xref: /openbmc/linux/kernel/user.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * The "user cache".
3  *
4  * (C) Copyright 1991-2000 Linus Torvalds
5  *
6  * We have a per-user structure to keep track of how many
7  * processes, files etc the user has claimed, in order to be
8  * able to have per-user limits for system resources.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/bitops.h>
15 #include <linux/key.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/user_namespace.h>
19 #include "cred-internals.h"
20 
21 struct user_namespace init_user_ns = {
22 	.kref = {
23 		.refcount	= ATOMIC_INIT(2),
24 	},
25 	.creator = &root_user,
26 };
27 EXPORT_SYMBOL_GPL(init_user_ns);
28 
29 /*
30  * UID task count cache, to get fast user lookup in "alloc_uid"
31  * when changing user ID's (ie setuid() and friends).
32  */
33 
34 #define UIDHASH_MASK		(UIDHASH_SZ - 1)
35 #define __uidhashfn(uid)	(((uid >> UIDHASH_BITS) + uid) & UIDHASH_MASK)
36 #define uidhashentry(ns, uid)	((ns)->uidhash_table + __uidhashfn((uid)))
37 
38 static struct kmem_cache *uid_cachep;
39 
40 /*
41  * The uidhash_lock is mostly taken from process context, but it is
42  * occasionally also taken from softirq/tasklet context, when
43  * task-structs get RCU-freed. Hence all locking must be softirq-safe.
44  * But free_uid() is also called with local interrupts disabled, and running
45  * local_bh_enable() with local interrupts disabled is an error - we'll run
46  * softirq callbacks, and they can unconditionally enable interrupts, and
47  * the caller of free_uid() didn't expect that..
48  */
49 static DEFINE_SPINLOCK(uidhash_lock);
50 
51 /* root_user.__count is 2, 1 for init task cred, 1 for init_user_ns->creator */
52 struct user_struct root_user = {
53 	.__count	= ATOMIC_INIT(2),
54 	.processes	= ATOMIC_INIT(1),
55 	.files		= ATOMIC_INIT(0),
56 	.sigpending	= ATOMIC_INIT(0),
57 	.locked_shm     = 0,
58 	.user_ns	= &init_user_ns,
59 #ifdef CONFIG_USER_SCHED
60 	.tg		= &init_task_group,
61 #endif
62 };
63 
64 /*
65  * These routines must be called with the uidhash spinlock held!
66  */
67 static void uid_hash_insert(struct user_struct *up, struct hlist_head *hashent)
68 {
69 	hlist_add_head(&up->uidhash_node, hashent);
70 }
71 
72 static void uid_hash_remove(struct user_struct *up)
73 {
74 	hlist_del_init(&up->uidhash_node);
75 	put_user_ns(up->user_ns);
76 }
77 
78 static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent)
79 {
80 	struct user_struct *user;
81 	struct hlist_node *h;
82 
83 	hlist_for_each_entry(user, h, hashent, uidhash_node) {
84 		if (user->uid == uid) {
85 			atomic_inc(&user->__count);
86 			return user;
87 		}
88 	}
89 
90 	return NULL;
91 }
92 
93 #ifdef CONFIG_USER_SCHED
94 
95 static void sched_destroy_user(struct user_struct *up)
96 {
97 	sched_destroy_group(up->tg);
98 }
99 
100 static int sched_create_user(struct user_struct *up)
101 {
102 	int rc = 0;
103 
104 	up->tg = sched_create_group(&root_task_group);
105 	if (IS_ERR(up->tg))
106 		rc = -ENOMEM;
107 
108 	set_tg_uid(up);
109 
110 	return rc;
111 }
112 
113 #else	/* CONFIG_USER_SCHED */
114 
115 static void sched_destroy_user(struct user_struct *up) { }
116 static int sched_create_user(struct user_struct *up) { return 0; }
117 
118 #endif	/* CONFIG_USER_SCHED */
119 
120 #if defined(CONFIG_USER_SCHED) && defined(CONFIG_SYSFS)
121 
122 static struct kset *uids_kset; /* represents the /sys/kernel/uids/ directory */
123 static DEFINE_MUTEX(uids_mutex);
124 
125 static inline void uids_mutex_lock(void)
126 {
