1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2021, Microsoft Corporation. 4 * 5 * Authors: 6 * Beau Belgrave <beaub@linux.microsoft.com> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/cdev.h> 11 #include <linux/hashtable.h> 12 #include <linux/list.h> 13 #include <linux/io.h> 14 #include <linux/uio.h> 15 #include <linux/ioctl.h> 16 #include <linux/jhash.h> 17 #include <linux/refcount.h> 18 #include <linux/trace_events.h> 19 #include <linux/tracefs.h> 20 #include <linux/types.h> 21 #include <linux/uaccess.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/user_events.h> 25 #include "trace_dynevent.h" 26 #include "trace_output.h" 27 #include "trace.h" 28 29 #define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1) 30 31 #define FIELD_DEPTH_TYPE 0 32 #define FIELD_DEPTH_NAME 1 33 #define FIELD_DEPTH_SIZE 2 34 35 /* Limit how long of an event name plus args within the subsystem. */ 36 #define MAX_EVENT_DESC 512 37 #define EVENT_NAME(user_event) ((user_event)->tracepoint.name) 38 #define MAX_FIELD_ARRAY_SIZE 1024 39 40 /* 41 * Internal bits (kernel side only) to keep track of connected probes: 42 * These are used when status is requested in text form about an event. These 43 * bits are compared against an internal byte on the event to determine which 44 * probes to print out to the user. 45 * 46 * These do not reflect the mapped bytes between the user and kernel space. 47 */ 48 #define EVENT_STATUS_FTRACE BIT(0) 49 #define EVENT_STATUS_PERF BIT(1) 50 #define EVENT_STATUS_OTHER BIT(7) 51 52 /* 53 * User register flags are not allowed yet, keep them here until we are 54 * ready to expose them out to the user ABI. 55 */ 56 enum user_reg_flag { 57 /* Event will not delete upon last reference closing */ 58 USER_EVENT_REG_PERSIST = 1U << 0, 59 60 /* This value or above is currently non-ABI */ 61 USER_EVENT_REG_MAX = 1U << 1, 62 }; 63 64 /* 65 * Stores the system name, tables, and locks for a group of events. This 66 * allows isolation for events by various means. 67 */ 68 struct user_event_group { 69 char *system_name; 70 struct hlist_node node; 71 struct mutex reg_mutex; 72 DECLARE_HASHTABLE(register_table, 8); 73 }; 74 75 /* Group for init_user_ns mapping, top-most group */ 76 static struct user_event_group *init_group; 77 78 /* Max allowed events for the whole system */ 79 static unsigned int max_user_events = 32768; 80 81 /* Current number of events on the whole system */ 82 static unsigned int current_user_events; 83 84 /* 85 * Stores per-event properties, as users register events 86 * within a file a user_event might be created if it does not 87 * already exist. These are globally used and their lifetime 88 * is tied to the refcnt member. These cannot go away until the 89 * refcnt reaches one. 90 */ 91 struct user_event { 92 struct user_event_group *group; 93 struct tracepoint tracepoint; 94 struct trace_event_call call; 95 struct trace_event_class class; 96 struct dyn_event devent; 97 struct hlist_node node; 98 struct list_head fields; 99 struct list_head validators; 100 struct work_struct put_work; 101 refcount_t refcnt; 102 int min_size; 103 int reg_flags; 104 char status; 105 }; 106 107 /* 108 * Stores per-mm/event properties that enable an address to be 109 * updated properly for each task. As tasks are forked, we use 110 * these to track enablement sites that are tied to an event. 111 */ 112 struct user_event_enabler { 113 struct list_head mm_enablers_link; 114 struct user_event *event; 115 unsigned long addr; 116 117 /* Track enable bit, flags, etc. Aligned for bitops. */ 118 unsigned long values; 119 }; 120 121 /* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */ 122 #define ENABLE_VAL_BIT_MASK 0x3F 123 124 /* Bit 6 is for faulting status of enablement */ 125 #define ENABLE_VAL_FAULTING_BIT 6 126 127 /* Bit 7 is for freeing status of enablement */ 128 #define ENABLE_VAL_FREEING_BIT 7 129 130 /* Bit 8 is for marking 32-bit on 64-bit */ 131 #define ENABLE_VAL_32_ON_64_BIT 8 132 133 #define ENABLE_VAL_COMPAT_MASK (1 << ENABLE_VAL_32_ON_64_BIT) 134 135 /* Only duplicate the bit and compat values */ 136 #define ENABLE_VAL_DUP_MASK (ENABLE_VAL_BIT_MASK | ENABLE_VAL_COMPAT_MASK) 137 138 #define ENABLE_BITOPS(e) (&(e)->values) 139 140 #define ENABLE_BIT(e) ((int)((e)->values & ENABLE_VAL_BIT_MASK)) 141 142 /* Used for asynchronous faulting in of pages */ 143 struct user_event_enabler_fault { 144 struct work_struct work; 145 struct user_event_mm *mm; 146 struct user_event_enabler *enabler; 147 int attempt; 148 }; 149 150 static struct kmem_cache *fault_cache; 151 152 /* Global list of memory descriptors using user_events */ 153 static LIST_HEAD(user_event_mms); 154 static DEFINE_SPINLOCK(user_event_mms_lock); 155 156 /* 157 * Stores per-file events references, as users register events 158 * within a file this structure is modified and freed via RCU. 159 * The lifetime of this struct is tied to the lifetime of the file. 160 * These are not shared and only accessible by the file that created it. 161 */ 162 struct user_event_refs { 163 struct rcu_head rcu; 164 int count; 165 struct user_event *events[]; 166 }; 167 168 struct user_event_file_info { 169 struct user_event_group *group; 170 struct user_event_refs *refs; 171 }; 172 173 #define VALIDATOR_ENSURE_NULL (1 << 0) 174 #define VALIDATOR_REL (1 << 1) 175 176 struct user_event_validator { 177 struct list_head user_event_link; 178 int offset; 179 int flags; 180 }; 181 182 static inline void align_addr_bit(unsigned long *addr, int *bit, 183 unsigned long *flags) 184 { 185 if (IS_ALIGNED(*addr, sizeof(long))) { 186 #ifdef __BIG_ENDIAN 187 /* 32 bit on BE 64 bit requires a 32 bit offset when aligned. */ 188 if (test_bit(ENABLE_VAL_32_ON_64_BIT, flags)) 189 *bit += 32; 190 #endif 191 return; 192 } 193 194 *addr = ALIGN_DOWN(*addr, sizeof(long)); 195 196 /* 197 * We only support 32 and 64 bit values. The only time we need 198 * to align is a 32 bit value on a 64 bit kernel, which on LE 199 * is always 32 bits, and on BE requires no change when unaligned. 200 */ 201 #ifdef __LITTLE_ENDIAN 202 *bit += 32; 203 #endif 204 } 205 206 typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i, 207 void *tpdata, bool *faulted); 208 209 static int user_event_parse(struct user_event_group *group, char *name, 210 char *args, char *flags, 211 struct user_event **newuser, int reg_flags); 212 213 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm); 214 static struct user_event_mm *user_event_mm_get_all(struct user_event *user); 215 static void user_event_mm_put(struct user_event_mm *mm); 216 static int destroy_user_event(struct user_event *user); 217 218 static u32 user_event_key(char *name) 219 { 220 return jhash(name, strlen(name), 0); 221 } 222 223 static struct user_event *user_event_get(struct user_event *user) 224 { 225 refcount_inc(&user->refcnt); 226 227 return user; 228 } 229 230 static void delayed_destroy_user_event(struct work_struct *work) 231 { 232 struct user_event *user = container_of( 233 work, struct user_event, put_work); 234 235 mutex_lock(&event_mutex); 236 237 if (!refcount_dec_and_test(&user->refcnt)) 238 goto out; 239 240 if (destroy_user_event(user)) { 241 /* 242 * The only reason this would fail here is if we cannot 243 * update the visibility of the event. In this case the 244 * event stays in the hashtable, waiting for someone to 245 * attempt to delete it later. 246 */ 247 pr_warn("user_events: Unable to delete event\n"); 248 refcount_set(&user->refcnt, 1); 249 } 250 out: 251 mutex_unlock(&event_mutex); 252 } 253 254 static void user_event_put(struct user_event *user, bool locked) 255 { 256 bool delete; 257 258 if (unlikely(!user)) 259 return; 260 261 /* 262 * When the event is not enabled for auto-delete there will always 263 * be at least 1 reference to the event. During the event creation 264 * we initially set the refcnt to 2 to achieve this. In those cases 265 * the caller must acquire event_mutex and after decrement check if 266 * the refcnt is 1, meaning this is the last reference. When auto 267 * delete is enabled, there will only be 1 ref, IE: refcnt will be 268 * only set to 1 during creation to allow the below checks to go 269 * through upon the last put. The last put must always be done with 270 * the event mutex held. 271 */ 272 if (!locked) { 273 lockdep_assert_not_held(&event_mutex); 274 delete = refcount_dec_and_mutex_lock(&user->refcnt, &event_mutex); 275 } else { 276 lockdep_assert_held(&event_mutex); 277 delete = refcount_dec_and_test(&user->refcnt); 278 } 279 280 if (!delete) 281 return; 282 283 /* 284 * We now have the event_mutex in all cases, which ensures that 285 * no new references will be taken until event_mutex is released. 286 * New references come through find_user_event(), which requires 287 * the event_mutex to be held. 288 */ 289 290 if (user->reg_flags & USER_EVENT_REG_PERSIST) { 291 /* We should not get here when persist flag is set */ 292 pr_alert("BUG: Auto-delete engaged on persistent event\n"); 293 goto out; 294 } 295 296 /* 297 * Unfortunately we have to attempt the actual destroy in a work 298 * queue. This is because not all cases handle a trace_event_call 299 * being removed within the class->reg() operation for unregister. 