1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * trace_events_filter - generic event filtering
4  *
5  * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
6  */
7 
8 #include <linux/uaccess.h>
9 #include <linux/module.h>
10 #include <linux/ctype.h>
11 #include <linux/mutex.h>
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14 
15 #include "trace.h"
16 #include "trace_output.h"
17 
18 #define DEFAULT_SYS_FILTER_MESSAGE					\
19 	"### global filter ###\n"					\
20 	"# Use this to set filters for multiple events.\n"		\
21 	"# Only events with the given fields will be affected.\n"	\
22 	"# If no events are modified, an error message will be displayed here"
23 
24 /* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
25 #define OPS					\
26 	C( OP_GLOB,	"~"  ),			\
27 	C( OP_NE,	"!=" ),			\
28 	C( OP_EQ,	"==" ),			\
29 	C( OP_LE,	"<=" ),			\
30 	C( OP_LT,	"<"  ),			\
31 	C( OP_GE,	">=" ),			\
32 	C( OP_GT,	">"  ),			\
33 	C( OP_BAND,	"&"  ),			\
34 	C( OP_MAX,	NULL )
35 
36 #undef C
37 #define C(a, b)	a
38 
39 enum filter_op_ids { OPS };
40 
41 #undef C
42 #define C(a, b)	b
43 
44 static const char * ops[] = { OPS };
45 
46 enum filter_pred_fn {
47 	FILTER_PRED_FN_NOP,
48 	FILTER_PRED_FN_64,
49 	FILTER_PRED_FN_S64,
50 	FILTER_PRED_FN_U64,
51 	FILTER_PRED_FN_32,
52 	FILTER_PRED_FN_S32,
53 	FILTER_PRED_FN_U32,
54 	FILTER_PRED_FN_16,
55 	FILTER_PRED_FN_S16,
56 	FILTER_PRED_FN_U16,
57 	FILTER_PRED_FN_8,
58 	FILTER_PRED_FN_S8,
59 	FILTER_PRED_FN_U8,
60 	FILTER_PRED_FN_COMM,
61 	FILTER_PRED_FN_STRING,
62 	FILTER_PRED_FN_STRLOC,
63 	FILTER_PRED_FN_STRRELLOC,
64 	FILTER_PRED_FN_PCHAR_USER,
65 	FILTER_PRED_FN_PCHAR,
66 	FILTER_PRED_FN_CPU,
67 	FILTER_PRED_FN_FUNCTION,
68 	FILTER_PRED_FN_,
69 	FILTER_PRED_TEST_VISITED,
70 };
71 
72 struct filter_pred {
73 	enum filter_pred_fn 	fn_num;
74 	u64 			val;
75 	u64 			val2;
76 	struct regex		regex;
77 	unsigned short		*ops;
78 	struct ftrace_event_field *field;
79 	int 			offset;
80 	int			not;
81 	int 			op;
82 };
83 
84 /*
85  * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
86  * pred_funcs_##type below must match the order of them above.
87  */
88 #define PRED_FUNC_START			OP_LE
89 #define PRED_FUNC_MAX			(OP_BAND - PRED_FUNC_START)
90 
91 #define ERRORS								\
92 	C(NONE,			"No error"),				\
93 	C(INVALID_OP,		"Invalid operator"),			\
94 	C(TOO_MANY_OPEN,	"Too many '('"),			\
95 	C(TOO_MANY_CLOSE,	"Too few '('"),				\
96 	C(MISSING_QUOTE,	"Missing matching quote"),		\
97 	C(OPERAND_TOO_LONG,	"Operand too long"),			\
98 	C(EXPECT_STRING,	"Expecting string field"),		\
99 	C(EXPECT_DIGIT,		"Expecting numeric field"),		\
100 	C(ILLEGAL_FIELD_OP,	"Illegal operation for field type"),	\
101 	C(FIELD_NOT_FOUND,	"Field not found"),			\
102 	C(ILLEGAL_INTVAL,	"Illegal integer value"),		\
103 	C(BAD_SUBSYS_FILTER,	"Couldn't find or set field in one of a subsystem's events"), \
104 	C(TOO_MANY_PREDS,	"Too many terms in predicate expression"), \
105 	C(INVALID_FILTER,	"Meaningless filter expression"),	\
106 	C(IP_FIELD_ONLY,	"Only 'ip' field is supported for function trace"), \
107 	C(INVALID_VALUE,	"Invalid value (did you forget quotes)?"), \
108 	C(NO_FUNCTION,		"Function not found"),			\
109 	C(ERRNO,		"Error"),				\
110 	C(NO_FILTER,		"No filter found")
111 
112 #undef C
113 #define C(a, b)		FILT_ERR_##a
114 
115 enum { ERRORS };
116 
117 #undef C
118 #define C(a, b)		b
119 
120 static const char *err_text[] = { ERRORS };
121 
122 /* Called after a '!' character but "!=" and "!~" are not "not"s */
123 static bool is_not(const char *str)
124 {
125 	switch (str[1]) {
126 	case '=':
127 	case '~':
128 		return false;
129 	}
130 	return true;
131 }
132 
133 /**
134  * struct prog_entry - a singe entry in the filter program
135  * @target:	     Index to jump to on a branch (actually one minus the index)
136  * @when_to_branch:  The value of the result of the predicate to do a branch
137  * @pred:	     The predicate to execute.
138  */
139 struct prog_entry {
140 	int			target;
141 	int			when_to_branch;
142 	struct filter_pred	*pred;
143 };
144 
145 /**
146  * update_preds - assign a program entry a label target
147  * @prog: The program array
148  * @N: The index of the current entry in @prog
149  * @invert: What to assign a program entry for its branch condition
150  *
151  * The program entry at @N has a target that points to the index of a program
152  * entry that can have its target and when_to_branch fields updated.
153  * Update the current program entry denoted by index @N target field to be
154  * that of the updated entry. This will denote the entry to update if
155  * we are processing an "||" after an "&&".
156  */
157 static void update_preds(struct prog_entry *prog, int N, int invert)
158 {
159 	int t, s;
160 
161 	t = prog[N].target;
162 	s = prog[t].target;
163 	prog[t].when_to_branch = invert;
164 	prog[t].target = N;
165 	prog[N].target = s;
166 }
167 
168 struct filter_parse_error {
169 	int lasterr;
170 	int lasterr_pos;
171 };
172 
173 static void parse_error(struct filter_parse_error *pe, int err, int pos)
174 {
175 	pe->lasterr = err;
176 	pe->lasterr_pos = pos;
177 }
178 
179 typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
180 			     struct filter_parse_error *pe,
181 			     struct filter_pred **pred);
182 
183 enum {
184 	INVERT		= 1,
185 	PROCESS_AND	= 2,
186 	PROCESS_OR	= 4,
187 };
188 
189 /*
190  * Without going into a formal proof, this explains the method that is used in
191  * parsing the logical expressions.
192  *
193  * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
194  * The first pass will convert it into the following program:
195  *
196  * n1: r=a;       l1: if (!r) goto l4;
197  * n2: r=b;       l2: if (!r) goto l4;
198  * n3: r=c; r=!r; l3: if (r) goto l4;
199  * n4: r=g; r=!r; l4: if (r) goto l5;
200  * n5: r=d;       l5: if (r) goto T
201  * n6: r=e;       l6: if (!r) goto l7;
202  * n7: r=f; r=!r; l7: if (!r) goto F
203  * T: return TRUE
204  * F: return FALSE
205  *
206  * To do this, we use a data structure to represent each of the above
207  * predicate and conditions that has:
208  *
209  *  predicate, when_to_branch, invert, target
210  *
211  * The "predicate" will hold the function to determine the result "r".
212  * The "when_to_branch" denotes what "r" should be if a branch is to be taken
213  * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
214  * The "invert" holds whether the value should be reversed before testing.
215  * The "target" contains the label "l#" to jump to.
216  *
217  * A stack is created to hold values when parentheses are used.
218  *
219  * To simplify the logic, the labels will start at 0 and not 1.
220  *
221  * The possible invert values are 1 and 0. The number of "!"s that are in scope
222  * before the predicate determines the invert value, if the number is odd then
223  * the invert value is 1 and 0 otherwise. This means the invert value only
224  * needs to be toggled when a new "!" is introduced compared to what is stored
225  * on the stack, where parentheses were used.
226  *
227  * The top of the stack and "invert" are initialized to zero.
228  *
229  * ** FIRST PASS **
230  *
231  * #1 A loop through all the tokens is done:
232  *
233  * #2 If the token is an "(", the stack is push, and the current stack value
234  *    gets the current invert value, and the loop continues to the next token.
235  *    The top of the stack saves the "invert" value to keep track of what
236  *    the current inversion is. As "!(a && !b || c)" would require all
237  *    predicates being affected separately by the "!" before the parentheses.
238  *    And that would end up being equivalent to "(!a || b) && !c"
239  *
240  * #3 If the token is an "!", the current "invert" value gets inverted, and
241  *    the loop continues. Note, if the next token is a predicate, then
242  *    this "invert" value is only valid for the current program entry,
243  *    and does not affect other predicates later on.
244  *
245  * The only other acceptable token is the predicate string.
246  *
247  * #4 A new entry into the program is added saving: the predicate and the
248  *    current value of "invert". The target is currently assigned to the
249  *    previous program index (this will not be its final value).
250  *
251  * #5 We now enter another loop and look at the next token. The only valid
252  *    tokens are ")", "&&", "||" or end of the input string "\0".
253  *
254  * #6 The invert variable is reset to the current value saved on the top of
255  *    the stack.
256  *
257  * #7 The top of the stack holds not only the current invert value, but also
258  *    if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
259  *    precedence than "||". That is "a && b || c && d" is equivalent to
260  *    "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
261  *    to be processed. This is the case if an "&&" was the last token. If it was
262  *    then we call update_preds(). This takes the program, the current index in
263  *    the program, and the current value of "invert".  More will be described
264  *    below about this function.
265  *
266  * #8 If the next token is "&&" then we set a flag in the top of the stack
267  *    that denotes that "&&" needs to be processed, break out of this loop
268  *    and continue with the outer loop.
269  *
270  * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
271  *    This is called with the program, the current index in the program, but
272  *    this time with an inverted value of "invert" (that is !invert). This is
273  *    because the value taken will become the "when_to_branch" value of the
274  *    program.
275  *    Note, this is called when the next token is not an "&&". As stated before,
276  *    "&&" takes higher precedence, and "||" should not be processed yet if the
277  *    next logical operation is "&&".
