1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * trace_events_filter - generic event filtering
4  *
5  * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
6  */
7 
8 #include <linux/uaccess.h>
9 #include <linux/module.h>
10 #include <linux/ctype.h>
11 #include <linux/mutex.h>
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14 
15 #include "trace.h"
16 #include "trace_output.h"
17 
18 #define DEFAULT_SYS_FILTER_MESSAGE					\
19 	"### global filter ###\n"					\
20 	"# Use this to set filters for multiple events.\n"		\
21 	"# Only events with the given fields will be affected.\n"	\
22 	"# If no events are modified, an error message will be displayed here"
23 
24 /* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
25 #define OPS					\
26 	C( OP_GLOB,	"~"  ),			\
27 	C( OP_NE,	"!=" ),			\
28 	C( OP_EQ,	"==" ),			\
29 	C( OP_LE,	"<=" ),			\
30 	C( OP_LT,	"<"  ),			\
31 	C( OP_GE,	">=" ),			\
32 	C( OP_GT,	">"  ),			\
33 	C( OP_BAND,	"&"  ),			\
34 	C( OP_MAX,	NULL )
35 
36 #undef C
37 #define C(a, b)	a
38 
39 enum filter_op_ids { OPS };
40 
41 #undef C
42 #define C(a, b)	b
43 
44 static const char * ops[] = { OPS };
45 
46 /*
47  * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
48  * pred_funcs_##type below must match the order of them above.
49  */
50 #define PRED_FUNC_START			OP_LE
51 #define PRED_FUNC_MAX			(OP_BAND - PRED_FUNC_START)
52 
53 #define ERRORS								\
54 	C(NONE,			"No error"),				\
55 	C(INVALID_OP,		"Invalid operator"),			\
56 	C(TOO_MANY_OPEN,	"Too many '('"),			\
57 	C(TOO_MANY_CLOSE,	"Too few '('"),				\
58 	C(MISSING_QUOTE,	"Missing matching quote"),		\
59 	C(OPERAND_TOO_LONG,	"Operand too long"),			\
60 	C(EXPECT_STRING,	"Expecting string field"),		\
61 	C(EXPECT_DIGIT,		"Expecting numeric field"),		\
62 	C(ILLEGAL_FIELD_OP,	"Illegal operation for field type"),	\
63 	C(FIELD_NOT_FOUND,	"Field not found"),			\
64 	C(ILLEGAL_INTVAL,	"Illegal integer value"),		\
65 	C(BAD_SUBSYS_FILTER,	"Couldn't find or set field in one of a subsystem's events"), \
66 	C(TOO_MANY_PREDS,	"Too many terms in predicate expression"), \
67 	C(INVALID_FILTER,	"Meaningless filter expression"),	\
68 	C(IP_FIELD_ONLY,	"Only 'ip' field is supported for function trace"), \
69 	C(INVALID_VALUE,	"Invalid value (did you forget quotes)?"), \
70 	C(ERRNO,		"Error"),				\
71 	C(NO_FILTER,		"No filter found")
72 
73 #undef C
74 #define C(a, b)		FILT_ERR_##a
75 
76 enum { ERRORS };
77 
78 #undef C
79 #define C(a, b)		b
80 
81 static const char *err_text[] = { ERRORS };
82 
83 /* Called after a '!' character but "!=" and "!~" are not "not"s */
84 static bool is_not(const char *str)
85 {
86 	switch (str[1]) {
87 	case '=':
88 	case '~':
89 		return false;
90 	}
91 	return true;
92 }
93 
94 /**
95  * prog_entry - a singe entry in the filter program
96  * @target:	     Index to jump to on a branch (actually one minus the index)
97  * @when_to_branch:  The value of the result of the predicate to do a branch
98  * @pred:	     The predicate to execute.
99  */
100 struct prog_entry {
101 	int			target;
102 	int			when_to_branch;
103 	struct filter_pred	*pred;
104 };
105 
106 /**
107  * update_preds- assign a program entry a label target
108  * @prog: The program array
109  * @N: The index of the current entry in @prog
110  * @when_to_branch: What to assign a program entry for its branch condition
111  *
112  * The program entry at @N has a target that points to the index of a program
113  * entry that can have its target and when_to_branch fields updated.
114  * Update the current program entry denoted by index @N target field to be
115  * that of the updated entry. This will denote the entry to update if
116  * we are processing an "||" after an "&&"
117  */
118 static void update_preds(struct prog_entry *prog, int N, int invert)
119 {
120 	int t, s;
121 
122 	t = prog[N].target;
123 	s = prog[t].target;
124 	prog[t].when_to_branch = invert;
125 	prog[t].target = N;
126 	prog[N].target = s;
127 }
128 
129 struct filter_parse_error {
130 	int lasterr;
131 	int lasterr_pos;
132 };
133 
134 static void parse_error(struct filter_parse_error *pe, int err, int pos)
135 {
136 	pe->lasterr = err;
137 	pe->lasterr_pos = pos;
138 }
139 
140 typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
141 			     struct filter_parse_error *pe,
142 			     struct filter_pred **pred);
143 
144 enum {
145 	INVERT		= 1,
146 	PROCESS_AND	= 2,
147 	PROCESS_OR	= 4,
148 };
149 
150 /*
151  * Without going into a formal proof, this explains the method that is used in
152  * parsing the logical expressions.
153  *
154  * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
155  * The first pass will convert it into the following program:
156  *
157  * n1: r=a;       l1: if (!r) goto l4;
158  * n2: r=b;       l2: if (!r) goto l4;
159  * n3: r=c; r=!r; l3: if (r) goto l4;
160  * n4: r=g; r=!r; l4: if (r) goto l5;
161  * n5: r=d;       l5: if (r) goto T
162  * n6: r=e;       l6: if (!r) goto l7;
163  * n7: r=f; r=!r; l7: if (!r) goto F
164  * T: return TRUE
165  * F: return FALSE
166  *
167  * To do this, we use a data structure to represent each of the above
168  * predicate and conditions that has:
169  *
170  *  predicate, when_to_branch, invert, target
171  *
172  * The "predicate" will hold the function to determine the result "r".
173  * The "when_to_branch" denotes what "r" should be if a branch is to be taken
174  * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
175  * The "invert" holds whether the value should be reversed before testing.
176  * The "target" contains the label "l#" to jump to.
177  *
178  * A stack is created to hold values when parentheses are used.
179  *
180  * To simplify the logic, the labels will start at 0 and not 1.
181  *
182  * The possible invert values are 1 and 0. The number of "!"s that are in scope
183  * before the predicate determines the invert value, if the number is odd then
184  * the invert value is 1 and 0 otherwise. This means the invert value only
185  * needs to be toggled when a new "!" is introduced compared to what is stored
186  * on the stack, where parentheses were used.
187  *
188  * The top of the stack and "invert" are initialized to zero.
189  *
190  * ** FIRST PASS **
191  *
192  * #1 A loop through all the tokens is done:
193  *
194  * #2 If the token is an "(", the stack is push, and the current stack value
195  *    gets the current invert value, and the loop continues to the next token.
196  *    The top of the stack saves the "invert" value to keep track of what
197  *    the current inversion is. As "!(a && !b || c)" would require all
198  *    predicates being affected separately by the "!" before the parentheses.
199  *    And that would end up being equivalent to "(!a || b) && !c"
200  *
201  * #3 If the token is an "!", the current "invert" value gets inverted, and
202  *    the loop continues. Note, if the next token is a predicate, then
203  *    this "invert" value is only valid for the current program entry,
204  *    and does not affect other predicates later on.
205  *
206  * The only other acceptable token is the predicate string.
207  *
208  * #4 A new entry into the program is added saving: the predicate and the
209  *    current value of "invert". The target is currently assigned to the
210  *    previous program index (this will not be its final value).
211  *
212  * #5 We now enter another loop and look at the next token. The only valid
213  *    tokens are ")", "&&", "||" or end of the input string "\0".
214  *
215  * #6 The invert variable is reset to the current value saved on the top of
216  *    the stack.
217  *
218  * #7 The top of the stack holds not only the current invert value, but also
219  *    if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
220  *    precedence than "||". That is "a && b || c && d" is equivalent to
221  *    "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
222  *    to be processed. This is the case if an "&&" was the last token. If it was
223  *    then we call update_preds(). This takes the program, the current index in
224  *    the program, and the current value of "invert".  More will be described
225  *    below about this function.
226  *
227  * #8 If the next token is "&&" then we set a flag in the top of the stack
228  *    that denotes that "&&" needs to be processed, break out of this loop
229  *    and continue with the outer loop.
230  *
231  * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
232  *    This is called with the program, the current index in the program, but
233  *    this time with an inverted value of "invert" (that is !invert). This is
234  *    because the value taken will become the "when_to_branch" value of the
235  *    program.
236  *    Note, this is called when the next token is not an "&&". As stated before,
237  *    "&&" takes higher precedence, and "||" should not be processed yet if the
238  *    next logical operation is "&&".
239  *
240  * #10 If the next token is "||" then we set a flag in the top of the stack
241  *     that denotes that "||" needs to be processed, break out of this loop
242  *     and continue with the outer loop.
243  *
244  * #11 If this is the end of the input string "\0" then we break out of both
245  *     loops.
246  *
247  * #12 Otherwise, the next token is ")", where we pop the stack and continue
248  *     this inner loop.
249  *
250  * Now to discuss the update_pred() function, as that is key to the setting up
251  * of the program. Remember the "target" of the program is initialized to the
252  * previous index and not the "l" label. The target holds the index into the
253  * program that gets affected by the operand. Thus if we have something like
254  *  "a || b && c", when we process "a" the target will be "-1" (undefined).