300 */ 301 INIT_WORK(&user->put_work, delayed_destroy_user_event); 302 303 /* 304 * Since the event is still in the hashtable, we have to re-inc 305 * the ref count to 1. This count will be decremented and checked 306 * in the work queue to ensure it's still the last ref. This is 307 * needed because a user-process could register the same event in 308 * between the time of event_mutex release and the work queue 309 * running the delayed destroy. If we removed the item now from 310 * the hashtable, this would result in a timing window where a 311 * user process would fail a register because the trace_event_call 312 * register would fail in the tracing layers. 313 */ 314 refcount_set(&user->refcnt, 1); 315 316 if (WARN_ON_ONCE(!schedule_work(&user->put_work))) { 317 /* 318 * If we fail we must wait for an admin to attempt delete or 319 * another register/close of the event, whichever is first. 320 */ 321 pr_warn("user_events: Unable to queue delayed destroy\n"); 322 } 323 out: 324 /* Ensure if we didn't have event_mutex before we unlock it */ 325 if (!locked) 326 mutex_unlock(&event_mutex); 327 } 328 329 static void user_event_group_destroy(struct user_event_group *group) 330 { 331 kfree(group->system_name); 332 kfree(group); 333 } 334 335 static char *user_event_group_system_name(void) 336 { 337 char *system_name; 338 int len = sizeof(USER_EVENTS_SYSTEM) + 1; 339 340 system_name = kmalloc(len, GFP_KERNEL); 341 342 if (!system_name) 343 return NULL; 344 345 snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM); 346 347 return system_name; 348 } 349 350 static struct user_event_group *current_user_event_group(void) 351 { 352 return init_group; 353 } 354 355 static struct user_event_group *user_event_group_create(void) 356 { 357 struct user_event_group *group; 358 359 group = kzalloc(sizeof(*group), GFP_KERNEL); 360 361 if (!group) 362 return NULL; 363 364 group->system_name = user_event_group_system_name(); 365 366 if (!group->system_name) 367 goto error; 368 369 mutex_init(&group->reg_mutex); 370 hash_init(group->register_table); 371 372 return group; 373 error: 374 if (group) 375 user_event_group_destroy(group); 376 377 return NULL; 378 }; 379 380 static void user_event_enabler_destroy(struct user_event_enabler *enabler, 381 bool locked) 382 { 383 list_del_rcu(&enabler->mm_enablers_link); 384 385 /* No longer tracking the event via the enabler */ 386 user_event_put(enabler->event, locked); 387 388 kfree(enabler); 389 } 390 391 static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr, 392 int attempt) 393 { 394 bool unlocked; 395 int ret; 396 397 /* 398 * Normally this is low, ensure that it cannot be taken advantage of by 399 * bad user processes to cause excessive looping. 400 */ 401 if (attempt > 10) 402 return -EFAULT; 403 404 mmap_read_lock(mm->mm); 405 406 /* Ensure MM has tasks, cannot use after exit_mm() */ 407 if (refcount_read(&mm->tasks) == 0) { 408 ret = -ENOENT; 409 goto out; 410 } 411 412 ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, 413 &unlocked); 414 out: 415 mmap_read_unlock(mm->mm); 416 417 return ret; 418 } 419 420 static int user_event_enabler_write(struct user_event_mm *mm, 421 struct user_event_enabler *enabler, 422 bool fixup_fault, int *attempt); 423 424 static void user_event_enabler_fault_fixup(struct work_struct *work) 425 { 426 struct user_event_enabler_fault *fault = container_of( 427 work, struct user_event_enabler_fault, work); 428 struct user_event_enabler *enabler = fault->enabler; 429 struct user_event_mm *mm = fault->mm; 430 unsigned long uaddr = enabler->addr; 431 int attempt = fault->attempt; 432 int ret; 433 434 ret = user_event_mm_fault_in(mm, uaddr, attempt); 435 436 if (ret && ret != -ENOENT) { 437 struct user_event *user = enabler->event; 438 439 pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n", 440 mm->mm, (unsigned long long)uaddr, EVENT_NAME(user)); 441 } 442 443 /* Prevent state changes from racing */ 444 mutex_lock(&event_mutex); 445 446 /* User asked for enabler to be removed during fault */ 447 if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) { 448 user_event_enabler_destroy(enabler, true); 449 goto out; 450 } 451 452 /* 453 * If we managed to get the page, re-issue the write. We do not 454 * want to get into a possible infinite loop, which is why we only 455 * attempt again directly if the page came in. If we couldn't get 456 * the page here, then we will try again the next time the event is 457 * enabled/disabled. 458 */ 459 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)); 460 461 if (!ret) { 462 mmap_read_lock(mm->mm); 463 user_event_enabler_write(mm, enabler, true, &attempt); 464 mmap_read_unlock(mm->mm); 465 } 466 out: 467 mutex_unlock(&event_mutex); 468 469 /* In all cases we no longer need the mm or fault */ 470 user_event_mm_put(mm); 471 kmem_cache_free(fault_cache, fault); 472 } 473 474 static bool user_event_enabler_queue_fault(struct user_event_mm *mm, 475 struct user_event_enabler *enabler, 476 int attempt) 477 { 478 struct user_event_enabler_fault *fault; 479 480 fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN); 481 482 if (!fault) 483 return false; 484 485 INIT_WORK(&fault->work, user_event_enabler_fault_fixup); 486 fault->mm = user_event_mm_get(mm); 487 fault->enabler = enabler; 488 fault->attempt = attempt; 489 490 /* Don't try to queue in again while we have a pending fault */ 491 set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)); 492 493 if (!schedule_work(&fault->work)) { 494 /* Allow another attempt later */ 495 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)); 496 497 user_event_mm_put(mm); 498 kmem_cache_free(fault_cache, fault); 499 500 return false; 501 } 502 503 return true; 504 } 505 506 static int user_event_enabler_write(struct user_event_mm *mm, 507 struct user_event_enabler *enabler, 508 bool fixup_fault, int *attempt) 509 { 510 unsigned long uaddr = enabler->addr; 511 unsigned long *ptr; 512 struct page *page; 513 void *kaddr; 514 int bit = ENABLE_BIT(enabler); 515 int ret; 516 517 lockdep_assert_held(&event_mutex); 518 mmap_assert_locked(mm->mm); 519 520 *attempt += 1; 521 522 /* Ensure MM has tasks, cannot use after exit_mm() */ 523 if (refcount_read(&mm->tasks) == 0) 524 return -ENOENT; 525 526 if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) || 527 test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler)))) 528 return -EBUSY; 529 530 align_addr_bit(&uaddr, &bit, ENABLE_BITOPS(enabler)); 531 532 ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT, 533 &page, NULL); 534 535 if (unlikely(ret <= 0)) { 536 if (!fixup_fault) 537 return -EFAULT; 538 539 if (!user_event_enabler_queue_fault(mm, enabler, *attempt)) 540 pr_warn("user_events: Unable to queue fault handler\n"); 541 542 return -EFAULT; 543 } 544 545 kaddr = kmap_local_page(page); 546 ptr = kaddr + (uaddr & ~PAGE_MASK); 547 548 /* Update bit atomically, user tracers must be atomic as well */ 549 if (enabler->event && enabler->event->status) 550 set_bit(bit, ptr); 551 else 552 clear_bit(bit, ptr); 553 554 kunmap_local(kaddr); 555 unpin_user_pages_dirty_lock(&page, 1, true); 556 557 return 0; 558 } 559 560 static bool user_event_enabler_exists(struct user_event_mm *mm, 561 unsigned long uaddr, unsigned char bit) 562 { 563 struct user_event_enabler *enabler; 564 565 list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) { 566 if (enabler->addr == uaddr && ENABLE_BIT(enabler) == bit) 567 return true; 568 } 569 570 return false; 571 } 572 573 static void user_event_enabler_update(struct user_event *user) 574 { 575 struct user_event_enabler *enabler; 576 struct user_event_mm *next; 577 struct user_event_mm *mm; 578 int attempt; 579 580 lockdep_assert_held(&event_mutex); 581 582 /* 583 * We need to build a one-shot list of all the mms that have an 584 * enabler for the user_event passed in. This list is only valid 585 * while holding the event_mutex. The only reason for this is due 586 * to the global mm list being RCU protected and we use methods 587 * which can wait (mmap_read_lock and pin_user_pages_remote). 588 * 589 * NOTE: user_event_mm_get_all() increments the ref count of each 590 * mm that is added to the list to prevent removal timing windows. 591 * We must always put each mm after they are used, which may wait. 592 */ 593 mm = user_event_mm_get_all(user); 594 595 while (mm) { 596 next = mm->next; 597 mmap_read_lock(mm->mm); 598 599 list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) { 600 if (enabler->event == user) { 601 attempt = 0; 602 user_event_enabler_write(mm, enabler, true, &attempt); 603 } 604 } 605 606 mmap_read_unlock(mm->mm); 607 user_event_mm_put(mm); 608 mm = next; 609 } 610 } 611 612 static bool user_event_enabler_dup(struct user_event_enabler *orig, 613 struct user_event_mm *mm) 614 { 615 struct user_event_enabler *enabler; 616 617 /* Skip pending frees */ 618 if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig)))) 619 return true; 620 621 enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT); 622 623 if (!enabler) 624 return false; 625 626 enabler->event = user_event_get(orig->event); 627 enabler->addr = orig->addr; 628 629 /* Only dup part of value (ignore future flags, etc) */ 630 enabler->values = orig->values & ENABLE_VAL_DUP_MASK; 631 632 /* Enablers not exposed yet, RCU not required */ 633 list_add(&enabler->mm_enablers_link, &mm->enablers); 634 635 return true; 636 } 637 638 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm) 639 { 640 refcount_inc(&mm->refcnt); 641 642 return mm; 643 } 644 645 static struct user_event_mm *user_event_mm_get_all(struct user_event *user) 646 { 647 struct user_event_mm *found = NULL; 648 struct user_event_enabler *enabler; 649 struct user_event_mm *mm; 650 651 /* 652 * We use the mm->next field to build a one-shot list from the global 653 * RCU protected list. To build this list the event_mutex must be held. 654 * This lets us build a list without requiring allocs that could fail 655 * when user based events are most wanted for diagnostics. 