1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #include <linux/export.h> 4 #include <linux/nsproxy.h> 5 #include <linux/slab.h> 6 #include <linux/sched/signal.h> 7 #include <linux/user_namespace.h> 8 #include <linux/proc_ns.h> 9 #include <linux/highuid.h> 10 #include <linux/cred.h> 11 #include <linux/securebits.h> 12 #include <linux/keyctl.h> 13 #include <linux/key-type.h> 14 #include <keys/user-type.h> 15 #include <linux/seq_file.h> 16 #include <linux/fs.h> 17 #include <linux/uaccess.h> 18 #include <linux/ctype.h> 19 #include <linux/projid.h> 20 #include <linux/fs_struct.h> 21 #include <linux/bsearch.h> 22 #include <linux/sort.h> 23 24 static struct kmem_cache *user_ns_cachep __read_mostly; 25 static DEFINE_MUTEX(userns_state_mutex); 26 27 static bool new_idmap_permitted(const struct file *file, 28 struct user_namespace *ns, int cap_setid, 29 struct uid_gid_map *map); 30 static void free_user_ns(struct work_struct *work); 31 32 static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid) 33 { 34 return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES); 35 } 36 37 static void dec_user_namespaces(struct ucounts *ucounts) 38 { 39 return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES); 40 } 41 42 static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns) 43 { 44 /* Start with the same capabilities as init but useless for doing 45 * anything as the capabilities are bound to the new user namespace. 46 */ 47 cred->securebits = SECUREBITS_DEFAULT; 48 cred->cap_inheritable = CAP_EMPTY_SET; 49 cred->cap_permitted = CAP_FULL_SET; 50 cred->cap_effective = CAP_FULL_SET; 51 cred->cap_ambient = CAP_EMPTY_SET; 52 cred->cap_bset = CAP_FULL_SET; 53 #ifdef CONFIG_KEYS 54 key_put(cred->request_key_auth); 55 cred->request_key_auth = NULL; 56 #endif 57 /* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */ 58 cred->user_ns = user_ns; 59 } 60 61 /* 62 * Create a new user namespace, deriving the creator from the user in the 63 * passed credentials, and replacing that user with the new root user for the 64 * new namespace. 65 * 66 * This is called by copy_creds(), which will finish setting the target task's 67 * credentials. 68 */ 69 int create_user_ns(struct cred *new) 70 { 71 struct user_namespace *ns, *parent_ns = new->user_ns; 72 kuid_t owner = new->euid; 73 kgid_t group = new->egid; 74 struct ucounts *ucounts; 75 int ret, i; 76 77 ret = -ENOSPC; 78 if (parent_ns->level > 32) 79 goto fail; 80 81 ucounts = inc_user_namespaces(parent_ns, owner); 82 if (!ucounts) 83 goto fail; 84 85 /* 86 * Verify that we can not violate the policy of which files 87 * may be accessed that is specified by the root directory, 88 * by verifing that the root directory is at the root of the 89 * mount namespace which allows all files to be accessed. 90 */ 91 ret = -EPERM; 92 if (current_chrooted()) 93 goto fail_dec; 94 95 /* The creator needs a mapping in the parent user namespace 96 * or else we won't be able to reasonably tell userspace who 97 * created a user_namespace. 98 */ 99 ret = -EPERM; 100 if (!kuid_has_mapping(parent_ns, owner) || 101 !kgid_has_mapping(parent_ns, group)) 102 goto fail_dec; 103 104 ret = -ENOMEM; 105 ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL); 106 if (!ns) 107 goto fail_dec; 108 109 ret = ns_alloc_inum(&ns->ns); 110 if (ret) 111 goto fail_free; 112 ns->ns.ops = &userns_operations; 113 114 refcount_set(&ns->ns.count, 1); 115 /* Leave the new->user_ns reference with the new user namespace. */ 116 ns->parent = parent_ns; 117 ns->level = parent_ns->level + 1; 118 ns->owner = owner; 119 ns->group = group; 120 INIT_WORK(&ns->work, free_user_ns); 121 for (i = 0; i < UCOUNT_COUNTS; i++) { 122 ns->ucount_max[i] = INT_MAX; 123 } 124 ns->ucounts = ucounts; 125 126 /* Inherit USERNS_SETGROUPS_ALLOWED from our parent */ 127 mutex_lock(&userns_state_mutex); 128 ns->flags = parent_ns->flags; 129 mutex_unlock(&userns_state_mutex); 130 131 #ifdef CONFIG_KEYS 132 INIT_LIST_HEAD(&ns->keyring_name_list); 133 init_rwsem(&ns->keyring_sem); 134 #endif 135 ret = -ENOMEM; 136 if (!setup_userns_sysctls(ns)) 137 goto fail_keyring; 138 139 set_cred_user_ns(new, ns); 140 return 0; 141 fail_keyring: 142 #ifdef CONFIG_PERSISTENT_KEYRINGS 143 key_put(ns->persistent_keyring_register); 144 #endif 145 ns_free_inum(&ns->ns); 146 fail_free: 147 kmem_cache_free(user_ns_cachep, ns); 148 fail_dec: 149 dec_user_namespaces(ucounts); 150 fail: 151 return ret; 152 } 153 154 int unshare_userns(unsigned long unshare_flags, struct cred **new_cred) 155 { 156 struct cred *cred; 157 int err = -ENOMEM; 158 159 if (!