xref: /openbmc/linux/kernel/trace/trace_hwlat.c (revision caa80275)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * trace_hwlat.c - A simple Hardware Latency detector.
4  *
5  * Use this tracer to detect large system latencies induced by the behavior of
6  * certain underlying system hardware or firmware, independent of Linux itself.
7  * The code was developed originally to detect the presence of SMIs on Intel
8  * and AMD systems, although there is no dependency upon x86 herein.
9  *
10  * The classical example usage of this tracer is in detecting the presence of
11  * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
12  * somewhat special form of hardware interrupt spawned from earlier CPU debug
13  * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
14  * LPC (or other device) to generate a special interrupt under certain
15  * circumstances, for example, upon expiration of a special SMI timer device,
16  * due to certain external thermal readings, on certain I/O address accesses,
17  * and other situations. An SMI hits a special CPU pin, triggers a special
18  * SMI mode (complete with special memory map), and the OS is unaware.
19  *
20  * Although certain hardware-inducing latencies are necessary (for example,
21  * a modern system often requires an SMI handler for correct thermal control
22  * and remote management) they can wreak havoc upon any OS-level performance
23  * guarantees toward low-latency, especially when the OS is not even made
24  * aware of the presence of these interrupts. For this reason, we need a
25  * somewhat brute force mechanism to detect these interrupts. In this case,
26  * we do it by hogging all of the CPU(s) for configurable timer intervals,
27  * sampling the built-in CPU timer, looking for discontiguous readings.
28  *
29  * WARNING: This implementation necessarily introduces latencies. Therefore,
30  *          you should NEVER use this tracer while running in a production
31  *          environment requiring any kind of low-latency performance
32  *          guarantee(s).
33  *
34  * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
35  * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
36  *
37  * Includes useful feedback from Clark Williams <williams@redhat.com>
38  *
39  */
40 #include <linux/kthread.h>
41 #include <linux/tracefs.h>
42 #include <linux/uaccess.h>
43 #include <linux/cpumask.h>
44 #include <linux/delay.h>
45 #include <linux/sched/clock.h>
46 #include "trace.h"
47 
48 static struct trace_array	*hwlat_trace;
49 
50 #define U64STR_SIZE		22			/* 20 digits max */
51 
52 #define BANNER			"hwlat_detector: "
53 #define DEFAULT_SAMPLE_WINDOW	1000000			/* 1s */
54 #define DEFAULT_SAMPLE_WIDTH	500000			/* 0.5s */
55 #define DEFAULT_LAT_THRESHOLD	10			/* 10us */
56 
57 static struct dentry *hwlat_sample_width;	/* sample width us */
58 static struct dentry *hwlat_sample_window;	/* sample window us */
59 static struct dentry *hwlat_thread_mode;	/* hwlat thread mode */
60 
61 enum {
62 	MODE_NONE = 0,
63 	MODE_ROUND_ROBIN,
64 	MODE_PER_CPU,
65 	MODE_MAX
66 };
67 static char *thread_mode_str[] = { "none", "round-robin", "per-cpu" };
68 
69 /* Save the previous tracing_thresh value */
70 static unsigned long save_tracing_thresh;
71 
72 /* runtime kthread data */
73 struct hwlat_kthread_data {
74 	struct task_struct	*kthread;
75 	/* NMI timestamp counters */
76 	u64			nmi_ts_start;
77 	u64			nmi_total_ts;
78 	int			nmi_count;
79 	int			nmi_cpu;
80 };
81 
82 struct hwlat_kthread_data hwlat_single_cpu_data;
83 DEFINE_PER_CPU(struct hwlat_kthread_data, hwlat_per_cpu_data);
84 
85 /* Tells NMIs to call back to the hwlat tracer to record timestamps */
