1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * trace_events_filter - generic event filtering
4  *
5  * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/mutex.h>
11 #include <linux/perf_event.h>
12 #include <linux/slab.h>
13 
14 #include "trace.h"
15 #include "trace_output.h"
16 
17 #define DEFAULT_SYS_FILTER_MESSAGE					\
18 	"### global filter ###\n"					\
19 	"# Use this to set filters for multiple events.\n"		\
20 	"# Only events with the given fields will be affected.\n"	\
21 	"# If no events are modified, an error message will be displayed here"
22 
23 /* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
24 #define OPS					\
25 	C( OP_GLOB,	"~"  ),			\
26 	C( OP_NE,	"!=" ),			\
27 	C( OP_EQ,	"==" ),			\
28 	C( OP_LE,	"<=" ),			\
29 	C( OP_LT,	"<"  ),			\
30 	C( OP_GE,	">=" ),			\
31 	C( OP_GT,	">"  ),			\
32 	C( OP_BAND,	"&"  ),			\
33 	C( OP_MAX,	NULL )
34 
35 #undef C
36 #define C(a, b)	a
37 
38 enum filter_op_ids { OPS };
39 
40 #undef C
41 #define C(a, b)	b
42 
43 static const char * ops[] = { OPS };
44 
45 /*
46  * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
47  * pred_funcs_##type below must match the order of them above.
48  */
49 #define PRED_FUNC_START			OP_LE
50 #define PRED_FUNC_MAX			(OP_BAND - PRED_FUNC_START)
51 
52 #define ERRORS								\
53 	C(NONE,			"No error"),				\
54 	C(INVALID_OP,		"Invalid operator"),			\
55 	C(TOO_MANY_OPEN,	"Too many '('"),			\
56 	C(TOO_MANY_CLOSE,	"Too few '('"),				\
57 	C(MISSING_QUOTE,	"Missing matching quote"),		\
58 	C(OPERAND_TOO_LONG,	"Operand too long"),			\
59 	C(EXPECT_STRING,	"Expecting string field"),		\
60 	C(EXPECT_DIGIT,		"Expecting numeric field"),		\
61 	C(ILLEGAL_FIELD_OP,	"Illegal operation for field type"),	\
62 	C(FIELD_NOT_FOUND,	"Field not found"),			\
63 	C(ILLEGAL_INTVAL,	"Illegal integer value"),		\
64 	C(BAD_SUBSYS_FILTER,	"Couldn't find or set field in one of a subsystem's events"), \
65 	C(TOO_MANY_PREDS,	"Too many terms in predicate expression"), \
66 	C(INVALID_FILTER,	"Meaningless filter expression"),	\
67 	C(IP_FIELD_ONLY,	"Only 'ip' field is supported for function trace"), \
68 	C(INVALID_VALUE,	"Invalid value (did you forget quotes)?"), \
69 	C(NO_FILTER,		"No filter found"),
70 
71 #undef C
72 #define C(a, b)		FILT_ERR_##a
73 
74 enum { ERRORS };
75 
76 #undef C
77 #define C(a, b)		b
78 
79 static char *err_text[] = { ERRORS };
80 
81 /* Called after a '!' character but "!=" and "!~" are not "not"s */
82 static bool is_not(const char *str)
83 {
84 	switch (str[1]) {
85 	case '=':
86 	case '~':
87 		return false;
88 	}
89 	return true;
90 }
91 
92 /**
93  * prog_entry - a singe entry in the filter program
94  * @target:	     Index to jump to on a branch (actually one minus the index)
95  * @when_to_branch:  The value of the result of the predicate to do a branch
96  * @pred:	     The predicate to execute.
97  */
98 struct prog_entry {
99 	int			target;
100 	int			when_to_branch;
101 	struct filter_pred	*pred;
102 };
103 
104 /**
105  * update_preds- assign a program entry a label target
106  * @prog: The program array
107  * @N: The index of the current entry in @prog
108  * @when_to_branch: What to assign a program entry for its branch condition
109  *
110  * The program entry at @N has a target that points to the index of a program
111  * entry that can have its target and when_to_branch fields updated.
112  * Update the current program entry denoted by index @N target field to be
113  * that of the updated entry. This will denote the entry to update if
114  * we are processing an "||" after an "&&"
115  */
116 static void update_preds(struct prog_entry *prog, int N, int invert)
117 {
118 	int t, s;
119 
120 	t = prog[N].target;
121 	s = prog[t].target;
122 	prog[t].when_to_branch = invert;
123 	prog[t].target = N;
124 	prog[N].target = s;
125 }
126 
127 struct filter_parse_error {
128 	int lasterr;
129 	int lasterr_pos;
130 };
131 
132 static void parse_error(struct filter_parse_error *pe, int err, int pos)
133 {
134 	pe->lasterr = err;
135 	pe->lasterr_pos = pos;
136 }
137 
138 typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
139 			     struct filter_parse_error *pe,
140 			     struct filter_pred **pred);
141 
142 enum {
143 	INVERT		= 1,
144 	PROCESS_AND	= 2,
145 	PROCESS_OR	= 4,
146 };
147 
148 /*
149  * Without going into a formal proof, this explains the method that is used in
150  * parsing the logical expressions.
151  *
152  * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
153  * The first pass will convert it into the following program:
154  *
155  * n1: r=a;       l1: if (!r) goto l4;
156  * n2: r=b;       l2: if (!r) goto l4;
157  * n3: r=c; r=!r; l3: if (r) goto l4;
158  * n4: r=g; r=!r; l4: if (r) goto l5;
159  * n5: r=d;       l5: if (r) goto T
160  * n6: r=e;       l6: if (!r) goto l7;
161  * n7: r=f; r=!r; l7: if (!r) goto F
162  * T: return TRUE
163  * F: return FALSE
164  *
165  * To do this, we use a data structure to represent each of the above
166  * predicate and conditions that has:
167  *
168  *  predicate, when_to_branch, invert, target
169  *
170  * The "predicate" will hold the function to determine the result "r".
171  * The "when_to_branch" denotes what "r" should be if a branch is to be taken
172  * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
173  * The "invert" holds whether the value should be reversed before testing.
174  * The "target" contains the label "l#" to jump to.
175  *
176  * A stack is created to hold values when parentheses are used.
177  *
178  * To simplify the logic, the labels will start at 0 and not 1.
179  *
180  * The possible invert values are 1 and 0. The number of "!"s that are in scope
181  * before the predicate determines the invert value, if the number is odd then
182  * the invert value is 1 and 0 otherwise. This means the invert value only
183  * needs to be toggled when a new "!" is introduced compared to what is stored
184  * on the stack, where parentheses were used.
185  *
186  * The top of the stack and "invert" are initialized to zero.
187  *
188  * ** FIRST PASS **
189  *
190  * #1 A loop through all the tokens is done:
191  *
192  * #2 If the token is an "(", the stack is push, and the current stack value
193  *    gets the current invert value, and the loop continues to the next token.
194  *    The top of the stack saves the "invert" value to keep track of what
195  *    the current inversion is. As "!(a && !b || c)" would require all
196  *    predicates being affected separately by the "!" before the parentheses.
197  *    And that would end up being equivalent to "(!a || b) && !c"
198  *
199  * #3 If the token is an "!", the current "invert" value gets inverted, and
200  *    the loop continues. Note, if the next token is a predicate, then
201  *    this "invert" value is only valid for the current program entry,
202  *    and does not affect other predicates later on.
203  *
204  * The only other acceptable token is the predicate string.
205  *
206  * #4 A new entry into the program is added saving: the predicate and the
207  *    current value of "invert". The target is currently assigned to the
208  *    previous program index (this will not be its final value).
209  *
210  * #5 We now enter another loop and look at the next token. The only valid
211  *    tokens are ")", "&&", "||" or end of the input string "\0".
212  *
213  * #6 The invert variable is reset to the current value saved on the top of
214  *    the stack.
215  *
216  * #7 The top of the stack holds not only the current invert value, but also
217  *    if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
218  *    precedence than "||". That is "a && b || c && d" is equivalent to
219  *    "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
220  *    to be processed. This is the case if an "&&" was the last token. If it was
221  *    then we call update_preds(). This takes the program, the current index in
222  *    the program, and the current value of "invert".  More will be described
223  *    below about this function.
224  *
225  * #8 If the next token is "&&" then we set a flag in the top of the stack
226  *    that denotes that "&&" needs to be processed, break out of this loop
227  *    and continue with the outer loop.
228  *
229  * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
230  *    This is called with the program, the current index in the program, but
231  *    this time with an inverted value of "invert" (that is !invert). This is
232  *    because the value taken will become the "when_to_branch" value of the
233  *    program.
234  *    Note, this is called when the next token is not an "&&". As stated before,
235  *    "&&" takes higher precedence, and "||" should not be processed yet if the
236  *    next logical operation is "&&".