(unshare_flags & CLONE_NEWUSER)) 160 return 0; 161 162 cred = prepare_creds(); 163 if (cred) { 164 err = create_user_ns(cred); 165 if (err) 166 put_cred(cred); 167 else 168 *new_cred = cred; 169 } 170 171 return err; 172 } 173 174 static void free_user_ns(struct work_struct *work) 175 { 176 struct user_namespace *parent, *ns = 177 container_of(work, struct user_namespace, work); 178 179 do { 180 struct ucounts *ucounts = ns->ucounts; 181 parent = ns->parent; 182 if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 183 kfree(ns->gid_map.forward); 184 kfree(ns->gid_map.reverse); 185 } 186 if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 187 kfree(ns->uid_map.forward); 188 kfree(ns->uid_map.reverse); 189 } 190 if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 191 kfree(ns->projid_map.forward); 192 kfree(ns->projid_map.reverse); 193 } 194 retire_userns_sysctls(ns); 195 key_free_user_ns(ns); 196 ns_free_inum(&ns->ns); 197 kmem_cache_free(user_ns_cachep, ns); 198 dec_user_namespaces(ucounts); 199 ns = parent; 200 } while (refcount_dec_and_test(&parent->ns.count)); 201 } 202 203 void __put_user_ns(struct user_namespace *ns) 204 { 205 schedule_work(&ns->work); 206 } 207 EXPORT_SYMBOL(__put_user_ns); 208 209 /** 210 * idmap_key struct holds the information necessary to find an idmapping in a 211 * sorted idmap array. It is passed to cmp_map_id() as first argument. 212 */ 213 struct idmap_key { 214 bool map_up; /* true -> id from kid; false -> kid from id */ 215 u32 id; /* id to find */ 216 u32 count; /* == 0 unless used with map_id_range_down() */ 217 }; 218 219 /** 220 * cmp_map_id - Function to be passed to bsearch() to find the requested 221 * idmapping. Expects struct idmap_key to be passed via @k. 222 */ 223 static int cmp_map_id(const void *k, const void *e) 224 { 225 u32 first, last, id2; 226 const struct idmap_key *key = k; 227 const struct uid_gid_extent *el = e; 228 229 id2 = key->id + key->count - 1; 230 231 /* handle map_id_{down,up}() */ 232 if (key->map_up) 233 first = el->lower_first; 234 else 235 first = el->first; 236 237 last = first + el->count - 1; 238 239 if (key->id >= first && key->id <= last && 240 (id2 >= first && id2 <= last)) 241 return 0; 242 243 if (key->id < first || id2 < first) 244 return -1; 245 246 return 1; 247 } 248 249 /** 250 * map_id_range_down_max - Find idmap via binary search in ordered idmap array. 251 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 252 */ 253 static struct uid_gid_extent * 254 map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count) 255 { 256 struct idmap_key key; 257 258 key.map_up = false; 259 key.count = count; 260 key.id = id; 261 262 return bsearch(&key, map->forward, extents, 263 sizeof(struct uid_gid_extent), cmp_map_id); 264 } 265 266 /** 267 * map_id_range_down_base - Find idmap via binary search in static extent array. 268 * Can only be called if number of mappings is equal or less than 269 * UID_GID_MAP_MAX_BASE_EXTENTS. 270 */ 271 static struct uid_gid_extent * 272 map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count) 273 { 274 unsigned idx; 275 u32 first, last, id2; 276 277 id2 = id + count - 1; 278 279 /* Find the matching extent */ 280 for (idx = 0; idx < extents; idx++) { 281 first = map->extent[idx].first; 282 last = first + map->extent[idx].count - 1; 283 if (id >= first && id <= last && 284 (id2 >= first && id2 <= last)) 285 return &map->extent[idx]; 286 } 287 return NULL; 288 } 289 290 static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count) 291 { 292 struct uid_gid_extent *extent; 293 unsigned extents = map->nr_extents; 294 smp_rmb(); 295 296 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 297 extent = map_id_range_down_base(extents, map, id, count); 298 else 299 extent = map_id_range_down_max(extents, map, id, count); 300 301 /* Map the id or note failure */ 302 if (extent) 303 id = (id - extent->first) + extent->lower_first; 304 else 305 id = (u32) -1; 306 307 return id; 308 } 309 310 static u32 map_id_down(struct uid_gid_map *map, u32 id) 311 { 312 return map_id_range_down(map, id, 1); 313 } 314 315 /** 316 * map_id_up_base - Find idmap via binary search in static extent array. 317 * Can only be called if number of mappings is equal or less than 318 * UID_GID_MAP_MAX_BASE_EXTENTS. 319 */ 320 static struct uid_gid_extent * 321 map_id_up_base(unsigned extents, struct uid_gid_map *map, u32 id) 322 { 323 unsigned idx; 324 u32 first, last; 325 326 /* Find the matching extent */ 327 for (idx = 0; idx < extents; idx++) { 328 first = map->extent[idx].lower_first; 329 last = first + map->extent[idx].count - 1; 330 if (id >= first && id <= last) 331 return &map->extent[idx]; 332 } 333 return NULL; 334 } 335 336 /** 337 * map_id_up_max - Find idmap via binary search in ordered idmap array. 