1 /* 2 * The "user cache". 3 * 4 * (C) Copyright 1991-2000 Linus Torvalds 5 * 6 * We have a per-user structure to keep track of how many 7 * processes, files etc the user has claimed, in order to be 8 * able to have per-user limits for system resources. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/sched.h> 13 #include <linux/slab.h> 14 #include <linux/bitops.h> 15 #include <linux/key.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/user_namespace.h> 19 20 struct user_namespace init_user_ns = { 21 .kref = { 22 .refcount = ATOMIC_INIT(2), 23 }, 24 .root_user = &root_user, 25 }; 26 EXPORT_SYMBOL_GPL(init_user_ns); 27 28 /* 29 * UID task count cache, to get fast user lookup in "alloc_uid" 30 * when changing user ID's (ie setuid() and friends). 31 */ 32 33 #define UIDHASH_MASK (UIDHASH_SZ - 1) 34 #define __uidhashfn(uid) (((uid >> UIDHASH_BITS) + uid) & UIDHASH_MASK) 35 #define uidhashentry(ns, uid) ((ns)->uidhash_table + __uidhashfn((uid))) 36 37 static struct kmem_cache *uid_cachep; 38 39 /* 40 * The uidhash_lock is mostly taken from process context, but it is 41 * occasionally also taken from softirq/tasklet context, when 42 * task-structs get RCU-freed. Hence all locking must be softirq-safe. 43 * But free_uid() is also called with local interrupts disabled, and running 44 * local_bh_enable() with local interrupts disabled is an error - we'll run 45 * softirq callbacks, and they can unconditionally enable interrupts, and 46 * the caller of free_uid() didn't expect that.. 47 */ 48 static DEFINE_SPINLOCK(uidhash_lock); 49 50 struct user_struct root_user = { 51 .__count = ATOMIC_INIT(1), 52 .processes = ATOMIC_INIT(1), 53 .files = ATOMIC_INIT(0), 54 .sigpending = ATOMIC_INIT(0), 55 .locked_shm = 0, 56 #ifdef CONFIG_KEYS 57 .uid_keyring = &root_user_keyring, 58 .session_keyring = &root_session_keyring, 59 #endif 60 #ifdef CONFIG_USER_SCHED 61 .tg = &init_task_group, 62 #endif 63 }; 64 65 /* 66 * These routines must be called with the uidhash spinlock held! 67 */ 68 static void uid_hash_insert(struct user_struct *up, struct hlist_head *hashent) 69 { 70 hlist_add_head(&up->uidhash_node, hashent); 71 } 72 73 static void uid_hash_remove(struct user_struct *up) 74 { 75 hlist_del_init(&up->uidhash_node); 76 } 77 78 static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent) 79 { 80 struct user_struct *user; 81 struct hlist_node *h; 82 83 hlist_for_each_entry(user, h, hashent, uidhash_node) { 84 if (user->uid == uid) { 85 atomic_inc(&user->__count); 86 return user; 87 } 88 } 89 90 return NULL; 91 } 92 93 #ifdef CONFIG_USER_SCHED 94 95 static void sched_destroy_user(struct user_struct *up) 96 { 97 sched_destroy_group(up->tg); 98 } 99 100 static int sched_create_user(struct user_struct *up) 101 { 102 int rc = 0; 103 104 up->tg = sched_create_group(); 105 if (IS_ERR(up->tg)) 106 rc = -ENOMEM; 107 108 return rc; 109 } 110 111 static void sched_switch_user(struct task_struct *p) 112 { 113 sched_move_task(p); 114 } 115 116 #else /* CONFIG_USER_SCHED */ 117 118 static void sched_destroy_user(struct user_struct *up) { } 119 static int sched_create_user(struct user_struct *up) { return 0; } 120 static void sched_switch_user(struct task_struct *p) { } 121 122 #endif /* CONFIG_USER_SCHED */ 123 124 #if defined(CONFIG_USER_SCHED) && defined(CONFIG_SYSFS) 125 126 static struct kset *uids_kset; /* represents the /sys/kernel/uids/ directory */ 127 static DEFINE_MUTEX(uids_mutex); 128 129 static inline void uids_mutex_lock(void) 