656 */ 657 lockdep_assert_held(&event_mutex); 658 659 /* 660 * We do not want to block fork/exec while enablements are being 661 * updated, so we use RCU to walk the current tasks that have used 662 * user_events ABI for 1 or more events. Each enabler found in each 663 * task that matches the event being updated has a write to reflect 664 * the kernel state back into the process. Waits/faults must not occur 665 * during this. So we scan the list under RCU for all the mm that have 666 * the event within it. This is needed because mm_read_lock() can wait. 667 * Each user mm returned has a ref inc to handle remove RCU races. 668 */ 669 rcu_read_lock(); 670 671 list_for_each_entry_rcu(mm, &user_event_mms, mms_link) { 672 list_for_each_entry_rcu(enabler, &mm->enablers, mm_enablers_link) { 673 if (enabler->event == user) { 674 mm->next = found; 675 found = user_event_mm_get(mm); 676 break; 677 } 678 } 679 } 680 681 rcu_read_unlock(); 682 683 return found; 684 } 685 686 static struct user_event_mm *user_event_mm_alloc(struct task_struct *t) 687 { 688 struct user_event_mm *user_mm; 689 690 user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT); 691 692 if (!user_mm) 693 return NULL; 694 695 user_mm->mm = t->mm; 696 INIT_LIST_HEAD(&user_mm->enablers); 697 refcount_set(&user_mm->refcnt, 1); 698 refcount_set(&user_mm->tasks, 1); 699 700 /* 701 * The lifetime of the memory descriptor can slightly outlast 702 * the task lifetime if a ref to the user_event_mm is taken 703 * between list_del_rcu() and call_rcu(). Therefore we need 704 * to take a reference to it to ensure it can live this long 705 * under this corner case. This can also occur in clones that 706 * outlast the parent. 707 */ 708 mmgrab(user_mm->mm); 709 710 return user_mm; 711 } 712 713 static void user_event_mm_attach(struct user_event_mm *user_mm, struct task_struct *t) 714 { 715 unsigned long flags; 716 717 spin_lock_irqsave(&user_event_mms_lock, flags); 718 list_add_rcu(&user_mm->mms_link, &user_event_mms); 719 spin_unlock_irqrestore(&user_event_mms_lock, flags); 720 721 t->user_event_mm = user_mm; 722 } 723 724 static struct user_event_mm *current_user_event_mm(void) 725 { 726 struct user_event_mm *user_mm = current->user_event_mm; 727 728 if (user_mm) 729 goto inc; 730 731 user_mm = user_event_mm_alloc(current); 732 733 if (!user_mm) 734 goto error; 735 736 user_event_mm_attach(user_mm, current); 737 inc: 738 refcount_inc(&user_mm->refcnt); 739 error: 740 return user_mm; 741 } 742 743 static void user_event_mm_destroy(struct user_event_mm *mm) 744 { 745 struct user_event_enabler *enabler, *next; 746 747 list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) 748 user_event_enabler_destroy(enabler, false); 749 750 mmdrop(mm->mm); 751 kfree(mm); 752 } 753 754 static void user_event_mm_put(struct user_event_mm *mm) 755 { 756 if (mm && refcount_dec_and_test(&mm->refcnt)) 757 user_event_mm_destroy(mm); 758 } 759 760 static void delayed_user_event_mm_put(struct work_struct *work) 761 { 762 struct user_event_mm *mm; 763 764 mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork); 765 user_event_mm_put(mm); 766 } 767 768 void user_event_mm_remove(struct task_struct *t) 769 { 770 struct user_event_mm *mm; 771 unsigned long flags; 772 773 might_sleep(); 774 775 mm = t->user_event_mm; 776 t->user_event_mm = NULL; 777 778 /* Clone will increment the tasks, only remove if last clone */ 779 if (!refcount_dec_and_test(&mm->tasks)) 780 return; 781 782 /* Remove the mm from the list, so it can no longer be enabled */ 783 spin_lock_irqsave(&user_event_mms_lock, flags); 784 list_del_rcu(&mm->mms_link); 785 spin_unlock_irqrestore(&user_event_mms_lock, flags); 786 787 /* 788 * We need to wait for currently occurring writes to stop within 789 * the mm. This is required since exit_mm() snaps the current rss 790 * stats and clears them. On the final mmdrop(), check_mm() will 791 * report a bug if these increment. 792 * 793 * All writes/pins are done under mmap_read lock, take the write 794 * lock to ensure in-progress faults have completed. Faults that 795 * are pending but yet to run will check the task count and skip 796 * the fault since the mm is going away. 797 */ 798 mmap_write_lock(mm->mm); 799 mmap_write_unlock(mm->mm); 800 801 /* 802 * Put for mm must be done after RCU delay to handle new refs in 803 * between the list_del_rcu() and now. This ensures any get refs 804 * during rcu_read_lock() are accounted for during list removal. 805 * 806 * CPU A | CPU B 807 * --------------------------------------------------------------- 808 * user_event_mm_remove() | rcu_read_lock(); 809 * list_del_rcu() | list_for_each_entry_rcu(); 810 * call_rcu() | refcount_inc(); 811 * . | rcu_read_unlock(); 812 * schedule_work() | . 813 * user_event_mm_put() | . 814 * 815 * mmdrop() cannot be called in the softirq context of call_rcu() 816 * so we use a work queue after call_rcu() to run within. 817 */ 818 INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put); 819 queue_rcu_work(system_wq, &mm->put_rwork); 820 } 821 822 void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm) 823 { 824 struct user_event_mm *mm = user_event_mm_alloc(t); 825 struct user_event_enabler *enabler; 826 827 if (!mm) 828 return; 829 830 rcu_read_lock(); 831 832 list_for_each_entry_rcu(enabler, &old_mm->enablers, mm_enablers_link) { 833 if (!user_event_enabler_dup(enabler, mm)) 834 goto error; 835 } 836 837 rcu_read_unlock(); 838 839 user_event_mm_attach(mm, t); 840 return; 841 error: 842 rcu_read_unlock(); 843 user_event_mm_destroy(mm); 844 } 845 846 static bool current_user_event_enabler_exists(unsigned long uaddr, 847 unsigned char bit) 848 { 849 struct user_event_mm *user_mm = current_user_event_mm(); 850 bool exists; 851 852 if (!user_mm) 853 return false; 854 855 exists = user_event_enabler_exists(user_mm, uaddr, bit); 856 857 user_event_mm_put(user_mm); 858 859 return exists; 860 } 861 862 static struct user_event_enabler 863 *user_event_enabler_create(struct user_reg *reg, struct user_event *user, 864 int *write_result) 865 { 866 struct user_event_enabler *enabler; 867 struct user_event_mm *user_mm; 868 unsigned long uaddr = (unsigned long)reg->enable_addr; 869 int attempt = 0; 870 871 user_mm = current_user_event_mm(); 872 873 if (!user_mm) 874 return NULL; 875 876 enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT); 877 878 if (!enabler) 879 goto out; 880 881 enabler->event = user; 882 enabler->addr = uaddr; 883 enabler->values = reg->enable_bit; 884 885 #if BITS_PER_LONG >= 64 886 if (reg->enable_size == 4) 887 set_bit(ENABLE_VAL_32_ON_64_BIT, ENABLE_BITOPS(enabler)); 888 #endif 889 890 retry: 891 /* Prevents state changes from racing with new enablers */ 892 mutex_lock(&event_mutex); 893 894 /* Attempt to reflect the current state within the process */ 895 mmap_read_lock(user_mm->mm); 896 *write_result = user_event_enabler_write(user_mm, enabler, false, 897 &attempt); 898 mmap_read_unlock(user_mm->mm); 899 900 /* 901 * If the write works, then we will track the enabler. A ref to the 902 * underlying user_event is held by the enabler to prevent it going 903 * away while the enabler is still in use by a process. The ref is 904 * removed when the enabler is destroyed. This means a event cannot 905 * be forcefully deleted from the system until all tasks using it 906 * exit or run exec(), which includes forks and clones. 907 */ 908 if (!*write_result) { 909 user_event_get(user); 910 list_add_rcu(&enabler->mm_enablers_link, &user_mm->enablers); 911 } 912 913 mutex_unlock(&event_mutex); 914 915 if (*write_result) { 916 /* Attempt to fault-in and retry if it worked */ 917 if (!user_event_mm_fault_in(user_mm, uaddr, attempt)) 918 goto retry; 919 920 kfree(enabler); 921 enabler = NULL; 922 } 923 out: 924 user_event_mm_put(user_mm); 925 926 return enabler; 927 } 928 929 static __always_inline __must_check 930 bool user_event_last_ref(struct user_event *user) 931 { 932 int last = 0; 933 934 if (user->reg_flags & USER_EVENT_REG_PERSIST) 935 last = 1; 936 937 return refcount_read(&user->refcnt) == last; 938 } 939 940 static __always_inline __must_check 941 size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i) 942 { 943 size_t ret; 944 945 pagefault_disable(); 946 947 ret = copy_from_iter_nocache(addr, bytes, i); 948 949 pagefault_enable(); 950 951 return ret; 952 } 953 954 static struct list_head *user_event_get_fields(struct trace_event_call *call) 955 { 956 struct user_event *user = (struct user_event *)call->data; 957 958 return &user->fields; 959 } 960 961 /* 962 * Parses a register command for user_events 963 * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]] 964 * 965 * Example event named 'test' with a 20 char 'msg' field with an unsigned int 966 * 'id' field after: 967 * test char[20] msg;unsigned int id 968 * 969 * NOTE: Offsets are from the user data perspective, they are not from the 970 * trace_entry/buffer perspective. We automatically add the common properties 971 * sizes to the offset for the user. 972 * 973 * Upon success user_event has its ref count increased by 1. 