338 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 339 */ 340 static struct uid_gid_extent * 341 map_id_up_max(unsigned extents, struct uid_gid_map *map, u32 id) 342 { 343 struct idmap_key key; 344 345 key.map_up = true; 346 key.count = 1; 347 key.id = id; 348 349 return bsearch(&key, map->reverse, extents, 350 sizeof(struct uid_gid_extent), cmp_map_id); 351 } 352 353 static u32 map_id_up(struct uid_gid_map *map, u32 id) 354 { 355 struct uid_gid_extent *extent; 356 unsigned extents = map->nr_extents; 357 smp_rmb(); 358 359 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 360 extent = map_id_up_base(extents, map, id); 361 else 362 extent = map_id_up_max(extents, map, id); 363 364 /* Map the id or note failure */ 365 if (extent) 366 id = (id - extent->lower_first) + extent->first; 367 else 368 id = (u32) -1; 369 370 return id; 371 } 372 373 /** 374 * make_kuid - Map a user-namespace uid pair into a kuid. 375 * @ns: User namespace that the uid is in 376 * @uid: User identifier 377 * 378 * Maps a user-namespace uid pair into a kernel internal kuid, 379 * and returns that kuid. 380 * 381 * When there is no mapping defined for the user-namespace uid 382 * pair INVALID_UID is returned. Callers are expected to test 383 * for and handle INVALID_UID being returned. INVALID_UID 384 * may be tested for using uid_valid(). 385 */ 386 kuid_t make_kuid(struct user_namespace *ns, uid_t uid) 387 { 388 /* Map the uid to a global kernel uid */ 389 return KUIDT_INIT(map_id_down(&ns->uid_map, uid)); 390 } 391 EXPORT_SYMBOL(make_kuid); 392 393 /** 394 * from_kuid - Create a uid from a kuid user-namespace pair. 395 * @targ: The user namespace we want a uid in. 396 * @kuid: The kernel internal uid to start with. 397 * 398 * Map @kuid into the user-namespace specified by @targ and 399 * return the resulting uid. 400 * 401 * There is always a mapping into the initial user_namespace. 402 * 403 * If @kuid has no mapping in @targ (uid_t)-1 is returned. 404 */ 405 uid_t from_kuid(struct user_namespace *targ, kuid_t kuid) 406 { 407 /* Map the uid from a global kernel uid */ 408 return map_id_up(&targ->uid_map, __kuid_val(kuid)); 409 } 410 EXPORT_SYMBOL(from_kuid); 411 412 /** 413 * from_kuid_munged - Create a uid from a kuid user-namespace pair. 414 * @targ: The user namespace we want a uid in. 415 * @kuid: The kernel internal uid to start with. 416 * 417 * Map @kuid into the user-namespace specified by @targ and 418 * return the resulting uid. 419 * 420 * There is always a mapping into the initial user_namespace. 421 * 422 * Unlike from_kuid from_kuid_munged never fails and always 423 * returns a valid uid. This makes from_kuid_munged appropriate 424 * for use in syscalls like stat and getuid where failing the 425 * system call and failing to provide a valid uid are not an 426 * options. 427 * 428 * If @kuid has no mapping in @targ overflowuid is returned. 429 */ 430 uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid) 431 { 432 uid_t uid; 433 uid = from_kuid(targ, kuid); 434 435 if (uid == (uid_t) -1) 436 uid = overflowuid; 437 return uid; 438 } 439 EXPORT_SYMBOL(from_kuid_munged); 440 441 /** 442 * make_kgid - Map a user-namespace gid pair into a kgid. 443 * @ns: User namespace that the gid is in 444 * @gid: group identifier 445 * 446 * Maps a user-namespace gid pair into a kernel internal kgid, 447 * and returns that kgid. 448 * 449 * When there is no mapping defined for the user-namespace gid 450 * pair INVALID_GID is returned. Callers are expected to test 451 * for and handle INVALID_GID being returned. INVALID_GID may be 452 * tested for using gid_valid(). 453 */ 454 kgid_t make_kgid(struct user_namespace *ns, gid_t gid) 455 { 456 /* Map the gid to a global kernel gid */ 457 return KGIDT_INIT(map_id_down(&ns->gid_map, gid)); 458 } 459 EXPORT_SYMBOL(make_kgid); 460 461 /** 462 * from_kgid - Create a gid from a kgid user-namespace pair. 463 * @targ: The user namespace we want a gid in. 464 * @kgid: The kernel internal gid to start with. 465 * 466 * Map @kgid into the user-namespace specified by @targ and 467 * return the resulting gid. 468 * 469 * There is always a mapping into the initial user_namespace. 470 * 471 * If @kgid has no mapping in @targ (gid_t)-1 is returned. 472 */ 473 gid_t from_kgid(struct user_namespace *targ, kgid_t kgid) 474 { 475 /* Map the gid from a global kernel gid */ 476 return map_id_up(&targ->gid_map, __kgid_val(kgid)); 477 } 478 EXPORT_SYMBOL(from_kgid); 479 480 /** 481 * from_kgid_munged - Create a gid from a kgid user-namespace pair. 482 * @targ: The user namespace we want a gid in. 483 * @kgid: The kernel internal gid to start with. 484 * 485 * Map @kgid into the user-namespace specified by @targ and 486 * return the resulting gid. 487 * 488 * There is always a mapping into the initial user_namespace. 