xref: /openbmc/linux/kernel/user_namespace.c (revision a44f9d6f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 #include <linux/export.h>
4 #include <linux/nsproxy.h>
5 #include <linux/slab.h>
6 #include <linux/sched/signal.h>
7 #include <linux/user_namespace.h>
8 #include <linux/proc_ns.h>
9 #include <linux/highuid.h>
10 #include <linux/cred.h>
11 #include <linux/securebits.h>
12 #include <linux/keyctl.h>
13 #include <linux/key-type.h>
14 #include <keys/user-type.h>
15 #include <linux/seq_file.h>
16 #include <linux/fs.h>
17 #include <linux/uaccess.h>
18 #include <linux/ctype.h>
19 #include <linux/projid.h>
20 #include <linux/fs_struct.h>
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 
24 static struct kmem_cache *user_ns_cachep __read_mostly;
25 static DEFINE_MUTEX(userns_state_mutex);
26 
27 static bool new_idmap_permitted(const struct file *file,
28 				struct user_namespace *ns, int cap_setid,
29 				struct uid_gid_map *map);
30 static void free_user_ns(struct work_struct *work);
31 
32 static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid)
33 {
34 	return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES);
35 }
36 
37 static void dec_user_namespaces(struct ucounts *ucounts)
38 {
39 	return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES);
40 }
41 
42 static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns)
43 {
44 	/* Start with the same capabilities as init but useless for doing
45 	 * anything as the capabilities are bound to the new user namespace.
46 	 */
47 	cred->securebits = SECUREBITS_DEFAULT;
48 	cred->cap_inheritable = CAP_EMPTY_SET;
49 	cred->cap_permitted = CAP_FULL_SET;
50 	cred->cap_effective = CAP_FULL_SET;
51 	cred->cap_ambient = CAP_EMPTY_SET;
52 	cred->cap_bset = CAP_FULL_SET;
53 #ifdef CONFIG_KEYS
54 	key_put(cred->request_key_auth);
55 	cred->request_key_auth = NULL;
56 #endif
57 	/* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */
58 	cred->user_ns = user_ns;
59 }
60 
61 /*
62  * Create a new user namespace, deriving the creator from the user in the
63  * passed credentials, and replacing that user with the new root user for the
64  * new namespace.
65  *
66  * This is called by copy_creds(), which will finish setting the target task's
67  * credentials.
68  */
69 int create_user_ns(struct cred *new)
70 {
71 	struct user_namespace *ns, *parent_ns = new->user_ns;
72 	kuid_t owner = new->euid;
73 	kgid_t group = new->egid;
74 	struct ucounts *ucounts;
75 	int ret, i;
76 
77 	ret = -ENOSPC;
78 	if (parent_ns->level > 32)
79 		goto fail;
80 
81 	ucounts = inc_user_namespaces(parent_ns, owner);
82 	if (!ucounts)
83 		goto fail;
84 
85 	/*
86 	 * Verify that we can not violate the policy of which files
87 	 * may be accessed that is specified by the root directory,
88 	 * by verifying that the root directory is at the root of the
89 	 * mount namespace which allows all files to be accessed.
90 	 */
91 	ret = -EPERM;
92 	if (current_chrooted())
93 		goto fail_dec;
94 
95 	/* The creator needs a mapping in the parent user namespace
96 	 * or else we won't be able to reasonably tell userspace who
97 	 * created a user_namespace.
98 	 */
99 	ret = -EPERM;
100 	if (!kuid_has_mapping(parent_ns, owner) ||
101 	    !kgid_has_mapping(parent_ns, group))
102 		goto fail_dec;
103 
104 	ret = -ENOMEM;
105 	ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL);
106 	if (!ns)
107 		goto fail_dec;
108 
109 	ns->parent_could_setfcap = cap_raised(new->cap_effective, CAP_SETFCAP);
110 	ret = ns_alloc_inum(&ns->ns);
111 	if (ret)
112 		goto fail_free;
113 	ns->ns.ops = &userns_operations;
114 
115 	refcount_set(&ns->ns.count, 1);
116 	/* Leave the new->user_ns reference with the new user namespace. */
117 	ns->parent = parent_ns;
118 	ns->level = parent_ns->level + 1;
119 	ns->owner = owner;
120 	ns->group = group;
121 	INIT_WORK(&ns->work, free_user_ns);
122 	for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++) {
123 		ns->ucount_max[i] = INT_MAX;
124 	}
125 	set_rlimit_ucount_max(ns, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC));
126 	set_rlimit_ucount_max(ns, UCOUNT_RLIMIT_MSGQUEUE, rlimit(RLIMIT_MSGQUEUE));
127 	set_rlimit_ucount_max(ns, UCOUNT_RLIMIT_SIGPENDING, rlimit(RLIMIT_SIGPENDING));
128 	set_rlimit_ucount_max(ns, UCOUNT_RLIMIT_MEMLOCK, rlimit(RLIMIT_MEMLOCK));
129 	ns->ucounts = ucounts;
130 
131 	/* Inherit USERNS_SETGROUPS_ALLOWED from our parent */
132 	mutex_lock(&userns_state_mutex);
133 	ns->flags = parent_ns->flags;
134 	mutex_unlock(&userns_state_mutex);
135 
136 #ifdef CONFIG_KEYS
137 	INIT_LIST_HEAD(&ns->keyring_name_list);
138 	init_rwsem(&ns->keyring_sem);
139 #endif
140 	ret = -ENOMEM;
141 	if (!setup_userns_sysctls(ns))
142 		goto fail_keyring;
143 
144 	set_cred_user_ns(new, ns);
145 	return 0;
146 fail_keyring:
147 #ifdef CONFIG_PERSISTENT_KEYRINGS
148 	key_put(ns->persistent_keyring_register);
149 #endif
150 	ns_free_inum(&ns->ns);
151 fail_free:
152 	kmem_cache_free(user_ns_cachep, ns);
153 fail_dec:
154 	dec_user_namespaces(ucounts);
155 fail:
156 	return ret;
157 }
158 
159 int unshare_userns(unsigned long unshare_flags, struct cred **new_cred)
