1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #include <linux/export.h> 4 #include <linux/nsproxy.h> 5 #include <linux/slab.h> 6 #include <linux/sched/signal.h> 7 #include <linux/user_namespace.h> 8 #include <linux/proc_ns.h> 9 #include <linux/highuid.h> 10 #include <linux/cred.h> 11 #include <linux/securebits.h> 12 #include <linux/security.h> 13 #include <linux/keyctl.h> 14 #include <linux/key-type.h> 15 #include <keys/user-type.h> 16 #include <linux/seq_file.h> 17 #include <linux/fs.h> 18 #include <linux/uaccess.h> 19 #include <linux/ctype.h> 20 #include <linux/projid.h> 21 #include <linux/fs_struct.h> 22 #include <linux/bsearch.h> 23 #include <linux/sort.h> 24 25 static struct kmem_cache *user_ns_cachep __read_mostly; 26 static DEFINE_MUTEX(userns_state_mutex); 27 28 static bool new_idmap_permitted(const struct file *file, 29 struct user_namespace *ns, int cap_setid, 30 struct uid_gid_map *map); 31 static void free_user_ns(struct work_struct *work); 32 33 static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid) 34 { 35 return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES); 36 } 37 38 static void dec_user_namespaces(struct ucounts *ucounts) 39 { 40 return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES); 41 } 42 43 static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns) 44 { 45 /* Start with the same capabilities as init but useless for doing 46 * anything as the capabilities are bound to the new user namespace. 47 */ 48 cred->securebits = SECUREBITS_DEFAULT; 49 cred->cap_inheritable = CAP_EMPTY_SET; 50 cred->cap_permitted = CAP_FULL_SET; 51 cred->cap_effective = CAP_FULL_SET; 52 cred->cap_ambient = CAP_EMPTY_SET; 53 cred->cap_bset = CAP_FULL_SET; 54 #ifdef CONFIG_KEYS 55 key_put(cred->request_key_auth); 56 cred->request_key_auth = NULL; 57 #endif 58 /* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */ 59 cred->user_ns = user_ns; 60 } 61 62 static unsigned long enforced_nproc_rlimit(void) 63 { 64 unsigned long limit = RLIM_INFINITY; 65 66 /* Is RLIMIT_NPROC currently enforced? */ 67 if (!uid_eq(current_uid(), GLOBAL_ROOT_UID) || 68 (current_user_ns() != &init_user_ns)) 69 limit = rlimit(RLIMIT_NPROC); 70 71 return limit; 72 } 73 74 /* 75 * Create a new user namespace, deriving the creator from the user in the 76 * passed credentials, and replacing that user with the new root user for the 77 * new namespace. 78 * 79 * This is called by copy_creds(), which will finish setting the target task's 80 * credentials. 81 */ 82 int create_user_ns(struct cred *new) 83 { 84 struct user_namespace *ns, *parent_ns = new->user_ns; 85 kuid_t owner = new->euid; 86 kgid_t group = new->egid; 87 struct ucounts *ucounts; 88 int ret, i; 89 90 ret = -ENOSPC; 91 if (parent_ns->level > 32) 92 goto fail; 93 94 ucounts = inc_user_namespaces(parent_ns, owner); 95 if (!ucounts) 96 goto fail; 97 98 /* 99 * Verify that we can not violate the policy of which files 100 * may be accessed that is specified by the root directory, 101 * by verifying that the root directory is at the root of the 102 * mount namespace which allows all files to be accessed. 103 */ 104 ret = -EPERM; 105 if (current_chrooted()) 106 goto fail_dec; 107 108 /* The creator needs a mapping in the parent user namespace 109 * or else we won't be able to reasonably tell userspace who 110 * created a user_namespace. 111 */ 112 ret = -EPERM; 113 if (!kuid_has_mapping(parent_ns, owner) || 114 !kgid_has_mapping(parent_ns, group)) 115 goto fail_dec; 116 117 ret = security_create_user_ns(new); 118 if (ret < 0) 119 goto fail_dec; 120 121 ret = -ENOMEM; 122 ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL); 123 if (!ns) 124 goto fail_dec; 125 126 ns->parent_could_setfcap = cap_raised(new->cap_effective, CAP_SETFCAP); 127 ret = ns_alloc_inum(&ns->ns); 128 if (ret) 129 goto fail_free; 130 ns->ns.ops = &userns_operations; 131 132 refcount_set(&ns->ns.count, 1); 133 /* Leave the new->user_ns reference with the new user namespace. */ 134 ns->parent = parent_ns; 135 ns->level = parent_ns->level + 1; 136 ns->owner = owner; 137 ns->group = group; 138 INIT_WORK(&ns->work, free_user_ns); 139 for (i = 0; i < UCOUNT_COUNTS; i++) { 140 ns->ucount_max[i] = INT_MAX; 141 } 142 set_userns_rlimit_max(ns, UCOUNT_RLIMIT_NPROC, enforced_nproc_rlimit()); 143 set_userns_rlimit_max(ns, UCOUNT_RLIMIT_MSGQUEUE, rlimit(RLIMIT_MSGQUEUE)); 144 set_userns_rlimit_max(ns, UCOUNT_RLIMIT_SIGPENDING, rlimit(RLIMIT_SIGPENDING)); 145 set_userns_rlimit_max(ns, UCOUNT_RLIMIT_MEMLOCK, rlimit(RLIMIT_MEMLOCK)); 146 ns->ucounts = ucounts; 147 148 /* Inherit USERNS_SETGROUPS_ALLOWED from our parent */ 149 mutex_lock(&userns_state_mutex); 150 ns->flags = parent_ns->flags; 151 mutex_unlock(&userns_state_mutex); 152 153 #ifdef CONFIG_KEYS 154 INIT_LIST_HEAD(&ns->keyring_name_list); 155 init_rwsem(&ns->keyring_sem); 156 #endif 157 ret = -ENOMEM; 158 if (!setup_userns_sysctls(ns)) 159 goto fail_keyring; 160 161 set_cred_user_ns(new, ns); 162 return 0; 163 fail_keyring: 164 #ifdef CONFIG_PERSISTENT_KEYRINGS 165 key_put(ns->persistent_keyring_register); 166 #endif 167 ns_free_inum(&ns->ns); 168 fail_free: 169 kmem_cache_free(user_ns_cachep, ns); 170 fail_dec: 171 dec_user_namespaces(ucounts); 172 fail: 173 return ret; 174 } 175 176 int unshare_userns(unsigned long unshare_flags, struct cred **new_cred) 177 { 178 struct cred *cred; 179 int err = -ENOMEM; 180 181 if (!