1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #include <linux/export.h> 4 #include <linux/nsproxy.h> 5 #include <linux/slab.h> 6 #include <linux/sched/signal.h> 7 #include <linux/user_namespace.h> 8 #include <linux/proc_ns.h> 9 #include <linux/highuid.h> 10 #include <linux/cred.h> 11 #include <linux/securebits.h> 12 #include <linux/keyctl.h> 13 #include <linux/key-type.h> 14 #include <keys/user-type.h> 15 #include <linux/seq_file.h> 16 #include <linux/fs.h> 17 #include <linux/uaccess.h> 18 #include <linux/ctype.h> 19 #include <linux/projid.h> 20 #include <linux/fs_struct.h> 21 #include <linux/bsearch.h> 22 #include <linux/sort.h> 23 24 static struct kmem_cache *user_ns_cachep __read_mostly; 25 static DEFINE_MUTEX(userns_state_mutex); 26 27 static bool new_idmap_permitted(const struct file *file, 28 struct user_namespace *ns, int cap_setid, 29 struct uid_gid_map *map); 30 static void free_user_ns(struct work_struct *work); 31 32 static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid) 33 { 34 return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES); 35 } 36 37 static void dec_user_namespaces(struct ucounts *ucounts) 38 { 39 return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES); 40 } 41 42 static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns) 43 { 44 /* Start with the same capabilities as init but useless for doing 45 * anything as the capabilities are bound to the new user namespace. 46 */ 47 cred->securebits = SECUREBITS_DEFAULT; 48 cred->cap_inheritable = CAP_EMPTY_SET; 49 cred->cap_permitted = CAP_FULL_SET; 50 cred->cap_effective = CAP_FULL_SET; 51 cred->cap_ambient = CAP_EMPTY_SET; 52 cred->cap_bset = CAP_FULL_SET; 53 #ifdef CONFIG_KEYS 54 key_put(cred->request_key_auth); 55 cred->request_key_auth = NULL; 56 #endif 57 /* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */ 58 cred->user_ns = user_ns; 59 } 60 61 /* 62 * Create a new user namespace, deriving the creator from the user in the 63 * passed credentials, and replacing that user with the new root user for the 64 * new namespace. 65 * 66 * This is called by copy_creds(), which will finish setting the target task's 67 * credentials. 68 */ 69 int create_user_ns(struct cred *new) 70 { 71 struct user_namespace *ns, *parent_ns = new->user_ns; 72 kuid_t owner = new->euid; 73 kgid_t group = new->egid; 74 struct ucounts *ucounts; 75 int ret, i; 76 77 ret = -ENOSPC; 78 if (parent_ns->level > 32) 79 goto fail; 80 81 ucounts = inc_user_namespaces(parent_ns, owner); 82 if (!ucounts) 83 goto fail; 84 85 /* 86 * Verify that we can not violate the policy of which files 87 * may be accessed that is specified by the root directory, 88 * by verifying that the root directory is at the root of the 89 * mount namespace which allows all files to be accessed. 90 */ 91 ret = -EPERM; 92 if (current_chrooted()) 93 goto fail_dec; 94 95 /* The creator needs a mapping in the parent user namespace 96 * or else we won't be able to reasonably tell userspace who 97 * created a user_namespace. 98 */ 99 ret = -EPERM; 100 if (!kuid_has_mapping(parent_ns, owner) || 101 !kgid_has_mapping(parent_ns, group)) 102 goto fail_dec; 103 104 ret = -ENOMEM; 105 ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL); 106 if (!ns) 107 goto fail_dec; 108 109 ns->parent_could_setfcap = cap_raised(new->cap_effective, CAP_SETFCAP); 110 ret = ns_alloc_inum(&ns->ns); 111 if (ret) 112 goto fail_free; 113 ns->ns.ops = &userns_operations; 114 115 refcount_set(&ns->ns.count, 1); 116 /* Leave the new->user_ns reference with the new user namespace. */ 117 ns->parent = parent_ns; 118 ns->level = parent_ns->level + 1; 119 ns->owner = owner; 120 ns->group = group; 121 INIT_WORK(&ns->work, free_user_ns); 122 for (i = 0; i < UCOUNT_COUNTS; i++) { 123 ns->ucount_max[i] = INT_MAX; 124 } 125 ns->ucounts = ucounts; 126 127 /* Inherit USERNS_SETGROUPS_ALLOWED from our parent */ 128 mutex_lock(&userns_state_mutex); 129 ns->flags = parent_ns->flags; 130 mutex_unlock(&userns_state_mutex); 131 132 #ifdef CONFIG_KEYS 133 INIT_LIST_HEAD(&ns->keyring_name_list); 134 init_rwsem(&ns->keyring_sem); 135 #endif 136 ret = -ENOMEM; 137 if (!setup_userns_sysctls(ns)) 138 goto fail_keyring; 139 140 set_cred_user_ns(new, ns); 141 return 0; 142 fail_keyring: 143 #ifdef CONFIG_PERSISTENT_KEYRINGS 144 key_put(ns->persistent_keyring_register); 145 #endif 146 ns_free_inum(&ns->ns); 147 fail_free: 148 kmem_cache_free(user_ns_cachep, ns); 149 fail_dec: 150 dec_user_namespaces(ucounts); 151 fail: 152 return ret; 153 } 154 155 int unshare_userns(unsigned long unshare_flags, struct cred **new_cred) 156 { 157 struct cred *cred; 158 int err = -ENOMEM; 159 160 if (!