278  *
279  * #10 If the next token is "||" then we set a flag in the top of the stack
280  *     that denotes that "||" needs to be processed, break out of this loop
281  *     and continue with the outer loop.
282  *
283  * #11 If this is the end of the input string "\0" then we break out of both
284  *     loops.
285  *
286  * #12 Otherwise, the next token is ")", where we pop the stack and continue
287  *     this inner loop.
288  *
289  * Now to discuss the update_pred() function, as that is key to the setting up
290  * of the program. Remember the "target" of the program is initialized to the
291  * previous index and not the "l" label. The target holds the index into the
292  * program that gets affected by the operand. Thus if we have something like
293  *  "a || b && c", when we process "a" the target will be "-1" (undefined).
294  * When we process "b", its target is "0", which is the index of "a", as that's
295  * the predicate that is affected by "||". But because the next token after "b"
296  * is "&&" we don't call update_preds(). Instead continue to "c". As the
297  * next token after "c" is not "&&" but the end of input, we first process the
298  * "&&" by calling update_preds() for the "&&" then we process the "||" by
299  * calling updates_preds() with the values for processing "||".
300  *
301  * What does that mean? What update_preds() does is to first save the "target"
302  * of the program entry indexed by the current program entry's "target"
303  * (remember the "target" is initialized to previous program entry), and then
304  * sets that "target" to the current index which represents the label "l#".
305  * That entry's "when_to_branch" is set to the value passed in (the "invert"
306  * or "!invert"). Then it sets the current program entry's target to the saved
307  * "target" value (the old value of the program that had its "target" updated
308  * to the label).
309  *
310  * Looking back at "a || b && c", we have the following steps:
311  *  "a"  - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
312  *  "||" - flag that we need to process "||"; continue outer loop
313  *  "b"  - prog[1] = { "b", X, 0 }
314  *  "&&" - flag that we need to process "&&"; continue outer loop
315  * (Notice we did not process "||")
316  *  "c"  - prog[2] = { "c", X, 1 }
317  *  update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
318  *    t = prog[2].target; // t = 1
319  *    s = prog[t].target; // s = 0
320  *    prog[t].target = 2; // Set target to "l2"
321  *    prog[t].when_to_branch = 0;
322  *    prog[2].target = s;
323  * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
324  *    t = prog[2].target; // t = 0
325  *    s = prog[t].target; // s = -1
326  *    prog[t].target = 2; // Set target to "l2"
327  *    prog[t].when_to_branch = 1;
328  *    prog[2].target = s;
329  *
330  * #13 Which brings us to the final step of the first pass, which is to set
331  *     the last program entry's when_to_branch and target, which will be
332  *     when_to_branch = 0; target = N; ( the label after the program entry after
333  *     the last program entry processed above).
334  *
335  * If we denote "TRUE" to be the entry after the last program entry processed,
336  * and "FALSE" the program entry after that, we are now done with the first
337  * pass.
338  *
339  * Making the above "a || b && c" have a program of:
340  *  prog[0] = { "a", 1, 2 }
341  *  prog[1] = { "b", 0, 2 }
342  *  prog[2] = { "c", 0, 3 }
343  *
344  * Which translates into:
345  * n0: r = a; l0: if (r) goto l2;
346  * n1: r = b; l1: if (!r) goto l2;
347  * n2: r = c; l2: if (!r) goto l3;  // Which is the same as "goto F;"
348  * T: return TRUE; l3:
349  * F: return FALSE
350  *
351  * Although, after the first pass, the program is correct, it is
352  * inefficient. The simple sample of "a || b && c" could be easily been
353  * converted into:
354  * n0: r = a; if (r) goto T
355  * n1: r = b; if (!r) goto F
356  * n2: r = c; if (!r) goto F
357  * T: return TRUE;
358  * F: return FALSE;
359  *
360  * The First Pass is over the input string. The next too passes are over
361  * the program itself.
362  *
363  * ** SECOND PASS **
364  *
365  * Which brings us to the second pass. If a jump to a label has the
366  * same condition as that label, it can instead jump to its target.
367  * The original example of "a && !(!b || (c && g)) || d || e && !f"
368  * where the first pass gives us:
369  *
370  * n1: r=a;       l1: if (!r) goto l4;
371  * n2: r=b;       l2: if (!r) goto l4;
372  * n3: r=c; r=!r; l3: if (r) goto l4;
373  * n4: r=g; r=!r; l4: if (r) goto l5;
374  * n5: r=d;       l5: if (r) goto T
375  * n6: r=e;       l6: if (!r) goto l7;
376  * n7: r=f; r=!r; l7: if (!r) goto F:
377  * T: return TRUE;
378  * F: return FALSE
379  *
380  * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
381  * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
382  * to go directly to T. To accomplish this, we start from the last
383  * entry in the program and work our way back. If the target of the entry
384  * has the same "when_to_branch" then we could use that entry's target.
385  * Doing this, the above would end up as:
386  *
387  * n1: r=a;       l1: if (!r) goto l4;
388  * n2: r=b;       l2: if (!r) goto l4;
389  * n3: r=c; r=!r; l3: if (r) goto T;
390  * n4: r=g; r=!r; l4: if (r) goto T;
391  * n5: r=d;       l5: if (r) goto T;
392  * n6: r=e;       l6: if (!r) goto F;
393  * n7: r=f; r=!r; l7: if (!r) goto F;
394  * T: return TRUE
395  * F: return FALSE
396  *
397  * In that same pass, if the "when_to_branch" doesn't match, we can simply
398  * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
399  * where "l4: if (r) goto T;", then we can convert l2 to be:
400  * "l2: if (!r) goto n5;".
401  *
402  * This will have the second pass give us:
403  * n1: r=a;       l1: if (!r) goto n5;
404  * n2: r=b;       l2: if (!r) goto n5;
405  * n3: r=c; r=!r; l3: if (r) goto T;
406  * n4: r=g; r=!r; l4: if (r) goto T;
407  * n5: r=d;       l5: if (r) goto T
408  * n6: r=e;       l6: if (!r) goto F;
409  * n7: r=f; r=!r; l7: if (!r) goto F
410  * T: return TRUE
411  * F: return FALSE
412  *
413  * Notice, all the "l#" labels are no longer used, and they can now
414  * be discarded.
415  *
416  * ** THIRD PASS **
417  *
418  * For the third pass we deal with the inverts. As they simply just
419  * make the "when_to_branch" get inverted, a simple loop over the
420  * program to that does: "when_to_branch ^= invert;" will do the
421  * job, leaving us with:
422  * n1: r=a; if (!r) goto n5;
423  * n2: r=b; if (!r) goto n5;
424  * n3: r=c: if (!r) goto T;
425  * n4: r=g; if (!r) goto T;
426  * n5: r=d; if (r) goto T
427  * n6: r=e; if (!r) goto F;
428  * n7: r=f; if (r) goto F
429  * T: return TRUE
430  * F: return FALSE
431  *
432  * As "r = a; if (!r) goto n5;" is obviously the same as
433  * "if (!a) goto n5;" without doing anything we can interpret the
434  * program as:
435  * n1: if (!a) goto n5;
436  * n2: if (!b) goto n5;
437  * n3: if (!c) goto T;
438  * n4: if (!g) goto T;
439  * n5: if (d) goto T
440  * n6: if (!e) goto F;
441  * n7: if (f) goto F
442  * T: return TRUE
443  * F: return FALSE
444  *
445  * Since the inverts are discarded at the end, there's no reason to store
446  * them in the program array (and waste memory). A separate array to hold
447  * the inverts is used and freed at the end.
