1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * trace_hwlat.c - A simple Hardware Latency detector. 4 * 5 * Use this tracer to detect large system latencies induced by the behavior of 6 * certain underlying system hardware or firmware, independent of Linux itself. 7 * The code was developed originally to detect the presence of SMIs on Intel 8 * and AMD systems, although there is no dependency upon x86 herein. 9 * 10 * The classical example usage of this tracer is in detecting the presence of 11 * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a 12 * somewhat special form of hardware interrupt spawned from earlier CPU debug 13 * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge 14 * LPC (or other device) to generate a special interrupt under certain 15 * circumstances, for example, upon expiration of a special SMI timer device, 16 * due to certain external thermal readings, on certain I/O address accesses, 17 * and other situations. An SMI hits a special CPU pin, triggers a special 18 * SMI mode (complete with special memory map), and the OS is unaware. 19 * 20 * Although certain hardware-inducing latencies are necessary (for example, 21 * a modern system often requires an SMI handler for correct thermal control 22 * and remote management) they can wreak havoc upon any OS-level performance 23 * guarantees toward low-latency, especially when the OS is not even made 24 * aware of the presence of these interrupts. For this reason, we need a 25 * somewhat brute force mechanism to detect these interrupts. In this case, 26 * we do it by hogging all of the CPU(s) for configurable timer intervals, 27 * sampling the built-in CPU timer, looking for discontiguous readings. 28 * 29 * WARNING: This implementation necessarily introduces latencies. Therefore, 30 * you should NEVER use this tracer while running in a production 31 * environment requiring any kind of low-latency performance 32 * guarantee(s). 33 * 34 * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com> 35 * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com> 36 * 37 * Includes useful feedback from Clark Williams <williams@redhat.com> 38 * 39 */ 40 #include <linux/kthread.h> 41 #include <linux/tracefs.h> 42 #include <linux/uaccess.h> 43 #include <linux/cpumask.h> 44 #include <linux/delay.h> 45 #include <linux/sched/clock.h> 46 #include "trace.h" 47 48 static struct trace_array *hwlat_trace; 49 50 #define U64STR_SIZE 22 /* 20 digits max */ 51 52 #define BANNER "hwlat_detector: " 53 #define DEFAULT_SAMPLE_WINDOW 1000000 /* 1s */ 54 #define DEFAULT_SAMPLE_WIDTH 500000 /* 0.5s */ 55 #define DEFAULT_LAT_THRESHOLD 10 /* 10us */ 56 57 static struct dentry *hwlat_sample_width; /* sample width us */ 58 static struct dentry *hwlat_sample_window; /* sample window us */ 59 static struct dentry *hwlat_thread_mode; /* hwlat thread mode */ 60 61 enum { 62 MODE_NONE = 0, 63 MODE_ROUND_ROBIN, 64 MODE_PER_CPU, 65 MODE_MAX 66 }; 67 static char *thread_mode_str[] = { "none", "round-robin", "per-cpu" }; 68 69 /* Save the previous tracing_thresh value */ 70 static unsigned long save_tracing_thresh; 71 72 /* runtime kthread data */ 73 struct hwlat_kthread_data { 74 struct task_struct *kthread; 75 /* NMI timestamp counters */ 76 u64 nmi_ts_start; 77 u64 nmi_total_ts; 78 int nmi_count; 79 int nmi_cpu; 80 }; 81 82 static struct hwlat_kthread_data hwlat_single_cpu_data; 83 static DEFINE_PER_CPU(struct hwlat_kthread_data, hwlat_per_cpu_data); 84 85 /* Tells NMIs to call back to the hwlat tracer to record timestamps */ 86 bool