255  * When we process "b", its target is "0", which is the index of "a", as that's
256  * the predicate that is affected by "||". But because the next token after "b"
257  * is "&&" we don't call update_preds(). Instead continue to "c". As the
258  * next token after "c" is not "&&" but the end of input, we first process the
259  * "&&" by calling update_preds() for the "&&" then we process the "||" by
260  * calling updates_preds() with the values for processing "||".
261  *
262  * What does that mean? What update_preds() does is to first save the "target"
263  * of the program entry indexed by the current program entry's "target"
264  * (remember the "target" is initialized to previous program entry), and then
265  * sets that "target" to the current index which represents the label "l#".
266  * That entry's "when_to_branch" is set to the value passed in (the "invert"
267  * or "!invert"). Then it sets the current program entry's target to the saved
268  * "target" value (the old value of the program that had its "target" updated
269  * to the label).
270  *
271  * Looking back at "a || b && c", we have the following steps:
272  *  "a"  - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
273  *  "||" - flag that we need to process "||"; continue outer loop
274  *  "b"  - prog[1] = { "b", X, 0 }
275  *  "&&" - flag that we need to process "&&"; continue outer loop
276  * (Notice we did not process "||")
277  *  "c"  - prog[2] = { "c", X, 1 }
278  *  update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
279  *    t = prog[2].target; // t = 1
280  *    s = prog[t].target; // s = 0
281  *    prog[t].target = 2; // Set target to "l2"
282  *    prog[t].when_to_branch = 0;
283  *    prog[2].target = s;
284  * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
285  *    t = prog[2].target; // t = 0
286  *    s = prog[t].target; // s = -1
287  *    prog[t].target = 2; // Set target to "l2"
288  *    prog[t].when_to_branch = 1;
289  *    prog[2].target = s;
290  *
291  * #13 Which brings us to the final step of the first pass, which is to set
292  *     the last program entry's when_to_branch and target, which will be
293  *     when_to_branch = 0; target = N; ( the label after the program entry after
294  *     the last program entry processed above).
295  *
296  * If we denote "TRUE" to be the entry after the last program entry processed,
297  * and "FALSE" the program entry after that, we are now done with the first
298  * pass.
299  *
300  * Making the above "a || b && c" have a program of:
301  *  prog[0] = { "a", 1, 2 }
302  *  prog[1] = { "b", 0, 2 }
303  *  prog[2] = { "c", 0, 3 }
304  *
305  * Which translates into:
306  * n0: r = a; l0: if (r) goto l2;
307  * n1: r = b; l1: if (!r) goto l2;
308  * n2: r = c; l2: if (!r) goto l3;  // Which is the same as "goto F;"
309  * T: return TRUE; l3:
310  * F: return FALSE
311  *
312  * Although, after the first pass, the program is correct, it is
313  * inefficient. The simple sample of "a || b && c" could be easily been
314  * converted into:
315  * n0: r = a; if (r) goto T
316  * n1: r = b; if (!r) goto F
317  * n2: r = c; if (!r) goto F
318  * T: return TRUE;
319  * F: return FALSE;
320  *
321  * The First Pass is over the input string. The next too passes are over
322  * the program itself.
323  *
324  * ** SECOND PASS **
325  *
326  * Which brings us to the second pass. If a jump to a label has the
327  * same condition as that label, it can instead jump to its target.
328  * The original example of "a && !(!b || (c && g)) || d || e && !f"
329  * where the first pass gives us:
330  *
331  * n1: r=a;       l1: if (!r) goto l4;
332  * n2: r=b;       l2: if (!r) goto l4;
333  * n3: r=c; r=!r; l3: if (r) goto l4;
334  * n4: r=g; r=!r; l4: if (r) goto l5;
335  * n5: r=d;       l5: if (r) goto T
336  * n6: r=e;       l6: if (!r) goto l7;
337  * n7: r=f; r=!r; l7: if (!r) goto F:
338  * T: return TRUE;
339  * F: return FALSE
340  *
341  * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
342  * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
343  * to go directly to T. To accomplish this, we start from the last
344  * entry in the program and work our way back. If the target of the entry
345  * has the same "when_to_branch" then we could use that entry's target.
346  * Doing this, the above would end up as:
347  *
348  * n1: r=a;       l1: if (!r) goto l4;
349  * n2: r=b;       l2: if (!r) goto l4;
350  * n3: r=c; r=!r; l3: if (r) goto T;
351  * n4: r=g; r=!r; l4: if (r) goto T;
352  * n5: r=d;       l5: if (r) goto T;
353  * n6: r=e;       l6: if (!r) goto F;
354  * n7: r=f; r=!r; l7: if (!r) goto F;
355  * T: return TRUE
356  * F: return FALSE
357  *
358  * In that same pass, if the "when_to_branch" doesn't match, we can simply
359  * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
360  * where "l4: if (r) goto T;", then we can convert l2 to be:
361  * "l2: if (!r) goto n5;".
362  *
363  * This will have the second pass give us:
364  * n1: r=a;       l1: if (!r) goto n5;
365  * n2: r=b;       l2: if (!r) goto n5;
366  * n3: r=c; r=!r; l3: if (r) goto T;
367  * n4: r=g; r=!r; l4: if (r) goto T;
368  * n5: r=d;       l5: if (r) goto T
369  * n6: r=e;       l6: if (!r) goto F;
370  * n7: r=f; r=!r; l7: if (!r) goto F
371  * T: return TRUE
372  * F: return FALSE
373  *
374  * Notice, all the "l#" labels are no longer used, and they can now
375  * be discarded.
376  *
377  * ** THIRD PASS **
378  *
379  * For the third pass we deal with the inverts. As they simply just
380  * make the "when_to_branch" get inverted, a simple loop over the
381  * program to that does: "when_to_branch ^= invert;" will do the
382  * job, leaving us with:
383  * n1: r=a; if (!r) goto n5;
384  * n2: r=b; if (!r) goto n5;
385  * n3: r=c: if (!r) goto T;
386  * n4: r=g; if (!r) goto T;
387  * n5: r=d; if (r) goto T
388  * n6: r=e; if (!r) goto F;
389  * n7: r=f; if (r) goto F
390  * T: return TRUE
391  * F: return FALSE
392  *
393  * As "r = a; if (!r) goto n5;" is obviously the same as
394  * "if (!a) goto n5;" without doing anything we can interpret the
395  * program as:
396  * n1: if (!a) goto n5;
397  * n2: if (!b) goto n5;
398  * n3: if (!c) goto T;
399  * n4: if (!g) goto T;
400  * n5: if (d) goto T
401  * n6: if (!e) goto F;
402  * n7: if (f) goto F
403  * T: return TRUE
404  * F: return FALSE
405  *
406  * Since the inverts are discarded at the end, there's no reason to store
407  * them in the program array (and waste memory). A separate array to hold
408  * the inverts is used and freed at the end.