(unshare_flags & CLONE_NEWUSER)) 161 return 0; 162 163 cred = prepare_creds(); 164 if (cred) { 165 err = create_user_ns(cred); 166 if (err) 167 put_cred(cred); 168 else 169 *new_cred = cred; 170 } 171 172 return err; 173 } 174 175 static void free_user_ns(struct work_struct *work) 176 { 177 struct user_namespace *parent, *ns = 178 container_of(work, struct user_namespace, work); 179 180 do { 181 struct ucounts *ucounts = ns->ucounts; 182 parent = ns->parent; 183 if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 184 kfree(ns->gid_map.forward); 185 kfree(ns->gid_map.reverse); 186 } 187 if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 188 kfree(ns->uid_map.forward); 189 kfree(ns->uid_map.reverse); 190 } 191 if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 192 kfree(ns->projid_map.forward); 193 kfree(ns->projid_map.reverse); 194 } 195 retire_userns_sysctls(ns); 196 key_free_user_ns(ns); 197 ns_free_inum(&ns->ns); 198 kmem_cache_free(user_ns_cachep, ns); 199 dec_user_namespaces(ucounts); 200 ns = parent; 201 } while (refcount_dec_and_test(&parent->ns.count)); 202 } 203 204 void __put_user_ns(struct user_namespace *ns) 205 { 206 schedule_work(&ns->work); 207 } 208 EXPORT_SYMBOL(__put_user_ns); 209 210 /** 211 * idmap_key struct holds the information necessary to find an idmapping in a 212 * sorted idmap array. It is passed to cmp_map_id() as first argument. 213 */ 214 struct idmap_key { 215 bool map_up; /* true -> id from kid; false -> kid from id */ 216 u32 id; /* id to find */ 217 u32 count; /* == 0 unless used with map_id_range_down() */ 218 }; 219 220 /** 221 * cmp_map_id - Function to be passed to bsearch() to find the requested 222 * idmapping. Expects struct idmap_key to be passed via @k. 223 */ 224 static int cmp_map_id(const void *k, const void *e) 225 { 226 u32 first, last, id2; 227 const struct idmap_key *key = k; 228 const struct uid_gid_extent *el = e; 229 230 id2 = key->id + key->count - 1; 231 232 /* handle map_id_{down,up}() */ 233 if (key->map_up) 234 first = el->lower_first; 235 else 236 first = el->first; 237 238 last = first + el->count - 1; 239 240 if (key->id >= first && key->id <= last && 241 (id2 >= first && id2 <= last)) 242 return 0; 243 244 if (key->id < first || id2 < first) 245 return -1; 246 247 return 1; 248 } 249 250 /** 251 * map_id_range_down_max - Find idmap via binary search in ordered idmap array. 252 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 253 */ 254 static struct uid_gid_extent * 255 map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count) 256 { 257 struct idmap_key key; 258 259 key.map_up = false; 260 key.count = count; 261 key.id = id; 262 263 return bsearch(&key, map->forward, extents, 264 sizeof(struct uid_gid_extent), cmp_map_id); 265 } 266 267 /** 268 * map_id_range_down_base - Find idmap via binary search in static extent array. 269 * Can only be called if number of mappings is equal or less than 270 * UID_GID_MAP_MAX_BASE_EXTENTS. 271 */ 272 static struct uid_gid_extent * 273 map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count) 274 { 275 unsigned idx; 276 u32 first, last, id2; 277 278 id2 = id + count - 1; 279 280 /* Find the matching extent */ 281 for (idx = 0; idx < extents; idx++) { 282 first = map->extent[idx].first; 283 last = first + map->extent[idx].count - 1; 284 if (id >= first && id <= last && 285 (id2 >= first && id2 <= last)) 286 return &map->extent[idx]; 287 } 288 return NULL; 289 } 290 291 static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count) 292 { 293 struct uid_gid_extent *extent; 294 unsigned extents = map->nr_extents; 295 smp_rmb(); 296 297 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 298 extent = map_id_range_down_base(extents, map, id, count); 299 else 300 extent = map_id_range_down_max(extents, map, id, count); 301 302 /* Map the id or note failure */ 303 if (extent) 304 id = (id - extent->first) + extent->lower_first; 305 else 306 id = (u32) -1; 307 308 return id; 309 } 310 311 static u32 map_id_down(struct uid_gid_map *map, u32 id) 312 { 313 return map_id_range_down(map, id, 1); 314 } 315 316 /** 317 * map_id_up_base - Find idmap via binary search in static extent array. 318 * Can only be called if number of mappings is equal or less than 319 * UID_GID_MAP_MAX_BASE_EXTENTS. 320 */ 321 static struct uid_gid_extent * 322 map_id_up_base(unsigned extents, struct uid_gid_map *map, u32 id) 323 { 324 unsigned idx; 325 u32 first, last; 326 327 /* Find the matching extent */ 328 for (idx = 0; idx < extents; idx++) { 329 first = map->extent[idx].lower_first; 330 last = first + map->extent[idx].count - 1; 331 if (id >= first && id <= last) 332 return &map->extent[idx]; 333 } 334 return NULL; 335 } 336 337 /** 338 * map_id_up_max - Find idmap via binary search in ordered idmap array. 