86 bool trace_hwlat_callback_enabled;
87 
88 /* If the user changed threshold, remember it */
89 static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC;
90 
91 /* Individual latency samples are stored here when detected. */
92 struct hwlat_sample {
93 	u64			seqnum;		/* unique sequence */
94 	u64			duration;	/* delta */
95 	u64			outer_duration;	/* delta (outer loop) */
96 	u64			nmi_total_ts;	/* Total time spent in NMIs */
97 	struct timespec64	timestamp;	/* wall time */
98 	int			nmi_count;	/* # NMIs during this sample */
99 	int			count;		/* # of iterations over thresh */
100 };
101 
102 /* keep the global state somewhere. */
103 static struct hwlat_data {
104 
105 	struct mutex lock;		/* protect changes */
106 
107 	u64	count;			/* total since reset */
108 
109 	u64	sample_window;		/* total sampling window (on+off) */
110 	u64	sample_width;		/* active sampling portion of window */
111 
112 	int	thread_mode;		/* thread mode */
113 
114 } hwlat_data = {
115 	.sample_window		= DEFAULT_SAMPLE_WINDOW,
116 	.sample_width		= DEFAULT_SAMPLE_WIDTH,
117 	.thread_mode		= MODE_ROUND_ROBIN
118 };
119 
120 static struct hwlat_kthread_data *get_cpu_data(void)
121 {
122 	if (hwlat_data.thread_mode == MODE_PER_CPU)
123 		return this_cpu_ptr(&hwlat_per_cpu_data);
124 	else
125 		return &hwlat_single_cpu_data;
126 }
127 
128 static bool hwlat_busy;
129 
130 static void trace_hwlat_sample(struct hwlat_sample *sample)
131 {
132 	struct trace_array *tr = hwlat_trace;
133 	struct trace_event_call *call = &event_hwlat;
134 	struct trace_buffer *buffer = tr->array_buffer.buffer;
135 	struct ring_buffer_event *event;
136 	struct hwlat_entry *entry;
137 
138 	event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry),
139 					  tracing_gen_ctx());
140 	if (!event)
141 		return;
142 	entry	= ring_buffer_event_data(event);
143 	entry->seqnum			= sample->seqnum;
144 	entry->duration			= sample->duration;
145 	entry->outer_duration		= sample->outer_duration;
146 	entry->timestamp		= sample->timestamp;
147 	entry->nmi_total_ts		= sample->nmi_total_ts;
148 	entry->nmi_count		= sample->nmi_count;
149 	entry->count			= sample->count;
150 
151 	if (!call_filter_check_discard(call, entry, buffer, event))
152 		trace_buffer_unlock_commit_nostack(buffer, event);
153 }
154 
155 /* Macros to encapsulate the time capturing infrastructure */
156 #define time_type	u64
157 #define time_get()	trace_clock_local()
158 #define time_to_us(x)	div_u64(x, 1000)
159 #define time_sub(a, b)	((a) - (b))
160 #define init_time(a, b)	(a = b)
161 #define time_u64(a)	a
162 
163 void trace_hwlat_callback(bool enter)
164 {
165 	struct hwlat_kthread_data *kdata = get_cpu_data();
166 
167 	if (!kdata->kthread)
168 		return;
169 
170 	/*
171 	 * Currently trace_clock_local() calls sched_clock() and the
172 	 * generic version is not NMI safe.
173 	 */
174 	if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
175 		if (enter)
176 			kdata->nmi_ts_start = time_get();
177 		else
178 			kdata->nmi_total_ts += time_get() - kdata->nmi_ts_start;
179 	}
180 
181 	if (enter)
182 		kdata->nmi_count++;
183 }
184 
185 /*
186  * hwlat_err - report a hwlat error.
187  */
188 #define hwlat_err(msg) ({							\
189 	struct trace_array *tr = hwlat_trace;					\
190 										\
191 	trace_array_printk_buf(tr->array_buffer.buffer, _THIS_IP_, msg);	\
192 })
193 
194 /**
195  * get_sample - sample the CPU TSC and look for likely hardware latencies
196  *
197  * Used to repeatedly capture the CPU TSC (or similar), looking for potential
198  * hardware-induced latency. Called with interrupts disabled and with
199  * hwlat_data.lock held.