237  *
238  * #10 If the next token is "||" then we set a flag in the top of the stack
239  *     that denotes that "||" needs to be processed, break out of this loop
240  *     and continue with the outer loop.
241  *
242  * #11 If this is the end of the input string "\0" then we break out of both
243  *     loops.
244  *
245  * #12 Otherwise, the next token is ")", where we pop the stack and continue
246  *     this inner loop.
247  *
248  * Now to discuss the update_pred() function, as that is key to the setting up
249  * of the program. Remember the "target" of the program is initialized to the
250  * previous index and not the "l" label. The target holds the index into the
251  * program that gets affected by the operand. Thus if we have something like
252  *  "a || b && c", when we process "a" the target will be "-1" (undefined).
253  * When we process "b", its target is "0", which is the index of "a", as that's
254  * the predicate that is affected by "||". But because the next token after "b"
255  * is "&&" we don't call update_preds(). Instead continue to "c". As the
256  * next token after "c" is not "&&" but the end of input, we first process the
257  * "&&" by calling update_preds() for the "&&" then we process the "||" by
258  * callin updates_preds() with the values for processing "||".
259  *
260  * What does that mean? What update_preds() does is to first save the "target"
261  * of the program entry indexed by the current program entry's "target"
262  * (remember the "target" is initialized to previous program entry), and then
263  * sets that "target" to the current index which represents the label "l#".
264  * That entry's "when_to_branch" is set to the value passed in (the "invert"
265  * or "!invert"). Then it sets the current program entry's target to the saved
266  * "target" value (the old value of the program that had its "target" updated
267  * to the label).
268  *
269  * Looking back at "a || b && c", we have the following steps:
270  *  "a"  - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
271  *  "||" - flag that we need to process "||"; continue outer loop
272  *  "b"  - prog[1] = { "b", X, 0 }
273  *  "&&" - flag that we need to process "&&"; continue outer loop
274  * (Notice we did not process "||")
275  *  "c"  - prog[2] = { "c", X, 1 }
276  *  update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
277  *    t = prog[2].target; // t = 1
278  *    s = prog[t].target; // s = 0
279  *    prog[t].target = 2; // Set target to "l2"
280  *    prog[t].when_to_branch = 0;
281  *    prog[2].target = s;
282  * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
283  *    t = prog[2].target; // t = 0
284  *    s = prog[t].target; // s = -1
285  *    prog[t].target = 2; // Set target to "l2"
286  *    prog[t].when_to_branch = 1;
287  *    prog[2].target = s;
288  *
289  * #13 Which brings us to the final step of the first pass, which is to set
290  *     the last program entry's when_to_branch and target, which will be
291  *     when_to_branch = 0; target = N; ( the label after the program entry after
292  *     the last program entry processed above).
293  *
294  * If we denote "TRUE" to be the entry after the last program entry processed,
295  * and "FALSE" the program entry after that, we are now done with the first
296  * pass.
297  *
298  * Making the above "a || b && c" have a progam of:
299  *  prog[0] = { "a", 1, 2 }
300  *  prog[1] = { "b", 0, 2 }
301  *  prog[2] = { "c", 0, 3 }
302  *
303  * Which translates into:
304  * n0: r = a; l0: if (r) goto l2;
305  * n1: r = b; l1: if (!r) goto l2;
306  * n2: r = c; l2: if (!r) goto l3;  // Which is the same as "goto F;"
307  * T: return TRUE; l3:
308  * F: return FALSE
309  *
310  * Although, after the first pass, the program is correct, it is
311  * inefficient. The simple sample of "a || b && c" could be easily been
312  * converted into:
313  * n0: r = a; if (r) goto T
314  * n1: r = b; if (!r) goto F
315  * n2: r = c; if (!r) goto F
316  * T: return TRUE;
317  * F: return FALSE;
318  *
319  * The First Pass is over the input string. The next too passes are over
320  * the program itself.
321  *
322  * ** SECOND PASS **
323  *
324  * Which brings us to the second pass. If a jump to a label has the
325  * same condition as that label, it can instead jump to its target.
326  * The original example of "a && !(!b || (c && g)) || d || e && !f"
327  * where the first pass gives us:
328  *
329  * n1: r=a;       l1: if (!r) goto l4;
330  * n2: r=b;       l2: if (!r) goto l4;
331  * n3: r=c; r=!r; l3: if (r) goto l4;
332  * n4: r=g; r=!r; l4: if (r) goto l5;
333  * n5: r=d;       l5: if (r) goto T
334  * n6: r=e;       l6: if (!r) goto l7;
335  * n7: r=f; r=!r; l7: if (!r) goto F:
336  * T: return TRUE;
337  * F: return FALSE
338  *
339  * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
340  * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
341  * to go directly to T. To accomplish this, we start from the last
342  * entry in the program and work our way back. If the target of the entry
343  * has the same "when_to_branch" then we could use that entry's target.
344  * Doing this, the above would end up as:
345  *
346  * n1: r=a;       l1: if (!r) goto l4;
347  * n2: r=b;       l2: if (!r) goto l4;
348  * n3: r=c; r=!r; l3: if (r) goto T;
349  * n4: r=g; r=!r; l4: if (r) goto T;
350  * n5: r=d;       l5: if (r) goto T;
351  * n6: r=e;       l6: if (!r) goto F;
352  * n7: r=f; r=!r; l7: if (!r) goto F;
353  * T: return TRUE
354  * F: return FALSE
355  *
356  * In that same pass, if the "when_to_branch" doesn't match, we can simply
357  * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
358  * where "l4: if (r) goto T;", then we can convert l2 to be:
359  * "l2: if (!r) goto n5;".
360  *
361  * This will have the second pass give us:
362  * n1: r=a;       l1: if (!r) goto n5;
363  * n2: r=b;       l2: if (!r) goto n5;
364  * n3: r=c; r=!r; l3: if (r) goto T;
365  * n4: r=g; r=!r; l4: if (r) goto T;
366  * n5: r=d;       l5: if (r) goto T
367  * n6: r=e;       l6: if (!r) goto F;
368  * n7: r=f; r=!r; l7: if (!r) goto F
369  * T: return TRUE
370  * F: return FALSE
371  *
372  * Notice, all the "l#" labels are no longer used, and they can now
373  * be discarded.
374  *
375  * ** THIRD PASS **
376  *
377  * For the third pass we deal with the inverts. As they simply just
378  * make the "when_to_branch" get inverted, a simple loop over the
379  * program to that does: "when_to_branch ^= invert;" will do the
380  * job, leaving us with:
381  * n1: r=a; if (!r) goto n5;
382  * n2: r=b; if (!r) goto n5;
383  * n3: r=c: if (!r) goto T;
384  * n4: r=g; if (!r) goto T;
385  * n5: r=d; if (r) goto T
386  * n6: r=e; if (!r) goto F;
387  * n7: r=f; if (r) goto F
388  * T: return TRUE
389  * F: return FALSE
390  *
391  * As "r = a; if (!r) goto n5;" is obviously the same as
392  * "if (!a) goto n5;" without doing anything we can interperate the
393  * program as:
394  * n1: if (!a) goto n5;
395  * n2: if (!b) goto n5;
396  * n3: if (!c) goto T;
397  * n4: if (!g) goto T;
398  * n5: if (d) goto T
399  * n6: if (!e) goto F;
400  * n7: if (f) goto F
401  * T: return TRUE
402  * F: return FALSE
403  *
404  * Since the inverts are discarded at the end, there's no reason to store
405  * them in the program array (and waste memory). A separate array to hold
406  * the inverts is used and freed at the end.