489 * 490 * Unlike from_kgid from_kgid_munged never fails and always 491 * returns a valid gid. This makes from_kgid_munged appropriate 492 * for use in syscalls like stat and getgid where failing the 493 * system call and failing to provide a valid gid are not options. 494 * 495 * If @kgid has no mapping in @targ overflowgid is returned. 496 */ 497 gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid) 498 { 499 gid_t gid; 500 gid = from_kgid(targ, kgid); 501 502 if (gid == (gid_t) -1) 503 gid = overflowgid; 504 return gid; 505 } 506 EXPORT_SYMBOL(from_kgid_munged); 507 508 /** 509 * make_kprojid - Map a user-namespace projid pair into a kprojid. 510 * @ns: User namespace that the projid is in 511 * @projid: Project identifier 512 * 513 * Maps a user-namespace uid pair into a kernel internal kuid, 514 * and returns that kuid. 515 * 516 * When there is no mapping defined for the user-namespace projid 517 * pair INVALID_PROJID is returned. Callers are expected to test 518 * for and handle INVALID_PROJID being returned. INVALID_PROJID 519 * may be tested for using projid_valid(). 520 */ 521 kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid) 522 { 523 /* Map the uid to a global kernel uid */ 524 return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid)); 525 } 526 EXPORT_SYMBOL(make_kprojid); 527 528 /** 529 * from_kprojid - Create a projid from a kprojid user-namespace pair. 530 * @targ: The user namespace we want a projid in. 531 * @kprojid: The kernel internal project identifier to start with. 532 * 533 * Map @kprojid into the user-namespace specified by @targ and 534 * return the resulting projid. 535 * 536 * There is always a mapping into the initial user_namespace. 537 * 538 * If @kprojid has no mapping in @targ (projid_t)-1 is returned. 539 */ 540 projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid) 541 { 542 /* Map the uid from a global kernel uid */ 543 return map_id_up(&targ->projid_map, __kprojid_val(kprojid)); 544 } 545 EXPORT_SYMBOL(from_kprojid); 546 547 /** 548 * from_kprojid_munged - Create a projiid from a kprojid user-namespace pair. 549 * @targ: The user namespace we want a projid in. 550 * @kprojid: The kernel internal projid to start with. 551 * 552 * Map @kprojid into the user-namespace specified by @targ and 553 * return the resulting projid. 554 * 555 * There is always a mapping into the initial user_namespace. 556 * 557 * Unlike from_kprojid from_kprojid_munged never fails and always 558 * returns a valid projid. This makes from_kprojid_munged 559 * appropriate for use in syscalls like stat and where 560 * failing the system call and failing to provide a valid projid are 561 * not an options. 562 * 563 * If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned. 564 */ 565 projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid) 566 { 567 projid_t projid; 568 projid = from_kprojid(targ, kprojid); 569 570 if (projid == (projid_t) -1) 571 projid = OVERFLOW_PROJID; 572 return projid; 573 } 574 EXPORT_SYMBOL(from_kprojid_munged); 575 576 577 static int uid_m_show(struct seq_file *seq, void *v) 578 { 579 struct user_namespace *ns = seq->private; 580 struct uid_gid_extent *extent = v; 581 struct user_namespace *lower_ns; 582 uid_t lower; 583 584 lower_ns = seq_user_ns(seq); 585 if ((lower_ns == ns) && lower_ns->parent) 586 lower_ns = lower_ns->parent; 587 588 lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first)); 589 590 seq_printf(seq, "%10u %10u %10u\n", 591 extent->first, 592 lower, 593 extent->count); 594 595 return 0; 596 } 597 598 static int gid_m_show(struct seq_file *seq, void *v) 599 { 600 struct user_namespace *ns = seq->private; 601 struct uid_gid_extent *extent = v; 602 struct user_namespace *lower_ns; 603 gid_t lower; 604 605 lower_ns = seq_user_ns(seq); 606 if ((lower_ns == ns) && lower_ns->parent) 607 lower_ns = lower_ns->parent; 608 609 lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first)); 610 611 seq_printf(seq, "%10u %10u %10u\n", 612 extent->first, 613 lower, 614 extent->count); 615 616 return 0; 617 } 618 619 static int projid_m_show(struct seq_file *seq, void *v) 620 { 621 struct user_namespace *ns = seq->private; 622 struct uid_gid_extent *extent = v; 623 struct user_namespace *lower_ns; 624 projid_t lower; 625 626 lower_ns = seq_user_ns(seq); 627 if ((lower_ns == ns) && lower_ns->parent) 628 lower_ns = lower_ns->parent; 629 630 lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first)); 631 632 seq_printf(seq, "%10u %10u %10u\n", 633 extent->first, 634 lower, 635 extent->count); 636 637 return 0; 638 } 639 640 static void *m_start(struct seq_file *seq, loff_t *ppos, 641 struct uid_gid_map *map) 642 { 643 