339 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 340 */ 341 static struct uid_gid_extent * 342 map_id_up_max(unsigned extents, struct uid_gid_map *map, u32 id) 343 { 344 struct idmap_key key; 345 346 key.map_up = true; 347 key.count = 1; 348 key.id = id; 349 350 return bsearch(&key, map->reverse, extents, 351 sizeof(struct uid_gid_extent), cmp_map_id); 352 } 353 354 static u32 map_id_up(struct uid_gid_map *map, u32 id) 355 { 356 struct uid_gid_extent *extent; 357 unsigned extents = map->nr_extents; 358 smp_rmb(); 359 360 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 361 extent = map_id_up_base(extents, map, id); 362 else 363 extent = map_id_up_max(extents, map, id); 364 365 /* Map the id or note failure */ 366 if (extent) 367 id = (id - extent->lower_first) + extent->first; 368 else 369 id = (u32) -1; 370 371 return id; 372 } 373 374 /** 375 * make_kuid - Map a user-namespace uid pair into a kuid. 376 * @ns: User namespace that the uid is in 377 * @uid: User identifier 378 * 379 * Maps a user-namespace uid pair into a kernel internal kuid, 380 * and returns that kuid. 381 * 382 * When there is no mapping defined for the user-namespace uid 383 * pair INVALID_UID is returned. Callers are expected to test 384 * for and handle INVALID_UID being returned. INVALID_UID 385 * may be tested for using uid_valid(). 386 */ 387 kuid_t make_kuid(struct user_namespace *ns, uid_t uid) 388 { 389 /* Map the uid to a global kernel uid */ 390 return KUIDT_INIT(map_id_down(&ns->uid_map, uid)); 391 } 392 EXPORT_SYMBOL(make_kuid); 393 394 /** 395 * from_kuid - Create a uid from a kuid user-namespace pair. 396 * @targ: The user namespace we want a uid in. 397 * @kuid: The kernel internal uid to start with. 398 * 399 * Map @kuid into the user-namespace specified by @targ and 400 * return the resulting uid. 401 * 402 * There is always a mapping into the initial user_namespace. 403 * 404 * If @kuid has no mapping in @targ (uid_t)-1 is returned. 405 */ 406 uid_t from_kuid(struct user_namespace *targ, kuid_t kuid) 407 { 408 /* Map the uid from a global kernel uid */ 409 return map_id_up(&targ->uid_map, __kuid_val(kuid)); 410 } 411 EXPORT_SYMBOL(from_kuid); 412 413 /** 414 * from_kuid_munged - Create a uid from a kuid user-namespace pair. 415 * @targ: The user namespace we want a uid in. 416 * @kuid: The kernel internal uid to start with. 417 * 418 * Map @kuid into the user-namespace specified by @targ and 419 * return the resulting uid. 420 * 421 * There is always a mapping into the initial user_namespace. 422 * 423 * Unlike from_kuid from_kuid_munged never fails and always 424 * returns a valid uid. This makes from_kuid_munged appropriate 425 * for use in syscalls like stat and getuid where failing the 426 * system call and failing to provide a valid uid are not an 427 * options. 428 * 429 * If @kuid has no mapping in @targ overflowuid is returned. 430 */ 431 uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid) 432 { 433 uid_t uid; 434 uid = from_kuid(targ, kuid); 435 436 if (uid == (uid_t) -1) 437 uid = overflowuid; 438 return uid; 439 } 440 EXPORT_SYMBOL(from_kuid_munged); 441 442 /** 443 * make_kgid - Map a user-namespace gid pair into a kgid. 444 * @ns: User namespace that the gid is in 445 * @gid: group identifier 446 * 447 * Maps a user-namespace gid pair into a kernel internal kgid, 448 * and returns that kgid. 449 * 450 * When there is no mapping defined for the user-namespace gid 451 * pair INVALID_GID is returned. Callers are expected to test 452 * for and handle INVALID_GID being returned. INVALID_GID may be 453 * tested for using gid_valid(). 454 */ 455 kgid_t make_kgid(struct user_namespace *ns, gid_t gid) 456 { 457 /* Map the gid to a global kernel gid */ 458 return KGIDT_INIT(map_id_down(&ns->gid_map, gid)); 459 } 460 EXPORT_SYMBOL(make_kgid); 461 462 /** 463 * from_kgid - Create a gid from a kgid user-namespace pair. 464 * @targ: The user namespace we want a gid in. 465 * @kgid: The kernel internal gid to start with. 466 * 467 * Map @kgid into the user-namespace specified by @targ and 468 * return the resulting gid. 469 * 470 * There is always a mapping into the initial user_namespace. 471 * 472 * If @kgid has no mapping in @targ (gid_t)-1 is returned. 473 */ 474 gid_t from_kgid(struct user_namespace *targ, kgid_t kgid) 475 { 476 /* Map the gid from a global kernel gid */ 477 return map_id_up(&targ->gid_map, __kgid_val(kgid)); 478 } 479 EXPORT_SYMBOL(from_kgid); 480 481 /** 482 * from_kgid_munged - Create a gid from a kgid user-namespace pair. 483 * @targ: The user namespace we want a gid in. 484 * @kgid: The kernel internal gid to start with. 485 * 486 * Map @kgid into the user-namespace specified by @targ and 487 * return the resulting gid. 488 * 489 * There is always a mapping into the initial user_namespace. 490 * 491 * Unlike from_kgid from_kgid_munged never fails and always 492 * returns a valid gid. This makes from_kgid_munged appropriate 493 * for use in syscalls like stat and getgid where failing the 494 * system call and failing to provide a valid gid are not options. 495 * 496 * If @kgid has no mapping in @targ overflowgid is returned. 497 */ 498 gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid) 499 { 500 gid_t gid; 501 gid = from_kgid(targ, kgid); 502 503 if (gid == (gid_t) -1) 504 gid = overflowgid; 505 return gid; 506 } 507 EXPORT_SYMBOL(from_kgid_munged); 508 509 /** 510 * make_kprojid - Map a user-namespace projid pair into a kprojid. 