409  */
410 static struct prog_entry *
411 predicate_parse(const char *str, int nr_parens, int nr_preds,
412 		parse_pred_fn parse_pred, void *data,
413 		struct filter_parse_error *pe)
414 {
415 	struct prog_entry *prog_stack;
416 	struct prog_entry *prog;
417 	const char *ptr = str;
418 	char *inverts = NULL;
419 	int *op_stack;
420 	int *top;
421 	int invert = 0;
422 	int ret = -ENOMEM;
423 	int len;
424 	int N = 0;
425 	int i;
426 
427 	nr_preds += 2; /* For TRUE and FALSE */
428 
429 	op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
430 	if (!op_stack)
431 		return ERR_PTR(-ENOMEM);
432 	prog_stack = kcalloc(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
433 	if (!prog_stack) {
434 		parse_error(pe, -ENOMEM, 0);
435 		goto out_free;
436 	}
437 	inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
438 	if (!inverts) {
439 		parse_error(pe, -ENOMEM, 0);
440 		goto out_free;
441 	}
442 
443 	top = op_stack;
444 	prog = prog_stack;
445 	*top = 0;
446 
447 	/* First pass */
448 	while (*ptr) {						/* #1 */
449 		const char *next = ptr++;
450 
451 		if (isspace(*next))
452 			continue;
453 
454 		switch (*next) {
455 		case '(':					/* #2 */
456 			if (top - op_stack > nr_parens) {
457 				ret = -EINVAL;
458 				goto out_free;
459 			}
460 			*(++top) = invert;
461 			continue;
462 		case '!':					/* #3 */
463 			if (!is_not(next))
464 				break;
465 			invert = !invert;
466 			continue;
467 		}
468 
469 		if (N >= nr_preds) {
470 			parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
471 			goto out_free;
472 		}
473 
474 		inverts[N] = invert;				/* #4 */
475 		prog[N].target = N-1;
476 
477 		len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
478 		if (len < 0) {
479 			ret = len;
480 			goto out_free;
481 		}
482 		ptr = next + len;
483 
484 		N++;
485 
486 		ret = -1;
487 		while (1) {					/* #5 */
488 			next = ptr++;
489 			if (isspace(*next))
490 				continue;
491 
492 			switch (*next) {
493 			case ')':
494 			case '\0':
495 				break;
496 			case '&':
497 			case '|':
498 				/* accepting only "&&" or "||" */
499 				if (next[1] == next[0]) {
500 					ptr++;
501 					break;
502 				}
503 				fallthrough;
504 			default:
505 				parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
506 					    next - str);
507 				goto out_free;
508 			}
509 
510 			invert = *top & INVERT;
511 
512 			if (*top & PROCESS_AND) {		/* #7 */
513 				update_preds(prog, N - 1, invert);
514 				*top &= ~PROCESS_AND;
515 			}
516 			if (*next == '&') {			/* #8 */
517 				*top |= PROCESS_AND;
518 				break;
519 			}
520 			if (*top & PROCESS_OR) {		/* #9 */
521 				update_preds(prog, N - 1, !invert);
522 				*top &= ~PROCESS_OR;
523 			}
524 			if (*next == '|') {			/* #10 */
525 				*top |= PROCESS_OR;
526 				break;
527 			}
528 			if (!*next)				/* #11 */
529 				goto out;
530 
531 			if (top == op_stack) {
532 				ret = -1;
533 				/* Too few '(' */
534 				parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
535 				goto out_free;
536 			}
537 			top--;					/* #12 */
538 		}
539 	}
540  out:
541 	if (top != op_stack) {
542 		/* Too many '(' */
543 		parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
544 		goto out_free;
545 	}
546 
547 	if (!N) {
548 		/* No program? */
549 		ret = -EINVAL;
550 		parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
551 		goto out_free;
552 	}
553 
554 	prog[N].pred = NULL;					/* #13 */
555 	prog[N].target = 1;		/* TRUE */
556 	prog[N+1].pred = NULL;
557 	prog[N+1].target = 0;		/* FALSE */
558 	prog[N-1].target = N;
559 	prog[N-1].when_to_branch = false;
560 
561 	/* Second Pass */
562 	for (i = N-1 ; i--; ) {
563 		int target = prog[i].target;
564 		if (prog[i].when_to_branch == prog[target].when_to_branch)
565 			prog[i].target = prog[target].target;
566 	}
567 
568 	/* Third Pass */
569 	for (i = 0; i < N; i++) {
570 		invert = inverts[i] ^ prog[i].when_to_branch;
571 		prog[i].when_to_branch = invert;
572 		/* Make sure the program always moves forward */
573 		if (WARN_ON(prog[i].target <= i)) {
574 			ret = -EINVAL;
575 			goto out_free;
576 		}
577 	}
578 
579 	kfree(op_stack);
580 	kfree(inverts);
581 	return prog;
582 out_free:
583 	kfree(op_stack);
584 	kfree(inverts);
585 	if (prog_stack) {
586 		for (i = 0; prog_stack[i].pred; i++)
587 			kfree(prog_stack[i].pred);
588 		kfree(prog_stack);
589 	}
590 	return ERR_PTR(ret);
591 }
592 
593 #define DEFINE_COMPARISON_PRED(type)					\
594 static int filter_pred_LT_##type(struct filter_pred *pred, void *event)	\
595 {									\
596 	type *addr = (type *)(event + pred->offset);			\
597 	type val = (type)pred->val;					\
598 	return *addr < val;						\
599 }									\
600 static int filter_pred_LE_##type(struct filter_pred *pred, void *event)	\
601 {									\
602 	type *addr = (type *)(event + pred->offset);			\
603 	type val = (type)pred->val;					\
604 	return *addr <= val;						\
605 }									\
606 static int filter_pred_GT_##type(struct filter_pred *pred, void *event)	\
607 {									\
608 	type *addr = (type *)(event + pred->offset);			\
609 	type val = (type)pred->val;					\
610 	return *addr > val;					\
611 }									\
612 static int filter_pred_GE_##type(struct filter_pred *pred, void *event)	\
613 {									\
614 	type *addr = (type *)(event + pred->offset);			\
615 	type val = (type)pred->val;					\
616 	return *addr >= val;						\
617 }									\
618 static int filter_pred_BAND_##type(struct filter_pred *pred, void *event) \
619 {									\
620 	type *addr = (type *)(event + pred->offset);			\
621 	type val = (type)pred->val;					\
622 	return !!(*addr & val);						\
623 }									\
624 static const filter_pred_fn_t pred_funcs_##type[] = {			\
625 	filter_pred_LE_##type,						\
626 	filter_pred_LT_##type,						\
627 	filter_pred_GE_##type,						\
628 	filter_pred_GT_##type,						\
629 	filter_pred_BAND_##type,					\
630 };
631 
632 #define DEFINE_EQUALITY_PRED(size)					\
633 static int filter_pred_##size(struct filter_pred *pred, void *event)	\
634 {									\
635 	u##size *addr = (u##size *)(event + pred->offset);		\
636 	u##size val = (u##size)pred->val;				\
637 	int match;							\
638 									\
639 	match = (val == *addr) ^ pred->not;				\
640 									\
641 	return match;							\
642 }
643 
644 DEFINE_COMPARISON_PRED(s64);
645 DEFINE_COMPARISON_PRED(u64);
646 DEFINE_COMPARISON_PRED(s32);
647 DEFINE_COMPARISON_PRED(u32);
648 DEFINE_COMPARISON_PRED(s16);
649 DEFINE_COMPARISON_PRED(u16);
650 DEFINE_COMPARISON_PRED(s8);
651 DEFINE_COMPARISON_PRED(u8);
652 
653 DEFINE_EQUALITY_PRED(64);
654 DEFINE_EQUALITY_PRED(32);
655 DEFINE_EQUALITY_PRED(16);
656 DEFINE_EQUALITY_PRED(8);
657 
658 /* user space strings temp buffer */
659 #define USTRING_BUF_SIZE	1024
660 
661 struct ustring_buffer {
662 	char		buffer[USTRING_BUF_SIZE];
663 };
664 
665 static __percpu struct ustring_buffer *ustring_per_cpu;
666 
667 static __always_inline char *test_string(char *str)
668 {
669 	struct ustring_buffer *ubuf;
670 	char *kstr;
671 
672 	if (!ustring_per_cpu)
673 		return NULL;
674 
675 	ubuf = this_cpu_ptr(ustring_per_cpu);
676 	kstr = ubuf->buffer;
677 
678 	/* For safety, do not trust the string pointer */
679 	if (!strncpy_from_kernel_nofault(kstr, str, USTRING_BUF_SIZE))
680 		return NULL;
681 	return kstr;
682 }
683 
684 static __always_inline char *test_ustring(char *str)
685 {
686 	struct ustring_buffer *ubuf;
687 	char __user *ustr;
688 	char *kstr;
689 
690 	if (!ustring_per_cpu)
691 		return NULL;
692 
693 	ubuf = this_cpu_ptr(ustring_per_cpu);
694 	kstr = ubuf->buffer;
695 
696 	/* user space address? */
697 	ustr = (char __user *)str;
698 	if (!strncpy_from_user_nofault(kstr, ustr, USTRING_BUF_SIZE))
699 		return NULL;
700 
701 	return kstr;
702 }
703 
704 /* Filter predicate for fixed sized arrays of characters */
705 static int filter_pred_string(struct filter_pred *pred, void *event)
706 {
707 	char *addr = (char *)(event + pred->offset);
708 	int cmp, match;
709 
710 	cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len);
711 
712 	match = cmp ^ pred->not;
713 
714 	return match;
715 }
716 
717 static __always_inline int filter_pchar(struct filter_pred *pred, char *str)
718 {
719 	int cmp, match;
720 	int len;
721 
722 	len = strlen(str) + 1;	/* including tailing '\0' */
723 	cmp = pred->regex.match(str, &pred->regex, len);
724 
725 	match = cmp ^ pred->not;
726 
727 	return match;
728 }
729 /* Filter predicate for char * pointers */
730 static int filter_pred_pchar(struct filter_pred *pred, void *event)
731 {
732 	char **addr = (char **)(event + pred->offset);
733 	char *str;
734 
735 	str = test_string(*addr);
736 	if (!str)
737 		return 0;
738 
739 	return filter_pchar(pred, str);
740 }
741 
742 /* Filter predicate for char * pointers in user space*/
743 static int filter_pred_pchar_user(struct filter_pred *pred, void *event)
744 {
745 	char **addr = (char **)(event + pred->offset);
746 	char *str;
747 
748 	str = test_ustring(*addr);
749 	if (!str)
750 		return 0;
751 
752 	return filter_pchar(pred, str);
753 }
754 
755 /*
756  * Filter predicate for dynamic sized arrays of characters.
757  * These are implemented through a list of strings at the end
758  * of the entry.
759  * Also each of these strings have a field in the entry which
760  * contains its offset from the beginning of the entry.
761  * We have then first to get this field, dereference it
762  * and add it to the address of the entry, and at last we have
763  * the address of the string.
764  */
765 static int filter_pred_strloc(struct filter_pred *pred, void *event)
766 {
767 	u32 str_item = *(u32 *)(event + pred->offset);
768 	int str_loc = str_item & 0xffff;
769 	int str_len = str_item >> 16;
770 	char *addr = (char *)(event + str_loc);
771 	int cmp, match;
772 
773 	cmp = pred->regex.match(addr, &pred->regex, str_len);
774 
775 	match = cmp ^ pred->not;
776 
777 	return match;
778 }
779 
780 /*
781  * Filter predicate for relative dynamic sized arrays of characters.
782  * These are implemented through a list of strings at the end
783  * of the entry as same as dynamic string.
784  * The difference is that the relative one records the location offset
785  * from the field itself, not the event entry.