loff_t pos = *ppos; 644 unsigned extents = map->nr_extents; 645 smp_rmb(); 646 647 if (pos >= extents) 648 return NULL; 649 650 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 651 return &map->extent[pos]; 652 653 return &map->forward[pos]; 654 } 655 656 static void *uid_m_start(struct seq_file *seq, loff_t *ppos) 657 { 658 struct user_namespace *ns = seq->private; 659 660 return m_start(seq, ppos, &ns->uid_map); 661 } 662 663 static void *gid_m_start(struct seq_file *seq, loff_t *ppos) 664 { 665 struct user_namespace *ns = seq->private; 666 667 return m_start(seq, ppos, &ns->gid_map); 668 } 669 670 static void *projid_m_start(struct seq_file *seq, loff_t *ppos) 671 { 672 struct user_namespace *ns = seq->private; 673 674 return m_start(seq, ppos, &ns->projid_map); 675 } 676 677 static void *m_next(struct seq_file *seq, void *v, loff_t *pos) 678 { 679 (*pos)++; 680 return seq->op->start(seq, pos); 681 } 682 683 static void m_stop(struct seq_file *seq, void *v) 684 { 685 return; 686 } 687 688 const struct seq_operations proc_uid_seq_operations = { 689 .start = uid_m_start, 690 .stop = m_stop, 691 .next = m_next, 692 .show = uid_m_show, 693 }; 694 695 const struct seq_operations proc_gid_seq_operations = { 696 .start = gid_m_start, 697 .stop = m_stop, 698 .next = m_next, 699 .show = gid_m_show, 700 }; 701 702 const struct seq_operations proc_projid_seq_operations = { 703 .start = projid_m_start, 704 .stop = m_stop, 705 .next = m_next, 706 .show = projid_m_show, 707 }; 708 709 static bool mappings_overlap(struct uid_gid_map *new_map, 710 struct uid_gid_extent *extent) 711 { 712 u32 upper_first, lower_first, upper_last, lower_last; 713 unsigned idx; 714 715 upper_first = extent->first; 716 lower_first = extent->lower_first; 717 upper_last = upper_first + extent->count - 1; 718 lower_last = lower_first + extent->count - 1; 719 720 for (idx = 0; idx < new_map->nr_extents; idx++) { 721 u32 prev_upper_first, prev_lower_first; 722 u32 prev_upper_last, prev_lower_last; 723 struct uid_gid_extent *prev; 724 725 if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 726 prev = &new_map->extent[idx]; 727 else 728 prev = &new_map->forward[idx]; 729 730 prev_upper_first = prev->first; 731 prev_lower_first = prev->lower_first; 732 prev_upper_last = prev_upper_first + prev->count - 1; 733 prev_lower_last = prev_lower_first + prev->count - 1; 734 735 /* Does the upper range intersect a previous extent? */ 736 if ((prev_upper_first <= upper_last) && 737 (prev_upper_last >= upper_first)) 738 return true; 739 740 /* Does the lower range intersect a previous extent? */ 741 if ((prev_lower_first <= lower_last) && 742 (prev_lower_last >= lower_first)) 743 return true; 744 } 745 return false; 746 } 747 748 /** 749 * insert_extent - Safely insert a new idmap extent into struct uid_gid_map. 750 * Takes care to allocate a 4K block of memory if the number of mappings exceeds 751 * UID_GID_MAP_MAX_BASE_EXTENTS. 752 */ 753 static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent) 754 { 755 struct uid_gid_extent *dest; 756 757 if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) { 758 struct uid_gid_extent *forward; 759 760 /* Allocate memory for 340 mappings. */ 761 forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS, 762 sizeof(struct uid_gid_extent), 763 GFP_KERNEL); 764 if (!forward) 765 return -ENOMEM; 766 767 /* Copy over memory. Only set up memory for the forward pointer. 768 * Defer the memory setup for the reverse pointer. 769 */ 770 memcpy(forward, map->extent, 771 map->nr_extents * sizeof(map->extent[0])); 772 773 map->forward = forward; 774 map->reverse = NULL; 775 } 776 777 if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS) 778 dest = &map->extent[map->nr_extents]; 779 else 780 dest = &map->forward[map->nr_extents]; 781 782 *dest = *extent; 783 map->nr_extents++; 784 return 0; 785 } 786 787 /* cmp function to sort() forward mappings */ 788 static int cmp_extents_forward(const void *a, const void *b) 789 { 790 const struct uid_gid_extent *e1 = a; 791 const struct uid_gid_extent *e2 = b; 792 793 if (e1->first < e2->first) 794 return -1; 795 796 if (e1->first > e2->first) 797 return 1; 798 799 return 0; 800 } 801 802 /* cmp function to sort() reverse mappings */ 803 static int cmp_extents_reverse(const void *a, const void *b) 804 { 805 const struct uid_gid_extent *e1 = a; 806 const struct uid_gid_extent *e2 = b; 807 808 if (e1->lower_first < e2->lower_first) 809 return -1; 810 811 if (e1->lower_first > e2->lower_first) 812 return 1; 813 814 return 0; 815 } 816 817 /** 818 * sort_idmaps - Sorts an array of idmap entries. 