160 {
161 	struct cred *cred;
162 	int err = -ENOMEM;
163 
164 	if (!(unshare_flags & CLONE_NEWUSER))
165 		return 0;
166 
167 	cred = prepare_creds();
168 	if (cred) {
169 		err = create_user_ns(cred);
170 		if (err)
171 			put_cred(cred);
172 		else
173 			*new_cred = cred;
174 	}
175 
176 	return err;
177 }
178 
179 static void free_user_ns(struct work_struct *work)
180 {
181 	struct user_namespace *parent, *ns =
182 		container_of(work, struct user_namespace, work);
183 
184 	do {
185 		struct ucounts *ucounts = ns->ucounts;
186 		parent = ns->parent;
187 		if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
188 			kfree(ns->gid_map.forward);
189 			kfree(ns->gid_map.reverse);
190 		}
191 		if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
192 			kfree(ns->uid_map.forward);
193 			kfree(ns->uid_map.reverse);
194 		}
195 		if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
196 			kfree(ns->projid_map.forward);
197 			kfree(ns->projid_map.reverse);
198 		}
199 		retire_userns_sysctls(ns);
200 		key_free_user_ns(ns);
201 		ns_free_inum(&ns->ns);
202 		kmem_cache_free(user_ns_cachep, ns);
203 		dec_user_namespaces(ucounts);
204 		ns = parent;
205 	} while (refcount_dec_and_test(&parent->ns.count));
206 }
207 
208 void __put_user_ns(struct user_namespace *ns)
209 {
210 	schedule_work(&ns->work);
211 }
212 EXPORT_SYMBOL(__put_user_ns);
213 
214 /**
215  * idmap_key struct holds the information necessary to find an idmapping in a
216  * sorted idmap array. It is passed to cmp_map_id() as first argument.
217  */
218 struct idmap_key {
219 	bool map_up; /* true  -> id from kid; false -> kid from id */
220 	u32 id; /* id to find */
221 	u32 count; /* == 0 unless used with map_id_range_down() */
222 };
223 
224 /**
225  * cmp_map_id - Function to be passed to bsearch() to find the requested
226  * idmapping. Expects struct idmap_key to be passed via @k.
227  */
228 static int cmp_map_id(const void *k, const void *e)
229 {
230 	u32 first, last, id2;
231 	const struct idmap_key *key = k;
232 	const struct uid_gid_extent *el = e;
233 
234 	id2 = key->id + key->count - 1;
235 
236 	/* handle map_id_{down,up}() */
237 	if (key->map_up)
238 		first = el->lower_first;
239 	else
240 		first = el->first;
241 
242 	last = first + el->count - 1;
243 
244 	if (key->id >= first && key->id <= last &&
245 	    (id2 >= first && id2 <= last))
246 		return 0;
247 
248 	if (key->id < first || id2 < first)
249 		return -1;
250 
251 	return 1;
252 }
253 
254 /**
255  * map_id_range_down_max - Find idmap via binary search in ordered idmap array.
256  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
257  */
258 static struct uid_gid_extent *
259 map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
260 {
261 	struct idmap_key key;
262 
263 	key.map_up = false;
264 	key.count = count;
265 	key.id = id;
266 
267 	return bsearch(&key, map->forward, extents,
268 		       sizeof(struct uid_gid_extent), cmp_map_id);
269 }
270 
271 /**
272  * map_id_range_down_base - Find idmap via binary search in static extent array.
273  * Can only be called if number of mappings is equal or less than
274  * UID_GID_MAP_MAX_BASE_EXTENTS.
275  */
276 static struct uid_gid_extent *
277 map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
278 {
279 	unsigned idx;
280 	u32 first, last, id2;
281 
282 	id2 = id + count - 1;
283 
284 	/* Find the matching extent */
285 	for (idx = 0; idx < extents; idx++) {
286 		first = map->extent[idx].first;
287 		last = first + map->extent[idx].count - 1;
288 		if (id >= first && id <= last &&
289 		    (id2 >= first && id2 <= last))
290 			return &map->extent[idx];
291 	}
292 	return NULL;
293 }
294 
295 static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count)
296 {
297 	struct uid_gid_extent *extent;
298 	unsigned extents = map->nr_extents;
299 	smp_rmb();
300 
301 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
302 		extent = map_id_range_down_base(extents, map, id, count);
303 	else
304 		extent = map_id_range_down_max(extents, map, id, count);
305 
306 	/* Map the id or note failure */
307 	if (extent)
308 		id = (id - extent->first) + extent->lower_first;
309 	else
310 		id = (u32) -1;
311 
312 	return id;
313 }
314 
315 static u32 map_id_down(struct uid_gid_map *map, u32 id)
316 {
317 	return map_id_range_down(map, id, 1);
318 }
319 
320 /**
321  * map_id_up_base - Find idmap via binary search in static extent array.
322  * Can only be called if number of mappings is equal or less than
323  * UID_GID_MAP_MAX_BASE_EXTENTS.
324  */
325 static struct uid_gid_extent *
326 map_id_up_base(unsigned extents, struct uid_gid_map *map, u32 id)
327 {
328 	unsigned idx;
329 	u32 first, last;
330 
331 	/* Find the matching extent */
332 	for (idx = 0; idx < extents; idx++) {
333 		first = map->extent[idx].lower_first;
334 		last = first + map->extent[idx].count - 1;
335 		if (id >= first && id <= last)
336 			return &map->extent[idx];
337 	}
338 	return NULL;
339 }
340 
341 /**
342  * map_id_up_max - Find idmap via binary search in ordered idmap array.