786  */
787 static int filter_pred_strrelloc(struct filter_pred *pred, void *event)
788 {
789 	u32 *item = (u32 *)(event + pred->offset);
790 	u32 str_item = *item;
791 	int str_loc = str_item & 0xffff;
792 	int str_len = str_item >> 16;
793 	char *addr = (char *)(&item[1]) + str_loc;
794 	int cmp, match;
795 
796 	cmp = pred->regex.match(addr, &pred->regex, str_len);
797 
798 	match = cmp ^ pred->not;
799 
800 	return match;
801 }
802 
803 /* Filter predicate for CPUs. */
804 static int filter_pred_cpu(struct filter_pred *pred, void *event)
805 {
806 	int cpu, cmp;
807 
808 	cpu = raw_smp_processor_id();
809 	cmp = pred->val;
810 
811 	switch (pred->op) {
812 	case OP_EQ:
813 		return cpu == cmp;
814 	case OP_NE:
815 		return cpu != cmp;
816 	case OP_LT:
817 		return cpu < cmp;
818 	case OP_LE:
819 		return cpu <= cmp;
820 	case OP_GT:
821 		return cpu > cmp;
822 	case OP_GE:
823 		return cpu >= cmp;
824 	default:
825 		return 0;
826 	}
827 }
828 
829 /* Filter predicate for COMM. */
830 static int filter_pred_comm(struct filter_pred *pred, void *event)
831 {
832 	int cmp;
833 
834 	cmp = pred->regex.match(current->comm, &pred->regex,
835 				TASK_COMM_LEN);
836 	return cmp ^ pred->not;
837 }
838 
839 static int filter_pred_none(struct filter_pred *pred, void *event)
840 {
841 	return 0;
842 }
843 
844 /*
845  * regex_match_foo - Basic regex callbacks
846  *
847  * @str: the string to be searched
848  * @r:   the regex structure containing the pattern string
849  * @len: the length of the string to be searched (including '\0')
850  *
851  * Note:
852  * - @str might not be NULL-terminated if it's of type DYN_STRING
853  *   RDYN_STRING, or STATIC_STRING, unless @len is zero.
854  */
855 
856 static int regex_match_full(char *str, struct regex *r, int len)
857 {
858 	/* len of zero means str is dynamic and ends with '\0' */
859 	if (!len)
860 		return strcmp(str, r->pattern) == 0;
861 
862 	return strncmp(str, r->pattern, len) == 0;
863 }
864 
865 static int regex_match_front(char *str, struct regex *r, int len)
866 {
867 	if (len && len < r->len)
868 		return 0;
869 
870 	return strncmp(str, r->pattern, r->len) == 0;
871 }
872 
873 static int regex_match_middle(char *str, struct regex *r, int len)
874 {
875 	if (!len)
876 		return strstr(str, r->pattern) != NULL;
877 
878 	return strnstr(str, r->pattern, len) != NULL;
879 }
880 
881 static int regex_match_end(char *str, struct regex *r, int len)
882 {
883 	int strlen = len - 1;
884 
885 	if (strlen >= r->len &&
886 	    memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
887 		return 1;
888 	return 0;
889 }
890 
891 static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
892 {
893 	if (glob_match(r->pattern, str))
894 		return 1;
895 	return 0;
896 }
897 
898 /**
899  * filter_parse_regex - parse a basic regex
900  * @buff:   the raw regex
901  * @len:    length of the regex
902  * @search: will point to the beginning of the string to compare
903  * @not:    tell whether the match will have to be inverted
904  *
905  * This passes in a buffer containing a regex and this function will
906  * set search to point to the search part of the buffer and
907  * return the type of search it is (see enum above).
908  * This does modify buff.
909  *
910  * Returns enum type.
911  *  search returns the pointer to use for comparison.
912  *  not returns 1 if buff started with a '!'
913  *     0 otherwise.
914  */
915 enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
916 {
917 	int type = MATCH_FULL;
918 	int i;
919 
920 	if (buff[0] == '!') {
921 		*not = 1;
922 		buff++;
923 		len--;
924 	} else
925 		*not = 0;
926 
927 	*search = buff;
928 
929 	if (isdigit(buff[0]))
930 		return MATCH_INDEX;
931 
932 	for (i = 0; i < len; i++) {
933 		if (buff[i] == '*') {
934 			if (!i) {
935 				type = MATCH_END_ONLY;
936 			} else if (i == len - 1) {
937 				if (type == MATCH_END_ONLY)
938 					type = MATCH_MIDDLE_ONLY;
939 				else
940 					type = MATCH_FRONT_ONLY;
941 				buff[i] = 0;
942 				break;
943 			} else {	/* pattern continues, use full glob */
944 				return MATCH_GLOB;
945 			}
946 		} else if (strchr("[?\\", buff[i])) {
947 			return MATCH_GLOB;
948 		}
949 	}
950 	if (buff[0] == '*')
951 		*search = buff + 1;
952 
953 	return type;
954 }
955 
956 static void filter_build_regex(struct filter_pred *pred)
957 {
958 	struct regex *r = &pred->regex;
959 	char *search;
960 	enum regex_type type = MATCH_FULL;
961 
962 	if (pred->op == OP_GLOB) {
963 		type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
964 		r->len = strlen(search);
965 		memmove(r->pattern, search, r->len+1);
966 	}
967 
968 	switch (type) {
969 	/* MATCH_INDEX should not happen, but if it does, match full */
970 	case MATCH_INDEX:
971 	case MATCH_FULL:
972 		r->match = regex_match_full;
973 		break;
974 	case MATCH_FRONT_ONLY:
975 		r->match = regex_match_front;
976 		break;
977 	case MATCH_MIDDLE_ONLY:
978 		r->match = regex_match_middle;
979 		break;
980 	case MATCH_END_ONLY:
981 		r->match = regex_match_end;
982 		break;
983 	case MATCH_GLOB:
984 		r->match = regex_match_glob;
985 		break;
986 	}
987 }
988 
989 /* return 1 if event matches, 0 otherwise (discard) */
990 int filter_match_preds(struct event_filter *filter, void *rec)
991 {
992 	struct prog_entry *prog;
993 	int i;
994 
995 	/* no filter is considered a match */
996 	if (!filter)
997 		return 1;
998 
999 	/* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
1000 	prog = rcu_dereference_raw(filter->prog);
1001 	if (!prog)
1002 		return 1;
1003 
1004 	for (i = 0; prog[i].pred; i++) {
1005 		struct filter_pred *pred = prog[i].pred;
1006 		int match = pred->fn(pred, rec);
1007 		if (match == prog[i].when_to_branch)
1008 			i = prog[i].target;
1009 	}
1010 	return prog[i].target;
1011 }
1012 EXPORT_SYMBOL_GPL(filter_match_preds);
1013 
1014 static void remove_filter_string(struct event_filter *filter)
1015 {
1016 	if (!filter)
1017 		return;
1018 
1019 	kfree(filter->filter_string);
1020 	filter->filter_string = NULL;
1021 }
1022 
1023 static void append_filter_err(struct trace_array *tr,
1024 			      struct filter_parse_error *pe,
1025 			      struct event_filter *filter)
1026 {
1027 	struct trace_seq *s;
1028 	int pos = pe->lasterr_pos;
1029 	char *buf;
1030 	int len;
1031 
1032 	if (WARN_ON(!filter->filter_string))
1033 		return;
1034 
1035 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1036 	if (!s)
1037 		return;
1038 	trace_seq_init(s);
1039 
1040 	len = strlen(filter->filter_string);
1041 	if (pos > len)
1042 		pos = len;
1043 
1044 	/* indexing is off by one */
1045 	if (pos)
1046 		pos++;
1047 
1048 	trace_seq_puts(s, filter->filter_string);
1049 	if (pe->lasterr > 0) {
1050 		trace_seq_printf(s, "\n%*s", pos, "^");
1051 		trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
1052 		tracing_log_err(tr, "event filter parse error",
1053 				filter->filter_string, err_text,
1054 				pe->lasterr, pe->lasterr_pos);
1055 	} else {
1056 		trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
1057 		tracing_log_err(tr, "event filter parse error",
1058 				filter->filter_string, err_text,
1059 				FILT_ERR_ERRNO, 0);
1060 	}
1061 	trace_seq_putc(s, 0);
1062 	buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
1063 	if (buf) {
1064 		kfree(filter->filter_string);
1065 		filter->filter_string = buf;
1066 	}
1067 	kfree(s);
1068 }
1069 
1070 static inline struct event_filter *event_filter(struct trace_event_file *file)
1071 {
1072 	return file->filter;
1073 }
1074 
1075 /* caller must hold event_mutex */
1076 void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
1077 {
1078 	struct event_filter *filter = event_filter(file);
1079 
1080 	if (filter && filter->filter_string)
1081 		trace_seq_printf(s, "%s\n", filter->filter_string);
1082 	else
1083 		trace_seq_puts(s, "none\n");
1084 }
1085 
1086 void print_subsystem_event_filter(struct event_subsystem *system,
1087 				  struct trace_seq *s)
1088 {
1089 	struct event_filter *filter;
1090 
1091 	mutex_lock(&event_mutex);
1092 	filter = system->filter;
1093 	if (filter && filter->filter_string)
1094 		trace_seq_printf(s, "%s\n", filter->filter_string);
1095 	else
1096 		trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
1097 	mutex_unlock(&event_mutex);
1098 }
1099 
1100 static void free_prog(struct event_filter *filter)
1101 {
1102 	struct prog_entry *prog;
1103 	int i;
1104 
1105 	prog = rcu_access_pointer(filter->prog);
1106 	if (!prog)
1107 		return;
1108 
1109 	for (i = 0; prog[i].pred; i++)
1110 		kfree(prog[i].pred);
1111 	kfree(prog);
1112 }
1113 
1114 static void filter_disable(struct trace_event_file *file)
1115 {
1116 	unsigned long old_flags = file->flags;
1117 
1118 	file->flags &= ~EVENT_FILE_FL_FILTERED;
1119 
1120 	if (old_flags != file->flags)
1121 		trace_buffered_event_disable();
1122 }
1123 
1124 static void __free_filter(struct event_filter *filter)
1125 {
1126 	if (!filter)
1127 		return;
1128 
1129 	free_prog(filter);
1130 	kfree(filter->filter_string);
1131 	kfree(filter);
1132 }
1133 
1134 void free_event_filter(struct event_filter *filter)
1135 {
1136 	__free_filter(filter);
1137 }
1138 
1139 static inline void __remove_filter(struct trace_event_file *file)
1140 {
1141 	filter_disable(file);
1142 	remove_filter_string(file->filter);
1143 }
1144 
1145 static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1146 					struct trace_array *tr)
1147 {
1148 	struct trace_event_file *file;
1149 
1150 	list_for_each_entry(file, &tr->events, list) {
1151 		if (file->system != dir)
1152 			continue;
1153 		__remove_filter(file);
1154 	}
1155 }
1156 
1157 static inline void __free_subsystem_filter(struct trace_event_file *file)