407  */
408 static struct prog_entry *
409 predicate_parse(const char *str, int nr_parens, int nr_preds,
410 		parse_pred_fn parse_pred, void *data,
411 		struct filter_parse_error *pe)
412 {
413 	struct prog_entry *prog_stack;
414 	struct prog_entry *prog;
415 	const char *ptr = str;
416 	char *inverts = NULL;
417 	int *op_stack;
418 	int *top;
419 	int invert = 0;
420 	int ret = -ENOMEM;
421 	int len;
422 	int N = 0;
423 	int i;
424 
425 	nr_preds += 2; /* For TRUE and FALSE */
426 
427 	op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
428 	if (!op_stack)
429 		return ERR_PTR(-ENOMEM);
430 	prog_stack = kmalloc_array(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
431 	if (!prog_stack) {
432 		parse_error(pe, -ENOMEM, 0);
433 		goto out_free;
434 	}
435 	inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
436 	if (!inverts) {
437 		parse_error(pe, -ENOMEM, 0);
438 		goto out_free;
439 	}
440 
441 	top = op_stack;
442 	prog = prog_stack;
443 	*top = 0;
444 
445 	/* First pass */
446 	while (*ptr) {						/* #1 */
447 		const char *next = ptr++;
448 
449 		if (isspace(*next))
450 			continue;
451 
452 		switch (*next) {
453 		case '(':					/* #2 */
454 			if (top - op_stack > nr_parens)
455 				return ERR_PTR(-EINVAL);
456 			*(++top) = invert;
457 			continue;
458 		case '!':					/* #3 */
459 			if (!is_not(next))
460 				break;
461 			invert = !invert;
462 			continue;
463 		}
464 
465 		if (N >= nr_preds) {
466 			parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
467 			goto out_free;
468 		}
469 
470 		inverts[N] = invert;				/* #4 */
471 		prog[N].target = N-1;
472 
473 		len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
474 		if (len < 0) {
475 			ret = len;
476 			goto out_free;
477 		}
478 		ptr = next + len;
479 
480 		N++;
481 
482 		ret = -1;
483 		while (1) {					/* #5 */
484 			next = ptr++;
485 			if (isspace(*next))
486 				continue;
487 
488 			switch (*next) {
489 			case ')':
490 			case '\0':
491 				break;
492 			case '&':
493 			case '|':
494 				if (next[1] == next[0]) {
495 					ptr++;
496 					break;
497 				}
498 			default:
499 				parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
500 					    next - str);
501 				goto out_free;
502 			}
503 
504 			invert = *top & INVERT;
505 
506 			if (*top & PROCESS_AND) {		/* #7 */
507 				update_preds(prog, N - 1, invert);
508 				*top &= ~PROCESS_AND;
509 			}
510 			if (*next == '&') {			/* #8 */
511 				*top |= PROCESS_AND;
512 				break;
513 			}
514 			if (*top & PROCESS_OR) {		/* #9 */
515 				update_preds(prog, N - 1, !invert);
516 				*top &= ~PROCESS_OR;
517 			}
518 			if (*next == '|') {			/* #10 */
519 				*top |= PROCESS_OR;
520 				break;
521 			}
522 			if (!*next)				/* #11 */
523 				goto out;
524 
525 			if (top == op_stack) {
526 				ret = -1;
527 				/* Too few '(' */
528 				parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
529 				goto out_free;
530 			}
531 			top--;					/* #12 */
532 		}
533 	}
534  out:
535 	if (top != op_stack) {
536 		/* Too many '(' */
537 		parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
538 		goto out_free;
539 	}
540 
541 	if (!N) {
542 		/* No program? */
543 		ret = -EINVAL;
544 		parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
545 		goto out_free;
546 	}
547 
548 	prog[N].pred = NULL;					/* #13 */
549 	prog[N].target = 1;		/* TRUE */
550 	prog[N+1].pred = NULL;
551 	prog[N+1].target = 0;		/* FALSE */
552 	prog[N-1].target = N;
553 	prog[N-1].when_to_branch = false;
554 
555 	/* Second Pass */
556 	for (i = N-1 ; i--; ) {
557 		int target = prog[i].target;
558 		if (prog[i].when_to_branch == prog[target].when_to_branch)
559 			prog[i].target = prog[target].target;
560 	}
561 
562 	/* Third Pass */
563 	for (i = 0; i < N; i++) {
564 		invert = inverts[i] ^ prog[i].when_to_branch;
565 		prog[i].when_to_branch = invert;
566 		/* Make sure the program always moves forward */
567 		if (WARN_ON(prog[i].target <= i)) {
568 			ret = -EINVAL;
569 			goto out_free;
570 		}
571 	}
572 
573 	kfree(op_stack);
574 	kfree(inverts);
575 	return prog;
576 out_free:
577 	kfree(op_stack);
578 	kfree(inverts);
579 	kfree(prog_stack);
580 	return ERR_PTR(ret);
581 }
582 
583 #define DEFINE_COMPARISON_PRED(type)					\
584 static int filter_pred_LT_##type(struct filter_pred *pred, void *event)	\
585 {									\
586 	type *addr = (type *)(event + pred->offset);			\
587 	type val = (type)pred->val;					\
588 	return *addr < val;						\
589 }									\
590 static int filter_pred_LE_##type(struct filter_pred *pred, void *event)	\
591 {									\
592 	type *addr = (type *)(event + pred->offset);			\
593 	type val = (type)pred->val;					\
594 	return *addr <= val;						\
595 }									\
596 static int filter_pred_GT_##type(struct filter_pred *pred, void *event)	\
597 {									\
598 	type *addr = (type *)(event + pred->offset);			\
599 	type val = (type)pred->val;					\
600 	return *addr > val;					\
601 }									\
602 static int filter_pred_GE_##type(struct filter_pred *pred, void *event)	\
603 {									\
604 	type *addr = (type *)(event + pred->offset);			\
605 	type val = (type)pred->val;					\
606 	return *addr >= val;						\
607 }									\
608 static int filter_pred_BAND_##type(struct filter_pred *pred, void *event) \
609 {									\
610 	type *addr = (type *)(event + pred->offset);			\
611 	type val = (type)pred->val;					\
612 	return !!(*addr & val);						\
613 }									\
614 static const filter_pred_fn_t pred_funcs_##type[] = {			\
615 	filter_pred_LE_##type,						\
616 	filter_pred_LT_##type,						\
617 	filter_pred_GE_##type,						\
618 	filter_pred_GT_##type,						\
619 	filter_pred_BAND_##type,					\
620 };
621 
622 #define DEFINE_EQUALITY_PRED(size)					\
623 static int filter_pred_##size(struct filter_pred *pred, void *event)	\
624 {									\
625 	u##size *addr = (u##size *)(event + pred->offset);		\
626 	u##size val = (u##size)pred->val;				\
627 	int match;							\
628 									\
629 	match = (val == *addr) ^ pred->not;				\
630 									\
631 	return match;							\
632 }
633 
634 DEFINE_COMPARISON_PRED(s64);
635 DEFINE_COMPARISON_PRED(u64);
636 DEFINE_COMPARISON_PRED(s32);
637 DEFINE_COMPARISON_PRED(u32);
638 DEFINE_COMPARISON_PRED(s16);
639 DEFINE_COMPARISON_PRED(u16);
640 DEFINE_COMPARISON_PRED(s8);
641 DEFINE_COMPARISON_PRED(u8);
642 
643 DEFINE_EQUALITY_PRED(64);
644 DEFINE_EQUALITY_PRED(32);
645 DEFINE_EQUALITY_PRED(16);
646 DEFINE_EQUALITY_PRED(8);
647 
648 /* Filter predicate for fixed sized arrays of characters */
649 static int filter_pred_string(struct filter_pred *pred, void *event)
650 {
651 	char *addr = (char *)(event + pred->offset);
652 	int cmp, match;
653 
654 	cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len);
655 
656 	match = cmp ^ pred->not;
657 
658 	return match;
659 }
660 
661 /* Filter predicate for char * pointers */
662 static int filter_pred_pchar(struct filter_pred *pred, void *event)
663 {
664 	char **addr = (char **)(event + pred->offset);
665 	int cmp, match;
666 	int len = strlen(*addr) + 1;	/* including tailing '\0' */
667 
668 	cmp = pred->regex.match(*addr, &pred->regex, len);
669 
670 	match = cmp ^ pred->not;
671 
672 	return match;
673 }
674 
675 /*
676  * Filter predicate for dynamic sized arrays of characters.
677  * These are implemented through a list of strings at the end
678  * of the entry.
679  * Also each of these strings have a field in the entry which
680  * contains its offset from the beginning of the entry.
681  * We have then first to get this field, dereference it
682  * and add it to the address of the entry, and at last we have
683  * the address of the string.
684  */
685 static int filter_pred_strloc(struct filter_pred *pred, void *event)
686 {
687 	u32 str_item = *(u32 *)(event + pred->offset);
688 	int str_loc = str_item & 0xffff;
689 	int str_len = str_item >> 16;
690 	char *addr = (char *)(event + str_loc);
691 	int cmp, match;
692 
693 	cmp = pred->regex.match(addr, &pred->regex, str_len);
694 
695 	match = cmp ^ pred->not;
696 
697 	return match;
698 }
699 
700 /* Filter predicate for CPUs. */
701 static int filter_pred_cpu(struct filter_pred *pred, void *event)
702 {
703 	int cpu, cmp;
704 
705 	cpu = raw_smp_processor_id();
706 	cmp = pred->val;
707 
708 	switch (pred->op) {
709 	case OP_EQ:
710 		return cpu == cmp;
711 	case OP_NE:
712 		return cpu != cmp;
713 	case OP_LT:
714 		return cpu < cmp;
715 	case OP_LE:
716 		return cpu <= cmp;
717 	case OP_GT:
718 		return cpu > cmp;
719 	case OP_GE:
720 		return cpu >= cmp;
721 	default:
722 		return 0;
723 	}
724 }
725 
726 /* Filter predicate for COMM. */
727 static int filter_pred_comm(struct filter_pred *pred, void *event)
728 {
729 	int cmp;
730 
731 	cmp = pred->regex.match(current->comm, &pred->regex,
732 				TASK_COMM_LEN);
733 	return cmp ^ pred->not;
734 }
735 
736 static int filter_pred_none(struct filter_pred *pred, void *event)
737 {
738 	return 0;
739 }
740 
741 /*
742  * regex_match_foo - Basic regex callbacks
743  *
744  * @str: the string to be searched
745  * @r:   the regex structure containing the pattern string
746  * @len: the length of the string to be searched (including '\0')
747  *
748  * Note:
749  * - @str might not be NULL-terminated if it's of type DYN_STRING
750  *   or STATIC_STRING, unless @len is zero.
