1 /* 2 * trace_hwlatdetect.c - A simple Hardware Latency detector. 3 * 4 * Use this tracer to detect large system latencies induced by the behavior of 5 * certain underlying system hardware or firmware, independent of Linux itself. 6 * The code was developed originally to detect the presence of SMIs on Intel 7 * and AMD systems, although there is no dependency upon x86 herein. 8 * 9 * The classical example usage of this tracer is in detecting the presence of 10 * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a 11 * somewhat special form of hardware interrupt spawned from earlier CPU debug 12 * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge 13 * LPC (or other device) to generate a special interrupt under certain 14 * circumstances, for example, upon expiration of a special SMI timer device, 15 * due to certain external thermal readings, on certain I/O address accesses, 16 * and other situations. An SMI hits a special CPU pin, triggers a special 17 * SMI mode (complete with special memory map), and the OS is unaware. 18 * 19 * Although certain hardware-inducing latencies are necessary (for example, 20 * a modern system often requires an SMI handler for correct thermal control 21 * and remote management) they can wreak havoc upon any OS-level performance 22 * guarantees toward low-latency, especially when the OS is not even made 23 * aware of the presence of these interrupts. For this reason, we need a 24 * somewhat brute force mechanism to detect these interrupts. In this case, 25 * we do it by hogging all of the CPU(s) for configurable timer intervals, 26 * sampling the built-in CPU timer, looking for discontiguous readings. 27 * 28 * WARNING: This implementation necessarily introduces latencies. Therefore, 29 * you should NEVER use this tracer while running in a production 30 * environment requiring any kind of low-latency performance 31 * guarantee(s). 32 * 33 * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com> 34 * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com> 35 * 36 * Includes useful feedback from Clark Williams <clark@redhat.com> 37 * 38 * This file is licensed under the terms of the GNU General Public 39 * License version 2. This program is licensed "as is" without any 40 * warranty of any kind, whether express or implied. 41 */ 42 #include <linux/kthread.h> 43 #include <linux/tracefs.h> 44 #include <linux/uaccess.h> 45 #include <linux/cpumask.h> 46 #include <linux/delay.h> 47 #include "trace.h" 48 49 static struct trace_array *hwlat_trace; 50 51 #define U64STR_SIZE 22 /* 20 digits max */ 52 53 #define BANNER "hwlat_detector: " 54 #define DEFAULT_SAMPLE_WINDOW 1000000 /* 1s */ 55 #define DEFAULT_SAMPLE_WIDTH 500000 /* 0.5s */ 56 #define DEFAULT_LAT_THRESHOLD 10 /* 10us */ 57 58 /* sampling thread*/ 59 static struct task_struct *hwlat_kthread; 60 61 static struct dentry *hwlat_sample_width; /* sample width us */ 62 static struct dentry *hwlat_sample_window; /* sample window us */ 63 64 /* Save the previous tracing_thresh value */ 65 static unsigned long save_tracing_thresh; 66 67 /* NMI timestamp counters */ 68 static u64 nmi_ts_start; 69 static u64 nmi_total_ts; 70 static int nmi_count; 71 static int nmi_cpu; 72 73 /* Tells NMIs to call back to the hwlat tracer to record timestamps */ 74 bool trace_hwlat_callback_enabled; 75 76 /* If the user changed threshold, remember it */ 77 static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC; 78 79 /* Individual latency samples are stored here when detected. */ 80 struct hwlat_sample { 81 u64 seqnum; /* unique sequence */ 82 u64 duration; /* delta */ 83 u64 outer_duration; /* delta (outer loop) */ 84 u64 nmi_total_ts; /* Total time spent in NMIs */ 85 struct timespec timestamp; /* wall time */ 86 int nmi_count; /* # NMIs during this sample */ 87 }; 88 89 /* keep the global state somewhere. */ 90 static struct hwlat_data { 91 92 struct mutex lock; /* protect changes */ 93 94 u64 count; /* total since reset */ 95 96 u64 sample_window; /* total sampling window (on+off) */ 97 u64 sample_width; /* active sampling portion of window */ 98 99 } hwlat_data = { 100 .sample_window = DEFAULT_SAMPLE_WINDOW, 101 .sample_width = DEFAULT_SAMPLE_WIDTH, 102 }; 103 104 static void trace_hwlat_sample(struct hwlat_sample *sample) 105 { 106 struct trace_array *tr = hwlat_trace; 107 struct trace_event_call *call = &event_hwlat; 108 struct ring_buffer *buffer = tr->trace_buffer.buffer; 109 struct ring_buffer_event *event; 110 struct hwlat_entry *entry; 111 unsigned long flags; 112 int pc; 113 114 pc = preempt_count(); 115 local_save_flags(flags); 116 117 event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry), 118 flags, pc); 119 if (!event) 120 return; 121 entry = ring_buffer_event_data(event); 122 entry->seqnum = sample->seqnum; 123 entry->duration = sample->duration; 124 entry->outer_duration = sample->outer_duration; 125 entry->timestamp = sample->timestamp; 126 entry->nmi_total_ts = sample->nmi_total_ts; 127 entry->nmi_count = sample->nmi_count; 128 129 if (!call_filter_check_discard(call, entry, buffer, event)) 130 trace_buffer_unlock_commit_nostack(buffer, event); 131 } 132 133 /* Macros to encapsulate the time capturing infrastructure */ 134 #define time_type u64 135 #define time_get() trace_clock_local() 136 #define time_to_us(x) div_u64(x, 1000) 137 #define time_sub(a, b) ((a) - (b)) 138 #define init_time(a, b) (a = b) 139 #define time_u64(a) a 140 141 void trace_hwlat_callback(bool enter) 142 { 143 if (smp_processor_id() != nmi_cpu) 144 return; 145 146 /* 147 * Currently trace_clock_local() calls sched_clock() and the 148 * generic version is not NMI safe. 149 */ 150 if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) { 151 if (enter) 152 nmi_ts_start = time_get(); 153 else 154 nmi_total_ts = time_get() - nmi_ts_start; 155 } 156 157 if (enter) 158 nmi_count++; 159 } 160 161 /** 162 * get_sample - sample the CPU TSC and look for likely hardware latencies 163 * 164 * Used to repeatedly capture the CPU TSC (or similar), looking for potential 165 * hardware-induced latency. Called with interrupts disabled and with 166 * hwlat_data.lock held. 167 */ 168 static int get_sample(void) 169 { 170 struct trace_array *tr = hwlat_trace; 171 time_type start, t1, t2, last_t2; 172 s64 diff, total, last_total = 0; 173 u64 sample = 0; 174 u64 thresh = tracing_thresh; 175 u64 outer_sample = 0; 176 int ret = -1; 177 178 do_div(thresh, NSEC_PER_USEC); /* modifies interval value */ 179 180 nmi_cpu = smp_processor_id(); 181 nmi_total_ts = 0; 182 nmi_count = 0; 183 /* Make sure NMIs see this first */ 184 barrier(); 185 186 trace_hwlat_callback_enabled = true; 187 188 init_time(last_t2, 0); 189 start = time_get(); /* start timestamp */ 190 191 do { 192 193 t1 = time_get(); /* we'll look for a discontinuity */ 194 t2 = time_get(); 195 196 if (time_u64(last_t2)) { 197 /* Check the delta from outer loop (t2 to next t1) */ 198 diff = time_to_us(time_sub(t1, last_t2)); 199 /* This shouldn't happen */ 200 if (diff < 0) { 201 pr_err(BANNER "time running backwards\n"); 202 goto out; 203 } 204 if (diff > outer_sample) 205 outer_sample = diff; 206 } 207 last_t2 = t2; 208 209 total = time_to_us(time_sub(t2, start)); /* sample width */ 210 211 /* Check for possible overflows */ 212 if (total < last_total) { 213 pr_err("Time total overflowed\n"); 214 break; 215 } 216 last_total = total; 217 218 /* This checks the inner loop (t1 to t2) */ 219 diff = time_to_us(time_sub(t2, t1)); /* current diff */ 