1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * trace_events_filter - generic event filtering
4  *
5  * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
6  */
7 
8 #include <linux/uaccess.h>
9 #include <linux/module.h>
10 #include <linux/ctype.h>
11 #include <linux/mutex.h>
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14 
15 #include "trace.h"
16 #include "trace_output.h"
17 
18 #define DEFAULT_SYS_FILTER_MESSAGE					\
19 	"### global filter ###\n"					\
20 	"# Use this to set filters for multiple events.\n"		\
21 	"# Only events with the given fields will be affected.\n"	\
22 	"# If no events are modified, an error message will be displayed here"
23 
24 /* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
25 #define OPS					\
26 	C( OP_GLOB,	"~"  ),			\
27 	C( OP_NE,	"!=" ),			\
28 	C( OP_EQ,	"==" ),			\
29 	C( OP_LE,	"<=" ),			\
30 	C( OP_LT,	"<"  ),			\
31 	C( OP_GE,	">=" ),			\
32 	C( OP_GT,	">"  ),			\
33 	C( OP_BAND,	"&"  ),			\
34 	C( OP_MAX,	NULL )
35 
36 #undef C
37 #define C(a, b)	a
38 
39 enum filter_op_ids { OPS };
40 
41 #undef C
42 #define C(a, b)	b
43 
44 static const char * ops[] = { OPS };
45 
46 /*
47  * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
48  * pred_funcs_##type below must match the order of them above.
49  */
50 #define PRED_FUNC_START			OP_LE
51 #define PRED_FUNC_MAX			(OP_BAND - PRED_FUNC_START)
52 
53 #define ERRORS								\
54 	C(NONE,			"No error"),				\
55 	C(INVALID_OP,		"Invalid operator"),			\
56 	C(TOO_MANY_OPEN,	"Too many '('"),			\
57 	C(TOO_MANY_CLOSE,	"Too few '('"),				\
58 	C(MISSING_QUOTE,	"Missing matching quote"),		\
59 	C(OPERAND_TOO_LONG,	"Operand too long"),			\
60 	C(EXPECT_STRING,	"Expecting string field"),		\
61 	C(EXPECT_DIGIT,		"Expecting numeric field"),		\
62 	C(ILLEGAL_FIELD_OP,	"Illegal operation for field type"),	\
63 	C(FIELD_NOT_FOUND,	"Field not found"),			\
64 	C(ILLEGAL_INTVAL,	"Illegal integer value"),		\
65 	C(BAD_SUBSYS_FILTER,	"Couldn't find or set field in one of a subsystem's events"), \
66 	C(TOO_MANY_PREDS,	"Too many terms in predicate expression"), \
67 	C(INVALID_FILTER,	"Meaningless filter expression"),	\
68 	C(IP_FIELD_ONLY,	"Only 'ip' field is supported for function trace"), \
69 	C(INVALID_VALUE,	"Invalid value (did you forget quotes)?"), \
70 	C(ERRNO,		"Error"),				\
71 	C(NO_FILTER,		"No filter found")
72 
73 #undef C
74 #define C(a, b)		FILT_ERR_##a
75 
76 enum { ERRORS };
77 
78 #undef C
79 #define C(a, b)		b
80 
81 static const char *err_text[] = { ERRORS };
82 
83 /* Called after a '!' character but "!=" and "!~" are not "not"s */
84 static bool is_not(const char *str)
85 {
86 	switch (str[1]) {
87 	case '=':
88 	case '~':
89 		return false;
90 	}
91 	return true;
92 }
93 
94 /**
95  * prog_entry - a singe entry in the filter program
96  * @target:	     Index to jump to on a branch (actually one minus the index)
97  * @when_to_branch:  The value of the result of the predicate to do a branch
98  * @pred:	     The predicate to execute.
99  */
100 struct prog_entry {
101 	int			target;
102 	int			when_to_branch;
103 	struct filter_pred	*pred;
104 };
105 
106 /**
107  * update_preds- assign a program entry a label target
108  * @prog: The program array
109  * @N: The index of the current entry in @prog
110  * @when_to_branch: What to assign a program entry for its branch condition
111  *
112  * The program entry at @N has a target that points to the index of a program
113  * entry that can have its target and when_to_branch fields updated.
114  * Update the current program entry denoted by index @N target field to be
115  * that of the updated entry. This will denote the entry to update if
116  * we are processing an "||" after an "&&"
117  */
118 static void update_preds(struct prog_entry *prog, int N, int invert)
119 {
120 	int t, s;
121 
122 	t = prog[N].target;
123 	s = prog[t].target;
124 	prog[t].when_to_branch = invert;
125 	prog[t].target = N;
126 	prog[N].target = s;
127 }
128 
129 struct filter_parse_error {
130 	int lasterr;
131 	int lasterr_pos;
132 };
133 
134 static void parse_error(struct filter_parse_error *pe, int err, int pos)
135 {
136 	pe->lasterr = err;
137 	pe->lasterr_pos = pos;
138 }
139 
140 typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
141 			     struct filter_parse_error *pe,
142 			     struct filter_pred **pred);
143 
144 enum {
145 	INVERT		= 1,
146 	PROCESS_AND	= 2,
147 	PROCESS_OR	= 4,
148 };
149 
150 /*
151  * Without going into a formal proof, this explains the method that is used in
152  * parsing the logical expressions.
153  *
154  * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
155  * The first pass will convert it into the following program:
156  *
157  * n1: r=a;       l1: if (!r) goto l4;
158  * n2: r=b;       l2: if (!r) goto l4;
159  * n3: r=c; r=!r; l3: if (r) goto l4;
160  * n4: r=g; r=!r; l4: if (r) goto l5;
161  * n5: r=d;       l5: if (r) goto T
162  * n6: r=e;       l6: if (!r) goto l7;
163  * n7: r=f; r=!r; l7: if (!r) goto F
164  * T: return TRUE
165  * F: return FALSE
166  *
167  * To do this, we use a data structure to represent each of the above
168  * predicate and conditions that has:
169  *
170  *  predicate, when_to_branch, invert, target
171  *
172  * The "predicate" will hold the function to determine the result "r".
173  * The "when_to_branch" denotes what "r" should be if a branch is to be taken
174  * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
175  * The "invert" holds whether the value should be reversed before testing.
176  * The "target" contains the label "l#" to jump to.
177  *
178  * A stack is created to hold values when parentheses are used.
179  *
180  * To simplify the logic, the labels will start at 0 and not 1.
181  *
182  * The possible invert values are 1 and 0. The number of "!"s that are in scope
183  * before the predicate determines the invert value, if the number is odd then
184  * the invert value is 1 and 0 otherwise. This means the invert value only
185  * needs to be toggled when a new "!" is introduced compared to what is stored
186  * on the stack, where parentheses were used.
187  *
188  * The top of the stack and "invert" are initialized to zero.
189  *
190  * ** FIRST PASS **
191  *
192  * #1 A loop through all the tokens is done:
193  *
194  * #2 If the token is an "(", the stack is push, and the current stack value
195  *    gets the current invert value, and the loop continues to the next token.
196  *    The top of the stack saves the "invert" value to keep track of what
197  *    the current inversion is. As "!(a && !b || c)" would require all
198  *    predicates being affected separately by the "!" before the parentheses.
199  *    And that would end up being equivalent to "(!a || b) && !c"
200  *
201  * #3 If the token is an "!", the current "invert" value gets inverted, and
202  *    the loop continues. Note, if the next token is a predicate, then
203  *    this "invert" value is only valid for the current program entry,
204  *    and does not affect other predicates later on.
205  *
206  * The only other acceptable token is the predicate string.
207  *
208  * #4 A new entry into the program is added saving: the predicate and the
209  *    current value of "invert". The target is currently assigned to the
210  *    previous program index (this will not be its final value).
211  *
212  * #5 We now enter another loop and look at the next token. The only valid
213  *    tokens are ")", "&&", "||" or end of the input string "\0".
214  *
215  * #6 The invert variable is reset to the current value saved on the top of
216  *    the stack.
217  *
218  * #7 The top of the stack holds not only the current invert value, but also
219  *    if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
220  *    precedence than "||". That is "a && b || c && d" is equivalent to
221  *    "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
222  *    to be processed. This is the case if an "&&" was the last token. If it was
223  *    then we call update_preds(). This takes the program, the current index in
224  *    the program, and the current value of "invert".  More will be described
225  *    below about this function.
226  *
227  * #8 If the next token is "&&" then we set a flag in the top of the stack
228  *    that denotes that "&&" needs to be processed, break out of this loop
229  *    and continue with the outer loop.
230  *
231  * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
232  *    This is called with the program, the current index in the program, but
233  *    this time with an inverted value of "invert" (that is !invert). This is
234  *    because the value taken will become the "when_to_branch" value of the
235  *    program.
236  *    Note, this is called when the next token is not an "&&". As stated before,
237  *    "&&" takes higher precedence, and "||" should not be processed yet if the
238  *    next logical operation is "&&".
239  *
240  * #10 If the next token is "||" then we set a flag in the top of the stack
241  *     that denotes that "||" needs to be processed, break out of this loop
242  *     and continue with the outer loop.
243  *
244  * #11 If this is the end of the input string "\0" then we break out of both
245  *     loops.
246  *
247  * #12 Otherwise, the next token is ")", where we pop the stack and continue
248  *     this inner loop.