trace_hwlat_callback_enabled; 87 88 /* If the user changed threshold, remember it */ 89 static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC; 90 91 /* Individual latency samples are stored here when detected. */ 92 struct hwlat_sample { 93 u64 seqnum; /* unique sequence */ 94 u64 duration; /* delta */ 95 u64 outer_duration; /* delta (outer loop) */ 96 u64 nmi_total_ts; /* Total time spent in NMIs */ 97 struct timespec64 timestamp; /* wall time */ 98 int nmi_count; /* # NMIs during this sample */ 99 int count; /* # of iterations over thresh */ 100 }; 101 102 /* keep the global state somewhere. */ 103 static struct hwlat_data { 104 105 struct mutex lock; /* protect changes */ 106 107 u64 count; /* total since reset */ 108 109 u64 sample_window; /* total sampling window (on+off) */ 110 u64 sample_width; /* active sampling portion of window */ 111 112 int thread_mode; /* thread mode */ 113 114 } hwlat_data = { 115 .sample_window = DEFAULT_SAMPLE_WINDOW, 116 .sample_width = DEFAULT_SAMPLE_WIDTH, 117 .thread_mode = MODE_ROUND_ROBIN 118 }; 119 120 static struct hwlat_kthread_data *get_cpu_data(void) 121 { 122 if (hwlat_data.thread_mode == MODE_PER_CPU) 123 return this_cpu_ptr(&hwlat_per_cpu_data); 124 else 125 return &hwlat_single_cpu_data; 126 } 127 128 static bool hwlat_busy; 129 130 static void trace_hwlat_sample(struct hwlat_sample *sample) 131 { 132 struct trace_array *tr = hwlat_trace; 133 struct trace_event_call *call = &event_hwlat; 134 struct trace_buffer *buffer = tr->array_buffer.buffer; 135 struct ring_buffer_event *event; 136 struct hwlat_entry *entry; 137 138 event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry), 139 tracing_gen_ctx()); 140 if (!event) 141 return; 142 entry = ring_buffer_event_data(event); 143 entry->seqnum = sample->seqnum; 144 entry->duration = sample->duration; 145 entry->outer_duration = sample->outer_duration; 146 entry->timestamp = sample->timestamp; 147 entry->nmi_total_ts = sample->nmi_total_ts; 148 entry->nmi_count = sample->nmi_count; 149 entry->count = sample->count; 150 151 if (!call_filter_check_discard(call, entry, buffer, event)) 152 trace_buffer_unlock_commit_nostack(buffer, event); 153 } 154 155 /* Macros to encapsulate the time capturing infrastructure */ 156 #define time_type u64 157 #define time_get() trace_clock_local() 158 #define time_to_us(x) div_u64(x, 1000) 159 #define time_sub(a, b) ((a) - (b)) 160 #define init_time(a, b) (a = b) 161 #define time_u64(a) a 162 163 void trace_hwlat_callback(bool enter) 164 { 165 struct hwlat_kthread_data *kdata = get_cpu_data(); 166 167 if (!kdata->kthread) 168 return; 169 170 /* 171 * Currently trace_clock_local() calls sched_clock() and the 172 * generic version is not NMI safe. 173 */ 174 if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) { 175 if (enter) 176 kdata->nmi_ts_start = time_get(); 177 else 178 kdata->nmi_total_ts += time_get() - kdata->nmi_ts_start; 179 } 180 181 if (enter) 182 kdata->nmi_count++; 183 } 184 185 /* 186 * hwlat_err - report a hwlat error. 