(unshare_flags & CLONE_NEWUSER)) 182 return 0; 183 184 cred = prepare_creds(); 185 if (cred) { 186 err = create_user_ns(cred); 187 if (err) 188 put_cred(cred); 189 else 190 *new_cred = cred; 191 } 192 193 return err; 194 } 195 196 static void free_user_ns(struct work_struct *work) 197 { 198 struct user_namespace *parent, *ns = 199 container_of(work, struct user_namespace, work); 200 201 do { 202 struct ucounts *ucounts = ns->ucounts; 203 parent = ns->parent; 204 if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 205 kfree(ns->gid_map.forward); 206 kfree(ns->gid_map.reverse); 207 } 208 if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 209 kfree(ns->uid_map.forward); 210 kfree(ns->uid_map.reverse); 211 } 212 if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 213 kfree(ns->projid_map.forward); 214 kfree(ns->projid_map.reverse); 215 } 216 retire_userns_sysctls(ns); 217 key_free_user_ns(ns); 218 ns_free_inum(&ns->ns); 219 kmem_cache_free(user_ns_cachep, ns); 220 dec_user_namespaces(ucounts); 221 ns = parent; 222 } while (refcount_dec_and_test(&parent->ns.count)); 223 } 224 225 void __put_user_ns(struct user_namespace *ns) 226 { 227 schedule_work(&ns->work); 228 } 229 EXPORT_SYMBOL(__put_user_ns); 230 231 /** 232 * struct idmap_key - holds the information necessary to find an idmapping in a 233 * sorted idmap array. It is passed to cmp_map_id() as first argument. 234 */ 235 struct idmap_key { 236 bool map_up; /* true -> id from kid; false -> kid from id */ 237 u32 id; /* id to find */ 238 u32 count; /* == 0 unless used with map_id_range_down() */ 239 }; 240 241 /** 242 * cmp_map_id - Function to be passed to bsearch() to find the requested 243 * idmapping. Expects struct idmap_key to be passed via @k. 244 */ 245 static int cmp_map_id(const void *k, const void *e) 246 { 247 u32 first, last, id2; 248 const struct idmap_key *key = k; 249 const struct uid_gid_extent *el = e; 250 251 id2 = key->id + key->count - 1; 252 253 /* handle map_id_{down,up}() */ 254 if (key->map_up) 255 first = el->lower_first; 256 else 257 first = el->first; 258 259 last = first + el->count - 1; 260 261 if (key->id >= first && key->id <= last && 262 (id2 >= first && id2 <= last)) 263 return 0; 264 265 if (key->id < first || id2 < first) 266 return -1; 267 268 return 1; 269 } 270 271 /** 272 * map_id_range_down_max - Find idmap via binary search in ordered idmap array. 273 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 274 */ 275 static struct uid_gid_extent * 276 map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count) 277 { 278 struct idmap_key key; 279 280 key.map_up = false; 281 key.count = count; 282 key.id = id; 283 284 return bsearch(&key, map->forward, extents, 285 sizeof(struct uid_gid_extent), cmp_map_id); 286 } 287 288 /** 289 * map_id_range_down_base - Find idmap via binary search in static extent array. 290 * Can only be called if number of mappings is equal or less than 291 * UID_GID_MAP_MAX_BASE_EXTENTS. 292 */ 293 static struct uid_gid_extent * 294 map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count) 295 { 296 unsigned idx; 297 u32 first, last, id2; 298 299 id2 = id + count - 1; 300 301 /* Find the matching extent */ 302 for (idx = 0; idx < extents; idx++) { 303 first = map->extent[idx].first; 304 last = first + map->extent[idx].count - 1; 305 if (id >= first && id <= last && 306 (id2 >= first && id2 <= last)) 307 return &map->extent[idx]; 308 } 309 return NULL; 310 } 311 312 static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count) 313 { 314 struct uid_gid_extent *extent; 315 unsigned extents = map->nr_extents; 316 smp_rmb(); 317 318 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 319 extent = map_id_range_down_base(extents, map, id, count); 320 else 321 extent = map_id_range_down_max(extents, map, id, count); 322 323 /* Map the id or note failure */ 324 if (extent) 325 id = (id - extent->first) + extent->lower_first; 326 else 327 id = (u32) -1; 328 329 return id; 330 } 331 332 static u32 map_id_down(struct uid_gid_map *map, u32 id) 333 { 334 return map_id_range_down(map, id, 1); 335 } 336 337 /** 338 * map_id_up_base - Find idmap via binary search in static extent array. 339 * Can only be called if number of mappings is equal or less than 340 * UID_GID_MAP_MAX_BASE_EXTENTS. 341 */ 342 static struct uid_gid_extent * 343 map_id_up_base(unsigned extents, struct uid_gid_map *map, u32 id) 344 { 345 unsigned idx; 346 u32 first, last; 347 348 /* Find the matching extent */ 349 for (idx = 0; idx < extents; idx++) { 350 first = map->extent[idx].lower_first; 351 last = first + map->extent[idx].count - 1; 352 if (id >= first && id <= last) 353 return &map->extent[idx]; 354 } 355 return NULL; 356 } 357 358 /** 359 * map_id_up_max - Find idmap via binary search in ordered idmap array. 