448  */
449 static struct prog_entry *
450 predicate_parse(const char *str, int nr_parens, int nr_preds,
451 		parse_pred_fn parse_pred, void *data,
452 		struct filter_parse_error *pe)
453 {
454 	struct prog_entry *prog_stack;
455 	struct prog_entry *prog;
456 	const char *ptr = str;
457 	char *inverts = NULL;
458 	int *op_stack;
459 	int *top;
460 	int invert = 0;
461 	int ret = -ENOMEM;
462 	int len;
463 	int N = 0;
464 	int i;
465 
466 	nr_preds += 2; /* For TRUE and FALSE */
467 
468 	op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
469 	if (!op_stack)
470 		return ERR_PTR(-ENOMEM);
471 	prog_stack = kcalloc(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
472 	if (!prog_stack) {
473 		parse_error(pe, -ENOMEM, 0);
474 		goto out_free;
475 	}
476 	inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
477 	if (!inverts) {
478 		parse_error(pe, -ENOMEM, 0);
479 		goto out_free;
480 	}
481 
482 	top = op_stack;
483 	prog = prog_stack;
484 	*top = 0;
485 
486 	/* First pass */
487 	while (*ptr) {						/* #1 */
488 		const char *next = ptr++;
489 
490 		if (isspace(*next))
491 			continue;
492 
493 		switch (*next) {
494 		case '(':					/* #2 */
495 			if (top - op_stack > nr_parens) {
496 				ret = -EINVAL;
497 				goto out_free;
498 			}
499 			*(++top) = invert;
500 			continue;
501 		case '!':					/* #3 */
502 			if (!is_not(next))
503 				break;
504 			invert = !invert;
505 			continue;
506 		}
507 
508 		if (N >= nr_preds) {
509 			parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
510 			goto out_free;
511 		}
512 
513 		inverts[N] = invert;				/* #4 */
514 		prog[N].target = N-1;
515 
516 		len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
517 		if (len < 0) {
518 			ret = len;
519 			goto out_free;
520 		}
521 		ptr = next + len;
522 
523 		N++;
524 
525 		ret = -1;
526 		while (1) {					/* #5 */
527 			next = ptr++;
528 			if (isspace(*next))
529 				continue;
530 
531 			switch (*next) {
532 			case ')':
533 			case '\0':
534 				break;
535 			case '&':
536 			case '|':
537 				/* accepting only "&&" or "||" */
538 				if (next[1] == next[0]) {
539 					ptr++;
540 					break;
541 				}
542 				fallthrough;
543 			default:
544 				parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
545 					    next - str);
546 				goto out_free;
547 			}
548 
549 			invert = *top & INVERT;
550 
551 			if (*top & PROCESS_AND) {		/* #7 */
552 				update_preds(prog, N - 1, invert);
553 				*top &= ~PROCESS_AND;
554 			}
555 			if (*next == '&') {			/* #8 */
556 				*top |= PROCESS_AND;
557 				break;
558 			}
559 			if (*top & PROCESS_OR) {		/* #9 */
560 				update_preds(prog, N - 1, !invert);
561 				*top &= ~PROCESS_OR;
562 			}
563 			if (*next == '|') {			/* #10 */
564 				*top |= PROCESS_OR;
565 				break;
566 			}
567 			if (!*next)				/* #11 */
568 				goto out;
569 
570 			if (top == op_stack) {
571 				ret = -1;
572 				/* Too few '(' */
573 				parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
574 				goto out_free;
575 			}
576 			top--;					/* #12 */
577 		}
578 	}
579  out:
580 	if (top != op_stack) {
581 		/* Too many '(' */
582 		parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
583 		goto out_free;
584 	}
585 
586 	if (!N) {
587 		/* No program? */
588 		ret = -EINVAL;
589 		parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
590 		goto out_free;
591 	}
592 
593 	prog[N].pred = NULL;					/* #13 */
594 	prog[N].target = 1;		/* TRUE */
595 	prog[N+1].pred = NULL;
596 	prog[N+1].target = 0;		/* FALSE */
597 	prog[N-1].target = N;
598 	prog[N-1].when_to_branch = false;
599 
600 	/* Second Pass */
601 	for (i = N-1 ; i--; ) {
602 		int target = prog[i].target;
603 		if (prog[i].when_to_branch == prog[target].when_to_branch)
604 			prog[i].target = prog[target].target;
605 	}
606 
607 	/* Third Pass */
608 	for (i = 0; i < N; i++) {
609 		invert = inverts[i] ^ prog[i].when_to_branch;
610 		prog[i].when_to_branch = invert;
611 		/* Make sure the program always moves forward */
612 		if (WARN_ON(prog[i].target <= i)) {
613 			ret = -EINVAL;
614 			goto out_free;
615 		}
616 	}
617 
618 	kfree(op_stack);
619 	kfree(inverts);
620 	return prog;
621 out_free:
622 	kfree(op_stack);
623 	kfree(inverts);
624 	if (prog_stack) {
625 		for (i = 0; prog_stack[i].pred; i++)
626 			kfree(prog_stack[i].pred);
627 		kfree(prog_stack);
628 	}
629 	return ERR_PTR(ret);
630 }
631 
632 enum pred_cmp_types {
633 	PRED_CMP_TYPE_NOP,
634 	PRED_CMP_TYPE_LT,
635 	PRED_CMP_TYPE_LE,
636 	PRED_CMP_TYPE_GT,
637 	PRED_CMP_TYPE_GE,
638 	PRED_CMP_TYPE_BAND,
639 };
640 
641 #define DEFINE_COMPARISON_PRED(type)					\
642 static int filter_pred_##type(struct filter_pred *pred, void *event)	\
643 {									\
644 	switch (pred->op) {						\
645 	case OP_LT: {							\
646 		type *addr = (type *)(event + pred->offset);		\
647 		type val = (type)pred->val;				\
648 		return *addr < val;					\
649 	}								\
650 	case OP_LE: {					\
651 		type *addr = (type *)(event + pred->offset);		\
652 		type val = (type)pred->val;				\
653 		return *addr <= val;					\
654 	}								\
655 	case OP_GT: {					\
656 		type *addr = (type *)(event + pred->offset);		\
657 		type val = (type)pred->val;				\
658 		return *addr > val;					\
659 	}								\
660 	case OP_GE: {					\
661 		type *addr = (type *)(event + pred->offset);		\
662 		type val = (type)pred->val;				\
663 		return *addr >= val;					\
664 	}								\
665 	case OP_BAND: {					\
666 		type *addr = (type *)(event + pred->offset);		\
667 		type val = (type)pred->val;				\
668 		return !!(*addr & val);					\
669 	}								\
670 	default:							\
671 		return 0;						\
672 	}								\
673 }
674 
675 #define DEFINE_EQUALITY_PRED(size)					\
676 static int filter_pred_##size(struct filter_pred *pred, void *event)	\
677 {									\
678 	u##size *addr = (u##size *)(event + pred->offset);		\
679 	u##size val = (u##size)pred->val;				\
680 	int match;							\
681 									\
682 	match = (val == *addr) ^ pred->not;				\
683 									\
684 	return match;							\
685 }
686 
687 DEFINE_COMPARISON_PRED(s64);
688 DEFINE_COMPARISON_PRED(u64);
689 DEFINE_COMPARISON_PRED(s32);
690 DEFINE_COMPARISON_PRED(u32);
691 DEFINE_COMPARISON_PRED(s16);
692 DEFINE_COMPARISON_PRED(u16);
693 DEFINE_COMPARISON_PRED(s8);
694 DEFINE_COMPARISON_PRED(u8);
695 
696 DEFINE_EQUALITY_PRED(64);
697 DEFINE_EQUALITY_PRED(32);
698 DEFINE_EQUALITY_PRED(16);
699 DEFINE_EQUALITY_PRED(8);
700 
701 /* user space strings temp buffer */
702 #define USTRING_BUF_SIZE	1024
703 
704 struct ustring_buffer {
705 	char		buffer[USTRING_BUF_SIZE];
706 };
707 
708 static __percpu struct ustring_buffer *ustring_per_cpu;
709 
710 static __always_inline char *test_string(char *str)
711 {
712 	struct ustring_buffer *ubuf;
713 	char *kstr;
714 
715 	if (!ustring_per_cpu)
716 		return NULL;
717 
718 	ubuf = this_cpu_ptr(ustring_per_cpu);
719 	kstr = ubuf->buffer;
720 
721 	/* For safety, do not trust the string pointer */
722 	if (!strncpy_from_kernel_nofault(kstr, str, USTRING_BUF_SIZE))
723 		return NULL;
724 	return kstr;
725 }
726 
727 static __always_inline char *test_ustring(char *str)
728 {
729 	struct ustring_buffer *ubuf;
730 	char __user *ustr;
731 	char *kstr;
732 
733 	if (!ustring_per_cpu)
734 		return NULL;
735 
736 	ubuf = this_cpu_ptr(ustring_per_cpu);
737 	kstr = ubuf->buffer;
738 
739 	/* user space address? */
740 	ustr = (char __user *)str;
741 	if (!strncpy_from_user_nofault(kstr, ustr, USTRING_BUF_SIZE))
742 		return NULL;
743 
744 	return kstr;
745 }
746 
747 /* Filter predicate for fixed sized arrays of characters */
748 static int filter_pred_string(struct filter_pred *pred, void *event)
749 {
750 	char *addr = (char *)(event + pred->offset);
751 	int cmp, match;
752 
753 	cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len);
754 
755 	match = cmp ^ pred->not;
756 
757 	return match;
758 }
759 
760 static __always_inline int filter_pchar(struct filter_pred *pred, char *str)
761 {
762 	int cmp, match;
763 	int len;
764 
765 	len = strlen(str) + 1;	/* including tailing '\0' */
766 	cmp = pred->regex.match(str, &pred->regex, len);
767 
768 	match = cmp ^ pred->not;
769 
770 	return match;
771 }
772 /* Filter predicate for char * pointers */
773 static int filter_pred_pchar(struct filter_pred *pred, void *event)
774 {
775 	char **addr = (char **)(event + pred->offset);
776 	char *str;
777 
778 	str = test_string(*addr);
779 	if (!str)
780 		return 0;
781 
782 	return filter_pchar(pred, str);
783 }
784 
785 /* Filter predicate for char * pointers in user space*/
786 static int filter_pred_pchar_user(struct filter_pred *pred, void *event)
787 {
788 	char **addr = (char **)(event + pred->offset);
789 	char *str;
790 
791 	str = test_ustring(*addr);
792 	if (!str)
793 		return 0;
794 
795 	return filter_pchar(pred, str);
796 }
797 
798 /*
799  * Filter predicate for dynamic sized arrays of characters.
800  * These are implemented through a list of strings at the end
801  * of the entry.
802  * Also each of these strings have a field in the entry which
803  * contains its offset from the beginning of the entry.
804  * We have then first to get this field, dereference it
805  * and add it to the address of the entry, and at last we have
806  * the address of the string.
807  */
808 static int filter_pred_strloc(struct filter_pred *pred, void *event)
809 {
810 	u32 str_item = *(u32 *)(event + pred->offset);
811 	int str_loc = str_item & 0xffff;
812 	int str_len = str_item >> 16;
813 	char *addr = (char *)(event + str_loc);
814 	int cmp, match;
815 
816 	cmp = pred->regex.match(addr, &pred->regex, str_len);
817 
818 	match = cmp ^ pred->not;
819 
820 	return match;
821 }
822 
823 /*
824  * Filter predicate for relative dynamic sized arrays of characters.
825  * These are implemented through a list of strings at the end
826  * of the entry as same as dynamic string.
827  * The difference is that the relative one records the location offset
828  * from the field itself, not the event entry.
829  */
830 static int filter_pred_strrelloc(struct filter_pred *pred, void *event)
831 {
832 	u32 *item = (u32 *)(event + pred->offset);
833 	u32 str_item = *item;
834 	int str_loc = str_item & 0xffff;
835 	int str_len = str_item >> 16;
836 	char *addr = (char *)(&item[1]) + str_loc;
837 	int cmp, match;
838 
839 	cmp = pred->regex.match(addr, &pred->regex, str_len);
840 
841 	match = cmp ^ pred->not;
842 
843 	return match;
844 }
845 
846 /* Filter predicate for CPUs. */
847 static int filter_pred_cpu(struct filter_pred *pred, void *event)
848 {
849 	int cpu, cmp;
850 
851 	cpu = raw_smp_processor_id();
852 	cmp = pred->val;
853 
854 	switch (pred->op) {
855 	case OP_EQ:
856 		return cpu == cmp;
857 	case OP_NE:
858 		return cpu != cmp;
859 	case OP_LT:
860 		return cpu < cmp;
861 	case OP_LE:
862 		return cpu <= cmp;
863 	case OP_GT:
864 		return cpu > cmp;
865 	case OP_GE:
866 		return cpu >= cmp;
867 	default:
868 		return 0;
869 	}
870 }
871 
872 /* Filter predicate for COMM. */
873 static int filter_pred_comm(struct filter_pred *pred, void *event)
874 {
875 	int cmp;
876 
877 	cmp = pred->regex.match(current->comm, &pred->regex,
878 				TASK_COMM_LEN);
879 	return cmp ^ pred->not;
880 }
881 
882 /* Filter predicate for functions. */
883 static int filter_pred_function(struct filter_pred *pred, void *event)
884 {
885 	unsigned long *addr = (unsigned long *)(event + pred->offset);
886 	unsigned long start = (unsigned long)pred->val;
887 	unsigned long end = (unsigned long)pred->val2;
888 	int ret = *addr >= start && *addr < end;
889 
890 	return pred->op == OP_EQ ? ret : !ret;
891 }
892 
893 /*
894  * regex_match_foo - Basic regex callbacks
895  *
896  * @str: the string to be searched
897  * @r:   the regex structure containing the pattern string
898  * @len: the length of the string to be searched (including '\0')
899  *
900  * Note:
901  * - @str might not be NULL-terminated if it's of type DYN_STRING
902  *   RDYN_STRING, or STATIC_STRING, unless @len is zero.