751  */
752 
753 static int regex_match_full(char *str, struct regex *r, int len)
754 {
755 	/* len of zero means str is dynamic and ends with '\0' */
756 	if (!len)
757 		return strcmp(str, r->pattern) == 0;
758 
759 	return strncmp(str, r->pattern, len) == 0;
760 }
761 
762 static int regex_match_front(char *str, struct regex *r, int len)
763 {
764 	if (len && len < r->len)
765 		return 0;
766 
767 	return strncmp(str, r->pattern, r->len) == 0;
768 }
769 
770 static int regex_match_middle(char *str, struct regex *r, int len)
771 {
772 	if (!len)
773 		return strstr(str, r->pattern) != NULL;
774 
775 	return strnstr(str, r->pattern, len) != NULL;
776 }
777 
778 static int regex_match_end(char *str, struct regex *r, int len)
779 {
780 	int strlen = len - 1;
781 
782 	if (strlen >= r->len &&
783 	    memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
784 		return 1;
785 	return 0;
786 }
787 
788 static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
789 {
790 	if (glob_match(r->pattern, str))
791 		return 1;
792 	return 0;
793 }
794 
795 /**
796  * filter_parse_regex - parse a basic regex
797  * @buff:   the raw regex
798  * @len:    length of the regex
799  * @search: will point to the beginning of the string to compare
800  * @not:    tell whether the match will have to be inverted
801  *
802  * This passes in a buffer containing a regex and this function will
803  * set search to point to the search part of the buffer and
804  * return the type of search it is (see enum above).
805  * This does modify buff.
806  *
807  * Returns enum type.
808  *  search returns the pointer to use for comparison.
809  *  not returns 1 if buff started with a '!'
810  *     0 otherwise.
811  */
812 enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
813 {
814 	int type = MATCH_FULL;
815 	int i;
816 
817 	if (buff[0] == '!') {
818 		*not = 1;
819 		buff++;
820 		len--;
821 	} else
822 		*not = 0;
823 
824 	*search = buff;
825 
826 	for (i = 0; i < len; i++) {
827 		if (buff[i] == '*') {
828 			if (!i) {
829 				type = MATCH_END_ONLY;
830 			} else if (i == len - 1) {
831 				if (type == MATCH_END_ONLY)
832 					type = MATCH_MIDDLE_ONLY;
833 				else
834 					type = MATCH_FRONT_ONLY;
835 				buff[i] = 0;
836 				break;
837 			} else {	/* pattern continues, use full glob */
838 				return MATCH_GLOB;
839 			}
840 		} else if (strchr("[?\\", buff[i])) {
841 			return MATCH_GLOB;
842 		}
843 	}
844 	if (buff[0] == '*')
845 		*search = buff + 1;
846 
847 	return type;
848 }
849 
850 static void filter_build_regex(struct filter_pred *pred)
851 {
852 	struct regex *r = &pred->regex;
853 	char *search;
854 	enum regex_type type = MATCH_FULL;
855 
856 	if (pred->op == OP_GLOB) {
857 		type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
858 		r->len = strlen(search);
859 		memmove(r->pattern, search, r->len+1);
860 	}
861 
862 	switch (type) {
863 	case MATCH_FULL:
864 		r->match = regex_match_full;
865 		break;
866 	case MATCH_FRONT_ONLY:
867 		r->match = regex_match_front;
868 		break;
869 	case MATCH_MIDDLE_ONLY:
870 		r->match = regex_match_middle;
871 		break;
872 	case MATCH_END_ONLY:
873 		r->match = regex_match_end;
874 		break;
875 	case MATCH_GLOB:
876 		r->match = regex_match_glob;
877 		break;
878 	}
879 }
880 
881 /* return 1 if event matches, 0 otherwise (discard) */
882 int filter_match_preds(struct event_filter *filter, void *rec)
883 {
884 	struct prog_entry *prog;
885 	int i;
886 
887 	/* no filter is considered a match */
888 	if (!filter)
889 		return 1;
890 
891 	/* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
892 	prog = rcu_dereference_raw(filter->prog);
893 	if (!prog)
894 		return 1;
895 
896 	for (i = 0; prog[i].pred; i++) {
897 		struct filter_pred *pred = prog[i].pred;
898 		int match = pred->fn(pred, rec);
899 		if (match == prog[i].when_to_branch)
900 			i = prog[i].target;
901 	}
902 	return prog[i].target;
903 }
904 EXPORT_SYMBOL_GPL(filter_match_preds);
905 
906 static void remove_filter_string(struct event_filter *filter)
907 {
908 	if (!filter)
909 		return;
910 
911 	kfree(filter->filter_string);
912 	filter->filter_string = NULL;
913 }
914 
915 static void append_filter_err(struct filter_parse_error *pe,
916 			      struct event_filter *filter)
917 {
918 	struct trace_seq *s;
919 	int pos = pe->lasterr_pos;
920 	char *buf;
921 	int len;
922 
923 	if (WARN_ON(!filter->filter_string))
924 		return;
925 
926 	s = kmalloc(sizeof(*s), GFP_KERNEL);
927 	if (!s)
928 		return;
929 	trace_seq_init(s);
930 
931 	len = strlen(filter->filter_string);
932 	if (pos > len)
933 		pos = len;
934 
935 	/* indexing is off by one */
936 	if (pos)
937 		pos++;
938 
939 	trace_seq_puts(s, filter->filter_string);
940 	if (pe->lasterr > 0) {
941 		trace_seq_printf(s, "\n%*s", pos, "^");
942 		trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
943 	} else {
944 		trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
945 	}
946 	trace_seq_putc(s, 0);
947 	buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
948 	if (buf) {
949 		kfree(filter->filter_string);
950 		filter->filter_string = buf;
951 	}
952 	kfree(s);
953 }
954 
955 static inline struct event_filter *event_filter(struct trace_event_file *file)
956 {
957 	return file->filter;
958 }
959 
960 /* caller must hold event_mutex */
961 void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
962 {
963 	struct event_filter *filter = event_filter(file);
964 
965 	if (filter && filter->filter_string)
966 		trace_seq_printf(s, "%s\n", filter->filter_string);
967 	else
968 		trace_seq_puts(s, "none\n");
969 }
970 
971 void print_subsystem_event_filter(struct event_subsystem *system,
972 				  struct trace_seq *s)
973 {
974 	struct event_filter *filter;
975 
976 	mutex_lock(&event_mutex);
977 	filter = system->filter;
978 	if (filter && filter->filter_string)
979 		trace_seq_printf(s, "%s\n", filter->filter_string);
980 	else
981 		trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
982 	mutex_unlock(&event_mutex);
983 }
984 
985 static void free_prog(struct event_filter *filter)
986 {
987 	struct prog_entry *prog;
988 	int i;
989 
990 	prog = rcu_access_pointer(filter->prog);
991 	if (!prog)
992 		return;
993 
994 	for (i = 0; prog[i].pred; i++)
995 		kfree(prog[i].pred);
996 	kfree(prog);
997 }
998 
999 static void filter_disable(struct trace_event_file *file)
1000 {
1001 	unsigned long old_flags = file->flags;
1002 
1003 	file->flags &= ~EVENT_FILE_FL_FILTERED;
1004 
1005 	if (old_flags != file->flags)
1006 		trace_buffered_event_disable();
1007 }
1008 
1009 static void __free_filter(struct event_filter *filter)
1010 {
1011 	if (!filter)
1012 		return;
1013 
1014 	free_prog(filter);
1015 	kfree(filter->filter_string);
1016 	kfree(filter);
1017 }
1018 
1019 void free_event_filter(struct event_filter *filter)
1020 {
1021 	__free_filter(filter);
1022 }
1023 
1024 static inline void __remove_filter(struct trace_event_file *file)
1025 {
1026 	filter_disable(file);
1027 	remove_filter_string(file->filter);
1028 }
1029 
1030 static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1031 					struct trace_array *tr)
1032 {
1033 	struct trace_event_file *file;
1034 
1035 	list_for_each_entry(file, &tr->events, list) {
1036 		if (file->system != dir)
1037 			continue;
1038 		__remove_filter(file);
1039 	}
1040 }
1041 
1042 static inline void __free_subsystem_filter(struct trace_event_file *file)
1043 {
1044 	__free_filter(file->filter);
1045 	file->filter = NULL;
1046 }
1047 
1048 static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1049 					  struct trace_array *tr)
1050 {
1051 	struct trace_event_file *file;
1052 
1053 	list_for_each_entry(file, &tr->events, list) {
1054 		if (file->system != dir)
1055 			continue;
1056 		__free_subsystem_filter(file);
1057 	}
1058 }
1059 
1060 int filter_assign_type(const char *type)
1061 {
1062 	if (strstr(type, "__data_loc") && strstr(type, "char"))
1063 		return FILTER_DYN_STRING;
1064 
1065 	if (strchr(type, '[') && strstr(type, "char"))
1066 		return FILTER_STATIC_STRING;
1067 
