent), 844 cmp_extents_reverse, NULL); 845 846 return 0; 847 } 848 849 /** 850 * verify_root_map() - check the uid 0 mapping 851 * @file: idmapping file 852 * @map_ns: user namespace of the target process 853 * @new_map: requested idmap 854 * 855 * If a process requests mapping parent uid 0 into the new ns, verify that the 856 * process writing the map had the CAP_SETFCAP capability as the target process 857 * will be able to write fscaps that are valid in ancestor user namespaces. 858 * 859 * Return: true if the mapping is allowed, false if not. 860 */ 861 static bool verify_root_map(const struct file *file, 862 struct user_namespace *map_ns, 863 struct uid_gid_map *new_map) 864 { 865 int idx; 866 const struct user_namespace *file_ns = file->f_cred->user_ns; 867 struct uid_gid_extent *extent0 = NULL; 868 869 for (idx = 0; idx < new_map->nr_extents; idx++) { 870 if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 871 extent0 = &new_map->extent[idx]; 872 else 873 extent0 = &new_map->forward[idx]; 874 if (extent0->lower_first == 0) 875 break; 876 877 extent0 = NULL; 878 } 879 880 if (!extent0) 881 return true; 882 883 if (map_ns == file_ns) { 884 /* The process unshared its ns and is writing to its own 885 * /proc/self/uid_map. User already has full capabilites in 886 * the new namespace. Verify that the parent had CAP_SETFCAP 887 * when it unshared. 888 * */ 889 if (!file_ns->parent_could_setfcap) 890 return false; 891 } else { 892 /* Process p1 is writing to uid_map of p2, who is in a child 893 * user namespace to p1's. Verify that the opener of the map 894 * file has CAP_SETFCAP against the parent of the new map 895 * namespace */ 896 if (!file_ns_capable(file, map_ns->parent, CAP_SETFCAP)) 897 return false; 898 } 899 900 return true; 901 } 902 903 static ssize_t map_write(struct file *file, const char __user *buf, 904 size_t count, loff_t *ppos, 905 int cap_setid, 906 struct uid_gid_map *map, 907 struct uid_gid_map *parent_map) 908 { 909 struct seq_file *seq = file->private_data; 910 struct user_namespace *map_ns = seq->private; 911 struct uid_gid_map new_map; 912 unsigned idx; 913 struct uid_gid_extent extent; 914 char *kbuf = NULL, *pos, *next_line; 915 ssize_t ret; 916 917 /* Only allow < page size writes at the beginning of the file */ 918 if ((*ppos != 0) || (count >= PAGE_SIZE)) 919 return -EINVAL; 920 921 /* Slurp in the user data */ 922 kbuf = memdup_user_nul(buf, count); 923 if (IS_ERR(kbuf)) 924 return PTR_ERR(kbuf); 925 926 /* 927 * The userns_state_mutex serializes all writes to any given map. 928 * 929 * Any map is only ever written once. 930 * 931 * An id map fits within 1 cache line on most architectures. 932 * 933 * On read nothing needs to be done unless you are on an 934 * architecture with a crazy cache coherency model like alpha. 935 * 936 * There is a one time data dependency between reading the 937 * count of the extents and the values of the extents. The 938 * desired behavior is to see the values of the extents that 939 * were written before the count of the extents. 940 * 941 * To achieve this smp_wmb() is used on guarantee the write 942 * order and smp_rmb() is guaranteed that we don't have crazy 943 * architectures returning stale data. 944 */ 945 mutex_lock(&userns_state_mutex); 946 947 memset(&new_map, 0, sizeof(struct uid_gid_map)); 948 949 ret = -EPERM; 950 /* Only allow one successful write to the map */ 951 if (map->nr_extents != 0) 952 goto out; 953 954 /* 955 * Adjusting namespace settings requires capabilities on the target. 