903  */
904 
905 static int regex_match_full(char *str, struct regex *r, int len)
906 {
907 	/* len of zero means str is dynamic and ends with '\0' */
908 	if (!len)
909 		return strcmp(str, r->pattern) == 0;
910 
911 	return strncmp(str, r->pattern, len) == 0;
912 }
913 
914 static int regex_match_front(char *str, struct regex *r, int len)
915 {
916 	if (len && len < r->len)
917 		return 0;
918 
919 	return strncmp(str, r->pattern, r->len) == 0;
920 }
921 
922 static int regex_match_middle(char *str, struct regex *r, int len)
923 {
924 	if (!len)
925 		return strstr(str, r->pattern) != NULL;
926 
927 	return strnstr(str, r->pattern, len) != NULL;
928 }
929 
930 static int regex_match_end(char *str, struct regex *r, int len)
931 {
932 	int strlen = len - 1;
933 
934 	if (strlen >= r->len &&
935 	    memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
936 		return 1;
937 	return 0;
938 }
939 
940 static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
941 {
942 	if (glob_match(r->pattern, str))
943 		return 1;
944 	return 0;
945 }
946 
947 /**
948  * filter_parse_regex - parse a basic regex
949  * @buff:   the raw regex
950  * @len:    length of the regex
951  * @search: will point to the beginning of the string to compare
952  * @not:    tell whether the match will have to be inverted
953  *
954  * This passes in a buffer containing a regex and this function will
955  * set search to point to the search part of the buffer and
956  * return the type of search it is (see enum above).
957  * This does modify buff.
958  *
959  * Returns enum type.
960  *  search returns the pointer to use for comparison.
961  *  not returns 1 if buff started with a '!'
962  *     0 otherwise.
963  */
964 enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
965 {
966 	int type = MATCH_FULL;
967 	int i;
968 
969 	if (buff[0] == '!') {
970 		*not = 1;
971 		buff++;
972 		len--;
973 	} else
974 		*not = 0;
975 
976 	*search = buff;
977 
978 	if (isdigit(buff[0]))
979 		return MATCH_INDEX;
980 
981 	for (i = 0; i < len; i++) {
982 		if (buff[i] == '*') {
983 			if (!i) {
984 				type = MATCH_END_ONLY;
985 			} else if (i == len - 1) {
986 				if (type == MATCH_END_ONLY)
987 					type = MATCH_MIDDLE_ONLY;
988 				else
989 					type = MATCH_FRONT_ONLY;
990 				buff[i] = 0;
991 				break;
992 			} else {	/* pattern continues, use full glob */
993 				return MATCH_GLOB;
994 			}
995 		} else if (strchr("[?\\", buff[i])) {
996 			return MATCH_GLOB;
997 		}
998 	}
999 	if (buff[0] == '*')
1000 		*search = buff + 1;
1001 
1002 	return type;
1003 }
1004 
1005 static void filter_build_regex(struct filter_pred *pred)
1006 {
1007 	struct regex *r = &pred->regex;
1008 	char *search;
1009 	enum regex_type type = MATCH_FULL;
1010 
1011 	if (pred->op == OP_GLOB) {
1012 		type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
1013 		r->len = strlen(search);
1014 		memmove(r->pattern, search, r->len+1);
1015 	}
1016 
1017 	switch (type) {
1018 	/* MATCH_INDEX should not happen, but if it does, match full */
1019 	case MATCH_INDEX:
1020 	case MATCH_FULL:
1021 		r->match = regex_match_full;
1022 		break;
1023 	case MATCH_FRONT_ONLY:
1024 		r->match = regex_match_front;
1025 		break;
1026 	case MATCH_MIDDLE_ONLY:
1027 		r->match = regex_match_middle;
1028 		break;
1029 	case MATCH_END_ONLY:
1030 		r->match = regex_match_end;
1031 		break;
1032 	case MATCH_GLOB:
1033 		r->match = regex_match_glob;
1034 		break;
1035 	}
1036 }
1037 
1038 
1039 #ifdef CONFIG_FTRACE_STARTUP_TEST
1040 static int test_pred_visited_fn(struct filter_pred *pred, void *event);
1041 #else
1042 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
1043 {
1044 	return 0;
1045 }
1046 #endif
1047 
1048 
1049 static int filter_pred_fn_call(struct filter_pred *pred, void *event);
1050 
1051 /* return 1 if event matches, 0 otherwise (discard) */
1052 int filter_match_preds(struct event_filter *filter, void *rec)
1053 {
1054 	struct prog_entry *prog;
1055 	int i;
1056 
1057 	/* no filter is considered a match */
1058 	if (!filter)
1059 		return 1;
1060 
1061 	/* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
1062 	prog = rcu_dereference_raw(filter->prog);
1063 	if (!prog)
1064 		return 1;
1065 
1066 	for (i = 0; prog[i].pred; i++) {
1067 		struct filter_pred *pred = prog[i].pred;
1068 		int match = filter_pred_fn_call(pred, rec);
1069 		if (match == prog[i].when_to_branch)
1070 			i = prog[i].target;
1071 	}
1072 	return prog[i].target;
1073 }
1074 EXPORT_SYMBOL_GPL(filter_match_preds);
1075 
1076 static void remove_filter_string(struct event_filter *filter)
1077 {
1078 	if (!filter)
1079 		return;
1080 
1081 	kfree(filter->filter_string);
1082 	filter->filter_string = NULL;
1083 }
1084 
1085 static void append_filter_err(struct trace_array *tr,
1086 			      struct filter_parse_error *pe,
1087 			      struct event_filter *filter)
1088 {
1089 	struct trace_seq *s;
1090 	int pos = pe->lasterr_pos;
1091 	char *buf;
1092 	int len;
1093 
1094 	if (WARN_ON(!filter->filter_string))
1095 		return;
1096 
1097 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1098 	if (!s)
1099 		return;
1100 	trace_seq_init(s);
1101 
1102 	len = strlen(filter->filter_string);
1103 	if (pos > len)
1104 		pos = len;
1105 
1106 	/* indexing is off by one */
1107 	if (pos)
1108 		pos++;
1109 
1110 	trace_seq_puts(s, filter->filter_string);
1111 	if (pe->lasterr > 0) {
1112 		trace_seq_printf(s, "\n%*s", pos, "^");
1113 		trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
1114 		tracing_log_err(tr, "event filter parse error",
1115 				filter->filter_string, err_text,
1116 				pe->lasterr, pe->lasterr_pos);
1117 	} else {
1118 		trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
1119 		tracing_log_err(tr, "event filter parse error",
1120 				filter->filter_string, err_text,
1121 				FILT_ERR_ERRNO, 0);
1122 	}
1123 	trace_seq_putc(s, 0);
1124 	buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
1125 	if (buf) {
1126 		kfree(filter->filter_string);
1127 		filter->filter_string = buf;
1128 	}
1129 	kfree(s);
1130 }
1131 
1132 static inline struct event_filter *event_filter(struct trace_event_file *file)
1133 {
1134 	return file->filter;
1135 }
1136 
1137 /* caller must hold event_mutex */
1138 void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
1139 {
1140 	struct event_filter *filter = event_filter(file);
1141 
1142 	if (filter && filter->filter_string)
1143 		trace_seq_printf(s, "%s\n", filter->filter_string);
1144 	else
1145 		trace_seq_puts(s, "none\n");
1146 }
1147 
1148 void print_subsystem_event_filter(struct event_subsystem *system,
1149 				  struct trace_seq *s)
1150 {
1151 	struct event_filter *filter;
1152 
1153 	mutex_lock(&event_mutex);
1154 	filter = system->filter;
1155 	if (filter && filter->filter_string)
1156 		trace_seq_printf(s, "%s\n", filter->filter_string);
1157 	else
1158 		trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
1159 	mutex_unlock(&event_mutex);
1160 }
1161 
1162 static void free_prog(struct event_filter *filter)
1163 {
1164 	struct prog_entry *prog;
1165 	int i;
1166 
1167 	prog = rcu_access_pointer(filter->prog);
1168 	if (!prog)
1169 		return;
1170 
1171 	for (i = 0; prog[i].pred; i++)
1172 		kfree(prog[i].pred);
1173 	kfree(prog);
1174 }
1175 
1176 static void filter_disable(struct trace_event_file *file)
1177 {
1178 	unsigned long old_flags = file->flags;
1179 
1180 	file->flags &= ~EVENT_FILE_FL_FILTERED;
1181 
1182 	if (old_flags != file->flags)
1183 		trace_buffered_event_disable();
1184 }
1185 
1186 static void __free_filter(struct event_filter *filter)
1187 {
1188 	if (!filter)
1189 		return;
1190 
1191 	free_prog(filter);
1192 	kfree(filter->filter_string);
1193 	kfree(filter);
1194 }
1195 
1196 void free_event_filter(struct event_filter *filter)
1197 {
1198 	__free_filter(filter);
1199 }
1200 
1201 static inline void __remove_filter(struct trace_event_file *file)
1202 {
1203 	filter_disable(file);
1204 	remove_filter_string(file->filter);
1205 }
1206 
1207 static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1208 					struct trace_array *tr)
1209 {
1210 	struct trace_event_file *file;
1211 
1212 	list_for_each_entry(file, &tr->events, list) {
1213 		if (file->system != dir)
1214 			continue;
1215 		__remove_filter(file);
1216 	}
1217 }
1218 
1219 static inline void __free_subsystem_filter(struct trace_event_file *file)
1220 {
1221 	__free_filter(file->filter);
1222 	file->filter = NULL;
1223 }
1224 
1225 static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1226 					  struct trace_array *tr)
1227 {
1228 	struct trace_event_file *file;
1229 
1230 	list_for_each_entry(file, &tr->events, list) {