130 { 131 mutex_lock(&uids_mutex); 132 } 133 134 static inline void uids_mutex_unlock(void) 135 { 136 mutex_unlock(&uids_mutex); 137 } 138 139 /* uid directory attributes */ 140 #ifdef CONFIG_FAIR_GROUP_SCHED 141 static ssize_t cpu_shares_show(struct kobject *kobj, 142 struct kobj_attribute *attr, 143 char *buf) 144 { 145 struct user_struct *up = container_of(kobj, struct user_struct, kobj); 146 147 return sprintf(buf, "%lu\n", sched_group_shares(up->tg)); 148 } 149 150 static ssize_t cpu_shares_store(struct kobject *kobj, 151 struct kobj_attribute *attr, 152 const char *buf, size_t size) 153 { 154 struct user_struct *up = container_of(kobj, struct user_struct, kobj); 155 unsigned long shares; 156 int rc; 157 158 sscanf(buf, "%lu", &shares); 159 160 rc = sched_group_set_shares(up->tg, shares); 161 162 return (rc ? rc : size); 163 } 164 165 static struct kobj_attribute cpu_share_attr = 166 __ATTR(cpu_share, 0644, cpu_shares_show, cpu_shares_store); 167 #endif 168 169 #ifdef CONFIG_RT_GROUP_SCHED 170 static ssize_t cpu_rt_runtime_show(struct kobject *kobj, 171 struct kobj_attribute *attr, 172 char *buf) 173 { 174 struct user_struct *up = container_of(kobj, struct user_struct, kobj); 175 176 return sprintf(buf, "%lu\n", sched_group_rt_runtime(up->tg)); 177 } 178 179 static ssize_t cpu_rt_runtime_store(struct kobject *kobj, 180 struct kobj_attribute *attr, 181 const char *buf, size_t size) 182 { 183 struct user_struct *up = container_of(kobj, struct user_struct, kobj); 184 unsigned long rt_runtime; 185 int rc; 186 187 sscanf(buf, "%lu", &rt_runtime); 188 189 rc = sched_group_set_rt_runtime(up->tg, rt_runtime); 190 191 return (rc ? rc : size); 192 } 193 194 static struct kobj_attribute cpu_rt_runtime_attr = 195 __ATTR(cpu_rt_runtime, 0644, cpu_rt_runtime_show, cpu_rt_runtime_store); 196 #endif 197 198 /* default attributes per uid directory */ 199 static struct attribute *uids_attributes[] = { 200 #ifdef CONFIG_FAIR_GROUP_SCHED 201 &cpu_share_attr.attr, 202 #endif 203 #ifdef CONFIG_RT_GROUP_SCHED 204 &cpu_rt_runtime_attr.attr, 205 #endif 206 NULL 207 }; 208 209 /* the lifetime of user_struct is not managed by the core (now) */ 210 static void uids_release(struct kobject *kobj) 211 { 212 return; 213 } 214 215 static struct kobj_type uids_ktype = { 216 .sysfs_ops = &kobj_sysfs_ops, 217 .default_attrs = uids_attributes, 218 .release = uids_release, 219 }; 220 221 /* create /sys/kernel/uids/<uid>/cpu_share file for this user */ 222 static int uids_user_create(struct user_struct *up) 223 { 224 struct kobject *kobj = &up->kobj; 225 int error; 226 227 memset(kobj, 0, sizeof(struct kobject)); 228 kobj->kset = uids_kset; 229 error = kobject_init_and_add(kobj, &uids_ktype, NULL, "%d", up->uid); 230 if (error) { 231 kobject_put(kobj); 232 goto done; 233 } 234 235 kobject_uevent(kobj, KOBJ_ADD); 236 done: 237 return error; 238 } 239 240 /* create these entries in sysfs: 241 * "/sys/kernel/uids" directory 242 * "/sys/kernel/uids/0" directory (for root user) 243 * "/sys/kernel/uids/0/cpu_share" file (for root user) 244 */ 245 int __init uids_sysfs_init(void) 246 { 247 uids_kset = kset_create_and_add("uids", NULL, kernel_kobj); 248 if (!uids_kset) 249 return -ENOMEM; 250 251 return uids_user_create(&root_user); 252 } 253 254 /* work function to remove sysfs directory for a user and free up 255 * corresponding structures. 