360 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 361 */ 362 static struct uid_gid_extent * 363 map_id_up_max(unsigned extents, struct uid_gid_map *map, u32 id) 364 { 365 struct idmap_key key; 366 367 key.map_up = true; 368 key.count = 1; 369 key.id = id; 370 371 return bsearch(&key, map->reverse, extents, 372 sizeof(struct uid_gid_extent), cmp_map_id); 373 } 374 375 static u32 map_id_up(struct uid_gid_map *map, u32 id) 376 { 377 struct uid_gid_extent *extent; 378 unsigned extents = map->nr_extents; 379 smp_rmb(); 380 381 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 382 extent = map_id_up_base(extents, map, id); 383 else 384 extent = map_id_up_max(extents, map, id); 385 386 /* Map the id or note failure */ 387 if (extent) 388 id = (id - extent->lower_first) + extent->first; 389 else 390 id = (u32) -1; 391 392 return id; 393 } 394 395 /** 396 * make_kuid - Map a user-namespace uid pair into a kuid. 397 * @ns: User namespace that the uid is in 398 * @uid: User identifier 399 * 400 * Maps a user-namespace uid pair into a kernel internal kuid, 401 * and returns that kuid. 402 * 403 * When there is no mapping defined for the user-namespace uid 404 * pair INVALID_UID is returned. Callers are expected to test 405 * for and handle INVALID_UID being returned. INVALID_UID 406 * may be tested for using uid_valid(). 407 */ 408 kuid_t make_kuid(struct user_namespace *ns, uid_t uid) 409 { 410 /* Map the uid to a global kernel uid */ 411 return KUIDT_INIT(map_id_down(&ns->uid_map, uid)); 412 } 413 EXPORT_SYMBOL(make_kuid); 414 415 /** 416 * from_kuid - Create a uid from a kuid user-namespace pair. 417 * @targ: The user namespace we want a uid in. 418 * @kuid: The kernel internal uid to start with. 419 * 420 * Map @kuid into the user-namespace specified by @targ and 421 * return the resulting uid. 422 * 423 * There is always a mapping into the initial user_namespace. 424 * 425 * If @kuid has no mapping in @targ (uid_t)-1 is returned. 426 */ 427 uid_t from_kuid(struct user_namespace *targ, kuid_t kuid) 428 { 429 /* Map the uid from a global kernel uid */ 430 return map_id_up(&targ->uid_map, __kuid_val(kuid)); 431 } 432 EXPORT_SYMBOL(from_kuid); 433 434 /** 435 * from_kuid_munged - Create a uid from a kuid user-namespace pair. 436 * @targ: The user namespace we want a uid in. 437 * @kuid: The kernel internal uid to start with. 438 * 439 * Map @kuid into the user-namespace specified by @targ and 440 * return the resulting uid. 441 * 442 * There is always a mapping into the initial user_namespace. 443 * 444 * Unlike from_kuid from_kuid_munged never fails and always 445 * returns a valid uid. This makes from_kuid_munged appropriate 446 * for use in syscalls like stat and getuid where failing the 447 * system call and failing to provide a valid uid are not an 448 * options. 449 * 450 * If @kuid has no mapping in @targ overflowuid is returned. 451 */ 452 uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid) 453 { 454 uid_t uid; 455 uid = from_kuid(targ, kuid); 456 457 if (uid == (uid_t) -1) 458 uid = overflowuid; 459 return uid; 460 } 461 EXPORT_SYMBOL(from_kuid_munged); 462 463 /** 464 * make_kgid - Map a user-namespace gid pair into a kgid. 465 * @ns: User namespace that the gid is in 466 * @gid: group identifier 467 * 468 * Maps a user-namespace gid pair into a kernel internal kgid, 469 * and returns that kgid. 470 * 471 * When there is no mapping defined for the user-namespace gid 472 * pair INVALID_GID is returned. Callers are expected to test 473 * for and handle INVALID_GID being returned. INVALID_GID may be 474 * tested for using gid_valid(). 475 */ 476 kgid_t make_kgid(struct user_namespace *ns, gid_t gid) 477 { 478 /* Map the gid to a global kernel gid */ 479 return KGIDT_INIT(map_id_down(&ns->gid_map, gid)); 480 } 481 EXPORT_SYMBOL(make_kgid); 482 483 /** 484 * from_kgid - Create a gid from a kgid user-namespace pair. 485 * @targ: The user namespace we want a gid in. 486 * @kgid: The kernel internal gid to start with. 487 * 488 * Map @kgid into the user-namespace specified by @targ and 489 * return the resulting gid. 490 * 491 * There is always a mapping into the initial user_namespace. 492 * 493 * If @kgid has no mapping in @targ (gid_t)-1 is returned. 494 */ 495 gid_t from_kgid(struct user_namespace *targ, kgid_t kgid) 496 { 497 /* Map the gid from a global kernel gid */ 498 return map_id_up(&targ->gid_map, __kgid_val(kgid)); 499 } 500 EXPORT_SYMBOL(from_kgid); 501 502 /** 503 * from_kgid_munged - Create a gid from a kgid user-namespace pair. 504 * @targ: The user namespace we want a gid in. 505 * @kgid: The kernel internal gid to start with. 506 * 507 * Map @kgid into the user-namespace specified by @targ and 508 * return the resulting gid. 509 * 510 * There is always a mapping into the initial user_namespace. 511 * 512 * Unlike from_kgid from_kgid_munged never fails and always 513 * returns a valid gid. This makes from_kgid_munged appropriate 514 * for use in syscalls like stat and getgid where failing the 515 * system call and failing to provide a valid gid are not options. 