1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License as 4 * published by the Free Software Foundation, version 2 of the 5 * License. 6 */ 7 8 #include <linux/export.h> 9 #include <linux/nsproxy.h> 10 #include <linux/slab.h> 11 #include <linux/sched/signal.h> 12 #include <linux/user_namespace.h> 13 #include <linux/proc_ns.h> 14 #include <linux/highuid.h> 15 #include <linux/cred.h> 16 #include <linux/securebits.h> 17 #include <linux/keyctl.h> 18 #include <linux/key-type.h> 19 #include <keys/user-type.h> 20 #include <linux/seq_file.h> 21 #include <linux/fs.h> 22 #include <linux/uaccess.h> 23 #include <linux/ctype.h> 24 #include <linux/projid.h> 25 #include <linux/fs_struct.h> 26 #include <linux/bsearch.h> 27 #include <linux/sort.h> 28 29 static struct kmem_cache *user_ns_cachep __read_mostly; 30 static DEFINE_MUTEX(userns_state_mutex); 31 32 static bool new_idmap_permitted(const struct file *file, 33 struct user_namespace *ns, int cap_setid, 34 struct uid_gid_map *map); 35 static void free_user_ns(struct work_struct *work); 36 37 static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid) 38 { 39 return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES); 40 } 41 42 static void dec_user_namespaces(struct ucounts *ucounts) 43 { 44 return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES); 45 } 46 47 static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns) 48 { 49 /* Start with the same capabilities as init but useless for doing 50 * anything as the capabilities are bound to the new user namespace. 51 */ 52 cred->securebits = SECUREBITS_DEFAULT; 53 cred->cap_inheritable = CAP_EMPTY_SET; 54 cred->cap_permitted = CAP_FULL_SET; 55 cred->cap_effective = CAP_FULL_SET; 56 cred->cap_ambient = CAP_EMPTY_SET; 57 cred->cap_bset = CAP_FULL_SET; 58 #ifdef CONFIG_KEYS 59 key_put(cred->request_key_auth); 60 cred->request_key_auth = NULL; 61 #endif 62 /* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */ 63 cred->user_ns = user_ns; 64 } 65 66 /* 67 * Create a new user namespace, deriving the creator from the user in the 68 * passed credentials, and replacing that user with the new root user for the 69 * new namespace. 70 * 71 * This is called by copy_creds(), which will finish setting the target task's 72 * credentials. 73 */ 74 int create_user_ns(struct cred *new) 75 { 76 struct user_namespace *ns, *parent_ns = new->user_ns; 77 kuid_t owner = new->euid; 78 kgid_t group = new->egid; 79 struct ucounts *ucounts; 80 int ret, i; 81 82 ret = -ENOSPC; 83 if (parent_ns->level > 32) 84 goto fail; 85 86 ucounts = inc_user_namespaces(parent_ns, owner); 87 if (!ucounts) 88 goto fail; 89 90 /* 91 * Verify that we can not violate the policy of which files 92 * may be accessed that is specified by the root directory, 93 * by verifing that the root directory is at the root of the 94 * mount namespace which allows all files to be accessed. 95 */ 96 ret = -EPERM; 97 if (current_chrooted()) 98 goto fail_dec; 99 100 /* The creator needs a mapping in the parent user namespace 101 * or else we won't be able to reasonably tell userspace who 102 * created a user_namespace. 103 */ 104 ret = -EPERM; 105 if (!kuid_has_mapping(parent_ns, owner) || 106 !kgid_has_mapping(parent_ns, group)) 107 goto fail_dec; 108 109 ret = -ENOMEM; 110 ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL); 111 if (!ns) 112 goto fail_dec; 113 114 ret = ns_alloc_inum(&ns->ns); 115 if (ret) 116 goto fail_free; 117 ns->ns.ops = &userns_operations; 118 119 atomic_set(&ns->count, 1); 120 /* Leave the new->user_ns reference with the new user namespace. */ 121 ns->parent = parent_ns; 122 ns->level = parent_ns->level + 1; 123 ns->owner = owner; 124 ns->group = group; 125 INIT_WORK(&ns->work, free_user_ns); 126 for (i = 0; i < UCOUNT_COUNTS; i++) { 127 ns->ucount_max[i] = INT_MAX; 128 } 129 ns->ucounts = ucounts; 130 131 /* Inherit USERNS_SETGROUPS_ALLOWED from our parent */ 132 mutex_lock(&userns_state_mutex); 133 ns->flags = parent_ns->flags; 134 mutex_unlock(&userns_state_mutex); 135 136 #ifdef CONFIG_PERSISTENT_KEYRINGS 137 init_rwsem(&ns->persistent_keyring_register_sem); 138 #endif 139 ret = -ENOMEM; 140 if (!setup_userns_sysctls(ns)) 141 goto fail_keyring; 142 143 set_cred_user_ns(new, ns); 144 return 0; 145 fail_keyring: 146 #ifdef CONFIG_PERSISTENT_KEYRINGS 147 key_put(ns->persistent_keyring_register); 148 #endif 149 ns_free_inum(&ns->ns); 150 fail_free: 151 kmem_cache_free(user_ns_cachep, ns); 152 fail_dec: 153 dec_user_namespaces(ucounts); 154 fail: 155 return ret; 156 } 157 158 int unshare_userns(unsigned long unshare_flags, struct cred **new_cred) 159 { 160 struct cred *cred; 161 int err = -ENOMEM; 162 163 if (!