1231 		if (file->system != dir)
1232 			continue;
1233 		__free_subsystem_filter(file);
1234 	}
1235 }
1236 
1237 int filter_assign_type(const char *type)
1238 {
1239 	if (strstr(type, "__data_loc") && strstr(type, "char"))
1240 		return FILTER_DYN_STRING;
1241 
1242 	if (strstr(type, "__rel_loc") && strstr(type, "char"))
1243 		return FILTER_RDYN_STRING;
1244 
1245 	if (strchr(type, '[') && strstr(type, "char"))
1246 		return FILTER_STATIC_STRING;
1247 
1248 	if (strcmp(type, "char *") == 0 || strcmp(type, "const char *") == 0)
1249 		return FILTER_PTR_STRING;
1250 
1251 	return FILTER_OTHER;
1252 }
1253 
1254 static enum filter_pred_fn select_comparison_fn(enum filter_op_ids op,
1255 						int field_size, int field_is_signed)
1256 {
1257 	enum filter_pred_fn fn = FILTER_PRED_FN_NOP;
1258 	int pred_func_index = -1;
1259 
1260 	switch (op) {
1261 	case OP_EQ:
1262 	case OP_NE:
1263 		break;
1264 	default:
1265 		if (WARN_ON_ONCE(op < PRED_FUNC_START))
1266 			return fn;
1267 		pred_func_index = op - PRED_FUNC_START;
1268 		if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1269 			return fn;
1270 	}
1271 
1272 	switch (field_size) {
1273 	case 8:
1274 		if (pred_func_index < 0)
1275 			fn = FILTER_PRED_FN_64;
1276 		else if (field_is_signed)
1277 			fn = FILTER_PRED_FN_S64;
1278 		else
1279 			fn = FILTER_PRED_FN_U64;
1280 		break;
1281 	case 4:
1282 		if (pred_func_index < 0)
1283 			fn = FILTER_PRED_FN_32;
1284 		else if (field_is_signed)
1285 			fn = FILTER_PRED_FN_S32;
1286 		else
1287 			fn = FILTER_PRED_FN_U32;
1288 		break;
1289 	case 2:
1290 		if (pred_func_index < 0)
1291 			fn = FILTER_PRED_FN_16;
1292 		else if (field_is_signed)
1293 			fn = FILTER_PRED_FN_S16;
1294 		else
1295 			fn = FILTER_PRED_FN_U16;
1296 		break;
1297 	case 1:
1298 		if (pred_func_index < 0)
1299 			fn = FILTER_PRED_FN_8;
1300 		else if (field_is_signed)
1301 			fn = FILTER_PRED_FN_S8;
1302 		else
1303 			fn = FILTER_PRED_FN_U8;
1304 		break;
1305 	}
1306 
1307 	return fn;
1308 }
1309 
1310 
1311 static int filter_pred_fn_call(struct filter_pred *pred, void *event)
1312 {
1313 	switch (pred->fn_num) {
1314 	case FILTER_PRED_FN_64:
1315 		return filter_pred_64(pred, event);
1316 	case FILTER_PRED_FN_S64:
1317 		return filter_pred_s64(pred, event);
1318 	case FILTER_PRED_FN_U64:
1319 		return filter_pred_u64(pred, event);
1320 	case FILTER_PRED_FN_32:
1321 		return filter_pred_32(pred, event);
1322 	case FILTER_PRED_FN_S32:
1323 		return filter_pred_s32(pred, event);
1324 	case FILTER_PRED_FN_U32:
1325 		return filter_pred_u32(pred, event);
1326 	case FILTER_PRED_FN_16:
1327 		return filter_pred_16(pred, event);
1328 	case FILTER_PRED_FN_S16:
1329 		return filter_pred_s16(pred, event);
1330 	case FILTER_PRED_FN_U16:
1331 		return filter_pred_u16(pred, event);
1332 	case FILTER_PRED_FN_8:
1333 		return filter_pred_8(pred, event);
1334 	case FILTER_PRED_FN_S8:
1335 		return filter_pred_s8(pred, event);
1336 	case FILTER_PRED_FN_U8:
1337 		return filter_pred_u8(pred, event);
1338 	case FILTER_PRED_FN_COMM:
1339 		return filter_pred_comm(pred, event);
1340 	case FILTER_PRED_FN_STRING:
1341 		return filter_pred_string(pred, event);
1342 	case FILTER_PRED_FN_STRLOC:
1343 		return filter_pred_strloc(pred, event);
1344 	case FILTER_PRED_FN_STRRELLOC:
1345 		return filter_pred_strrelloc(pred, event);
1346 	case FILTER_PRED_FN_PCHAR_USER:
1347 		return filter_pred_pchar_user(pred, event);
1348 	case FILTER_PRED_FN_PCHAR:
1349 		return filter_pred_pchar(pred, event);
1350 	case FILTER_PRED_FN_CPU:
1351 		return filter_pred_cpu(pred, event);
1352 	case FILTER_PRED_FN_FUNCTION:
1353 		return filter_pred_function(pred, event);
1354 	case FILTER_PRED_TEST_VISITED:
1355 		return test_pred_visited_fn(pred, event);
1356 	default:
1357 		return 0;
1358 	}
1359 }
1360 
1361 /* Called when a predicate is encountered by predicate_parse() */
1362 static int parse_pred(const char *str, void *data,
1363 		      int pos, struct filter_parse_error *pe,
1364 		      struct filter_pred **pred_ptr)
1365 {
1366 	struct trace_event_call *call = data;
1367 	struct ftrace_event_field *field;
1368 	struct filter_pred *pred = NULL;
1369 	unsigned long offset;
1370 	unsigned long size;
1371 	unsigned long ip;
1372 	char num_buf[24];	/* Big enough to hold an address */
1373 	char *field_name;
1374 	char *name;
1375 	bool function = false;
1376 	bool ustring = false;
1377 	char q;
1378 	u64 val;
1379 	int len;
1380 	int ret;
1381 	int op;
1382 	int s;
1383 	int i = 0;
1384 
1385 	/* First find the field to associate to */
1386 	while (isspace(str[i]))
1387 		i++;
1388 	s = i;
1389 
1390 	while (isalnum(str[i]) || str[i] == '_')
1391 		i++;
1392 
1393 	len = i - s;
1394 
1395 	if (!len)
1396 		return -1;
1397 
1398 	field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1399 	if (!field_name)
1400 		return -ENOMEM;
1401 
1402 	/* Make sure that the field exists */
1403 
1404 	field = trace_find_event_field(call, field_name);
1405 	kfree(field_name);
1406 	if (!field) {
1407 		parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1408 		return -EINVAL;
1409 	}
1410 
1411 	/* See if the field is a user space string */
1412 	if ((len = str_has_prefix(str + i, ".ustring"))) {
1413 		ustring = true;
1414 		i += len;
1415 	}
1416 
1417 	/* See if the field is a kernel function name */
1418 	if ((len = str_has_prefix(str + i, ".function"))) {
1419 		function = true;
1420 		i += len;
1421 	}
1422 
1423 	while (isspace(str[i]))
1424 		i++;
1425 
1426 	/* Make sure this op is supported */
1427 	for (op = 0; ops[op]; op++) {
1428 		/* This is why '<=' must come before '<' in ops[] */
1429 		if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1430 			break;
1431 	}
1432 
1433 	if (!ops[op]) {
1434 		parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1435 		goto err_free;
1436 	}
1437 
1438 	i += strlen(ops[op]);
1439 
1440 	while (isspace(str[i]))
1441 		i++;
1442 
1443 	s = i;
1444 
1445 	pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1446 	if (!pred)
1447 		return -ENOMEM;
1448 
1449 	pred->field = field;
1450 	pred->offset = field->offset;
1451 	pred->op = op;
1452 
1453 	if (function) {
1454 		/* The field must be the same size as long */
1455 		if (field->size != sizeof(long)) {
1456 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1457 			goto err_free;
1458 		}
1459 
1460 		/* Function only works with '==' or '!=' and an unquoted string */
1461 		switch (op) {
1462 		case OP_NE:
1463 		case OP_EQ:
1464 			break;
1465 		default:
1466 			parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1467 			goto err_free;
1468 		}
1469 
1470 		if (isdigit(str[i])) {
1471 			/* We allow 0xDEADBEEF */
1472 			while (isalnum(str[i]))
1473 				i++;
1474 
1475 			len = i - s;
1476 			/* 0xfeedfacedeadbeef is 18 chars max */
1477 			if (len >= sizeof(num_buf)) {
1478 				parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1479 				goto err_free;
1480 			}
1481 
1482 			strncpy(num_buf, str + s, len);
1483 			num_buf[len] = 0;
1484 
1485 			ret = kstrtoul(num_buf, 0, &ip);
1486 			if (ret) {
1487 				parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1488 				goto err_free;
1489 			}
1490 		} else {
1491 			s = i;
1492 			for (; str[i] && !isspace(str[i]); i++)
1493 				;
1494 
1495 			len = i - s;
1496 			name = kmemdup_nul(str + s, len, GFP_KERNEL);
1497 			if (!name)
1498 				goto err_mem;
1499 			ip = kallsyms_lookup_name(name);
1500 			kfree(name);
1501 			if (!ip) {
1502 				parse_error(pe, FILT_ERR_NO_FUNCTION, pos + i);
1503 				goto err_free;
1504 			}
1505 		}
1506 
1507 		/* Now find the function start and end address */
1508 		if (!kallsyms_lookup_size_offset(ip, &size, &offset)) {
1509 			parse_error(pe, FILT_ERR_NO_FUNCTION, pos + i);
1510 			goto err_free;
1511 		}
1512 
1513 		pred->fn_num = FILTER_PRED_FN_FUNCTION;
1514 		pred->val = ip - offset;
1515 		pred->val2 = pred->val + size;
1516 
1517 	} else if (ftrace_event_is_function(call)) {
1518 		/*
1519 		 * Perf does things different with function events.
1520 		 * It only allows an "ip" field, and expects a string.
1521 		 * But the string does not need to be surrounded by quotes.
1522 		 * If it is a string, the assigned function as a nop,
1523 		 * (perf doesn't use it) and grab everything.
1524 		 */
1525 		if (strcmp(field->name, "ip") != 0) {
1526 			parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1527 			goto err_free;
1528 		}
1529 		pred->fn_num = FILTER_PRED_FN_NOP;
1530 
1531 		/*
1532 		 * Quotes are not required, but if they exist then we need
1533 		 * to read them till we hit a matching one.