516 * 517 * If @kgid has no mapping in @targ overflowgid is returned. 518 */ 519 gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid) 520 { 521 gid_t gid; 522 gid = from_kgid(targ, kgid); 523 524 if (gid == (gid_t) -1) 525 gid = overflowgid; 526 return gid; 527 } 528 EXPORT_SYMBOL(from_kgid_munged); 529 530 /** 531 * make_kprojid - Map a user-namespace projid pair into a kprojid. 532 * @ns: User namespace that the projid is in 533 * @projid: Project identifier 534 * 535 * Maps a user-namespace uid pair into a kernel internal kuid, 536 * and returns that kuid. 537 * 538 * When there is no mapping defined for the user-namespace projid 539 * pair INVALID_PROJID is returned. Callers are expected to test 540 * for and handle INVALID_PROJID being returned. INVALID_PROJID 541 * may be tested for using projid_valid(). 542 */ 543 kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid) 544 { 545 /* Map the uid to a global kernel uid */ 546 return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid)); 547 } 548 EXPORT_SYMBOL(make_kprojid); 549 550 /** 551 * from_kprojid - Create a projid from a kprojid user-namespace pair. 552 * @targ: The user namespace we want a projid in. 553 * @kprojid: The kernel internal project identifier to start with. 554 * 555 * Map @kprojid into the user-namespace specified by @targ and 556 * return the resulting projid. 557 * 558 * There is always a mapping into the initial user_namespace. 559 * 560 * If @kprojid has no mapping in @targ (projid_t)-1 is returned. 561 */ 562 projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid) 563 { 564 /* Map the uid from a global kernel uid */ 565 return map_id_up(&targ->projid_map, __kprojid_val(kprojid)); 566 } 567 EXPORT_SYMBOL(from_kprojid); 568 569 /** 570 * from_kprojid_munged - Create a projiid from a kprojid user-namespace pair. 571 * @targ: The user namespace we want a projid in. 572 * @kprojid: The kernel internal projid to start with. 573 * 574 * Map @kprojid into the user-namespace specified by @targ and 575 * return the resulting projid. 576 * 577 * There is always a mapping into the initial user_namespace. 578 * 579 * Unlike from_kprojid from_kprojid_munged never fails and always 580 * returns a valid projid. This makes from_kprojid_munged 581 * appropriate for use in syscalls like stat and where 582 * failing the system call and failing to provide a valid projid are 583 * not an options. 584 * 585 * If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned. 586 */ 587 projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid) 588 { 589 projid_t projid; 590 projid = from_kprojid(targ, kprojid); 591 592 if (projid == (projid_t) -1) 593 projid = OVERFLOW_PROJID; 594 return projid; 595 } 596 EXPORT_SYMBOL(from_kprojid_munged); 597 598 599 static int uid_m_show(struct seq_file *seq, void *v) 600 { 601 struct user_namespace *ns = seq->private; 602 struct uid_gid_extent *extent = v; 603 struct user_namespace *lower_ns; 604 uid_t lower; 605 606 lower_ns = seq_user_ns(seq); 607 if ((lower_ns == ns) && lower_ns->parent) 608 lower_ns = lower_ns->parent; 609 610 lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first)); 611 612 seq_printf(seq, "%10u %10u %10u\n", 613 extent->first, 614 lower, 615 extent->count); 616 617 return 0; 618 } 619 620 static int gid_m_show(struct seq_file *seq, void *v) 621 { 622 struct user_namespace *ns = seq->private; 623 struct uid_gid_extent *extent = v; 624 struct user_namespace *lower_ns; 625 gid_t lower; 626 627 lower_ns = seq_user_ns(seq); 628 if ((lower_ns == ns) && lower_ns->parent) 629 lower_ns = lower_ns->parent; 630 631 lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first)); 632 633 seq_printf(seq, "%10u %10u %10u\n", 634 extent->first, 635 lower, 636 extent->count); 637 638 return 0; 639 } 640 641 static int projid_m_show(struct seq_file *seq, void *v) 642 { 643 struct user_namespace *ns = seq->private; 644 struct uid_gid_extent *extent = v; 645 struct user_namespace *lower_ns; 646 projid_t lower; 647 648 lower_ns = seq_user_ns(seq); 649 if ((lower_ns == ns) && lower_ns->parent) 650 lower_ns = lower_ns->parent; 651 652 lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first)); 653 654 seq_printf(seq, "%10u %10u %10u\n", 655 extent->first, 656 lower, 657 extent->count); 658 659 return 0; 660 } 661 662 static void *m_start(struct seq_file *seq, loff_t *ppos, 663 struct uid_gid_map *map) 664 { 665 loff_t pos = *ppos; 666 unsigned extents = map->nr_extents; 667 smp_rmb(); 668 669 if (pos >= extents) 670 return NULL; 671 672 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 673 return &map->extent[pos]; 674 675 return &map->forward[pos]; 676 } 677 678 static void *uid_m_start(struct seq_file *seq, loff_t *ppos) 679 { 680 struct user_namespace *ns = seq->private; 681 682 return m_start(seq, ppos, &ns->uid_map); 683 } 684 685 static void *gid_m_start(struct seq_file *seq, loff_t *ppos) 686 { 687 struct user_namespace *ns = seq->private; 688 689 return