(unshare_flags & CLONE_NEWUSER)) 164 return 0; 165 166 cred = prepare_creds(); 167 if (cred) { 168 err = create_user_ns(cred); 169 if (err) 170 put_cred(cred); 171 else 172 *new_cred = cred; 173 } 174 175 return err; 176 } 177 178 static void free_user_ns(struct work_struct *work) 179 { 180 struct user_namespace *parent, *ns = 181 container_of(work, struct user_namespace, work); 182 183 do { 184 struct ucounts *ucounts = ns->ucounts; 185 parent = ns->parent; 186 if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 187 kfree(ns->gid_map.forward); 188 kfree(ns->gid_map.reverse); 189 } 190 if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 191 kfree(ns->uid_map.forward); 192 kfree(ns->uid_map.reverse); 193 } 194 if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 195 kfree(ns->projid_map.forward); 196 kfree(ns->projid_map.reverse); 197 } 198 retire_userns_sysctls(ns); 199 #ifdef CONFIG_PERSISTENT_KEYRINGS 200 key_put(ns->persistent_keyring_register); 201 #endif 202 ns_free_inum(&ns->ns); 203 kmem_cache_free(user_ns_cachep, ns); 204 dec_user_namespaces(ucounts); 205 ns = parent; 206 } while (atomic_dec_and_test(&parent->count)); 207 } 208 209 void __put_user_ns(struct user_namespace *ns) 210 { 211 schedule_work(&ns->work); 212 } 213 EXPORT_SYMBOL(__put_user_ns); 214 215 /** 216 * idmap_key struct holds the information necessary to find an idmapping in a 217 * sorted idmap array. It is passed to cmp_map_id() as first argument. 218 */ 219 struct idmap_key { 220 bool map_up; /* true -> id from kid; false -> kid from id */ 221 u32 id; /* id to find */ 222 u32 count; /* == 0 unless used with map_id_range_down() */ 223 }; 224 225 /** 226 * cmp_map_id - Function to be passed to bsearch() to find the requested 227 * idmapping. Expects struct idmap_key to be passed via @k. 228 */ 229 static int cmp_map_id(const void *k, const void *e) 230 { 231 u32 first, last, id2; 232 const struct idmap_key *key = k; 233 const struct uid_gid_extent *el = e; 234 235 id2 = key->id + key->count - 1; 236 237 /* handle map_id_{down,up}() */ 238 if (key->map_up) 239 first = el->lower_first; 240 else 241 first = el->first; 242 243 last = first + el->count - 1; 244 245 if (key->id >= first && key->id <= last && 246 (id2 >= first && id2 <= last)) 247 return 0; 248 249 if (key->id < first || id2 < first) 250 return -1; 251 252 return 1; 253 } 254 255 /** 256 * map_id_range_down_max - Find idmap via binary search in ordered idmap array. 257 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 258 */ 259 static struct uid_gid_extent * 260 map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count) 261 { 262 struct idmap_key key; 263 264 key.map_up = false; 265 key.count = count; 266 key.id = id; 267 268 return bsearch(&key, map->forward, extents, 269 sizeof(struct uid_gid_extent), cmp_map_id); 270 } 271 272 /** 273 * map_id_range_down_base - Find idmap via binary search in static extent array. 274 * Can only be called if number of mappings is equal or less than 275 * UID_GID_MAP_MAX_BASE_EXTENTS. 276 */ 277 static struct uid_gid_extent * 278 map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count) 279 { 280 unsigned idx; 281 u32 first, last, id2; 282 283 id2 = id + count - 1; 284 285 /* Find the matching extent */ 286 for (idx = 0; idx < extents; idx++) { 287 first = map->extent[idx].first; 288 last = first + map->extent[idx].count - 1; 289 if (id >= first && id <= last && 290 (id2 >= first && id2 <= last)) 291 return &map->extent[idx]; 292 } 293 return NULL; 294 } 295 296 static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count) 297 { 298 struct uid_gid_extent *extent; 299 unsigned extents = map->nr_extents; 300 smp_rmb(); 301 302 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 303 extent = map_id_range_down_base(extents, map, id, count); 304 else 305 extent = map_id_range_down_max(extents, map, id, count); 306 307 /* Map the id or note failure */ 308 if (extent) 309 id = (id - extent->first) + extent->lower_first; 310 else 311 id = (u32) -1; 312 313 return id; 314 } 315 316 static u32 map_id_down(struct uid_gid_map *map, u32 id) 317 { 318 return map_id_range_down(map, id, 1); 319 } 320 321 /** 322 * map_id_up_base - Find idmap via binary search in static extent array. 323 * Can only be called if number of mappings is equal or less than 324 * UID_GID_MAP_MAX_BASE_EXTENTS. 325 */ 326 static struct uid_gid_extent * 327 map_id_up_base(unsigned extents, struct uid_gid_map *map, u32 id) 328 { 329 unsigned idx; 330 u32 first, last; 331 332 /* Find the matching extent */ 333 for (idx = 0; idx < extents; idx++) { 334 first = map->extent[idx].lower_first; 335 last = first + map->extent[idx].count - 1; 336 if (id >= first && id <= last) 337 return &map->extent[idx]; 338 } 339 return NULL; 340 } 341 342 /** 343 * map_id_up_max - Find idmap via binary search in ordered idmap array. 