819 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 820 */ 821 static int sort_idmaps(struct uid_gid_map *map) 822 { 823 if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 824 return 0; 825 826 /* Sort forward array. */ 827 sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent), 828 cmp_extents_forward, NULL); 829 830 /* Only copy the memory from forward we actually need. */ 831 map->reverse = kmemdup(map->forward, 832 map->nr_extents * sizeof(struct uid_gid_extent), 833 GFP_KERNEL); 834 if (!map->reverse) 835 return -ENOMEM; 836 837 /* Sort reverse array. */ 838 sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent), 839 cmp_extents_reverse, NULL); 840 841 return 0; 842 } 843 844 static ssize_t map_write(struct file *file, const char __user *buf, 845 size_t count, loff_t *ppos, 846 int cap_setid, 847 struct uid_gid_map *map, 848 struct uid_gid_map *parent_map) 849 { 850 struct seq_file *seq = file->private_data; 851 struct user_namespace *ns = seq->private; 852 struct uid_gid_map new_map; 853 unsigned idx; 854 struct uid_gid_extent extent; 855 char *kbuf = NULL, *pos, *next_line; 856 ssize_t ret; 857 858 /* Only allow < page size writes at the beginning of the file */ 859 if ((*ppos != 0) || (count >= PAGE_SIZE)) 860 return -EINVAL; 861 862 /* Slurp in the user data */ 863 kbuf = memdup_user_nul(buf, count); 864 if (IS_ERR(kbuf)) 865 return PTR_ERR(kbuf); 866 867 /* 868 * The userns_state_mutex serializes all writes to any given map. 869 * 870 * Any map is only ever written once. 871 * 872 * An id map fits within 1 cache line on most architectures. 873 * 874 * On read nothing needs to be done unless you are on an 875 * architecture with a crazy cache coherency model like alpha. 876 * 877 * There is a one time data dependency between reading the 878 * count of the extents and the values of the extents. The 879 * desired behavior is to see the values of the extents that 880 * were written before the count of the extents. 881 * 882 * To achieve this smp_wmb() is used on guarantee the write 883 * order and smp_rmb() is guaranteed that we don't have crazy 884 * architectures returning stale data. 885 */ 886 mutex_lock(&userns_state_mutex); 887 888 memset(&new_map, 0, sizeof(struct uid_gid_map)); 889 890 ret = -EPERM; 891 /* Only allow one successful write to the map */ 892 if (map->nr_extents != 0) 893 goto out; 894 895 /* 896 * Adjusting namespace settings requires capabilities on the target. 897 */ 898 if (cap_valid(cap_setid) && !file_ns_capable(file, ns, CAP_SYS_ADMIN)) 899 goto out; 900 901 /* Parse the user data */ 902 ret = -EINVAL; 903 pos = kbuf; 904 for (; pos; pos = next_line) { 905 906 /* Find the end of line and ensure I don't look past it */ 907 next_line = strchr(pos, '\n'); 908 if (next_line) { 909 *next_line = '\0'; 910 next_line++; 911 if (*next_line == '\0') 912 next_line = NULL; 913 } 914 915 pos = skip_spaces(pos); 916 extent.first = simple_strtoul(pos, &pos, 10); 917 if (!isspace(*pos)) 918 goto out; 919 920 pos = skip_spaces(pos); 921 extent.lower_first = simple_strtoul(pos, &pos, 10); 922 if (!isspace(*pos)) 923 goto out; 924 925 pos = skip_spaces(pos); 926 extent.count = simple_strtoul(pos, &pos, 10); 927 if (*pos && !isspace(*pos)) 928 goto out; 929 930 /* Verify there is not trailing junk on the line */ 931 pos = skip_spaces(pos); 932 if (*pos != '\0') 933 goto out; 934 935 /* Verify we have been given valid starting values */ 936 if ((extent.first == (u32) -1) || 937 (extent.lower_first == (u32) -1)) 938 goto out; 939 940 /* Verify count is not zero and does not cause the 941 * extent to wrap 942 */ 943 if ((extent.first + extent.count) <= extent.first) 944 goto out; 945 if ((extent.lower_first + extent.count) <= 946 extent.lower_first) 947 goto out; 948 949 /* Do the ranges in extent overlap any previous extents? */ 950 if (mappings_overlap(&new_map, &extent)) 951 goto out; 952 953 if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS && 954 (next_line != NULL)) 955 goto out; 956 957 ret = insert_extent(&new_map, &extent); 958 if (ret < 0) 959 goto out; 960 ret = -EINVAL; 961 } 962 /* Be very certaint the new map actually exists */ 963 if (new_map.nr_extents == 0) 964 goto out; 965 966 ret = -EPERM; 967 /* Validate the user is allowed to use user id's mapped to. */ 968 if (!new_idmap_permitted(file, ns, cap_setid, &new_map)) 969 goto out; 970 971 ret = -EPERM; 972 /* Map the lower ids from the parent user namespace to the 973 * kernel global id space. 974 */ 975 for (idx = 0; idx < new_map.nr_extents; idx++) { 976 struct uid_gid_extent *e; 977 u32 lower_first; 978 979 if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 980 e = &new_map.extent[idx]; 981 else 982 e = &new_map.forward[idx]; 983 984 lower_first = map_id_range_down(parent_map, 985 e->lower_first, 986 e->count); 987 988 /* Fail if we can not map the specified extent to 989 * the kernel global id space. 