249  *
250  * Now to discuss the update_pred() function, as that is key to the setting up
251  * of the program. Remember the "target" of the program is initialized to the
252  * previous index and not the "l" label. The target holds the index into the
253  * program that gets affected by the operand. Thus if we have something like
254  *  "a || b && c", when we process "a" the target will be "-1" (undefined).
255  * When we process "b", its target is "0", which is the index of "a", as that's
256  * the predicate that is affected by "||". But because the next token after "b"
257  * is "&&" we don't call update_preds(). Instead continue to "c". As the
258  * next token after "c" is not "&&" but the end of input, we first process the
259  * "&&" by calling update_preds() for the "&&" then we process the "||" by
260  * calling updates_preds() with the values for processing "||".
261  *
262  * What does that mean? What update_preds() does is to first save the "target"
263  * of the program entry indexed by the current program entry's "target"
264  * (remember the "target" is initialized to previous program entry), and then
265  * sets that "target" to the current index which represents the label "l#".
266  * That entry's "when_to_branch" is set to the value passed in (the "invert"
267  * or "!invert"). Then it sets the current program entry's target to the saved
268  * "target" value (the old value of the program that had its "target" updated
269  * to the label).
270  *
271  * Looking back at "a || b && c", we have the following steps:
272  *  "a"  - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
273  *  "||" - flag that we need to process "||"; continue outer loop
274  *  "b"  - prog[1] = { "b", X, 0 }
275  *  "&&" - flag that we need to process "&&"; continue outer loop
276  * (Notice we did not process "||")
277  *  "c"  - prog[2] = { "c", X, 1 }
278  *  update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
279  *    t = prog[2].target; // t = 1
280  *    s = prog[t].target; // s = 0
281  *    prog[t].target = 2; // Set target to "l2"
282  *    prog[t].when_to_branch = 0;
283  *    prog[2].target = s;
284  * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
285  *    t = prog[2].target; // t = 0
286  *    s = prog[t].target; // s = -1
287  *    prog[t].target = 2; // Set target to "l2"
288  *    prog[t].when_to_branch = 1;
289  *    prog[2].target = s;
290  *
291  * #13 Which brings us to the final step of the first pass, which is to set
292  *     the last program entry's when_to_branch and target, which will be
293  *     when_to_branch = 0; target = N; ( the label after the program entry after
294  *     the last program entry processed above).
295  *
296  * If we denote "TRUE" to be the entry after the last program entry processed,
297  * and "FALSE" the program entry after that, we are now done with the first
298  * pass.
299  *
300  * Making the above "a || b && c" have a program of:
301  *  prog[0] = { "a", 1, 2 }
302  *  prog[1] = { "b", 0, 2 }
303  *  prog[2] = { "c", 0, 3 }
304  *
305  * Which translates into:
306  * n0: r = a; l0: if (r) goto l2;
307  * n1: r = b; l1: if (!r) goto l2;
308  * n2: r = c; l2: if (!r) goto l3;  // Which is the same as "goto F;"
309  * T: return TRUE; l3:
310  * F: return FALSE
311  *
312  * Although, after the first pass, the program is correct, it is
313  * inefficient. The simple sample of "a || b && c" could be easily been
314  * converted into:
315  * n0: r = a; if (r) goto T
316  * n1: r = b; if (!r) goto F
317  * n2: r = c; if (!r) goto F
318  * T: return TRUE;
319  * F: return FALSE;
320  *
321  * The First Pass is over the input string. The next too passes are over
322  * the program itself.
323  *
324  * ** SECOND PASS **
325  *
326  * Which brings us to the second pass. If a jump to a label has the
327  * same condition as that label, it can instead jump to its target.
328  * The original example of "a && !(!b || (c && g)) || d || e && !f"
329  * where the first pass gives us:
330  *
331  * n1: r=a;       l1: if (!r) goto l4;
332  * n2: r=b;       l2: if (!r) goto l4;
333  * n3: r=c; r=!r; l3: if (r) goto l4;
334  * n4: r=g; r=!r; l4: if (r) goto l5;
335  * n5: r=d;       l5: if (r) goto T
336  * n6: r=e;       l6: if (!r) goto l7;
337  * n7: r=f; r=!r; l7: if (!r) goto F:
338  * T: return TRUE;
339  * F: return FALSE
340  *
341  * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
342  * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
343  * to go directly to T. To accomplish this, we start from the last
344  * entry in the program and work our way back. If the target of the entry
345  * has the same "when_to_branch" then we could use that entry's target.
346  * Doing this, the above would end up as:
347  *
348  * n1: r=a;       l1: if (!r) goto l4;
349  * n2: r=b;       l2: if (!r) goto l4;
350  * n3: r=c; r=!r; l3: if (r) goto T;
351  * n4: r=g; r=!r; l4: if (r) goto T;
352  * n5: r=d;       l5: if (r) goto T;
353  * n6: r=e;       l6: if (!r) goto F;
354  * n7: r=f; r=!r; l7: if (!r) goto F;
355  * T: return TRUE
356  * F: return FALSE
357  *
358  * In that same pass, if the "when_to_branch" doesn't match, we can simply
359  * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
360  * where "l4: if (r) goto T;", then we can convert l2 to be:
361  * "l2: if (!r) goto n5;".
362  *
363  * This will have the second pass give us:
364  * n1: r=a;       l1: if (!r) goto n5;
365  * n2: r=b;       l2: if (!r) goto n5;
366  * n3: r=c; r=!r; l3: if (r) goto T;
367  * n4: r=g; r=!r; l4: if (r) goto T;
368  * n5: r=d;       l5: if (r) goto T
369  * n6: r=e;       l6: if (!r) goto F;
370  * n7: r=f; r=!r; l7: if (!r) goto F
371  * T: return TRUE
372  * F: return FALSE
373  *
374  * Notice, all the "l#" labels are no longer used, and they can now
375  * be discarded.
376  *
377  * ** THIRD PASS **
378  *
379  * For the third pass we deal with the inverts. As they simply just
380  * make the "when_to_branch" get inverted, a simple loop over the
381  * program to that does: "when_to_branch ^= invert;" will do the
382  * job, leaving us with:
383  * n1: r=a; if (!r) goto n5;
384  * n2: r=b; if (!r) goto n5;
385  * n3: r=c: if (!r) goto T;
386  * n4: r=g; if (!r) goto T;
387  * n5: r=d; if (r) goto T
388  * n6: r=e; if (!r) goto F;
389  * n7: r=f; if (r) goto F
390  * T: return TRUE
391  * F: return FALSE
392  *
393  * As "r = a; if (!r) goto n5;" is obviously the same as
394  * "if (!a) goto n5;" without doing anything we can interpret the
395  * program as:
396  * n1: if (!a) goto n5;
397  * n2: if (!b) goto n5;
398  * n3: if (!c) goto T;
399  * n4: if (!g) goto T;
400  * n5: if (d) goto T
401  * n6: if (!e) goto F;
402  * n7: if (f) goto F
403  * T: return TRUE
404  * F: return FALSE
405  *
406  * Since the inverts are discarded at the end, there's no reason to store
407  * them in the program array (and waste memory). A separate array to hold
408  * the inverts is used and freed at the end.