343  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
344  */
345 static struct uid_gid_extent *
346 map_id_up_max(unsigned extents, struct uid_gid_map *map, u32 id)
347 {
348 	struct idmap_key key;
349 
350 	key.map_up = true;
351 	key.count = 1;
352 	key.id = id;
353 
354 	return bsearch(&key, map->reverse, extents,
355 		       sizeof(struct uid_gid_extent), cmp_map_id);
356 }
357 
358 static u32 map_id_up(struct uid_gid_map *map, u32 id)
359 {
360 	struct uid_gid_extent *extent;
361 	unsigned extents = map->nr_extents;
362 	smp_rmb();
363 
364 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
365 		extent = map_id_up_base(extents, map, id);
366 	else
367 		extent = map_id_up_max(extents, map, id);
368 
369 	/* Map the id or note failure */
370 	if (extent)
371 		id = (id - extent->lower_first) + extent->first;
372 	else
373 		id = (u32) -1;
374 
375 	return id;
376 }
377 
378 /**
379  *	make_kuid - Map a user-namespace uid pair into a kuid.
380  *	@ns:  User namespace that the uid is in
381  *	@uid: User identifier
382  *
383  *	Maps a user-namespace uid pair into a kernel internal kuid,
384  *	and returns that kuid.
385  *
386  *	When there is no mapping defined for the user-namespace uid
387  *	pair INVALID_UID is returned.  Callers are expected to test
388  *	for and handle INVALID_UID being returned.  INVALID_UID
389  *	may be tested for using uid_valid().
390  */
391 kuid_t make_kuid(struct user_namespace *ns, uid_t uid)
392 {
393 	/* Map the uid to a global kernel uid */
394 	return KUIDT_INIT(map_id_down(&ns->uid_map, uid));
395 }
396 EXPORT_SYMBOL(make_kuid);
397 
398 /**
399  *	from_kuid - Create a uid from a kuid user-namespace pair.
400  *	@targ: The user namespace we want a uid in.
401  *	@kuid: The kernel internal uid to start with.
402  *
403  *	Map @kuid into the user-namespace specified by @targ and
404  *	return the resulting uid.
405  *
406  *	There is always a mapping into the initial user_namespace.
407  *
408  *	If @kuid has no mapping in @targ (uid_t)-1 is returned.
409  */
410 uid_t from_kuid(struct user_namespace *targ, kuid_t kuid)
411 {
412 	/* Map the uid from a global kernel uid */
413 	return map_id_up(&targ->uid_map, __kuid_val(kuid));
414 }
415 EXPORT_SYMBOL(from_kuid);
416 
417 /**
418  *	from_kuid_munged - Create a uid from a kuid user-namespace pair.
419  *	@targ: The user namespace we want a uid in.
420  *	@kuid: The kernel internal uid to start with.
421  *
422  *	Map @kuid into the user-namespace specified by @targ and
423  *	return the resulting uid.
424  *
425  *	There is always a mapping into the initial user_namespace.
426  *
427  *	Unlike from_kuid from_kuid_munged never fails and always
428  *	returns a valid uid.  This makes from_kuid_munged appropriate
429  *	for use in syscalls like stat and getuid where failing the
430  *	system call and failing to provide a valid uid are not an
431  *	options.
432  *
433  *	If @kuid has no mapping in @targ overflowuid is returned.
434  */
435 uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid)
436 {
437 	uid_t uid;
438 	uid = from_kuid(targ, kuid);
439 
440 	if (uid == (uid_t) -1)
441 		uid = overflowuid;
442 	return uid;
443 }
444 EXPORT_SYMBOL(from_kuid_munged);
445 
446 /**
447  *	make_kgid - Map a user-namespace gid pair into a kgid.
448  *	@ns:  User namespace that the gid is in
449  *	@gid: group identifier
450  *
451  *	Maps a user-namespace gid pair into a kernel internal kgid,
452  *	and returns that kgid.
453  *
454  *	When there is no mapping defined for the user-namespace gid
455  *	pair INVALID_GID is returned.  Callers are expected to test
456  *	for and handle INVALID_GID being returned.  INVALID_GID may be
457  *	tested for using gid_valid().
458  */
459 kgid_t make_kgid(struct user_namespace *ns, gid_t gid)
460 {
461 	/* Map the gid to a global kernel gid */
462 	return KGIDT_INIT(map_id_down(&ns->gid_map, gid));
463 }
464 EXPORT_SYMBOL(make_kgid);
465 
466 /**
467  *	from_kgid - Create a gid from a kgid user-namespace pair.
468  *	@targ: The user namespace we want a gid in.
469  *	@kgid: The kernel internal gid to start with.
470  *
471  *	Map @kgid into the user-namespace specified by @targ and
472  *	return the resulting gid.
473  *
474  *	There is always a mapping into the initial user_namespace.
475  *
476  *	If @kgid has no mapping in @targ (gid_t)-1 is returned.
477  */
478 gid_t from_kgid(struct user_namespace *targ, kgid_t kgid)
479 {
480 	/* Map the gid from a global kernel gid */
481 	return map_id_up(&targ->gid_map, __kgid_val(kgid));
482 }
483 EXPORT_SYMBOL(from_kgid);
484 
485 /**
486  *	from_kgid_munged - Create a gid from a kgid user-namespace pair.
487  *	@targ: The user namespace we want a gid in.
488  *	@kgid: The kernel internal gid to start with.
489  *
490  *	Map @kgid into the user-namespace specified by @targ and
491  *	return the resulting gid.
492  *
493  *	There is always a mapping into the initial user_namespace.
494  *
495  *	Unlike from_kgid from_kgid_munged never fails and always
496  *	returns a valid gid.  This makes from_kgid_munged appropriate
497  *	for use in syscalls like stat and getgid where failing the
498  *	system call and failing to provide a valid gid are not options.
499  *
500  *	If @kgid has no mapping in @targ overflowgid is returned.
501  */
502 gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid)
503 {
504 	gid_t gid;
505 	gid = from_kgid(targ, kgid);
506 
507 	if (gid == (gid_t) -1)
508 		gid = overflowgid;
509 	return gid;
510 }
511 EXPORT_SYMBOL(from_kgid_munged);
512 
513 /**
514  *	make_kprojid - Map a user-namespace projid pair into a kprojid.