127 	mutex_lock(&uids_mutex);
128 }
129 
130 static inline void uids_mutex_unlock(void)
131 {
132 	mutex_unlock(&uids_mutex);
133 }
134 
135 /* uid directory attributes */
136 #ifdef CONFIG_FAIR_GROUP_SCHED
137 static ssize_t cpu_shares_show(struct kobject *kobj,
138 			       struct kobj_attribute *attr,
139 			       char *buf)
140 {
141 	struct user_struct *up = container_of(kobj, struct user_struct, kobj);
142 
143 	return sprintf(buf, "%lu\n", sched_group_shares(up->tg));
144 }
145 
146 static ssize_t cpu_shares_store(struct kobject *kobj,
147 				struct kobj_attribute *attr,
148 				const char *buf, size_t size)
149 {
150 	struct user_struct *up = container_of(kobj, struct user_struct, kobj);
151 	unsigned long shares;
152 	int rc;
153 
154 	sscanf(buf, "%lu", &shares);
155 
156 	rc = sched_group_set_shares(up->tg, shares);
157 
158 	return (rc ? rc : size);
159 }
160 
161 static struct kobj_attribute cpu_share_attr =
162 	__ATTR(cpu_share, 0644, cpu_shares_show, cpu_shares_store);
163 #endif
164 
165 #ifdef CONFIG_RT_GROUP_SCHED
166 static ssize_t cpu_rt_runtime_show(struct kobject *kobj,
167 				   struct kobj_attribute *attr,
168 				   char *buf)
169 {
170 	struct user_struct *up = container_of(kobj, struct user_struct, kobj);
171 
172 	return sprintf(buf, "%ld\n", sched_group_rt_runtime(up->tg));
173 }
174 
175 static ssize_t cpu_rt_runtime_store(struct kobject *kobj,
176 				    struct kobj_attribute *attr,
177 				    const char *buf, size_t size)
178 {
179 	struct user_struct *up = container_of(kobj, struct user_struct, kobj);
180 	unsigned long rt_runtime;
181 	int rc;
182 
183 	sscanf(buf, "%ld", &rt_runtime);
184 
185 	rc = sched_group_set_rt_runtime(up->tg, rt_runtime);
186 
187 	return (rc ? rc : size);
188 }
189 
190 static struct kobj_attribute cpu_rt_runtime_attr =
191 	__ATTR(cpu_rt_runtime, 0644, cpu_rt_runtime_show, cpu_rt_runtime_store);
192 
193 static ssize_t cpu_rt_period_show(struct kobject *kobj,
194 				   struct kobj_attribute *attr,
195 				   char *buf)
196 {
197 	struct user_struct *up = container_of(kobj, struct user_struct, kobj);
198 
199 	return sprintf(buf, "%lu\n", sched_group_rt_period(up->tg));
200 }
201 
202 static ssize_t cpu_rt_period_store(struct kobject *kobj,
203 				    struct kobj_attribute *attr,
204 				    const char *buf, size_t size)
205 {
206 	struct user_struct *up = container_of(kobj, struct user_struct, kobj);
207 	unsigned long rt_period;
208 	int rc;
209 
210 	sscanf(buf, "%lu", &rt_period);
211 
212 	rc = sched_group_set_rt_period(up->tg, rt_period);
213 
214 	return (rc ? rc : size);
215 }
216 
217 static struct kobj_attribute cpu_rt_period_attr =
218 	__ATTR(cpu_rt_period, 0644, cpu_rt_period_show, cpu_rt_period_store);
219 #endif
220 
221 /* default attributes per uid directory */
222 static struct attribute *uids_attributes[] = {
223 #ifdef CONFIG_FAIR_GROUP_SCHED
224 	&cpu_share_attr.attr,
225 #endif
226 #ifdef CONFIG_RT_GROUP_SCHED
227 	&cpu_rt_runtime_attr.attr,
228 	&cpu_rt_period_attr.attr,
229 #endif
230 	NULL
231 };
232 
233 /* the lifetime of user_struct is not managed by the core (now) */
234 static void uids_release(struct kobject *kobj)
235 {
236 	return;
237 }
238 
239 static struct kobj_type uids_ktype = {
240 	.sysfs_ops = &kobj_sysfs_ops,
241 	.default_attrs = uids_attributes,
242 	.release = uids_release,
243 };
244 
245 /*
246  * Create /sys/kernel/uids/<uid>/cpu_share file for this user
247  * We do not create this file for users in a user namespace (until
248  * sysfs tagging is implemented).
