xref: /openbmc/linux/kernel/trace/trace_hwlat.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * trace_hwlatdetect.c - A simple Hardware Latency detector.
3  *
4  * Use this tracer to detect large system latencies induced by the behavior of
5  * certain underlying system hardware or firmware, independent of Linux itself.
6  * The code was developed originally to detect the presence of SMIs on Intel
7  * and AMD systems, although there is no dependency upon x86 herein.
8  *
9  * The classical example usage of this tracer is in detecting the presence of
10  * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
11  * somewhat special form of hardware interrupt spawned from earlier CPU debug
12  * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
13  * LPC (or other device) to generate a special interrupt under certain
14  * circumstances, for example, upon expiration of a special SMI timer device,
15  * due to certain external thermal readings, on certain I/O address accesses,
16  * and other situations. An SMI hits a special CPU pin, triggers a special
17  * SMI mode (complete with special memory map), and the OS is unaware.
18  *
19  * Although certain hardware-inducing latencies are necessary (for example,
20  * a modern system often requires an SMI handler for correct thermal control
21  * and remote management) they can wreak havoc upon any OS-level performance
22  * guarantees toward low-latency, especially when the OS is not even made
23  * aware of the presence of these interrupts. For this reason, we need a
24  * somewhat brute force mechanism to detect these interrupts. In this case,
25  * we do it by hogging all of the CPU(s) for configurable timer intervals,
26  * sampling the built-in CPU timer, looking for discontiguous readings.
27  *
28  * WARNING: This implementation necessarily introduces latencies. Therefore,
29  *          you should NEVER use this tracer while running in a production
30  *          environment requiring any kind of low-latency performance
31  *          guarantee(s).
32  *
33  * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
34  * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
35  *
36  * Includes useful feedback from Clark Williams <clark@redhat.com>
37  *
38  * This file is licensed under the terms of the GNU General Public
39  * License version 2. This program is licensed "as is" without any
40  * warranty of any kind, whether express or implied.
41  */
42 #include <linux/kthread.h>
43 #include <linux/tracefs.h>
44 #include <linux/uaccess.h>
45 #include <linux/cpumask.h>
46 #include <linux/delay.h>
47 #include "trace.h"
48 
49 static struct trace_array	*hwlat_trace;
50 
51 #define U64STR_SIZE		22			/* 20 digits max */
52 
53 #define BANNER			"hwlat_detector: "
54 #define DEFAULT_SAMPLE_WINDOW	1000000			/* 1s */
55 #define DEFAULT_SAMPLE_WIDTH	500000			/* 0.5s */
56 #define DEFAULT_LAT_THRESHOLD	10			/* 10us */
57 
58 /* sampling thread*/
59 static struct task_struct *hwlat_kthread;
60 
61 static struct dentry *hwlat_sample_width;	/* sample width us */
62 static struct dentry *hwlat_sample_window;	/* sample window us */
63 
64 /* Save the previous tracing_thresh value */
65 static unsigned long save_tracing_thresh;
66 
67 /* NMI timestamp counters */
68 static u64 nmi_ts_start;
69 static u64 nmi_total_ts;
70 static int nmi_count;
71 static int nmi_cpu;
72 
73 /* Tells NMIs to call back to the hwlat tracer to record timestamps */
74 bool trace_hwlat_callback_enabled;
75 
76 /* If the user changed threshold, remember it */
77 static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC;
78 
79 /* Individual latency samples are stored here when detected. */
80 struct hwlat_sample {
81 	u64		seqnum;		/* unique sequence */
82 	u64		duration;	/* delta */
83 	u64		outer_duration;	/* delta (outer loop) */
84 	u64		nmi_total_ts;	/* Total time spent in NMIs */
85 	struct timespec	timestamp;	/* wall time */
86 	int		nmi_count;	/* # NMIs during this sample */
87 };
88 