515  *	@ns:  User namespace that the projid is in
516  *	@projid: Project identifier
517  *
518  *	Maps a user-namespace uid pair into a kernel internal kuid,
519  *	and returns that kuid.
520  *
521  *	When there is no mapping defined for the user-namespace projid
522  *	pair INVALID_PROJID is returned.  Callers are expected to test
523  *	for and handle INVALID_PROJID being returned.  INVALID_PROJID
524  *	may be tested for using projid_valid().
525  */
526 kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid)
527 {
528 	/* Map the uid to a global kernel uid */
529 	return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid));
530 }
531 EXPORT_SYMBOL(make_kprojid);
532 
533 /**
534  *	from_kprojid - Create a projid from a kprojid user-namespace pair.
535  *	@targ: The user namespace we want a projid in.
536  *	@kprojid: The kernel internal project identifier to start with.
537  *
538  *	Map @kprojid into the user-namespace specified by @targ and
539  *	return the resulting projid.
540  *
541  *	There is always a mapping into the initial user_namespace.
542  *
543  *	If @kprojid has no mapping in @targ (projid_t)-1 is returned.
544  */
545 projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid)
546 {
547 	/* Map the uid from a global kernel uid */
548 	return map_id_up(&targ->projid_map, __kprojid_val(kprojid));
549 }
550 EXPORT_SYMBOL(from_kprojid);
551 
552 /**
553  *	from_kprojid_munged - Create a projiid from a kprojid user-namespace pair.
554  *	@targ: The user namespace we want a projid in.
555  *	@kprojid: The kernel internal projid to start with.
556  *
557  *	Map @kprojid into the user-namespace specified by @targ and
558  *	return the resulting projid.
559  *
560  *	There is always a mapping into the initial user_namespace.
561  *
562  *	Unlike from_kprojid from_kprojid_munged never fails and always
563  *	returns a valid projid.  This makes from_kprojid_munged
564  *	appropriate for use in syscalls like stat and where
565  *	failing the system call and failing to provide a valid projid are
566  *	not an options.
567  *
568  *	If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned.
569  */
570 projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid)
571 {
572 	projid_t projid;
573 	projid = from_kprojid(targ, kprojid);
574 
575 	if (projid == (projid_t) -1)
576 		projid = OVERFLOW_PROJID;
577 	return projid;
578 }
579 EXPORT_SYMBOL(from_kprojid_munged);
580 
581 
582 static int uid_m_show(struct seq_file *seq, void *v)
583 {
584 	struct user_namespace *ns = seq->private;
585 	struct uid_gid_extent *extent = v;
586 	struct user_namespace *lower_ns;
587 	uid_t lower;
588 
589 	lower_ns = seq_user_ns(seq);
590 	if ((lower_ns == ns) && lower_ns->parent)
591 		lower_ns = lower_ns->parent;
592 
593 	lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first));
594 
595 	seq_printf(seq, "%10u %10u %10u\n",
596 		extent->first,
597 		lower,
598 		extent->count);
599 
600 	return 0;
601 }
602 
603 static int gid_m_show(struct seq_file *seq, void *v)
604 {
605 	struct user_namespace *ns = seq->private;
606 	struct uid_gid_extent *extent = v;
607 	struct user_namespace *lower_ns;
608 	gid_t lower;
609 
610 	lower_ns = seq_user_ns(seq);
611 	if ((lower_ns == ns) && lower_ns->parent)
612 		lower_ns = lower_ns->parent;
613 
614 	lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first));
615 
616 	seq_printf(seq, "%10u %10u %10u\n",
617 		extent->first,
618 		lower,
619 		extent->count);
620 
621 	return 0;
622 }
623 
624 static int projid_m_show(struct seq_file *seq, void *v)
625 {
626 	struct user_namespace *ns = seq->private;
627 	struct uid_gid_extent *extent = v;
628 	struct user_namespace *lower_ns;
629 	projid_t lower;
630 
631 	lower_ns = seq_user_ns(seq);
632 	if ((lower_ns == ns) && lower_ns->parent)
633 		lower_ns = lower_ns->parent;
634 
635 	lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first));
636 
637 	seq_printf(seq, "%10u %10u %10u\n",
638 		extent->first,
639 		lower,
640 		extent->count);
641 
642 	return 0;
643 }
644 
645 static void *m_start(struct seq_file *seq, loff_t *ppos,
646 		     struct uid_gid_map *map)
647 {
648 	loff_t pos = *ppos;
649 	unsigned extents = map->nr_extents;
650 	smp_rmb();
651 
652 	if (pos >= extents)
653 		return NULL;
654 
655 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
656 		return &map->extent[pos];
657 
658 	return &map->forward[pos];
659 }
660 
661 static void *uid_m_start(struct seq_file *seq, loff_t *ppos)
662 {
663 	struct user_namespace *ns = seq->private;
664 
665 	return m_start(seq, ppos, &ns->uid_map);
666 }
667 
668 static void *gid_m_start(struct seq_file *seq, loff_t *ppos)
669 {
670 	struct user_namespace *ns = seq->private;
671 
672 	return m_start(seq, ppos, &ns->gid_map);
673 }
674 
675 static void *projid_m_start(struct seq_file *seq, loff_t *ppos)
676 {
677 	struct user_namespace *ns = seq->private;
678 
679 	return m_start(seq, ppos, &ns->projid_map);
680 }
681 
682 static void *m_next(struct seq_file *seq, void *v, loff_t *pos)
683 {
684 	(*pos)++;
685 	return seq->op->start(seq, pos);
686 }
687 
688 static void m_stop(struct seq_file *seq, void *v)
689 {
690 	return;
691 }
692 
693 const struct seq_operations proc_uid_seq_operations = {
694 	.start = uid_m_start,
695 	.stop = m_stop,
696 	.next = m_next,
697 	.show = uid_m_show,
698 };
699 
700 const struct seq_operations proc_gid_seq_operations = {
701 	.start = gid_m_start,
702 	.stop = m_stop,
703 	.next = m_next,
704 	.show = gid_m_show,
705 };
706 
707 const struct seq_operations proc_projid_seq_operations = {