249  *
250  * See Documentation/scheduler/sched-design-CFS.txt for ramifications.
251  */
252 static int uids_user_create(struct user_struct *up)
253 {
254 	struct kobject *kobj = &up->kobj;
255 	int error;
256 
257 	memset(kobj, 0, sizeof(struct kobject));
258 	if (up->user_ns != &init_user_ns)
259 		return 0;
260 	kobj->kset = uids_kset;
261 	error = kobject_init_and_add(kobj, &uids_ktype, NULL, "%d", up->uid);
262 	if (error) {
263 		kobject_put(kobj);
264 		goto done;
265 	}
266 
267 	kobject_uevent(kobj, KOBJ_ADD);
268 done:
269 	return error;
270 }
271 
272 /* create these entries in sysfs:
273  * 	"/sys/kernel/uids" directory
274  * 	"/sys/kernel/uids/0" directory (for root user)
275  * 	"/sys/kernel/uids/0/cpu_share" file (for root user)
276  */
277 int __init uids_sysfs_init(void)
278 {
279 	uids_kset = kset_create_and_add("uids", NULL, kernel_kobj);
280 	if (!uids_kset)
281 		return -ENOMEM;
282 
283 	return uids_user_create(&root_user);
284 }
285 
286 /* work function to remove sysfs directory for a user and free up
287  * corresponding structures.
288  */
289 static void cleanup_user_struct(struct work_struct *w)
290 {
291 	struct user_struct *up = container_of(w, struct user_struct, work);
292 	unsigned long flags;
293 	int remove_user = 0;
294 
295 	/* Make uid_hash_remove() + sysfs_remove_file() + kobject_del()
296 	 * atomic.
297 	 */
298 	uids_mutex_lock();
299 
300 	local_irq_save(flags);
301 
302 	if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) {
303 		uid_hash_remove(up);
304 		remove_user = 1;
305 		spin_unlock_irqrestore(&uidhash_lock, flags);
306 	} else {
307 		local_irq_restore(flags);
308 	}
309 
310 	if (!remove_user)
311 		goto done;
312 
313 	if (up->user_ns == &init_user_ns) {
314 		kobject_uevent(&up->kobj, KOBJ_REMOVE);
315 		kobject_del(&up->kobj);
316 		kobject_put(&up->kobj);
317 	}
318 
319 	sched_destroy_user(up);
320 	key_put(up->uid_keyring);
321 	key_put(up->session_keyring);
322 	kmem_cache_free(uid_cachep, up);
323 
324 done:
325 	uids_mutex_unlock();
326 }
327 
328 /* IRQs are disabled and uidhash_lock is held upon function entry.
329  * IRQ state (as stored in flags) is restored and uidhash_lock released
330  * upon function exit.
331  */
332 static void free_user(struct user_struct *up, unsigned long flags)
333 {
334 	/* restore back the count */
335 	atomic_inc(&up->__count);
336 	spin_unlock_irqrestore(&uidhash_lock, flags);
337 
338 	INIT_WORK(&up->work, cleanup_user_struct);
339 	schedule_work(&up->work);
340 }
341 
342 #else	/* CONFIG_USER_SCHED && CONFIG_SYSFS */
343 
344 int uids_sysfs_init(void) { return 0; }
345 static inline int uids_user_create(struct user_struct *up) { return 0; }
346 static inline void uids_mutex_lock(void) { }
347 static inline void uids_mutex_unlock(void) { }
348 
349 /* IRQs are disabled and uidhash_lock is held upon function entry.
350  * IRQ state (as stored in flags) is restored and uidhash_lock released
351  * upon function exit.
352  */
353 static void free_user(struct user_struct *up, unsigned long flags)
354 {
355 	uid_hash_remove(up);
356 	spin_unlock_irqrestore(&uidhash_lock, flags);
357 	sched_destroy_user(up);
358 	key_put(up->uid_keyring);
359 	key_put(up->session_keyring);
360 	kmem_cache_free(uid_cachep, up);
361 }
362 
363 #endif
364 
365 #if defined(CONFIG_RT_GROUP_SCHED) && defined(CONFIG_USER_SCHED)
366 /*
367  * We need to check if a setuid can take place. This function should be called
368  * before successfully completing the setuid.