89 /* keep the global state somewhere. */
90 static struct hwlat_data {
91 
92 	struct mutex lock;		/* protect changes */
93 
94 	u64	count;			/* total since reset */
95 
96 	u64	sample_window;		/* total sampling window (on+off) */
97 	u64	sample_width;		/* active sampling portion of window */
98 
99 } hwlat_data = {
100 	.sample_window		= DEFAULT_SAMPLE_WINDOW,
101 	.sample_width		= DEFAULT_SAMPLE_WIDTH,
102 };
103 
104 static void trace_hwlat_sample(struct hwlat_sample *sample)
105 {
106 	struct trace_array *tr = hwlat_trace;
107 	struct trace_event_call *call = &event_hwlat;
108 	struct ring_buffer *buffer = tr->trace_buffer.buffer;
109 	struct ring_buffer_event *event;
110 	struct hwlat_entry *entry;
111 	unsigned long flags;
112 	int pc;
113 
114 	pc = preempt_count();
115 	local_save_flags(flags);
116 
117 	event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry),
118 					  flags, pc);
119 	if (!event)
120 		return;
121 	entry	= ring_buffer_event_data(event);
122 	entry->seqnum			= sample->seqnum;
123 	entry->duration			= sample->duration;
124 	entry->outer_duration		= sample->outer_duration;
125 	entry->timestamp		= sample->timestamp;
126 	entry->nmi_total_ts		= sample->nmi_total_ts;
127 	entry->nmi_count		= sample->nmi_count;
128 
129 	if (!call_filter_check_discard(call, entry, buffer, event))
130 		__buffer_unlock_commit(buffer, event);
131 }
132 
133 /* Macros to encapsulate the time capturing infrastructure */
134 #define time_type	u64
135 #define time_get()	trace_clock_local()
136 #define time_to_us(x)	div_u64(x, 1000)
137 #define time_sub(a, b)	((a) - (b))
138 #define init_time(a, b)	(a = b)
139 #define time_u64(a)	a
140 
141 void trace_hwlat_callback(bool enter)
142 {
143 	if (smp_processor_id() != nmi_cpu)
144 		return;
145 
146 	/*
147 	 * Currently trace_clock_local() calls sched_clock() and the
148 	 * generic version is not NMI safe.
149 	 */
150 	if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
151 		if (enter)
152 			nmi_ts_start = time_get();
153 		else
154 			nmi_total_ts = time_get() - nmi_ts_start;
155 	}
156 
157 	if (enter)
158 		nmi_count++;
159 }
160 
161 /**
162  * get_sample - sample the CPU TSC and look for likely hardware latencies
163  *
164  * Used to repeatedly capture the CPU TSC (or similar), looking for potential
165  * hardware-induced latency. Called with interrupts disabled and with
166  * hwlat_data.lock held.
167  */
168 static int get_sample(void)
169 {
170 	struct trace_array *tr = hwlat_trace;
171 	time_type start, t1, t2, last_t2;
172 	s64 diff, total, last_total = 0;
173 	u64 sample = 0;
174 	u64 thresh = tracing_thresh;
175 	u64 outer_sample = 0;
176 	int ret = -1;
177 
178 	do_div(thresh, NSEC_PER_USEC); /* modifies interval value */
179 
180 	nmi_cpu = smp_processor_id();
181 	nmi_total_ts = 0;
182 	nmi_count = 0;
183 	/* Make sure NMIs see this first */
184 	barrier();
185 
186 	trace_hwlat_callback_enabled = true;
187 
188 	init_time(last_t2, 0);
189 	start = time_get(); /* start timestamp */
190 
191 	do {
192 
193 		t1 = time_get();	/* we'll look for a discontinuity */
194 		t2 = time_get();
195 
196 		if (time_u64(last_t2)) {
197 			/* Check the delta from outer loop (t2 to next t1) */
198 			diff = time_to_us(time_sub(t1, last_t2));
199 			/* This shouldn't happen */
200 			if (diff < 0) {
201 				pr_err(BANNER "time running backwards\n");
202 				goto out;
203 			}
204 			if (diff > outer_sample)
205 				outer_sample = diff;
206 		}
207 		last_t2 = t2;
208 
209 		total = time_to_us(time_sub(t2, start)); /* sample width */
210 
211 		/* Check for possible overflows */
212 		if (total < last_total) {
213 			pr_err("Time total overflowed\n");
214 			break;
215 		}
216 		last_total = total;
217 
218 		/* This checks the inner loop (t1 to t2) */
219 		diff = time_to_us(time_sub(t2, t1));     /* current diff */
220 
221 		/* This shouldn't happen */
222 		if (diff < 0) {
223 			pr_err(BANNER "time running backwards\n");
224 			goto out;
225 		}
226 
227 		if (diff > sample)