344 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 345 */ 346 static struct uid_gid_extent * 347 map_id_up_max(unsigned extents, struct uid_gid_map *map, u32 id) 348 { 349 struct idmap_key key; 350 351 key.map_up = true; 352 key.count = 1; 353 key.id = id; 354 355 return bsearch(&key, map->reverse, extents, 356 sizeof(struct uid_gid_extent), cmp_map_id); 357 } 358 359 static u32 map_id_up(struct uid_gid_map *map, u32 id) 360 { 361 struct uid_gid_extent *extent; 362 unsigned extents = map->nr_extents; 363 smp_rmb(); 364 365 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 366 extent = map_id_up_base(extents, map, id); 367 else 368 extent = map_id_up_max(extents, map, id); 369 370 /* Map the id or note failure */ 371 if (extent) 372 id = (id - extent->lower_first) + extent->first; 373 else 374 id = (u32) -1; 375 376 return id; 377 } 378 379 /** 380 * make_kuid - Map a user-namespace uid pair into a kuid. 381 * @ns: User namespace that the uid is in 382 * @uid: User identifier 383 * 384 * Maps a user-namespace uid pair into a kernel internal kuid, 385 * and returns that kuid. 386 * 387 * When there is no mapping defined for the user-namespace uid 388 * pair INVALID_UID is returned. Callers are expected to test 389 * for and handle INVALID_UID being returned. INVALID_UID 390 * may be tested for using uid_valid(). 391 */ 392 kuid_t make_kuid(struct user_namespace *ns, uid_t uid) 393 { 394 /* Map the uid to a global kernel uid */ 395 return KUIDT_INIT(map_id_down(&ns->uid_map, uid)); 396 } 397 EXPORT_SYMBOL(make_kuid); 398 399 /** 400 * from_kuid - Create a uid from a kuid user-namespace pair. 401 * @targ: The user namespace we want a uid in. 402 * @kuid: The kernel internal uid to start with. 403 * 404 * Map @kuid into the user-namespace specified by @targ and 405 * return the resulting uid. 406 * 407 * There is always a mapping into the initial user_namespace. 408 * 409 * If @kuid has no mapping in @targ (uid_t)-1 is returned. 410 */ 411 uid_t from_kuid(struct user_namespace *targ, kuid_t kuid) 412 { 413 /* Map the uid from a global kernel uid */ 414 return map_id_up(&targ->uid_map, __kuid_val(kuid)); 415 } 416 EXPORT_SYMBOL(from_kuid); 417 418 /** 419 * from_kuid_munged - Create a uid from a kuid user-namespace pair. 420 * @targ: The user namespace we want a uid in. 421 * @kuid: The kernel internal uid to start with. 422 * 423 * Map @kuid into the user-namespace specified by @targ and 424 * return the resulting uid. 425 * 426 * There is always a mapping into the initial user_namespace. 427 * 428 * Unlike from_kuid from_kuid_munged never fails and always 429 * returns a valid uid. This makes from_kuid_munged appropriate 430 * for use in syscalls like stat and getuid where failing the 431 * system call and failing to provide a valid uid are not an 432 * options. 433 * 434 * If @kuid has no mapping in @targ overflowuid is returned. 435 */ 436 uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid) 437 { 438 uid_t uid; 439 uid = from_kuid(targ, kuid); 440 441 if (uid == (uid_t) -1) 442 uid = overflowuid; 443 return uid; 444 } 445 EXPORT_SYMBOL(from_kuid_munged); 446 447 /** 448 * make_kgid - Map a user-namespace gid pair into a kgid. 449 * @ns: User namespace that the gid is in 450 * @gid: group identifier 451 * 452 * Maps a user-namespace gid pair into a kernel internal kgid, 453 * and returns that kgid. 454 * 455 * When there is no mapping defined for the user-namespace gid 456 * pair INVALID_GID is returned. Callers are expected to test 457 * for and handle INVALID_GID being returned. INVALID_GID may be 458 * tested for using gid_valid(). 459 */ 460 kgid_t make_kgid(struct user_namespace *ns, gid_t gid) 461 { 462 /* Map the gid to a global kernel gid */ 463 return KGIDT_INIT(map_id_down(&ns->gid_map, gid)); 464 } 465 EXPORT_SYMBOL(make_kgid); 466 467 /** 468 * from_kgid - Create a gid from a kgid user-namespace pair. 469 * @targ: The user namespace we want a gid in. 470 * @kgid: The kernel internal gid to start with. 471 * 472 * Map @kgid into the user-namespace specified by @targ and 473 * return the resulting gid. 474 * 475 * There is always a mapping into the initial user_namespace. 476 * 477 * If @kgid has no mapping in @targ (gid_t)-1 is returned. 478 */ 479 gid_t from_kgid(struct user_namespace *targ, kgid_t kgid) 480 { 481 /* Map the gid from a global kernel gid */ 482 return map_id_up(&targ->gid_map, __kgid_val(kgid)); 483 } 484 EXPORT_SYMBOL(from_kgid); 485 486 /** 487 * from_kgid_munged - Create a gid from a kgid user-namespace pair. 488 * @targ: The user namespace we want a gid in. 489 * @kgid: The kernel internal gid to start with. 490 * 491 * Map @kgid into the user-namespace specified by @targ and 492 * return the resulting gid. 493 * 494 * There is always a mapping into the initial user_namespace. 