974 */ 975 static int user_event_parse_cmd(struct user_event_group *group, 976 char *raw_command, struct user_event **newuser, 977 int reg_flags) 978 { 979 char *name = raw_command; 980 char *args = strpbrk(name, " "); 981 char *flags; 982 983 if (args) 984 *args++ = '\0'; 985 986 flags = strpbrk(name, ":"); 987 988 if (flags) 989 *flags++ = '\0'; 990 991 return user_event_parse(group, name, args, flags, newuser, reg_flags); 992 } 993 994 static int user_field_array_size(const char *type) 995 { 996 const char *start = strchr(type, '['); 997 char val[8]; 998 char *bracket; 999 int size = 0; 1000 1001 if (start == NULL) 1002 return -EINVAL; 1003 1004 if (strscpy(val, start + 1, sizeof(val)) <= 0) 1005 return -EINVAL; 1006 1007 bracket = strchr(val, ']'); 1008 1009 if (!bracket) 1010 return -EINVAL; 1011 1012 *bracket = '\0'; 1013 1014 if (kstrtouint(val, 0, &size)) 1015 return -EINVAL; 1016 1017 if (size > MAX_FIELD_ARRAY_SIZE) 1018 return -EINVAL; 1019 1020 return size; 1021 } 1022 1023 static int user_field_size(const char *type) 1024 { 1025 /* long is not allowed from a user, since it's ambigious in size */ 1026 if (strcmp(type, "s64") == 0) 1027 return sizeof(s64); 1028 if (strcmp(type, "u64") == 0) 1029 return sizeof(u64); 1030 if (strcmp(type, "s32") == 0) 1031 return sizeof(s32); 1032 if (strcmp(type, "u32") == 0) 1033 return sizeof(u32); 1034 if (strcmp(type, "int") == 0) 1035 return sizeof(int); 1036 if (strcmp(type, "unsigned int") == 0) 1037 return sizeof(unsigned int); 1038 if (strcmp(type, "s16") == 0) 1039 return sizeof(s16); 1040 if (strcmp(type, "u16") == 0) 1041 return sizeof(u16); 1042 if (strcmp(type, "short") == 0) 1043 return sizeof(short); 1044 if (strcmp(type, "unsigned short") == 0) 1045 return sizeof(unsigned short); 1046 if (strcmp(type, "s8") == 0) 1047 return sizeof(s8); 1048 if (strcmp(type, "u8") == 0) 1049 return sizeof(u8); 1050 if (strcmp(type, "char") == 0) 1051 return sizeof(char); 1052 if (strcmp(type, "unsigned char") == 0) 1053 return sizeof(unsigned char); 1054 if (str_has_prefix(type, "char[")) 1055 return user_field_array_size(type); 1056 if (str_has_prefix(type, "unsigned char[")) 1057 return user_field_array_size(type); 1058 if (str_has_prefix(type, "__data_loc ")) 1059 return sizeof(u32); 1060 if (str_has_prefix(type, "__rel_loc ")) 1061 return sizeof(u32); 1062 1063 /* Uknown basic type, error */ 1064 return -EINVAL; 1065 } 1066 1067 static void user_event_destroy_validators(struct user_event *user) 1068 { 1069 struct user_event_validator *validator, *next; 1070 struct list_head *head = &user->validators; 1071 1072 list_for_each_entry_safe(validator, next, head, user_event_link) { 1073 list_del(&validator->user_event_link); 1074 kfree(validator); 1075 } 1076 } 1077 1078 static void user_event_destroy_fields(struct user_event *user) 1079 { 1080 struct ftrace_event_field *field, *next; 1081 struct list_head *head = &user->fields; 1082 1083 list_for_each_entry_safe(field, next, head, link) { 1084 list_del(&field->link); 1085 kfree(field); 1086 } 1087 } 1088 1089 static int user_event_add_field(struct user_event *user, const char *type, 1090 const char *name, int offset, int size, 1091 int is_signed, int filter_type) 1092 { 1093 struct user_event_validator *validator; 1094 struct ftrace_event_field *field; 1095 int validator_flags = 0; 1096 1097 field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT); 1098 1099 if (!field) 1100 return -ENOMEM; 1101 1102 if (str_has_prefix(type, "__data_loc ")) 1103 goto add_validator; 1104 1105 if (str_has_prefix(type, "__rel_loc ")) { 1106 validator_flags |= VALIDATOR_REL; 1107 goto add_validator; 1108 } 1109 1110 goto add_field; 1111 1112 add_validator: 1113 if (strstr(type, "char") != NULL) 1114 validator_flags |= VALIDATOR_ENSURE_NULL; 1115 1116 validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT); 1117 1118 if (!validator) { 1119 kfree(field); 1120 return -ENOMEM; 1121 } 1122 1123 validator->flags = validator_flags; 1124 validator->offset = offset; 1125 1126 /* Want sequential access when validating */ 1127 list_add_tail(&validator->user_event_link, &user->validators); 1128 1129 add_field: 1130 field->type = type; 1131 field->name = name; 1132 field->offset = offset; 1133 field->size = size; 1134 field->is_signed = is_signed; 1135 field->filter_type = filter_type; 1136 1137 if (filter_type == FILTER_OTHER) 1138 field->filter_type = filter_assign_type(type); 1139 1140 list_add(&field->link, &user->fields); 1141 1142 /* 1143 * Min size from user writes that are required, this does not include 1144 * the size of trace_entry (common fields). 1145 */ 1146 user->min_size = (offset + size) - sizeof(struct trace_entry); 1147 1148 return 0; 1149 } 1150 1151 /* 1152 * Parses the values of a field within the description 1153 * Format: type name [size] 1154 */ 1155 static int user_event_parse_field(char *field, struct user_event *user, 1156 u32 *offset) 1157 { 1158 char *part, *type, *name; 1159 u32 depth = 0, saved_offset = *offset; 1160 int len, size = -EINVAL; 1161 bool is_struct = false; 1162 1163 field = skip_spaces(field); 1164 1165 if (*field == '\0') 1166 return 0; 1167 1168 /* Handle types that have a space within */ 1169 len = str_has_prefix(field, "unsigned "); 1170 if (len) 1171 goto skip_next; 1172 1173 len = str_has_prefix(field, "struct "); 1174 if (len) { 1175 is_struct = true; 1176 goto skip_next; 1177 } 1178 1179 len = str_has_prefix(field, "__data_loc unsigned "); 1180 if (len) 1181 goto skip_next; 1182 1183 len = str_has_prefix(field, "__data_loc "); 1184 if (len) 1185 goto skip_next; 1186 1187 len = str_has_prefix(field, "__rel_loc unsigned "); 1188 if (len) 1189 goto skip_next; 1190 1191 len = str_has_prefix(field, "__rel_loc "); 1192 if (len) 1193 goto skip_next; 1194 1195 goto parse; 1196 skip_next: 1197 type = field; 1198 field = strpbrk(field + len, " "); 1199 1200 if (field == NULL) 1201 return -EINVAL; 1202 1203 *field++ = '\0'; 1204 depth++; 1205 parse: 1206 name = NULL; 1207 1208 while ((part = strsep(&field, " ")) != NULL) { 1209 switch (depth++) { 1210 case FIELD_DEPTH_TYPE: 1211 type = part; 1212 break; 1213 case FIELD_DEPTH_NAME: 1214 name = part; 1215 break; 1216 case FIELD_DEPTH_SIZE: 1217 if (!is_struct) 1218 return -EINVAL; 1219 1220 if (kstrtou32(part, 10, &size)) 1221 return -EINVAL; 1222 break; 1223 default: 1224 return -EINVAL; 1225 } 1226 } 1227 1228 if (depth < FIELD_DEPTH_SIZE || !name) 1229 return -EINVAL; 1230 1231 if (depth == FIELD_DEPTH_SIZE) 1232 size = user_field_size(type); 1233 1234 if (size == 0) 1235 return -EINVAL; 1236 1237 if (size < 0) 1238 return size; 1239 1240 *offset = saved_offset + size; 1241 1242 return user_event_add_field(user, type, name, saved_offset, size, 1243 type[0] != 'u', FILTER_OTHER); 1244 } 1245 1246 static int user_event_parse_fields(struct user_event *user, char *args) 1247 { 1248 char *field; 1249 u32 offset = sizeof(struct trace_entry); 1250 int ret = -EINVAL; 1251 1252 if (args == NULL) 1253 return 0; 1254 1255 while ((field = strsep(&args, ";")) != NULL) { 1256 ret = user_event_parse_field(field, user, &offset); 1257 1258 if (ret) 1259 break; 1260 } 1261 1262 return ret; 1263 } 1264 1265 static struct trace_event_fields user_event_fields_array[1]; 1266 1267 static const char *user_field_format(const char *type) 1268 { 1269 if (strcmp(type, "s64") == 0) 1270 return "%lld"; 1271 if (strcmp(type, "u64") == 0) 1272 return "%llu"; 1273 if (strcmp(type, "s32") == 0) 1274 return "%d"; 1275 if (strcmp(type, "u32") == 0) 1276 return "%u"; 1277 if (strcmp(type, "int") == 0) 1278 return "%d"; 1279 if (strcmp(type, "unsigned int") == 0) 1280 return "%u"; 1281 if (strcmp(type, "s16") == 0) 1282 return "%d"; 1283 if (strcmp(type, "u16") == 0) 1284 return "%u"; 1285 if (strcmp(type, "short") == 0) 1286 return "%d"; 1287 if (strcmp(type, "unsigned short") == 0) 1288 return "%u"; 1289 if (strcmp(type, "s8") == 0) 1290 return "%d"; 1291 if (strcmp(type, "u8") == 0) 1292 return "%u"; 1293 if (strcmp(type, "char") == 0) 1294 return "%d"; 1295 if (strcmp(type, "unsigned char") == 0) 1296 return "%u"; 1297 if (strstr(type, "char[") != NULL) 1298 return "%s"; 1299 1300 /* Unknown, likely struct, allowed treat as 64-bit */ 1301 return "%llu"; 1302 } 1303 1304 static bool user_field_is_dyn_string(const char *type, const char **str_func) 1305 { 1306 if (str_has_prefix(type, "__data_loc ")) { 1307 *str_func = "__get_str"; 1308 goto check; 1309 } 1310 1311 if (str_has_prefix(type, "__rel_loc ")) { 1312 *str_func = "__get_rel_str"; 1313 goto check; 1314 } 1315 1316 return false; 1317 check: 1318 return strstr(type, "char") != NULL; 