228 			sample = diff; /* only want highest value */
229 
230 	} while (total <= hwlat_data.sample_width);
231 
232 	barrier(); /* finish the above in the view for NMIs */
233 	trace_hwlat_callback_enabled = false;
234 	barrier(); /* Make sure nmi_total_ts is no longer updated */
235 
236 	ret = 0;
237 
238 	/* If we exceed the threshold value, we have found a hardware latency */
239 	if (sample > thresh || outer_sample > thresh) {
240 		struct hwlat_sample s;
241 
242 		ret = 1;
243 
244 		/* We read in microseconds */
245 		if (nmi_total_ts)
246 			do_div(nmi_total_ts, NSEC_PER_USEC);
247 
248 		hwlat_data.count++;
249 		s.seqnum = hwlat_data.count;
250 		s.duration = sample;
251 		s.outer_duration = outer_sample;
252 		s.timestamp = CURRENT_TIME;
253 		s.nmi_total_ts = nmi_total_ts;
254 		s.nmi_count = nmi_count;
255 		trace_hwlat_sample(&s);
256 
257 		/* Keep a running maximum ever recorded hardware latency */
258 		if (sample > tr->max_latency)
259 			tr->max_latency = sample;
260 	}
261 
262 out:
263 	return ret;
264 }
265 
266 static struct cpumask save_cpumask;
267 static bool disable_migrate;
268 
269 static void move_to_next_cpu(void)
270 {
271 	static struct cpumask *current_mask;
272 	int next_cpu;
273 
274 	if (disable_migrate)
275 		return;
276 
277 	/* Just pick the first CPU on first iteration */
278 	if (!current_mask) {
279 		current_mask = &save_cpumask;
280 		get_online_cpus();
281 		cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
282 		put_online_cpus();
283 		next_cpu = cpumask_first(current_mask);
284 		goto set_affinity;
285 	}
286 
287 	/*
288 	 * If for some reason the user modifies the CPU affinity
289 	 * of this thread, than stop migrating for the duration
290 	 * of the current test.
291 	 */
292 	if (!cpumask_equal(current_mask, &current->cpus_allowed))
293 		goto disable;
294 
295 	get_online_cpus();
296 	cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
297 	next_cpu = cpumask_next(smp_processor_id(), current_mask);
298 	put_online_cpus();
299 
300 	if (next_cpu >= nr_cpu_ids)
301 		next_cpu = cpumask_first(current_mask);
302 
303  set_affinity:
304 	if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */
305 		goto disable;
306 
307 	cpumask_clear(current_mask);
308 	cpumask_set_cpu(next_cpu, current_mask);
309 
310 	sched_setaffinity(0, current_mask);
311 	return;
312 
313  disable:
314 	disable_migrate = true;
315 }
316 
317 /*
318  * kthread_fn - The CPU time sampling/hardware latency detection kernel thread
319  *
320  * Used to periodically sample the CPU TSC via a call to get_sample. We
321  * disable interrupts, which does (intentionally) introduce latency since we
322  * need to ensure nothing else might be running (and thus preempting).
323  * Obviously this should never be used in production environments.
324  *
325  * Currently this runs on which ever CPU it was scheduled on, but most
326  * real-world hardware latency situations occur across several CPUs,
327  * but we might later generalize this if we find there are any actualy
328  * systems with alternate SMI delivery or other hardware latencies.
329  */
330 static int kthread_fn(void *data)
331 {
332 	u64 interval;
333 
334 	while (!kthread_should_stop()) {
335 
336 		move_to_next_cpu();
337 
338 		local_irq_disable();
339 		get_sample();
340 		local_irq_enable();
341 
342 		mutex_lock(&hwlat_data.lock);
343 		interval = hwlat_data.sample_window - hwlat_data.sample_width;
344 		mutex_unlock(&hwlat_data.lock);
345 
346 		do_div(interval, USEC_PER_MSEC); /* modifies interval value */
347 
348 		/* Always sleep for at least 1ms */
349 		if (interval < 1)
350 			interval = 1;
351 
352 		if (msleep_interruptible(interval))
353 			break;
354 	}
355 
356 	return 0;
357 }
358 
359 /**
360  * start_kthread - Kick off the hardware latency sampling/detector kthread
361  *
362  * This starts the kernel thread that will sit and sample the CPU timestamp
363  * counter (TSC or similar) and look for potential hardware latencies.