200  */
201 static int get_sample(void)
202 {
203 	struct hwlat_kthread_data *kdata = get_cpu_data();
204 	struct trace_array *tr = hwlat_trace;
205 	struct hwlat_sample s;
206 	time_type start, t1, t2, last_t2;
207 	s64 diff, outer_diff, total, last_total = 0;
208 	u64 sample = 0;
209 	u64 thresh = tracing_thresh;
210 	u64 outer_sample = 0;
211 	int ret = -1;
212 	unsigned int count = 0;
213 
214 	do_div(thresh, NSEC_PER_USEC); /* modifies interval value */
215 
216 	kdata->nmi_total_ts = 0;
217 	kdata->nmi_count = 0;
218 	/* Make sure NMIs see this first */
219 	barrier();
220 
221 	trace_hwlat_callback_enabled = true;
222 
223 	init_time(last_t2, 0);
224 	start = time_get(); /* start timestamp */
225 	outer_diff = 0;
226 
227 	do {
228 
229 		t1 = time_get();	/* we'll look for a discontinuity */
230 		t2 = time_get();
231 
232 		if (time_u64(last_t2)) {
233 			/* Check the delta from outer loop (t2 to next t1) */
234 			outer_diff = time_to_us(time_sub(t1, last_t2));
235 			/* This shouldn't happen */
236 			if (outer_diff < 0) {
237 				hwlat_err(BANNER "time running backwards\n");
238 				goto out;
239 			}
240 			if (outer_diff > outer_sample)
241 				outer_sample = outer_diff;
242 		}
243 		last_t2 = t2;
244 
245 		total = time_to_us(time_sub(t2, start)); /* sample width */
246 
247 		/* Check for possible overflows */
248 		if (total < last_total) {
249 			hwlat_err("Time total overflowed\n");
250 			break;
251 		}
252 		last_total = total;
253 
254 		/* This checks the inner loop (t1 to t2) */
255 		diff = time_to_us(time_sub(t2, t1));     /* current diff */
256 
257 		if (diff > thresh || outer_diff > thresh) {
258 			if (!count)
259 				ktime_get_real_ts64(&s.timestamp);
260 			count++;
261 		}
262 
263 		/* This shouldn't happen */
264 		if (diff < 0) {
265 			hwlat_err(BANNER "time running backwards\n");
266 			goto out;
267 		}
268 
269 		if (diff > sample)
270 			sample = diff; /* only want highest value */
271 
272 	} while (total <= hwlat_data.sample_width);
273 
274 	barrier(); /* finish the above in the view for NMIs */
275 	trace_hwlat_callback_enabled = false;
276 	barrier(); /* Make sure nmi_total_ts is no longer updated */
277 
278 	ret = 0;
279 
280 	/* If we exceed the threshold value, we have found a hardware latency */
281 	if (sample > thresh || outer_sample > thresh) {
282 		u64 latency;
283 
284 		ret = 1;
285 
286 		/* We read in microseconds */
287 		if (kdata->nmi_total_ts)
288 			do_div(kdata->nmi_total_ts, NSEC_PER_USEC);
289 
290 		hwlat_data.count++;
291 		s.seqnum = hwlat_data.count;
292 		s.duration = sample;
293 		s.outer_duration = outer_sample;
294 		s.nmi_total_ts = kdata->nmi_total_ts;
295 		s.nmi_count = kdata->nmi_count;
296 		s.count = count;
297 		trace_hwlat_sample(&s);
298 
299 		latency = max(sample, outer_sample);
300 
301 		/* Keep a running maximum ever recorded hardware latency */
302 		if (latency > tr->max_latency) {
303 			tr->max_latency = latency;
304 			latency_fsnotify(tr);
305 		}
306 	}
307 
308 out:
309 	return ret;
310 }
311 
312 static struct cpumask save_cpumask;
313 
314 static void move_to_next_cpu(void)
315 {
316 	struct cpumask *current_mask = &save_cpumask;
317 	struct trace_array *tr = hwlat_trace;
318 	int next_cpu;
319 
320 	/*
321 	 * If for some reason the user modifies the CPU affinity
322 	 * of this thread, then stop migrating for the duration
323 	 * of the current test.
324 	 */
325 	if (!cpumask_equal(current_mask, current->cpus_ptr))
326 		goto change_mode;
327 
328 	cpus_read_lock();
329 	cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask);
330 	next_cpu = cpumask_next(raw_smp_processor_id(), current_mask);
331 	cpus_read_unlock();
332 
333 	if (next_cpu >= nr_cpu_ids)
334 		next_cpu = cpumask_first(current_mask);
335 
336 	if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */
337 		goto change_mode;
338 
339 	cpumask_clear(current_mask);
340 	cpumask_set_cpu(next_cpu, current_mask);
341 
342 	sched_setaffinity(0, current_mask);
343 	return;
344 
345  change_mode:
346 	hwlat_data.thread_mode = MODE_NONE;
347 	pr_info(BANNER "cpumask changed while in round-robin mode, switching to mode none\n");
348 }
349 
350 /*
351  * kthread_fn - The CPU time sampling/hardware latency detection kernel thread
352  *
353  * Used to periodically sample the CPU TSC via a call to get_sample. We
354  * disable interrupts, which does (intentionally) introduce latency since we
355  * need to ensure nothing else might be running (and thus preempting).