1068 	return FILTER_OTHER;
1069 }
1070 
1071 static filter_pred_fn_t select_comparison_fn(enum filter_op_ids op,
1072 					    int field_size, int field_is_signed)
1073 {
1074 	filter_pred_fn_t fn = NULL;
1075 	int pred_func_index = -1;
1076 
1077 	switch (op) {
1078 	case OP_EQ:
1079 	case OP_NE:
1080 		break;
1081 	default:
1082 		if (WARN_ON_ONCE(op < PRED_FUNC_START))
1083 			return NULL;
1084 		pred_func_index = op - PRED_FUNC_START;
1085 		if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1086 			return NULL;
1087 	}
1088 
1089 	switch (field_size) {
1090 	case 8:
1091 		if (pred_func_index < 0)
1092 			fn = filter_pred_64;
1093 		else if (field_is_signed)
1094 			fn = pred_funcs_s64[pred_func_index];
1095 		else
1096 			fn = pred_funcs_u64[pred_func_index];
1097 		break;
1098 	case 4:
1099 		if (pred_func_index < 0)
1100 			fn = filter_pred_32;
1101 		else if (field_is_signed)
1102 			fn = pred_funcs_s32[pred_func_index];
1103 		else
1104 			fn = pred_funcs_u32[pred_func_index];
1105 		break;
1106 	case 2:
1107 		if (pred_func_index < 0)
1108 			fn = filter_pred_16;
1109 		else if (field_is_signed)
1110 			fn = pred_funcs_s16[pred_func_index];
1111 		else
1112 			fn = pred_funcs_u16[pred_func_index];
1113 		break;
1114 	case 1:
1115 		if (pred_func_index < 0)
1116 			fn = filter_pred_8;
1117 		else if (field_is_signed)
1118 			fn = pred_funcs_s8[pred_func_index];
1119 		else
1120 			fn = pred_funcs_u8[pred_func_index];
1121 		break;
1122 	}
1123 
1124 	return fn;
1125 }
1126 
1127 /* Called when a predicate is encountered by predicate_parse() */
1128 static int parse_pred(const char *str, void *data,
1129 		      int pos, struct filter_parse_error *pe,
1130 		      struct filter_pred **pred_ptr)
1131 {
1132 	struct trace_event_call *call = data;
1133 	struct ftrace_event_field *field;
1134 	struct filter_pred *pred = NULL;
1135 	char num_buf[24];	/* Big enough to hold an address */
1136 	char *field_name;
1137 	char q;
1138 	u64 val;
1139 	int len;
1140 	int ret;
1141 	int op;
1142 	int s;
1143 	int i = 0;
1144 
1145 	/* First find the field to associate to */
1146 	while (isspace(str[i]))
1147 		i++;
1148 	s = i;
1149 
1150 	while (isalnum(str[i]) || str[i] == '_')
1151 		i++;
1152 
1153 	len = i - s;
1154 
1155 	if (!len)
1156 		return -1;
1157 
1158 	field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1159 	if (!field_name)
1160 		return -ENOMEM;
1161 
1162 	/* Make sure that the field exists */
1163 
1164 	field = trace_find_event_field(call, field_name);
1165 	kfree(field_name);
1166 	if (!field) {
1167 		parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1168 		return -EINVAL;
1169 	}
1170 
1171 	while (isspace(str[i]))
1172 		i++;
1173 
1174 	/* Make sure this op is supported */
1175 	for (op = 0; ops[op]; op++) {
1176 		/* This is why '<=' must come before '<' in ops[] */
1177 		if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1178 			break;
1179 	}
1180 
1181 	if (!ops[op]) {
1182 		parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1183 		goto err_free;
1184 	}
1185 
1186 	i += strlen(ops[op]);
1187 
1188 	while (isspace(str[i]))
1189 		i++;
1190 
1191 	s = i;
1192 
1193 	pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1194 	if (!pred)
1195 		return -ENOMEM;
1196 
1197 	pred->field = field;
1198 	pred->offset = field->offset;
1199 	pred->op = op;
1200 
1201 	if (ftrace_event_is_function(call)) {
1202 		/*
1203 		 * Perf does things different with function events.
1204 		 * It only allows an "ip" field, and expects a string.
1205 		 * But the string does not need to be surrounded by quotes.
1206 		 * If it is a string, the assigned function as a nop,
1207 		 * (perf doesn't use it) and grab everything.
1208 		 */
1209 		if (strcmp(field->name, "ip") != 0) {
1210 			 parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1211 			 goto err_free;
1212 		 }
1213 		 pred->fn = filter_pred_none;
1214 
1215 		 /*
1216 		  * Quotes are not required, but if they exist then we need
1217 		  * to read them till we hit a matching one.
1218 		  */
1219 		 if (str[i] == '\'' || str[i] == '"')
1220 			 q = str[i];
1221 		 else
1222 			 q = 0;
1223 
1224 		 for (i++; str[i]; i++) {
1225 			 if (q && str[i] == q)
1226 				 break;
1227 			 if (!q && (str[i] == ')' || str[i] == '&' ||
1228 				    str[i] == '|'))
1229 				 break;
1230 		 }
1231 		 /* Skip quotes */
1232 		 if (q)
1233 			 s++;
1234 		len = i - s;
1235 		if (len >= MAX_FILTER_STR_VAL) {
1236 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1237 			goto err_free;
1238 		}
1239 
1240 		pred->regex.len = len;
1241 		strncpy(pred->regex.pattern, str + s, len);
1242 		pred->regex.pattern[len] = 0;
1243 
1244 	/* This is either a string, or an integer */
1245 	} else if (str[i] == '\'' || str[i] == '"') {
1246 		char q = str[i];
1247 
1248 		/* Make sure the op is OK for strings */
1249 		switch (op) {
1250 		case OP_NE:
1251 			pred->not = 1;
1252 			/* Fall through */
1253 		case OP_GLOB:
1254 		case OP_EQ:
1255 			break;
1256 		default:
1257 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1258 			goto err_free;
1259 		}
1260 
1261 		/* Make sure the field is OK for strings */
1262 		if (!is_string_field(field)) {
1263 			parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1264 			goto err_free;
1265 		}
1266 
1267 		for (i++; str[i]; i++) {
1268 			if (str[i] == q)
1269 				break;
1270 		}
1271 		if (!str[i]) {
1272 			parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1273 			goto err_free;
1274 		}
1275 
1276 		/* Skip quotes */
1277 		s++;
1278 		len = i - s;
1279 		if (len >= MAX_FILTER_STR_VAL) {
1280 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1281 			goto err_free;
1282 		}
1283 
1284 		pred->regex.len = len;
1285 		strncpy(pred->regex.pattern, str + s, len);
1286 		pred->regex.pattern[len] = 0;
1287 
1288 		filter_build_regex(pred);
1289 
1290 		if (field->filter_type == FILTER_COMM) {
1291 			pred->fn = filter_pred_comm;
1292 
1293 		} else if (field->filter_type == FILTER_STATIC_STRING) {
1294 			pred->fn = filter_pred_string;
1295 			pred->regex.field_len = field->size;
1296 
1297 		} else if (field->filter_type == FILTER_DYN_STRING)
1298 			pred->fn = filter_pred_strloc;
1299 		else
1300 			pred->fn = filter_pred_pchar;
1301 		/* go past the last quote */
1302 		i++;
1303 
1304 	} else if (isdigit(str[i])) {
1305 
1306 		/* Make sure the field is not a string */
1307 		if (is_string_field(field)) {
1308 			parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1309 			goto err_free;
1310 		}
1311 
1312 		if (op == OP_GLOB) {
1313 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1314 			goto err_free;
1315 		}
1316 
1317 		/* We allow 0xDEADBEEF */
1318 		while (isalnum(str[i]))
1319 			i++;
1320 
1321 		len = i - s;
1322 		/* 0xfeedfacedeadbeef is 18 chars max */
1323 		if (len >= sizeof(num_buf)) {
1324 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1325 			goto err_free;
1326 		}
1327 
1328 		strncpy(num_buf, str + s, len);
1329 		num_buf[len] = 0;
1330 
1331 		/* Make sure it is a value */
1332 		if (field->is_signed)
1333 			ret = kstrtoll(num_buf, 0, &val);
1334 		else
1335 			ret = kstrtoull(num_buf, 0, &val);
1336 		if (ret) {
1337 			parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1338 			goto err_free;
1339 		}
1340 
1341 		pred->val = val;
1342 
1343 		if (field->filter_type == FILTER_CPU)
1344 			pred->fn = filter_pred_cpu;
1345 		else {
1346 			pred->fn = select_comparison_fn(pred->op, field->size,
1347 							field->is_signed);
1348 			if (pred->op == OP_NE)
1349 				pred->not = 1;
1350 		}
1351 
1352 	} else {
1353 		parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1354 		goto err_free;
1355 	}
1356 
1357 	*pred_ptr = pred;
1358 	return i;
1359 
1360 err_free:
1361 	kfree(pred);
1362 	return -EINVAL;
1363 }
1364 
1365 enum {
1366 	TOO_MANY_CLOSE		= -1,
1367 	TOO_MANY_OPEN		= -2,
1368 	MISSING_QUOTE		= -3,
1369 };
1370 
1371 /*
1372  * Read the filter string once to calculate the number of predicates
1373  * as well as how deep the parentheses go.