495 * 496 * Unlike from_kgid from_kgid_munged never fails and always 497 * returns a valid gid. This makes from_kgid_munged appropriate 498 * for use in syscalls like stat and getgid where failing the 499 * system call and failing to provide a valid gid are not options. 500 * 501 * If @kgid has no mapping in @targ overflowgid is returned. 502 */ 503 gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid) 504 { 505 gid_t gid; 506 gid = from_kgid(targ, kgid); 507 508 if (gid == (gid_t) -1) 509 gid = overflowgid; 510 return gid; 511 } 512 EXPORT_SYMBOL(from_kgid_munged); 513 514 /** 515 * make_kprojid - Map a user-namespace projid pair into a kprojid. 516 * @ns: User namespace that the projid is in 517 * @projid: Project identifier 518 * 519 * Maps a user-namespace uid pair into a kernel internal kuid, 520 * and returns that kuid. 521 * 522 * When there is no mapping defined for the user-namespace projid 523 * pair INVALID_PROJID is returned. Callers are expected to test 524 * for and handle handle INVALID_PROJID being returned. INVALID_PROJID 525 * may be tested for using projid_valid(). 526 */ 527 kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid) 528 { 529 /* Map the uid to a global kernel uid */ 530 return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid)); 531 } 532 EXPORT_SYMBOL(make_kprojid); 533 534 /** 535 * from_kprojid - Create a projid from a kprojid user-namespace pair. 536 * @targ: The user namespace we want a projid in. 537 * @kprojid: The kernel internal project identifier to start with. 538 * 539 * Map @kprojid into the user-namespace specified by @targ and 540 * return the resulting projid. 541 * 542 * There is always a mapping into the initial user_namespace. 543 * 544 * If @kprojid has no mapping in @targ (projid_t)-1 is returned. 545 */ 546 projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid) 547 { 548 /* Map the uid from a global kernel uid */ 549 return map_id_up(&targ->projid_map, __kprojid_val(kprojid)); 550 } 551 EXPORT_SYMBOL(from_kprojid); 552 553 /** 554 * from_kprojid_munged - Create a projiid from a kprojid user-namespace pair. 555 * @targ: The user namespace we want a projid in. 556 * @kprojid: The kernel internal projid to start with. 557 * 558 * Map @kprojid into the user-namespace specified by @targ and 559 * return the resulting projid. 560 * 561 * There is always a mapping into the initial user_namespace. 562 * 563 * Unlike from_kprojid from_kprojid_munged never fails and always 564 * returns a valid projid. This makes from_kprojid_munged 565 * appropriate for use in syscalls like stat and where 566 * failing the system call and failing to provide a valid projid are 567 * not an options. 568 * 569 * If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned. 570 */ 571 projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid) 572 { 573 projid_t projid; 574 projid = from_kprojid(targ, kprojid); 575 576 if (projid == (projid_t) -1) 577 projid = OVERFLOW_PROJID; 578 return projid; 579 } 580 EXPORT_SYMBOL(from_kprojid_munged); 581 582 583 static int uid_m_show(struct seq_file *seq, void *v) 584 { 585 struct user_namespace *ns = seq->private; 586 struct uid_gid_extent *extent = v; 587 struct user_namespace *lower_ns; 588 uid_t lower; 589 590 lower_ns = seq_user_ns(seq); 591 if ((lower_ns == ns) && lower_ns->parent) 592 lower_ns = lower_ns->parent; 593 594 lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first)); 595 596 seq_printf(seq, "%10u %10u %10u\n", 597 extent->first, 598 lower, 599 extent->count); 600 601 return 0; 602 } 603 604 static int gid_m_show(struct seq_file *seq, void *v) 605 { 606 struct user_namespace *ns = seq->private; 607 struct uid_gid_extent *extent = v; 608 struct user_namespace *lower_ns; 609 gid_t lower; 610 611 lower_ns = seq_user_ns(seq); 612 if ((lower_ns == ns) && lower_ns->parent) 613 lower_ns = lower_ns->parent; 614 615 lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first)); 616 617 seq_printf(seq, "%10u %10u %10u\n", 618 extent->first, 619 lower, 620 extent->count); 621 622 return 0; 623 } 624 625 static int projid_m_show(struct seq_file *seq, void *v) 626 { 627 struct user_namespace *ns = seq->private; 628 struct uid_gid_extent *extent = v; 629 struct user_namespace *lower_ns; 630 projid_t lower; 631 632 lower_ns = seq_user_ns(seq); 633 if ((lower_ns == ns) && lower_ns->parent) 634 lower_ns = lower_ns->parent; 635 636 lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first)); 637 638 seq_printf(seq, "%10u %10u %10u\n", 639 extent->first, 640 lower, 641 extent->count); 642 643 return 0; 644 } 645 646 static void *m_start(struct