511 * @ns: User namespace that the projid is in 512 * @projid: Project identifier 513 * 514 * Maps a user-namespace uid pair into a kernel internal kuid, 515 * and returns that kuid. 516 * 517 * When there is no mapping defined for the user-namespace projid 518 * pair INVALID_PROJID is returned. Callers are expected to test 519 * for and handle INVALID_PROJID being returned. INVALID_PROJID 520 * may be tested for using projid_valid(). 521 */ 522 kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid) 523 { 524 /* Map the uid to a global kernel uid */ 525 return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid)); 526 } 527 EXPORT_SYMBOL(make_kprojid); 528 529 /** 530 * from_kprojid - Create a projid from a kprojid user-namespace pair. 531 * @targ: The user namespace we want a projid in. 532 * @kprojid: The kernel internal project identifier to start with. 533 * 534 * Map @kprojid into the user-namespace specified by @targ and 535 * return the resulting projid. 536 * 537 * There is always a mapping into the initial user_namespace. 538 * 539 * If @kprojid has no mapping in @targ (projid_t)-1 is returned. 540 */ 541 projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid) 542 { 543 /* Map the uid from a global kernel uid */ 544 return map_id_up(&targ->projid_map, __kprojid_val(kprojid)); 545 } 546 EXPORT_SYMBOL(from_kprojid); 547 548 /** 549 * from_kprojid_munged - Create a projiid from a kprojid user-namespace pair. 550 * @targ: The user namespace we want a projid in. 551 * @kprojid: The kernel internal projid to start with. 552 * 553 * Map @kprojid into the user-namespace specified by @targ and 554 * return the resulting projid. 555 * 556 * There is always a mapping into the initial user_namespace. 557 * 558 * Unlike from_kprojid from_kprojid_munged never fails and always 559 * returns a valid projid. This makes from_kprojid_munged 560 * appropriate for use in syscalls like stat and where 561 * failing the system call and failing to provide a valid projid are 562 * not an options. 563 * 564 * If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned. 565 */ 566 projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid) 567 { 568 projid_t projid; 569 projid = from_kprojid(targ, kprojid); 570 571 if (projid == (projid_t) -1) 572 projid = OVERFLOW_PROJID; 573 return projid; 574 } 575 EXPORT_SYMBOL(from_kprojid_munged); 576 577 578 static int uid_m_show(struct seq_file *seq, void *v) 579 { 580 struct user_namespace *ns = seq->private; 581 struct uid_gid_extent *extent = v; 582 struct user_namespace *lower_ns; 583 uid_t lower; 584 585 lower_ns = seq_user_ns(seq); 586 if ((lower_ns == ns) && lower_ns->parent) 587 lower_ns = lower_ns->parent; 588 589 lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first)); 590 591 seq_printf(seq, "%10u %10u %10u\n", 592 extent->first, 593 lower, 594 extent->count); 595 596 return 0; 597 } 598 599 static int gid_m_show(struct seq_file *seq, void *v) 600 { 601 struct user_namespace *ns = seq->private; 602 struct uid_gid_extent *extent = v; 603 struct user_namespace *lower_ns; 604 gid_t lower; 605 606 lower_ns = seq_user_ns(seq); 607 if ((lower_ns == ns) && lower_ns->parent) 608 lower_ns = lower_ns->parent; 609 610 lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first)); 611 612 seq_printf(seq, "%10u %10u %10u\n", 613 extent->first, 614 lower, 615 extent->count); 616 617 return 0; 618 } 619 620 static int projid_m_show(struct seq_file *seq, void *v) 621 { 622 struct user_namespace *ns = seq->private; 623 struct uid_gid_extent *extent = v; 624 struct user_namespace *lower_ns; 625 projid_t lower; 626 627 lower_ns = seq_user_ns(seq); 628 if ((lower_ns == ns) && lower_ns->parent) 629 lower_ns = lower_ns->parent; 630 631 lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first)); 632 633 seq_printf(seq, "%10u %10u %10u\n", 634 extent->first, 635 lower, 636 extent->count); 637 638 return 0; 639 } 640 641 static void *m_start(struct seq_file *seq, loff_t *ppos, 642 struct uid_gid_map *map) 643 { 644 loff_t pos = *ppos; 645 unsigned extents = map->nr_extents; 646 smp_rmb(); 647 648 if (pos >= extents) 649 return NULL; 650 651 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 652 return &map->extent[pos]; 653 654 return &map->forward[pos]; 655 } 656 657 static void *uid_m_start(struct seq_file *seq, loff_t *ppos) 658 { 659 struct user_namespace *ns = seq->private; 660 661 return m_start(seq, ppos, &ns->uid_map); 662 } 663 664 static void *gid_m_start(struct seq_file *seq, loff_t *ppos) 665 { 666 struct user_namespace *ns = seq->private; 667 668 return m_start(seq, ppos, &ns->gid_map); 669 } 670 671 static void *projid_m_start(struct seq_file *seq, loff_t *ppos) 672 { 673 struct user_namespace *ns = seq->private; 674 675 return m_start(seq, ppos, &ns->projid_map); 676 } 677 678 static void *m_next(struct seq_file *seq, void *v, loff_t *pos) 679 { 680 (*pos)++; 681 return seq->op->start(seq, pos); 