1158 {
1159 	__free_filter(file->filter);
1160 	file->filter = NULL;
1161 }
1162 
1163 static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1164 					  struct trace_array *tr)
1165 {
1166 	struct trace_event_file *file;
1167 
1168 	list_for_each_entry(file, &tr->events, list) {
1169 		if (file->system != dir)
1170 			continue;
1171 		__free_subsystem_filter(file);
1172 	}
1173 }
1174 
1175 int filter_assign_type(const char *type)
1176 {
1177 	if (strstr(type, "__data_loc") && strstr(type, "char"))
1178 		return FILTER_DYN_STRING;
1179 
1180 	if (strstr(type, "__rel_loc") && strstr(type, "char"))
1181 		return FILTER_RDYN_STRING;
1182 
1183 	if (strchr(type, '[') && strstr(type, "char"))
1184 		return FILTER_STATIC_STRING;
1185 
1186 	if (strcmp(type, "char *") == 0 || strcmp(type, "const char *") == 0)
1187 		return FILTER_PTR_STRING;
1188 
1189 	return FILTER_OTHER;
1190 }
1191 
1192 static filter_pred_fn_t select_comparison_fn(enum filter_op_ids op,
1193 					    int field_size, int field_is_signed)
1194 {
1195 	filter_pred_fn_t fn = NULL;
1196 	int pred_func_index = -1;
1197 
1198 	switch (op) {
1199 	case OP_EQ:
1200 	case OP_NE:
1201 		break;
1202 	default:
1203 		if (WARN_ON_ONCE(op < PRED_FUNC_START))
1204 			return NULL;
1205 		pred_func_index = op - PRED_FUNC_START;
1206 		if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1207 			return NULL;
1208 	}
1209 
1210 	switch (field_size) {
1211 	case 8:
1212 		if (pred_func_index < 0)
1213 			fn = filter_pred_64;
1214 		else if (field_is_signed)
1215 			fn = pred_funcs_s64[pred_func_index];
1216 		else
1217 			fn = pred_funcs_u64[pred_func_index];
1218 		break;
1219 	case 4:
1220 		if (pred_func_index < 0)
1221 			fn = filter_pred_32;
1222 		else if (field_is_signed)
1223 			fn = pred_funcs_s32[pred_func_index];
1224 		else
1225 			fn = pred_funcs_u32[pred_func_index];
1226 		break;
1227 	case 2:
1228 		if (pred_func_index < 0)
1229 			fn = filter_pred_16;
1230 		else if (field_is_signed)
1231 			fn = pred_funcs_s16[pred_func_index];
1232 		else
1233 			fn = pred_funcs_u16[pred_func_index];
1234 		break;
1235 	case 1:
1236 		if (pred_func_index < 0)
1237 			fn = filter_pred_8;
1238 		else if (field_is_signed)
1239 			fn = pred_funcs_s8[pred_func_index];
1240 		else
1241 			fn = pred_funcs_u8[pred_func_index];
1242 		break;
1243 	}
1244 
1245 	return fn;
1246 }
1247 
1248 /* Called when a predicate is encountered by predicate_parse() */
1249 static int parse_pred(const char *str, void *data,
1250 		      int pos, struct filter_parse_error *pe,
1251 		      struct filter_pred **pred_ptr)
1252 {
1253 	struct trace_event_call *call = data;
1254 	struct ftrace_event_field *field;
1255 	struct filter_pred *pred = NULL;
1256 	char num_buf[24];	/* Big enough to hold an address */
1257 	char *field_name;
1258 	bool ustring = false;
1259 	char q;
1260 	u64 val;
1261 	int len;
1262 	int ret;
1263 	int op;
1264 	int s;
1265 	int i = 0;
1266 
1267 	/* First find the field to associate to */
1268 	while (isspace(str[i]))
1269 		i++;
1270 	s = i;
1271 
1272 	while (isalnum(str[i]) || str[i] == '_')
1273 		i++;
1274 
1275 	len = i - s;
1276 
1277 	if (!len)
1278 		return -1;
1279 
1280 	field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1281 	if (!field_name)
1282 		return -ENOMEM;
1283 
1284 	/* Make sure that the field exists */
1285 
1286 	field = trace_find_event_field(call, field_name);
1287 	kfree(field_name);
1288 	if (!field) {
1289 		parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1290 		return -EINVAL;
1291 	}
1292 
1293 	/* See if the field is a user space string */
1294 	if ((len = str_has_prefix(str + i, ".ustring"))) {
1295 		ustring = true;
1296 		i += len;
1297 	}
1298 
1299 	while (isspace(str[i]))
1300 		i++;
1301 
1302 	/* Make sure this op is supported */
1303 	for (op = 0; ops[op]; op++) {
1304 		/* This is why '<=' must come before '<' in ops[] */
1305 		if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1306 			break;
1307 	}
1308 
1309 	if (!ops[op]) {
1310 		parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1311 		goto err_free;
1312 	}
1313 
1314 	i += strlen(ops[op]);
1315 
1316 	while (isspace(str[i]))
1317 		i++;
1318 
1319 	s = i;
1320 
1321 	pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1322 	if (!pred)
1323 		return -ENOMEM;
1324 
1325 	pred->field = field;
1326 	pred->offset = field->offset;
1327 	pred->op = op;
1328 
1329 	if (ftrace_event_is_function(call)) {
1330 		/*
1331 		 * Perf does things different with function events.
1332 		 * It only allows an "ip" field, and expects a string.
1333 		 * But the string does not need to be surrounded by quotes.
1334 		 * If it is a string, the assigned function as a nop,
1335 		 * (perf doesn't use it) and grab everything.
1336 		 */
1337 		if (strcmp(field->name, "ip") != 0) {
1338 			parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1339 			goto err_free;
1340 		}
1341 		pred->fn = filter_pred_none;
1342 
1343 		/*
1344 		 * Quotes are not required, but if they exist then we need
1345 		 * to read them till we hit a matching one.
1346 		 */
1347 		if (str[i] == '\'' || str[i] == '"')
1348 			q = str[i];
1349 		else
1350 			q = 0;
1351 
1352 		for (i++; str[i]; i++) {
1353 			if (q && str[i] == q)
1354 				break;
1355 			if (!q && (str[i] == ')' || str[i] == '&' ||
1356 				   str[i] == '|'))
1357 				break;
1358 		}
1359 		/* Skip quotes */
1360 		if (q)
1361 			s++;
1362 		len = i - s;
1363 		if (len >= MAX_FILTER_STR_VAL) {
1364 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1365 			goto err_free;
1366 		}
1367 
1368 		pred->regex.len = len;
1369 		strncpy(pred->regex.pattern, str + s, len);
1370 		pred->regex.pattern[len] = 0;
1371 
1372 	/* This is either a string, or an integer */
1373 	} else if (str[i] == '\'' || str[i] == '"') {
1374 		char q = str[i];
1375 
1376 		/* Make sure the op is OK for strings */
1377 		switch (op) {
1378 		case OP_NE:
1379 			pred->not = 1;
1380 			fallthrough;
1381 		case OP_GLOB:
1382 		case OP_EQ:
1383 			break;
1384 		default:
1385 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1386 			goto err_free;
1387 		}
1388 
1389 		/* Make sure the field is OK for strings */
1390 		if (!is_string_field(field)) {
1391 			parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1392 			goto err_free;
1393 		}
1394 
1395 		for (i++; str[i]; i++) {
1396 			if (str[i] == q)
1397 				break;
1398 		}
1399 		if (!str[i]) {
1400 			parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1401 			goto err_free;
1402 		}
1403 
1404 		/* Skip quotes */
1405 		s++;
1406 		len = i - s;
1407 		if (len >= MAX_FILTER_STR_VAL) {
1408 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1409 			goto err_free;
1410 		}
1411 
1412 		pred->regex.len = len;
1413 		strncpy(pred->regex.pattern, str + s, len);
1414 		pred->regex.pattern[len] = 0;
1415 
1416 		filter_build_regex(pred);
1417 
1418 		if (field->filter_type == FILTER_COMM) {
1419 			pred->fn = filter_pred_comm;
1420 
1421 		} else if (field->filter_type == FILTER_STATIC_STRING) {
1422 			pred->fn = filter_pred_string;
1423 			pred->regex.field_len = field->size;
1424 
1425 		} else if (field->filter_type == FILTER_DYN_STRING) {
1426 			pred->fn = filter_pred_strloc;
1427 		} else if (field->filter_type == FILTER_RDYN_STRING)
1428 			pred->fn = filter_pred_strrelloc;
1429 		else {
1430 
1431 			if (!ustring_per_cpu) {
1432 				/* Once allocated, keep it around for good */
1433 				ustring_per_cpu = alloc_percpu(struct ustring_buffer);
1434 				if (!ustring_per_cpu)
1435 					goto err_mem;
1436 			}
1437 
1438 			if (ustring)
1439 				pred->fn = filter_pred_pchar_user;
1440 			else
1441 				pred->fn = filter_pred_pchar;
1442 		}
1443 		/* go past the last quote */
1444 		i++;
1445 
1446 	} else if (isdigit(str[i]) || str[i] == '-') {
1447 
1448 		/* Make sure the field is not a string */
1449 		if (is_string_field(field)) {
1450 			parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1451 			goto err_free;
1452 		}
1453 
1454 		if (op == OP_GLOB) {
1455 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1456 			goto err_free;
1457 		}
1458 
1459 		if (str[i] == '-')
1460 			i++;
1461 
1462 		/* We allow 0xDEADBEEF */
1463 		while (isalnum(str[i]))
1464 			i++;
1465 
1466 		len = i - s;
1467 		/* 0xfeedfacedeadbeef is 18 chars max */
1468 		if (len >= sizeof(num_buf)) {
1469 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1470 			goto err_free;
1471 		}
1472 
1473 		strncpy(num_buf, str + s, len);
1474 		num_buf[len] = 0;
1475 
1476 		/* Make sure it is a value */
1477 		if (field->is_signed)
1478 			ret = kstrtoll(num_buf, 0, &val);
1479 		else
1480 			ret = kstrtoull(num_buf, 0, &val);
1481 		if (ret) {
1482 			parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1483 			goto err_free;
1484 		}
1485 
1486 		pred->val = val;
1487 
1488 		if (field->filter_type == FILTER_CPU)
1489 			pred->fn = filter_pred_cpu;
1490 		else {
1491 			pred->fn = select_comparison_fn(pred->op, field->size,
1492 							field->is_signed);
1493 			if (pred->op == OP_NE)
1494 				pred->not = 1;
1495 		}
1496 
1497 	} else {
1498 		parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1499 		goto err_free;
1500 	}
1501 
1502 	*pred_ptr = pred;
1503 	return i;
1504 
1505 err_free:
1506 	kfree(pred);
1507 	return -EINVAL;
1508 err_mem:
1509 	kfree(pred);
1510 	return -ENOMEM;
1511 }
1512 
1513 enum {
1514 	TOO_MANY_CLOSE		= -1,
1515 	TOO_MANY_OPEN		= -2,
1516 	MISSING_QUOTE		= -3,
1517 };
1518 
1519 /*
1520  * Read the filter string once to calculate the number of predicates
1521  * as well as how deep the parentheses go.