m_start(seq, ppos, &ns->gid_map); 690 } 691 692 static void *projid_m_start(struct seq_file *seq, loff_t *ppos) 693 { 694 struct user_namespace *ns = seq->private; 695 696 return m_start(seq, ppos, &ns->projid_map); 697 } 698 699 static void *m_next(struct seq_file *seq, void *v, loff_t *pos) 700 { 701 (*pos)++; 702 return seq->op->start(seq, pos); 703 } 704 705 static void m_stop(struct seq_file *seq, void *v) 706 { 707 return; 708 } 709 710 const struct seq_operations proc_uid_seq_operations = { 711 .start = uid_m_start, 712 .stop = m_stop, 713 .next = m_next, 714 .show = uid_m_show, 715 }; 716 717 const struct seq_operations proc_gid_seq_operations = { 718 .start = gid_m_start, 719 .stop = m_stop, 720 .next = m_next, 721 .show = gid_m_show, 722 }; 723 724 const struct seq_operations proc_projid_seq_operations = { 725 .start = projid_m_start, 726 .stop = m_stop, 727 .next = m_next, 728 .show = projid_m_show, 729 }; 730 731 static bool mappings_overlap(struct uid_gid_map *new_map, 732 struct uid_gid_extent *extent) 733 { 734 u32 upper_first, lower_first, upper_last, lower_last; 735 unsigned idx; 736 737 upper_first = extent->first; 738 lower_first = extent->lower_first; 739 upper_last = upper_first + extent->count - 1; 740 lower_last = lower_first + extent->count - 1; 741 742 for (idx = 0; idx < new_map->nr_extents; idx++) { 743 u32 prev_upper_first, prev_lower_first; 744 u32 prev_upper_last, prev_lower_last; 745 struct uid_gid_extent *prev; 746 747 if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 748 prev = &new_map->extent[idx]; 749 else 750 prev = &new_map->forward[idx]; 751 752 prev_upper_first = prev->first; 753 prev_lower_first = prev->lower_first; 754 prev_upper_last = prev_upper_first + prev->count - 1; 755 prev_lower_last = prev_lower_first + prev->count - 1; 756 757 /* Does the upper range intersect a previous extent? */ 758 if ((prev_upper_first <= upper_last) && 759 (prev_upper_last >= upper_first)) 760 return true; 761 762 /* Does the lower range intersect a previous extent? */ 763 if ((prev_lower_first <= lower_last) && 764 (prev_lower_last >= lower_first)) 765 return true; 766 } 767 return false; 768 } 769 770 /** 771 * insert_extent - Safely insert a new idmap extent into struct uid_gid_map. 772 * Takes care to allocate a 4K block of memory if the number of mappings exceeds 773 * UID_GID_MAP_MAX_BASE_EXTENTS. 774 */ 775 static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent) 776 { 777 struct uid_gid_extent *dest; 778 779 if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) { 780 struct uid_gid_extent *forward; 781 782 /* Allocate memory for 340 mappings. */ 783 forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS, 784 sizeof(struct uid_gid_extent), 785 GFP_KERNEL); 786 if (!forward) 787 return -ENOMEM; 788 789 /* Copy over memory. Only set up memory for the forward pointer. 790 * Defer the memory setup for the reverse pointer. 791 */ 792 memcpy(forward, map->extent, 793 map->nr_extents * sizeof(map->extent[0])); 794 795 map->forward = forward; 796 map->reverse = NULL; 797 } 798 799 if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS) 800 dest = &map->extent[map->nr_extents]; 801 else 802 dest = &map->forward[map->nr_extents]; 803 804 *dest = *extent; 805 map->nr_extents++; 806 return 0; 807 } 808 809 /* cmp function to sort() forward mappings */ 810 static int cmp_extents_forward(const void *a, const void *b) 811 { 812 const struct uid_gid_extent *e1 = a; 813 const struct uid_gid_extent *e2 = b; 814 815 if (e1->first < e2->first) 816 return -1; 817 818 if (e1->first > e2->first) 819 return 1; 820 821 return 0; 822 } 823 824 /* cmp function to sort() reverse mappings */ 825 static int cmp_extents_reverse(const void *a, const void *b) 826 { 827 const struct uid_gid_extent *e1 = a; 828 const struct uid_gid_extent *e2 = b; 829 830 if (e1->lower_first < e2->lower_first) 831 return -1; 832 833 if (e1->lower_first > e2->lower_first) 834 return 1; 835 836 return 0; 837 } 838 839 /** 840 * sort_idmaps - Sorts an array of idmap entries. 841 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS. 842 */ 843 static int sort_idmaps(struct uid_gid_map *map) 844 { 845 if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 846 return 0; 847 848 /* Sort forward array. */ 849 sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent), 850 cmp_extents_forward, NULL); 851 852 /* Only copy the memory from forward we actually need. */ 853 map->reverse = kmemdup(map->forward, 854 map->nr_extents * sizeof(struct uid_gid_extent), 855 GFP_KERNEL); 856 if (!map->reverse) 857 return -ENOMEM; 858 859 /* Sort reverse array. */ 860 sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent), 861 cmp_extents_reverse, NULL); 862 863 return 0; 864 } 865 866 /** 867 * verify_root_map() - check the uid 0 mapping 868 * @file: idmapping file 869 * @map_ns: user namespace of the target process 870 * @new_map: requested idmap 871 * 872 * If a process requests mapping parent uid 0 into the new ns, verify that the 873 * process writing the map had the CAP_SETFCAP capability as the target process 874 * will be able to write fscaps that are valid in ancestor user namespaces. 