364  */
365 static int start_kthread(struct trace_array *tr)
366 {
367 	struct task_struct *kthread;
368 
369 	kthread = kthread_create(kthread_fn, NULL, "hwlatd");
370 	if (IS_ERR(kthread)) {
371 		pr_err(BANNER "could not start sampling thread\n");
372 		return -ENOMEM;
373 	}
374 	hwlat_kthread = kthread;
375 	wake_up_process(kthread);
376 
377 	return 0;
378 }
379 
380 /**
381  * stop_kthread - Inform the hardware latency samping/detector kthread to stop
382  *
383  * This kicks the running hardware latency sampling/detector kernel thread and
384  * tells it to stop sampling now. Use this on unload and at system shutdown.
385  */
386 static void stop_kthread(void)
387 {
388 	if (!hwlat_kthread)
389 		return;
390 	kthread_stop(hwlat_kthread);
391 	hwlat_kthread = NULL;
392 }
393 
394 /*
395  * hwlat_read - Wrapper read function for reading both window and width
396  * @filp: The active open file structure
397  * @ubuf: The userspace provided buffer to read value into
398  * @cnt: The maximum number of bytes to read
399  * @ppos: The current "file" position
400  *
401  * This function provides a generic read implementation for the global state
402  * "hwlat_data" structure filesystem entries.
403  */
404 static ssize_t hwlat_read(struct file *filp, char __user *ubuf,
405 			  size_t cnt, loff_t *ppos)
406 {
407 	char buf[U64STR_SIZE];
408 	u64 *entry = filp->private_data;
409 	u64 val;
410 	int len;
411 
412 	if (!entry)
413 		return -EFAULT;
414 
415 	if (cnt > sizeof(buf))
416 		cnt = sizeof(buf);
417 
418 	val = *entry;
419 
420 	len = snprintf(buf, sizeof(buf), "%llu\n", val);
421 
422 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, len);
423 }
424 
425 /**
426  * hwlat_width_write - Write function for "width" entry
427  * @filp: The active open file structure
428  * @ubuf: The user buffer that contains the value to write
429  * @cnt: The maximum number of bytes to write to "file"
430  * @ppos: The current position in @file
431  *
432  * This function provides a write implementation for the "width" interface
433  * to the hardware latency detector. It can be used to configure
434  * for how many us of the total window us we will actively sample for any
435  * hardware-induced latency periods. Obviously, it is not possible to
436  * sample constantly and have the system respond to a sample reader, or,
437  * worse, without having the system appear to have gone out to lunch. It
438  * is enforced that width is less that the total window size.
439  */
440 static ssize_t
441 hwlat_width_write(struct file *filp, const char __user *ubuf,
442 		  size_t cnt, loff_t *ppos)
443 {
444 	u64 val;
445 	int err;
446 
447 	err = kstrtoull_from_user(ubuf, cnt, 10, &val);
448 	if (err)
449 		return err;
450 
451 	mutex_lock(&hwlat_data.lock);
452 	if (val < hwlat_data.sample_window)
453 		hwlat_data.sample_width = val;
454 	else
455 		err = -EINVAL;
456 	mutex_unlock(&hwlat_data.lock);
457 
458 	if (err)
459 		return err;
460 
461 	return cnt;
462 }
463 
464 /**
465  * hwlat_window_write - Write function for "window" entry
466  * @filp: The active open file structure
467  * @ubuf: The user buffer that contains the value to write
468  * @cnt: The maximum number of bytes to write to "file"
469  * @ppos: The current position in @file
470  *
471  * This function provides a write implementation for the "window" interface
472  * to the hardware latency detetector. The window is the total time
473  * in us that will be considered one sample period. Conceptually, windows
474  * occur back-to-back and contain a sample width period during which
475  * actual sampling occurs. Can be used to write a new total window size. It
476  * is enfoced that any value written must be greater than the sample width
477  * size, or an error results.