409  */
410 static struct prog_entry *
411 predicate_parse(const char *str, int nr_parens, int nr_preds,
412 		parse_pred_fn parse_pred, void *data,
413 		struct filter_parse_error *pe)
414 {
415 	struct prog_entry *prog_stack;
416 	struct prog_entry *prog;
417 	const char *ptr = str;
418 	char *inverts = NULL;
419 	int *op_stack;
420 	int *top;
421 	int invert = 0;
422 	int ret = -ENOMEM;
423 	int len;
424 	int N = 0;
425 	int i;
426 
427 	nr_preds += 2; /* For TRUE and FALSE */
428 
429 	op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
430 	if (!op_stack)
431 		return ERR_PTR(-ENOMEM);
432 	prog_stack = kcalloc(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
433 	if (!prog_stack) {
434 		parse_error(pe, -ENOMEM, 0);
435 		goto out_free;
436 	}
437 	inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
438 	if (!inverts) {
439 		parse_error(pe, -ENOMEM, 0);
440 		goto out_free;
441 	}
442 
443 	top = op_stack;
444 	prog = prog_stack;
445 	*top = 0;
446 
447 	/* First pass */
448 	while (*ptr) {						/* #1 */
449 		const char *next = ptr++;
450 
451 		if (isspace(*next))
452 			continue;
453 
454 		switch (*next) {
455 		case '(':					/* #2 */
456 			if (top - op_stack > nr_parens) {
457 				ret = -EINVAL;
458 				goto out_free;
459 			}
460 			*(++top) = invert;
461 			continue;
462 		case '!':					/* #3 */
463 			if (!is_not(next))
464 				break;
465 			invert = !invert;
466 			continue;
467 		}
468 
469 		if (N >= nr_preds) {
470 			parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
471 			goto out_free;
472 		}
473 
474 		inverts[N] = invert;				/* #4 */
475 		prog[N].target = N-1;
476 
477 		len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
478 		if (len < 0) {
479 			ret = len;
480 			goto out_free;
481 		}
482 		ptr = next + len;
483 
484 		N++;
485 
486 		ret = -1;
487 		while (1) {					/* #5 */
488 			next = ptr++;
489 			if (isspace(*next))
490 				continue;
491 
492 			switch (*next) {
493 			case ')':
494 			case '\0':
495 				break;
496 			case '&':
497 			case '|':
498 				/* accepting only "&&" or "||" */
499 				if (next[1] == next[0]) {
500 					ptr++;
501 					break;
502 				}
503 				fallthrough;
504 			default:
505 				parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
506 					    next - str);
507 				goto out_free;
508 			}
509 
510 			invert = *top & INVERT;
511 
512 			if (*top & PROCESS_AND) {		/* #7 */
513 				update_preds(prog, N - 1, invert);
514 				*top &= ~PROCESS_AND;
515 			}
516 			if (*next == '&') {			/* #8 */
517 				*top |= PROCESS_AND;
518 				break;
519 			}
520 			if (*top & PROCESS_OR) {		/* #9 */
521 				update_preds(prog, N - 1, !invert);
522 				*top &= ~PROCESS_OR;
523 			}
524 			if (*next == '|') {			/* #10 */
525 				*top |= PROCESS_OR;
526 				break;
527 			}
528 			if (!*next)				/* #11 */
529 				goto out;
530 
531 			if (top == op_stack) {
532 				ret = -1;
533 				/* Too few '(' */
534 				parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
535 				goto out_free;
536 			}
537 			top--;					/* #12 */
538 		}
539 	}
540  out:
541 	if (top != op_stack) {
542 		/* Too many '(' */
543 		parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
544 		goto out_free;
545 	}
546 
547 	if (!N) {
548 		/* No program? */
549 		ret = -EINVAL;
550 		parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
551 		goto out_free;
552 	}
553 
554 	prog[N].pred = NULL;					/* #13 */
555 	prog[N].target = 1;		/* TRUE */
556 	prog[N+1].pred = NULL;
557 	prog[N+1].target = 0;		/* FALSE */
558 	prog[N-1].target = N;
559 	prog[N-1].when_to_branch = false;
560 
561 	/* Second Pass */
562 	for (i = N-1 ; i--; ) {
563 		int target = prog[i].target;
564 		if (prog[i].when_to_branch == prog[target].when_to_branch)
565 			prog[i].target = prog[target].target;
566 	}
567 
568 	/* Third Pass */
569 	for (i = 0; i < N; i++) {
570 		invert = inverts[i] ^ prog[i].when_to_branch;
571 		prog[i].when_to_branch = invert;
572 		/* Make sure the program always moves forward */
573 		if (WARN_ON(prog[i].target <= i)) {
574 			ret = -EINVAL;
575 			goto out_free;
576 		}
577 	}
578 
579 	kfree(op_stack);
580 	kfree(inverts);
581 	return prog;
582 out_free:
583 	kfree(op_stack);
584 	kfree(inverts);
585 	if (prog_stack) {
586 		for (i = 0; prog_stack[i].pred; i++)
587 			kfree(prog_stack[i].pred);
588 		kfree(prog_stack);
589 	}
590 	return ERR_PTR(ret);
591 }
592 
593 #define DEFINE_COMPARISON_PRED(type)					\
594 static int filter_pred_LT_##type(struct filter_pred *pred, void *event)	\
595 {									\
596 	type *addr = (type *)(event + pred->offset);			\
597 	type val = (type)pred->val;					\
598 	return *addr < val;						\
599 }									\
600 static int filter_pred_LE_##type(struct filter_pred *pred, void *event)	\
601 {									\
602 	type *addr = (type *)(event + pred->offset);			\
603 	type val = (type)pred->val;					\
604 	return *addr <= val;						\
605 }									\
606 static int filter_pred_GT_##type(struct filter_pred *pred, void *event)	\
607 {									\
608 	type *addr = (type *)(event + pred->offset);			\
609 	type val = (type)pred->val;					\
610 	return *addr > val;					\
611 }									\
612 static int filter_pred_GE_##type(struct filter_pred *pred, void *event)	\
613 {									\
614 	type *addr = (type *)(event + pred->offset);			\
615 	type val = (type)pred->val;					\
616 	return *addr >= val;						\
617 }									\
618 static int filter_pred_BAND_##type(struct filter_pred *pred, void *event) \
619 {									\
620 	type *addr = (type *)(event + pred->offset);			\
621 	type val = (type)pred->val;					\
622 	return !!(*addr & val);						\
623 }									\
624 static const filter_pred_fn_t pred_funcs_##type[] = {			\
625 	filter_pred_LE_##type,						\
626 	filter_pred_LT_##type,						\
627 	filter_pred_GE_##type,						\
628 	filter_pred_GT_##type,						\
629 	filter_pred_BAND_##type,					\
630 };
631 
632 #define DEFINE_EQUALITY_PRED(size)					\
633 static int filter_pred_##size(struct filter_pred *pred, void *event)	\
634 {									\
635 	u##size *addr = (u##size *)(event + pred->offset);		\
636 	u##size val = (u##size)pred->val;				\
637 	int match;							\
638 									\
639 	match = (val == *addr) ^ pred->not;				\
640 									\
641 	return match;							\
642 }
643 
644 DEFINE_COMPARISON_PRED(s64);
645 DEFINE_COMPARISON_PRED(u64);
646 DEFINE_COMPARISON_PRED(s32);
647 DEFINE_COMPARISON_PRED(u32);
648 DEFINE_COMPARISON_PRED(s16);
649 DEFINE_COMPARISON_PRED(u16);
650 DEFINE_COMPARISON_PRED(s8);
651 DEFINE_COMPARISON_PRED(u8);
652 
653 DEFINE_EQUALITY_PRED(64);
654 DEFINE_EQUALITY_PRED(32);
655 DEFINE_EQUALITY_PRED(16);
656 DEFINE_EQUALITY_PRED(8);
657 
658 /* user space strings temp buffer */
659 #define USTRING_BUF_SIZE	1024
660 
661 struct ustring_buffer {
662 	char		buffer[USTRING_BUF_SIZE];
663 };
664 
665 static __percpu struct ustring_buffer *ustring_per_cpu;
666 
667 static __always_inline char *test_string(char *str)
668 {
669 	struct ustring_buffer *ubuf;
670 	char __user *ustr;
671 	char *kstr;
672 
673 	if (!ustring_per_cpu)
674 		return NULL;
675 
676 	ubuf = this_cpu_ptr(ustring_per_cpu);
677 	kstr = ubuf->buffer;
678 
679 	/*
680 	 * We use TASK_SIZE to denote user or kernel space, but this will
681 	 * not work for all architectures. If it picks the wrong one, it may
682 	 * just fail the filter (but will not bug).
683 	 *
684 	 * TODO: Have a way to properly denote which one this is for.
685 	 */
686 	if (likely((unsigned long)str >= TASK_SIZE)) {
687 		/* For safety, do not trust the string pointer */
688 		if (!strncpy_from_kernel_nofault(kstr, str, USTRING_BUF_SIZE))
689 			return NULL;
690 	} else {
691 		/* user space address? */
692 		ustr = (char __user *)str;
693 		if (!strncpy_from_user_nofault(kstr, ustr, USTRING_BUF_SIZE))
694 			return NULL;
695 	}
696 	return kstr;
697 }
698 
699 /* Filter predicate for fixed sized arrays of characters */
700 static int filter_pred_string(struct filter_pred *pred, void *event)
701 {
702 	char *addr = (char *)(event + pred->offset);
703 	int cmp, match;
704 
705 	cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len);
706 
707 	match = cmp ^ pred->not;
708 
709 	return match;
710 }
711 
712 /* Filter predicate for char * pointers */
713 static int filter_pred_pchar(struct filter_pred *pred, void *event)
714 {
715 	char **addr = (char **)(event + pred->offset);
716 	char *str;
717 	int cmp, match;
718 	int len;
719 
720 	str = test_string(*addr);
721 	if (!str)
722 		return 0;
723 
724 	len = strlen(str) + 1;	/* including tailing '\0' */
725 	cmp = pred->regex.match(str, &pred->regex, len);
726 
727 	match = cmp ^ pred->not;
728 
729 	return match;
730 }
731 
732 /*
733  * Filter predicate for dynamic sized arrays of characters.
734  * These are implemented through a list of strings at the end
735  * of the entry.
736  * Also each of these strings have a field in the entry which
737  * contains its offset from the beginning of the entry.
738  * We have then first to get this field, dereference it
739  * and add it to the address of the entry, and at last we have
740  * the address of the string.
741  */
742 static int filter_pred_strloc(struct filter_pred *pred, void *event)
743 {
744 	u32 str_item = *(u32 *)(event + pred->offset);
745 	int str_loc = str_item & 0xffff;
746 	int str_len = str_item >> 16;
747 	char *addr = (char *)(event + str_loc);
748 	int cmp, match;
749 
750 	cmp = pred->regex.match(addr, &pred->regex, str_len);
751 
752 	match = cmp ^ pred->not;
753 
754 	return match;
755 }
756 
757 /*
758  * Filter predicate for relative dynamic sized arrays of characters.
759  * These are implemented through a list of strings at the end
760  * of the entry as same as dynamic string.
761  * The difference is that the relative one records the location offset
762  * from the field itself, not the event entry.