956 */ 957 if (cap_valid(cap_setid) && !file_ns_capable(file, map_ns, CAP_SYS_ADMIN)) 958 goto out; 959 960 /* Parse the user data */ 961 ret = -EINVAL; 962 pos = kbuf; 963 for (; pos; pos = next_line) { 964 965 /* Find the end of line and ensure I don't look past it */ 966 next_line = strchr(pos, '\n'); 967 if (next_line) { 968 *next_line = '\0'; 969 next_line++; 970 if (*next_line == '\0') 971 next_line = NULL; 972 } 973 974 pos = skip_spaces(pos); 975 extent.first = simple_strtoul(pos, &pos, 10); 976 if (!isspace(*pos)) 977 goto out; 978 979 pos = skip_spaces(pos); 980 extent.lower_first = simple_strtoul(pos, &pos, 10); 981 if (!isspace(*pos)) 982 goto out; 983 984 pos = skip_spaces(pos); 985 extent.count = simple_strtoul(pos, &pos, 10); 986 if (*pos && !isspace(*pos)) 987 goto out; 988 989 /* Verify there is not trailing junk on the line */ 990 pos = skip_spaces(pos); 991 if (*pos != '\0') 992 goto out; 993 994 /* Verify we have been given valid starting values */ 995 if ((extent.first == (u32) -1) || 996 (extent.lower_first == (u32) -1)) 997 goto out; 998 999 /* Verify count is not zero and does not cause the 1000 * extent to wrap 1001 */ 1002 if ((extent.first + extent.count) <= extent.first) 1003 goto out; 1004 if ((extent.lower_first + extent.count) <= 1005 extent.lower_first) 1006 goto out; 1007 1008 /* Do the ranges in extent overlap any previous extents? */ 1009 if (mappings_overlap(&new_map, &extent)) 1010 goto out; 1011 1012 if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS && 1013 (next_line != NULL)) 1014 goto out; 1015 1016 ret = insert_extent(&new_map, &extent); 1017 if (ret < 0) 1018 goto out; 1019 ret = -EINVAL; 1020 } 1021 /* Be very certain the new map actually exists */ 1022 if (new_map.nr_extents == 0) 1023 goto out; 1024 1025 ret = -EPERM; 1026 /* Validate the user is allowed to use user id's mapped to. */ 1027 if (!new_idmap_permitted(file, map_ns, cap_setid, &new_map)) 1028 goto out; 1029 1030 ret = -EPERM; 1031 /* Map the lower ids from the parent user namespace to the 1032 * kernel global id space. 1033 */ 1034 for (idx = 0; idx < new_map.nr_extents; idx++) { 1035 struct uid_gid_extent *e; 1036 u32 lower_first; 1037 1038 if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 1039 e = &new_map.extent[idx]; 1040 else 1041 e = &new_map.forward[idx]; 1042 1043 lower_first = map_id_range_down(parent_map, 1044 e->lower_first, 1045 e->count); 1046 1047 /* Fail if we can not map the specified extent to 1048 * the kernel global id space. 1049 */ 1050 if (lower_first == (u32) -1) 1051 goto out; 1052 1053 e->lower_first = lower_first; 1054 } 1055 1056 /* 1057 * If we want to use binary search for lookup, this clones the extent 1058 * array and sorts both copies. 1059 */ 1060 ret = sort_idmaps(&new_map); 1061 if (ret < 0) 1062 goto out; 1063 1064 /* Install the map */ 1065 if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) { 1066 memcpy(map->extent, new_map.extent, 1067 new_map.nr_extents * sizeof(new_map.extent[0])); 1068 } else { 1069 map->forward = new_map.forward; 1070 map->reverse = new_map.reverse; 1071 } 1072 smp_wmb(); 1073 map->nr_extents = new_map.nr_extents; 1074 1075 *ppos = count; 1076 ret = count; 1077 out: 1078 if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 1079 kfree(new_map.forward); 1080 kfree(new_map.reverse); 1081 map->forward = NULL; 1082 map->reverse = NULL; 1083 map->nr_extents = 0; 1084 } 1085 1086 mutex_unlock(&userns_state_mutex); 1087 kfree(kbuf); 1088 return ret; 1089 } 1090 1091 ssize_t proc_uid_map_write(struct file *file, const char __user *buf, 1092 size_t size, loff_t *ppos) 1093 { 1094 struct seq_file *seq = file->private_data; 1095 struct user_namespace *ns = seq->private; 1096 struct user_namespace *seq_ns = seq_user_ns(seq); 1097 1098 if (!ns->parent) 1099 return -EPERM; 1100 1101 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1102 return -EPERM; 1103 1104 return map_write(file, buf, size, ppos, CAP_SETUID, 1105 &ns->uid_map, &ns->parent->uid_map); 1106 } 1107 1108 ssize_t proc_gid_map_write(struct file *file, const char __user *buf, 1109 size_t size, loff_t *ppos) 1110 { 1111 struct seq_file *seq = file->private_data; 1112 struct user_namespace *ns = seq->private; 1113 struct user_namespace *seq_ns = seq_user_ns(seq); 1114 1115 if (!ns->parent) 1116 return -EPERM; 1117 1118 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1119 return -EPERM; 1120 1121 return map_write(file, buf, size, ppos, CAP_SETGID, 1122 &ns->gid_map, &ns->parent->gid_map); 1123 } 1124 1125 ssize_t proc_projid_map_write(struct file *file, const char __user *buf, 1126 size_t size, loff_t *ppos) 1127 { 1128 struct seq_file *seq = file->private_data; 1129 struct user_namespace *ns = seq->private; 1130 struct user_namespace *seq_ns = seq_user_ns(seq); 1131 1132 if (!ns->parent) 1133 return -EPERM; 1134 1135 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1136 return -EPERM; 1137 1138 /* Anyone can set any valid project id no capability needed */ 1139 return map_write(file, buf, size, ppos, -1, 1140 &ns->projid_map, &ns->parent->projid_map); 1141 } 1142 1143 static bool new_idmap_permitted(const struct file *file, 1144 struct user_namespace *ns, int cap_setid, 1145 struct uid_gid_map *new_map) 1146 { 1147 const struct cred *cred = file->f_cred; 1148 1149 if (cap_setid == CAP_SETUID && !verify_root_map(file, ns, new_map)) 1150 return false; 1151 1152 /* Don't allow mappings that would allow anything that wouldn't 1153 * be allowed without the establishment of unprivileged mappings. 1154 */ 1155 if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) && 1156 uid_eq(ns->owner, cred->euid)) { 1157 u32 id = new_map->extent[0].lower_first; 1158 if (cap_setid == CAP_SETUID) { 1159 kuid_t uid = make_kuid(ns->parent, id); 1160 if (uid_eq(uid, cred->euid)) 1161 return true; 1162 } else if (cap_setid == CAP_SETGID) { 1163 kgid_t gid = make_kgid(ns->parent, id); 1164 if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) && 1165 gid_eq(gid, cred->egid)) 1166 return true; 1167 } 1168 } 1169 1170 /* Allow anyone to set a mapping that doesn't require privilege */ 1171 if (!cap_valid(cap_setid)) 1172 return true; 1173 1174 /* Allow the specified ids if we have the appropriate capability 1175 * (CAP_SETUID or CAP_SETGID) over the parent user namespace. 1176 * And the opener of the id file also has the appropriate capability. 1177 */ 1178 if (ns_capable(ns->parent, cap_setid) && 1179 file_ns_capable(file, ns->parent, cap_setid)) 1180 return true; 1181 1182 return false; 1183 } 1184 1185 int proc_setgroups_show(struct seq_file *seq, void *v) 1186 { 1187 struct user_namespace *ns = seq->private; 1188 unsigned long userns_flags = READ_ONCE(ns->flags); 1189 1190 seq_printf(seq, "%s\n", 1191 (userns_flags & USERNS_SETGROUPS_ALLOWED) ? 1192 "allow" : "deny"); 1193 return 0; 1194 } 1195 1196 ssize_t proc_setgroups_write(struct file *file, const char __user *buf, 1197 size_t count, loff_t *ppos) 1198 { 1199 struct seq_file *seq = file->private_data; 1200 struct user_namespace *ns = seq->private; 1201 char kbuf[8], *pos; 1202 bool setgroups_allowed; 1203 ssize_t ret; 1204 1205 /* Only allow a very narrow range of strings to be written */ 1206 ret = -EINVAL; 1207 if ((*ppos != 0) || (count >= sizeof(kbuf))) 1208 goto out; 1209 1210 /* What was written? */ 1211 ret = -EFAULT; 1212 if (copy_from_user(kbuf, buf, count)) 1213 goto out; 1214 kbuf[count] = '\0'; 1215 pos = kbuf; 1216 1217 /* What is being requested? */ 1218 ret = -EINVAL; 1219 if (strncmp(pos, "allow", 5) == 0) { 1220 pos += 5; 1221 setgroups_allowed = true; 1222 } 1223 else if (strncmp(pos, "deny", 4) == 0) { 1224 pos += 4; 1225 setgroups_allowed = false; 1226 } 1227 else 1228 goto out; 1229 1230 /* Verify there is not trailing junk on the line */ 1231 pos = skip_spaces(pos); 1232 if (*pos != '\0') 1233 goto out; 1234 1235 ret = -EPERM; 1236 mutex_lock(&userns_state_mutex); 1237 if (setgroups_allowed) { 1238 /* Enabling setgroups after setgroups has been disabled 1239 * is not allowed. 1240 */ 1241 if (!(ns->flags & USERNS_SETGROUPS_ALLOWED)) 1242 goto out_unlock; 1243 } else { 1244 /* Permanently disabling setgroups after setgroups has 1245 * been enabled by writing the gid_map is not allowed. 