1534 		 */
1535 		if (str[i] == '\'' || str[i] == '"')
1536 			q = str[i];
1537 		else
1538 			q = 0;
1539 
1540 		for (i++; str[i]; i++) {
1541 			if (q && str[i] == q)
1542 				break;
1543 			if (!q && (str[i] == ')' || str[i] == '&' ||
1544 				   str[i] == '|'))
1545 				break;
1546 		}
1547 		/* Skip quotes */
1548 		if (q)
1549 			s++;
1550 		len = i - s;
1551 		if (len >= MAX_FILTER_STR_VAL) {
1552 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1553 			goto err_free;
1554 		}
1555 
1556 		pred->regex.len = len;
1557 		strncpy(pred->regex.pattern, str + s, len);
1558 		pred->regex.pattern[len] = 0;
1559 
1560 	/* This is either a string, or an integer */
1561 	} else if (str[i] == '\'' || str[i] == '"') {
1562 		char q = str[i];
1563 
1564 		/* Make sure the op is OK for strings */
1565 		switch (op) {
1566 		case OP_NE:
1567 			pred->not = 1;
1568 			fallthrough;
1569 		case OP_GLOB:
1570 		case OP_EQ:
1571 			break;
1572 		default:
1573 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1574 			goto err_free;
1575 		}
1576 
1577 		/* Make sure the field is OK for strings */
1578 		if (!is_string_field(field)) {
1579 			parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1580 			goto err_free;
1581 		}
1582 
1583 		for (i++; str[i]; i++) {
1584 			if (str[i] == q)
1585 				break;
1586 		}
1587 		if (!str[i]) {
1588 			parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1589 			goto err_free;
1590 		}
1591 
1592 		/* Skip quotes */
1593 		s++;
1594 		len = i - s;
1595 		if (len >= MAX_FILTER_STR_VAL) {
1596 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1597 			goto err_free;
1598 		}
1599 
1600 		pred->regex.len = len;
1601 		strncpy(pred->regex.pattern, str + s, len);
1602 		pred->regex.pattern[len] = 0;
1603 
1604 		filter_build_regex(pred);
1605 
1606 		if (field->filter_type == FILTER_COMM) {
1607 			pred->fn_num = FILTER_PRED_FN_COMM;
1608 
1609 		} else if (field->filter_type == FILTER_STATIC_STRING) {
1610 			pred->fn_num = FILTER_PRED_FN_STRING;
1611 			pred->regex.field_len = field->size;
1612 
1613 		} else if (field->filter_type == FILTER_DYN_STRING) {
1614 			pred->fn_num = FILTER_PRED_FN_STRLOC;
1615 		} else if (field->filter_type == FILTER_RDYN_STRING)
1616 			pred->fn_num = FILTER_PRED_FN_STRRELLOC;
1617 		else {
1618 
1619 			if (!ustring_per_cpu) {
1620 				/* Once allocated, keep it around for good */
1621 				ustring_per_cpu = alloc_percpu(struct ustring_buffer);
1622 				if (!ustring_per_cpu)
1623 					goto err_mem;
1624 			}
1625 
1626 			if (ustring)
1627 				pred->fn_num = FILTER_PRED_FN_PCHAR_USER;
1628 			else
1629 				pred->fn_num = FILTER_PRED_FN_PCHAR;
1630 		}
1631 		/* go past the last quote */
1632 		i++;
1633 
1634 	} else if (isdigit(str[i]) || str[i] == '-') {
1635 
1636 		/* Make sure the field is not a string */
1637 		if (is_string_field(field)) {
1638 			parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1639 			goto err_free;
1640 		}
1641 
1642 		if (op == OP_GLOB) {
1643 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1644 			goto err_free;
1645 		}
1646 
1647 		if (str[i] == '-')
1648 			i++;
1649 
1650 		/* We allow 0xDEADBEEF */
1651 		while (isalnum(str[i]))
1652 			i++;
1653 
1654 		len = i - s;
1655 		/* 0xfeedfacedeadbeef is 18 chars max */
1656 		if (len >= sizeof(num_buf)) {
1657 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1658 			goto err_free;
1659 		}
1660 
1661 		strncpy(num_buf, str + s, len);
1662 		num_buf[len] = 0;
1663 
1664 		/* Make sure it is a value */
1665 		if (field->is_signed)
1666 			ret = kstrtoll(num_buf, 0, &val);
1667 		else
1668 			ret = kstrtoull(num_buf, 0, &val);
1669 		if (ret) {
1670 			parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1671 			goto err_free;
1672 		}
1673 
1674 		pred->val = val;
1675 
1676 		if (field->filter_type == FILTER_CPU)
1677 			pred->fn_num = FILTER_PRED_FN_CPU;
1678 		else {
1679 			pred->fn_num = select_comparison_fn(pred->op, field->size,
1680 							    field->is_signed);
1681 			if (pred->op == OP_NE)
1682 				pred->not = 1;
1683 		}
1684 
1685 	} else {
1686 		parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1687 		goto err_free;
1688 	}
1689 
1690 	*pred_ptr = pred;
1691 	return i;
1692 
1693 err_free:
1694 	kfree(pred);
1695 	return -EINVAL;
1696 err_mem:
1697 	kfree(pred);
1698 	return -ENOMEM;
1699 }
1700 
1701 enum {
1702 	TOO_MANY_CLOSE		= -1,
1703 	TOO_MANY_OPEN		= -2,
1704 	MISSING_QUOTE		= -3,
1705 };
1706 
1707 /*
1708  * Read the filter string once to calculate the number of predicates
1709  * as well as how deep the parentheses go.
1710  *
1711  * Returns:
1712  *   0 - everything is fine (err is undefined)
1713  *  -1 - too many ')'
1714  *  -2 - too many '('
1715  *  -3 - No matching quote
1716  */
1717 static int calc_stack(const char *str, int *parens, int *preds, int *err)
1718 {
1719 	bool is_pred = false;
1720 	int nr_preds = 0;
1721 	int open = 1; /* Count the expression as "(E)" */
1722 	int last_quote = 0;
1723 	int max_open = 1;
1724 	int quote = 0;
1725 	int i;
1726 
1727 	*err = 0;
1728 
1729 	for (i = 0; str[i]; i++) {
1730 		if (isspace(str[i]))
1731 			continue;
1732 		if (quote) {
1733 			if (str[i] == quote)
1734 			       quote = 0;
1735 			continue;
1736 		}
1737 
1738 		switch (str[i]) {
1739 		case '\'':
1740 		case '"':
1741 			quote = str[i];
1742 			last_quote = i;
1743 			break;
1744 		case '|':
1745 		case '&':
1746 			if (str[i+1] != str[i])
1747 				break;
1748 			is_pred = false;
1749 			continue;
1750 		case '(':
1751 			is_pred = false;
1752 			open++;
1753 			if (open > max_open)
1754 				max_open = open;
1755 			continue;
1756 		case ')':
1757 			is_pred = false;
1758 			if (open == 1) {
1759 				*err = i;
1760 				return TOO_MANY_CLOSE;
1761 			}
1762 			open--;
1763 			continue;
1764 		}
1765 		if (!is_pred) {
1766 			nr_preds++;
1767 			is_pred = true;
1768 		}
1769 	}
1770 
1771 	if (quote) {
1772 		*err = last_quote;
1773 		return MISSING_QUOTE;
1774 	}
1775 
1776 	if (open != 1) {
1777 		int level = open;
1778 
1779 		/* find the bad open */
1780 		for (i--; i; i--) {
1781 			if (quote) {
1782 				if (str[i] == quote)
1783 					quote = 0;
1784 				continue;
1785 			}
1786 			switch (str[i]) {
1787 			case '(':
1788 				if (level == open) {
1789 					*err = i;
1790 					return TOO_MANY_OPEN;
1791 				}
1792 				level--;
1793 				break;
1794 			case ')':
1795 				level++;
1796 				break;
1797 			case '\'':
1798 			case '"':
1799 				quote = str[i];
1800 				break;
1801 			}
1802 		}
1803 		/* First character is the '(' with missing ')' */
1804 		*err = 0;
1805 		return TOO_MANY_OPEN;
1806 	}
1807 
1808 	/* Set the size of the required stacks */
1809 	*parens = max_open;
1810 	*preds = nr_preds;
1811 	return 0;
1812 }
1813 
1814 static int process_preds(struct trace_event_call *call,
1815 			 const char *filter_string,
1816 			 struct event_filter *filter,
1817 			 struct filter_parse_error *pe)
1818 {
1819 	struct prog_entry *prog;
1820 	int nr_parens;
1821 	int nr_preds;
1822 	int index;
1823 	int ret;
1824 
1825 	ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
1826 	if (ret < 0) {
1827 		switch (ret) {
1828 		case MISSING_QUOTE:
1829 			parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
1830 			break;
1831 		case TOO_MANY_OPEN:
1832 			parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
1833 			break;
1834 		default:
1835 			parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
1836 		}
1837 		return ret;
1838 	}
1839 
1840 	if (!nr_preds)
1841 		return -EINVAL;
1842 
1843 	prog = predicate_parse(filter_string, nr_parens, nr_preds,
1844 			       parse_pred, call, pe);
1845 	if (IS_ERR(prog))
1846 		return PTR_ERR(prog);
1847 
1848 	rcu_assign_pointer(filter->prog, prog);
1849 	return 0;
1850 }
1851 
1852 static inline void event_set_filtered_flag(struct trace_event_file *file)
1853 {
1854 	unsigned long old_flags = file->flags;
1855 
1856 	file->flags |= EVENT_FILE_FL_FILTERED;
1857 
1858 	if (old_flags != file->flags)
1859 		trace_buffered_event_enable();
1860 }
1861 
1862 static inline void event_set_filter(struct trace_event_file *file,
1863 				    struct event_filter *filter)
1864 {
1865 	rcu_assign_pointer(file->filter, filter);
1866 }
1867 
1868 static inline void event_clear_filter(struct trace_event_file *file)
1869 {
1870 	RCU_INIT_POINTER(file->filter, NULL);
1871 }
1872 
1873 struct filter_list {
1874 	struct list_head	list;
1875 	struct event_filter	*filter;
1876 };
1877 
1878 static int process_system_preds(struct trace_subsystem_dir *dir,
1879 				struct trace_array *tr,
1880 				struct filter_parse_error *pe,
1881 				char *filter_string)
1882 {
1883 	struct trace_event_file *file;
1884 	struct filter_list *filter_item;
1885 	struct event_filter *filter = NULL;
1886 	struct filter_list *tmp;
1887 	LIST_HEAD(filter_list);
1888 	bool fail = true;
1889 	int err;
1890 
1891 	list_for_each_entry(file, &tr->events, list) {
1892 
1893 		if (file->system != dir)
1894 			continue;
1895 
1896 		filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1897 		if (!filter)
1898 			goto fail_mem;
1899 
1900 		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1901 		if (!filter->filter_string)
1902 			goto fail_mem;
1903 
1904 		err = process_preds(file->event_call, filter_string, filter, pe);
1905 		if (err) {
1906 			filter_disable(file);
1907 			parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1908 			append_filter_err(tr, pe, filter);
1909 		} else
1910 			event_set_filtered_flag(file);
1911 
1912 
1913 		filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
1914 		if (!filter_item)
1915 			goto fail_mem;
1916 
1917 		list_add_tail(&filter_item->list, &filter_list);
1918 		/*
1919 		 * Regardless of if this returned an error, we still
1920 		 * replace the filter for the call.