seq_file *seq, loff_t *ppos, 647 struct uid_gid_map *map) 648 { 649 loff_t pos = *ppos; 650 unsigned extents = map->nr_extents; 651 smp_rmb(); 652 653 if (pos >= extents) 654 return NULL; 655 656 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 657 return &map->extent[pos]; 658 659 return &map->forward[pos]; 660 } 661 662 static void *uid_m_start(struct seq_file *seq, loff_t *ppos) 663 { 664 struct user_namespace *ns = seq->private; 665 666 return m_start(seq, ppos, &ns->uid_map); 667 } 668 669 static void *gid_m_start(struct seq_file *seq, loff_t *ppos) 670 { 671 struct user_namespace *ns = seq->private; 672 673 return m_start(seq, ppos, &ns->gid_map); 674 } 675 676 static void *projid_m_start(struct seq_file *seq, loff_t *ppos) 677 { 678 struct user_namespace *ns = seq->private; 679 680 return m_start(seq, ppos, &ns->projid_map); 681 } 682 683 static void *m_next(struct seq_file *seq, void *v, loff_t *pos) 684 { 685 (*pos)++; 686 return seq->op->start(seq, pos); 687 } 688 689 static void m_stop(struct seq_file *seq, void *v) 690 { 691 return; 692 } 693 694 const struct seq_operations proc_uid_seq_operations = { 695 .start = uid_m_start, 696 .stop = m_stop, 697 .next = m_next, 698 .show = uid_m_show, 699 }; 700 701 const struct seq_operations proc_gid_seq_operations = { 702 .start = gid_m_start, 703 .stop = m_stop, 704 .next = m_next, 705 .show = gid_m_show, 706 }; 707 708 const struct seq_operations proc_projid_seq_operations = { 709 .start = projid_m_start, 710 .stop = m_stop, 711 .next = m_next, 712 .show = projid_m_show, 713 }; 714 715 static bool mappings_overlap(struct uid_gid_map *new_map, 716 struct uid_gid_extent *extent) 717 { 718 u32 upper_first, lower_first, upper_last, lower_last; 719 unsigned idx; 720 721 upper_first = extent->first; 722 lower_first = extent->lower_first; 723 upper_last = upper_first + extent->count - 1; 724 lower_last = lower_first + extent->count - 1; 725 726 for (idx = 0; idx < new_map->nr_extents; idx++) { 727 u32 prev_upper_first, prev_lower_first; 728 u32 prev_upper_last, prev_lower_last; 729 struct uid_gid_extent *prev; 730 731 if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 732 prev = &new_map->extent[idx]; 733 else 734 prev = &new_map->forward[idx]; 735 736 prev_upper_first = prev->first; 737 prev_lower_first = prev->lower_first; 738 prev_upper_last = prev_upper_first + prev->count - 1; 739 prev_lower_last = prev_lower_first + prev->count - 1; 740 741 /* Does the upper range intersect a previous extent? */ 742 if ((prev_upper_first <= upper_last) && 743 (prev_upper_last >= upper_first)) 744 return true; 745 746 /* Does the lower range intersect a previous extent? */ 747 if ((prev_lower_first <= lower_last) && 748 (prev_lower_last >= lower_first)) 749 return true; 750 } 751 return false; 752 } 753 754 /** 755 * insert_extent - Safely insert a new idmap extent into struct uid_gid_map. 756 * Takes care to allocate a 4K block of memory if the number of mappings exceeds 757 * UID_GID_MAP_MAX_BASE_EXTENTS. 758 */ 759 static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent) 760 { 761 struct uid_gid_extent *dest; 762 763 if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) { 764 struct uid_gid_extent *forward; 765 766 /* Allocate memory for 340 mappings. */ 767 forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS, 768 sizeof(struct uid_gid_extent), 769 GFP_KERNEL); 770 if (!forward) 771 return -ENOMEM; 772 773 /* Copy over memory. Only set up memory for the forward pointer. 774 * Defer the memory setup for the reverse pointer. 775 */ 776 memcpy(forward, map->extent, 777 map->nr_extents * sizeof(map->extent[0])); 778 779 map->forward = forward; 780 map->reverse = NULL; 781 } 782 783 if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS) 784 dest = &map->extent[map->nr_extents]; 785 else 786 dest = &map->forward[map->nr_extents]; 787 788 *dest = *extent; 789 map->nr_extents++; 790 return 0; 791 } 792 793 /* cmp function to sort() forward mappings */ 794 static int cmp_extents_forward(const void *a, const void *b) 795 { 796 const struct uid_gid_extent *e1 = a; 797 const struct uid_gid_extent *e2 = b; 798 799 if (e1->first < e2->first) 800 return -1; 801 802 if (e1->first > e2->first) 803 return 1; 804 805 return 0; 806 } 807 808 /* cmp function to sort() reverse mappings */ 809 static int cmp_extents_reverse(const void *a, const void *b) 810 { 811 const struct uid_gid_extent *e1 = a; 812 const struct uid_gid_extent *e2 = b; 813 814 if (e1->lower_first < e2->lower_first) 815 return -1; 816 817 if (e1->lower_first > e2->lower_first) 818 return 1; 819 820 return 0; 821 } 822 823 /** 824 * sort_idmaps - Sorts an array of idmap entries. 