763  */
764 static int filter_pred_strrelloc(struct filter_pred *pred, void *event)
765 {
766 	u32 *item = (u32 *)(event + pred->offset);
767 	u32 str_item = *item;
768 	int str_loc = str_item & 0xffff;
769 	int str_len = str_item >> 16;
770 	char *addr = (char *)(&item[1]) + str_loc;
771 	int cmp, match;
772 
773 	cmp = pred->regex.match(addr, &pred->regex, str_len);
774 
775 	match = cmp ^ pred->not;
776 
777 	return match;
778 }
779 
780 /* Filter predicate for CPUs. */
781 static int filter_pred_cpu(struct filter_pred *pred, void *event)
782 {
783 	int cpu, cmp;
784 
785 	cpu = raw_smp_processor_id();
786 	cmp = pred->val;
787 
788 	switch (pred->op) {
789 	case OP_EQ:
790 		return cpu == cmp;
791 	case OP_NE:
792 		return cpu != cmp;
793 	case OP_LT:
794 		return cpu < cmp;
795 	case OP_LE:
796 		return cpu <= cmp;
797 	case OP_GT:
798 		return cpu > cmp;
799 	case OP_GE:
800 		return cpu >= cmp;
801 	default:
802 		return 0;
803 	}
804 }
805 
806 /* Filter predicate for COMM. */
807 static int filter_pred_comm(struct filter_pred *pred, void *event)
808 {
809 	int cmp;
810 
811 	cmp = pred->regex.match(current->comm, &pred->regex,
812 				TASK_COMM_LEN);
813 	return cmp ^ pred->not;
814 }
815 
816 static int filter_pred_none(struct filter_pred *pred, void *event)
817 {
818 	return 0;
819 }
820 
821 /*
822  * regex_match_foo - Basic regex callbacks
823  *
824  * @str: the string to be searched
825  * @r:   the regex structure containing the pattern string
826  * @len: the length of the string to be searched (including '\0')
827  *
828  * Note:
829  * - @str might not be NULL-terminated if it's of type DYN_STRING
830  *   RDYN_STRING, or STATIC_STRING, unless @len is zero.
831  */
832 
833 static int regex_match_full(char *str, struct regex *r, int len)
834 {
835 	/* len of zero means str is dynamic and ends with '\0' */
836 	if (!len)
837 		return strcmp(str, r->pattern) == 0;
838 
839 	return strncmp(str, r->pattern, len) == 0;
840 }
841 
842 static int regex_match_front(char *str, struct regex *r, int len)
843 {
844 	if (len && len < r->len)
845 		return 0;
846 
847 	return strncmp(str, r->pattern, r->len) == 0;
848 }
849 
850 static int regex_match_middle(char *str, struct regex *r, int len)
851 {
852 	if (!len)
853 		return strstr(str, r->pattern) != NULL;
854 
855 	return strnstr(str, r->pattern, len) != NULL;
856 }
857 
858 static int regex_match_end(char *str, struct regex *r, int len)
859 {
860 	int strlen = len - 1;
861 
862 	if (strlen >= r->len &&
863 	    memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
864 		return 1;
865 	return 0;
866 }
867 
868 static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
869 {
870 	if (glob_match(r->pattern, str))
871 		return 1;
872 	return 0;
873 }
874 
875 /**
876  * filter_parse_regex - parse a basic regex
877  * @buff:   the raw regex
878  * @len:    length of the regex
879  * @search: will point to the beginning of the string to compare
880  * @not:    tell whether the match will have to be inverted
881  *
882  * This passes in a buffer containing a regex and this function will
883  * set search to point to the search part of the buffer and
884  * return the type of search it is (see enum above).
885  * This does modify buff.
886  *
887  * Returns enum type.
888  *  search returns the pointer to use for comparison.
889  *  not returns 1 if buff started with a '!'
890  *     0 otherwise.
891  */
892 enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
893 {
894 	int type = MATCH_FULL;
895 	int i;
896 
897 	if (buff[0] == '!') {
898 		*not = 1;
899 		buff++;
900 		len--;
901 	} else
902 		*not = 0;
903 
904 	*search = buff;
905 
906 	if (isdigit(buff[0]))
907 		return MATCH_INDEX;
908 
909 	for (i = 0; i < len; i++) {
910 		if (buff[i] == '*') {
911 			if (!i) {
912 				type = MATCH_END_ONLY;
913 			} else if (i == len - 1) {
914 				if (type == MATCH_END_ONLY)
915 					type = MATCH_MIDDLE_ONLY;
916 				else
917 					type = MATCH_FRONT_ONLY;
918 				buff[i] = 0;
919 				break;
920 			} else {	/* pattern continues, use full glob */
921 				return MATCH_GLOB;
922 			}
923 		} else if (strchr("[?\\", buff[i])) {
924 			return MATCH_GLOB;
925 		}
926 	}
927 	if (buff[0] == '*')
928 		*search = buff + 1;
929 
930 	return type;
931 }
932 
933 static void filter_build_regex(struct filter_pred *pred)
934 {
935 	struct regex *r = &pred->regex;
936 	char *search;
937 	enum regex_type type = MATCH_FULL;
938 
939 	if (pred->op == OP_GLOB) {
940 		type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
941 		r->len = strlen(search);
942 		memmove(r->pattern, search, r->len+1);
943 	}
944 
945 	switch (type) {
946 	/* MATCH_INDEX should not happen, but if it does, match full */
947 	case MATCH_INDEX:
948 	case MATCH_FULL:
949 		r->match = regex_match_full;
950 		break;
951 	case MATCH_FRONT_ONLY:
952 		r->match = regex_match_front;
953 		break;
954 	case MATCH_MIDDLE_ONLY:
955 		r->match = regex_match_middle;
956 		break;
957 	case MATCH_END_ONLY:
958 		r->match = regex_match_end;
959 		break;
960 	case MATCH_GLOB:
961 		r->match = regex_match_glob;
962 		break;
963 	}
964 }
965 
966 /* return 1 if event matches, 0 otherwise (discard) */
967 int filter_match_preds(struct event_filter *filter, void *rec)
968 {
969 	struct prog_entry *prog;
970 	int i;
971 
972 	/* no filter is considered a match */
973 	if (!filter)
974 		return 1;
975 
976 	/* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
977 	prog = rcu_dereference_raw(filter->prog);
978 	if (!prog)
979 		return 1;
980 
981 	for (i = 0; prog[i].pred; i++) {
982 		struct filter_pred *pred = prog[i].pred;
983 		int match = pred->fn(pred, rec);
984 		if (match == prog[i].when_to_branch)
985 			i = prog[i].target;
986 	}
987 	return prog[i].target;
988 }
989 EXPORT_SYMBOL_GPL(filter_match_preds);
990 
991 static void remove_filter_string(struct event_filter *filter)
992 {
993 	if (!filter)
994 		return;
995 
996 	kfree(filter->filter_string);
997 	filter->filter_string = NULL;
998 }
999 
1000 static void append_filter_err(struct trace_array *tr,
1001 			      struct filter_parse_error *pe,
1002 			      struct event_filter *filter)
1003 {
1004 	struct trace_seq *s;
1005 	int pos = pe->lasterr_pos;
1006 	char *buf;
1007 	int len;
1008 
1009 	if (WARN_ON(!filter->filter_string))
1010 		return;
1011 
1012 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1013 	if (!s)
1014 		return;
1015 	trace_seq_init(s);
1016 
1017 	len = strlen(filter->filter_string);
1018 	if (pos > len)
1019 		pos = len;
1020 
1021 	/* indexing is off by one */
1022 	if (pos)
1023 		pos++;
1024 
1025 	trace_seq_puts(s, filter->filter_string);
1026 	if (pe->lasterr > 0) {
1027 		trace_seq_printf(s, "\n%*s", pos, "^");
1028 		trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
1029 		tracing_log_err(tr, "event filter parse error",
1030 				filter->filter_string, err_text,
1031 				pe->lasterr, pe->lasterr_pos);
1032 	} else {
1033 		trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
1034 		tracing_log_err(tr, "event filter parse error",
1035 				filter->filter_string, err_text,
1036 				FILT_ERR_ERRNO, 0);
1037 	}
1038 	trace_seq_putc(s, 0);
1039 	buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
1040 	if (buf) {
1041 		kfree(filter->filter_string);
1042 		filter->filter_string = buf;
1043 	}
1044 	kfree(s);
1045 }
1046 
1047 static inline struct event_filter *event_filter(struct trace_event_file *file)
1048 {
1049 	return file->filter;
1050 }
1051 
1052 /* caller must hold event_mutex */
1053 void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
1054 {
1055 	struct event_filter *filter = event_filter(file);
1056 
1057 	if (filter && filter->filter_string)
1058 		trace_seq_printf(s, "%s\n", filter->filter_string);
1059 	else
1060 		trace_seq_puts(s, "none\n");
1061 }
1062 
1063 void print_subsystem_event_filter(struct event_subsystem *system,
1064 				  struct trace_seq *s)
1065 {
1066 	struct event_filter *filter;
1067 
1068 	mutex_lock(&event_mutex);
1069 	filter = system->filter;
1070 	if (filter && filter->filter_string)
1071 		trace_seq_printf(s, "%s\n", filter->filter_string);
1072 	else
1073 		trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
1074 	mutex_unlock(&event_mutex);
1075 }
1076 
1077 static void free_prog(struct event_filter *filter)
1078 {
1079 	struct prog_entry *prog;
1080 	int i;
1081 
1082 	prog = rcu_access_pointer(filter->prog);
1083 	if (!prog)
1084 		return;
1085 
1086 	for (i = 0; prog[i].pred; i++)
1087 		kfree(prog[i].pred);
1088 	kfree(prog);
1089 }
1090 
1091 static void filter_disable(struct trace_event_file *file)
1092 {
1093 	unsigned long old_flags = file->flags;
1094 
1095 	file->flags &= ~EVENT_FILE_FL_FILTERED;
1096 
1097 	if (old_flags != file->flags)
1098 		trace_buffered_event_disable();
1099 }
1100 
1101 static void __free_filter(struct event_filter *filter)
1102 {
1103 	if (!filter)
1104 		return;
1105 
1106 	free_prog(filter);
1107 	kfree(filter->filter_string);
1108 	kfree(filter);
1109 }
1110 
1111 void free_event_filter(struct event_filter *filter)
1112 {
1113 	__free_filter(filter);
1114 }
1115 
1116 static inline void __remove_filter(struct trace_event_file *file)
1117 {
1118 	filter_disable(file);
1119 	remove_filter_string(file->filter);
1120 }
1121 
1122 static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1123 					struct trace_array *tr)
1124 {
1125 	struct trace_event_file *file;
1126 
1127 	list_for_each_entry(file, &tr->events, list) {
1128 		if (file->system != dir)