256 */ 257 static void remove_user_sysfs_dir(struct work_struct *w) 258 { 259 struct user_struct *up = container_of(w, struct user_struct, work); 260 unsigned long flags; 261 int remove_user = 0; 262 263 /* Make uid_hash_remove() + sysfs_remove_file() + kobject_del() 264 * atomic. 265 */ 266 uids_mutex_lock(); 267 268 local_irq_save(flags); 269 270 if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) { 271 uid_hash_remove(up); 272 remove_user = 1; 273 spin_unlock_irqrestore(&uidhash_lock, flags); 274 } else { 275 local_irq_restore(flags); 276 } 277 278 if (!remove_user) 279 goto done; 280 281 kobject_uevent(&up->kobj, KOBJ_REMOVE); 282 kobject_del(&up->kobj); 283 kobject_put(&up->kobj); 284 285 sched_destroy_user(up); 286 key_put(up->uid_keyring); 287 key_put(up->session_keyring); 288 kmem_cache_free(uid_cachep, up); 289 290 done: 291 uids_mutex_unlock(); 292 } 293 294 /* IRQs are disabled and uidhash_lock is held upon function entry. 295 * IRQ state (as stored in flags) is restored and uidhash_lock released 296 * upon function exit. 297 */ 298 static inline void free_user(struct user_struct *up, unsigned long flags) 299 { 300 /* restore back the count */ 301 atomic_inc(&up->__count); 302 spin_unlock_irqrestore(&uidhash_lock, flags); 303 304 INIT_WORK(&up->work, remove_user_sysfs_dir); 305 schedule_work(&up->work); 306 } 307 308 #else /* CONFIG_USER_SCHED && CONFIG_SYSFS */ 309 310 int uids_sysfs_init(void) { return 0; } 311 static inline int uids_user_create(struct user_struct *up) { return 0; } 312 static inline void uids_mutex_lock(void) { } 313 static inline void uids_mutex_unlock(void) { } 314 315 /* IRQs are disabled and uidhash_lock is held upon function entry. 316 * IRQ state (as stored in flags) is restored and uidhash_lock released 317 * upon function exit. 318 */ 319 static inline void free_user(struct user_struct *up, unsigned long flags) 320 { 321 uid_hash_remove(up); 322 spin_unlock_irqrestore(&uidhash_lock, flags); 323 sched_destroy_user(up); 324 key_put(up->uid_keyring); 325 key_put(up->session_keyring); 326 kmem_cache_free(uid_cachep, up); 327 } 328 329 #endif 330 331 /* 332 * Locate the user_struct for the passed UID. If found, take a ref on it. The 333 * caller must undo that ref with free_uid(). 334 * 335 * If the user_struct could not be found, return NULL. 336 */ 337 struct user_struct *find_user(uid_t uid) 338 { 339 struct user_struct *ret; 340 unsigned long flags; 341 struct user_namespace *ns = current->nsproxy->user_ns; 342 343 spin_lock_irqsave(&uidhash_lock, flags); 344 ret = uid_hash_find(uid, uidhashentry(ns, uid)); 345 spin_unlock_irqrestore(&uidhash_lock, flags); 346 return ret; 347 } 348 349 void free_uid(struct user_struct *up) 350 { 351 unsigned long flags; 352 353 if (!up) 354 return; 355 356 local_irq_save(flags); 357 if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) 358 free_user(up, flags); 359 else 360 local_irq_restore(flags); 361 } 362 363 struct user_struct * alloc_uid(struct user_namespace *ns, uid_t uid) 364 { 365 struct hlist_head *hashent = uidhashentry(ns, uid); 366 struct user_struct *up, *new; 367 368 /* Make uid_hash_find() + uids_user_create() + uid_hash_insert() 369 * atomic. 