1921 		 */
1922 		filter_item->filter = event_filter(file);
1923 		event_set_filter(file, filter);
1924 		filter = NULL;
1925 
1926 		fail = false;
1927 	}
1928 
1929 	if (fail)
1930 		goto fail;
1931 
1932 	/*
1933 	 * The calls can still be using the old filters.
1934 	 * Do a synchronize_rcu() and to ensure all calls are
1935 	 * done with them before we free them.
1936 	 */
1937 	tracepoint_synchronize_unregister();
1938 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1939 		__free_filter(filter_item->filter);
1940 		list_del(&filter_item->list);
1941 		kfree(filter_item);
1942 	}
1943 	return 0;
1944  fail:
1945 	/* No call succeeded */
1946 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1947 		list_del(&filter_item->list);
1948 		kfree(filter_item);
1949 	}
1950 	parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1951 	return -EINVAL;
1952  fail_mem:
1953 	__free_filter(filter);
1954 	/* If any call succeeded, we still need to sync */
1955 	if (!fail)
1956 		tracepoint_synchronize_unregister();
1957 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1958 		__free_filter(filter_item->filter);
1959 		list_del(&filter_item->list);
1960 		kfree(filter_item);
1961 	}
1962 	return -ENOMEM;
1963 }
1964 
1965 static int create_filter_start(char *filter_string, bool set_str,
1966 			       struct filter_parse_error **pse,
1967 			       struct event_filter **filterp)
1968 {
1969 	struct event_filter *filter;
1970 	struct filter_parse_error *pe = NULL;
1971 	int err = 0;
1972 
1973 	if (WARN_ON_ONCE(*pse || *filterp))
1974 		return -EINVAL;
1975 
1976 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1977 	if (filter && set_str) {
1978 		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1979 		if (!filter->filter_string)
1980 			err = -ENOMEM;
1981 	}
1982 
1983 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1984 
1985 	if (!filter || !pe || err) {
1986 		kfree(pe);
1987 		__free_filter(filter);
1988 		return -ENOMEM;
1989 	}
1990 
1991 	/* we're committed to creating a new filter */
1992 	*filterp = filter;
1993 	*pse = pe;
1994 
1995 	return 0;
1996 }
1997 
1998 static void create_filter_finish(struct filter_parse_error *pe)
1999 {
2000 	kfree(pe);
2001 }
2002 
2003 /**
2004  * create_filter - create a filter for a trace_event_call
2005  * @tr: the trace array associated with these events
2006  * @call: trace_event_call to create a filter for
2007  * @filter_string: filter string
2008  * @set_str: remember @filter_str and enable detailed error in filter
2009  * @filterp: out param for created filter (always updated on return)
2010  *           Must be a pointer that references a NULL pointer.
2011  *
2012  * Creates a filter for @call with @filter_str.  If @set_str is %true,
2013  * @filter_str is copied and recorded in the new filter.
2014  *
2015  * On success, returns 0 and *@filterp points to the new filter.  On
2016  * failure, returns -errno and *@filterp may point to %NULL or to a new
2017  * filter.  In the latter case, the returned filter contains error
2018  * information if @set_str is %true and the caller is responsible for
2019  * freeing it.
2020  */
2021 static int create_filter(struct trace_array *tr,
2022 			 struct trace_event_call *call,
2023 			 char *filter_string, bool set_str,
2024 			 struct event_filter **filterp)
2025 {
2026 	struct filter_parse_error *pe = NULL;
2027 	int err;
2028 
2029 	/* filterp must point to NULL */
2030 	if (WARN_ON(*filterp))
2031 		*filterp = NULL;
2032 
2033 	err = create_filter_start(filter_string, set_str, &pe, filterp);
2034 	if (err)
2035 		return err;
2036 
2037 	err = process_preds(call, filter_string, *filterp, pe);
2038 	if (err && set_str)
2039 		append_filter_err(tr, pe, *filterp);
2040 	create_filter_finish(pe);
2041 
2042 	return err;
2043 }
2044 
2045 int create_event_filter(struct trace_array *tr,
2046 			struct trace_event_call *call,
2047 			char *filter_str, bool set_str,
2048 			struct event_filter **filterp)
2049 {
2050 	return create_filter(tr, call, filter_str, set_str, filterp);
2051 }
2052 
2053 /**
2054  * create_system_filter - create a filter for an event subsystem
2055  * @dir: the descriptor for the subsystem directory
2056  * @filter_str: filter string
2057  * @filterp: out param for created filter (always updated on return)
2058  *
2059  * Identical to create_filter() except that it creates a subsystem filter
2060  * and always remembers @filter_str.
2061  */
2062 static int create_system_filter(struct trace_subsystem_dir *dir,
2063 				char *filter_str, struct event_filter **filterp)
2064 {
2065 	struct filter_parse_error *pe = NULL;
2066 	int err;
2067 
2068 	err = create_filter_start(filter_str, true, &pe, filterp);
2069 	if (!err) {
2070 		err = process_system_preds(dir, dir->tr, pe, filter_str);
2071 		if (!err) {
2072 			/* System filters just show a default message */
2073 			kfree((*filterp)->filter_string);
2074 			(*filterp)->filter_string = NULL;
2075 		} else {
2076 			append_filter_err(dir->tr, pe, *filterp);
2077 		}
2078 	}
2079 	create_filter_finish(pe);
2080 
2081 	return err;
2082 }
2083 
2084 /* caller must hold event_mutex */
2085 int apply_event_filter(struct trace_event_file *file, char *filter_string)
2086 {
2087 	struct trace_event_call *call = file->event_call;
2088 	struct event_filter *filter = NULL;
2089 	int err;
2090 
2091 	if (!strcmp(strstrip(filter_string), "0")) {
2092 		filter_disable(file);
2093 		filter = event_filter(file);
2094 
2095 		if (!filter)
2096 			return 0;
2097 
2098 		event_clear_filter(file);
2099 
2100 		/* Make sure the filter is not being used */
2101 		tracepoint_synchronize_unregister();
2102 		__free_filter(filter);
2103 
2104 		return 0;
2105 	}
2106 
2107 	err = create_filter(file->tr, call, filter_string, true, &filter);
2108 
2109 	/*
2110 	 * Always swap the call filter with the new filter
2111 	 * even if there was an error. If there was an error
2112 	 * in the filter, we disable the filter and show the error
2113 	 * string
2114 	 */
2115 	if (filter) {
2116 		struct event_filter *tmp;
2117 
2118 		tmp = event_filter(file);
2119 		if (!err)
2120 			event_set_filtered_flag(file);
2121 		else
2122 			filter_disable(file);
2123 
2124 		event_set_filter(file, filter);
2125 
2126 		if (tmp) {
2127 			/* Make sure the call is done with the filter */
2128 			tracepoint_synchronize_unregister();
2129 			__free_filter(tmp);
2130 		}
2131 	}
2132 
2133 	return err;
2134 }
2135 
2136 int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
2137 				 char *filter_string)
2138 {
2139 	struct event_subsystem *system = dir->subsystem;
2140 	struct trace_array *tr = dir->tr;
2141 	struct event_filter *filter = NULL;
2142 	int err = 0;
2143 
2144 	mutex_lock(&event_mutex);
2145 
2146 	/* Make sure the system still has events */
2147 	if (!dir->nr_events) {
2148 		err = -ENODEV;
2149 		goto out_unlock;
2150 	}
2151 
2152 	if (!strcmp(strstrip(filter_string), "0")) {
2153 		filter_free_subsystem_preds(dir, tr);
2154 		remove_filter_string(system->filter);
2155 		filter = system->filter;
2156 		system->filter = NULL;
2157 		/* Ensure all filters are no longer used */
2158 		tracepoint_synchronize_unregister();
2159 		filter_free_subsystem_filters(dir, tr);
2160 		__free_filter(filter);
2161 		goto out_unlock;
2162 	}
2163 
2164 	err = create_system_filter(dir, filter_string, &filter);
2165 	if (filter) {
2166 		/*
2167 		 * No event actually uses the system filter
2168 		 * we can free it without synchronize_rcu().
2169 		 */
2170 		__free_filter(system->filter);
2171 		system->filter = filter;
2172 	}
2173 out_unlock:
2174 	mutex_unlock(&event_mutex);
2175 
2176 	return err;
2177 }
2178 
2179 #ifdef CONFIG_PERF_EVENTS
2180 
2181 void ftrace_profile_free_filter(struct perf_event *event)
2182 {
2183 	struct event_filter *filter = event->filter;
2184 
2185 	event->filter = NULL;
2186 	__free_filter(filter);
2187 }
2188 
2189 struct function_filter_data {
2190 	struct ftrace_ops *ops;
2191 	int first_filter;
2192 	int first_notrace;
2193 };
2194 
2195 #ifdef CONFIG_FUNCTION_TRACER
2196 static char **
2197 ftrace_function_filter_re(char *buf, int len, int *count)
2198 {
2199 	char *str, **re;
2200 
2201 	str = kstrndup(buf, len, GFP_KERNEL);
2202 	if (!str)
2203 		return NULL;
2204 
2205 	/*
2206 	 * The argv_split function takes white space
2207 	 * as a separator, so convert ',' into spaces.