1374  *
1375  * Returns:
1376  *   0 - everything is fine (err is undefined)
1377  *  -1 - too many ')'
1378  *  -2 - too many '('
1379  *  -3 - No matching quote
1380  */
1381 static int calc_stack(const char *str, int *parens, int *preds, int *err)
1382 {
1383 	bool is_pred = false;
1384 	int nr_preds = 0;
1385 	int open = 1; /* Count the expression as "(E)" */
1386 	int last_quote = 0;
1387 	int max_open = 1;
1388 	int quote = 0;
1389 	int i;
1390 
1391 	*err = 0;
1392 
1393 	for (i = 0; str[i]; i++) {
1394 		if (isspace(str[i]))
1395 			continue;
1396 		if (quote) {
1397 			if (str[i] == quote)
1398 			       quote = 0;
1399 			continue;
1400 		}
1401 
1402 		switch (str[i]) {
1403 		case '\'':
1404 		case '"':
1405 			quote = str[i];
1406 			last_quote = i;
1407 			break;
1408 		case '|':
1409 		case '&':
1410 			if (str[i+1] != str[i])
1411 				break;
1412 			is_pred = false;
1413 			continue;
1414 		case '(':
1415 			is_pred = false;
1416 			open++;
1417 			if (open > max_open)
1418 				max_open = open;
1419 			continue;
1420 		case ')':
1421 			is_pred = false;
1422 			if (open == 1) {
1423 				*err = i;
1424 				return TOO_MANY_CLOSE;
1425 			}
1426 			open--;
1427 			continue;
1428 		}
1429 		if (!is_pred) {
1430 			nr_preds++;
1431 			is_pred = true;
1432 		}
1433 	}
1434 
1435 	if (quote) {
1436 		*err = last_quote;
1437 		return MISSING_QUOTE;
1438 	}
1439 
1440 	if (open != 1) {
1441 		int level = open;
1442 
1443 		/* find the bad open */
1444 		for (i--; i; i--) {
1445 			if (quote) {
1446 				if (str[i] == quote)
1447 					quote = 0;
1448 				continue;
1449 			}
1450 			switch (str[i]) {
1451 			case '(':
1452 				if (level == open) {
1453 					*err = i;
1454 					return TOO_MANY_OPEN;
1455 				}
1456 				level--;
1457 				break;
1458 			case ')':
1459 				level++;
1460 				break;
1461 			case '\'':
1462 			case '"':
1463 				quote = str[i];
1464 				break;
1465 			}
1466 		}
1467 		/* First character is the '(' with missing ')' */
1468 		*err = 0;
1469 		return TOO_MANY_OPEN;
1470 	}
1471 
1472 	/* Set the size of the required stacks */
1473 	*parens = max_open;
1474 	*preds = nr_preds;
1475 	return 0;
1476 }
1477 
1478 static int process_preds(struct trace_event_call *call,
1479 			 const char *filter_string,
1480 			 struct event_filter *filter,
1481 			 struct filter_parse_error *pe)
1482 {
1483 	struct prog_entry *prog;
1484 	int nr_parens;
1485 	int nr_preds;
1486 	int index;
1487 	int ret;
1488 
1489 	ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
1490 	if (ret < 0) {
1491 		switch (ret) {
1492 		case MISSING_QUOTE:
1493 			parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
1494 			break;
1495 		case TOO_MANY_OPEN:
1496 			parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
1497 			break;
1498 		default:
1499 			parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
1500 		}
1501 		return ret;
1502 	}
1503 
1504 	if (!nr_preds)
1505 		return -EINVAL;
1506 
1507 	prog = predicate_parse(filter_string, nr_parens, nr_preds,
1508 			       parse_pred, call, pe);
1509 	if (IS_ERR(prog))
1510 		return PTR_ERR(prog);
1511 
1512 	rcu_assign_pointer(filter->prog, prog);
1513 	return 0;
1514 }
1515 
1516 static inline void event_set_filtered_flag(struct trace_event_file *file)
1517 {
1518 	unsigned long old_flags = file->flags;
1519 
1520 	file->flags |= EVENT_FILE_FL_FILTERED;
1521 
1522 	if (old_flags != file->flags)
1523 		trace_buffered_event_enable();
1524 }
1525 
1526 static inline void event_set_filter(struct trace_event_file *file,
1527 				    struct event_filter *filter)
1528 {
1529 	rcu_assign_pointer(file->filter, filter);
1530 }
1531 
1532 static inline void event_clear_filter(struct trace_event_file *file)
1533 {
1534 	RCU_INIT_POINTER(file->filter, NULL);
1535 }
1536 
1537 static inline void
1538 event_set_no_set_filter_flag(struct trace_event_file *file)
1539 {
1540 	file->flags |= EVENT_FILE_FL_NO_SET_FILTER;
1541 }
1542 
1543 static inline void
1544 event_clear_no_set_filter_flag(struct trace_event_file *file)
1545 {
1546 	file->flags &= ~EVENT_FILE_FL_NO_SET_FILTER;
1547 }
1548 
1549 static inline bool
1550 event_no_set_filter_flag(struct trace_event_file *file)
1551 {
1552 	if (file->flags & EVENT_FILE_FL_NO_SET_FILTER)
1553 		return true;
1554 
1555 	return false;
1556 }
1557 
1558 struct filter_list {
1559 	struct list_head	list;
1560 	struct event_filter	*filter;
1561 };
1562 
1563 static int process_system_preds(struct trace_subsystem_dir *dir,
1564 				struct trace_array *tr,
1565 				struct filter_parse_error *pe,
1566 				char *filter_string)
1567 {
1568 	struct trace_event_file *file;
1569 	struct filter_list *filter_item;
1570 	struct event_filter *filter = NULL;
1571 	struct filter_list *tmp;
1572 	LIST_HEAD(filter_list);
1573 	bool fail = true;
1574 	int err;
1575 
1576 	list_for_each_entry(file, &tr->events, list) {
1577 
1578 		if (file->system != dir)
1579 			continue;
1580 
1581 		filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1582 		if (!filter)
1583 			goto fail_mem;
1584 
1585 		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1586 		if (!filter->filter_string)
1587 			goto fail_mem;
1588 
1589 		err = process_preds(file->event_call, filter_string, filter, pe);
1590 		if (err) {
1591 			filter_disable(file);
1592 			parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1593 			append_filter_err(pe, filter);
1594 		} else
1595 			event_set_filtered_flag(file);
1596 
1597 
1598 		filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
1599 		if (!filter_item)
1600 			goto fail_mem;
1601 
1602 		list_add_tail(&filter_item->list, &filter_list);
1603 		/*
1604 		 * Regardless of if this returned an error, we still
1605 		 * replace the filter for the call.
1606 		 */
1607 		filter_item->filter = event_filter(file);
1608 		event_set_filter(file, filter);
1609 		filter = NULL;
1610 
1611 		fail = false;
1612 	}
1613 
1614 	if (fail)
1615 		goto fail;
1616 
1617 	/*
1618 	 * The calls can still be using the old filters.
1619 	 * Do a synchronize_rcu() and to ensure all calls are
1620 	 * done with them before we free them.