1319 } 1320 1321 #define LEN_OR_ZERO (len ? len - pos : 0) 1322 static int user_dyn_field_set_string(int argc, const char **argv, int *iout, 1323 char *buf, int len, bool *colon) 1324 { 1325 int pos = 0, i = *iout; 1326 1327 *colon = false; 1328 1329 for (; i < argc; ++i) { 1330 if (i != *iout) 1331 pos += snprintf(buf + pos, LEN_OR_ZERO, " "); 1332 1333 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]); 1334 1335 if (strchr(argv[i], ';')) { 1336 ++i; 1337 *colon = true; 1338 break; 1339 } 1340 } 1341 1342 /* Actual set, advance i */ 1343 if (len != 0) 1344 *iout = i; 1345 1346 return pos + 1; 1347 } 1348 1349 static int user_field_set_string(struct ftrace_event_field *field, 1350 char *buf, int len, bool colon) 1351 { 1352 int pos = 0; 1353 1354 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type); 1355 pos += snprintf(buf + pos, LEN_OR_ZERO, " "); 1356 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name); 1357 1358 if (str_has_prefix(field->type, "struct ")) 1359 pos += snprintf(buf + pos, LEN_OR_ZERO, " %d", field->size); 1360 1361 if (colon) 1362 pos += snprintf(buf + pos, LEN_OR_ZERO, ";"); 1363 1364 return pos + 1; 1365 } 1366 1367 static int user_event_set_print_fmt(struct user_event *user, char *buf, int len) 1368 { 1369 struct ftrace_event_field *field; 1370 struct list_head *head = &user->fields; 1371 int pos = 0, depth = 0; 1372 const char *str_func; 1373 1374 pos += snprintf(buf + pos, LEN_OR_ZERO, "\""); 1375 1376 list_for_each_entry_reverse(field, head, link) { 1377 if (depth != 0) 1378 pos += snprintf(buf + pos, LEN_OR_ZERO, " "); 1379 1380 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s", 1381 field->name, user_field_format(field->type)); 1382 1383 depth++; 1384 } 1385 1386 pos += snprintf(buf + pos, LEN_OR_ZERO, "\""); 1387 1388 list_for_each_entry_reverse(field, head, link) { 1389 if (user_field_is_dyn_string(field->type, &str_func)) 1390 pos += snprintf(buf + pos, LEN_OR_ZERO, 1391 ", %s(%s)", str_func, field->name); 1392 else 1393 pos += snprintf(buf + pos, LEN_OR_ZERO, 1394 ", REC->%s", field->name); 1395 } 1396 1397 return pos + 1; 1398 } 1399 #undef LEN_OR_ZERO 1400 1401 static int user_event_create_print_fmt(struct user_event *user) 1402 { 1403 char *print_fmt; 1404 int len; 1405 1406 len = user_event_set_print_fmt(user, NULL, 0); 1407 1408 print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT); 1409 1410 if (!print_fmt) 1411 return -ENOMEM; 1412 1413 user_event_set_print_fmt(user, print_fmt, len); 1414 1415 user->call.print_fmt = print_fmt; 1416 1417 return 0; 1418 } 1419 1420 static enum print_line_t user_event_print_trace(struct trace_iterator *iter, 1421 int flags, 1422 struct trace_event *event) 1423 { 1424 return print_event_fields(iter, event); 1425 } 1426 1427 static struct trace_event_functions user_event_funcs = { 1428 .trace = user_event_print_trace, 1429 }; 1430 1431 static int user_event_set_call_visible(struct user_event *user, bool visible) 1432 { 1433 int ret; 1434 const struct cred *old_cred; 1435 struct cred *cred; 1436 1437 cred = prepare_creds(); 1438 1439 if (!cred) 1440 return -ENOMEM; 1441 1442 /* 1443 * While by default tracefs is locked down, systems can be configured 1444 * to allow user_event files to be less locked down. The extreme case 1445 * being "other" has read/write access to user_events_data/status. 1446 * 1447 * When not locked down, processes may not have permissions to 1448 * add/remove calls themselves to tracefs. We need to temporarily 1449 * switch to root file permission to allow for this scenario. 1450 */ 1451 cred->fsuid = GLOBAL_ROOT_UID; 1452 1453 old_cred = override_creds(cred); 1454 1455 if (visible) 1456 ret = trace_add_event_call(&user->call); 1457 else 1458 ret = trace_remove_event_call(&user->call); 1459 1460 revert_creds(old_cred); 1461 put_cred(cred); 1462 1463 return ret; 1464 } 1465 1466 static int destroy_user_event(struct user_event *user) 1467 { 1468 int ret = 0; 1469 1470 lockdep_assert_held(&event_mutex); 1471 1472 /* Must destroy fields before call removal */ 1473 user_event_destroy_fields(user); 1474 1475 ret = user_event_set_call_visible(user, false); 1476 1477 if (ret) 1478 return ret; 1479 1480 dyn_event_remove(&user->devent); 1481 hash_del(&user->node); 1482 1483 user_event_destroy_validators(user); 1484 kfree(user->call.print_fmt); 1485 kfree(EVENT_NAME(user)); 1486 kfree(user); 1487 1488 if (current_user_events > 0) 1489 current_user_events--; 1490 else 1491 pr_alert("BUG: Bad current_user_events\n"); 1492 1493 return ret; 1494 } 1495 1496 static struct user_event *find_user_event(struct user_event_group *group, 1497 char *name, u32 *outkey) 1498 { 1499 struct user_event *user; 1500 u32 key = user_event_key(name); 1501 1502 *outkey = key; 1503 1504 hash_for_each_possible(group->register_table, user, node, key) 1505 if (!strcmp(EVENT_NAME(user), name)) 1506 return user_event_get(user); 1507 1508 return NULL; 1509 } 1510 1511 static int user_event_validate(struct user_event *user, void *data, int len) 1512 { 1513 struct list_head *head = &user->validators; 1514 struct user_event_validator *validator; 1515 void *pos, *end = data + len; 1516 u32 loc, offset, size; 1517 1518 list_for_each_entry(validator, head, user_event_link) { 1519 pos = data + validator->offset; 1520 1521 /* Already done min_size check, no bounds check here */ 1522 loc = *(u32 *)pos; 1523 offset = loc & 0xffff; 1524 size = loc >> 16; 1525 1526 if (likely(validator->flags & VALIDATOR_REL)) 1527 pos += offset + sizeof(loc); 1528 else 1529 pos = data + offset; 1530 1531 pos += size; 1532 1533 if (unlikely(pos > end)) 1534 return -EFAULT; 1535 1536 if (likely(validator->flags & VALIDATOR_ENSURE_NULL)) 1537 if (unlikely(*(char *)(pos - 1) != '\0')) 1538 return -EFAULT; 1539 } 1540 1541 return 0; 1542 } 1543 1544 /* 1545 * Writes the user supplied payload out to a trace file. 1546 */ 1547 static void user_event_ftrace(struct user_event *user, struct iov_iter *i, 1548 void *tpdata, bool *faulted) 1549 { 1550 struct trace_event_file *file; 1551 struct trace_entry *entry; 1552 struct trace_event_buffer event_buffer; 1553 size_t size = sizeof(*entry) + i->count; 1554 1555 file = (struct trace_event_file *)tpdata; 1556 1557 if (!file || 1558 !(file->flags & EVENT_FILE_FL_ENABLED) || 1559 trace_trigger_soft_disabled(file)) 1560 return; 1561 1562 /* Allocates and fills trace_entry, + 1 of this is data payload */ 1563 entry = trace_event_buffer_reserve(&event_buffer, file, size); 1564 1565 if (unlikely(!entry)) 1566 return; 1567 1568 if (unlikely(i->count != 0 && !copy_nofault(entry + 1, i->count, i))) 1569 goto discard; 1570 1571 if (!list_empty(&user->validators) && 1572 unlikely(user_event_validate(user, entry, size))) 1573 goto discard; 1574 1575 trace_event_buffer_commit(&event_buffer); 1576 1577 return; 1578 discard: 1579 *faulted = true; 1580 __trace_event_discard_commit(event_buffer.buffer, 1581 event_buffer.event); 1582 } 1583 1584 #ifdef CONFIG_PERF_EVENTS 1585 /* 1586 * Writes the user supplied payload out to perf ring buffer. 1587 */ 1588 static void user_event_perf(struct user_event *user, struct iov_iter *i, 1589 void *tpdata, bool *faulted) 1590 { 1591 struct hlist_head *perf_head; 1592 1593 perf_head = this_cpu_ptr(user->call.perf_events); 1594 1595 if (perf_head && !hlist_empty(perf_head)) { 1596 struct trace_entry *perf_entry; 1597 struct pt_regs *regs; 1598 size_t size = sizeof(*perf_entry) + i->count; 1599 int context; 1600 1601 perf_entry = perf_trace_buf_alloc(ALIGN(size, 8), 1602 ®s, &context); 1603 1604 if (unlikely(!perf_entry)) 1605 return; 1606 1607 perf_fetch_caller_regs(regs); 1608 1609 if (unlikely(i->count != 0 && !copy_nofault(perf_entry + 1, i->count, i))) 1610 goto discard; 1611 1612 if (!list_empty(&user->validators) && 1613 unlikely(user_event_validate(user, perf_entry, size))) 1614 goto discard; 1615 1616 perf_trace_buf_submit(perf_entry, size, context, 1617 user->call.event.type, 1, regs, 1618 perf_head, NULL); 1619 1620 return; 1621 discard: 1622 *faulted = true; 1623 perf_swevent_put_recursion_context(context); 1624 } 1625 } 1626 #endif 1627 1628 /* 1629 * Update the enabled bit among all user processes. 1630 */ 1631 static void update_enable_bit_for(struct user_event *user) 1632 { 1633 struct tracepoint *tp = &user->tracepoint; 1634 char status = 0; 1635 1636 if (atomic_read(&tp->key.enabled) > 0) { 1637 struct tracepoint_func *probe_func_ptr; 1638 user_event_func_t probe_func; 1639 1640 rcu_read_lock_sched(); 1641 1642 probe_func_ptr = rcu_dereference_sched(tp->funcs); 1643 1644 if (probe_func_ptr) { 1645 do { 1646 probe_func = probe_func_ptr->func; 1647 1648 if (probe_func == user_event_ftrace) 1649 status |= EVENT_STATUS_FTRACE; 1650 #ifdef CONFIG_PERF_EVENTS 1651 else if (probe_func == user_event_perf) 1652 status |= EVENT_STATUS_PERF; 1653 #endif 1654 else 1655 status |= EVENT_STATUS_OTHER; 1656 } while ((++probe_func_ptr)->func); 1657 } 1658 1659 rcu_read_unlock_sched(); 1660 } 1661 1662 user->status = status; 1663 1664 user_event_enabler_update(user); 1665 } 1666 1667 /* 1668 * Register callback for our events from tracing sub-systems. 