187 */ 188 #define hwlat_err(msg) ({ \ 189 struct trace_array *tr = hwlat_trace; \ 190 \ 191 trace_array_printk_buf(tr->array_buffer.buffer, _THIS_IP_, msg); \ 192 }) 193 194 /** 195 * get_sample - sample the CPU TSC and look for likely hardware latencies 196 * 197 * Used to repeatedly capture the CPU TSC (or similar), looking for potential 198 * hardware-induced latency. Called with interrupts disabled and with 199 * hwlat_data.lock held. 200 */ 201 static int get_sample(void) 202 { 203 struct hwlat_kthread_data *kdata = get_cpu_data(); 204 struct trace_array *tr = hwlat_trace; 205 struct hwlat_sample s; 206 time_type start, t1, t2, last_t2; 207 s64 diff, outer_diff, total, last_total = 0; 208 u64 sample = 0; 209 u64 thresh = tracing_thresh; 210 u64 outer_sample = 0; 211 int ret = -1; 212 unsigned int count = 0; 213 214 do_div(thresh, NSEC_PER_USEC); /* modifies interval value */ 215 216 kdata->nmi_total_ts = 0; 217 kdata->nmi_count = 0; 218 /* Make sure NMIs see this first */ 219 barrier(); 220 221 trace_hwlat_callback_enabled = true; 222 223 init_time(last_t2, 0); 224 start = time_get(); /* start timestamp */ 225 outer_diff = 0; 226 227 do { 228 229 t1 = time_get(); /* we'll look for a discontinuity */ 230 t2 = time_get(); 231 232 if (time_u64(last_t2)) { 233 /* Check the delta from outer loop (t2 to next t1) */ 234 outer_diff = time_to_us(time_sub(t1, last_t2)); 235 /* This shouldn't happen */ 236 if (outer_diff < 0) { 237 hwlat_err(BANNER "time running backwards\n"); 238 goto out; 239 } 240 if (outer_diff > outer_sample) 241 outer_sample = outer_diff; 242 } 243 last_t2 = t2; 244 245 total = time_to_us(time_sub(t2, start)); /* sample width */ 246 247 /* Check for possible overflows */ 248 if (total < last_total) { 249 hwlat_err("Time total overflowed\n"); 250 break; 251 } 252 last_total = total; 253 254 /* This checks the inner loop (t1 to t2) */ 255 diff = time_to_us(time_sub(t2, t1)); /* current diff */ 256 257 if (diff > thresh || outer_diff > thresh) { 258 if (!count) 259 ktime_get_real_ts64(&s.timestamp); 260 count++; 261 } 262 263 /* This shouldn't happen */ 264 if (diff < 0) { 265 hwlat_err(BANNER "time running backwards\n"); 266 goto out; 267 } 268 269 if (diff > sample) 270 sample = diff; /* only want highest value */ 271 272 } while (total <= hwlat_data.sample_width); 273 274 barrier(); /* finish the above in the view for NMIs */ 275 trace_hwlat_callback_enabled = false; 276 barrier(); /* Make sure nmi_total_ts is no longer updated */ 277 278 ret = 0; 279 280 /* If we exceed the threshold value, we have found a hardware latency */ 281 if (sample > thresh || outer_sample > thresh) { 282 u64 latency; 283 284 ret = 1; 285 286 /* We read in microseconds */ 287 if (kdata->nmi_total_ts) 288 do_div(kdata->nmi_total_ts, NSEC_PER_USEC); 289 290 hwlat_data.count++; 291 s.seqnum = hwlat_data.count; 292 s.duration = sample; 293 s.outer_duration = outer_sample; 294 s.nmi_total_ts = kdata->nmi_total_ts; 295 s.nmi_count = kdata->nmi_count; 296 s.count = count; 297 trace_hwlat_sample(&s); 298 299 latency = max(sample, outer_sample); 300 301 /* Keep a running maximum ever recorded hardware latency */ 302 if (latency > tr->max_latency) { 303 tr->max_latency = latency; 304 latency_fsnotify(tr); 305 } 306 } 307 308 out: 309 return ret; 310 } 311 312 static struct cpumask save_cpumask; 313 314 static void move_to_next_cpu(void) 315 { 316 struct cpumask *current_mask = &save_cpumask; 317 struct trace_array *tr = hwlat_trace; 318 int next_cpu; 319 320 /* 321 * If for some reason the user modifies the CPU affinity 322 * of this thread, then stop migrating for the duration 323 * of the current test. 324 */ 325 if (!cpumask_equal(current_mask, current->cpus_ptr)) 326 goto change_mode; 327 328 cpus_read_lock(); 329 cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask); 330 next_cpu = cpumask_next(raw_smp_processor_id(), current_mask); 331 cpus_read_unlock(); 332 333 if (next_cpu >= nr_cpu_ids) 334 next_cpu = cpumask_first(current_mask); 335 336 if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */ 337 goto change_mode; 338 339 cpumask_clear(current_mask); 340 cpumask_set_cpu(next_cpu, current_mask); 341 342 set_cpus_allowed_ptr(current, current_mask); 343 return; 344 345 change_mode: 346 hwlat_data.thread_mode = MODE_NONE; 347 pr_info(BANNER "cpumask changed while in round-robin mode, switching to mode none\n"); 348 } 349 350 /* 351 * kthread_fn - The CPU time sampling/hardware latency detection kernel thread 352 * 353 * Used to periodically sample the CPU TSC via a call to get_sample. We 354 * disable interrupts, which does (intentionally) introduce latency since we 355 * need to ensure nothing else might be running (and thus preempting). 356 * Obviously this should never be used in production environments. 357 * 358 * Executes one loop interaction on each CPU in tracing_cpumask sysfs file. 359 */ 360 static int kthread_fn(void *data) 361 { 362 u64 interval; 363 364 while (!kthread_should_stop()) { 365 366 if (hwlat_data.thread_mode == MODE_ROUND_ROBIN) 367 move_to_next_cpu(); 368 369 local_irq_disable(); 370 get_sample(); 371 local_irq_enable(); 372 373 mutex_lock(&hwlat_data.lock); 374 interval = hwlat_data.sample_window - hwlat_data.sample_width; 375 mutex_unlock(&hwlat_data.lock); 376 377 do_div(interval, USEC_PER_MSEC); /* modifies interval value */ 378 379 /* Always sleep for at least 1ms */ 380 if (interval < 1) 381 interval = 1; 382 383 if (msleep_interruptible(interval)) 384 break; 385 } 386 387 return 0; 388 } 389 390 /* 391 * stop_stop_kthread - Inform the hardware latency sampling/detector kthread to stop 392 * 393 * This kicks the running hardware latency sampling/detector kernel thread and 394 * tells it to stop sampling now. Use this on unload and at system shutdown. 395 */ 396 static void stop_single_kthread(void) 397 { 398 struct hwlat_kthread_data *kdata = get_cpu_data(); 399 struct task_struct *kthread; 400 401 cpus_read_lock(); 402 kthread = kdata->kthread; 403 404 if (!kthread) 405 goto out_put_cpus; 406 407 kthread_stop(kthread); 408 kdata->kthread = NULL; 409 410 out_put_cpus: 411 cpus_read_unlock(); 412 } 413 414 415 /* 416 * start_single_kthread - Kick off the hardware latency sampling/detector kthread 417 * 418 * This starts the kernel thread that will sit and sample the CPU timestamp 419 * counter (TSC or similar) and look for potential hardware latencies. 420 */ 421 static int start_single_kthread(struct trace_array *tr) 422 { 423 struct hwlat_kthread_data *kdata = get_cpu_data(); 424 struct cpumask *current_mask = &save_cpumask; 425 struct task_struct *kthread; 426 int next_cpu; 427 428 cpus_read_lock(); 429 if (kdata->kthread) 430 goto out_put_cpus; 431 432 kthread = kthread_create(kthread_fn, NULL, "hwlatd"); 433 if (IS_ERR(kthread)) { 434 pr_err(BANNER "could not start sampling thread\n"); 435 cpus_read_unlock(); 436 return -ENOMEM; 437 } 438 439 /* Just pick the first CPU on first iteration */ 440 cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask); 441 442 if (hwlat_data.thread_mode == MODE_ROUND_ROBIN) { 443 next_cpu = cpumask_first(current_mask); 444 cpumask_clear(current_mask); 445 cpumask_set_cpu(next_cpu, current_mask); 446 447 } 448 449 set_cpus_allowed_ptr(kthread, current_mask); 450 451 kdata->kthread = kthread; 452 wake_up_process(kthread); 453 454 out_put_cpus: 455 cpus_read_unlock(); 456 return 0; 457 } 458 459 /* 460 * stop_cpu_kthread - Stop a hwlat cpu kthread 461 */ 462 static void stop_cpu_kthread(unsigned int cpu) 463 { 464 struct task_struct *kthread; 465 466 kthread = per_cpu(hwlat_per_cpu_data, cpu).kthread; 467 if (kthread) 468 kthread_stop(kthread); 469 per_cpu(hwlat_per_cpu_data, cpu).kthread = NULL; 470 } 471 472 /* 473 * stop_per_cpu_kthreads - Inform the hardware latency sampling/detector kthread to stop 474 * 475 * This kicks the running hardware latency sampling/detector kernel threads and 476 * tells it to stop sampling now. Use this on unload and at system shutdown. 