708 	.start = projid_m_start,
709 	.stop = m_stop,
710 	.next = m_next,
711 	.show = projid_m_show,
712 };
713 
714 static bool mappings_overlap(struct uid_gid_map *new_map,
715 			     struct uid_gid_extent *extent)
716 {
717 	u32 upper_first, lower_first, upper_last, lower_last;
718 	unsigned idx;
719 
720 	upper_first = extent->first;
721 	lower_first = extent->lower_first;
722 	upper_last = upper_first + extent->count - 1;
723 	lower_last = lower_first + extent->count - 1;
724 
725 	for (idx = 0; idx < new_map->nr_extents; idx++) {
726 		u32 prev_upper_first, prev_lower_first;
727 		u32 prev_upper_last, prev_lower_last;
728 		struct uid_gid_extent *prev;
729 
730 		if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
731 			prev = &new_map->extent[idx];
732 		else
733 			prev = &new_map->forward[idx];
734 
735 		prev_upper_first = prev->first;
736 		prev_lower_first = prev->lower_first;
737 		prev_upper_last = prev_upper_first + prev->count - 1;
738 		prev_lower_last = prev_lower_first + prev->count - 1;
739 
740 		/* Does the upper range intersect a previous extent? */
741 		if ((prev_upper_first <= upper_last) &&
742 		    (prev_upper_last >= upper_first))
743 			return true;
744 
745 		/* Does the lower range intersect a previous extent? */
746 		if ((prev_lower_first <= lower_last) &&
747 		    (prev_lower_last >= lower_first))
748 			return true;
749 	}
750 	return false;
751 }
752 
753 /**
754  * insert_extent - Safely insert a new idmap extent into struct uid_gid_map.
755  * Takes care to allocate a 4K block of memory if the number of mappings exceeds
756  * UID_GID_MAP_MAX_BASE_EXTENTS.
757  */
758 static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent)
759 {
760 	struct uid_gid_extent *dest;
761 
762 	if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) {
763 		struct uid_gid_extent *forward;
764 
765 		/* Allocate memory for 340 mappings. */
766 		forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS,
767 					sizeof(struct uid_gid_extent),
768 					GFP_KERNEL);
769 		if (!forward)
770 			return -ENOMEM;
771 
772 		/* Copy over memory. Only set up memory for the forward pointer.
773 		 * Defer the memory setup for the reverse pointer.
774 		 */
775 		memcpy(forward, map->extent,
776 		       map->nr_extents * sizeof(map->extent[0]));
777 
778 		map->forward = forward;
779 		map->reverse = NULL;
780 	}
781 
782 	if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS)
783 		dest = &map->extent[map->nr_extents];
784 	else
785 		dest = &map->forward[map->nr_extents];
786 
787 	*dest = *extent;
788 	map->nr_extents++;
789 	return 0;
790 }
791 
792 /* cmp function to sort() forward mappings */
793 static int cmp_extents_forward(const void *a, const void *b)
794 {
795 	const struct uid_gid_extent *e1 = a;
796 	const struct uid_gid_extent *e2 = b;
797 
798 	if (e1->first < e2->first)
799 		return -1;
800 
801 	if (e1->first > e2->first)
802 		return 1;
803 
804 	return 0;
805 }
806 
807 /* cmp function to sort() reverse mappings */
808 static int cmp_extents_reverse(const void *a, const void *b)
809 {
810 	const struct uid_gid_extent *e1 = a;
811 	const struct uid_gid_extent *e2 = b;
812 
813 	if (e1->lower_first < e2->lower_first)
814 		return -1;
815 
816 	if (e1->lower_first > e2->lower_first)
817 		return 1;
818 
819 	return 0;
820 }
821 
822 /**
823  * sort_idmaps - Sorts an array of idmap entries.
824  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
825  */
826 static int sort_idmaps(struct uid_gid_map *map)
827 {
828 	if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
829 		return 0;
830 
831 	/* Sort forward array. */
832 	sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent),
833 	     cmp_extents_forward, NULL);
834 
835 	/* Only copy the memory from forward we actually need. */
836 	map->reverse = kmemdup(map->forward,
837 			       map->nr_extents * sizeof(struct uid_gid_extent),
838 			       GFP_KERNEL);
839 	if (!map->reverse)
840 		return -ENOMEM;
841 
842 	/* Sort reverse array. */
843 	sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent),
844 	     cmp_extents_reverse, NULL);
845 
846 	return 0;
847 }
848 
849 /**
850  * verify_root_map() - check the uid 0 mapping
851  * @file: idmapping file
852  * @map_ns: user namespace of the target process
853  * @new_map: requested idmap
854  *
855  * If a process requests mapping parent uid 0 into the new ns, verify that the
856  * process writing the map had the CAP_SETFCAP capability as the target process
857  * will be able to write fscaps that are valid in ancestor user namespaces.
858  *
859  * Return: true if the mapping is allowed, false if not.
860  */
861 static bool verify_root_map(const struct file *file,
862 			    struct user_namespace *map_ns,
863 			    struct uid_gid_map *new_map)
864 {
865 	int idx;
866 	const struct user_namespace *file_ns = file->f_cred->user_ns;
867 	struct uid_gid_extent *extent0 = NULL;
868 
869 	for (idx = 0; idx < new_map->nr_extents; idx++) {
870 		if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
871 			extent0 = &new_map->extent[idx];
872 		else
873 			extent0 = &new_map->forward[idx];
874 		if (extent0->lower_first == 0)
875 			break;
876 
877 		extent0 = NULL;
878 	}
879 
880 	if (!extent0)
881 		return true;
882 
883 	if (map_ns == file_ns) {
884 		/* The process unshared its ns and is writing to its own
885 		 * /proc/self/uid_map.  User already has full capabilites in
886 		 * the new namespace.  Verify that the parent had CAP_SETFCAP
887 		 * when it unshared.