356  * Obviously this should never be used in production environments.
357  *
358  * Executes one loop interaction on each CPU in tracing_cpumask sysfs file.
359  */
360 static int kthread_fn(void *data)
361 {
362 	u64 interval;
363 
364 	while (!kthread_should_stop()) {
365 
366 		if (hwlat_data.thread_mode == MODE_ROUND_ROBIN)
367 			move_to_next_cpu();
368 
369 		local_irq_disable();
370 		get_sample();
371 		local_irq_enable();
372 
373 		mutex_lock(&hwlat_data.lock);
374 		interval = hwlat_data.sample_window - hwlat_data.sample_width;
375 		mutex_unlock(&hwlat_data.lock);
376 
377 		do_div(interval, USEC_PER_MSEC); /* modifies interval value */
378 
379 		/* Always sleep for at least 1ms */
380 		if (interval < 1)
381 			interval = 1;
382 
383 		if (msleep_interruptible(interval))
384 			break;
385 	}
386 
387 	return 0;
388 }
389 
390 /*
391  * stop_stop_kthread - Inform the hardware latency sampling/detector kthread to stop
392  *
393  * This kicks the running hardware latency sampling/detector kernel thread and
394  * tells it to stop sampling now. Use this on unload and at system shutdown.
395  */
396 static void stop_single_kthread(void)
397 {
398 	struct hwlat_kthread_data *kdata = get_cpu_data();
399 	struct task_struct *kthread;
400 
401 	cpus_read_lock();
402 	kthread = kdata->kthread;
403 
404 	if (!kthread)
405 		goto out_put_cpus;
406 
407 	kthread_stop(kthread);
408 	kdata->kthread = NULL;
409 
410 out_put_cpus:
411 	cpus_read_unlock();
412 }
413 
414 
415 /*
416  * start_single_kthread - Kick off the hardware latency sampling/detector kthread
417  *
418  * This starts the kernel thread that will sit and sample the CPU timestamp
419  * counter (TSC or similar) and look for potential hardware latencies.
420  */
421 static int start_single_kthread(struct trace_array *tr)
422 {
423 	struct hwlat_kthread_data *kdata = get_cpu_data();
424 	struct cpumask *current_mask = &save_cpumask;
425 	struct task_struct *kthread;
426 	int next_cpu;
427 
428 	cpus_read_lock();
429 	if (kdata->kthread)
430 		goto out_put_cpus;
431 
432 	kthread = kthread_create(kthread_fn, NULL, "hwlatd");
433 	if (IS_ERR(kthread)) {
434 		pr_err(BANNER "could not start sampling thread\n");
435 		cpus_read_unlock();
436 		return -ENOMEM;
437 	}
438 
439 	/* Just pick the first CPU on first iteration */
440 	cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask);
441 
442 	if (hwlat_data.thread_mode == MODE_ROUND_ROBIN) {
443 		next_cpu = cpumask_first(current_mask);
444 		cpumask_clear(current_mask);
445 		cpumask_set_cpu(next_cpu, current_mask);
446 
447 	}
448 
449 	sched_setaffinity(kthread->pid, current_mask);
450 
451 	kdata->kthread = kthread;
452 	wake_up_process(kthread);
453 
454 out_put_cpus:
455 	cpus_read_unlock();
456 	return 0;
457 }
458 
459 /*
460  * stop_cpu_kthread - Stop a hwlat cpu kthread
461  */
462 static void stop_cpu_kthread(unsigned int cpu)
463 {
464 	struct task_struct *kthread;
465 
466 	kthread = per_cpu(hwlat_per_cpu_data, cpu).kthread;
467 	if (kthread)
468 		kthread_stop(kthread);
469 	per_cpu(hwlat_per_cpu_data, cpu).kthread = NULL;
470 }
471 
472 /*
473  * stop_per_cpu_kthreads - Inform the hardware latency sampling/detector kthread to stop
474  *
475  * This kicks the running hardware latency sampling/detector kernel threads and
476  * tells it to stop sampling now. Use this on unload and at system shutdown.
