xref: /openbmc/linux/kernel/trace/trace_hwlat.c (revision fcbd8037f7df694aa7bfb7ce82c0c7f5e53e7b7b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * trace_hwlatdetect.c - A simple Hardware Latency detector.
4  *
5  * Use this tracer to detect large system latencies induced by the behavior of
6  * certain underlying system hardware or firmware, independent of Linux itself.
7  * The code was developed originally to detect the presence of SMIs on Intel
8  * and AMD systems, although there is no dependency upon x86 herein.
9  *
10  * The classical example usage of this tracer is in detecting the presence of
11  * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
12  * somewhat special form of hardware interrupt spawned from earlier CPU debug
13  * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
14  * LPC (or other device) to generate a special interrupt under certain
15  * circumstances, for example, upon expiration of a special SMI timer device,
16  * due to certain external thermal readings, on certain I/O address accesses,
17  * and other situations. An SMI hits a special CPU pin, triggers a special
18  * SMI mode (complete with special memory map), and the OS is unaware.
19  *
20  * Although certain hardware-inducing latencies are necessary (for example,
21  * a modern system often requires an SMI handler for correct thermal control
22  * and remote management) they can wreak havoc upon any OS-level performance
23  * guarantees toward low-latency, especially when the OS is not even made
24  * aware of the presence of these interrupts. For this reason, we need a
25  * somewhat brute force mechanism to detect these interrupts. In this case,
26  * we do it by hogging all of the CPU(s) for configurable timer intervals,
27  * sampling the built-in CPU timer, looking for discontiguous readings.
28  *
29  * WARNING: This implementation necessarily introduces latencies. Therefore,
30  *          you should NEVER use this tracer while running in a production
31  *          environment requiring any kind of low-latency performance
32  *          guarantee(s).
33  *
34  * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
35  * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
36  *
37  * Includes useful feedback from Clark Williams <clark@redhat.com>
38  *
39  */
40 #include <linux/kthread.h>
41 #include <linux/tracefs.h>
42 #include <linux/uaccess.h>
43 #include <linux/cpumask.h>
44 #include <linux/delay.h>
45 #include <linux/sched/clock.h>
46 #include "trace.h"
47 
48 static struct trace_array	*hwlat_trace;
49 
50 #define U64STR_SIZE		22			/* 20 digits max */
51 
52 #define BANNER			"hwlat_detector: "
53 #define DEFAULT_SAMPLE_WINDOW	1000000			/* 1s */
54 #define DEFAULT_SAMPLE_WIDTH	500000			/* 0.5s */
55 #define DEFAULT_LAT_THRESHOLD	10			/* 10us */
56 
57 /* sampling thread*/
58 static struct task_struct *hwlat_kthread;
59 
60 static struct dentry *hwlat_sample_width;	/* sample width us */
61 static struct dentry *hwlat_sample_window;	/* sample window us */
62 
63 /* Save the previous tracing_thresh value */
64 static unsigned long save_tracing_thresh;
65 
66 /* NMI timestamp counters */
67 static u64 nmi_ts_start;
68 static u64 nmi_total_ts;
69 static int nmi_count;
70 static int nmi_cpu;
71 
72 /* Tells NMIs to call back to the hwlat tracer to record timestamps */
73 bool trace_hwlat_callback_enabled;
74 
75 /* If the user changed threshold, remember it */
76 static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC;
77 
78 /* Individual latency samples are stored here when detected. */
79 struct hwlat_sample {
80 	u64			seqnum;		/* unique sequence */
81 	u64			duration;	/* delta */
82 	u64			outer_duration;	/* delta (outer loop) */
83 	u64			nmi_total_ts;	/* Total time spent in NMIs */
84 	struct timespec64	timestamp;	/* wall time */