1129 			continue;
1130 		__remove_filter(file);
1131 	}
1132 }
1133 
1134 static inline void __free_subsystem_filter(struct trace_event_file *file)
1135 {
1136 	__free_filter(file->filter);
1137 	file->filter = NULL;
1138 }
1139 
1140 static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1141 					  struct trace_array *tr)
1142 {
1143 	struct trace_event_file *file;
1144 
1145 	list_for_each_entry(file, &tr->events, list) {
1146 		if (file->system != dir)
1147 			continue;
1148 		__free_subsystem_filter(file);
1149 	}
1150 }
1151 
1152 int filter_assign_type(const char *type)
1153 {
1154 	if (strstr(type, "__data_loc") && strstr(type, "char"))
1155 		return FILTER_DYN_STRING;
1156 
1157 	if (strstr(type, "__rel_loc") && strstr(type, "char"))
1158 		return FILTER_RDYN_STRING;
1159 
1160 	if (strchr(type, '[') && strstr(type, "char"))
1161 		return FILTER_STATIC_STRING;
1162 
1163 	if (strcmp(type, "char *") == 0 || strcmp(type, "const char *") == 0)
1164 		return FILTER_PTR_STRING;
1165 
1166 	return FILTER_OTHER;
1167 }
1168 
1169 static filter_pred_fn_t select_comparison_fn(enum filter_op_ids op,
1170 					    int field_size, int field_is_signed)
1171 {
1172 	filter_pred_fn_t fn = NULL;
1173 	int pred_func_index = -1;
1174 
1175 	switch (op) {
1176 	case OP_EQ:
1177 	case OP_NE:
1178 		break;
1179 	default:
1180 		if (WARN_ON_ONCE(op < PRED_FUNC_START))
1181 			return NULL;
1182 		pred_func_index = op - PRED_FUNC_START;
1183 		if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1184 			return NULL;
1185 	}
1186 
1187 	switch (field_size) {
1188 	case 8:
1189 		if (pred_func_index < 0)
1190 			fn = filter_pred_64;
1191 		else if (field_is_signed)
1192 			fn = pred_funcs_s64[pred_func_index];
1193 		else
1194 			fn = pred_funcs_u64[pred_func_index];
1195 		break;
1196 	case 4:
1197 		if (pred_func_index < 0)
1198 			fn = filter_pred_32;
1199 		else if (field_is_signed)
1200 			fn = pred_funcs_s32[pred_func_index];
1201 		else
1202 			fn = pred_funcs_u32[pred_func_index];
1203 		break;
1204 	case 2:
1205 		if (pred_func_index < 0)
1206 			fn = filter_pred_16;
1207 		else if (field_is_signed)
1208 			fn = pred_funcs_s16[pred_func_index];
1209 		else
1210 			fn = pred_funcs_u16[pred_func_index];
1211 		break;
1212 	case 1:
1213 		if (pred_func_index < 0)
1214 			fn = filter_pred_8;
1215 		else if (field_is_signed)
1216 			fn = pred_funcs_s8[pred_func_index];
1217 		else
1218 			fn = pred_funcs_u8[pred_func_index];
1219 		break;
1220 	}
1221 
1222 	return fn;
1223 }
1224 
1225 /* Called when a predicate is encountered by predicate_parse() */
1226 static int parse_pred(const char *str, void *data,
1227 		      int pos, struct filter_parse_error *pe,
1228 		      struct filter_pred **pred_ptr)
1229 {
1230 	struct trace_event_call *call = data;
1231 	struct ftrace_event_field *field;
1232 	struct filter_pred *pred = NULL;
1233 	char num_buf[24];	/* Big enough to hold an address */
1234 	char *field_name;
1235 	char q;
1236 	u64 val;
1237 	int len;
1238 	int ret;
1239 	int op;
1240 	int s;
1241 	int i = 0;
1242 
1243 	/* First find the field to associate to */
1244 	while (isspace(str[i]))
1245 		i++;
1246 	s = i;
1247 
1248 	while (isalnum(str[i]) || str[i] == '_')
1249 		i++;
1250 
1251 	len = i - s;
1252 
1253 	if (!len)
1254 		return -1;
1255 
1256 	field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1257 	if (!field_name)
1258 		return -ENOMEM;
1259 
1260 	/* Make sure that the field exists */
1261 
1262 	field = trace_find_event_field(call, field_name);
1263 	kfree(field_name);
1264 	if (!field) {
1265 		parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1266 		return -EINVAL;
1267 	}
1268 
1269 	while (isspace(str[i]))
1270 		i++;
1271 
1272 	/* Make sure this op is supported */
1273 	for (op = 0; ops[op]; op++) {
1274 		/* This is why '<=' must come before '<' in ops[] */
1275 		if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1276 			break;
1277 	}
1278 
1279 	if (!ops[op]) {
1280 		parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1281 		goto err_free;
1282 	}
1283 
1284 	i += strlen(ops[op]);
1285 
1286 	while (isspace(str[i]))
1287 		i++;
1288 
1289 	s = i;
1290 
1291 	pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1292 	if (!pred)
1293 		return -ENOMEM;
1294 
1295 	pred->field = field;
1296 	pred->offset = field->offset;
1297 	pred->op = op;
1298 
1299 	if (ftrace_event_is_function(call)) {
1300 		/*
1301 		 * Perf does things different with function events.
1302 		 * It only allows an "ip" field, and expects a string.
1303 		 * But the string does not need to be surrounded by quotes.
1304 		 * If it is a string, the assigned function as a nop,
1305 		 * (perf doesn't use it) and grab everything.
1306 		 */
1307 		if (strcmp(field->name, "ip") != 0) {
1308 			parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1309 			goto err_free;
1310 		}
1311 		pred->fn = filter_pred_none;
1312 
1313 		/*
1314 		 * Quotes are not required, but if they exist then we need
1315 		 * to read them till we hit a matching one.
1316 		 */
1317 		if (str[i] == '\'' || str[i] == '"')
1318 			q = str[i];
1319 		else
1320 			q = 0;
1321 
1322 		for (i++; str[i]; i++) {
1323 			if (q && str[i] == q)
1324 				break;
1325 			if (!q && (str[i] == ')' || str[i] == '&' ||
1326 				   str[i] == '|'))
1327 				break;
1328 		}
1329 		/* Skip quotes */
1330 		if (q)
1331 			s++;
1332 		len = i - s;
1333 		if (len >= MAX_FILTER_STR_VAL) {
1334 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1335 			goto err_free;
1336 		}
1337 
1338 		pred->regex.len = len;
1339 		strncpy(pred->regex.pattern, str + s, len);
1340 		pred->regex.pattern[len] = 0;
1341 
1342 	/* This is either a string, or an integer */
1343 	} else if (str[i] == '\'' || str[i] == '"') {
1344 		char q = str[i];
1345 
1346 		/* Make sure the op is OK for strings */
1347 		switch (op) {
1348 		case OP_NE:
1349 			pred->not = 1;
1350 			fallthrough;
1351 		case OP_GLOB:
1352 		case OP_EQ:
1353 			break;
1354 		default:
1355 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1356 			goto err_free;
1357 		}
1358 
1359 		/* Make sure the field is OK for strings */
1360 		if (!is_string_field(field)) {
1361 			parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1362 			goto err_free;
1363 		}
1364 
1365 		for (i++; str[i]; i++) {
1366 			if (str[i] == q)
1367 				break;
1368 		}
1369 		if (!str[i]) {
1370 			parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1371 			goto err_free;
1372 		}
1373 
1374 		/* Skip quotes */
1375 		s++;
1376 		len = i - s;
1377 		if (len >= MAX_FILTER_STR_VAL) {
1378 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1379 			goto err_free;
1380 		}
1381 
1382 		pred->regex.len = len;
1383 		strncpy(pred->regex.pattern, str + s, len);
1384 		pred->regex.pattern[len] = 0;
1385 
1386 		filter_build_regex(pred);
1387 
1388 		if (field->filter_type == FILTER_COMM) {
1389 			pred->fn = filter_pred_comm;
1390 
1391 		} else if (field->filter_type == FILTER_STATIC_STRING) {
1392 			pred->fn = filter_pred_string;
1393 			pred->regex.field_len = field->size;
1394 
1395 		} else if (field->filter_type == FILTER_DYN_STRING) {
1396 			pred->fn = filter_pred_strloc;
1397 		} else if (field->filter_type == FILTER_RDYN_STRING)
1398 			pred->fn = filter_pred_strrelloc;
1399 		else {
1400 
1401 			if (!ustring_per_cpu) {
1402 				/* Once allocated, keep it around for good */
1403 				ustring_per_cpu = alloc_percpu(struct ustring_buffer);
1404 				if (!ustring_per_cpu)
1405 					goto err_mem;
1406 			}
1407 
1408 			pred->fn = filter_pred_pchar;
1409 		}
1410 		/* go past the last quote */
1411 		i++;
1412 
1413 	} else if (isdigit(str[i]) || str[i] == '-') {
1414 
1415 		/* Make sure the field is not a string */
1416 		if (is_string_field(field)) {
1417 			parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1418 			goto err_free;
1419 		}
1420 
1421 		if (op == OP_GLOB) {
1422 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1423 			goto err_free;
1424 		}
1425 
1426 		if (str[i] == '-')
1427 			i++;
1428 
1429 		/* We allow 0xDEADBEEF */
1430 		while (isalnum(str[i]))
1431 			i++;
1432 
1433 		len = i - s;
1434 		/* 0xfeedfacedeadbeef is 18 chars max */
1435 		if (len >= sizeof(num_buf)) {
1436 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1437 			goto err_free;
1438 		}
1439 
1440 		strncpy(num_buf, str + s, len);
1441 		num_buf[len] = 0;
1442 
1443 		/* Make sure it is a value */
1444 		if (field->is_signed)
1445 			ret = kstrtoll(num_buf, 0, &val);
1446 		else
1447 			ret = kstrtoull(num_buf, 0, &val);
1448 		if (ret) {
1449 			parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1450 			goto err_free;
1451 		}
1452 
1453 		pred->val = val;
1454 
1455 		if (field->filter_type == FILTER_CPU)
1456 			pred->fn = filter_pred_cpu;
1457 		else {
1458 			pred->fn = select_comparison_fn(pred->op, field->size,
1459 							field->is_signed);
1460 			if (pred->op == OP_NE)
1461 				pred->not = 1;
1462 		}
1463 
1464 	} else {
1465 		parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1466 		goto err_free;
1467 	}
1468 
1469 	*pred_ptr = pred;
1470 	return i;
1471 
1472 err_free:
1473 	kfree(pred);
1474 	return -EINVAL;
1475 err_mem:
1476 	kfree(pred);
1477 	return -ENOMEM;
1478 }
1479 
1480 enum {
1481 	TOO_MANY_CLOSE		= -1,
1482 	TOO_MANY_OPEN		= -2,
1483 	MISSING_QUOTE		= -3,
1484 };
1485 
1486 /*
1487  * Read the filter string once to calculate the number of predicates
1488  * as well as how deep the parentheses go.