682 } 683 684 static void m_stop(struct seq_file *seq, void *v) 685 { 686 return; 687 } 688 689 const struct seq_operations proc_uid_seq_operations = { 690 .start = uid_m_start, 691 .stop = m_stop, 692 .next = m_next, 693 .show = uid_m_show, 694 }; 695 696 const struct seq_operations proc_gid_seq_operations = { 697 .start = gid_m_start, 698 .stop = m_stop, 699 .next = m_next, 700 .show = gid_m_show, 701 }; 702 703 const struct seq_operations proc_projid_seq_operations = { 704 .start = projid_m_start, 705 .stop = m_stop, 706 .next = m_next, 707 .show = projid_m_show, 708 }; 709 710 static bool mappings_overlap(struct uid_gid_map *new_map, 711 struct uid_gid_extent *extent) 712 { 713 u32 upper_first, lower_first, upper_last, lower_last; 714 unsigned idx; 715 716 upper_first = extent->first; 717 lower_first = extent->lower_first; 718 upper_last = upper_first + extent->count - 1; 719 lower_last = lower_first + extent->count - 1; 720 721 for (idx = 0; idx < new_map->nr_extents; idx++) { 722 u32 prev_upper_first, prev_lower_first; 723 u32 prev_upper_last, prev_lower_last; 724 struct uid_gid_extent *prev; 725 726 if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 727 prev = &new_map->extent[idx]; 728 else 729 prev = &new_map->forward[idx]; 730 731 prev_upper_first = prev->first; 732 prev_lower_first = prev->lower_first; 733 prev_upper_last = prev_upper_first + prev->count - 1; 734 prev_lower_last = prev_lower_first + prev->count - 1; 735 736 /* Does the upper range intersect a previous extent? */ 737 if ((prev_upper_first <= upper_last) && 738 (prev_upper_last >= upper_first)) 739 return true; 740 741 /* Does the lower range intersect a previous extent? */ 742 if ((prev_lower_first <= lower_last) && 743 (prev_lower_last >= lower_first)) 744 return true; 745 } 746 return false; 747 } 748 749 /** 750 * insert_extent - Safely insert a new idmap extent into struct uid_gid_map. 751 * Takes care to allocate a 4K block of memory if the number of mappings exceeds 752 * UID_GID_MAP_MAX_BASE_EXTENTS. 753 */ 754 static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent) 755 { 756 struct uid_gid_extent *dest; 757 758 if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) { 759 struct uid_gid_extent *forward; 760 761 /* Allocate memory for 340 mappings. */ 762 forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS, 763 sizeof(struct uid_gid_extent), 764 GFP_KERNEL); 765 if (!forward) 766 return -ENOMEM; 767 768 /* Copy over memory. Only set up memory for the forward pointer. 769 * Defer the memory setup for the reverse pointer. 770 */ 771 memcpy(forward, map->extent, 772 map->nr_extents * sizeof(map->extent[0])); 773 774 map->forward = forward; 775 map->reverse = NULL; 776 } 777 778 if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS) 779 dest = &map->extent[map->nr_extents]; 780 else 781 dest = &map->forward[map->nr_extents]; 782 783 *dest = *extent; 784 map->nr_extents++; 785 return 0; 786 } 787 788 /* cmp function to sort() forward mappings */ 789 static int cmp_extents_forward(const void *a, const void *b) 790 { 791 const struct uid_gid_extent *e1 = a; 792 const struct uid_gid_extent *e2 = b; 793 794 if (e1->first < e2->first) 795 return -1; 796 797 if (e1->first > e2->first) 798 return 1; 799 800 return 0; 801 } 802 803 /* cmp function to sort() reverse mappings */ 804 static int cmp_extents_reverse(const void *a, const void *b) 805 { 806 const struct uid_gid_extent *e1 = a; 807 const struct uid_gid_extent *e2 = b; 808 809 if (e1->lower_first < e2->lower_first) 810 return -1; 811 812 if (e1->lower_first > e2->lower_first) 813 return 1; 814 815 return 0; 816 } 817 818 /** 819 * sort_idmaps - Sorts an array of idmap entries. 820 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 821 */ 822 static int sort_idmaps(struct uid_gid_map *map) 823 { 824 if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 825 return 0; 826 827 /* Sort forward array. */ 828 sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent), 829 cmp_extents_forward, NULL); 830 831 /* Only copy the memory from forward we actually need. */ 832 map->reverse = kmemdup(map->forward, 833 map->nr_extents * sizeof(struct uid_gid_extent), 834 GFP_KERNEL); 835 if (!map->reverse) 836 return -ENOMEM; 837 838 /* Sort reverse array. */ 839 sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent), 840 cmp_extents_reverse, NULL); 841 842 return 0; 843 } 844 845 /** 846 * verify_root_map() - check the uid 0 mapping 847 * @file: idmapping file 848 * @map_ns: user namespace of the target process 849 * @new_map: requested idmap 850 * 851 * If a process requests mapping parent uid 0 into the new ns, verify that the 852 * process writing the map had the CAP_SETFCAP capability as the target process 853 * will be able to write fscaps that are valid in ancestor user namespaces. 