825 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 826 */ 827 static int sort_idmaps(struct uid_gid_map *map) 828 { 829 if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 830 return 0; 831 832 /* Sort forward array. */ 833 sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent), 834 cmp_extents_forward, NULL); 835 836 /* Only copy the memory from forward we actually need. */ 837 map->reverse = kmemdup(map->forward, 838 map->nr_extents * sizeof(struct uid_gid_extent), 839 GFP_KERNEL); 840 if (!map->reverse) 841 return -ENOMEM; 842 843 /* Sort reverse array. */ 844 sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent), 845 cmp_extents_reverse, NULL); 846 847 return 0; 848 } 849 850 static ssize_t map_write(struct file *file, const char __user *buf, 851 size_t count, loff_t *ppos, 852 int cap_setid, 853 struct uid_gid_map *map, 854 struct uid_gid_map *parent_map) 855 { 856 struct seq_file *seq = file->private_data; 857 struct user_namespace *ns = seq->private; 858 struct uid_gid_map new_map; 859 unsigned idx; 860 struct uid_gid_extent extent; 861 char *kbuf = NULL, *pos, *next_line; 862 ssize_t ret; 863 864 /* Only allow < page size writes at the beginning of the file */ 865 if ((*ppos != 0) || (count >= PAGE_SIZE)) 866 return -EINVAL; 867 868 /* Slurp in the user data */ 869 kbuf = memdup_user_nul(buf, count); 870 if (IS_ERR(kbuf)) 871 return PTR_ERR(kbuf); 872 873 /* 874 * The userns_state_mutex serializes all writes to any given map. 875 * 876 * Any map is only ever written once. 877 * 878 * An id map fits within 1 cache line on most architectures. 879 * 880 * On read nothing needs to be done unless you are on an 881 * architecture with a crazy cache coherency model like alpha. 882 * 883 * There is a one time data dependency between reading the 884 * count of the extents and the values of the extents. The 885 * desired behavior is to see the values of the extents that 886 * were written before the count of the extents. 887 * 888 * To achieve this smp_wmb() is used on guarantee the write 889 * order and smp_rmb() is guaranteed that we don't have crazy 890 * architectures returning stale data. 891 */ 892 mutex_lock(&userns_state_mutex); 893 894 memset(&new_map, 0, sizeof(struct uid_gid_map)); 895 896 ret = -EPERM; 897 /* Only allow one successful write to the map */ 898 if (map->nr_extents != 0) 899 goto out; 900 901 /* 902 * Adjusting namespace settings requires capabilities on the target. 903 */ 904 if (cap_valid(cap_setid) && !file_ns_capable(file, ns, CAP_SYS_ADMIN)) 905 goto out; 906 907 /* Parse the user data */ 908 ret = -EINVAL; 909 pos = kbuf; 910 for (; pos; pos = next_line) { 911 912 /* Find the end of line and ensure I don't look past it */ 913 next_line = strchr(pos, '\n'); 914 if (next_line) { 915 *next_line = '\0'; 916 next_line++; 917 if (*next_line == '\0') 918 next_line = NULL; 919 } 920 921 pos = skip_spaces(pos); 922 extent.first = simple_strtoul(pos, &pos, 10); 923 if (!isspace(*pos)) 924 goto out; 925 926 pos = skip_spaces(pos); 927 extent.lower_first = simple_strtoul(pos, &pos, 10); 928 if (!isspace(*pos)) 929 goto out; 930 931 pos = skip_spaces(pos); 932 extent.count = simple_strtoul(pos, &pos, 10); 933 if (*pos && !isspace(*pos)) 934 goto out; 935 936 /* Verify there is not trailing junk on the line */ 937 pos = skip_spaces(pos); 938 if (*pos != '\0') 939 goto out; 940 941 /* Verify we have been given valid starting values */ 942 if ((extent.first == (u32) -1) || 943 (extent.lower_first == (u32) -1)) 944 goto out; 945 946 /* Verify count is not zero and does not cause the 947 * extent to wrap 948 */ 949 if ((extent.first + extent.count) <= extent.first) 950 goto out; 951 if ((extent.lower_first + extent.count) <= 952 extent.lower_first) 953 goto out; 954 955 /* Do the ranges in extent overlap any previous extents? */ 956 if (mappings_overlap(&new_map, &extent)) 957 goto out; 958 959 if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS && 960 (next_line != NULL)) 961 goto out; 962 963 ret = insert_extent(&new_map, &extent); 964 if (ret < 0) 965 goto out; 966 ret = -EINVAL; 967 } 968 /* Be very certaint the new map actually exists */ 969 if (new_map.nr_extents == 0) 970 goto out; 971 972 ret = -EPERM; 973 /* Validate the user is allowed to use user id's mapped to. */ 974 if (!new_idmap_permitted(file, ns, cap_setid, &new_map)) 975 goto out; 976 977 ret = -EPERM; 978 /* Map the lower ids from the parent user namespace to the 979 * kernel global id space. 980 */ 981 for (idx = 0; idx < new_map.nr_extents; idx++) { 982 struct uid_gid_extent *e; 983 u32 lower_first; 984 985 if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 986 e = &new_map.extent[idx]; 987 else 988 e = &new_map.forward[idx]; 989 990 lower_first = map_id_range_down(parent_map, 991 e->lower_first, 992 e->count); 993 994 /* Fail if we can not map the specified extent to 995 * the kernel global id space. 