1489  *
1490  * Returns:
1491  *   0 - everything is fine (err is undefined)
1492  *  -1 - too many ')'
1493  *  -2 - too many '('
1494  *  -3 - No matching quote
1495  */
1496 static int calc_stack(const char *str, int *parens, int *preds, int *err)
1497 {
1498 	bool is_pred = false;
1499 	int nr_preds = 0;
1500 	int open = 1; /* Count the expression as "(E)" */
1501 	int last_quote = 0;
1502 	int max_open = 1;
1503 	int quote = 0;
1504 	int i;
1505 
1506 	*err = 0;
1507 
1508 	for (i = 0; str[i]; i++) {
1509 		if (isspace(str[i]))
1510 			continue;
1511 		if (quote) {
1512 			if (str[i] == quote)
1513 			       quote = 0;
1514 			continue;
1515 		}
1516 
1517 		switch (str[i]) {
1518 		case '\'':
1519 		case '"':
1520 			quote = str[i];
1521 			last_quote = i;
1522 			break;
1523 		case '|':
1524 		case '&':
1525 			if (str[i+1] != str[i])
1526 				break;
1527 			is_pred = false;
1528 			continue;
1529 		case '(':
1530 			is_pred = false;
1531 			open++;
1532 			if (open > max_open)
1533 				max_open = open;
1534 			continue;
1535 		case ')':
1536 			is_pred = false;
1537 			if (open == 1) {
1538 				*err = i;
1539 				return TOO_MANY_CLOSE;
1540 			}
1541 			open--;
1542 			continue;
1543 		}
1544 		if (!is_pred) {
1545 			nr_preds++;
1546 			is_pred = true;
1547 		}
1548 	}
1549 
1550 	if (quote) {
1551 		*err = last_quote;
1552 		return MISSING_QUOTE;
1553 	}
1554 
1555 	if (open != 1) {
1556 		int level = open;
1557 
1558 		/* find the bad open */
1559 		for (i--; i; i--) {
1560 			if (quote) {
1561 				if (str[i] == quote)
1562 					quote = 0;
1563 				continue;
1564 			}
1565 			switch (str[i]) {
1566 			case '(':
1567 				if (level == open) {
1568 					*err = i;
1569 					return TOO_MANY_OPEN;
1570 				}
1571 				level--;
1572 				break;
1573 			case ')':
1574 				level++;
1575 				break;
1576 			case '\'':
1577 			case '"':
1578 				quote = str[i];
1579 				break;
1580 			}
1581 		}
1582 		/* First character is the '(' with missing ')' */
1583 		*err = 0;
1584 		return TOO_MANY_OPEN;
1585 	}
1586 
1587 	/* Set the size of the required stacks */
1588 	*parens = max_open;
1589 	*preds = nr_preds;
1590 	return 0;
1591 }
1592 
1593 static int process_preds(struct trace_event_call *call,
1594 			 const char *filter_string,
1595 			 struct event_filter *filter,
1596 			 struct filter_parse_error *pe)
1597 {
1598 	struct prog_entry *prog;
1599 	int nr_parens;
1600 	int nr_preds;
1601 	int index;
1602 	int ret;
1603 
1604 	ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
1605 	if (ret < 0) {
1606 		switch (ret) {
1607 		case MISSING_QUOTE:
1608 			parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
1609 			break;
1610 		case TOO_MANY_OPEN:
1611 			parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
1612 			break;
1613 		default:
1614 			parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
1615 		}
1616 		return ret;
1617 	}
1618 
1619 	if (!nr_preds)
1620 		return -EINVAL;
1621 
1622 	prog = predicate_parse(filter_string, nr_parens, nr_preds,
1623 			       parse_pred, call, pe);
1624 	if (IS_ERR(prog))
1625 		return PTR_ERR(prog);
1626 
1627 	rcu_assign_pointer(filter->prog, prog);
1628 	return 0;
1629 }
1630 
1631 static inline void event_set_filtered_flag(struct trace_event_file *file)
1632 {
1633 	unsigned long old_flags = file->flags;
1634 
1635 	file->flags |= EVENT_FILE_FL_FILTERED;
1636 
1637 	if (old_flags != file->flags)
1638 		trace_buffered_event_enable();
1639 }
1640 
1641 static inline void event_set_filter(struct trace_event_file *file,
1642 				    struct event_filter *filter)
1643 {
1644 	rcu_assign_pointer(file->filter, filter);
1645 }
1646 
1647 static inline void event_clear_filter(struct trace_event_file *file)
1648 {
1649 	RCU_INIT_POINTER(file->filter, NULL);
1650 }
1651 
1652 struct filter_list {
1653 	struct list_head	list;
1654 	struct event_filter	*filter;
1655 };
1656 
1657 static int process_system_preds(struct trace_subsystem_dir *dir,
1658 				struct trace_array *tr,
1659 				struct filter_parse_error *pe,
1660 				char *filter_string)
1661 {
1662 	struct trace_event_file *file;
1663 	struct filter_list *filter_item;
1664 	struct event_filter *filter = NULL;
1665 	struct filter_list *tmp;
1666 	LIST_HEAD(filter_list);
1667 	bool fail = true;
1668 	int err;
1669 
1670 	list_for_each_entry(file, &tr->events, list) {
1671 
1672 		if (file->system != dir)
1673 			continue;
1674 
1675 		filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1676 		if (!filter)
1677 			goto fail_mem;
1678 
1679 		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1680 		if (!filter->filter_string)
1681 			goto fail_mem;
1682 
1683 		err = process_preds(file->event_call, filter_string, filter, pe);
1684 		if (err) {
1685 			filter_disable(file);
1686 			parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1687 			append_filter_err(tr, pe, filter);
1688 		} else
1689 			event_set_filtered_flag(file);
1690 
1691 
1692 		filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
1693 		if (!filter_item)
1694 			goto fail_mem;
1695 
1696 		list_add_tail(&filter_item->list, &filter_list);
1697 		/*
1698 		 * Regardless of if this returned an error, we still
1699 		 * replace the filter for the call.
1700 		 */
1701 		filter_item->filter = event_filter(file);
1702 		event_set_filter(file, filter);
1703 		filter = NULL;
1704 
1705 		fail = false;
1706 	}
1707 
1708 	if (fail)
1709 		goto fail;
1710 
1711 	/*
1712 	 * The calls can still be using the old filters.
1713 	 * Do a synchronize_rcu() and to ensure all calls are
1714 	 * done with them before we free them.