1669 */ 1670 static int user_event_reg(struct trace_event_call *call, 1671 enum trace_reg type, 1672 void *data) 1673 { 1674 struct user_event *user = (struct user_event *)call->data; 1675 int ret = 0; 1676 1677 if (!user) 1678 return -ENOENT; 1679 1680 switch (type) { 1681 case TRACE_REG_REGISTER: 1682 ret = tracepoint_probe_register(call->tp, 1683 call->class->probe, 1684 data); 1685 if (!ret) 1686 goto inc; 1687 break; 1688 1689 case TRACE_REG_UNREGISTER: 1690 tracepoint_probe_unregister(call->tp, 1691 call->class->probe, 1692 data); 1693 goto dec; 1694 1695 #ifdef CONFIG_PERF_EVENTS 1696 case TRACE_REG_PERF_REGISTER: 1697 ret = tracepoint_probe_register(call->tp, 1698 call->class->perf_probe, 1699 data); 1700 if (!ret) 1701 goto inc; 1702 break; 1703 1704 case TRACE_REG_PERF_UNREGISTER: 1705 tracepoint_probe_unregister(call->tp, 1706 call->class->perf_probe, 1707 data); 1708 goto dec; 1709 1710 case TRACE_REG_PERF_OPEN: 1711 case TRACE_REG_PERF_CLOSE: 1712 case TRACE_REG_PERF_ADD: 1713 case TRACE_REG_PERF_DEL: 1714 break; 1715 #endif 1716 } 1717 1718 return ret; 1719 inc: 1720 user_event_get(user); 1721 update_enable_bit_for(user); 1722 return 0; 1723 dec: 1724 update_enable_bit_for(user); 1725 user_event_put(user, true); 1726 return 0; 1727 } 1728 1729 static int user_event_create(const char *raw_command) 1730 { 1731 struct user_event_group *group; 1732 struct user_event *user; 1733 char *name; 1734 int ret; 1735 1736 if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX)) 1737 return -ECANCELED; 1738 1739 raw_command += USER_EVENTS_PREFIX_LEN; 1740 raw_command = skip_spaces(raw_command); 1741 1742 name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT); 1743 1744 if (!name) 1745 return -ENOMEM; 1746 1747 group = current_user_event_group(); 1748 1749 if (!group) { 1750 kfree(name); 1751 return -ENOENT; 1752 } 1753 1754 mutex_lock(&group->reg_mutex); 1755 1756 /* Dyn events persist, otherwise they would cleanup immediately */ 1757 ret = user_event_parse_cmd(group, name, &user, USER_EVENT_REG_PERSIST); 1758 1759 if (!ret) 1760 user_event_put(user, false); 1761 1762 mutex_unlock(&group->reg_mutex); 1763 1764 if (ret) 1765 kfree(name); 1766 1767 return ret; 1768 } 1769 1770 static int user_event_show(struct seq_file *m, struct dyn_event *ev) 1771 { 1772 struct user_event *user = container_of(ev, struct user_event, devent); 1773 struct ftrace_event_field *field; 1774 struct list_head *head; 1775 int depth = 0; 1776 1777 seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user)); 1778 1779 head = trace_get_fields(&user->call); 1780 1781 list_for_each_entry_reverse(field, head, link) { 1782 if (depth == 0) 1783 seq_puts(m, " "); 1784 else 1785 seq_puts(m, "; "); 1786 1787 seq_printf(m, "%s %s", field->type, field->name); 1788 1789 if (str_has_prefix(field->type, "struct ")) 1790 seq_printf(m, " %d", field->size); 1791 1792 depth++; 1793 } 1794 1795 seq_puts(m, "\n"); 1796 1797 return 0; 1798 } 1799 1800 static bool user_event_is_busy(struct dyn_event *ev) 1801 { 1802 struct user_event *user = container_of(ev, struct user_event, devent); 1803 1804 return !user_event_last_ref(user); 1805 } 1806 1807 static int user_event_free(struct dyn_event *ev) 1808 { 1809 struct user_event *user = container_of(ev, struct user_event, devent); 1810 1811 if (!user_event_last_ref(user)) 1812 return -EBUSY; 1813 1814 return destroy_user_event(user); 1815 } 1816 1817 static bool user_field_match(struct ftrace_event_field *field, int argc, 1818 const char **argv, int *iout) 1819 { 1820 char *field_name = NULL, *dyn_field_name = NULL; 1821 bool colon = false, match = false; 1822 int dyn_len, len; 1823 1824 if (*iout >= argc) 1825 return false; 1826 1827 dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name, 1828 0, &colon); 1829 1830 len = user_field_set_string(field, field_name, 0, colon); 1831 1832 if (dyn_len != len) 1833 return false; 1834 1835 dyn_field_name = kmalloc(dyn_len, GFP_KERNEL); 1836 field_name = kmalloc(len, GFP_KERNEL); 1837 1838 if (!dyn_field_name || !field_name) 1839 goto out; 1840 1841 user_dyn_field_set_string(argc, argv, iout, dyn_field_name, 1842 dyn_len, &colon); 1843 1844 user_field_set_string(field, field_name, len, colon); 1845 1846 match = strcmp(dyn_field_name, field_name) == 0; 1847 out: 1848 kfree(dyn_field_name); 1849 kfree(field_name); 1850 1851 return match; 1852 } 1853 1854 static bool user_fields_match(struct user_event *user, int argc, 1855 const char **argv) 1856 { 1857 struct ftrace_event_field *field; 1858 struct list_head *head = &user->fields; 1859 int i = 0; 1860 1861 list_for_each_entry_reverse(field, head, link) { 1862 if (!user_field_match(field, argc, argv, &i)) 1863 return false; 1864 } 1865 1866 if (i != argc) 1867 return false; 1868 1869 return true; 1870 } 1871 1872 static bool user_event_match(const char *system, const char *event, 1873 int argc, const char **argv, struct dyn_event *ev) 1874 { 1875 struct user_event *user = container_of(ev, struct user_event, devent); 1876 bool match; 1877 1878 match = strcmp(EVENT_NAME(user), event) == 0 && 1879 (!system || strcmp(system, USER_EVENTS_SYSTEM) == 0); 1880 1881 if (match && argc > 0) 1882 match = user_fields_match(user, argc, argv); 1883 else if (match && argc == 0) 1884 match = list_empty(&user->fields); 1885 1886 return match; 1887 } 1888 1889 static struct dyn_event_operations user_event_dops = { 1890 .create = user_event_create, 1891 .show = user_event_show, 1892 .is_busy = user_event_is_busy, 1893 .free = user_event_free, 1894 .match = user_event_match, 1895 }; 1896 1897 static int user_event_trace_register(struct user_event *user) 1898 { 1899 int ret; 1900 1901 ret = register_trace_event(&user->call.event); 1902 1903 if (!ret) 1904 return -ENODEV; 1905 1906 ret = user_event_set_call_visible(user, true); 1907 1908 if (ret) 1909 unregister_trace_event(&user->call.event); 1910 1911 return ret; 1912 } 1913 1914 /* 1915 * Parses the event name, arguments and flags then registers if successful. 1916 * The name buffer lifetime is owned by this method for success cases only. 1917 * Upon success the returned user_event has its ref count increased by 1. 1918 */ 1919 static int user_event_parse(struct user_event_group *group, char *name, 1920 char *args, char *flags, 1921 struct user_event **newuser, int reg_flags) 1922 { 1923 int ret; 1924 u32 key; 1925 struct user_event *user; 1926 int argc = 0; 1927 char **argv; 1928 1929 /* User register flags are not ready yet */ 1930 if (reg_flags != 0 || flags != NULL) 1931 return -EINVAL; 1932 1933 /* Prevent dyn_event from racing */ 1934 mutex_lock(&event_mutex); 1935 user = find_user_event(group, name, &key); 1936 mutex_unlock(&event_mutex); 1937 1938 if (user) { 1939 if (args) { 1940 argv = argv_split(GFP_KERNEL, args, &argc); 1941 if (!argv) { 1942 ret = -ENOMEM; 1943 goto error; 1944 } 1945 1946 ret = user_fields_match(user, argc, (const char **)argv); 1947 argv_free(argv); 1948 1949 } else 1950 ret = list_empty(&user->fields); 1951 1952 if (ret) { 1953 *newuser = user; 1954 /* 1955 * Name is allocated by caller, free it since it already exists. 1956 * Caller only worries about failure cases for freeing. 1957 */ 1958 kfree(name); 1959 } else { 1960 ret = -EADDRINUSE; 1961 goto error; 1962 } 1963 1964 return 0; 1965 error: 1966 user_event_put(user, false); 1967 return ret; 1968 } 1969 1970 user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT); 1971 1972 if (!user) 1973 return -ENOMEM; 1974 1975 INIT_LIST_HEAD(&user->class.fields); 1976 INIT_LIST_HEAD(&user->fields); 1977 INIT_LIST_HEAD(&user->validators); 1978 1979 user->group = group; 1980 user->tracepoint.name = name; 1981 1982 ret = user_event_parse_fields(user, args); 1983 1984 if (ret) 1985 goto put_user; 1986 1987 ret = user_event_create_print_fmt(user); 1988 1989 if (ret) 1990 goto put_user; 1991 1992 user->call.data = user; 1993 user->call.class = &user->class; 1994 user->call.name = name; 1995 user->call.flags = TRACE_EVENT_FL_TRACEPOINT; 1996 user->call.tp = &user->tracepoint; 1997 user->call.event.funcs = &user_event_funcs; 1998 user->class.system = group->system_name; 1999 2000 user->class.fields_array = user_event_fields_array; 2001 user->class.get_fields = user_event_get_fields; 2002 user->class.reg = user_event_reg; 2003 user->class.probe = user_event_ftrace; 2004 #ifdef CONFIG_PERF_EVENTS 2005 user->class.perf_probe = user_event_perf; 2006 #endif 2007 2008 mutex_lock(&event_mutex); 2009 2010 if (current_user_events >= max_user_events) { 2011 ret = -EMFILE; 2012 goto put_user_lock; 2013 } 2014 2015 ret = user_event_trace_register(user); 2016 2017 if (ret) 2018 goto put_user_lock; 2019 2020 user->reg_flags = reg_flags; 2021 2022 if (user->reg_flags & USER_EVENT_REG_PERSIST) { 2023 /* Ensure we track self ref and caller ref (2) */ 2024 refcount_set(&user->refcnt, 2); 2025 } else { 2026 /* Ensure we track only caller ref (1) */ 2027 refcount_set(&user->refcnt, 1); 2028 } 2029 2030 dyn_event_init(&user->devent, &user_event_dops); 2031 dyn_event_add(&user->devent, &user->call); 2032 hash_add(group->register_table, &user->node, key); 2033 current_user_events++; 2034 2035 mutex_unlock(&event_mutex); 2036 2037 *newuser = user; 2038 return 0; 2039 put_user_lock: 2040 mutex_unlock(&event_mutex); 2041 put_user: 2042 user_event_destroy_fields(user); 2043 user_event_destroy_validators(user); 2044 kfree(user->call.print_fmt); 2045 kfree(user); 2046 return ret; 2047 } 2048 2049 /* 2050 * Deletes a previously created event if it is no longer being used. 2051 */ 2052 static int delete_user_event(struct user_event_group *group, char *name) 2053 { 2054 u32 key; 2055 struct user_event *user = find_user_event(group, name, &key); 2056 2057 if (!user) 2058 return -ENOENT; 2059 2060 user_event_put(user, true); 2061 2062 if (!user_event_last_ref(user)) 2063 return -EBUSY; 2064 2065 return destroy_user_event(user); 2066 } 2067 2068 /* 2069 * Validates the user payload and writes via iterator. 