85 	int			nmi_count;	/* # NMIs during this sample */
86 };
87 
88 /* keep the global state somewhere. */
89 static struct hwlat_data {
90 
91 	struct mutex lock;		/* protect changes */
92 
93 	u64	count;			/* total since reset */
94 
95 	u64	sample_window;		/* total sampling window (on+off) */
96 	u64	sample_width;		/* active sampling portion of window */
97 
98 } hwlat_data = {
99 	.sample_window		= DEFAULT_SAMPLE_WINDOW,
100 	.sample_width		= DEFAULT_SAMPLE_WIDTH,
101 };
102 
103 static void trace_hwlat_sample(struct hwlat_sample *sample)
104 {
105 	struct trace_array *tr = hwlat_trace;
106 	struct trace_event_call *call = &event_hwlat;
107 	struct ring_buffer *buffer = tr->trace_buffer.buffer;
108 	struct ring_buffer_event *event;
109 	struct hwlat_entry *entry;
110 	unsigned long flags;
111 	int pc;
112 
113 	pc = preempt_count();
114 	local_save_flags(flags);
115 
116 	event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry),
117 					  flags, pc);
118 	if (!event)
119 		return;
120 	entry	= ring_buffer_event_data(event);
121 	entry->seqnum			= sample->seqnum;
122 	entry->duration			= sample->duration;
123 	entry->outer_duration		= sample->outer_duration;
124 	entry->timestamp		= sample->timestamp;
125 	entry->nmi_total_ts		= sample->nmi_total_ts;
126 	entry->nmi_count		= sample->nmi_count;
127 
128 	if (!call_filter_check_discard(call, entry, buffer, event))
129 		trace_buffer_unlock_commit_nostack(buffer, event);
130 }
131 
132 /* Macros to encapsulate the time capturing infrastructure */
133 #define time_type	u64
134 #define time_get()	trace_clock_local()
135 #define time_to_us(x)	div_u64(x, 1000)
136 #define time_sub(a, b)	((a) - (b))
137 #define init_time(a, b)	(a = b)
138 #define time_u64(a)	a
139 
140 void trace_hwlat_callback(bool enter)
141 {
142 	if (smp_processor_id() != nmi_cpu)
143 		return;
144 
145 	/*
146 	 * Currently trace_clock_local() calls sched_clock() and the
147 	 * generic version is not NMI safe.
148 	 */
149 	if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
150 		if (enter)
151 			nmi_ts_start = time_get();
152 		else
153 			nmi_total_ts += time_get() - nmi_ts_start;
154 	}
155 
156 	if (enter)
157 		nmi_count++;
158 }
159 
160 /**
161  * get_sample - sample the CPU TSC and look for likely hardware latencies
162  *
163  * Used to repeatedly capture the CPU TSC (or similar), looking for potential
164  * hardware-induced latency. Called with interrupts disabled and with
165  * hwlat_data.lock held.
166  */
167 static int get_sample(void)
168 {
169 	struct trace_array *tr = hwlat_trace;
170 	time_type start, t1, t2, last_t2;
171 	s64 diff, total, last_total = 0;
172 	u64 sample = 0;
173 	u64 thresh = tracing_thresh;
174 	u64 outer_sample = 0;
175 	int ret = -1;
176 
177 	do_div(thresh, NSEC_PER_USEC); /* modifies interval value */
178 
179 	nmi_cpu = smp_processor_id();
180 	nmi_total_ts = 0;
181 	nmi_count = 0;
182 	/* Make sure NMIs see this first */
183 	barrier();
184 
185 	trace_hwlat_callback_enabled = true;
186 
187 	init_time(last_t2, 0);
188 	start = time_get(); /* start timestamp */
189 
190 	do {
191 
192 		t1 = time_get();	/* we'll look for a discontinuity */
193 		t2 = time_get();
194 
195 		if (time_u64(last_t2)) {
196 			/* Check the delta from outer loop (t2 to next t1) */
197 			diff = time_to_us(time_sub(t1, last_t2));
198 			/* This shouldn't happen */
199 			if (diff < 0) {
200 				pr_err(BANNER "time running backwards\n");
201 				goto out;
202 			}
203 			if (diff > outer_sample)
204 				outer_sample = diff;
205 		}
206 		last_t2 = t2;
207 
208 		total = time_to_us(time_sub(t2, start)); /* sample width */
209 
210 		/* Check for possible overflows */
211 		if (total < last_total) {
212 			pr_err("Time total overflowed\n");
213 			break;
214 		}
215 		last_total = total;
216 