2208 	 */
2209 	strreplace(str, ',', ' ');
2210 
2211 	re = argv_split(GFP_KERNEL, str, count);
2212 	kfree(str);
2213 	return re;
2214 }
2215 
2216 static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
2217 				      int reset, char *re, int len)
2218 {
2219 	int ret;
2220 
2221 	if (filter)
2222 		ret = ftrace_set_filter(ops, re, len, reset);
2223 	else
2224 		ret = ftrace_set_notrace(ops, re, len, reset);
2225 
2226 	return ret;
2227 }
2228 
2229 static int __ftrace_function_set_filter(int filter, char *buf, int len,
2230 					struct function_filter_data *data)
2231 {
2232 	int i, re_cnt, ret = -EINVAL;
2233 	int *reset;
2234 	char **re;
2235 
2236 	reset = filter ? &data->first_filter : &data->first_notrace;
2237 
2238 	/*
2239 	 * The 'ip' field could have multiple filters set, separated
2240 	 * either by space or comma. We first cut the filter and apply
2241 	 * all pieces separately.
2242 	 */
2243 	re = ftrace_function_filter_re(buf, len, &re_cnt);
2244 	if (!re)
2245 		return -EINVAL;
2246 
2247 	for (i = 0; i < re_cnt; i++) {
2248 		ret = ftrace_function_set_regexp(data->ops, filter, *reset,
2249 						 re[i], strlen(re[i]));
2250 		if (ret)
2251 			break;
2252 
2253 		if (*reset)
2254 			*reset = 0;
2255 	}
2256 
2257 	argv_free(re);
2258 	return ret;
2259 }
2260 
2261 static int ftrace_function_check_pred(struct filter_pred *pred)
2262 {
2263 	struct ftrace_event_field *field = pred->field;
2264 
2265 	/*
2266 	 * Check the predicate for function trace, verify:
2267 	 *  - only '==' and '!=' is used
2268 	 *  - the 'ip' field is used
2269 	 */
2270 	if ((pred->op != OP_EQ) && (pred->op != OP_NE))
2271 		return -EINVAL;
2272 
2273 	if (strcmp(field->name, "ip"))
2274 		return -EINVAL;
2275 
2276 	return 0;
2277 }
2278 
2279 static int ftrace_function_set_filter_pred(struct filter_pred *pred,
2280 					   struct function_filter_data *data)
2281 {
2282 	int ret;
2283 
2284 	/* Checking the node is valid for function trace. */
2285 	ret = ftrace_function_check_pred(pred);
2286 	if (ret)
2287 		return ret;
2288 
2289 	return __ftrace_function_set_filter(pred->op == OP_EQ,
2290 					    pred->regex.pattern,
2291 					    pred->regex.len,
2292 					    data);
2293 }
2294 
2295 static bool is_or(struct prog_entry *prog, int i)
2296 {
2297 	int target;
2298 
2299 	/*
2300 	 * Only "||" is allowed for function events, thus,
2301 	 * all true branches should jump to true, and any
2302 	 * false branch should jump to false.
2303 	 */
2304 	target = prog[i].target + 1;
2305 	/* True and false have NULL preds (all prog entries should jump to one */
2306 	if (prog[target].pred)
2307 		return false;
2308 
2309 	/* prog[target].target is 1 for TRUE, 0 for FALSE */
2310 	return prog[i].when_to_branch == prog[target].target;
2311 }
2312 
2313 static int ftrace_function_set_filter(struct perf_event *event,
2314 				      struct event_filter *filter)
2315 {
2316 	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2317 						lockdep_is_held(&event_mutex));
2318 	struct function_filter_data data = {
2319 		.first_filter  = 1,
2320 		.first_notrace = 1,
2321 		.ops           = &event->ftrace_ops,
2322 	};
2323 	int i;
2324 
2325 	for (i = 0; prog[i].pred; i++) {
2326 		struct filter_pred *pred = prog[i].pred;
2327 
2328 		if (!is_or(prog, i))
2329 			return -EINVAL;
2330 
2331 		if (ftrace_function_set_filter_pred(pred, &data) < 0)
2332 			return -EINVAL;
2333 	}
2334 	return 0;
2335 }
2336 #else
2337 static int ftrace_function_set_filter(struct perf_event *event,
2338 				      struct event_filter *filter)
2339 {
2340 	return -ENODEV;
2341 }
2342 #endif /* CONFIG_FUNCTION_TRACER */
2343 
2344 int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2345 			      char *filter_str)
2346 {
2347 	int err;
2348 	struct event_filter *filter = NULL;
2349 	struct trace_event_call *call;
2350 
2351 	mutex_lock(&event_mutex);
2352 
2353 	call = event->tp_event;
2354 
2355 	err = -EINVAL;
2356 	if (!call)
2357 		goto out_unlock;
2358 
2359 	err = -EEXIST;
2360 	if (event->filter)
2361 		goto out_unlock;
2362 
2363 	err = create_filter(NULL, call, filter_str, false, &filter);
2364 	if (err)
2365 		goto free_filter;
2366 
2367 	if (ftrace_event_is_function(call))
2368 		err = ftrace_function_set_filter(event, filter);
2369 	else
2370 		event->filter = filter;
2371 
2372 free_filter:
2373 	if (err || ftrace_event_is_function(call))
2374 		__free_filter(filter);
2375 
2376 out_unlock:
2377 	mutex_unlock(&event_mutex);
2378 
2379 	return err;
2380 }
2381 
2382 #endif /* CONFIG_PERF_EVENTS */
2383 
2384 #ifdef CONFIG_FTRACE_STARTUP_TEST
2385 
2386 #include <linux/types.h>
2387 #include <linux/tracepoint.h>
2388 
2389 #define CREATE_TRACE_POINTS
2390 #include "trace_events_filter_test.h"
2391 
2392 #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2393 { \
2394 	.filter = FILTER, \
2395 	.rec    = { .a = va, .b = vb, .c = vc, .d = vd, \
2396 		    .e = ve, .f = vf, .g = vg, .h = vh }, \
2397 	.match  = m, \
2398 	.not_visited = nvisit, \
2399 }
2400 #define YES 1
2401 #define NO  0
2402 
2403 static struct test_filter_data_t {
2404 	char *filter;
2405 	struct trace_event_raw_ftrace_test_filter rec;
2406 	int match;
2407 	char *not_visited;
2408 } test_filter_data[] = {
2409 #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2410 	       "e == 1 && f == 1 && g == 1 && h == 1"
2411 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2412 	DATA_REC(NO,  0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2413 	DATA_REC(NO,  1, 1, 1, 1, 1, 1, 1, 0, ""),
2414 #undef FILTER
2415 #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2416 	       "e == 1 || f == 1 || g == 1 || h == 1"
2417 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2418 	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2419 	DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2420 #undef FILTER
2421 #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2422 	       "(e == 1 || f == 1) && (g == 1 || h == 1)"
2423 	DATA_REC(NO,  0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2424 	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2425 	DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2426 	DATA_REC(NO,  1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2427 #undef FILTER
2428 #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2429 	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2430 	DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2431 	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2432 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2433 #undef FILTER
2434 #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2435 	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2436 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2437 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2438 	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2439 #undef FILTER
2440 #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2441 	       "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2442 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2443 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2444 	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2445 #undef FILTER
2446 #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2447 	       "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2448 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2449 	DATA_REC(NO,  0, 1, 0, 1, 0, 1, 0, 1, ""),
2450 	DATA_REC(NO,  1, 0, 1, 0, 1, 0, 1, 0, ""),
2451 #undef FILTER
2452 #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2453 	       "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2454 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2455 	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2456 	DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2457 };
2458 
2459 #undef DATA_REC
2460 #undef FILTER
2461 #undef YES
2462 #undef NO
2463 
2464 #define DATA_CNT ARRAY_SIZE(test_filter_data)
2465 
2466 static int test_pred_visited;
2467 
2468 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2469 {
2470 	struct ftrace_event_field *field = pred->field;
2471 
2472 	test_pred_visited = 1;
2473 	printk(KERN_INFO "\npred visited %s\n", field->name);
2474 	return 1;
2475 }
2476 
2477 static void update_pred_fn(struct event_filter *filter, char *fields)
2478 {
2479 	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2480 						lockdep_is_held(&event_mutex));
2481 	int i;
2482 
2483 	for (i = 0; prog[i].pred; i++) {
2484 		struct filter_pred *pred = prog[i].pred;
2485 		struct ftrace_event_field *field = pred->field;
2486 
2487 		WARN_ON_ONCE(pred->fn_num == FILTER_PRED_FN_NOP);
2488 
2489 		if (!field) {
2490 			WARN_ONCE(1, "all leafs should have field defined %d", i);
2491 			continue;
2492 		}
2493 
2494 		if (!strchr(fields, *field->name))
2495 			continue;
2496 
2497 		pred->fn_num = FILTER_PRED_TEST_VISITED;
2498 	}
2499 }
2500 
2501 static __init int ftrace_test_event_filter(void)
2502 {
2503 	int i;
2504 
2505 	printk(KERN_INFO "Testing ftrace filter: ");
2506 
2507 	for (i = 0; i < DATA_CNT; i++) {
2508 		struct event_filter *filter = NULL;
2509 		struct test_filter_data_t *d = &test_filter_data[i];
2510 		int err;
2511 
2512 		err = create_filter(NULL, &event_ftrace_test_filter,
2513 				    d->filter, false, &filter);
2514 		if (err) {
2515 			printk(KERN_INFO
2516 			       "Failed to get filter for '%s', err %d\n",
2517 			       d->filter, err);
2518 			__free_filter(filter);
2519 			break;
2520 		}
2521 
2522 		/* Needed to dereference filter->prog */
2523 		mutex_lock(&event_mutex);
2524 		/*
2525 		 * The preemption disabling is not really needed for self
2526 		 * tests, but the rcu dereference will complain without it.
2527 		 */
2528 		preempt_disable();
2529 		if (*d->not_visited)
2530 			update_pred_fn(filter, d->not_visited);
2531 
2532 		test_pred_visited = 0;
2533 		err = filter_match_preds(filter, &d->rec);
2534 		preempt_enable();
2535 
2536 		mutex_unlock(&event_mutex);
2537 
2538 		__free_filter(filter);
2539 
2540 		if (test_pred_visited) {
2541 			printk(KERN_INFO
2542 			       "Failed, unwanted pred visited for filter %s\n",
2543 			       d->filter);
2544 			break;
2545 		}
2546 
2547 		if (err != d->match) {
2548 			printk(KERN_INFO
2549 			       "Failed to match filter '%s', expected %d\n",
2550 			       d->filter, d->match);
2551 			break;
2552 		}
2553 	}
2554 
2555 	if (i == DATA_CNT)
2556 		printk(KERN_CONT "OK\n");
2557 
2558 	return 0;
2559 }
2560 
2561 late_initcall(ftrace_test_event_filter);
2562 
2563 #endif /* CONFIG_FTRACE_STARTUP_TEST */
2564