1621 	 */
1622 	tracepoint_synchronize_unregister();
1623 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1624 		__free_filter(filter_item->filter);
1625 		list_del(&filter_item->list);
1626 		kfree(filter_item);
1627 	}
1628 	return 0;
1629  fail:
1630 	/* No call succeeded */
1631 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1632 		list_del(&filter_item->list);
1633 		kfree(filter_item);
1634 	}
1635 	parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1636 	return -EINVAL;
1637  fail_mem:
1638 	kfree(filter);
1639 	/* If any call succeeded, we still need to sync */
1640 	if (!fail)
1641 		tracepoint_synchronize_unregister();
1642 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1643 		__free_filter(filter_item->filter);
1644 		list_del(&filter_item->list);
1645 		kfree(filter_item);
1646 	}
1647 	return -ENOMEM;
1648 }
1649 
1650 static int create_filter_start(char *filter_string, bool set_str,
1651 			       struct filter_parse_error **pse,
1652 			       struct event_filter **filterp)
1653 {
1654 	struct event_filter *filter;
1655 	struct filter_parse_error *pe = NULL;
1656 	int err = 0;
1657 
1658 	if (WARN_ON_ONCE(*pse || *filterp))
1659 		return -EINVAL;
1660 
1661 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1662 	if (filter && set_str) {
1663 		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1664 		if (!filter->filter_string)
1665 			err = -ENOMEM;
1666 	}
1667 
1668 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1669 
1670 	if (!filter || !pe || err) {
1671 		kfree(pe);
1672 		__free_filter(filter);
1673 		return -ENOMEM;
1674 	}
1675 
1676 	/* we're committed to creating a new filter */
1677 	*filterp = filter;
1678 	*pse = pe;
1679 
1680 	return 0;
1681 }
1682 
1683 static void create_filter_finish(struct filter_parse_error *pe)
1684 {
1685 	kfree(pe);
1686 }
1687 
1688 /**
1689  * create_filter - create a filter for a trace_event_call
1690  * @call: trace_event_call to create a filter for
1691  * @filter_str: filter string
1692  * @set_str: remember @filter_str and enable detailed error in filter
1693  * @filterp: out param for created filter (always updated on return)
1694  *           Must be a pointer that references a NULL pointer.
1695  *
1696  * Creates a filter for @call with @filter_str.  If @set_str is %true,
1697  * @filter_str is copied and recorded in the new filter.
1698  *
1699  * On success, returns 0 and *@filterp points to the new filter.  On
1700  * failure, returns -errno and *@filterp may point to %NULL or to a new
1701  * filter.  In the latter case, the returned filter contains error
1702  * information if @set_str is %true and the caller is responsible for
1703  * freeing it.
1704  */
1705 static int create_filter(struct trace_event_call *call,
1706 			 char *filter_string, bool set_str,
1707 			 struct event_filter **filterp)
1708 {
1709 	struct filter_parse_error *pe = NULL;
1710 	int err;
1711 
1712 	/* filterp must point to NULL */
1713 	if (WARN_ON(*filterp))
1714 		*filterp = NULL;
1715 
1716 	err = create_filter_start(filter_string, set_str, &pe, filterp);
1717 	if (err)
1718 		return err;
1719 
1720 	err = process_preds(call, filter_string, *filterp, pe);
1721 	if (err && set_str)
1722 		append_filter_err(pe, *filterp);
1723 	create_filter_finish(pe);
1724 
1725 	return err;
1726 }
1727 
1728 int create_event_filter(struct trace_event_call *call,
1729 			char *filter_str, bool set_str,
1730 			struct event_filter **filterp)
1731 {
1732 	return create_filter(call, filter_str, set_str, filterp);
1733 }
1734 
1735 /**
1736  * create_system_filter - create a filter for an event_subsystem
1737  * @system: event_subsystem to create a filter for
1738  * @filter_str: filter string
1739  * @filterp: out param for created filter (always updated on return)
1740  *
1741  * Identical to create_filter() except that it creates a subsystem filter
1742  * and always remembers @filter_str.
1743  */
1744 static int create_system_filter(struct trace_subsystem_dir *dir,
1745 				struct trace_array *tr,
1746 				char *filter_str, struct event_filter **filterp)
1747 {
1748 	struct filter_parse_error *pe = NULL;
1749 	int err;
1750 
1751 	err = create_filter_start(filter_str, true, &pe, filterp);
1752 	if (!err) {
1753 		err = process_system_preds(dir, tr, pe, filter_str);
1754 		if (!err) {
1755 			/* System filters just show a default message */
1756 			kfree((*filterp)->filter_string);
1757 			(*filterp)->filter_string = NULL;
1758 		} else {
1759 			append_filter_err(pe, *filterp);
1760 		}
1761 	}
1762 	create_filter_finish(pe);
1763 
1764 	return err;
1765 }
1766 
1767 /* caller must hold event_mutex */
1768 int apply_event_filter(struct trace_event_file *file, char *filter_string)
1769 {
1770 	struct trace_event_call *call = file->event_call;
1771 	struct event_filter *filter = NULL;
1772 	int err;
1773 
1774 	if (!strcmp(strstrip(filter_string), "0")) {
1775 		filter_disable(file);
1776 		filter = event_filter(file);
1777 
1778 		if (!filter)
1779 			return 0;
1780 
1781 		event_clear_filter(file);
1782 
1783 		/* Make sure the filter is not being used */
1784 		tracepoint_synchronize_unregister();
1785 		__free_filter(filter);
1786 
1787 		return 0;
1788 	}
1789 
1790 	err = create_filter(call, filter_string, true, &filter);
1791 
1792 	/*
1793 	 * Always swap the call filter with the new filter
1794 	 * even if there was an error. If there was an error
1795 	 * in the filter, we disable the filter and show the error
1796 	 * string
1797 	 */
1798 	if (filter) {
1799 		struct event_filter *tmp;
1800 
1801 		tmp = event_filter(file);
1802 		if (!err)
1803 			event_set_filtered_flag(file);
1804 		else
1805 			filter_disable(file);
1806 
1807 		event_set_filter(file, filter);
1808 
1809 		if (tmp) {
1810 			/* Make sure the call is done with the filter */
1811 			tracepoint_synchronize_unregister();
1812 			__free_filter(tmp);
1813 		}
1814 	}
1815 
1816 	return err;
1817 }
1818 
1819 int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
1820 				 char *filter_string)
1821 {
1822 	struct event_subsystem *system = dir->subsystem;
1823 	struct trace_array *tr = dir->tr;
1824 	struct event_filter *filter = NULL;
1825 	int err = 0;
1826 
1827 	mutex_lock(&event_mutex);
1828 
1829 	/* Make sure the system still has events */
1830 	if (!dir->nr_events) {
1831 		err = -ENODEV;
1832 		goto out_unlock;
1833 	}
1834 
1835 	if (!strcmp(strstrip(filter_string), "0")) {
1836 		filter_free_subsystem_preds(dir, tr);
1837 		remove_filter_string(system->filter);
1838 		filter = system->filter;
1839 		system->filter = NULL;
1840 		/* Ensure all filters are no longer used */
1841 		tracepoint_synchronize_unregister();
1842 		filter_free_subsystem_filters(dir, tr);
1843 		__free_filter(filter);
1844 		goto out_unlock;
1845 	}
1846 
1847 	err = create_system_filter(dir, tr, filter_string, &filter);
1848 	if (filter) {
1849 		/*
1850 		 * No event actually uses the system filter
1851 		 * we can free it without synchronize_rcu().
1852 		 */
1853 		__free_filter(system->filter);
1854 		system->filter = filter;
1855 	}
1856 out_unlock:
1857 	mutex_unlock(&event_mutex);
1858 
1859 	return err;
1860 }
1861 
1862 #ifdef CONFIG_PERF_EVENTS
1863 
1864 void ftrace_profile_free_filter(struct perf_event *event)
1865 {
1866 	struct event_filter *filter = event->filter;
1867 
1868 	event->filter = NULL;
1869 	__free_filter(filter);
1870 }
1871 
1872 struct function_filter_data {
1873 	struct ftrace_ops *ops;
1874 	int first_filter;
1875 	int first_notrace;
1876 };
1877 
1878 #ifdef CONFIG_FUNCTION_TRACER
1879 static char **
1880 ftrace_function_filter_re(char *buf, int len, int *count)
1881 {
1882 	char *str, **re;
1883 
1884 	str = kstrndup(buf, len, GFP_KERNEL);
1885 	if (!str)
1886 		return NULL;
1887 
1888 	/*
1889 	 * The argv_split function takes white space
1890 	 * as a separator, so convert ',' into spaces.
1891 	 */
1892 	strreplace(str, ',', ' ');
1893 
1894 	re = argv_split(GFP_KERNEL, str, count);
1895 	kfree(str);
1896 	return re;
1897 }
1898 
1899 static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
1900 				      int reset, char *re, int len)
1901 {
1902 	int ret;
1903 
1904 	if (filter)
1905 		ret = ftrace_set_filter(ops, re, len, reset);
1906 	else
1907 		ret = ftrace_set_notrace(ops, re, len, reset);
1908 
1909 	return ret;
1910 }
1911 
1912 static int __ftrace_function_set_filter(int filter, char *buf, int len,
1913 					struct function_filter_data *data)
1914 {
1915 	int i, re_cnt, ret = -EINVAL;
1916 	int *reset;
1917 	char **re;
1918 
1919 	reset = filter ? &data->first_filter : &data->first_notrace;
1920 
1921 	/*
1922 	 * The 'ip' field could have multiple filters set, separated
1923 	 * either by space or comma. We first cut the filter and apply
1924 	 * all pieces separatelly.