477 */ 478 static void stop_per_cpu_kthreads(void) 479 { 480 unsigned int cpu; 481 482 cpus_read_lock(); 483 for_each_online_cpu(cpu) 484 stop_cpu_kthread(cpu); 485 cpus_read_unlock(); 486 } 487 488 /* 489 * start_cpu_kthread - Start a hwlat cpu kthread 490 */ 491 static int start_cpu_kthread(unsigned int cpu) 492 { 493 struct task_struct *kthread; 494 495 /* Do not start a new hwlatd thread if it is already running */ 496 if (per_cpu(hwlat_per_cpu_data, cpu).kthread) 497 return 0; 498 499 kthread = kthread_run_on_cpu(kthread_fn, NULL, cpu, "hwlatd/%u"); 500 if (IS_ERR(kthread)) { 501 pr_err(BANNER "could not start sampling thread\n"); 502 return -ENOMEM; 503 } 504 505 per_cpu(hwlat_per_cpu_data, cpu).kthread = kthread; 506 507 return 0; 508 } 509 510 #ifdef CONFIG_HOTPLUG_CPU 511 static void hwlat_hotplug_workfn(struct work_struct *dummy) 512 { 513 struct trace_array *tr = hwlat_trace; 514 unsigned int cpu = smp_processor_id(); 515 516 mutex_lock(&trace_types_lock); 517 mutex_lock(&hwlat_data.lock); 518 cpus_read_lock(); 519 520 if (!hwlat_busy || hwlat_data.thread_mode != MODE_PER_CPU) 521 goto out_unlock; 522 523 if (!cpumask_test_cpu(cpu, tr->tracing_cpumask)) 524 goto out_unlock; 525 526 start_cpu_kthread(cpu); 527 528 out_unlock: 529 cpus_read_unlock(); 530 mutex_unlock(&hwlat_data.lock); 531 mutex_unlock(&trace_types_lock); 532 } 533 534 static DECLARE_WORK(hwlat_hotplug_work, hwlat_hotplug_workfn); 535 536 /* 537 * hwlat_cpu_init - CPU hotplug online callback function 538 */ 539 static int hwlat_cpu_init(unsigned int cpu) 540 { 541 schedule_work_on(cpu, &hwlat_hotplug_work); 542 return 0; 543 } 544 545 /* 546 * hwlat_cpu_die - CPU hotplug offline callback function 547 */ 548 static int hwlat_cpu_die(unsigned int cpu) 549 { 550 stop_cpu_kthread(cpu); 551 return 0; 552 } 553 554 static void hwlat_init_hotplug_support(void) 555 { 556 int ret; 557 558 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "trace/hwlat:online", 559 hwlat_cpu_init, hwlat_cpu_die); 560 if (ret < 0) 561 pr_warn(BANNER "Error to init cpu hotplug support\n"); 562 563 return; 564 } 565 #else /* CONFIG_HOTPLUG_CPU */ 566 static void hwlat_init_hotplug_support(void) 567 { 568 return; 569 } 570 #endif /* CONFIG_HOTPLUG_CPU */ 571 572 /* 573 * start_per_cpu_kthreads - Kick off the hardware latency sampling/detector kthreads 574 * 575 * This starts the kernel threads that will sit on potentially all cpus and 576 * sample the CPU timestamp counter (TSC or similar) and look for potential 577 * hardware latencies. 578 */ 579 static int start_per_cpu_kthreads(struct trace_array *tr) 580 { 581 struct cpumask *current_mask = &save_cpumask; 582 unsigned int cpu; 583 int retval; 584 585 cpus_read_lock(); 586 /* 587 * Run only on CPUs in which hwlat is allowed to run. 588 */ 589 cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask); 590 591 for_each_cpu(cpu, current_mask) { 592 retval = start_cpu_kthread(cpu); 593 if (retval) 594 goto out_error; 595 } 596 cpus_read_unlock(); 597 598 return 0; 599 600 out_error: 601 cpus_read_unlock(); 602 stop_per_cpu_kthreads(); 603 return retval; 604 } 605 606 static void *s_mode_start(struct seq_file *s, loff_t *pos) 607 { 608 int mode = *pos; 609 610 mutex_lock(&hwlat_data.lock); 611 612 if (mode >= MODE_MAX) 613 return NULL; 614 615 return pos; 616 } 617 618 static void *s_mode_next(struct seq_file *s, void *v, loff_t *pos) 619 { 620 int mode = ++(*pos); 621 622 if (mode >= MODE_MAX) 623 return NULL; 624 625 return pos; 626 } 627 628 static int s_mode_show(struct seq_file *s, void *v) 629 { 630 loff_t *pos = v; 631 int mode = *pos; 632 633 if (mode == hwlat_data.thread_mode) 634 seq_printf(s, "[%s]", thread_mode_str[mode]); 635 else 636 seq_printf(s, "%s", thread_mode_str[mode]); 637 638 if (mode < MODE_MAX - 1) /* if mode is any but last */ 639 seq_puts(s, " "); 640 641 return 0; 642 } 643 644 static void s_mode_stop(struct seq_file *s, void *v) 645 { 646 seq_puts(s, "\n"); 647 mutex_unlock(&hwlat_data.lock); 648 } 649 650 static const struct seq_operations thread_mode_seq_ops = { 651 .start = s_mode_start, 652 .next = s_mode_next, 653 .show = s_mode_show, 654 .stop = s_mode_stop 655 }; 656 657 static int hwlat_mode_open(struct inode *inode, struct file *file) 658 { 659 return seq_open(file, &thread_mode_seq_ops); 660 }; 661 662 static void hwlat_tracer_start(struct trace_array *tr); 663 static void hwlat_tracer_stop(struct trace_array *tr); 664 665 /** 666 * hwlat_mode_write - Write function for "mode" entry 667 * @filp: The active open file structure 668 * @ubuf: The user buffer that contains the value to write 669 * @cnt: The maximum number of bytes to write to "file" 670 * @ppos: The current position in @file 671 * 672 * This function provides a write implementation for the "mode" interface 673 * to the hardware latency detector. hwlatd has different operation modes. 674 * The "none" sets the allowed cpumask for a single hwlatd thread at the 675 * startup and lets the scheduler handle the migration. The default mode is 676 * the "round-robin" one, in which a single hwlatd thread runs, migrating 677 * among the allowed CPUs in a round-robin fashion. The "per-cpu" mode 678 * creates one hwlatd thread per allowed CPU. 679 */ 680 static ssize_t hwlat_mode_write(struct file *filp, const char __user *ubuf, 681 size_t cnt, loff_t *ppos) 682 { 683 struct trace_array *tr = hwlat_trace; 684 const char *mode; 685 char buf[64]; 686 int ret, i; 687 688 if (cnt >= sizeof(buf)) 689 return -EINVAL; 690 691 if (copy_from_user(buf, ubuf, cnt)) 692 return -EFAULT; 693 694 buf[cnt] = 0; 695 696 mode = strstrip(buf); 697 698 ret = -EINVAL; 699 700 /* 701 * trace_types_lock is taken to avoid concurrency on start/stop 702 * and hwlat_busy. 703 */ 704 mutex_lock(&trace_types_lock); 705 if (hwlat_busy) 706 hwlat_tracer_stop(tr); 707 708 mutex_lock(&hwlat_data.lock); 709 710 for (i = 0; i < MODE_MAX; i++) { 711 if (strcmp(mode, thread_mode_str[i]) == 0) { 712 hwlat_data.thread_mode = i; 713 ret = cnt; 714 } 715 } 716 717 mutex_unlock(&hwlat_data.lock); 718 719 if (hwlat_busy) 720 hwlat_tracer_start(tr); 721 mutex_unlock(&trace_types_lock); 722 723 *ppos += cnt; 724 725 726 727 return ret; 728 } 729 730 /* 731 * The width parameter is read/write using the generic trace_min_max_param 732 * method. The *val is protected by the hwlat_data lock and is upper 733 * bounded by the window parameter. 734 */ 735 static struct trace_min_max_param hwlat_width = { 736 .lock = &hwlat_data.lock, 737 .val = &hwlat_data.sample_width, 738 .max = &hwlat_data.sample_window, 739 .min = NULL, 740 }; 741 742 /* 743 * The window parameter is read/write using the generic trace_min_max_param 744 * method. The *val is protected by the hwlat_data lock and is lower 745 * bounded by the width parameter. 