217 		/* This checks the inner loop (t1 to t2) */
218 		diff = time_to_us(time_sub(t2, t1));     /* current diff */
219 
220 		/* This shouldn't happen */
221 		if (diff < 0) {
222 			pr_err(BANNER "time running backwards\n");
223 			goto out;
224 		}
225 
226 		if (diff > sample)
227 			sample = diff; /* only want highest value */
228 
229 	} while (total <= hwlat_data.sample_width);
230 
231 	barrier(); /* finish the above in the view for NMIs */
232 	trace_hwlat_callback_enabled = false;
233 	barrier(); /* Make sure nmi_total_ts is no longer updated */
234 
235 	ret = 0;
236 
237 	/* If we exceed the threshold value, we have found a hardware latency */
238 	if (sample > thresh || outer_sample > thresh) {
239 		struct hwlat_sample s;
240 
241 		ret = 1;
242 
243 		/* We read in microseconds */
244 		if (nmi_total_ts)
245 			do_div(nmi_total_ts, NSEC_PER_USEC);
246 
247 		hwlat_data.count++;
248 		s.seqnum = hwlat_data.count;
249 		s.duration = sample;
250 		s.outer_duration = outer_sample;
251 		ktime_get_real_ts64(&s.timestamp);
252 		s.nmi_total_ts = nmi_total_ts;
253 		s.nmi_count = nmi_count;
254 		trace_hwlat_sample(&s);
255 
256 		/* Keep a running maximum ever recorded hardware latency */
257 		if (sample > tr->max_latency)
258 			tr->max_latency = sample;
259 		if (outer_sample > tr->max_latency)
260 			tr->max_latency = outer_sample;
261 	}
262 
263 out:
264 	return ret;
265 }
266 
267 static struct cpumask save_cpumask;
268 static bool disable_migrate;
269 
270 static void move_to_next_cpu(void)
271 {
272 	struct cpumask *current_mask = &save_cpumask;
273 	int next_cpu;
274 
275 	if (disable_migrate)
276 		return;
277 	/*
278 	 * If for some reason the user modifies the CPU affinity
279 	 * of this thread, than stop migrating for the duration
280 	 * of the current test.
281 	 */
282 	if (!cpumask_equal(current_mask, current->cpus_ptr))
283 		goto disable;
284 
285 	get_online_cpus();
286 	cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
287 	next_cpu = cpumask_next(smp_processor_id(), current_mask);
288 	put_online_cpus();
289 
290 	if (next_cpu >= nr_cpu_ids)
291 		next_cpu = cpumask_first(current_mask);
292 
293 	if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */
294 		goto disable;
295 
296 	cpumask_clear(current_mask);
297 	cpumask_set_cpu(next_cpu, current_mask);
298 
299 	sched_setaffinity(0, current_mask);
300 	return;
301 
302  disable:
303 	disable_migrate = true;
304 }
305 
306 /*
307  * kthread_fn - The CPU time sampling/hardware latency detection kernel thread
308  *
309  * Used to periodically sample the CPU TSC via a call to get_sample. We
310  * disable interrupts, which does (intentionally) introduce latency since we
311  * need to ensure nothing else might be running (and thus preempting).
312  * Obviously this should never be used in production environments.
313  *
314  * Executes one loop interaction on each CPU in tracing_cpumask sysfs file.
315  */
316 static int kthread_fn(void *data)
317 {
318 	u64 interval;
319 
320 	while (!kthread_should_stop()) {
321 
322 		move_to_next_cpu();
323 
324 		local_irq_disable();
325 		get_sample();
326 		local_irq_enable();
327 
328 		mutex_lock(&hwlat_data.lock);
329 		interval = hwlat_data.sample_window - hwlat_data.sample_width;
330 		mutex_unlock(&hwlat_data.lock);
331 
332 		do_div(interval, USEC_PER_MSEC); /* modifies interval value */
333 
334 		/* Always sleep for at least 1ms */
335 		if (interval < 1)
336 			interval = 1;
337 
338 		if (msleep_interruptible(interval))
339 			break;
340 	}
341 
342 	return 0;
343 }
344 
345 /**
346  * start_kthread - Kick off the hardware latency sampling/detector kthread
347  *
348  * This starts the kernel thread that will sit and sample the CPU timestamp
349  * counter (TSC or similar) and look for potential hardware latencies.