220 221 /* This shouldn't happen */ 222 if (diff < 0) { 223 pr_err(BANNER "time running backwards\n"); 224 goto out; 225 } 226 227 if (diff > sample) 228 sample = diff; /* only want highest value */ 229 230 } while (total <= hwlat_data.sample_width); 231 232 barrier(); /* finish the above in the view for NMIs */ 233 trace_hwlat_callback_enabled = false; 234 barrier(); /* Make sure nmi_total_ts is no longer updated */ 235 236 ret = 0; 237 238 /* If we exceed the threshold value, we have found a hardware latency */ 239 if (sample > thresh || outer_sample > thresh) { 240 struct hwlat_sample s; 241 242 ret = 1; 243 244 /* We read in microseconds */ 245 if (nmi_total_ts) 246 do_div(nmi_total_ts, NSEC_PER_USEC); 247 248 hwlat_data.count++; 249 s.seqnum = hwlat_data.count; 250 s.duration = sample; 251 s.outer_duration = outer_sample; 252 s.timestamp = CURRENT_TIME; 253 s.nmi_total_ts = nmi_total_ts; 254 s.nmi_count = nmi_count; 255 trace_hwlat_sample(&s); 256 257 /* Keep a running maximum ever recorded hardware latency */ 258 if (sample > tr->max_latency) 259 tr->max_latency = sample; 260 } 261 262 out: 263 return ret; 264 } 265 266 static struct cpumask save_cpumask; 267 static bool disable_migrate; 268 269 static void move_to_next_cpu(bool initmask) 270 { 271 static struct cpumask *current_mask; 272 int next_cpu; 273 274 if (disable_migrate) 275 return; 276 277 /* Just pick the first CPU on first iteration */ 278 if (initmask) { 279 current_mask = &save_cpumask; 280 get_online_cpus(); 281 cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask); 282 put_online_cpus(); 283 next_cpu = cpumask_first(current_mask); 284 goto set_affinity; 285 } 286 287 /* 288 * If for some reason the user modifies the CPU affinity 289 * of this thread, than stop migrating for the duration 290 * of the current test. 291 */ 292 if (!cpumask_equal(current_mask, ¤t->cpus_allowed)) 293 goto disable; 294 295 get_online_cpus(); 296 cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask); 297 next_cpu = cpumask_next(smp_processor_id(), current_mask); 298 put_online_cpus(); 299 300 if (next_cpu >= nr_cpu_ids) 301 next_cpu = cpumask_first(current_mask); 302 303 set_affinity: 304 if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */ 305 goto disable; 306 307 cpumask_clear(current_mask); 308 cpumask_set_cpu(next_cpu, current_mask); 309 310 sched_setaffinity(0, current_mask); 311 return; 312 313 disable: 314 disable_migrate = true; 315 } 316 317 /* 318 * kthread_fn - The CPU time sampling/hardware latency detection kernel thread 319 * 320 * Used to periodically sample the CPU TSC via a call to get_sample. We 321 * disable interrupts, which does (intentionally) introduce latency since we 322 * need to ensure nothing else might be running (and thus preempting). 323 * Obviously this should never be used in production environments. 324 * 325 * Currently this runs on which ever CPU it was scheduled on, but most 326 * real-world hardware latency situations occur across several CPUs, 327 * but we might later generalize this if we find there are any actualy 328 * systems with alternate SMI delivery or other hardware latencies. 329 */ 330 static int kthread_fn(void *data) 331 { 332 u64 interval; 333 bool initmask = true; 334 335 while (!kthread_should_stop()) { 336 337 move_to_next_cpu(initmask); 338 initmask = false; 339 340 local_irq_disable(); 341 get_sample(); 342 local_irq_enable(); 343 344 mutex_lock(&hwlat_data.lock); 345 interval = hwlat_data.sample_window - hwlat_data.sample_width; 346 mutex_unlock(&hwlat_data.lock); 347 348 do_div(interval, USEC_PER_MSEC); /* modifies interval value */ 349 350 /* Always sleep for at least 1ms */ 351 if (interval < 1) 352 interval = 1; 353 354 if (msleep_interruptible(interval)) 355 break; 356 } 357 358 return 0; 359 } 360 361 /** 362 * start_kthread - Kick off the hardware latency sampling/detector kthread 363 * 364 * This starts the kernel thread that will sit and sample the CPU timestamp 365 * counter (TSC or similar) and look for potential hardware latencies. 