1522  *
1523  * Returns:
1524  *   0 - everything is fine (err is undefined)
1525  *  -1 - too many ')'
1526  *  -2 - too many '('
1527  *  -3 - No matching quote
1528  */
1529 static int calc_stack(const char *str, int *parens, int *preds, int *err)
1530 {
1531 	bool is_pred = false;
1532 	int nr_preds = 0;
1533 	int open = 1; /* Count the expression as "(E)" */
1534 	int last_quote = 0;
1535 	int max_open = 1;
1536 	int quote = 0;
1537 	int i;
1538 
1539 	*err = 0;
1540 
1541 	for (i = 0; str[i]; i++) {
1542 		if (isspace(str[i]))
1543 			continue;
1544 		if (quote) {
1545 			if (str[i] == quote)
1546 			       quote = 0;
1547 			continue;
1548 		}
1549 
1550 		switch (str[i]) {
1551 		case '\'':
1552 		case '"':
1553 			quote = str[i];
1554 			last_quote = i;
1555 			break;
1556 		case '|':
1557 		case '&':
1558 			if (str[i+1] != str[i])
1559 				break;
1560 			is_pred = false;
1561 			continue;
1562 		case '(':
1563 			is_pred = false;
1564 			open++;
1565 			if (open > max_open)
1566 				max_open = open;
1567 			continue;
1568 		case ')':
1569 			is_pred = false;
1570 			if (open == 1) {
1571 				*err = i;
1572 				return TOO_MANY_CLOSE;
1573 			}
1574 			open--;
1575 			continue;
1576 		}
1577 		if (!is_pred) {
1578 			nr_preds++;
1579 			is_pred = true;
1580 		}
1581 	}
1582 
1583 	if (quote) {
1584 		*err = last_quote;
1585 		return MISSING_QUOTE;
1586 	}
1587 
1588 	if (open != 1) {
1589 		int level = open;
1590 
1591 		/* find the bad open */
1592 		for (i--; i; i--) {
1593 			if (quote) {
1594 				if (str[i] == quote)
1595 					quote = 0;
1596 				continue;
1597 			}
1598 			switch (str[i]) {
1599 			case '(':
1600 				if (level == open) {
1601 					*err = i;
1602 					return TOO_MANY_OPEN;
1603 				}
1604 				level--;
1605 				break;
1606 			case ')':
1607 				level++;
1608 				break;
1609 			case '\'':
1610 			case '"':
1611 				quote = str[i];
1612 				break;
1613 			}
1614 		}
1615 		/* First character is the '(' with missing ')' */
1616 		*err = 0;
1617 		return TOO_MANY_OPEN;
1618 	}
1619 
1620 	/* Set the size of the required stacks */
1621 	*parens = max_open;
1622 	*preds = nr_preds;
1623 	return 0;
1624 }
1625 
1626 static int process_preds(struct trace_event_call *call,
1627 			 const char *filter_string,
1628 			 struct event_filter *filter,
1629 			 struct filter_parse_error *pe)
1630 {
1631 	struct prog_entry *prog;
1632 	int nr_parens;
1633 	int nr_preds;
1634 	int index;
1635 	int ret;
1636 
1637 	ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
1638 	if (ret < 0) {
1639 		switch (ret) {
1640 		case MISSING_QUOTE:
1641 			parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
1642 			break;
1643 		case TOO_MANY_OPEN:
1644 			parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
1645 			break;
1646 		default:
1647 			parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
1648 		}
1649 		return ret;
1650 	}
1651 
1652 	if (!nr_preds)
1653 		return -EINVAL;
1654 
1655 	prog = predicate_parse(filter_string, nr_parens, nr_preds,
1656 			       parse_pred, call, pe);
1657 	if (IS_ERR(prog))
1658 		return PTR_ERR(prog);
1659 
1660 	rcu_assign_pointer(filter->prog, prog);
1661 	return 0;
1662 }
1663 
1664 static inline void event_set_filtered_flag(struct trace_event_file *file)
1665 {
1666 	unsigned long old_flags = file->flags;
1667 
1668 	file->flags |= EVENT_FILE_FL_FILTERED;
1669 
1670 	if (old_flags != file->flags)
1671 		trace_buffered_event_enable();
1672 }
1673 
1674 static inline void event_set_filter(struct trace_event_file *file,
1675 				    struct event_filter *filter)
1676 {
1677 	rcu_assign_pointer(file->filter, filter);
1678 }
1679 
1680 static inline void event_clear_filter(struct trace_event_file *file)
1681 {
1682 	RCU_INIT_POINTER(file->filter, NULL);
1683 }
1684 
1685 struct filter_list {
1686 	struct list_head	list;
1687 	struct event_filter	*filter;
1688 };
1689 
1690 static int process_system_preds(struct trace_subsystem_dir *dir,
1691 				struct trace_array *tr,
1692 				struct filter_parse_error *pe,
1693 				char *filter_string)
1694 {
1695 	struct trace_event_file *file;
1696 	struct filter_list *filter_item;
1697 	struct event_filter *filter = NULL;
1698 	struct filter_list *tmp;
1699 	LIST_HEAD(filter_list);
1700 	bool fail = true;
1701 	int err;
1702 
1703 	list_for_each_entry(file, &tr->events, list) {
1704 
1705 		if (file->system != dir)
1706 			continue;
1707 
1708 		filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1709 		if (!filter)
1710 			goto fail_mem;
1711 
1712 		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1713 		if (!filter->filter_string)
1714 			goto fail_mem;
1715 
1716 		err = process_preds(file->event_call, filter_string, filter, pe);
1717 		if (err) {
1718 			filter_disable(file);
1719 			parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1720 			append_filter_err(tr, pe, filter);
1721 		} else
1722 			event_set_filtered_flag(file);
1723 
1724 
1725 		filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
1726 		if (!filter_item)
1727 			goto fail_mem;
1728 
1729 		list_add_tail(&filter_item->list, &filter_list);
1730 		/*
1731 		 * Regardless of if this returned an error, we still
1732 		 * replace the filter for the call.
1733 		 */
1734 		filter_item->filter = event_filter(file);
1735 		event_set_filter(file, filter);
1736 		filter = NULL;
1737 
1738 		fail = false;
1739 	}
1740 
1741 	if (fail)
1742 		goto fail;
1743 
1744 	/*
1745 	 * The calls can still be using the old filters.
1746 	 * Do a synchronize_rcu() and to ensure all calls are
1747 	 * done with them before we free them.