888 		 * */
889 		if (!file_ns->parent_could_setfcap)
890 			return false;
891 	} else {
892 		/* Process p1 is writing to uid_map of p2, who is in a child
893 		 * user namespace to p1's.  Verify that the opener of the map
894 		 * file has CAP_SETFCAP against the parent of the new map
895 		 * namespace */
896 		if (!file_ns_capable(file, map_ns->parent, CAP_SETFCAP))
897 			return false;
898 	}
899 
900 	return true;
901 }
902 
903 static ssize_t map_write(struct file *file, const char __user *buf,
904 			 size_t count, loff_t *ppos,
905 			 int cap_setid,
906 			 struct uid_gid_map *map,
907 			 struct uid_gid_map *parent_map)
908 {
909 	struct seq_file *seq = file->private_data;
910 	struct user_namespace *map_ns = seq->private;
911 	struct uid_gid_map new_map;
912 	unsigned idx;
913 	struct uid_gid_extent extent;
914 	char *kbuf = NULL, *pos, *next_line;
915 	ssize_t ret;
916 
917 	/* Only allow < page size writes at the beginning of the file */
918 	if ((*ppos != 0) || (count >= PAGE_SIZE))
919 		return -EINVAL;
920 
921 	/* Slurp in the user data */
922 	kbuf = memdup_user_nul(buf, count);
923 	if (IS_ERR(kbuf))
924 		return PTR_ERR(kbuf);
925 
926 	/*
927 	 * The userns_state_mutex serializes all writes to any given map.
928 	 *
929 	 * Any map is only ever written once.
930 	 *
931 	 * An id map fits within 1 cache line on most architectures.
932 	 *
933 	 * On read nothing needs to be done unless you are on an
934 	 * architecture with a crazy cache coherency model like alpha.
935 	 *
936 	 * There is a one time data dependency between reading the
937 	 * count of the extents and the values of the extents.  The
938 	 * desired behavior is to see the values of the extents that
939 	 * were written before the count of the extents.
940 	 *
941 	 * To achieve this smp_wmb() is used on guarantee the write
942 	 * order and smp_rmb() is guaranteed that we don't have crazy
943 	 * architectures returning stale data.
944 	 */
945 	mutex_lock(&userns_state_mutex);
946 
947 	memset(&new_map, 0, sizeof(struct uid_gid_map));
948 
949 	ret = -EPERM;
950 	/* Only allow one successful write to the map */
951 	if (map->nr_extents != 0)
952 		goto out;
953 
954 	/*
955 	 * Adjusting namespace settings requires capabilities on the target.
956 	 */
957 	if (cap_valid(cap_setid) && !file_ns_capable(file, map_ns, CAP_SYS_ADMIN))
958 		goto out;
959 
960 	/* Parse the user data */
961 	ret = -EINVAL;
962 	pos = kbuf;
963 	for (; pos; pos = next_line) {
964 
965 		/* Find the end of line and ensure I don't look past it */
966 		next_line = strchr(pos, '\n');
967 		if (next_line) {
968 			*next_line = '\0';
969 			next_line++;
970 			if (*next_line == '\0')
971 				next_line = NULL;
972 		}
973 
974 		pos = skip_spaces(pos);
975 		extent.first = simple_strtoul(pos, &pos, 10);
976 		if (!isspace(*pos))
977 			goto out;
978 
979 		pos = skip_spaces(pos);
980 		extent.lower_first = simple_strtoul(pos, &pos, 10);
981 		if (!isspace(*pos))
982 			goto out;
983 
984 		pos = skip_spaces(pos);
985 		extent.count = simple_strtoul(pos, &pos, 10);
986 		if (*pos && !isspace(*pos))
987 			goto out;
988 
989 		/* Verify there is not trailing junk on the line */
990 		pos = skip_spaces(pos);
991 		if (*pos != '\0')
992 			goto out;
993 
994 		/* Verify we have been given valid starting values */
995 		if ((extent.first == (u32) -1) ||
996 		    (extent.lower_first == (u32) -1))
997 			goto out;
998 
999 		/* Verify count is not zero and does not cause the
1000 		 * extent to wrap
1001 		 */
1002 		if ((extent.first + extent.count) <= extent.first)
1003 			goto out;
1004 		if ((extent.lower_first + extent.count) <=
1005 		     extent.lower_first)
1006 			goto out;
1007 
1008 		/* Do the ranges in extent overlap any previous extents? */
1009 		if (mappings_overlap(&new_map, &extent))
1010 			goto out;
1011 
1012 		if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS &&
1013 		    (next_line != NULL))
1014 			goto out;
1015 
1016 		ret = insert_extent(&new_map, &extent);
1017 		if (ret < 0)
1018 			goto out;
1019 		ret = -EINVAL;
1020 	}
1021 	/* Be very certain the new map actually exists */
1022 	if (new_map.nr_extents == 0)
1023 		goto out;
1024 
1025 	ret = -EPERM;
1026 	/* Validate the user is allowed to use user id's mapped to. */
1027 	if (!new_idmap_permitted(file, map_ns, cap_setid, &new_map))
1028 		goto out;
1029 
1030 	ret = -EPERM;
1031 	/* Map the lower ids from the parent user namespace to the
1032 	 * kernel global id space.
1033 	 */
1034 	for (idx = 0; idx < new_map.nr_extents; idx++) {
1035 		struct uid_gid_extent *e;
1036 		u32 lower_first;
1037 
1038 		if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
1039 			e = &new_map.extent[idx];
1040 		else
1041 			e = &new_map.forward[idx];
1042 
1043 		lower_first = map_id_range_down(parent_map,
1044 						e->lower_first,
1045 						e->count);
1046 
1047 		/* Fail if we can not map the specified extent to
1048 		 * the kernel global id space.
1049 		 */
1050 		if (lower_first == (u32) -1)
1051 			goto out;
1052 
1053 		e->lower_first = lower_first;
1054 	}
1055 
1056 	/*
1057 	 * If we want to use binary search for lookup, this clones the extent
1058 	 * array and sorts both copies.