746 */ 747 static struct trace_min_max_param hwlat_window = { 748 .lock = &hwlat_data.lock, 749 .val = &hwlat_data.sample_window, 750 .max = NULL, 751 .min = &hwlat_data.sample_width, 752 }; 753 754 static const struct file_operations thread_mode_fops = { 755 .open = hwlat_mode_open, 756 .read = seq_read, 757 .llseek = seq_lseek, 758 .release = seq_release, 759 .write = hwlat_mode_write 760 }; 761 /** 762 * init_tracefs - A function to initialize the tracefs interface files 763 * 764 * This function creates entries in tracefs for "hwlat_detector". 765 * It creates the hwlat_detector directory in the tracing directory, 766 * and within that directory is the count, width and window files to 767 * change and view those values. 768 */ 769 static int init_tracefs(void) 770 { 771 int ret; 772 struct dentry *top_dir; 773 774 ret = tracing_init_dentry(); 775 if (ret) 776 return -ENOMEM; 777 778 top_dir = tracefs_create_dir("hwlat_detector", NULL); 779 if (!top_dir) 780 return -ENOMEM; 781 782 hwlat_sample_window = tracefs_create_file("window", TRACE_MODE_WRITE, 783 top_dir, 784 &hwlat_window, 785 &trace_min_max_fops); 786 if (!hwlat_sample_window) 787 goto err; 788 789 hwlat_sample_width = tracefs_create_file("width", TRACE_MODE_WRITE, 790 top_dir, 791 &hwlat_width, 792 &trace_min_max_fops); 793 if (!hwlat_sample_width) 794 goto err; 795 796 hwlat_thread_mode = trace_create_file("mode", TRACE_MODE_WRITE, 797 top_dir, 798 NULL, 799 &thread_mode_fops); 800 if (!hwlat_thread_mode) 801 goto err; 802 803 return 0; 804 805 err: 806 tracefs_remove(top_dir); 807 return -ENOMEM; 808 } 809 810 static void hwlat_tracer_start(struct trace_array *tr) 811 { 812 int err; 813 814 if (hwlat_data.thread_mode == MODE_PER_CPU) 815 err = start_per_cpu_kthreads(tr); 816 else 817 err = start_single_kthread(tr); 818 if (err) 819 pr_err(BANNER "Cannot start hwlat kthread\n"); 820 } 821 822 static void hwlat_tracer_stop(struct trace_array *tr) 823 { 824 if (hwlat_data.thread_mode == MODE_PER_CPU) 825 stop_per_cpu_kthreads(); 826 else 827 stop_single_kthread(); 828 } 829 830 static int hwlat_tracer_init(struct trace_array *tr) 831 { 832 /* Only allow one instance to enable this */ 833 if (hwlat_busy) 834 return -EBUSY; 835 836 hwlat_trace = tr; 837 838 hwlat_data.count = 0; 839 tr->max_latency = 0; 840 save_tracing_thresh = tracing_thresh; 841 842 /* tracing_thresh is in nsecs, we speak in usecs */ 843 if (!tracing_thresh) 844 tracing_thresh = last_tracing_thresh; 845 846 if (tracer_tracing_is_on(tr)) 847 hwlat_tracer_start(tr); 848 849 hwlat_busy = true; 850 851 return 0; 852 } 853 854 static void hwlat_tracer_reset(struct trace_array *tr) 855 { 856 hwlat_tracer_stop(tr); 857 858 /* the tracing threshold is static between runs */ 859 last_tracing_thresh = tracing_thresh; 860 861 tracing_thresh = save_tracing_thresh; 862 hwlat_busy = false; 863 } 864 865 static struct tracer hwlat_tracer __read_mostly = 866 { 867 .name = "hwlat", 868 .init = hwlat_tracer_init, 869 .reset = hwlat_tracer_reset, 870 .start = hwlat_tracer_start, 871 .stop = hwlat_tracer_stop, 872 .allow_instances = true, 873 }; 874 875 __init static int init_hwlat_tracer(void) 876 { 877 int ret; 878 879 mutex_init(&hwlat_data.lock); 880 881 ret = register_tracer(&hwlat_tracer); 882 if (ret) 883 return ret; 884 885 hwlat_init_hotplug_support(); 886 887 init_tracefs(); 888 889 return 0; 890 } 891 late_initcall(init_hwlat_tracer); 892