996 */ 997 if (lower_first == (u32) -1) 998 goto out; 999 1000 e->lower_first = lower_first; 1001 } 1002 1003 /* 1004 * If we want to use binary search for lookup, this clones the extent 1005 * array and sorts both copies. 1006 */ 1007 ret = sort_idmaps(&new_map); 1008 if (ret < 0) 1009 goto out; 1010 1011 /* Install the map */ 1012 if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) { 1013 memcpy(map->extent, new_map.extent, 1014 new_map.nr_extents * sizeof(new_map.extent[0])); 1015 } else { 1016 map->forward = new_map.forward; 1017 map->reverse = new_map.reverse; 1018 } 1019 smp_wmb(); 1020 map->nr_extents = new_map.nr_extents; 1021 1022 *ppos = count; 1023 ret = count; 1024 out: 1025 if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 1026 kfree(new_map.forward); 1027 kfree(new_map.reverse); 1028 map->forward = NULL; 1029 map->reverse = NULL; 1030 map->nr_extents = 0; 1031 } 1032 1033 mutex_unlock(&userns_state_mutex); 1034 kfree(kbuf); 1035 return ret; 1036 } 1037 1038 ssize_t proc_uid_map_write(struct file *file, const char __user *buf, 1039 size_t size, loff_t *ppos) 1040 { 1041 struct seq_file *seq = file->private_data; 1042 struct user_namespace *ns = seq->private; 1043 struct user_namespace *seq_ns = seq_user_ns(seq); 1044 1045 if (!ns->parent) 1046 return -EPERM; 1047 1048 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1049 return -EPERM; 1050 1051 return map_write(file, buf, size, ppos, CAP_SETUID, 1052 &ns->uid_map, &ns->parent->uid_map); 1053 } 1054 1055 ssize_t proc_gid_map_write(struct file *file, const char __user *buf, 1056 size_t size, loff_t *ppos) 1057 { 1058 struct seq_file *seq = file->private_data; 1059 struct user_namespace *ns = seq->private; 1060 struct user_namespace *seq_ns = seq_user_ns(seq); 1061 1062 if (!ns->parent) 1063 return -EPERM; 1064 1065 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1066 return -EPERM; 1067 1068 return map_write(file, buf, size, ppos, CAP_SETGID, 1069 &ns->gid_map, &ns->parent->gid_map); 1070 } 1071 1072 ssize_t proc_projid_map_write(struct file *file, const char __user *buf, 1073 size_t size, loff_t *ppos) 1074 { 1075 struct seq_file *seq = file->private_data; 1076 struct user_namespace *ns = seq->private; 1077 struct user_namespace *seq_ns = seq_user_ns(seq); 1078 1079 if (!ns->parent) 1080 return -EPERM; 1081 1082 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1083 return -EPERM; 1084 1085 /* Anyone can set any valid project id no capability needed */ 1086 return map_write(file, buf, size, ppos, -1, 1087 &ns->projid_map, &ns->parent->projid_map); 1088 } 1089 1090 static bool new_idmap_permitted(const struct file *file, 1091 struct user_namespace *ns, int cap_setid, 1092 struct uid_gid_map *new_map) 1093 { 1094 const struct cred *cred = file->f_cred; 1095 /* Don't allow mappings that would allow anything that wouldn't 1096 * be allowed without the establishment of unprivileged mappings. 1097 */ 1098 if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) && 1099 uid_eq(ns->owner, cred->euid)) { 1100 u32 id = new_map->extent[0].lower_first; 1101 if (cap_setid == CAP_SETUID) { 1102 kuid_t uid = make_kuid(ns->parent, id); 1103 if (uid_eq(uid, cred->euid)) 1104 return true; 1105 } else if (cap_setid == CAP_SETGID) { 1106 kgid_t gid = make_kgid(ns->parent, id); 1107 if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) && 1108 gid_eq(gid, cred->egid)) 1109 return true; 1110 } 1111 } 1112 1113 /* Allow anyone to set a mapping that doesn't require privilege */ 1114 if (!cap_valid(cap_setid)) 1115 return true; 1116 1117 /* Allow the specified ids if we have the appropriate capability 1118 * (CAP_SETUID or CAP_SETGID) over the parent user namespace. 1119 * And the opener of the id file also had the approprpiate capability. 1120 */ 1121 if (ns_capable(ns->parent, cap_setid) && 1122 file_ns_capable(file, ns->parent, cap_setid)) 1123 return true; 1124 1125 return false; 1126 } 1127 1128 int proc_setgroups_show(struct seq_file *seq, void *v) 1129 { 1130 struct user_namespace *ns = seq->private; 1131 unsigned long userns_flags = READ_ONCE(ns->flags); 1132 1133 seq_printf(seq, "%s\n", 1134 (userns_flags & USERNS_SETGROUPS_ALLOWED) ? 