1059 	 */
1060 	ret = sort_idmaps(&new_map);
1061 	if (ret < 0)
1062 		goto out;
1063 
1064 	/* Install the map */
1065 	if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) {
1066 		memcpy(map->extent, new_map.extent,
1067 		       new_map.nr_extents * sizeof(new_map.extent[0]));
1068 	} else {
1069 		map->forward = new_map.forward;
1070 		map->reverse = new_map.reverse;
1071 	}
1072 	smp_wmb();
1073 	map->nr_extents = new_map.nr_extents;
1074 
1075 	*ppos = count;
1076 	ret = count;
1077 out:
1078 	if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
1079 		kfree(new_map.forward);
1080 		kfree(new_map.reverse);
1081 		map->forward = NULL;
1082 		map->reverse = NULL;
1083 		map->nr_extents = 0;
1084 	}
1085 
1086 	mutex_unlock(&userns_state_mutex);
1087 	kfree(kbuf);
1088 	return ret;
1089 }
1090 
1091 ssize_t proc_uid_map_write(struct file *file, const char __user *buf,
1092 			   size_t size, loff_t *ppos)
1093 {
1094 	struct seq_file *seq = file->private_data;
1095 	struct user_namespace *ns = seq->private;
1096 	struct user_namespace *seq_ns = seq_user_ns(seq);
1097 
1098 	if (!ns->parent)
1099 		return -EPERM;
1100 
1101 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1102 		return -EPERM;
1103 
1104 	return map_write(file, buf, size, ppos, CAP_SETUID,
1105 			 &ns->uid_map, &ns->parent->uid_map);
1106 }
1107 
1108 ssize_t proc_gid_map_write(struct file *file, const char __user *buf,
1109 			   size_t size, loff_t *ppos)
1110 {
1111 	struct seq_file *seq = file->private_data;
1112 	struct user_namespace *ns = seq->private;
1113 	struct user_namespace *seq_ns = seq_user_ns(seq);
1114 
1115 	if (!ns->parent)
1116 		return -EPERM;
1117 
1118 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1119 		return -EPERM;
1120 
1121 	return map_write(file, buf, size, ppos, CAP_SETGID,
1122 			 &ns->gid_map, &ns->parent->gid_map);
1123 }
1124 
1125 ssize_t proc_projid_map_write(struct file *file, const char __user *buf,
1126 			      size_t size, loff_t *ppos)
1127 {
1128 	struct seq_file *seq = file->private_data;
1129 	struct user_namespace *ns = seq->private;
1130 	struct user_namespace *seq_ns = seq_user_ns(seq);
1131 
1132 	if (!ns->parent)
1133 		return -EPERM;
1134 
1135 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1136 		return -EPERM;
1137 
1138 	/* Anyone can set any valid project id no capability needed */
1139 	return map_write(file, buf, size, ppos, -1,
1140 			 &ns->projid_map, &ns->parent->projid_map);
1141 }
1142 
1143 static bool new_idmap_permitted(const struct file *file,
1144 				struct user_namespace *ns, int cap_setid,
1145 				struct uid_gid_map *new_map)
1146 {
1147 	const struct cred *cred = file->f_cred;
1148 
1149 	if (cap_setid == CAP_SETUID && !verify_root_map(file, ns, new_map))
1150 		return false;
1151 
1152 	/* Don't allow mappings that would allow anything that wouldn't
1153 	 * be allowed without the establishment of unprivileged mappings.
1154 	 */
1155 	if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) &&
1156 	    uid_eq(ns->owner, cred->euid)) {
1157 		u32 id = new_map->extent[0].lower_first;
1158 		if (cap_setid == CAP_SETUID) {
1159 			kuid_t uid = make_kuid(ns->parent, id);
1160 			if (uid_eq(uid, cred->euid))
1161 				return true;
1162 		} else if (cap_setid == CAP_SETGID) {
1163 			kgid_t gid = make_kgid(ns->parent, id);
1164 			if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) &&
1165 			    gid_eq(gid, cred->egid))
1166 				return true;
1167 		}
1168 	}
1169 
1170 	/* Allow anyone to set a mapping that doesn't require privilege */
1171 	if (!cap_valid(cap_setid))
1172 		return true;
1173 
1174 	/* Allow the specified ids if we have the appropriate capability
1175 	 * (CAP_SETUID or CAP_SETGID) over the parent user namespace.
1176 	 * And the opener of the id file also has the appropriate capability.
1177 	 */
1178 	if (ns_capable(ns->parent, cap_setid) &&
1179 	    file_ns_capable(file, ns->parent, cap_setid))
1180 		return true;
1181 
1182 	return false;
1183 }
1184 
1185 int proc_setgroups_show(struct seq_file *seq, void *v)
1186 {
1187 	struct user_namespace *ns = seq->private;
1188 	unsigned long userns_flags = READ_ONCE(ns->flags);
1189 
1190 	seq_printf(seq, "%s\n",
1191 		   (userns_flags & USERNS_SETGROUPS_ALLOWED) ?
1192 		   "allow" : "deny");
1193 	return 0;
1194 }
1195 
1196 ssize_t proc_setgroups_write(struct file *file, const char __user *buf,
1197 			     size_t count, loff_t *ppos)
1198 {
1199 	struct seq_file *seq = file->private_data;
1200 	struct user_namespace *ns = seq->private;
1201 	char kbuf[8], *pos;
1202 	bool setgroups_allowed;
1203 	ssize_t ret;
1204 
1205 	/* Only allow a very narrow range of strings to be written */
1206 	ret = -EINVAL;
1207 	if ((*ppos != 0) || (count >= sizeof(kbuf)))
1208 		goto out;
1209 
1210 	/* What was written? */
1211 	ret = -EFAULT;
1212 	if (copy_from_user(kbuf, buf, count))
1213 		goto out;
1214 	kbuf[count] = '\0';
1215 	pos = kbuf;
1216 
1217 	/* What is being requested? */
1218 	ret = -EINVAL;
1219 	if (strncmp(pos, "allow", 5) == 0) {
1220 		pos += 5;
1221 		setgroups_allowed = true;
1222 	}
1223 	else if (strncmp(pos, "deny", 4) == 0) {
1224 		pos += 4;
1225 		setgroups_allowed = false;
1226 	}
1227 	else
1228 		goto out;
1229 
1230 	/* Verify there is not trailing junk on the line */
1231 	pos = skip_spaces(pos);
1232 	if (*pos != '\0')
1233 		goto out;
1234 
1235 	ret = -EPERM;
1236 	mutex_lock(&userns_state_mutex);
1237 	if (setgroups_allowed) {
1238 		/* Enabling setgroups after setgroups has been disabled
1239 		 * is not allowed.