1748 	 */
1749 	tracepoint_synchronize_unregister();
1750 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1751 		__free_filter(filter_item->filter);
1752 		list_del(&filter_item->list);
1753 		kfree(filter_item);
1754 	}
1755 	return 0;
1756  fail:
1757 	/* No call succeeded */
1758 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1759 		list_del(&filter_item->list);
1760 		kfree(filter_item);
1761 	}
1762 	parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1763 	return -EINVAL;
1764  fail_mem:
1765 	__free_filter(filter);
1766 	/* If any call succeeded, we still need to sync */
1767 	if (!fail)
1768 		tracepoint_synchronize_unregister();
1769 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1770 		__free_filter(filter_item->filter);
1771 		list_del(&filter_item->list);
1772 		kfree(filter_item);
1773 	}
1774 	return -ENOMEM;
1775 }
1776 
1777 static int create_filter_start(char *filter_string, bool set_str,
1778 			       struct filter_parse_error **pse,
1779 			       struct event_filter **filterp)
1780 {
1781 	struct event_filter *filter;
1782 	struct filter_parse_error *pe = NULL;
1783 	int err = 0;
1784 
1785 	if (WARN_ON_ONCE(*pse || *filterp))
1786 		return -EINVAL;
1787 
1788 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1789 	if (filter && set_str) {
1790 		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1791 		if (!filter->filter_string)
1792 			err = -ENOMEM;
1793 	}
1794 
1795 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1796 
1797 	if (!filter || !pe || err) {
1798 		kfree(pe);
1799 		__free_filter(filter);
1800 		return -ENOMEM;
1801 	}
1802 
1803 	/* we're committed to creating a new filter */
1804 	*filterp = filter;
1805 	*pse = pe;
1806 
1807 	return 0;
1808 }
1809 
1810 static void create_filter_finish(struct filter_parse_error *pe)
1811 {
1812 	kfree(pe);
1813 }
1814 
1815 /**
1816  * create_filter - create a filter for a trace_event_call
1817  * @tr: the trace array associated with these events
1818  * @call: trace_event_call to create a filter for
1819  * @filter_str: filter string
1820  * @set_str: remember @filter_str and enable detailed error in filter
1821  * @filterp: out param for created filter (always updated on return)
1822  *           Must be a pointer that references a NULL pointer.
1823  *
1824  * Creates a filter for @call with @filter_str.  If @set_str is %true,
1825  * @filter_str is copied and recorded in the new filter.
1826  *
1827  * On success, returns 0 and *@filterp points to the new filter.  On
1828  * failure, returns -errno and *@filterp may point to %NULL or to a new
1829  * filter.  In the latter case, the returned filter contains error
1830  * information if @set_str is %true and the caller is responsible for
1831  * freeing it.
1832  */
1833 static int create_filter(struct trace_array *tr,
1834 			 struct trace_event_call *call,
1835 			 char *filter_string, bool set_str,
1836 			 struct event_filter **filterp)
1837 {
1838 	struct filter_parse_error *pe = NULL;
1839 	int err;
1840 
1841 	/* filterp must point to NULL */
1842 	if (WARN_ON(*filterp))
1843 		*filterp = NULL;
1844 
1845 	err = create_filter_start(filter_string, set_str, &pe, filterp);
1846 	if (err)
1847 		return err;
1848 
1849 	err = process_preds(call, filter_string, *filterp, pe);
1850 	if (err && set_str)
1851 		append_filter_err(tr, pe, *filterp);
1852 	create_filter_finish(pe);
1853 
1854 	return err;
1855 }
1856 
1857 int create_event_filter(struct trace_array *tr,
1858 			struct trace_event_call *call,
1859 			char *filter_str, bool set_str,
1860 			struct event_filter **filterp)
1861 {
1862 	return create_filter(tr, call, filter_str, set_str, filterp);
1863 }
1864 
1865 /**
1866  * create_system_filter - create a filter for an event subsystem
1867  * @dir: the descriptor for the subsystem directory
1868  * @filter_str: filter string
1869  * @filterp: out param for created filter (always updated on return)
1870  *
1871  * Identical to create_filter() except that it creates a subsystem filter
1872  * and always remembers @filter_str.
1873  */
1874 static int create_system_filter(struct trace_subsystem_dir *dir,
1875 				char *filter_str, struct event_filter **filterp)
1876 {
1877 	struct filter_parse_error *pe = NULL;
1878 	int err;
1879 
1880 	err = create_filter_start(filter_str, true, &pe, filterp);
1881 	if (!err) {
1882 		err = process_system_preds(dir, dir->tr, pe, filter_str);
1883 		if (!err) {
1884 			/* System filters just show a default message */
1885 			kfree((*filterp)->filter_string);
1886 			(*filterp)->filter_string = NULL;
1887 		} else {
1888 			append_filter_err(dir->tr, pe, *filterp);
1889 		}
1890 	}
1891 	create_filter_finish(pe);
1892 
1893 	return err;
1894 }
1895 
1896 /* caller must hold event_mutex */
1897 int apply_event_filter(struct trace_event_file *file, char *filter_string)
1898 {
1899 	struct trace_event_call *call = file->event_call;
1900 	struct event_filter *filter = NULL;
1901 	int err;
1902 
1903 	if (!strcmp(strstrip(filter_string), "0")) {
1904 		filter_disable(file);
1905 		filter = event_filter(file);
1906 
1907 		if (!filter)
1908 			return 0;
1909 
1910 		event_clear_filter(file);
1911 
1912 		/* Make sure the filter is not being used */
1913 		tracepoint_synchronize_unregister();
1914 		__free_filter(filter);
1915 
1916 		return 0;
1917 	}
1918 
1919 	err = create_filter(file->tr, call, filter_string, true, &filter);
1920 
1921 	/*
1922 	 * Always swap the call filter with the new filter
1923 	 * even if there was an error. If there was an error
1924 	 * in the filter, we disable the filter and show the error
1925 	 * string
1926 	 */
1927 	if (filter) {
1928 		struct event_filter *tmp;
1929 
1930 		tmp = event_filter(file);
1931 		if (!err)
1932 			event_set_filtered_flag(file);
1933 		else
1934 			filter_disable(file);
1935 
1936 		event_set_filter(file, filter);
1937 
1938 		if (tmp) {
1939 			/* Make sure the call is done with the filter */
1940 			tracepoint_synchronize_unregister();
1941 			__free_filter(tmp);
1942 		}
1943 	}
1944 
1945 	return err;
1946 }
1947 
1948 int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
1949 				 char *filter_string)
1950 {
1951 	struct event_subsystem *system = dir->subsystem;
1952 	struct trace_array *tr = dir->tr;
1953 	struct event_filter *filter = NULL;
1954 	int err = 0;
1955 
1956 	mutex_lock(&event_mutex);
1957 
1958 	/* Make sure the system still has events */
1959 	if (!dir->nr_events) {
1960 		err = -ENODEV;
1961 		goto out_unlock;
1962 	}
1963 
1964 	if (!strcmp(strstrip(filter_string), "0")) {
1965 		filter_free_subsystem_preds(dir, tr);
1966 		remove_filter_string(system->filter);
1967 		filter = system->filter;
1968 		system->filter = NULL;
1969 		/* Ensure all filters are no longer used */
1970 		tracepoint_synchronize_unregister();
1971 		filter_free_subsystem_filters(dir, tr);
1972 		__free_filter(filter);
1973 		goto out_unlock;
1974 	}
1975 
1976 	err = create_system_filter(dir, filter_string, &filter);
1977 	if (filter) {
1978 		/*
1979 		 * No event actually uses the system filter
1980 		 * we can free it without synchronize_rcu().
1981 		 */
1982 		__free_filter(system->filter);
1983 		system->filter = filter;
1984 	}
1985 out_unlock:
1986 	mutex_unlock(&event_mutex);
1987 
1988 	return err;
1989 }
1990 
1991 #ifdef CONFIG_PERF_EVENTS
1992 
1993 void ftrace_profile_free_filter(struct perf_event *event)
1994 {
1995 	struct event_filter *filter = event->filter;
1996 
1997 	event->filter = NULL;
1998 	__free_filter(filter);
1999 }
2000 
2001 struct function_filter_data {
2002 	struct ftrace_ops *ops;
2003 	int first_filter;
2004 	int first_notrace;
2005 };
2006 
2007 #ifdef CONFIG_FUNCTION_TRACER
2008 static char **
2009 ftrace_function_filter_re(char *buf, int len, int *count)
2010 {
2011 	char *str, **re;
2012 
2013 	str = kstrndup(buf, len, GFP_KERNEL);
2014 	if (!str)
2015 		return NULL;
2016 
2017 	/*
2018 	 * The argv_split function takes white space
2019 	 * as a separator, so convert ',' into spaces.
2020 	 */
2021 	strreplace(str, ',', ' ');
2022 
2023 	re = argv_split(GFP_KERNEL, str, count);
2024 	kfree(str);
2025 	return re;
2026 }
2027 
2028 static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
2029 				      int reset, char *re, int len)
2030 {
2031 	int ret;
2032 
2033 	if (filter)
2034 		ret = ftrace_set_filter(ops, re, len, reset);
2035 	else
2036 		ret = ftrace_set_notrace(ops, re, len, reset);
2037 
2038 	return ret;
2039 }
2040 
2041 static int __ftrace_function_set_filter(int filter, char *buf, int len,
2042 					struct function_filter_data *data)
2043 {
2044 	int i, re_cnt, ret = -EINVAL;
2045 	int *reset;
2046 	char **re;
2047 
2048 	reset = filter ? &data->first_filter : &data->first_notrace;
2049 
2050 	/*
2051 	 * The 'ip' field could have multiple filters set, separated
2052 	 * either by space or comma. We first cut the filter and apply
2053 	 * all pieces separately.