2070 */ 2071 static ssize_t user_events_write_core(struct file *file, struct iov_iter *i) 2072 { 2073 struct user_event_file_info *info = file->private_data; 2074 struct user_event_refs *refs; 2075 struct user_event *user = NULL; 2076 struct tracepoint *tp; 2077 ssize_t ret = i->count; 2078 int idx; 2079 2080 if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx))) 2081 return -EFAULT; 2082 2083 if (idx < 0) 2084 return -EINVAL; 2085 2086 rcu_read_lock_sched(); 2087 2088 refs = rcu_dereference_sched(info->refs); 2089 2090 /* 2091 * The refs->events array is protected by RCU, and new items may be 2092 * added. But the user retrieved from indexing into the events array 2093 * shall be immutable while the file is opened. 2094 */ 2095 if (likely(refs && idx < refs->count)) 2096 user = refs->events[idx]; 2097 2098 rcu_read_unlock_sched(); 2099 2100 if (unlikely(user == NULL)) 2101 return -ENOENT; 2102 2103 if (unlikely(i->count < user->min_size)) 2104 return -EINVAL; 2105 2106 tp = &user->tracepoint; 2107 2108 /* 2109 * It's possible key.enabled disables after this check, however 2110 * we don't mind if a few events are included in this condition. 2111 */ 2112 if (likely(atomic_read(&tp->key.enabled) > 0)) { 2113 struct tracepoint_func *probe_func_ptr; 2114 user_event_func_t probe_func; 2115 struct iov_iter copy; 2116 void *tpdata; 2117 bool faulted; 2118 2119 if (unlikely(fault_in_iov_iter_readable(i, i->count))) 2120 return -EFAULT; 2121 2122 faulted = false; 2123 2124 rcu_read_lock_sched(); 2125 2126 probe_func_ptr = rcu_dereference_sched(tp->funcs); 2127 2128 if (probe_func_ptr) { 2129 do { 2130 copy = *i; 2131 probe_func = probe_func_ptr->func; 2132 tpdata = probe_func_ptr->data; 2133 probe_func(user, ©, tpdata, &faulted); 2134 } while ((++probe_func_ptr)->func); 2135 } 2136 2137 rcu_read_unlock_sched(); 2138 2139 if (unlikely(faulted)) 2140 return -EFAULT; 2141 } else 2142 return -EBADF; 2143 2144 return ret; 2145 } 2146 2147 static int user_events_open(struct inode *node, struct file *file) 2148 { 2149 struct user_event_group *group; 2150 struct user_event_file_info *info; 2151 2152 group = current_user_event_group(); 2153 2154 if (!group) 2155 return -ENOENT; 2156 2157 info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT); 2158 2159 if (!info) 2160 return -ENOMEM; 2161 2162 info->group = group; 2163 2164 file->private_data = info; 2165 2166 return 0; 2167 } 2168 2169 static ssize_t user_events_write(struct file *file, const char __user *ubuf, 2170 size_t count, loff_t *ppos) 2171 { 2172 struct iovec iov; 2173 struct iov_iter i; 2174 2175 if (unlikely(*ppos != 0)) 2176 return -EFAULT; 2177 2178 if (unlikely(import_single_range(ITER_SOURCE, (char __user *)ubuf, 2179 count, &iov, &i))) 2180 return -EFAULT; 2181 2182 return user_events_write_core(file, &i); 2183 } 2184 2185 static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i) 2186 { 2187 return user_events_write_core(kp->ki_filp, i); 2188 } 2189 2190 static int user_events_ref_add(struct user_event_file_info *info, 2191 struct user_event *user) 2192 { 2193 struct user_event_group *group = info->group; 2194 struct user_event_refs *refs, *new_refs; 2195 int i, size, count = 0; 2196 2197 refs = rcu_dereference_protected(info->refs, 2198 lockdep_is_held(&group->reg_mutex)); 2199 2200 if (refs) { 2201 count = refs->count; 2202 2203 for (i = 0; i < count; ++i) 2204 if (refs->events[i] == user) 2205 return i; 2206 } 2207 2208 size = struct_size(refs, events, count + 1); 2209 2210 new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT); 2211 2212 if (!new_refs) 2213 return -ENOMEM; 2214 2215 new_refs->count = count + 1; 2216 2217 for (i = 0; i < count; ++i) 2218 new_refs->events[i] = refs->events[i]; 2219 2220 new_refs->events[i] = user_event_get(user); 2221 2222 rcu_assign_pointer(info->refs, new_refs); 2223 2224 if (refs) 2225 kfree_rcu(refs, rcu); 2226 2227 return i; 2228 } 2229 2230 static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg) 2231 { 2232 u32 size; 2233 long ret; 2234 2235 ret = get_user(size, &ureg->size); 2236 2237 if (ret) 2238 return ret; 2239 2240 if (size > PAGE_SIZE) 2241 return -E2BIG; 2242 2243 if (size < offsetofend(struct user_reg, write_index)) 2244 return -EINVAL; 2245 2246 ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size); 2247 2248 if (ret) 2249 return ret; 2250 2251 /* Ensure only valid flags */ 2252 if (kreg->flags & ~(USER_EVENT_REG_MAX-1)) 2253 return -EINVAL; 2254 2255 /* Ensure supported size */ 2256 switch (kreg->enable_size) { 2257 case 4: 2258 /* 32-bit */ 2259 break; 2260 #if BITS_PER_LONG >= 64 2261 case 8: 2262 /* 64-bit */ 2263 break; 2264 #endif 2265 default: 2266 return -EINVAL; 2267 } 2268 2269 /* Ensure natural alignment */ 2270 if (kreg->enable_addr % kreg->enable_size) 2271 return -EINVAL; 2272 2273 /* Ensure bit range for size */ 2274 if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1) 2275 return -EINVAL; 2276 2277 /* Ensure accessible */ 2278 if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr, 2279 kreg->enable_size)) 2280 return -EFAULT; 2281 2282 kreg->size = size; 2283 2284 return 0; 2285 } 2286 2287 /* 2288 * Registers a user_event on behalf of a user process. 2289 */ 2290 static long user_events_ioctl_reg(struct user_event_file_info *info, 2291 unsigned long uarg) 2292 { 2293 struct user_reg __user *ureg = (struct user_reg __user *)uarg; 2294 struct user_reg reg; 2295 struct user_event *user; 2296 struct user_event_enabler *enabler; 2297 char *name; 2298 long ret; 2299 int write_result; 2300 2301 ret = user_reg_get(ureg, ®); 2302 2303 if (ret) 2304 return ret; 2305 2306 /* 2307 * Prevent users from using the same address and bit multiple times 2308 * within the same mm address space. This can cause unexpected behavior 2309 * for user processes that is far easier to debug if this is explictly 2310 * an error upon registering. 2311 */ 2312 if (current_user_event_enabler_exists((unsigned long)reg.enable_addr, 2313 reg.enable_bit)) 2314 return -EADDRINUSE; 2315 2316 name = strndup_user((const char __user *)(uintptr_t)reg.name_args, 2317 MAX_EVENT_DESC); 2318 2319 if (IS_ERR(name)) { 2320 ret = PTR_ERR(name); 2321 return ret; 2322 } 2323 2324 ret = user_event_parse_cmd(info->group, name, &user, reg.flags); 2325 2326 if (ret) { 2327 kfree(name); 2328 return ret; 2329 } 2330 2331 ret = user_events_ref_add(info, user); 2332 2333 /* No longer need parse ref, ref_add either worked or not */ 2334 user_event_put(user, false); 2335 2336 /* Positive number is index and valid */ 2337 if (ret < 0) 2338 return ret; 2339 2340 /* 2341 * user_events_ref_add succeeded: 2342 * At this point we have a user_event, it's lifetime is bound by the 2343 * reference count, not this file. If anything fails, the user_event 2344 * still has a reference until the file is released. During release 2345 * any remaining references (from user_events_ref_add) are decremented. 2346 * 2347 * Attempt to create an enabler, which too has a lifetime tied in the 2348 * same way for the event. Once the task that caused the enabler to be 2349 * created exits or issues exec() then the enablers it has created 2350 * will be destroyed and the ref to the event will be decremented. 2351 */ 2352 enabler = user_event_enabler_create(®, user, &write_result); 2353 2354 if (!enabler) 2355 return -ENOMEM; 2356 2357 /* Write failed/faulted, give error back to caller */ 2358 if (write_result) 2359 return write_result; 2360 2361 put_user((u32)ret, &ureg->write_index); 2362 2363 return 0; 2364 } 2365 2366 /* 2367 * Deletes a user_event on behalf of a user process. 