854 * 855 * Return: true if the mapping is allowed, false if not. 856 */ 857 static bool verify_root_map(const struct file *file, 858 struct user_namespace *map_ns, 859 struct uid_gid_map *new_map) 860 { 861 int idx; 862 const struct user_namespace *file_ns = file->f_cred->user_ns; 863 struct uid_gid_extent *extent0 = NULL; 864 865 for (idx = 0; idx < new_map->nr_extents; idx++) { 866 if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 867 extent0 = &new_map->extent[idx]; 868 else 869 extent0 = &new_map->forward[idx]; 870 if (extent0->lower_first == 0) 871 break; 872 873 extent0 = NULL; 874 } 875 876 if (!extent0) 877 return true; 878 879 if (map_ns == file_ns) { 880 /* The process unshared its ns and is writing to its own 881 * /proc/self/uid_map. User already has full capabilites in 882 * the new namespace. Verify that the parent had CAP_SETFCAP 883 * when it unshared. 884 * */ 885 if (!file_ns->parent_could_setfcap) 886 return false; 887 } else { 888 /* Process p1 is writing to uid_map of p2, who is in a child 889 * user namespace to p1's. Verify that the opener of the map 890 * file has CAP_SETFCAP against the parent of the new map 891 * namespace */ 892 if (!file_ns_capable(file, map_ns->parent, CAP_SETFCAP)) 893 return false; 894 } 895 896 return true; 897 } 898 899 static ssize_t map_write(struct file *file, const char __user *buf, 900 size_t count, loff_t *ppos, 901 int cap_setid, 902 struct uid_gid_map *map, 903 struct uid_gid_map *parent_map) 904 { 905 struct seq_file *seq = file->private_data; 906 struct user_namespace *map_ns = seq->private; 907 struct uid_gid_map new_map; 908 unsigned idx; 909 struct uid_gid_extent extent; 910 char *kbuf = NULL, *pos, *next_line; 911 ssize_t ret; 912 913 /* Only allow < page size writes at the beginning of the file */ 914 if ((*ppos != 0) || (count >= PAGE_SIZE)) 915 return -EINVAL; 916 917 /* Slurp in the user data */ 918 kbuf = memdup_user_nul(buf, count); 919 if (IS_ERR(kbuf)) 920 return PTR_ERR(kbuf); 921 922 /* 923 * The userns_state_mutex serializes all writes to any given map. 924 * 925 * Any map is only ever written once. 926 * 927 * An id map fits within 1 cache line on most architectures. 928 * 929 * On read nothing needs to be done unless you are on an 930 * architecture with a crazy cache coherency model like alpha. 931 * 932 * There is a one time data dependency between reading the 933 * count of the extents and the values of the extents. The 934 * desired behavior is to see the values of the extents that 935 * were written before the count of the extents. 936 * 937 * To achieve this smp_wmb() is used on guarantee the write 938 * order and smp_rmb() is guaranteed that we don't have crazy 939 * architectures returning stale data. 940 */ 941 mutex_lock(&userns_state_mutex); 942 943 memset(&new_map, 0, sizeof(struct uid_gid_map)); 944 945 ret = -EPERM; 946 /* Only allow one successful write to the map */ 947 if (map->nr_extents != 0) 948 goto out; 949 950 /* 951 * Adjusting namespace settings requires capabilities on the target. 952 */ 953 if (cap_valid(cap_setid) && !file_ns_capable(file, map_ns, CAP_SYS_ADMIN)) 954 goto out; 955 956 /* Parse the user data */ 957 ret = -EINVAL; 958 pos = kbuf; 959 for (; pos; pos = next_line) { 960 961 /* Find the end of line and ensure I don't look past it */ 962 next_line = strchr(pos, '\n'); 963 if (next_line) { 964 *next_line = '\0'; 965 next_line++; 966 if (*next_line == '\0') 967 next_line = NULL; 968 } 969 970 pos = skip_spaces(pos); 971 extent.first = simple_strtoul(pos, &pos, 10); 972 if (!isspace(*pos)) 973 goto out; 974 975 pos = skip_spaces(pos); 976 extent.lower_first = simple_strtoul(pos, &pos, 10); 977 if (!isspace(*pos)) 978 goto out; 979 980 pos = skip_spaces(pos); 981 extent.count = simple_strtoul(pos, &pos, 10); 982 if (*pos && !isspace(*pos)) 983 goto out; 984 985 /* Verify there is not trailing junk on the line */ 986 pos = skip_spaces(pos); 987 if (*pos != '\0') 988 goto out; 989 990 /* Verify we have been given valid starting values */ 991 if ((extent.first == (u32) -1) || 992 (extent.lower_first == (u32) -1)) 993 goto out; 994 995 /* Verify count is not zero and does not cause the 996 * extent to wrap 997 */ 998 if ((extent.first + extent.count) <= extent.first) 999 goto out; 1000 if ((extent.lower_first + extent.count) <= 1001 extent.lower_first) 1002 goto out; 1003 1004 /* Do the ranges in extent overlap any previous extents? */ 1005 if (mappings_overlap(&new_map, &extent)) 1006 goto out; 1007 1008 if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS && 1009 (next_line != NULL)) 1010 goto out; 1011 1012 ret = insert_extent(&new_map, &extent); 1013 if (ret < 0) 1014 goto out; 1015 ret = -EINVAL; 1016 } 1017 /* Be very certain the new map actually exists */ 1018 if (new_map.nr_extents == 0) 1019 goto out; 1020 1021 ret = -EPERM; 1022 /* Validate the user is allowed to use user id's mapped to. */ 1023 if (!new_idmap_permitted(file, map_ns, cap_setid, &new_map)) 1024 goto out; 1025 1026 ret = -EPERM; 1027 /* Map the lower ids from the parent user namespace to the 1028 * kernel global id space. 