875 * 876 * Return: true if the mapping is allowed, false if not. 877 */ 878 static bool verify_root_map(const struct file *file, 879 struct user_namespace *map_ns, 880 struct uid_gid_map *new_map) 881 { 882 int idx; 883 const struct user_namespace *file_ns = file->f_cred->user_ns; 884 struct uid_gid_extent *extent0 = NULL; 885 886 for (idx = 0; idx < new_map->nr_extents; idx++) { 887 if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 888 extent0 = &new_map->extent[idx]; 889 else 890 extent0 = &new_map->forward[idx]; 891 if (extent0->lower_first == 0) 892 break; 893 894 extent0 = NULL; 895 } 896 897 if (!extent0) 898 return true; 899 900 if (map_ns == file_ns) { 901 /* The process unshared its ns and is writing to its own 902 * /proc/self/uid_map. User already has full capabilites in 903 * the new namespace. Verify that the parent had CAP_SETFCAP 904 * when it unshared. 905 * */ 906 if (!file_ns->parent_could_setfcap) 907 return false; 908 } else { 909 /* Process p1 is writing to uid_map of p2, who is in a child 910 * user namespace to p1's. Verify that the opener of the map 911 * file has CAP_SETFCAP against the parent of the new map 912 * namespace */ 913 if (!file_ns_capable(file, map_ns->parent, CAP_SETFCAP)) 914 return false; 915 } 916 917 return true; 918 } 919 920 static ssize_t map_write(struct file *file, const char __user *buf, 921 size_t count, loff_t *ppos, 922 int cap_setid, 923 struct uid_gid_map *map, 924 struct uid_gid_map *parent_map) 925 { 926 struct seq_file *seq = file->private_data; 927 struct user_namespace *map_ns = seq->private; 928 struct uid_gid_map new_map; 929 unsigned idx; 930 struct uid_gid_extent extent; 931 char *kbuf = NULL, *pos, *next_line; 932 ssize_t ret; 933 934 /* Only allow < page size writes at the beginning of the file */ 935 if ((*ppos != 0) || (count >= PAGE_SIZE)) 936 return -EINVAL; 937 938 /* Slurp in the user data */ 939 kbuf = memdup_user_nul(buf, count); 940 if (IS_ERR(kbuf)) 941 return PTR_ERR(kbuf); 942 943 /* 944 * The userns_state_mutex serializes all writes to any given map. 945 * 946 * Any map is only ever written once. 947 * 948 * An id map fits within 1 cache line on most architectures. 949 * 950 * On read nothing needs to be done unless you are on an 951 * architecture with a crazy cache coherency model like alpha. 952 * 953 * There is a one time data dependency between reading the 954 * count of the extents and the values of the extents. The 955 * desired behavior is to see the values of the extents that 956 * were written before the count of the extents. 957 * 958 * To achieve this smp_wmb() is used on guarantee the write 959 * order and smp_rmb() is guaranteed that we don't have crazy 960 * architectures returning stale data. 961 */ 962 mutex_lock(&userns_state_mutex); 963 964 memset(&new_map, 0, sizeof(struct uid_gid_map)); 965 966 ret = -EPERM; 967 /* Only allow one successful write to the map */ 968 if (map->nr_extents != 0) 969 goto out; 970 971 /* 972 * Adjusting namespace settings requires capabilities on the target. 973 */ 974 if (cap_valid(cap_setid) && !file_ns_capable(file, map_ns, CAP_SYS_ADMIN)) 975 goto out; 976 977 /* Parse the user data */ 978 ret = -EINVAL; 979 pos = kbuf; 980 for (; pos; pos = next_line) { 981 982 /* Find the end of line and ensure I don't look past it */ 983 next_line = strchr(pos, '\n'); 984 if (next_line) { 985 *next_line = '\0'; 986 next_line++; 987 if (*next_line == '\0') 988 next_line = NULL; 989 } 990 991 pos = skip_spaces(pos); 992 extent.first = simple_strtoul(pos, &pos, 10); 993 if (!isspace(*pos)) 994 goto out; 995 996 pos = skip_spaces(pos); 997 extent.lower_first = simple_strtoul(pos, &pos, 10); 998 if (!isspace(*pos)) 999 goto out; 1000 1001 pos = skip_spaces(pos); 1002 extent.count = simple_strtoul(pos, &pos, 10); 1003 if (*pos && !isspace(*pos)) 1004 goto out; 1005 1006 /* Verify there is not trailing junk on the line */ 1007 pos = skip_spaces(pos); 1008 if (*pos != '\0') 1009 goto out; 1010 1011 /* Verify we have been given valid starting values */ 1012 if ((extent.first == (u32) -1) || 1013 (extent.lower_first == (u32) -1)) 1014 goto out; 1015 1016 /* Verify count is not zero and does not cause the 1017 * extent to wrap 1018 */ 1019 if ((extent.first + extent.count) <= extent.first) 1020 goto out; 1021 if ((extent.lower_first + extent.count) <= 1022 extent.lower_first) 1023 goto out; 1024 1025 /* Do the ranges in extent overlap any previous extents? */ 1026 if (mappings_overlap(&new_map, &extent)) 1027 goto out; 1028 1029 if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS && 1030 (next_line != NULL)) 1031 goto out; 1032 1033 ret = insert_extent(&new_map, &extent); 1034 if (ret < 0) 1035 goto out; 1036 ret = -EINVAL; 1037 } 1038 /* Be very certain the new map actually exists */ 1039 if (new_map.nr_extents == 0) 1040 goto out; 1041 1042 ret = -EPERM; 1043 /* Validate the user is allowed to use user id's mapped to. */ 1044 if (!new_idmap_permitted(file, map_ns, cap_setid, &new_map)) 1045 goto out; 1046 1047 ret = -EPERM; 1048 /* Map the lower ids from the parent user namespace to the 1049 * kernel global id space. 