369  */
370 int task_can_switch_user(struct user_struct *up, struct task_struct *tsk)
371 {
372 
373 	return sched_rt_can_attach(up->tg, tsk);
374 
375 }
376 #else
377 int task_can_switch_user(struct user_struct *up, struct task_struct *tsk)
378 {
379 	return 1;
380 }
381 #endif
382 
383 /*
384  * Locate the user_struct for the passed UID.  If found, take a ref on it.  The
385  * caller must undo that ref with free_uid().
386  *
387  * If the user_struct could not be found, return NULL.
388  */
389 struct user_struct *find_user(uid_t uid)
390 {
391 	struct user_struct *ret;
392 	unsigned long flags;
393 	struct user_namespace *ns = current_user_ns();
394 
395 	spin_lock_irqsave(&uidhash_lock, flags);
396 	ret = uid_hash_find(uid, uidhashentry(ns, uid));
397 	spin_unlock_irqrestore(&uidhash_lock, flags);
398 	return ret;
399 }
400 
401 void free_uid(struct user_struct *up)
402 {
403 	unsigned long flags;
404 
405 	if (!up)
406 		return;
407 
408 	local_irq_save(flags);
409 	if (atomic_dec_and_lock(&up->__count, &uidhash_lock))
410 		free_user(up, flags);
411 	else
412 		local_irq_restore(flags);
413 }
414 
415 struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid)
416 {
417 	struct hlist_head *hashent = uidhashentry(ns, uid);
418 	struct user_struct *up, *new;
419 
420 	/* Make uid_hash_find() + uids_user_create() + uid_hash_insert()
421 	 * atomic.
422 	 */
423 	uids_mutex_lock();
424 
425 	spin_lock_irq(&uidhash_lock);
426 	up = uid_hash_find(uid, hashent);
427 	spin_unlock_irq(&uidhash_lock);
428 
429 	if (!up) {
430 		new = kmem_cache_zalloc(uid_cachep, GFP_KERNEL);
431 		if (!new)
432 			goto out_unlock;
433 
434 		new->uid = uid;
435 		atomic_set(&new->__count, 1);
436 
437 		if (sched_create_user(new) < 0)
438 			goto out_free_user;
439 
440 		new->user_ns = get_user_ns(ns);
441 
442 		if (uids_user_create(new))
443 			goto out_destoy_sched;
444 
445 		/*
446 		 * Before adding this, check whether we raced
447 		 * on adding the same user already..
448 		 */
449 		spin_lock_irq(&uidhash_lock);
450 		up = uid_hash_find(uid, hashent);
451 		if (up) {
452 			/* This case is not possible when CONFIG_USER_SCHED
453 			 * is defined, since we serialize alloc_uid() using
454 			 * uids_mutex. Hence no need to call
455 			 * sched_destroy_user() or remove_user_sysfs_dir().
456 			 */
457 			key_put(new->uid_keyring);
458 			key_put(new->session_keyring);
459 			kmem_cache_free(uid_cachep, new);
460 		} else {
461 			uid_hash_insert(new, hashent);
462 			up = new;
463 		}
464 		spin_unlock_irq(&uidhash_lock);
465 	}
466 
467 	uids_mutex_unlock();
468 
469 	return up;
470 
471 out_destoy_sched:
472 	sched_destroy_user(new);
473 	put_user_ns(new->user_ns);
474 out_free_user:
475 	kmem_cache_free(uid_cachep, new);
476 out_unlock:
477 	uids_mutex_unlock();
478 	return NULL;
479 }
480 
481 static int __init uid_cache_init(void)
482 {
483 	int n;
484 
485 	uid_cachep = kmem_cache_create("uid_cache", sizeof(struct user_struct),
486 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
487 
488 	for(n = 0; n < UIDHASH_SZ; ++n)
489 		INIT_HLIST_HEAD(init_user_ns.uidhash_table + n);
490 
491 	/* Insert the root user immediately (init already runs as root) */
492 	spin_lock_irq(&uidhash_lock);
493 	uid_hash_insert(&root_user, uidhashentry(&init_user_ns, 0));
494 	spin_unlock_irq(&uidhash_lock);
495 
496 	return 0;
497 }
498 
499 module_init(uid_cache_init);
500