477  */
478 static void stop_per_cpu_kthreads(void)
479 {
480 	unsigned int cpu;
481 
482 	cpus_read_lock();
483 	for_each_online_cpu(cpu)
484 		stop_cpu_kthread(cpu);
485 	cpus_read_unlock();
486 }
487 
488 /*
489  * start_cpu_kthread - Start a hwlat cpu kthread
490  */
491 static int start_cpu_kthread(unsigned int cpu)
492 {
493 	struct task_struct *kthread;
494 	char comm[24];
495 
496 	snprintf(comm, 24, "hwlatd/%d", cpu);
497 
498 	kthread = kthread_create_on_cpu(kthread_fn, NULL, cpu, comm);
499 	if (IS_ERR(kthread)) {
500 		pr_err(BANNER "could not start sampling thread\n");
501 		return -ENOMEM;
502 	}
503 
504 	per_cpu(hwlat_per_cpu_data, cpu).kthread = kthread;
505 	wake_up_process(kthread);
506 
507 	return 0;
508 }
509 
510 #ifdef CONFIG_HOTPLUG_CPU
511 static void hwlat_hotplug_workfn(struct work_struct *dummy)
512 {
513 	struct trace_array *tr = hwlat_trace;
514 	unsigned int cpu = smp_processor_id();
515 
516 	mutex_lock(&trace_types_lock);
517 	mutex_lock(&hwlat_data.lock);
518 	cpus_read_lock();
519 
520 	if (!hwlat_busy || hwlat_data.thread_mode != MODE_PER_CPU)
521 		goto out_unlock;
522 
523 	if (!cpumask_test_cpu(cpu, tr->tracing_cpumask))
524 		goto out_unlock;
525 
526 	start_cpu_kthread(cpu);
527 
528 out_unlock:
529 	cpus_read_unlock();
530 	mutex_unlock(&hwlat_data.lock);
531 	mutex_unlock(&trace_types_lock);
532 }
533 
534 static DECLARE_WORK(hwlat_hotplug_work, hwlat_hotplug_workfn);
535 
536 /*
537  * hwlat_cpu_init - CPU hotplug online callback function
538  */
539 static int hwlat_cpu_init(unsigned int cpu)
540 {
541 	schedule_work_on(cpu, &hwlat_hotplug_work);
542 	return 0;
543 }
544 
545 /*
546  * hwlat_cpu_die - CPU hotplug offline callback function
547  */
548 static int hwlat_cpu_die(unsigned int cpu)
549 {
550 	stop_cpu_kthread(cpu);
551 	return 0;
552 }
553 
554 static void hwlat_init_hotplug_support(void)
555 {
556 	int ret;
557 
558 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "trace/hwlat:online",
559 				hwlat_cpu_init, hwlat_cpu_die);
560 	if (ret < 0)
561 		pr_warn(BANNER "Error to init cpu hotplug support\n");
562 
563 	return;
564 }
565 #else /* CONFIG_HOTPLUG_CPU */
566 static void hwlat_init_hotplug_support(void)
567 {
568 	return;
569 }
570 #endif /* CONFIG_HOTPLUG_CPU */
571 
572 /*
573  * start_per_cpu_kthreads - Kick off the hardware latency sampling/detector kthreads
574  *
575  * This starts the kernel threads that will sit on potentially all cpus and
576  * sample the CPU timestamp counter (TSC or similar) and look for potential
577  * hardware latencies.
578  */
579 static int start_per_cpu_kthreads(struct trace_array *tr)
580 {
581 	struct cpumask *current_mask = &save_cpumask;
582 	unsigned int cpu;
583 	int retval;
584 
585 	cpus_read_lock();
586 	/*
587 	 * Run only on CPUs in which hwlat is allowed to run.