990 */ 991 if (lower_first == (u32) -1) 992 goto out; 993 994 e->lower_first = lower_first; 995 } 996 997 /* 998 * If we want to use binary search for lookup, this clones the extent 999 * array and sorts both copies. 1000 */ 1001 ret = sort_idmaps(&new_map); 1002 if (ret < 0) 1003 goto out; 1004 1005 /* Install the map */ 1006 if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) { 1007 memcpy(map->extent, new_map.extent, 1008 new_map.nr_extents * sizeof(new_map.extent[0])); 1009 } else { 1010 map->forward = new_map.forward; 1011 map->reverse = new_map.reverse; 1012 } 1013 smp_wmb(); 1014 map->nr_extents = new_map.nr_extents; 1015 1016 *ppos = count; 1017 ret = count; 1018 out: 1019 if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 1020 kfree(new_map.forward); 1021 kfree(new_map.reverse); 1022 map->forward = NULL; 1023 map->reverse = NULL; 1024 map->nr_extents = 0; 1025 } 1026 1027 mutex_unlock(&userns_state_mutex); 1028 kfree(kbuf); 1029 return ret; 1030 } 1031 1032 ssize_t proc_uid_map_write(struct file *file, const char __user *buf, 1033 size_t size, loff_t *ppos) 1034 { 1035 struct seq_file *seq = file->private_data; 1036 struct user_namespace *ns = seq->private; 1037 struct user_namespace *seq_ns = seq_user_ns(seq); 1038 1039 if (!ns->parent) 1040 return -EPERM; 1041 1042 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1043 return -EPERM; 1044 1045 return map_write(file, buf, size, ppos, CAP_SETUID, 1046 &ns->uid_map, &ns->parent->uid_map); 1047 } 1048 1049 ssize_t proc_gid_map_write(struct file *file, const char __user *buf, 1050 size_t size, loff_t *ppos) 1051 { 1052 struct seq_file *seq = file->private_data; 1053 struct user_namespace *ns = seq->private; 1054 struct user_namespace *seq_ns = seq_user_ns(seq); 1055 1056 if (!ns->parent) 1057 return -EPERM; 1058 1059 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1060 return -EPERM; 1061 1062 return map_write(file, buf, size, ppos, CAP_SETGID, 1063 &ns->gid_map, &ns->parent->gid_map); 1064 } 1065 1066 ssize_t proc_projid_map_write(struct file *file, const char __user *buf, 1067 size_t size, loff_t *ppos) 1068 { 1069 struct seq_file *seq = file->private_data; 1070 struct user_namespace *ns = seq->private; 1071 struct user_namespace *seq_ns = seq_user_ns(seq); 1072 1073 if (!ns->parent) 1074 return -EPERM; 1075 1076 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1077 return -EPERM; 1078 1079 /* Anyone can set any valid project id no capability needed */ 1080 return map_write(file, buf, size, ppos, -1, 1081 &ns->projid_map, &ns->parent->projid_map); 1082 } 1083 1084 static bool new_idmap_permitted(const struct file *file, 1085 struct user_namespace *ns, int cap_setid, 1086 struct uid_gid_map *new_map) 1087 { 1088 const struct cred *cred = file->f_cred; 1089 /* Don't allow mappings that would allow anything that wouldn't 1090 * be allowed without the establishment of unprivileged mappings. 1091 */ 1092 if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) && 1093 uid_eq(ns->owner, cred->euid)) { 1094 u32 id = new_map->extent[0].lower_first; 1095 if (cap_setid == CAP_SETUID) { 1096 kuid_t uid = make_kuid(ns->parent, id); 1097 if (uid_eq(uid, cred->euid)) 1098 return true; 1099 } else if (cap_setid == CAP_SETGID) { 1100 kgid_t gid = make_kgid(ns->parent, id); 1101 if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) && 1102 gid_eq(gid, cred->egid)) 1103 return true; 1104 } 1105 } 1106 1107 /* Allow anyone to set a mapping that doesn't require privilege */ 1108 if (!cap_valid(cap_setid)) 1109 return true; 1110 1111 /* Allow the specified ids if we have the appropriate capability 1112 * (CAP_SETUID or CAP_SETGID) over the parent user namespace. 1113 * And the opener of the id file also had the approprpiate capability. 1114 */ 1115 if (ns_capable(ns->parent, cap_setid) && 1116 file_ns_capable(file, ns->parent, cap_setid)) 1117 return true; 1118 1119 return false; 1120 } 1121 1122 int proc_setgroups_show(struct seq_file *seq, void *v) 1123 { 1124 struct user_namespace *ns = seq->private; 1125 unsigned long userns_flags = READ_ONCE(ns->flags); 1126 1127 seq_printf(seq, "%s\n", 1128 (userns_flags & USERNS_SETGROUPS_ALLOWED) ? 