2054 	 */
2055 	re = ftrace_function_filter_re(buf, len, &re_cnt);
2056 	if (!re)
2057 		return -EINVAL;
2058 
2059 	for (i = 0; i < re_cnt; i++) {
2060 		ret = ftrace_function_set_regexp(data->ops, filter, *reset,
2061 						 re[i], strlen(re[i]));
2062 		if (ret)
2063 			break;
2064 
2065 		if (*reset)
2066 			*reset = 0;
2067 	}
2068 
2069 	argv_free(re);
2070 	return ret;
2071 }
2072 
2073 static int ftrace_function_check_pred(struct filter_pred *pred)
2074 {
2075 	struct ftrace_event_field *field = pred->field;
2076 
2077 	/*
2078 	 * Check the predicate for function trace, verify:
2079 	 *  - only '==' and '!=' is used
2080 	 *  - the 'ip' field is used
2081 	 */
2082 	if ((pred->op != OP_EQ) && (pred->op != OP_NE))
2083 		return -EINVAL;
2084 
2085 	if (strcmp(field->name, "ip"))
2086 		return -EINVAL;
2087 
2088 	return 0;
2089 }
2090 
2091 static int ftrace_function_set_filter_pred(struct filter_pred *pred,
2092 					   struct function_filter_data *data)
2093 {
2094 	int ret;
2095 
2096 	/* Checking the node is valid for function trace. */
2097 	ret = ftrace_function_check_pred(pred);
2098 	if (ret)
2099 		return ret;
2100 
2101 	return __ftrace_function_set_filter(pred->op == OP_EQ,
2102 					    pred->regex.pattern,
2103 					    pred->regex.len,
2104 					    data);
2105 }
2106 
2107 static bool is_or(struct prog_entry *prog, int i)
2108 {
2109 	int target;
2110 
2111 	/*
2112 	 * Only "||" is allowed for function events, thus,
2113 	 * all true branches should jump to true, and any
2114 	 * false branch should jump to false.
2115 	 */
2116 	target = prog[i].target + 1;
2117 	/* True and false have NULL preds (all prog entries should jump to one */
2118 	if (prog[target].pred)
2119 		return false;
2120 
2121 	/* prog[target].target is 1 for TRUE, 0 for FALSE */
2122 	return prog[i].when_to_branch == prog[target].target;
2123 }
2124 
2125 static int ftrace_function_set_filter(struct perf_event *event,
2126 				      struct event_filter *filter)
2127 {
2128 	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2129 						lockdep_is_held(&event_mutex));
2130 	struct function_filter_data data = {
2131 		.first_filter  = 1,
2132 		.first_notrace = 1,
2133 		.ops           = &event->ftrace_ops,
2134 	};
2135 	int i;
2136 
2137 	for (i = 0; prog[i].pred; i++) {
2138 		struct filter_pred *pred = prog[i].pred;
2139 
2140 		if (!is_or(prog, i))
2141 			return -EINVAL;
2142 
2143 		if (ftrace_function_set_filter_pred(pred, &data) < 0)
2144 			return -EINVAL;
2145 	}
2146 	return 0;
2147 }
2148 #else
2149 static int ftrace_function_set_filter(struct perf_event *event,
2150 				      struct event_filter *filter)
2151 {
2152 	return -ENODEV;
2153 }
2154 #endif /* CONFIG_FUNCTION_TRACER */
2155 
2156 int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2157 			      char *filter_str)
2158 {
2159 	int err;
2160 	struct event_filter *filter = NULL;
2161 	struct trace_event_call *call;
2162 
2163 	mutex_lock(&event_mutex);
2164 
2165 	call = event->tp_event;
2166 
2167 	err = -EINVAL;
2168 	if (!call)
2169 		goto out_unlock;
2170 
2171 	err = -EEXIST;
2172 	if (event->filter)
2173 		goto out_unlock;
2174 
2175 	err = create_filter(NULL, call, filter_str, false, &filter);
2176 	if (err)
2177 		goto free_filter;
2178 
2179 	if (ftrace_event_is_function(call))
2180 		err = ftrace_function_set_filter(event, filter);
2181 	else
2182 		event->filter = filter;
2183 
2184 free_filter:
2185 	if (err || ftrace_event_is_function(call))
2186 		__free_filter(filter);
2187 
2188 out_unlock:
2189 	mutex_unlock(&event_mutex);
2190 
2191 	return err;
2192 }
2193 
2194 #endif /* CONFIG_PERF_EVENTS */
2195 
2196 #ifdef CONFIG_FTRACE_STARTUP_TEST
2197 
2198 #include <linux/types.h>
2199 #include <linux/tracepoint.h>
2200 
2201 #define CREATE_TRACE_POINTS
2202 #include "trace_events_filter_test.h"
2203 
2204 #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2205 { \
2206 	.filter = FILTER, \
2207 	.rec    = { .a = va, .b = vb, .c = vc, .d = vd, \
2208 		    .e = ve, .f = vf, .g = vg, .h = vh }, \
2209 	.match  = m, \
2210 	.not_visited = nvisit, \
2211 }
2212 #define YES 1
2213 #define NO  0
2214 
2215 static struct test_filter_data_t {
2216 	char *filter;
2217 	struct trace_event_raw_ftrace_test_filter rec;
2218 	int match;
2219 	char *not_visited;
2220 } test_filter_data[] = {
2221 #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2222 	       "e == 1 && f == 1 && g == 1 && h == 1"
2223 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2224 	DATA_REC(NO,  0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2225 	DATA_REC(NO,  1, 1, 1, 1, 1, 1, 1, 0, ""),
2226 #undef FILTER
2227 #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2228 	       "e == 1 || f == 1 || g == 1 || h == 1"
2229 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2230 	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2231 	DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2232 #undef FILTER
2233 #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2234 	       "(e == 1 || f == 1) && (g == 1 || h == 1)"
2235 	DATA_REC(NO,  0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2236 	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2237 	DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2238 	DATA_REC(NO,  1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2239 #undef FILTER
2240 #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2241 	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2242 	DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2243 	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2244 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2245 #undef FILTER
2246 #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2247 	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2248 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2249 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2250 	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2251 #undef FILTER
2252 #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2253 	       "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2254 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2255 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2256 	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2257 #undef FILTER
2258 #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2259 	       "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2260 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2261 	DATA_REC(NO,  0, 1, 0, 1, 0, 1, 0, 1, ""),
2262 	DATA_REC(NO,  1, 0, 1, 0, 1, 0, 1, 0, ""),
2263 #undef FILTER
2264 #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2265 	       "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2266 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2267 	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2268 	DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2269 };
2270 
2271 #undef DATA_REC
2272 #undef FILTER
2273 #undef YES
2274 #undef NO
2275 
2276 #define DATA_CNT ARRAY_SIZE(test_filter_data)
2277 
2278 static int test_pred_visited;
2279 
2280 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2281 {
2282 	struct ftrace_event_field *field = pred->field;
2283 
2284 	test_pred_visited = 1;
2285 	printk(KERN_INFO "\npred visited %s\n", field->name);
2286 	return 1;
2287 }
2288 
2289 static void update_pred_fn(struct event_filter *filter, char *fields)
2290 {
2291 	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2292 						lockdep_is_held(&event_mutex));
2293 	int i;
2294 
2295 	for (i = 0; prog[i].pred; i++) {
2296 		struct filter_pred *pred = prog[i].pred;
2297 		struct ftrace_event_field *field = pred->field;
2298 
2299 		WARN_ON_ONCE(!pred->fn);
2300 
2301 		if (!field) {
2302 			WARN_ONCE(1, "all leafs should have field defined %d", i);
2303 			continue;
2304 		}
2305 
2306 		if (!strchr(fields, *field->name))
2307 			continue;
2308 
2309 		pred->fn = test_pred_visited_fn;
2310 	}
2311 }
2312 
2313 static __init int ftrace_test_event_filter(void)
2314 {
2315 	int i;
2316 
2317 	printk(KERN_INFO "Testing ftrace filter: ");
2318 
2319 	for (i = 0; i < DATA_CNT; i++) {
2320 		struct event_filter *filter = NULL;
2321 		struct test_filter_data_t *d = &test_filter_data[i];
2322 		int err;
2323 
2324 		err = create_filter(NULL, &event_ftrace_test_filter,
2325 				    d->filter, false, &filter);
2326 		if (err) {
2327 			printk(KERN_INFO
2328 			       "Failed to get filter for '%s', err %d\n",
2329 			       d->filter, err);
2330 			__free_filter(filter);
2331 			break;
2332 		}
2333 
2334 		/* Needed to dereference filter->prog */
2335 		mutex_lock(&event_mutex);
2336 		/*
2337 		 * The preemption disabling is not really needed for self
2338 		 * tests, but the rcu dereference will complain without it.
2339 		 */
2340 		preempt_disable();
2341 		if (*d->not_visited)
2342 			update_pred_fn(filter, d->not_visited);
2343 
2344 		test_pred_visited = 0;
2345 		err = filter_match_preds(filter, &d->rec);
2346 		preempt_enable();
2347 
2348 		mutex_unlock(&event_mutex);
2349 
2350 		__free_filter(filter);
2351 
2352 		if (test_pred_visited) {
2353 			printk(KERN_INFO
2354 			       "Failed, unwanted pred visited for filter %s\n",
2355 			       d->filter);
2356 			break;
2357 		}
2358 
2359 		if (err != d->match) {
2360 			printk(KERN_INFO
2361 			       "Failed to match filter '%s', expected %d\n",
2362 			       d->filter, d->match);
2363 			break;
2364 		}
2365 	}
2366 
2367 	if (i == DATA_CNT)
2368 		printk(KERN_CONT "OK\n");
2369 
2370 	return 0;
2371 }
2372 
2373 late_initcall(ftrace_test_event_filter);
2374 
2375 #endif /* CONFIG_FTRACE_STARTUP_TEST */
2376