1029 */ 1030 for (idx = 0; idx < new_map.nr_extents; idx++) { 1031 struct uid_gid_extent *e; 1032 u32 lower_first; 1033 1034 if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 1035 e = &new_map.extent[idx]; 1036 else 1037 e = &new_map.forward[idx]; 1038 1039 lower_first = map_id_range_down(parent_map, 1040 e->lower_first, 1041 e->count); 1042 1043 /* Fail if we can not map the specified extent to 1044 * the kernel global id space. 1045 */ 1046 if (lower_first == (u32) -1) 1047 goto out; 1048 1049 e->lower_first = lower_first; 1050 } 1051 1052 /* 1053 * If we want to use binary search for lookup, this clones the extent 1054 * array and sorts both copies. 1055 */ 1056 ret = sort_idmaps(&new_map); 1057 if (ret < 0) 1058 goto out; 1059 1060 /* Install the map */ 1061 if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) { 1062 memcpy(map->extent, new_map.extent, 1063 new_map.nr_extents * sizeof(new_map.extent[0])); 1064 } else { 1065 map->forward = new_map.forward; 1066 map->reverse = new_map.reverse; 1067 } 1068 smp_wmb(); 1069 map->nr_extents = new_map.nr_extents; 1070 1071 *ppos = count; 1072 ret = count; 1073 out: 1074 if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 1075 kfree(new_map.forward); 1076 kfree(new_map.reverse); 1077 map->forward = NULL; 1078 map->reverse = NULL; 1079 map->nr_extents = 0; 1080 } 1081 1082 mutex_unlock(&userns_state_mutex); 1083 kfree(kbuf); 1084 return ret; 1085 } 1086 1087 ssize_t proc_uid_map_write(struct file *file, const char __user *buf, 1088 size_t size, loff_t *ppos) 1089 { 1090 struct seq_file *seq = file->private_data; 1091 struct user_namespace *ns = seq->private; 1092 struct user_namespace *seq_ns = seq_user_ns(seq); 1093 1094 if (!ns->parent) 1095 return -EPERM; 1096 1097 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1098 return -EPERM; 1099 1100 return map_write(file, buf, size, ppos, CAP_SETUID, 1101 &ns->uid_map, &ns->parent->uid_map); 1102 } 1103 1104 ssize_t proc_gid_map_write(struct file *file, const char __user *buf, 1105 size_t size, loff_t *ppos) 1106 { 1107 struct seq_file *seq = file->private_data; 1108 struct user_namespace *ns = seq->private; 1109 struct user_namespace *seq_ns = seq_user_ns(seq); 1110 1111 if (!ns->parent) 1112 return -EPERM; 1113 1114 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1115 return -EPERM; 1116 1117 return map_write(file, buf, size, ppos, CAP_SETGID, 1118 &ns->gid_map, &ns->parent->gid_map); 1119 } 1120 1121 ssize_t proc_projid_map_write(struct file *file, const char __user *buf, 1122 size_t size, loff_t *ppos) 1123 { 1124 struct seq_file *seq = file->private_data; 1125 struct user_namespace *ns = seq->private; 1126 struct user_namespace *seq_ns = seq_user_ns(seq); 1127 1128 if (!ns->parent) 1129 return -EPERM; 1130 1131 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1132 return -EPERM; 1133 1134 /* Anyone can set any valid project id no capability needed */ 1135 return map_write(file, buf, size, ppos, -1, 1136 &ns->projid_map, &ns->parent->projid_map); 1137 } 1138 1139 static bool new_idmap_permitted(const struct file *file, 1140 struct user_namespace *ns, int cap_setid, 1141 struct uid_gid_map *new_map) 1142 { 1143 const struct cred *cred = file->f_cred; 1144 1145 if (cap_setid == CAP_SETUID && !verify_root_map(file, ns, new_map)) 1146 return false; 1147 1148 /* Don't allow mappings that would allow anything that wouldn't 1149 * be allowed without the establishment of unprivileged mappings. 1150 */ 1151 if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) && 1152 uid_eq(ns->owner, cred->euid)) { 1153 u32 id = new_map->extent[0].lower_first; 1154 if (cap_setid == CAP_SETUID) { 1155 kuid_t uid = make_kuid(ns->parent, id); 1156 if (uid_eq(uid, cred->euid)) 1157 return true; 1158 } else if (cap_setid == CAP_SETGID) { 1159 kgid_t gid = make_kgid(ns->parent, id); 1160 if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) && 1161 gid_eq(gid, cred->egid)) 1162 return true; 1163 } 1164 } 1165 1166 /* Allow anyone to set a mapping that doesn't require privilege */ 1167 if (!cap_valid(cap_setid)) 1168 return true; 1169 1170 /* Allow the specified ids if we have the appropriate capability 1171 * (CAP_SETUID or CAP_SETGID) over the parent user namespace. 1172 * And the opener of the id file also has the appropriate capability. 1173 */ 1174 if (ns_capable(ns->parent, cap_setid) && 1175 file_ns_capable(file, ns->parent, cap_setid)) 1176 return true; 1177 1178 return false; 1179 } 1180 1181 int proc_setgroups_show(struct seq_file *seq, void *v) 1182 { 1183 struct user_namespace *ns = seq->private; 1184 unsigned long userns_flags = READ_ONCE(ns->flags); 1185 1186 seq_printf(seq, "%s\n", 1187 (userns_flags & USERNS_SETGROUPS_ALLOWED) ? 