1715 	 */
1716 	tracepoint_synchronize_unregister();
1717 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1718 		__free_filter(filter_item->filter);
1719 		list_del(&filter_item->list);
1720 		kfree(filter_item);
1721 	}
1722 	return 0;
1723  fail:
1724 	/* No call succeeded */
1725 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1726 		list_del(&filter_item->list);
1727 		kfree(filter_item);
1728 	}
1729 	parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1730 	return -EINVAL;
1731  fail_mem:
1732 	__free_filter(filter);
1733 	/* If any call succeeded, we still need to sync */
1734 	if (!fail)
1735 		tracepoint_synchronize_unregister();
1736 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1737 		__free_filter(filter_item->filter);
1738 		list_del(&filter_item->list);
1739 		kfree(filter_item);
1740 	}
1741 	return -ENOMEM;
1742 }
1743 
1744 static int create_filter_start(char *filter_string, bool set_str,
1745 			       struct filter_parse_error **pse,
1746 			       struct event_filter **filterp)
1747 {
1748 	struct event_filter *filter;
1749 	struct filter_parse_error *pe = NULL;
1750 	int err = 0;
1751 
1752 	if (WARN_ON_ONCE(*pse || *filterp))
1753 		return -EINVAL;
1754 
1755 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1756 	if (filter && set_str) {
1757 		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1758 		if (!filter->filter_string)
1759 			err = -ENOMEM;
1760 	}
1761 
1762 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1763 
1764 	if (!filter || !pe || err) {
1765 		kfree(pe);
1766 		__free_filter(filter);
1767 		return -ENOMEM;
1768 	}
1769 
1770 	/* we're committed to creating a new filter */
1771 	*filterp = filter;
1772 	*pse = pe;
1773 
1774 	return 0;
1775 }
1776 
1777 static void create_filter_finish(struct filter_parse_error *pe)
1778 {
1779 	kfree(pe);
1780 }
1781 
1782 /**
1783  * create_filter - create a filter for a trace_event_call
1784  * @tr: the trace array associated with these events
1785  * @call: trace_event_call to create a filter for
1786  * @filter_str: filter string
1787  * @set_str: remember @filter_str and enable detailed error in filter
1788  * @filterp: out param for created filter (always updated on return)
1789  *           Must be a pointer that references a NULL pointer.
1790  *
1791  * Creates a filter for @call with @filter_str.  If @set_str is %true,
1792  * @filter_str is copied and recorded in the new filter.
1793  *
1794  * On success, returns 0 and *@filterp points to the new filter.  On
1795  * failure, returns -errno and *@filterp may point to %NULL or to a new
1796  * filter.  In the latter case, the returned filter contains error
1797  * information if @set_str is %true and the caller is responsible for
1798  * freeing it.
1799  */
1800 static int create_filter(struct trace_array *tr,
1801 			 struct trace_event_call *call,
1802 			 char *filter_string, bool set_str,
1803 			 struct event_filter **filterp)
1804 {
1805 	struct filter_parse_error *pe = NULL;
1806 	int err;
1807 
1808 	/* filterp must point to NULL */
1809 	if (WARN_ON(*filterp))
1810 		*filterp = NULL;
1811 
1812 	err = create_filter_start(filter_string, set_str, &pe, filterp);
1813 	if (err)
1814 		return err;
1815 
1816 	err = process_preds(call, filter_string, *filterp, pe);
1817 	if (err && set_str)
1818 		append_filter_err(tr, pe, *filterp);
1819 	create_filter_finish(pe);
1820 
1821 	return err;
1822 }
1823 
1824 int create_event_filter(struct trace_array *tr,
1825 			struct trace_event_call *call,
1826 			char *filter_str, bool set_str,
1827 			struct event_filter **filterp)
1828 {
1829 	return create_filter(tr, call, filter_str, set_str, filterp);
1830 }
1831 
1832 /**
1833  * create_system_filter - create a filter for an event subsystem
1834  * @dir: the descriptor for the subsystem directory
1835  * @filter_str: filter string
1836  * @filterp: out param for created filter (always updated on return)
1837  *
1838  * Identical to create_filter() except that it creates a subsystem filter
1839  * and always remembers @filter_str.
1840  */
1841 static int create_system_filter(struct trace_subsystem_dir *dir,
1842 				char *filter_str, struct event_filter **filterp)
1843 {
1844 	struct filter_parse_error *pe = NULL;
1845 	int err;
1846 
1847 	err = create_filter_start(filter_str, true, &pe, filterp);
1848 	if (!err) {
1849 		err = process_system_preds(dir, dir->tr, pe, filter_str);
1850 		if (!err) {
1851 			/* System filters just show a default message */
1852 			kfree((*filterp)->filter_string);
1853 			(*filterp)->filter_string = NULL;
1854 		} else {
1855 			append_filter_err(dir->tr, pe, *filterp);
1856 		}
1857 	}
1858 	create_filter_finish(pe);
1859 
1860 	return err;
1861 }
1862 
1863 /* caller must hold event_mutex */
1864 int apply_event_filter(struct trace_event_file *file, char *filter_string)
1865 {
1866 	struct trace_event_call *call = file->event_call;
1867 	struct event_filter *filter = NULL;
1868 	int err;
1869 
1870 	if (!strcmp(strstrip(filter_string), "0")) {
1871 		filter_disable(file);
1872 		filter = event_filter(file);
1873 
1874 		if (!filter)
1875 			return 0;
1876 
1877 		event_clear_filter(file);
1878 
1879 		/* Make sure the filter is not being used */
1880 		tracepoint_synchronize_unregister();
1881 		__free_filter(filter);
1882 
1883 		return 0;
1884 	}
1885 
1886 	err = create_filter(file->tr, call, filter_string, true, &filter);
1887 
1888 	/*
1889 	 * Always swap the call filter with the new filter
1890 	 * even if there was an error. If there was an error
1891 	 * in the filter, we disable the filter and show the error
1892 	 * string
1893 	 */
1894 	if (filter) {
1895 		struct event_filter *tmp;
1896 
1897 		tmp = event_filter(file);
1898 		if (!err)
1899 			event_set_filtered_flag(file);
1900 		else
1901 			filter_disable(file);
1902 
1903 		event_set_filter(file, filter);
1904 
1905 		if (tmp) {
1906 			/* Make sure the call is done with the filter */
1907 			tracepoint_synchronize_unregister();
1908 			__free_filter(tmp);
1909 		}
1910 	}
1911 
1912 	return err;
1913 }
1914 
1915 int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
1916 				 char *filter_string)
1917 {
1918 	struct event_subsystem *system = dir->subsystem;
1919 	struct trace_array *tr = dir->tr;
1920 	struct event_filter *filter = NULL;
1921 	int err = 0;
1922 
1923 	mutex_lock(&event_mutex);
1924 
1925 	/* Make sure the system still has events */
1926 	if (!dir->nr_events) {
1927 		err = -ENODEV;
1928 		goto out_unlock;
1929 	}
1930 
1931 	if (!strcmp(strstrip(filter_string), "0")) {
1932 		filter_free_subsystem_preds(dir, tr);
1933 		remove_filter_string(system->filter);
1934 		filter = system->filter;
1935 		system->filter = NULL;
1936 		/* Ensure all filters are no longer used */
1937 		tracepoint_synchronize_unregister();
1938 		filter_free_subsystem_filters(dir, tr);
1939 		__free_filter(filter);
1940 		goto out_unlock;
1941 	}
1942 
1943 	err = create_system_filter(dir, filter_string, &filter);
1944 	if (filter) {
1945 		/*
1946 		 * No event actually uses the system filter
1947 		 * we can free it without synchronize_rcu().
1948 		 */
1949 		__free_filter(system->filter);
1950 		system->filter = filter;
1951 	}
1952 out_unlock:
1953 	mutex_unlock(&event_mutex);
1954 
1955 	return err;
1956 }
1957 
1958 #ifdef CONFIG_PERF_EVENTS
1959 
1960 void ftrace_profile_free_filter(struct perf_event *event)
1961 {
1962 	struct event_filter *filter = event->filter;
1963 
1964 	event->filter = NULL;
1965 	__free_filter(filter);
1966 }
1967 
1968 struct function_filter_data {
1969 	struct ftrace_ops *ops;
1970 	int first_filter;
1971 	int first_notrace;
1972 };
1973 
1974 #ifdef CONFIG_FUNCTION_TRACER
1975 static char **
1976 ftrace_function_filter_re(char *buf, int len, int *count)
1977 {
1978 	char *str, **re;
1979 
1980 	str = kstrndup(buf, len, GFP_KERNEL);
1981 	if (!str)
1982 		return NULL;
1983 
1984 	/*
1985 	 * The argv_split function takes white space
1986 	 * as a separator, so convert ',' into spaces.
1987 	 */
1988 	strreplace(str, ',', ' ');
1989 
1990 	re = argv_split(GFP_KERNEL, str, count);
1991 	kfree(str);
1992 	return re;
1993 }
1994 
1995 static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
1996 				      int reset, char *re, int len)
1997 {
1998 	int ret;
1999 
2000 	if (filter)
2001 		ret = ftrace_set_filter(ops, re, len, reset);
2002 	else
2003 		ret = ftrace_set_notrace(ops, re, len, reset);
2004 
2005 	return ret;
2006 }
2007 
2008 static int __ftrace_function_set_filter(int filter, char *buf, int len,
2009 					struct function_filter_data *data)
2010 {
2011 	int i, re_cnt, ret = -EINVAL;
2012 	int *reset;
2013 	char **re;
2014 
2015 	reset = filter ? &data->first_filter : &data->first_notrace;
2016 
2017 	/*
2018 	 * The 'ip' field could have multiple filters set, separated
2019 	 * either by space or comma. We first cut the filter and apply
2020 	 * all pieces separately.