588 	 */
589 	cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask);
590 
591 	for_each_online_cpu(cpu)
592 		per_cpu(hwlat_per_cpu_data, cpu).kthread = NULL;
593 
594 	for_each_cpu(cpu, current_mask) {
595 		retval = start_cpu_kthread(cpu);
596 		if (retval)
597 			goto out_error;
598 	}
599 	cpus_read_unlock();
600 
601 	return 0;
602 
603 out_error:
604 	cpus_read_unlock();
605 	stop_per_cpu_kthreads();
606 	return retval;
607 }
608 
609 static void *s_mode_start(struct seq_file *s, loff_t *pos)
610 {
611 	int mode = *pos;
612 
613 	mutex_lock(&hwlat_data.lock);
614 
615 	if (mode >= MODE_MAX)
616 		return NULL;
617 
618 	return pos;
619 }
620 
621 static void *s_mode_next(struct seq_file *s, void *v, loff_t *pos)
622 {
623 	int mode = ++(*pos);
624 
625 	if (mode >= MODE_MAX)
626 		return NULL;
627 
628 	return pos;
629 }
630 
631 static int s_mode_show(struct seq_file *s, void *v)
632 {
633 	loff_t *pos = v;
634 	int mode = *pos;
635 
636 	if (mode == hwlat_data.thread_mode)
637 		seq_printf(s, "[%s]", thread_mode_str[mode]);
638 	else
639 		seq_printf(s, "%s", thread_mode_str[mode]);
640 
641 	if (mode != MODE_MAX)
642 		seq_puts(s, " ");
643 
644 	return 0;
645 }
646 
647 static void s_mode_stop(struct seq_file *s, void *v)
648 {
649 	seq_puts(s, "\n");
650 	mutex_unlock(&hwlat_data.lock);
651 }
652 
653 static const struct seq_operations thread_mode_seq_ops = {
654 	.start		= s_mode_start,
655 	.next		= s_mode_next,
656 	.show		= s_mode_show,
657 	.stop		= s_mode_stop
658 };
659 
660 static int hwlat_mode_open(struct inode *inode, struct file *file)
661 {
662 	return seq_open(file, &thread_mode_seq_ops);
663 };
664 
665 static void hwlat_tracer_start(struct trace_array *tr);
666 static void hwlat_tracer_stop(struct trace_array *tr);
667 
668 /**
669  * hwlat_mode_write - Write function for "mode" entry
670  * @filp: The active open file structure
671  * @ubuf: The user buffer that contains the value to write
672  * @cnt: The maximum number of bytes to write to "file"
673  * @ppos: The current position in @file
674  *
675  * This function provides a write implementation for the "mode" interface
676  * to the hardware latency detector. hwlatd has different operation modes.
677  * The "none" sets the allowed cpumask for a single hwlatd thread at the
678  * startup and lets the scheduler handle the migration. The default mode is
679  * the "round-robin" one, in which a single hwlatd thread runs, migrating
680  * among the allowed CPUs in a round-robin fashion. The "per-cpu" mode
681  * creates one hwlatd thread per allowed CPU.
682  */
683 static ssize_t hwlat_mode_write(struct file *filp, const char __user *ubuf,
684 				 size_t cnt, loff_t *ppos)
685 {
686 	struct trace_array *tr = hwlat_trace;
687 	const char *mode;
688 	char buf[64];
689 	int ret, i;
690 
691 	if (cnt >= sizeof(buf))
692 		return -EINVAL;
693 
694 	if (copy_from_user(buf, ubuf, cnt))
695 		return -EFAULT;
696 
697 	buf[cnt] = 0;
698 
699 	mode = strstrip(buf);
700 
701 	ret = -EINVAL;
702 
703 	/*
704 	 * trace_types_lock is taken to avoid concurrency on start/stop
705 	 * and hwlat_busy.
706 	 */
707 	mutex_lock(&trace_types_lock);
708 	if (hwlat_busy)
709 		hwlat_tracer_stop(tr);
710 
711 	mutex_lock(&hwlat_data.lock);
712 
713 	for (i = 0; i < MODE_MAX; i++) {
714 		if (strcmp(mode, thread_mode_str[i]) == 0) {
715 			hwlat_data.thread_mode = i;
716 			ret = cnt;
717 		}
718 	}
719 
720 	mutex_unlock(&hwlat_data.lock);
721 
722 	if (hwlat_busy)
723 		hwlat_tracer_start(tr);
724 	mutex_unlock(&trace_types_lock);
725 
726 	*ppos += cnt;
727 
728 
729 
730 	return ret;
731 }
732 
733 /*
734  * The width parameter is read/write using the generic trace_min_max_param
735  * method. The *val is protected by the hwlat_data lock and is upper
736  * bounded by the window parameter.
737  */
738 static struct trace_min_max_param hwlat_width = {
739 	.lock		= &hwlat_data.lock,
740 	.val		= &hwlat_data.sample_width,
741 	.max		= &hwlat_data.sample_window,
742 	.min		= NULL,
743 };
744 
745 /*
746  * The window parameter is read/write using the generic trace_min_max_param
747  * method. The *val is protected by the hwlat_data lock and is lower
748  * bounded by the width parameter.