1246 */ 1247 if (ns->gid_map.nr_extents != 0) 1248 goto out_unlock; 1249 ns->flags &= ~USERNS_SETGROUPS_ALLOWED; 1250 } 1251 mutex_unlock(&userns_state_mutex); 1252 1253 /* Report a successful write */ 1254 *ppos = count; 1255 ret = count; 1256 out: 1257 return ret; 1258 out_unlock: 1259 mutex_unlock(&userns_state_mutex); 1260 goto out; 1261 } 1262 1263 bool userns_may_setgroups(const struct user_namespace *ns) 1264 { 1265 bool allowed; 1266 1267 mutex_lock(&userns_state_mutex); 1268 /* It is not safe to use setgroups until a gid mapping in 1269 * the user namespace has been established. 1270 */ 1271 allowed = ns->gid_map.nr_extents != 0; 1272 /* Is setgroups allowed? */ 1273 allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED); 1274 mutex_unlock(&userns_state_mutex); 1275 1276 return allowed; 1277 } 1278 1279 /* 1280 * Returns true if @child is the same namespace or a descendant of 1281 * @ancestor. 1282 */ 1283 bool in_userns(const struct user_namespace *ancestor, 1284 const struct user_namespace *child) 1285 { 1286 const struct user_namespace *ns; 1287 for (ns = child; ns->level > ancestor->level; ns = ns->parent) 1288 ; 1289 return (ns == ancestor); 1290 } 1291 1292 bool current_in_userns(const struct user_namespace *target_ns) 1293 { 1294 return in_userns(target_ns, current_user_ns()); 1295 } 1296 EXPORT_SYMBOL(current_in_userns); 1297 1298 static inline struct user_namespace *to_user_ns(struct ns_common *ns) 1299 { 1300 return container_of(ns, struct user_namespace, ns); 1301 } 1302 1303 static struct ns_common *userns_get(struct task_struct *task) 1304 { 1305 struct user_namespace *user_ns; 1306 1307 rcu_read_lock(); 1308 user_ns = get_user_ns(__task_cred(task)->user_ns); 1309 rcu_read_unlock(); 1310 1311 return user_ns ? &user_ns->ns : NULL; 1312 } 1313 1314 static void userns_put(struct ns_common *ns) 1315 { 1316 put_user_ns(to_user_ns(ns)); 1317 } 1318 1319 static int userns_install(struct nsset *nsset, struct ns_common *ns) 1320 { 1321 struct user_namespace *user_ns = to_user_ns(ns); 1322 struct cred *cred; 1323 1324 /* Don't allow gaining capabilities by reentering 1325 * the same user namespace. 1326 */ 1327 if (user_ns == current_user_ns()) 1328 return -EINVAL; 1329 1330 /* Tasks that share a thread group must share a user namespace */ 1331 if (!thread_group_empty(current)) 1332 return -EINVAL; 1333 1334 if (current->fs->users != 1) 1335 return -EINVAL; 1336 1337 if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 1338 return -EPERM; 1339 1340 cred = nsset_cred(nsset); 1341 if (!cred) 1342 return -EINVAL; 1343 1344 put_user_ns(cred->user_ns); 1345 set_cred_user_ns(cred, get_user_ns(user_ns)); 1346 1347 if (set_cred_ucounts(cred) < 0) 1348 return -EINVAL; 1349 1350 return 0; 1351 } 1352 1353 struct ns_common *ns_get_owner(struct ns_common *ns) 1354 { 1355 struct user_namespace *my_user_ns = current_user_ns(); 1356 struct user_namespace *owner, *p; 1357 1358 /* See if the owner is in the current user namespace */ 1359 owner = p = ns->ops->owner(ns); 1360 for (;;) { 1361 if (!p) 1362 return ERR_PTR(-EPERM); 1363 if (p == my_user_ns) 1364 break; 1365 p = p->parent; 1366 } 1367 1368 return &get_user_ns(owner)->ns; 1369 } 1370 1371 static struct user_namespace *userns_owner(struct ns_common *ns) 1372 { 1373 return to_user_ns(ns)->parent; 1374 } 1375 1376 const struct proc_ns_operations userns_operations = { 1377 .name = "user", 1378 .type = CLONE_NEWUSER, 1379 .get = userns_get, 1380 .put = userns_put, 1381 .install = userns_install, 1382 .owner = userns_owner, 1383 .get_parent = ns_get_owner, 1384 }; 1385 1386 static __init int user_namespaces_init(void) 1387 { 1388 user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC | SLAB_ACCOUNT); 1389 return 0; 1390 } 1391 subsys_initcall(user_namespaces_init); 1392