370 */ 371 uids_mutex_lock(); 372 373 spin_lock_irq(&uidhash_lock); 374 up = uid_hash_find(uid, hashent); 375 spin_unlock_irq(&uidhash_lock); 376 377 if (!up) { 378 new = kmem_cache_alloc(uid_cachep, GFP_KERNEL); 379 if (!new) 380 goto out_unlock; 381 382 new->uid = uid; 383 atomic_set(&new->__count, 1); 384 atomic_set(&new->processes, 0); 385 atomic_set(&new->files, 0); 386 atomic_set(&new->sigpending, 0); 387 #ifdef CONFIG_INOTIFY_USER 388 atomic_set(&new->inotify_watches, 0); 389 atomic_set(&new->inotify_devs, 0); 390 #endif 391 #ifdef CONFIG_POSIX_MQUEUE 392 new->mq_bytes = 0; 393 #endif 394 new->locked_shm = 0; 395 396 if (alloc_uid_keyring(new, current) < 0) 397 goto out_free_user; 398 399 if (sched_create_user(new) < 0) 400 goto out_put_keys; 401 402 if (uids_user_create(new)) 403 goto out_destoy_sched; 404 405 /* 406 * Before adding this, check whether we raced 407 * on adding the same user already.. 408 */ 409 spin_lock_irq(&uidhash_lock); 410 up = uid_hash_find(uid, hashent); 411 if (up) { 412 /* This case is not possible when CONFIG_USER_SCHED 413 * is defined, since we serialize alloc_uid() using 414 * uids_mutex. Hence no need to call 415 * sched_destroy_user() or remove_user_sysfs_dir(). 416 */ 417 key_put(new->uid_keyring); 418 key_put(new->session_keyring); 419 kmem_cache_free(uid_cachep, new); 420 } else { 421 uid_hash_insert(new, hashent); 422 up = new; 423 } 424 spin_unlock_irq(&uidhash_lock); 425 426 } 427 428 uids_mutex_unlock(); 429 430 return up; 431 432 out_destoy_sched: 433 sched_destroy_user(new); 434 out_put_keys: 435 key_put(new->uid_keyring); 436 key_put(new->session_keyring); 437 out_free_user: 438 kmem_cache_free(uid_cachep, new); 439 out_unlock: 440 uids_mutex_unlock(); 441 return NULL; 442 } 443 444 void switch_uid(struct user_struct *new_user) 445 { 446 struct user_struct *old_user; 447 448 /* What if a process setreuid()'s and this brings the 449 * new uid over his NPROC rlimit? We can check this now 450 * cheaply with the new uid cache, so if it matters 451 * we should be checking for it. -DaveM 452 */ 453 old_user = current->user; 454 atomic_inc(&new_user->processes); 455 atomic_dec(&old_user->processes); 456 switch_uid_keyring(new_user); 457 current->user = new_user; 458 sched_switch_user(current); 459 460 /* 461 * We need to synchronize with __sigqueue_alloc() 462 * doing a get_uid(p->user).. If that saw the old 463 * user value, we need to wait until it has exited 464 * its critical region before we can free the old 465 * structure. 466 */ 467 smp_mb(); 468 spin_unlock_wait(¤t->sighand->siglock); 469 470 free_uid(old_user); 471 suid_keys(current); 472 } 473 474 #ifdef CONFIG_USER_NS 475 void release_uids(struct user_namespace *ns) 476 { 477 int i; 478 unsigned long flags; 479 struct hlist_head *head; 480 struct hlist_node *nd; 481 482 spin_lock_irqsave(&uidhash_lock, flags); 483 /* 484 * collapse the chains so that the user_struct-s will 485 * be still alive, but not in hashes. subsequent free_uid() 486 * will free them. 487 */ 488 for (i = 0; i < UIDHASH_SZ; i++) { 489 head = ns->uidhash_table + i; 490 while (!hlist_empty(head)) { 491 nd = head->first; 492 hlist_del_init(nd); 493 } 494 } 495 spin_unlock_irqrestore(&uidhash_lock, flags); 496 497 free_uid(ns->root_user); 498 } 499 #endif 500 501 static int __init uid_cache_init(void) 502 { 503 int n; 504 505 uid_cachep = kmem_cache_create("uid_cache", sizeof(struct user_struct), 506 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 507 508 for(n = 0; n < UIDHASH_SZ; ++n) 509 INIT_HLIST_HEAD(init_user_ns.uidhash_table + n); 510 511 /* Insert the root user immediately (init already runs as root) */ 512 spin_lock_irq(&uidhash_lock); 513 uid_hash_insert(&root_user, uidhashentry(&init_user_ns, 0)); 514 spin_unlock_irq(&uidhash_lock); 515 516 return 0; 517 } 518 519 module_init(uid_cache_init); 520