1240 		 */
1241 		if (!(ns->flags & USERNS_SETGROUPS_ALLOWED))
1242 			goto out_unlock;
1243 	} else {
1244 		/* Permanently disabling setgroups after setgroups has
1245 		 * been enabled by writing the gid_map is not allowed.
1246 		 */
1247 		if (ns->gid_map.nr_extents != 0)
1248 			goto out_unlock;
1249 		ns->flags &= ~USERNS_SETGROUPS_ALLOWED;
1250 	}
1251 	mutex_unlock(&userns_state_mutex);
1252 
1253 	/* Report a successful write */
1254 	*ppos = count;
1255 	ret = count;
1256 out:
1257 	return ret;
1258 out_unlock:
1259 	mutex_unlock(&userns_state_mutex);
1260 	goto out;
1261 }
1262 
1263 bool userns_may_setgroups(const struct user_namespace *ns)
1264 {
1265 	bool allowed;
1266 
1267 	mutex_lock(&userns_state_mutex);
1268 	/* It is not safe to use setgroups until a gid mapping in
1269 	 * the user namespace has been established.
1270 	 */
1271 	allowed = ns->gid_map.nr_extents != 0;
1272 	/* Is setgroups allowed? */
1273 	allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED);
1274 	mutex_unlock(&userns_state_mutex);
1275 
1276 	return allowed;
1277 }
1278 
1279 /*
1280  * Returns true if @child is the same namespace or a descendant of
1281  * @ancestor.
1282  */
1283 bool in_userns(const struct user_namespace *ancestor,
1284 	       const struct user_namespace *child)
1285 {
1286 	const struct user_namespace *ns;
1287 	for (ns = child; ns->level > ancestor->level; ns = ns->parent)
1288 		;
1289 	return (ns == ancestor);
1290 }
1291 
1292 bool current_in_userns(const struct user_namespace *target_ns)
1293 {
1294 	return in_userns(target_ns, current_user_ns());
1295 }
1296 EXPORT_SYMBOL(current_in_userns);
1297 
1298 static inline struct user_namespace *to_user_ns(struct ns_common *ns)
1299 {
1300 	return container_of(ns, struct user_namespace, ns);
1301 }
1302 
1303 static struct ns_common *userns_get(struct task_struct *task)
1304 {
1305 	struct user_namespace *user_ns;
1306 
1307 	rcu_read_lock();
1308 	user_ns = get_user_ns(__task_cred(task)->user_ns);
1309 	rcu_read_unlock();
1310 
1311 	return user_ns ? &user_ns->ns : NULL;
1312 }
1313 
1314 static void userns_put(struct ns_common *ns)
1315 {
1316 	put_user_ns(to_user_ns(ns));
1317 }
1318 
1319 static int userns_install(struct nsset *nsset, struct ns_common *ns)
1320 {
1321 	struct user_namespace *user_ns = to_user_ns(ns);
1322 	struct cred *cred;
1323 
1324 	/* Don't allow gaining capabilities by reentering
1325 	 * the same user namespace.
1326 	 */
1327 	if (user_ns == current_user_ns())
1328 		return -EINVAL;
1329 
1330 	/* Tasks that share a thread group must share a user namespace */
1331 	if (!thread_group_empty(current))
1332 		return -EINVAL;
1333 
1334 	if (current->fs->users != 1)
1335 		return -EINVAL;
1336 
1337 	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1338 		return -EPERM;
1339 
1340 	cred = nsset_cred(nsset);
1341 	if (!cred)
1342 		return -EINVAL;
1343 
1344 	put_user_ns(cred->user_ns);
1345 	set_cred_user_ns(cred, get_user_ns(user_ns));
1346 
1347 	if (set_cred_ucounts(cred) < 0)
1348 		return -EINVAL;
1349 
1350 	return 0;
1351 }
1352 
1353 struct ns_common *ns_get_owner(struct ns_common *ns)
1354 {
1355 	struct user_namespace *my_user_ns = current_user_ns();
1356 	struct user_namespace *owner, *p;
1357 
1358 	/* See if the owner is in the current user namespace */
1359 	owner = p = ns->ops->owner(ns);
1360 	for (;;) {
1361 		if (!p)
1362 			return ERR_PTR(-EPERM);
1363 		if (p == my_user_ns)
1364 			break;
1365 		p = p->parent;
1366 	}
1367 
1368 	return &get_user_ns(owner)->ns;
1369 }
1370 
1371 static struct user_namespace *userns_owner(struct ns_common *ns)
1372 {
1373 	return to_user_ns(ns)->parent;
1374 }
1375 
1376 const struct proc_ns_operations userns_operations = {
1377 	.name		= "user",
1378 	.type		= CLONE_NEWUSER,
1379 	.get		= userns_get,
1380 	.put		= userns_put,
1381 	.install	= userns_install,
1382 	.owner		= userns_owner,
1383 	.get_parent	= ns_get_owner,
1384 };
1385 
1386 static __init int user_namespaces_init(void)
1387 {
1388 	user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC | SLAB_ACCOUNT);
1389 	return 0;
1390 }
1391 subsys_initcall(user_namespaces_init);
1392