1135 "allow" : "deny"); 1136 return 0; 1137 } 1138 1139 ssize_t proc_setgroups_write(struct file *file, const char __user *buf, 1140 size_t count, loff_t *ppos) 1141 { 1142 struct seq_file *seq = file->private_data; 1143 struct user_namespace *ns = seq->private; 1144 char kbuf[8], *pos; 1145 bool setgroups_allowed; 1146 ssize_t ret; 1147 1148 /* Only allow a very narrow range of strings to be written */ 1149 ret = -EINVAL; 1150 if ((*ppos != 0) || (count >= sizeof(kbuf))) 1151 goto out; 1152 1153 /* What was written? */ 1154 ret = -EFAULT; 1155 if (copy_from_user(kbuf, buf, count)) 1156 goto out; 1157 kbuf[count] = '\0'; 1158 pos = kbuf; 1159 1160 /* What is being requested? */ 1161 ret = -EINVAL; 1162 if (strncmp(pos, "allow", 5) == 0) { 1163 pos += 5; 1164 setgroups_allowed = true; 1165 } 1166 else if (strncmp(pos, "deny", 4) == 0) { 1167 pos += 4; 1168 setgroups_allowed = false; 1169 } 1170 else 1171 goto out; 1172 1173 /* Verify there is not trailing junk on the line */ 1174 pos = skip_spaces(pos); 1175 if (*pos != '\0') 1176 goto out; 1177 1178 ret = -EPERM; 1179 mutex_lock(&userns_state_mutex); 1180 if (setgroups_allowed) { 1181 /* Enabling setgroups after setgroups has been disabled 1182 * is not allowed. 1183 */ 1184 if (!(ns->flags & USERNS_SETGROUPS_ALLOWED)) 1185 goto out_unlock; 1186 } else { 1187 /* Permanently disabling setgroups after setgroups has 1188 * been enabled by writing the gid_map is not allowed. 1189 */ 1190 if (ns->gid_map.nr_extents != 0) 1191 goto out_unlock; 1192 ns->flags &= ~USERNS_SETGROUPS_ALLOWED; 1193 } 1194 mutex_unlock(&userns_state_mutex); 1195 1196 /* Report a successful write */ 1197 *ppos = count; 1198 ret = count; 1199 out: 1200 return ret; 1201 out_unlock: 1202 mutex_unlock(&userns_state_mutex); 1203 goto out; 1204 } 1205 1206 bool userns_may_setgroups(const struct user_namespace *ns) 1207 { 1208 bool allowed; 1209 1210 mutex_lock(&userns_state_mutex); 1211 /* It is not safe to use setgroups until a gid mapping in 1212 * the user namespace has been established. 1213 */ 1214 allowed = ns->gid_map.nr_extents != 0; 1215 /* Is setgroups allowed? */ 1216 allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED); 1217 mutex_unlock(&userns_state_mutex); 1218 1219 return allowed; 1220 } 1221 1222 /* 1223 * Returns true if @child is the same namespace or a descendant of 1224 * @ancestor. 1225 */ 1226 bool in_userns(const struct user_namespace *ancestor, 1227 const struct user_namespace *child) 1228 { 1229 const struct user_namespace *ns; 1230 for (ns = child; ns->level > ancestor->level; ns = ns->parent) 1231 ; 1232 return (ns == ancestor); 1233 } 1234 1235 bool current_in_userns(const struct user_namespace *target_ns) 1236 { 1237 return in_userns(target_ns, current_user_ns()); 1238 } 1239 EXPORT_SYMBOL(current_in_userns); 1240 1241 static inline struct user_namespace *to_user_ns(struct ns_common *ns) 1242 { 1243 return container_of(ns, struct user_namespace, ns); 1244 } 1245 1246 static struct ns_common *userns_get(struct task_struct *task) 1247 { 1248 struct user_namespace *user_ns; 1249 1250 rcu_read_lock(); 1251 user_ns = get_user_ns(__task_cred(task)->user_ns); 1252 rcu_read_unlock(); 1253 1254 return user_ns ? &user_ns->ns : NULL; 1255 } 1256 1257 static void userns_put(struct ns_common *ns) 1258 { 1259 put_user_ns(to_user_ns(ns)); 1260 } 1261 1262 static int userns_install(struct nsproxy *nsproxy, struct ns_common *ns) 1263 { 1264 struct user_namespace *user_ns = to_user_ns(ns); 1265 struct cred *cred; 1266 1267 /* Don't allow gaining capabilities by reentering 1268 * the same user namespace. 1269 */ 1270 if (user_ns == current_user_ns()) 1271 return -EINVAL; 1272 1273 /* Tasks that share a thread group must share a user namespace */ 1274 if (!thread_group_empty(current)) 1275 return -EINVAL; 1276 1277 if (current->fs->users != 1) 1278 return -EINVAL; 1279 1280 if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 1281 return -EPERM; 1282 1283 cred = prepare_creds(); 1284 if (!cred) 1285 return -ENOMEM; 1286 1287 put_user_ns(cred->user_ns); 1288 set_cred_user_ns(cred, get_user_ns(user_ns)); 1289 1290 return commit_creds(cred); 1291 } 1292 1293 struct ns_common *ns_get_owner(struct ns_common *ns) 1294 { 1295 struct user_namespace *my_user_ns = current_user_ns(); 1296 struct user_namespace *owner, *p; 1297 1298 /* See if the owner is in the current user namespace */ 1299 owner = p = ns->ops->owner(ns); 1300 for (;;) { 1301 if (!p) 1302 return ERR_PTR(-EPERM); 1303 if (p == my_user_ns) 1304 break; 1305 p = p->parent; 1306 } 1307 1308 return &get_user_ns(owner)->ns; 1309 } 1310 1311 static struct user_namespace *userns_owner(struct ns_common *ns) 1312 { 1313 return to_user_ns(ns)->parent; 1314 } 1315 1316 const struct proc_ns_operations userns_operations = { 1317 .name = "user", 1318 .type = CLONE_NEWUSER, 1319 .get = userns_get, 1320 .put = userns_put, 1321 .install = userns_install, 1322 .owner = userns_owner, 1323 .get_parent = ns_get_owner, 1324 }; 1325 1326 static __init int user_namespaces_init(void) 1327 { 1328 user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC); 1329 return 0; 1330 } 1331 subsys_initcall(user_namespaces_init); 1332