1050 */ 1051 for (idx = 0; idx < new_map.nr_extents; idx++) { 1052 struct uid_gid_extent *e; 1053 u32 lower_first; 1054 1055 if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) 1056 e = &new_map.extent[idx]; 1057 else 1058 e = &new_map.forward[idx]; 1059 1060 lower_first = map_id_range_down(parent_map, 1061 e->lower_first, 1062 e->count); 1063 1064 /* Fail if we can not map the specified extent to 1065 * the kernel global id space. 1066 */ 1067 if (lower_first == (u32) -1) 1068 goto out; 1069 1070 e->lower_first = lower_first; 1071 } 1072 1073 /* 1074 * If we want to use binary search for lookup, this clones the extent 1075 * array and sorts both copies. 1076 */ 1077 ret = sort_idmaps(&new_map); 1078 if (ret < 0) 1079 goto out; 1080 1081 /* Install the map */ 1082 if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) { 1083 memcpy(map->extent, new_map.extent, 1084 new_map.nr_extents * sizeof(new_map.extent[0])); 1085 } else { 1086 map->forward = new_map.forward; 1087 map->reverse = new_map.reverse; 1088 } 1089 smp_wmb(); 1090 map->nr_extents = new_map.nr_extents; 1091 1092 *ppos = count; 1093 ret = count; 1094 out: 1095 if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) { 1096 kfree(new_map.forward); 1097 kfree(new_map.reverse); 1098 map->forward = NULL; 1099 map->reverse = NULL; 1100 map->nr_extents = 0; 1101 } 1102 1103 mutex_unlock(&userns_state_mutex); 1104 kfree(kbuf); 1105 return ret; 1106 } 1107 1108 ssize_t proc_uid_map_write(struct file *file, const char __user *buf, 1109 size_t size, loff_t *ppos) 1110 { 1111 struct seq_file *seq = file->private_data; 1112 struct user_namespace *ns = seq->private; 1113 struct user_namespace *seq_ns = seq_user_ns(seq); 1114 1115 if (!ns->parent) 1116 return -EPERM; 1117 1118 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1119 return -EPERM; 1120 1121 return map_write(file, buf, size, ppos, CAP_SETUID, 1122 &ns->uid_map, &ns->parent->uid_map); 1123 } 1124 1125 ssize_t proc_gid_map_write(struct file *file, const char __user *buf, 1126 size_t size, loff_t *ppos) 1127 { 1128 struct seq_file *seq = file->private_data; 1129 struct user_namespace *ns = seq->private; 1130 struct user_namespace *seq_ns = seq_user_ns(seq); 1131 1132 if (!ns->parent) 1133 return -EPERM; 1134 1135 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1136 return -EPERM; 1137 1138 return map_write(file, buf, size, ppos, CAP_SETGID, 1139 &ns->gid_map, &ns->parent->gid_map); 1140 } 1141 1142 ssize_t proc_projid_map_write(struct file *file, const char __user *buf, 1143 size_t size, loff_t *ppos) 1144 { 1145 struct seq_file *seq = file->private_data; 1146 struct user_namespace *ns = seq->private; 1147 struct user_namespace *seq_ns = seq_user_ns(seq); 1148 1149 if (!ns->parent) 1150 return -EPERM; 1151 1152 if ((seq_ns != ns) && (seq_ns != ns->parent)) 1153 return -EPERM; 1154 1155 /* Anyone can set any valid project id no capability needed */ 1156 return map_write(file, buf, size, ppos, -1, 1157 &ns->projid_map, &ns->parent->projid_map); 1158 } 1159 1160 static bool new_idmap_permitted(const struct file *file, 1161 struct user_namespace *ns, int cap_setid, 1162 struct uid_gid_map *new_map) 1163 { 1164 const struct cred *cred = file->f_cred; 1165 1166 if (cap_setid == CAP_SETUID && !verify_root_map(file, ns, new_map)) 1167 return false; 1168 1169 /* Don't allow mappings that would allow anything that wouldn't 1170 * be allowed without the establishment of unprivileged mappings. 1171 */ 1172 if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) && 1173 uid_eq(ns->owner, cred->euid)) { 1174 u32 id = new_map->extent[0].lower_first; 1175 if (cap_setid == CAP_SETUID) { 1176 kuid_t uid = make_kuid(ns->parent, id); 1177 if (uid_eq(uid, cred->euid)) 1178 return true; 1179 } else if (cap_setid == CAP_SETGID) { 1180 kgid_t gid = make_kgid(ns->parent, id); 1181 if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) && 1182 gid_eq(gid, cred->egid)) 1183 return true; 1184 } 1185 } 1186 1187 /* Allow anyone to set a mapping that doesn't require privilege */ 1188 if (!cap_valid(cap_setid)) 1189 return true; 1190 1191 /* Allow the specified ids if we have the appropriate capability 1192 * (CAP_SETUID or CAP_SETGID) over the parent user namespace. 1193 * And the opener of the id file also has the appropriate capability. 1194 */ 1195 if (ns_capable(ns->parent, cap_setid) && 1196 file_ns_capable(file, ns->parent, cap_setid)) 1197 return true; 1198 1199 return false; 1200 } 1201 1202 int proc_setgroups_show(struct seq_file *seq, void *v) 1203 { 1204 struct user_namespace *ns = seq->private; 1205 unsigned long userns_flags = READ_ONCE(ns->flags); 1206 1207 seq_printf(seq, "%s\n", 1208 (userns_flags & USERNS_SETGROUPS_ALLOWED) ? 