1188 "allow" : "deny"); 1189 return 0; 1190 } 1191 1192 ssize_t proc_setgroups_write(struct file *file, const char __user *buf, 1193 size_t count, loff_t *ppos) 1194 { 1195 struct seq_file *seq = file->private_data; 1196 struct user_namespace *ns = seq->private; 1197 char kbuf[8], *pos; 1198 bool setgroups_allowed; 1199 ssize_t ret; 1200 1201 /* Only allow a very narrow range of strings to be written */ 1202 ret = -EINVAL; 1203 if ((*ppos != 0) || (count >= sizeof(kbuf))) 1204 goto out; 1205 1206 /* What was written? */ 1207 ret = -EFAULT; 1208 if (copy_from_user(kbuf, buf, count)) 1209 goto out; 1210 kbuf[count] = '\0'; 1211 pos = kbuf; 1212 1213 /* What is being requested? */ 1214 ret = -EINVAL; 1215 if (strncmp(pos, "allow", 5) == 0) { 1216 pos += 5; 1217 setgroups_allowed = true; 1218 } 1219 else if (strncmp(pos, "deny", 4) == 0) { 1220 pos += 4; 1221 setgroups_allowed = false; 1222 } 1223 else 1224 goto out; 1225 1226 /* Verify there is not trailing junk on the line */ 1227 pos = skip_spaces(pos); 1228 if (*pos != '\0') 1229 goto out; 1230 1231 ret = -EPERM; 1232 mutex_lock(&userns_state_mutex); 1233 if (setgroups_allowed) { 1234 /* Enabling setgroups after setgroups has been disabled 1235 * is not allowed. 1236 */ 1237 if (!(ns->flags & USERNS_SETGROUPS_ALLOWED)) 1238 goto out_unlock; 1239 } else { 1240 /* Permanently disabling setgroups after setgroups has 1241 * been enabled by writing the gid_map is not allowed. 1242 */ 1243 if (ns->gid_map.nr_extents != 0) 1244 goto out_unlock; 1245 ns->flags &= ~USERNS_SETGROUPS_ALLOWED; 1246 } 1247 mutex_unlock(&userns_state_mutex); 1248 1249 /* Report a successful write */ 1250 *ppos = count; 1251 ret = count; 1252 out: 1253 return ret; 1254 out_unlock: 1255 mutex_unlock(&userns_state_mutex); 1256 goto out; 1257 } 1258 1259 bool userns_may_setgroups(const struct user_namespace *ns) 1260 { 1261 bool allowed; 1262 1263 mutex_lock(&userns_state_mutex); 1264 /* It is not safe to use setgroups until a gid mapping in 1265 * the user namespace has been established. 1266 */ 1267 allowed = ns->gid_map.nr_extents != 0; 1268 /* Is setgroups allowed? */ 1269 allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED); 1270 mutex_unlock(&userns_state_mutex); 1271 1272 return allowed; 1273 } 1274 1275 /* 1276 * Returns true if @child is the same namespace or a descendant of 1277 * @ancestor. 1278 */ 1279 bool in_userns(const struct user_namespace *ancestor, 1280 const struct user_namespace *child) 1281 { 1282 const struct user_namespace *ns; 1283 for (ns = child; ns->level > ancestor->level; ns = ns->parent) 1284 ; 1285 return (ns == ancestor); 1286 } 1287 1288 bool current_in_userns(const struct user_namespace *target_ns) 1289 { 1290 return in_userns(target_ns, current_user_ns()); 1291 } 1292 EXPORT_SYMBOL(current_in_userns); 1293 1294 static inline struct user_namespace *to_user_ns(struct ns_common *ns) 1295 { 1296 return container_of(ns, struct user_namespace, ns); 1297 } 1298 1299 static struct ns_common *userns_get(struct task_struct *task) 1300 { 1301 struct user_namespace *user_ns; 1302 1303 rcu_read_lock(); 1304 user_ns = get_user_ns(__task_cred(task)->user_ns); 1305 rcu_read_unlock(); 1306 1307 return user_ns ? &user_ns->ns : NULL; 1308 } 1309 1310 static void userns_put(struct ns_common *ns) 1311 { 1312 put_user_ns(to_user_ns(ns)); 1313 } 1314 1315 static int userns_install(struct nsset *nsset, struct ns_common *ns) 1316 { 1317 struct user_namespace *user_ns = to_user_ns(ns); 1318 struct cred *cred; 1319 1320 /* Don't allow gaining capabilities by reentering 1321 * the same user namespace. 1322 */ 1323 if (user_ns == current_user_ns()) 1324 return -EINVAL; 1325 1326 /* Tasks that share a thread group must share a user namespace */ 1327 if (!thread_group_empty(current)) 1328 return -EINVAL; 1329 1330 if (current->fs->users != 1) 1331 return -EINVAL; 1332 1333 if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 1334 return -EPERM; 1335 1336 cred = nsset_cred(nsset); 1337 if (!cred) 1338 return -EINVAL; 1339 1340 put_user_ns(cred->user_ns); 1341 set_cred_user_ns(cred, get_user_ns(user_ns)); 1342 1343 return 0; 1344 } 1345 1346 struct ns_common *ns_get_owner(struct ns_common *ns) 1347 { 1348 struct user_namespace *my_user_ns = current_user_ns(); 1349 struct user_namespace *owner, *p; 1350 1351 /* See if the owner is in the current user namespace */ 1352 owner = p = ns->ops->owner(ns); 1353 for (;;) { 1354 if (!p) 1355 return ERR_PTR(-EPERM); 1356 if (p == my_user_ns) 1357 break; 1358 p = p->parent; 1359 } 1360 1361 return &get_user_ns(owner)->ns; 1362 } 1363 1364 static struct user_namespace *userns_owner(struct ns_common *ns) 1365 { 1366 return to_user_ns(ns)->parent; 1367 } 1368 1369 const struct proc_ns_operations userns_operations = { 1370 .name = "user", 1371 .type = CLONE_NEWUSER, 1372 .get = userns_get, 1373 .put = userns_put, 1374 .install = userns_install, 1375 .owner = userns_owner, 1376 .get_parent = ns_get_owner, 1377 }; 1378 1379 static __init int user_namespaces_init(void) 1380 { 1381 user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC); 1382 return 0; 1383 } 1384 subsys_initcall(user_namespaces_init); 1385