350  */
351 static int start_kthread(struct trace_array *tr)
352 {
353 	struct cpumask *current_mask = &save_cpumask;
354 	struct task_struct *kthread;
355 	int next_cpu;
356 
357 	if (WARN_ON(hwlat_kthread))
358 		return 0;
359 
360 	/* Just pick the first CPU on first iteration */
361 	current_mask = &save_cpumask;
362 	get_online_cpus();
363 	cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
364 	put_online_cpus();
365 	next_cpu = cpumask_first(current_mask);
366 
367 	kthread = kthread_create(kthread_fn, NULL, "hwlatd");
368 	if (IS_ERR(kthread)) {
369 		pr_err(BANNER "could not start sampling thread\n");
370 		return -ENOMEM;
371 	}
372 
373 	cpumask_clear(current_mask);
374 	cpumask_set_cpu(next_cpu, current_mask);
375 	sched_setaffinity(kthread->pid, current_mask);
376 
377 	hwlat_kthread = kthread;
378 	wake_up_process(kthread);
379 
380 	return 0;
381 }
382 
383 /**
384  * stop_kthread - Inform the hardware latency samping/detector kthread to stop
385  *
386  * This kicks the running hardware latency sampling/detector kernel thread and
387  * tells it to stop sampling now. Use this on unload and at system shutdown.
388  */
389 static void stop_kthread(void)
390 {
391 	if (!hwlat_kthread)
392 		return;
393 	kthread_stop(hwlat_kthread);
394 	hwlat_kthread = NULL;
395 }
396 
397 /*
398  * hwlat_read - Wrapper read function for reading both window and width
399  * @filp: The active open file structure
400  * @ubuf: The userspace provided buffer to read value into
401  * @cnt: The maximum number of bytes to read
402  * @ppos: The current "file" position
403  *
404  * This function provides a generic read implementation for the global state
405  * "hwlat_data" structure filesystem entries.
406  */
407 static ssize_t hwlat_read(struct file *filp, char __user *ubuf,
408 			  size_t cnt, loff_t *ppos)
409 {
410 	char buf[U64STR_SIZE];
411 	u64 *entry = filp->private_data;
412 	u64 val;
413 	int len;
414 
415 	if (!entry)
416 		return -EFAULT;
417 
418 	if (cnt > sizeof(buf))
419 		cnt = sizeof(buf);
420 
421 	val = *entry;
422 
423 	len = snprintf(buf, sizeof(buf), "%llu\n", val);
424 
425 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, len);
426 }
427 
428 /**
429  * hwlat_width_write - Write function for "width" entry
430  * @filp: The active open file structure
431  * @ubuf: The user buffer that contains the value to write
432  * @cnt: The maximum number of bytes to write to "file"
433  * @ppos: The current position in @file
434  *
435  * This function provides a write implementation for the "width" interface
436  * to the hardware latency detector. It can be used to configure
437  * for how many us of the total window us we will actively sample for any
438  * hardware-induced latency periods. Obviously, it is not possible to
439  * sample constantly and have the system respond to a sample reader, or,
440  * worse, without having the system appear to have gone out to lunch. It
441  * is enforced that width is less that the total window size.
442  */
443 static ssize_t
444 hwlat_width_write(struct file *filp, const char __user *ubuf,
445 		  size_t cnt, loff_t *ppos)
446 {
447 	u64 val;
448 	int err;
449 
450 	err = kstrtoull_from_user(ubuf, cnt, 10, &val);
451 	if (err)
452 		return err;
453 
454 	mutex_lock(&hwlat_data.lock);
455 	if (val < hwlat_data.sample_window)
456 		hwlat_data.sample_width = val;
457 	else
458 		err = -EINVAL;
459 	mutex_unlock(&hwlat_data.lock);
460 
461 	if (err)
462 		return err;
463 
464 	return cnt;
465 }
466 
467 /**
468  * hwlat_window_write - Write function for "window" entry
469  * @filp: The active open file structure
470  * @ubuf: The user buffer that contains the value to write
471  * @cnt: The maximum number of bytes to write to "file"
472  * @ppos: The current position in @file
473  *
474  * This function provides a write implementation for the "window" interface
475  * to the hardware latency detetector. The window is the total time
476  * in us that will be considered one sample period. Conceptually, windows
477  * occur back-to-back and contain a sample width period during which
478  * actual sampling occurs. Can be used to write a new total window size. It
479  * is enfoced that any value written must be greater than the sample width
480  * size, or an error results.