2021 	 */
2022 	re = ftrace_function_filter_re(buf, len, &re_cnt);
2023 	if (!re)
2024 		return -EINVAL;
2025 
2026 	for (i = 0; i < re_cnt; i++) {
2027 		ret = ftrace_function_set_regexp(data->ops, filter, *reset,
2028 						 re[i], strlen(re[i]));
2029 		if (ret)
2030 			break;
2031 
2032 		if (*reset)
2033 			*reset = 0;
2034 	}
2035 
2036 	argv_free(re);
2037 	return ret;
2038 }
2039 
2040 static int ftrace_function_check_pred(struct filter_pred *pred)
2041 {
2042 	struct ftrace_event_field *field = pred->field;
2043 
2044 	/*
2045 	 * Check the predicate for function trace, verify:
2046 	 *  - only '==' and '!=' is used
2047 	 *  - the 'ip' field is used
2048 	 */
2049 	if ((pred->op != OP_EQ) && (pred->op != OP_NE))
2050 		return -EINVAL;
2051 
2052 	if (strcmp(field->name, "ip"))
2053 		return -EINVAL;
2054 
2055 	return 0;
2056 }
2057 
2058 static int ftrace_function_set_filter_pred(struct filter_pred *pred,
2059 					   struct function_filter_data *data)
2060 {
2061 	int ret;
2062 
2063 	/* Checking the node is valid for function trace. */
2064 	ret = ftrace_function_check_pred(pred);
2065 	if (ret)
2066 		return ret;
2067 
2068 	return __ftrace_function_set_filter(pred->op == OP_EQ,
2069 					    pred->regex.pattern,
2070 					    pred->regex.len,
2071 					    data);
2072 }
2073 
2074 static bool is_or(struct prog_entry *prog, int i)
2075 {
2076 	int target;
2077 
2078 	/*
2079 	 * Only "||" is allowed for function events, thus,
2080 	 * all true branches should jump to true, and any
2081 	 * false branch should jump to false.
2082 	 */
2083 	target = prog[i].target + 1;
2084 	/* True and false have NULL preds (all prog entries should jump to one */
2085 	if (prog[target].pred)
2086 		return false;
2087 
2088 	/* prog[target].target is 1 for TRUE, 0 for FALSE */
2089 	return prog[i].when_to_branch == prog[target].target;
2090 }
2091 
2092 static int ftrace_function_set_filter(struct perf_event *event,
2093 				      struct event_filter *filter)
2094 {
2095 	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2096 						lockdep_is_held(&event_mutex));
2097 	struct function_filter_data data = {
2098 		.first_filter  = 1,
2099 		.first_notrace = 1,
2100 		.ops           = &event->ftrace_ops,
2101 	};
2102 	int i;
2103 
2104 	for (i = 0; prog[i].pred; i++) {
2105 		struct filter_pred *pred = prog[i].pred;
2106 
2107 		if (!is_or(prog, i))
2108 			return -EINVAL;
2109 
2110 		if (ftrace_function_set_filter_pred(pred, &data) < 0)
2111 			return -EINVAL;
2112 	}
2113 	return 0;
2114 }
2115 #else
2116 static int ftrace_function_set_filter(struct perf_event *event,
2117 				      struct event_filter *filter)
2118 {
2119 	return -ENODEV;
2120 }
2121 #endif /* CONFIG_FUNCTION_TRACER */
2122 
2123 int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2124 			      char *filter_str)
2125 {
2126 	int err;
2127 	struct event_filter *filter = NULL;
2128 	struct trace_event_call *call;
2129 
2130 	mutex_lock(&event_mutex);
2131 
2132 	call = event->tp_event;
2133 
2134 	err = -EINVAL;
2135 	if (!call)
2136 		goto out_unlock;
2137 
2138 	err = -EEXIST;
2139 	if (event->filter)
2140 		goto out_unlock;
2141 
2142 	err = create_filter(NULL, call, filter_str, false, &filter);
2143 	if (err)
2144 		goto free_filter;
2145 
2146 	if (ftrace_event_is_function(call))
2147 		err = ftrace_function_set_filter(event, filter);
2148 	else
2149 		event->filter = filter;
2150 
2151 free_filter:
2152 	if (err || ftrace_event_is_function(call))
2153 		__free_filter(filter);
2154 
2155 out_unlock:
2156 	mutex_unlock(&event_mutex);
2157 
2158 	return err;
2159 }
2160 
2161 #endif /* CONFIG_PERF_EVENTS */
2162 
2163 #ifdef CONFIG_FTRACE_STARTUP_TEST
2164 
2165 #include <linux/types.h>
2166 #include <linux/tracepoint.h>
2167 
2168 #define CREATE_TRACE_POINTS
2169 #include "trace_events_filter_test.h"
2170 
2171 #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2172 { \
2173 	.filter = FILTER, \
2174 	.rec    = { .a = va, .b = vb, .c = vc, .d = vd, \
2175 		    .e = ve, .f = vf, .g = vg, .h = vh }, \
2176 	.match  = m, \
2177 	.not_visited = nvisit, \
2178 }
2179 #define YES 1
2180 #define NO  0
2181 
2182 static struct test_filter_data_t {
2183 	char *filter;
2184 	struct trace_event_raw_ftrace_test_filter rec;
2185 	int match;
2186 	char *not_visited;
2187 } test_filter_data[] = {
2188 #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2189 	       "e == 1 && f == 1 && g == 1 && h == 1"
2190 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2191 	DATA_REC(NO,  0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2192 	DATA_REC(NO,  1, 1, 1, 1, 1, 1, 1, 0, ""),
2193 #undef FILTER
2194 #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2195 	       "e == 1 || f == 1 || g == 1 || h == 1"
2196 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2197 	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2198 	DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2199 #undef FILTER
2200 #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2201 	       "(e == 1 || f == 1) && (g == 1 || h == 1)"
2202 	DATA_REC(NO,  0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2203 	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2204 	DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2205 	DATA_REC(NO,  1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2206 #undef FILTER
2207 #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2208 	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2209 	DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2210 	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2211 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2212 #undef FILTER
2213 #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2214 	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2215 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2216 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2217 	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2218 #undef FILTER
2219 #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2220 	       "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2221 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2222 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2223 	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2224 #undef FILTER
2225 #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2226 	       "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2227 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2228 	DATA_REC(NO,  0, 1, 0, 1, 0, 1, 0, 1, ""),
2229 	DATA_REC(NO,  1, 0, 1, 0, 1, 0, 1, 0, ""),
2230 #undef FILTER
2231 #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2232 	       "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2233 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2234 	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2235 	DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2236 };
2237 
2238 #undef DATA_REC
2239 #undef FILTER
2240 #undef YES
2241 #undef NO
2242 
2243 #define DATA_CNT ARRAY_SIZE(test_filter_data)
2244 
2245 static int test_pred_visited;
2246 
2247 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2248 {
2249 	struct ftrace_event_field *field = pred->field;
2250 
2251 	test_pred_visited = 1;
2252 	printk(KERN_INFO "\npred visited %s\n", field->name);
2253 	return 1;
2254 }
2255 
2256 static void update_pred_fn(struct event_filter *filter, char *fields)
2257 {
2258 	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2259 						lockdep_is_held(&event_mutex));
2260 	int i;
2261 
2262 	for (i = 0; prog[i].pred; i++) {
2263 		struct filter_pred *pred = prog[i].pred;
2264 		struct ftrace_event_field *field = pred->field;
2265 
2266 		WARN_ON_ONCE(!pred->fn);
2267 
2268 		if (!field) {
2269 			WARN_ONCE(1, "all leafs should have field defined %d", i);
2270 			continue;
2271 		}
2272 
2273 		if (!strchr(fields, *field->name))
2274 			continue;
2275 
2276 		pred->fn = test_pred_visited_fn;
2277 	}
2278 }
2279 
2280 static __init int ftrace_test_event_filter(void)
2281 {
2282 	int i;
2283 
2284 	printk(KERN_INFO "Testing ftrace filter: ");
2285 
2286 	for (i = 0; i < DATA_CNT; i++) {
2287 		struct event_filter *filter = NULL;
2288 		struct test_filter_data_t *d = &test_filter_data[i];
2289 		int err;
2290 
2291 		err = create_filter(NULL, &event_ftrace_test_filter,
2292 				    d->filter, false, &filter);
2293 		if (err) {
2294 			printk(KERN_INFO
2295 			       "Failed to get filter for '%s', err %d\n",
2296 			       d->filter, err);
2297 			__free_filter(filter);
2298 			break;
2299 		}
2300 
2301 		/* Needed to dereference filter->prog */
2302 		mutex_lock(&event_mutex);
2303 		/*
2304 		 * The preemption disabling is not really needed for self
2305 		 * tests, but the rcu dereference will complain without it.
2306 		 */
2307 		preempt_disable();
2308 		if (*d->not_visited)
2309 			update_pred_fn(filter, d->not_visited);
2310 
2311 		test_pred_visited = 0;
2312 		err = filter_match_preds(filter, &d->rec);
2313 		preempt_enable();
2314 
2315 		mutex_unlock(&event_mutex);
2316 
2317 		__free_filter(filter);
2318 
2319 		if (test_pred_visited) {
2320 			printk(KERN_INFO
2321 			       "Failed, unwanted pred visited for filter %s\n",
2322 			       d->filter);
2323 			break;
2324 		}
2325 
2326 		if (err != d->match) {
2327 			printk(KERN_INFO
2328 			       "Failed to match filter '%s', expected %d\n",
2329 			       d->filter, d->match);
2330 			break;
2331 		}
2332 	}
2333 
2334 	if (i == DATA_CNT)
2335 		printk(KERN_CONT "OK\n");
2336 
2337 	return 0;
2338 }
2339 
2340 late_initcall(ftrace_test_event_filter);
2341 
2342 #endif /* CONFIG_FTRACE_STARTUP_TEST */
2343