1129 "allow" : "deny"); 1130 return 0; 1131 } 1132 1133 ssize_t proc_setgroups_write(struct file *file, const char __user *buf, 1134 size_t count, loff_t *ppos) 1135 { 1136 struct seq_file *seq = file->private_data; 1137 struct user_namespace *ns = seq->private; 1138 char kbuf[8], *pos; 1139 bool setgroups_allowed; 1140 ssize_t ret; 1141 1142 /* Only allow a very narrow range of strings to be written */ 1143 ret = -EINVAL; 1144 if ((*ppos != 0) || (count >= sizeof(kbuf))) 1145 goto out; 1146 1147 /* What was written? */ 1148 ret = -EFAULT; 1149 if (copy_from_user(kbuf, buf, count)) 1150 goto out; 1151 kbuf[count] = '\0'; 1152 pos = kbuf; 1153 1154 /* What is being requested? */ 1155 ret = -EINVAL; 1156 if (strncmp(pos, "allow", 5) == 0) { 1157 pos += 5; 1158 setgroups_allowed = true; 1159 } 1160 else if (strncmp(pos, "deny", 4) == 0) { 1161 pos += 4; 1162 setgroups_allowed = false; 1163 } 1164 else 1165 goto out; 1166 1167 /* Verify there is not trailing junk on the line */ 1168 pos = skip_spaces(pos); 1169 if (*pos != '\0') 1170 goto out; 1171 1172 ret = -EPERM; 1173 mutex_lock(&userns_state_mutex); 1174 if (setgroups_allowed) { 1175 /* Enabling setgroups after setgroups has been disabled 1176 * is not allowed. 1177 */ 1178 if (!(ns->flags & USERNS_SETGROUPS_ALLOWED)) 1179 goto out_unlock; 1180 } else { 1181 /* Permanently disabling setgroups after setgroups has 1182 * been enabled by writing the gid_map is not allowed. 1183 */ 1184 if (ns->gid_map.nr_extents != 0) 1185 goto out_unlock; 1186 ns->flags &= ~USERNS_SETGROUPS_ALLOWED; 1187 } 1188 mutex_unlock(&userns_state_mutex); 1189 1190 /* Report a successful write */ 1191 *ppos = count; 1192 ret = count; 1193 out: 1194 return ret; 1195 out_unlock: 1196 mutex_unlock(&userns_state_mutex); 1197 goto out; 1198 } 1199 1200 bool userns_may_setgroups(const struct user_namespace *ns) 1201 { 1202 bool allowed; 1203 1204 mutex_lock(&userns_state_mutex); 1205 /* It is not safe to use setgroups until a gid mapping in 1206 * the user namespace has been established. 1207 */ 1208 allowed = ns->gid_map.nr_extents != 0; 1209 /* Is setgroups allowed? */ 1210 allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED); 1211 mutex_unlock(&userns_state_mutex); 1212 1213 return allowed; 1214 } 1215 1216 /* 1217 * Returns true if @child is the same namespace or a descendant of 1218 * @ancestor. 1219 */ 1220 bool in_userns(const struct user_namespace *ancestor, 1221 const struct user_namespace *child) 1222 { 1223 const struct user_namespace *ns; 1224 for (ns = child; ns->level > ancestor->level; ns = ns->parent) 1225 ; 1226 return (ns == ancestor); 1227 } 1228 1229 bool current_in_userns(const struct user_namespace *target_ns) 1230 { 1231 return in_userns(target_ns, current_user_ns()); 1232 } 1233 EXPORT_SYMBOL(current_in_userns); 1234 1235 static inline struct user_namespace *to_user_ns(struct ns_common *ns) 1236 { 1237 return container_of(ns, struct user_namespace, ns); 1238 } 1239 1240 static struct ns_common *userns_get(struct task_struct *task) 1241 { 1242 struct user_namespace *user_ns; 1243 1244 rcu_read_lock(); 1245 user_ns = get_user_ns(__task_cred(task)->user_ns); 1246 rcu_read_unlock(); 1247 1248 return user_ns ? &user_ns->ns : NULL; 1249 } 1250 1251 static void userns_put(struct ns_common *ns) 1252 { 1253 put_user_ns(to_user_ns(ns)); 1254 } 1255 1256 static int userns_install(struct nsset *nsset, struct ns_common *ns) 1257 { 1258 struct user_namespace *user_ns = to_user_ns(ns); 1259 struct cred *cred; 1260 1261 /* Don't allow gaining capabilities by reentering 1262 * the same user namespace. 1263 */ 1264 if (user_ns == current_user_ns()) 1265 return -EINVAL; 1266 1267 /* Tasks that share a thread group must share a user namespace */ 1268 if (!thread_group_empty(current)) 1269 return -EINVAL; 1270 1271 if (current->fs->users != 1) 1272 return -EINVAL; 1273 1274 if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 1275 return -EPERM; 1276 1277 cred = nsset_cred(nsset); 1278 if (!cred) 1279 return -EINVAL; 1280 1281 put_user_ns(cred->user_ns); 1282 set_cred_user_ns(cred, get_user_ns(user_ns)); 1283 1284 return 0; 1285 } 1286 1287 struct ns_common *ns_get_owner(struct ns_common *ns) 1288 { 1289 struct user_namespace *my_user_ns = current_user_ns(); 1290 struct user_namespace *owner, *p; 1291 1292 /* See if the owner is in the current user namespace */ 1293 owner = p = ns->ops->owner(ns); 1294 for (;;) { 1295 if (!p) 1296 return ERR_PTR(-EPERM); 1297 if (p == my_user_ns) 1298 break; 1299 p = p->parent; 1300 } 1301 1302 return &get_user_ns(owner)->ns; 1303 } 1304 1305 static struct user_namespace *userns_owner(struct ns_common *ns) 1306 { 1307 return to_user_ns(ns)->parent; 1308 } 1309 1310 const struct proc_ns_operations userns_operations = { 1311 .name = "user", 1312 .type = CLONE_NEWUSER, 1313 .get = userns_get, 1314 .put = userns_put, 1315 .install = userns_install, 1316 .owner = userns_owner, 1317 .get_parent = ns_get_owner, 1318 }; 1319 1320 static __init int user_namespaces_init(void) 1321 { 1322 user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC); 1323 return 0; 1324 } 1325 subsys_initcall(user_namespaces_init); 1326