749  */
750 static struct trace_min_max_param hwlat_window = {
751 	.lock		= &hwlat_data.lock,
752 	.val		= &hwlat_data.sample_window,
753 	.max		= NULL,
754 	.min		= &hwlat_data.sample_width,
755 };
756 
757 static const struct file_operations thread_mode_fops = {
758 	.open		= hwlat_mode_open,
759 	.read		= seq_read,
760 	.llseek		= seq_lseek,
761 	.release	= seq_release,
762 	.write		= hwlat_mode_write
763 };
764 /**
765  * init_tracefs - A function to initialize the tracefs interface files
766  *
767  * This function creates entries in tracefs for "hwlat_detector".
768  * It creates the hwlat_detector directory in the tracing directory,
769  * and within that directory is the count, width and window files to
770  * change and view those values.
771  */
772 static int init_tracefs(void)
773 {
774 	int ret;
775 	struct dentry *top_dir;
776 
777 	ret = tracing_init_dentry();
778 	if (ret)
779 		return -ENOMEM;
780 
781 	top_dir = tracefs_create_dir("hwlat_detector", NULL);
782 	if (!top_dir)
783 		return -ENOMEM;
784 
785 	hwlat_sample_window = tracefs_create_file("window", 0640,
786 						  top_dir,
787 						  &hwlat_window,
788 						  &trace_min_max_fops);
789 	if (!hwlat_sample_window)
790 		goto err;
791 
792 	hwlat_sample_width = tracefs_create_file("width", 0644,
793 						 top_dir,
794 						 &hwlat_width,
795 						 &trace_min_max_fops);
796 	if (!hwlat_sample_width)
797 		goto err;
798 
799 	hwlat_thread_mode = trace_create_file("mode", 0644,
800 					      top_dir,
801 					      NULL,
802 					      &thread_mode_fops);
803 	if (!hwlat_thread_mode)
804 		goto err;
805 
806 	return 0;
807 
808  err:
809 	tracefs_remove(top_dir);
810 	return -ENOMEM;
811 }
812 
813 static void hwlat_tracer_start(struct trace_array *tr)
814 {
815 	int err;
816 
817 	if (hwlat_data.thread_mode == MODE_PER_CPU)
818 		err = start_per_cpu_kthreads(tr);
819 	else
820 		err = start_single_kthread(tr);
821 	if (err)
822 		pr_err(BANNER "Cannot start hwlat kthread\n");
823 }
824 
825 static void hwlat_tracer_stop(struct trace_array *tr)
826 {
827 	if (hwlat_data.thread_mode == MODE_PER_CPU)
828 		stop_per_cpu_kthreads();
829 	else
830 		stop_single_kthread();
831 }
832 
833 static int hwlat_tracer_init(struct trace_array *tr)
834 {
835 	/* Only allow one instance to enable this */
836 	if (hwlat_busy)
837 		return -EBUSY;
838 
839 	hwlat_trace = tr;
840 
841 	hwlat_data.count = 0;
842 	tr->max_latency = 0;
843 	save_tracing_thresh = tracing_thresh;
844 
845 	/* tracing_thresh is in nsecs, we speak in usecs */
846 	if (!tracing_thresh)
847 		tracing_thresh = last_tracing_thresh;
848 
849 	if (tracer_tracing_is_on(tr))
850 		hwlat_tracer_start(tr);
851 
852 	hwlat_busy = true;
853 
854 	return 0;
855 }
856 
857 static void hwlat_tracer_reset(struct trace_array *tr)
858 {
859 	hwlat_tracer_stop(tr);
860 
861 	/* the tracing threshold is static between runs */
862 	last_tracing_thresh = tracing_thresh;
863 
864 	tracing_thresh = save_tracing_thresh;
865 	hwlat_busy = false;
866 }
867 
868 static struct tracer hwlat_tracer __read_mostly =
869 {
870 	.name		= "hwlat",
871 	.init		= hwlat_tracer_init,
872 	.reset		= hwlat_tracer_reset,
873 	.start		= hwlat_tracer_start,
874 	.stop		= hwlat_tracer_stop,
875 	.allow_instances = true,
876 };
877 
878 __init static int init_hwlat_tracer(void)
879 {
880 	int ret;
881 
882 	mutex_init(&hwlat_data.lock);
883 
884 	ret = register_tracer(&hwlat_tracer);
885 	if (ret)
886 		return ret;
887 
888 	hwlat_init_hotplug_support();
889 
890 	init_tracefs();
891 
892 	return 0;
893 }
894 late_initcall(init_hwlat_tracer);
895