478  */
479 static ssize_t
480 hwlat_window_write(struct file *filp, const char __user *ubuf,
481 		   size_t cnt, loff_t *ppos)
482 {
483 	u64 val;
484 	int err;
485 
486 	err = kstrtoull_from_user(ubuf, cnt, 10, &val);
487 	if (err)
488 		return err;
489 
490 	mutex_lock(&hwlat_data.lock);
491 	if (hwlat_data.sample_width < val)
492 		hwlat_data.sample_window = val;
493 	else
494 		err = -EINVAL;
495 	mutex_unlock(&hwlat_data.lock);
496 
497 	if (err)
498 		return err;
499 
500 	return cnt;
501 }
502 
503 static const struct file_operations width_fops = {
504 	.open		= tracing_open_generic,
505 	.read		= hwlat_read,
506 	.write		= hwlat_width_write,
507 };
508 
509 static const struct file_operations window_fops = {
510 	.open		= tracing_open_generic,
511 	.read		= hwlat_read,
512 	.write		= hwlat_window_write,
513 };
514 
515 /**
516  * init_tracefs - A function to initialize the tracefs interface files
517  *
518  * This function creates entries in tracefs for "hwlat_detector".
519  * It creates the hwlat_detector directory in the tracing directory,
520  * and within that directory is the count, width and window files to
521  * change and view those values.
522  */
523 static int init_tracefs(void)
524 {
525 	struct dentry *d_tracer;
526 	struct dentry *top_dir;
527 
528 	d_tracer = tracing_init_dentry();
529 	if (IS_ERR(d_tracer))
530 		return -ENOMEM;
531 
532 	top_dir = tracefs_create_dir("hwlat_detector", d_tracer);
533 	if (!top_dir)
534 		return -ENOMEM;
535 
536 	hwlat_sample_window = tracefs_create_file("window", 0640,
537 						  top_dir,
538 						  &hwlat_data.sample_window,
539 						  &window_fops);
540 	if (!hwlat_sample_window)
541 		goto err;
542 
543 	hwlat_sample_width = tracefs_create_file("width", 0644,
544 						 top_dir,
545 						 &hwlat_data.sample_width,
546 						 &width_fops);
547 	if (!hwlat_sample_width)
548 		goto err;
549 
550 	return 0;
551 
552  err:
553 	tracefs_remove_recursive(top_dir);
554 	return -ENOMEM;
555 }
556 
557 static void hwlat_tracer_start(struct trace_array *tr)
558 {
559 	int err;
560 
561 	err = start_kthread(tr);
562 	if (err)
563 		pr_err(BANNER "Cannot start hwlat kthread\n");
564 }
565 
566 static void hwlat_tracer_stop(struct trace_array *tr)
567 {
568 	stop_kthread();
569 }
570 
571 static bool hwlat_busy;
572 
573 static int hwlat_tracer_init(struct trace_array *tr)
574 {
575 	/* Only allow one instance to enable this */
576 	if (hwlat_busy)
577 		return -EBUSY;
578 
579 	hwlat_trace = tr;
580 
581 	disable_migrate = false;
582 	hwlat_data.count = 0;
583 	tr->max_latency = 0;
584 	save_tracing_thresh = tracing_thresh;
585 
586 	/* tracing_thresh is in nsecs, we speak in usecs */
587 	if (!tracing_thresh)
588 		tracing_thresh = last_tracing_thresh;
589 
590 	if (tracer_tracing_is_on(tr))
591 		hwlat_tracer_start(tr);
592 
593 	hwlat_busy = true;
594 
595 	return 0;
596 }
597 
598 static void hwlat_tracer_reset(struct trace_array *tr)
599 {
600 	stop_kthread();
601 
602 	/* the tracing threshold is static between runs */
603 	last_tracing_thresh = tracing_thresh;
604 
605 	tracing_thresh = save_tracing_thresh;
606 	hwlat_busy = false;
607 }
608 
609 static struct tracer hwlat_tracer __read_mostly =
610 {
611 	.name		= "hwlat",
612 	.init		= hwlat_tracer_init,
613 	.reset		= hwlat_tracer_reset,
614 	.start		= hwlat_tracer_start,
615 	.stop		= hwlat_tracer_stop,
616 	.allow_instances = true,
617 };
618 
619 __init static int init_hwlat_tracer(void)
620 {
621 	int ret;
622 
623 	mutex_init(&hwlat_data.lock);
624 
625 	ret = register_tracer(&hwlat_tracer);
626 	if (ret)
627 		return ret;
628 
629 	init_tracefs();
630 
631 	return 0;
632 }
633 late_initcall(init_hwlat_tracer);
634