481  */
482 static ssize_t
483 hwlat_window_write(struct file *filp, const char __user *ubuf,
484 		   size_t cnt, loff_t *ppos)
485 {
486 	u64 val;
487 	int err;
488 
489 	err = kstrtoull_from_user(ubuf, cnt, 10, &val);
490 	if (err)
491 		return err;
492 
493 	mutex_lock(&hwlat_data.lock);
494 	if (hwlat_data.sample_width < val)
495 		hwlat_data.sample_window = val;
496 	else
497 		err = -EINVAL;
498 	mutex_unlock(&hwlat_data.lock);
499 
500 	if (err)
501 		return err;
502 
503 	return cnt;
504 }
505 
506 static const struct file_operations width_fops = {
507 	.open		= tracing_open_generic,
508 	.read		= hwlat_read,
509 	.write		= hwlat_width_write,
510 };
511 
512 static const struct file_operations window_fops = {
513 	.open		= tracing_open_generic,
514 	.read		= hwlat_read,
515 	.write		= hwlat_window_write,
516 };
517 
518 /**
519  * init_tracefs - A function to initialize the tracefs interface files
520  *
521  * This function creates entries in tracefs for "hwlat_detector".
522  * It creates the hwlat_detector directory in the tracing directory,
523  * and within that directory is the count, width and window files to
524  * change and view those values.
525  */
526 static int init_tracefs(void)
527 {
528 	struct dentry *d_tracer;
529 	struct dentry *top_dir;
530 
531 	d_tracer = tracing_init_dentry();
532 	if (IS_ERR(d_tracer))
533 		return -ENOMEM;
534 
535 	top_dir = tracefs_create_dir("hwlat_detector", d_tracer);
536 	if (!top_dir)
537 		return -ENOMEM;
538 
539 	hwlat_sample_window = tracefs_create_file("window", 0640,
540 						  top_dir,
541 						  &hwlat_data.sample_window,
542 						  &window_fops);
543 	if (!hwlat_sample_window)
544 		goto err;
545 
546 	hwlat_sample_width = tracefs_create_file("width", 0644,
547 						 top_dir,
548 						 &hwlat_data.sample_width,
549 						 &width_fops);
550 	if (!hwlat_sample_width)
551 		goto err;
552 
553 	return 0;
554 
555  err:
556 	tracefs_remove_recursive(top_dir);
557 	return -ENOMEM;
558 }
559 
560 static void hwlat_tracer_start(struct trace_array *tr)
561 {
562 	int err;
563 
564 	err = start_kthread(tr);
565 	if (err)
566 		pr_err(BANNER "Cannot start hwlat kthread\n");
567 }
568 
569 static void hwlat_tracer_stop(struct trace_array *tr)
570 {
571 	stop_kthread();
572 }
573 
574 static bool hwlat_busy;
575 
576 static int hwlat_tracer_init(struct trace_array *tr)
577 {
578 	/* Only allow one instance to enable this */
579 	if (hwlat_busy)
580 		return -EBUSY;
581 
582 	hwlat_trace = tr;
583 
584 	disable_migrate = false;
585 	hwlat_data.count = 0;
586 	tr->max_latency = 0;
587 	save_tracing_thresh = tracing_thresh;
588 
589 	/* tracing_thresh is in nsecs, we speak in usecs */
590 	if (!tracing_thresh)
591 		tracing_thresh = last_tracing_thresh;
592 
593 	if (tracer_tracing_is_on(tr))
594 		hwlat_tracer_start(tr);
595 
596 	hwlat_busy = true;
597 
598 	return 0;
599 }
600 
601 static void hwlat_tracer_reset(struct trace_array *tr)
602 {
603 	stop_kthread();
604 
605 	/* the tracing threshold is static between runs */
606 	last_tracing_thresh = tracing_thresh;
607 
608 	tracing_thresh = save_tracing_thresh;
609 	hwlat_busy = false;
610 }
611 
612 static struct tracer hwlat_tracer __read_mostly =
613 {
614 	.name		= "hwlat",
615 	.init		= hwlat_tracer_init,
616 	.reset		= hwlat_tracer_reset,
617 	.start		= hwlat_tracer_start,
618 	.stop		= hwlat_tracer_stop,
619 	.allow_instances = true,
620 };
621 
622 __init static int init_hwlat_tracer(void)
623 {
624 	int ret;
625 
626 	mutex_init(&hwlat_data.lock);
627 
628 	ret = register_tracer(&hwlat_tracer);
629 	if (ret)
630 		return ret;
631 
632 	init_tracefs();
633 
634 	return 0;
635 }
636 late_initcall(init_hwlat_tracer);
637