366 */ 367 static int start_kthread(struct trace_array *tr) 368 { 369 struct task_struct *kthread; 370 371 kthread = kthread_create(kthread_fn, NULL, "hwlatd"); 372 if (IS_ERR(kthread)) { 373 pr_err(BANNER "could not start sampling thread\n"); 374 return -ENOMEM; 375 } 376 hwlat_kthread = kthread; 377 wake_up_process(kthread); 378 379 return 0; 380 } 381 382 /** 383 * stop_kthread - Inform the hardware latency samping/detector kthread to stop 384 * 385 * This kicks the running hardware latency sampling/detector kernel thread and 386 * tells it to stop sampling now. Use this on unload and at system shutdown. 387 */ 388 static void stop_kthread(void) 389 { 390 if (!hwlat_kthread) 391 return; 392 kthread_stop(hwlat_kthread); 393 hwlat_kthread = NULL; 394 } 395 396 /* 397 * hwlat_read - Wrapper read function for reading both window and width 398 * @filp: The active open file structure 399 * @ubuf: The userspace provided buffer to read value into 400 * @cnt: The maximum number of bytes to read 401 * @ppos: The current "file" position 402 * 403 * This function provides a generic read implementation for the global state 404 * "hwlat_data" structure filesystem entries. 405 */ 406 static ssize_t hwlat_read(struct file *filp, char __user *ubuf, 407 size_t cnt, loff_t *ppos) 408 { 409 char buf[U64STR_SIZE]; 410 u64 *entry = filp->private_data; 411 u64 val; 412 int len; 413 414 if (!entry) 415 return -EFAULT; 416 417 if (cnt > sizeof(buf)) 418 cnt = sizeof(buf); 419 420 val = *entry; 421 422 len = snprintf(buf, sizeof(buf), "%llu\n", val); 423 424 return simple_read_from_buffer(ubuf, cnt, ppos, buf, len); 425 } 426 427 /** 428 * hwlat_width_write - Write function for "width" entry 429 * @filp: The active open file structure 430 * @ubuf: The user buffer that contains the value to write 431 * @cnt: The maximum number of bytes to write to "file" 432 * @ppos: The current position in @file 433 * 434 * This function provides a write implementation for the "width" interface 435 * to the hardware latency detector. It can be used to configure 436 * for how many us of the total window us we will actively sample for any 437 * hardware-induced latency periods. Obviously, it is not possible to 438 * sample constantly and have the system respond to a sample reader, or, 439 * worse, without having the system appear to have gone out to lunch. It 440 * is enforced that width is less that the total window size. 441 */ 442 static ssize_t 443 hwlat_width_write(struct file *filp, const char __user *ubuf, 444 size_t cnt, loff_t *ppos) 445 { 446 u64 val; 447 int err; 448 449 err = kstrtoull_from_user(ubuf, cnt, 10, &val); 450 if (err) 451 return err; 452 453 mutex_lock(&hwlat_data.lock); 454 if (val < hwlat_data.sample_window) 455 hwlat_data.sample_width = val; 456 else 457 err = -EINVAL; 458 mutex_unlock(&hwlat_data.lock); 459 460 if (err) 461 return err; 462 463 return cnt; 464 } 465 466 /** 467 * hwlat_window_write - Write function for "window" entry 468 * @filp: The active open file structure 469 * @ubuf: The user buffer that contains the value to write 470 * @cnt: The maximum number of bytes to write to "file" 471 * @ppos: The current position in @file 472 * 473 * This function provides a write implementation for the "window" interface 474 * to the hardware latency detetector. The window is the total time 475 * in us that will be considered one sample period. Conceptually, windows 476 * occur back-to-back and contain a sample width period during which 477 * actual sampling occurs. Can be used to write a new total window size. It 478 * is enfoced that any value written must be greater than the sample width 479 * size, or an error results. 