2368 */ 2369 static long user_events_ioctl_del(struct user_event_file_info *info, 2370 unsigned long uarg) 2371 { 2372 void __user *ubuf = (void __user *)uarg; 2373 char *name; 2374 long ret; 2375 2376 name = strndup_user(ubuf, MAX_EVENT_DESC); 2377 2378 if (IS_ERR(name)) 2379 return PTR_ERR(name); 2380 2381 /* event_mutex prevents dyn_event from racing */ 2382 mutex_lock(&event_mutex); 2383 ret = delete_user_event(info->group, name); 2384 mutex_unlock(&event_mutex); 2385 2386 kfree(name); 2387 2388 return ret; 2389 } 2390 2391 static long user_unreg_get(struct user_unreg __user *ureg, 2392 struct user_unreg *kreg) 2393 { 2394 u32 size; 2395 long ret; 2396 2397 ret = get_user(size, &ureg->size); 2398 2399 if (ret) 2400 return ret; 2401 2402 if (size > PAGE_SIZE) 2403 return -E2BIG; 2404 2405 if (size < offsetofend(struct user_unreg, disable_addr)) 2406 return -EINVAL; 2407 2408 ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size); 2409 2410 /* Ensure no reserved values, since we don't support any yet */ 2411 if (kreg->__reserved || kreg->__reserved2) 2412 return -EINVAL; 2413 2414 return ret; 2415 } 2416 2417 static int user_event_mm_clear_bit(struct user_event_mm *user_mm, 2418 unsigned long uaddr, unsigned char bit, 2419 unsigned long flags) 2420 { 2421 struct user_event_enabler enabler; 2422 int result; 2423 int attempt = 0; 2424 2425 memset(&enabler, 0, sizeof(enabler)); 2426 enabler.addr = uaddr; 2427 enabler.values = bit | flags; 2428 retry: 2429 /* Prevents state changes from racing with new enablers */ 2430 mutex_lock(&event_mutex); 2431 2432 /* Force the bit to be cleared, since no event is attached */ 2433 mmap_read_lock(user_mm->mm); 2434 result = user_event_enabler_write(user_mm, &enabler, false, &attempt); 2435 mmap_read_unlock(user_mm->mm); 2436 2437 mutex_unlock(&event_mutex); 2438 2439 if (result) { 2440 /* Attempt to fault-in and retry if it worked */ 2441 if (!user_event_mm_fault_in(user_mm, uaddr, attempt)) 2442 goto retry; 2443 } 2444 2445 return result; 2446 } 2447 2448 /* 2449 * Unregisters an enablement address/bit within a task/user mm. 2450 */ 2451 static long user_events_ioctl_unreg(unsigned long uarg) 2452 { 2453 struct user_unreg __user *ureg = (struct user_unreg __user *)uarg; 2454 struct user_event_mm *mm = current->user_event_mm; 2455 struct user_event_enabler *enabler, *next; 2456 struct user_unreg reg; 2457 unsigned long flags; 2458 long ret; 2459 2460 ret = user_unreg_get(ureg, ®); 2461 2462 if (ret) 2463 return ret; 2464 2465 if (!mm) 2466 return -ENOENT; 2467 2468 flags = 0; 2469 ret = -ENOENT; 2470 2471 /* 2472 * Flags freeing and faulting are used to indicate if the enabler is in 2473 * use at all. When faulting is set a page-fault is occurring asyncly. 2474 * During async fault if freeing is set, the enabler will be destroyed. 2475 * If no async fault is happening, we can destroy it now since we hold 2476 * the event_mutex during these checks. 2477 */ 2478 mutex_lock(&event_mutex); 2479 2480 list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) { 2481 if (enabler->addr == reg.disable_addr && 2482 ENABLE_BIT(enabler) == reg.disable_bit) { 2483 set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler)); 2484 2485 /* We must keep compat flags for the clear */ 2486 flags |= enabler->values & ENABLE_VAL_COMPAT_MASK; 2487 2488 if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler))) 2489 user_event_enabler_destroy(enabler, true); 2490 2491 /* Removed at least one */ 2492 ret = 0; 2493 } 2494 } 2495 2496 mutex_unlock(&event_mutex); 2497 2498 /* Ensure bit is now cleared for user, regardless of event status */ 2499 if (!ret) 2500 ret = user_event_mm_clear_bit(mm, reg.disable_addr, 2501 reg.disable_bit, flags); 2502 2503 return ret; 2504 } 2505 2506 /* 2507 * Handles the ioctl from user mode to register or alter operations. 2508 */ 2509 static long user_events_ioctl(struct file *file, unsigned int cmd, 2510 unsigned long uarg) 2511 { 2512 struct user_event_file_info *info = file->private_data; 2513 struct user_event_group *group = info->group; 2514 long ret = -ENOTTY; 2515 2516 switch (cmd) { 2517 case DIAG_IOCSREG: 2518 mutex_lock(&group->reg_mutex); 2519 ret = user_events_ioctl_reg(info, uarg); 2520 mutex_unlock(&group->reg_mutex); 2521 break; 2522 2523 case DIAG_IOCSDEL: 2524 mutex_lock(&group->reg_mutex); 2525 ret = user_events_ioctl_del(info, uarg); 2526 mutex_unlock(&group->reg_mutex); 2527 break; 2528 2529 case DIAG_IOCSUNREG: 2530 mutex_lock(&group->reg_mutex); 2531 ret = user_events_ioctl_unreg(uarg); 2532 mutex_unlock(&group->reg_mutex); 2533 break; 2534 } 2535 2536 return ret; 2537 } 2538 2539 /* 2540 * Handles the final close of the file from user mode. 2541 */ 2542 static int user_events_release(struct inode *node, struct file *file) 2543 { 2544 struct user_event_file_info *info = file->private_data; 2545 struct user_event_group *group; 2546 struct user_event_refs *refs; 2547 int i; 2548 2549 if (!info) 2550 return -EINVAL; 2551 2552 group = info->group; 2553 2554 /* 2555 * Ensure refs cannot change under any situation by taking the 2556 * register mutex during the final freeing of the references. 2557 */ 2558 mutex_lock(&group->reg_mutex); 2559 2560 refs = info->refs; 2561 2562 if (!refs) 2563 goto out; 2564 2565 /* 2566 * The lifetime of refs has reached an end, it's tied to this file. 2567 * The underlying user_events are ref counted, and cannot be freed. 2568 * After this decrement, the user_events may be freed elsewhere. 2569 */ 2570 for (i = 0; i < refs->count; ++i) 2571 user_event_put(refs->events[i], false); 2572 2573 out: 2574 file->private_data = NULL; 2575 2576 mutex_unlock(&group->reg_mutex); 2577 2578 kfree(refs); 2579 kfree(info); 2580 2581 return 0; 2582 } 2583 2584 static const struct file_operations user_data_fops = { 2585 .open = user_events_open, 2586 .write = user_events_write, 2587 .write_iter = user_events_write_iter, 2588 .unlocked_ioctl = user_events_ioctl, 2589 .release = user_events_release, 2590 }; 2591 2592 static void *user_seq_start(struct seq_file *m, loff_t *pos) 2593 { 2594 if (*pos) 2595 return NULL; 2596 2597 return (void *)1; 2598 } 2599 2600 static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos) 2601 { 2602 ++*pos; 2603 return NULL; 2604 } 2605 2606 static void user_seq_stop(struct seq_file *m, void *p) 2607 { 2608 } 2609 2610 static int user_seq_show(struct seq_file *m, void *p) 2611 { 2612 struct user_event_group *group = m->private; 2613 struct user_event *user; 2614 char status; 2615 int i, active = 0, busy = 0; 2616 2617 if (!group) 2618 return -EINVAL; 2619 2620 mutex_lock(&group->reg_mutex); 2621 2622 hash_for_each(group->register_table, i, user, node) { 2623 status = user->status; 2624 2625 seq_printf(m, "%s", EVENT_NAME(user)); 2626 2627 if (status != 0) 2628 seq_puts(m, " #"); 2629 2630 if (status != 0) { 2631 seq_puts(m, " Used by"); 2632 if (status & EVENT_STATUS_FTRACE) 2633 seq_puts(m, " ftrace"); 2634 if (status & EVENT_STATUS_PERF) 2635 seq_puts(m, " perf"); 2636 if (status & EVENT_STATUS_OTHER) 2637 seq_puts(m, " other"); 2638 busy++; 2639 } 2640 2641 seq_puts(m, "\n"); 2642 active++; 2643 } 2644 2645 mutex_unlock(&group->reg_mutex); 2646 2647 seq_puts(m, "\n"); 2648 seq_printf(m, "Active: %d\n", active); 2649 seq_printf(m, "Busy: %d\n", busy); 2650 2651 return 0; 2652 } 2653 2654 static const struct seq_operations user_seq_ops = { 2655 .start = user_seq_start, 2656 .next = user_seq_next, 2657 .stop = user_seq_stop, 2658 .show = user_seq_show, 2659 }; 2660 2661 static int user_status_open(struct inode *node, struct file *file) 2662 { 2663 struct user_event_group *group; 2664 int ret; 2665 2666 group = current_user_event_group(); 2667 2668 if (!group) 2669 return -ENOENT; 2670 2671 ret = seq_open(file, &user_seq_ops); 2672 2673 if (!ret) { 2674 /* Chain group to seq_file */ 2675 struct seq_file *m = file->private_data; 2676 2677 m->private = group; 2678 } 2679 2680 return ret; 2681 } 2682 2683 static const struct file_operations user_status_fops = { 2684 .open = user_status_open, 2685 .read = seq_read, 2686 .llseek = seq_lseek, 2687 .release = seq_release, 2688 }; 2689 2690 /* 2691 * Creates a set of tracefs files to allow user mode interactions. 2692 */ 2693 static int create_user_tracefs(void) 2694 { 2695 struct dentry *edata, *emmap; 2696 2697 edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE, 2698 NULL, NULL, &user_data_fops); 2699 2700 if (!edata) { 2701 pr_warn("Could not create tracefs 'user_events_data' entry\n"); 2702 goto err; 2703 } 2704 2705 emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ, 2706 NULL, NULL, &user_status_fops); 2707 2708 if (!emmap) { 2709 tracefs_remove(edata); 2710 pr_warn("Could not create tracefs 'user_events_mmap' entry\n"); 2711 goto err; 2712 } 2713 2714 return 0; 2715 err: 2716 return -ENODEV; 2717 } 2718 2719 static int set_max_user_events_sysctl(struct ctl_table *table, int write, 2720 void *buffer, size_t *lenp, loff_t *ppos) 2721 { 2722 int ret; 2723 2724 mutex_lock(&event_mutex); 2725 2726 ret = proc_douintvec(table, write, buffer, lenp, ppos); 2727 2728 mutex_unlock(&event_mutex); 2729 2730 return ret; 2731 } 2732 2733 static struct ctl_table user_event_sysctls[] = { 2734 { 2735 .procname = "user_events_max", 2736 .data = &max_user_events, 2737 .maxlen = sizeof(unsigned int), 2738 .mode = 0644, 2739 .proc_handler = set_max_user_events_sysctl, 2740 }, 2741 {} 2742 }; 2743 2744 static int __init trace_events_user_init(void) 2745 { 2746 int ret; 2747 2748 fault_cache = KMEM_CACHE(user_event_enabler_fault, 0); 2749 2750 if (!fault_cache) 2751 return -ENOMEM; 2752 2753 init_group = user_event_group_create(); 2754 2755 if (!init_group) { 2756 kmem_cache_destroy(fault_cache); 2757 return -ENOMEM; 2758 } 2759 2760 ret = create_user_tracefs(); 2761 2762 if (ret) { 2763 pr_warn("user_events could not register with tracefs\n"); 2764 user_event_group_destroy(init_group); 2765 kmem_cache_destroy(fault_cache); 2766 init_group = NULL; 2767 return ret; 2768 } 2769 2770 if (dyn_event_register(&user_event_dops)) 2771 pr_warn("user_events could not register with dyn_events\n"); 2772 2773 register_sysctl_init("kernel", user_event_sysctls); 2774 2775 return 0; 2776 } 2777 2778 fs_initcall(trace_events_user_init); 2779