1209 "allow" : "deny"); 1210 return 0; 1211 } 1212 1213 ssize_t proc_setgroups_write(struct file *file, const char __user *buf, 1214 size_t count, loff_t *ppos) 1215 { 1216 struct seq_file *seq = file->private_data; 1217 struct user_namespace *ns = seq->private; 1218 char kbuf[8], *pos; 1219 bool setgroups_allowed; 1220 ssize_t ret; 1221 1222 /* Only allow a very narrow range of strings to be written */ 1223 ret = -EINVAL; 1224 if ((*ppos != 0) || (count >= sizeof(kbuf))) 1225 goto out; 1226 1227 /* What was written? */ 1228 ret = -EFAULT; 1229 if (copy_from_user(kbuf, buf, count)) 1230 goto out; 1231 kbuf[count] = '\0'; 1232 pos = kbuf; 1233 1234 /* What is being requested? */ 1235 ret = -EINVAL; 1236 if (strncmp(pos, "allow", 5) == 0) { 1237 pos += 5; 1238 setgroups_allowed = true; 1239 } 1240 else if (strncmp(pos, "deny", 4) == 0) { 1241 pos += 4; 1242 setgroups_allowed = false; 1243 } 1244 else 1245 goto out; 1246 1247 /* Verify there is not trailing junk on the line */ 1248 pos = skip_spaces(pos); 1249 if (*pos != '\0') 1250 goto out; 1251 1252 ret = -EPERM; 1253 mutex_lock(&userns_state_mutex); 1254 if (setgroups_allowed) { 1255 /* Enabling setgroups after setgroups has been disabled 1256 * is not allowed. 1257 */ 1258 if (!(ns->flags & USERNS_SETGROUPS_ALLOWED)) 1259 goto out_unlock; 1260 } else { 1261 /* Permanently disabling setgroups after setgroups has 1262 * been enabled by writing the gid_map is not allowed. 1263 */ 1264 if (ns->gid_map.nr_extents != 0) 1265 goto out_unlock; 1266 ns->flags &= ~USERNS_SETGROUPS_ALLOWED; 1267 } 1268 mutex_unlock(&userns_state_mutex); 1269 1270 /* Report a successful write */ 1271 *ppos = count; 1272 ret = count; 1273 out: 1274 return ret; 1275 out_unlock: 1276 mutex_unlock(&userns_state_mutex); 1277 goto out; 1278 } 1279 1280 bool userns_may_setgroups(const struct user_namespace *ns) 1281 { 1282 bool allowed; 1283 1284 mutex_lock(&userns_state_mutex); 1285 /* It is not safe to use setgroups until a gid mapping in 1286 * the user namespace has been established. 1287 */ 1288 allowed = ns->gid_map.nr_extents != 0; 1289 /* Is setgroups allowed? */ 1290 allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED); 1291 mutex_unlock(&userns_state_mutex); 1292 1293 return allowed; 1294 } 1295 1296 /* 1297 * Returns true if @child is the same namespace or a descendant of 1298 * @ancestor. 1299 */ 1300 bool in_userns(const struct user_namespace *ancestor, 1301 const struct user_namespace *child) 1302 { 1303 const struct user_namespace *ns; 1304 for (ns = child; ns->level > ancestor->level; ns = ns->parent) 1305 ; 1306 return (ns == ancestor); 1307 } 1308 1309 bool current_in_userns(const struct user_namespace *target_ns) 1310 { 1311 return in_userns(target_ns, current_user_ns()); 1312 } 1313 EXPORT_SYMBOL(current_in_userns); 1314 1315 static inline struct user_namespace *to_user_ns(struct ns_common *ns) 1316 { 1317 return container_of(ns, struct user_namespace, ns); 1318 } 1319 1320 static struct ns_common *userns_get(struct task_struct *task) 1321 { 1322 struct user_namespace *user_ns; 1323 1324 rcu_read_lock(); 1325 user_ns = get_user_ns(__task_cred(task)->user_ns); 1326 rcu_read_unlock(); 1327 1328 return user_ns ? &user_ns->ns : NULL; 1329 } 1330 1331 static void userns_put(struct ns_common *ns) 1332 { 1333 put_user_ns(to_user_ns(ns)); 1334 } 1335 1336 static int userns_install(struct nsset *nsset, struct ns_common *ns) 1337 { 1338 struct user_namespace *user_ns = to_user_ns(ns); 1339 struct cred *cred; 1340 1341 /* Don't allow gaining capabilities by reentering 1342 * the same user namespace. 1343 */ 1344 if (user_ns == current_user_ns()) 1345 return -EINVAL; 1346 1347 /* Tasks that share a thread group must share a user namespace */ 1348 if (!thread_group_empty(current)) 1349 return -EINVAL; 1350 1351 if (current->fs->users != 1) 1352 return -EINVAL; 1353 1354 if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 1355 return -EPERM; 1356 1357 cred = nsset_cred(nsset); 1358 if (!cred) 1359 return -EINVAL; 1360 1361 put_user_ns(cred->user_ns); 1362 set_cred_user_ns(cred, get_user_ns(user_ns)); 1363 1364 if (set_cred_ucounts(cred) < 0) 1365 return -EINVAL; 1366 1367 return 0; 1368 } 1369 1370 struct ns_common *ns_get_owner(struct ns_common *ns) 1371 { 1372 struct user_namespace *my_user_ns = current_user_ns(); 1373 struct user_namespace *owner, *p; 1374 1375 /* See if the owner is in the current user namespace */ 1376 owner = p = ns->ops->owner(ns); 1377 for (;;) { 1378 if (!p) 1379 return ERR_PTR(-EPERM); 1380 if (p == my_user_ns) 1381 break; 1382 p = p->parent; 1383 } 1384 1385 return &get_user_ns(owner)->ns; 1386 } 1387 1388 static struct user_namespace *userns_owner(struct ns_common *ns) 1389 { 1390 return to_user_ns(ns)->parent; 1391 } 1392 1393 const struct proc_ns_operations userns_operations = { 1394 .name = "user", 1395 .type = CLONE_NEWUSER, 1396 .get = userns_get, 1397 .put = userns_put, 1398 .install = userns_install, 1399 .owner = userns_owner, 1400 .get_parent = ns_get_owner, 1401 }; 1402 1403 static __init int user_namespaces_init(void) 1404 { 1405 user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC | SLAB_ACCOUNT); 1406 return 0; 1407 } 1408 subsys_initcall(user_namespaces_init); 1409