480 */ 481 static ssize_t 482 hwlat_window_write(struct file *filp, const char __user *ubuf, 483 size_t cnt, loff_t *ppos) 484 { 485 u64 val; 486 int err; 487 488 err = kstrtoull_from_user(ubuf, cnt, 10, &val); 489 if (err) 490 return err; 491 492 mutex_lock(&hwlat_data.lock); 493 if (hwlat_data.sample_width < val) 494 hwlat_data.sample_window = val; 495 else 496 err = -EINVAL; 497 mutex_unlock(&hwlat_data.lock); 498 499 if (err) 500 return err; 501 502 return cnt; 503 } 504 505 static const struct file_operations width_fops = { 506 .open = tracing_open_generic, 507 .read = hwlat_read, 508 .write = hwlat_width_write, 509 }; 510 511 static const struct file_operations window_fops = { 512 .open = tracing_open_generic, 513 .read = hwlat_read, 514 .write = hwlat_window_write, 515 }; 516 517 /** 518 * init_tracefs - A function to initialize the tracefs interface files 519 * 520 * This function creates entries in tracefs for "hwlat_detector". 521 * It creates the hwlat_detector directory in the tracing directory, 522 * and within that directory is the count, width and window files to 523 * change and view those values. 524 */ 525 static int init_tracefs(void) 526 { 527 struct dentry *d_tracer; 528 struct dentry *top_dir; 529 530 d_tracer = tracing_init_dentry(); 531 if (IS_ERR(d_tracer)) 532 return -ENOMEM; 533 534 top_dir = tracefs_create_dir("hwlat_detector", d_tracer); 535 if (!top_dir) 536 return -ENOMEM; 537 538 hwlat_sample_window = tracefs_create_file("window", 0640, 539 top_dir, 540 &hwlat_data.sample_window, 541 &window_fops); 542 if (!hwlat_sample_window) 543 goto err; 544 545 hwlat_sample_width = tracefs_create_file("width", 0644, 546 top_dir, 547 &hwlat_data.sample_width, 548 &width_fops); 549 if (!hwlat_sample_width) 550 goto err; 551 552 return 0; 553 554 err: 555 tracefs_remove_recursive(top_dir); 556 return -ENOMEM; 557 } 558 559 static void hwlat_tracer_start(struct trace_array *tr) 560 { 561 int err; 562 563 err = start_kthread(tr); 564 if (err) 565 pr_err(BANNER "Cannot start hwlat kthread\n"); 566 } 567 568 static void hwlat_tracer_stop(struct trace_array *tr) 569 { 570 stop_kthread(); 571 } 572 573 static bool hwlat_busy; 574 575 static int hwlat_tracer_init(struct trace_array *tr) 576 { 577 /* Only allow one instance to enable this */ 578 if (hwlat_busy) 579 return -EBUSY; 580 581 hwlat_trace = tr; 582 583 disable_migrate = false; 584 hwlat_data.count = 0; 585 tr->max_latency = 0; 586 save_tracing_thresh = tracing_thresh; 587 588 /* tracing_thresh is in nsecs, we speak in usecs */ 589 if (!tracing_thresh) 590 tracing_thresh = last_tracing_thresh; 591 592 if (tracer_tracing_is_on(tr)) 593 hwlat_tracer_start(tr); 594 595 hwlat_busy = true; 596 597 return 0; 598 } 599 600 static void hwlat_tracer_reset(struct trace_array *tr) 601 { 602 stop_kthread(); 603 604 /* the tracing threshold is static between runs */ 605 last_tracing_thresh = tracing_thresh; 606 607 tracing_thresh = save_tracing_thresh; 608 hwlat_busy = false; 609 } 610 611 static struct tracer hwlat_tracer __read_mostly = 612 { 613 .name = "hwlat", 614 .init = hwlat_tracer_init, 615 .reset = hwlat_tracer_reset, 616 .start = hwlat_tracer_start, 617 .stop = hwlat_tracer_stop, 618 .allow_instances = true, 619 }; 620 621 __init static int init_hwlat_tracer(void) 622 { 623 int ret; 624 625 mutex_init(&hwlat_data.lock); 626 627 ret = register_tracer(&hwlat_tracer); 628 if (ret) 629 return ret; 630 631 init_tracefs(); 632 633 return 0; 634 } 635 late_initcall(init_hwlat_tracer); 636