1925 	 */
1926 	re = ftrace_function_filter_re(buf, len, &re_cnt);
1927 	if (!re)
1928 		return -EINVAL;
1929 
1930 	for (i = 0; i < re_cnt; i++) {
1931 		ret = ftrace_function_set_regexp(data->ops, filter, *reset,
1932 						 re[i], strlen(re[i]));
1933 		if (ret)
1934 			break;
1935 
1936 		if (*reset)
1937 			*reset = 0;
1938 	}
1939 
1940 	argv_free(re);
1941 	return ret;
1942 }
1943 
1944 static int ftrace_function_check_pred(struct filter_pred *pred)
1945 {
1946 	struct ftrace_event_field *field = pred->field;
1947 
1948 	/*
1949 	 * Check the predicate for function trace, verify:
1950 	 *  - only '==' and '!=' is used
1951 	 *  - the 'ip' field is used
1952 	 */
1953 	if ((pred->op != OP_EQ) && (pred->op != OP_NE))
1954 		return -EINVAL;
1955 
1956 	if (strcmp(field->name, "ip"))
1957 		return -EINVAL;
1958 
1959 	return 0;
1960 }
1961 
1962 static int ftrace_function_set_filter_pred(struct filter_pred *pred,
1963 					   struct function_filter_data *data)
1964 {
1965 	int ret;
1966 
1967 	/* Checking the node is valid for function trace. */
1968 	ret = ftrace_function_check_pred(pred);
1969 	if (ret)
1970 		return ret;
1971 
1972 	return __ftrace_function_set_filter(pred->op == OP_EQ,
1973 					    pred->regex.pattern,
1974 					    pred->regex.len,
1975 					    data);
1976 }
1977 
1978 static bool is_or(struct prog_entry *prog, int i)
1979 {
1980 	int target;
1981 
1982 	/*
1983 	 * Only "||" is allowed for function events, thus,
1984 	 * all true branches should jump to true, and any
1985 	 * false branch should jump to false.
1986 	 */
1987 	target = prog[i].target + 1;
1988 	/* True and false have NULL preds (all prog entries should jump to one */
1989 	if (prog[target].pred)
1990 		return false;
1991 
1992 	/* prog[target].target is 1 for TRUE, 0 for FALSE */
1993 	return prog[i].when_to_branch == prog[target].target;
1994 }
1995 
1996 static int ftrace_function_set_filter(struct perf_event *event,
1997 				      struct event_filter *filter)
1998 {
1999 	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2000 						lockdep_is_held(&event_mutex));
2001 	struct function_filter_data data = {
2002 		.first_filter  = 1,
2003 		.first_notrace = 1,
2004 		.ops           = &event->ftrace_ops,
2005 	};
2006 	int i;
2007 
2008 	for (i = 0; prog[i].pred; i++) {
2009 		struct filter_pred *pred = prog[i].pred;
2010 
2011 		if (!is_or(prog, i))
2012 			return -EINVAL;
2013 
2014 		if (ftrace_function_set_filter_pred(pred, &data) < 0)
2015 			return -EINVAL;
2016 	}
2017 	return 0;
2018 }
2019 #else
2020 static int ftrace_function_set_filter(struct perf_event *event,
2021 				      struct event_filter *filter)
2022 {
2023 	return -ENODEV;
2024 }
2025 #endif /* CONFIG_FUNCTION_TRACER */
2026 
2027 int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2028 			      char *filter_str)
2029 {
2030 	int err;
2031 	struct event_filter *filter = NULL;
2032 	struct trace_event_call *call;
2033 
2034 	mutex_lock(&event_mutex);
2035 
2036 	call = event->tp_event;
2037 
2038 	err = -EINVAL;
2039 	if (!call)
2040 		goto out_unlock;
2041 
2042 	err = -EEXIST;
2043 	if (event->filter)
2044 		goto out_unlock;
2045 
2046 	err = create_filter(call, filter_str, false, &filter);
2047 	if (err)
2048 		goto free_filter;
2049 
2050 	if (ftrace_event_is_function(call))
2051 		err = ftrace_function_set_filter(event, filter);
2052 	else
2053 		event->filter = filter;
2054 
2055 free_filter:
2056 	if (err || ftrace_event_is_function(call))
2057 		__free_filter(filter);
2058 
2059 out_unlock:
2060 	mutex_unlock(&event_mutex);
2061 
2062 	return err;
2063 }
2064 
2065 #endif /* CONFIG_PERF_EVENTS */
2066 
2067 #ifdef CONFIG_FTRACE_STARTUP_TEST
2068 
2069 #include <linux/types.h>
2070 #include <linux/tracepoint.h>
2071 
2072 #define CREATE_TRACE_POINTS
2073 #include "trace_events_filter_test.h"
2074 
2075 #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2076 { \
2077 	.filter = FILTER, \
2078 	.rec    = { .a = va, .b = vb, .c = vc, .d = vd, \
2079 		    .e = ve, .f = vf, .g = vg, .h = vh }, \
2080 	.match  = m, \
2081 	.not_visited = nvisit, \
2082 }
2083 #define YES 1
2084 #define NO  0
2085 
2086 static struct test_filter_data_t {
2087 	char *filter;
2088 	struct trace_event_raw_ftrace_test_filter rec;
2089 	int match;
2090 	char *not_visited;
2091 } test_filter_data[] = {
2092 #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2093 	       "e == 1 && f == 1 && g == 1 && h == 1"
2094 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2095 	DATA_REC(NO,  0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2096 	DATA_REC(NO,  1, 1, 1, 1, 1, 1, 1, 0, ""),
2097 #undef FILTER
2098 #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2099 	       "e == 1 || f == 1 || g == 1 || h == 1"
2100 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2101 	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2102 	DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2103 #undef FILTER
2104 #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2105 	       "(e == 1 || f == 1) && (g == 1 || h == 1)"
2106 	DATA_REC(NO,  0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2107 	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2108 	DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2109 	DATA_REC(NO,  1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2110 #undef FILTER
2111 #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2112 	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2113 	DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2114 	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2115 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2116 #undef FILTER
2117 #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2118 	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2119 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2120 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2121 	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2122 #undef FILTER
2123 #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2124 	       "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2125 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2126 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2127 	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2128 #undef FILTER
2129 #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2130 	       "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2131 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2132 	DATA_REC(NO,  0, 1, 0, 1, 0, 1, 0, 1, ""),
2133 	DATA_REC(NO,  1, 0, 1, 0, 1, 0, 1, 0, ""),
2134 #undef FILTER
2135 #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2136 	       "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2137 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2138 	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2139 	DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2140 };
2141 
2142 #undef DATA_REC
2143 #undef FILTER
2144 #undef YES
2145 #undef NO
2146 
2147 #define DATA_CNT ARRAY_SIZE(test_filter_data)
2148 
2149 static int test_pred_visited;
2150 
2151 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2152 {
2153 	struct ftrace_event_field *field = pred->field;
2154 
2155 	test_pred_visited = 1;
2156 	printk(KERN_INFO "\npred visited %s\n", field->name);
2157 	return 1;
2158 }
2159 
2160 static void update_pred_fn(struct event_filter *filter, char *fields)
2161 {
2162 	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2163 						lockdep_is_held(&event_mutex));
2164 	int i;
2165 
2166 	for (i = 0; prog[i].pred; i++) {
2167 		struct filter_pred *pred = prog[i].pred;
2168 		struct ftrace_event_field *field = pred->field;
2169 
2170 		WARN_ON_ONCE(!pred->fn);
2171 
2172 		if (!field) {
2173 			WARN_ONCE(1, "all leafs should have field defined %d", i);
2174 			continue;
2175 		}
2176 
2177 		if (!strchr(fields, *field->name))
2178 			continue;
2179 
2180 		pred->fn = test_pred_visited_fn;
2181 	}
2182 }
2183 
2184 static __init int ftrace_test_event_filter(void)
2185 {
2186 	int i;
2187 
2188 	printk(KERN_INFO "Testing ftrace filter: ");
2189 
2190 	for (i = 0; i < DATA_CNT; i++) {
2191 		struct event_filter *filter = NULL;
2192 		struct test_filter_data_t *d = &test_filter_data[i];
2193 		int err;
2194 
2195 		err = create_filter(&event_ftrace_test_filter, d->filter,
2196 				    false, &filter);
2197 		if (err) {
2198 			printk(KERN_INFO
2199 			       "Failed to get filter for '%s', err %d\n",
2200 			       d->filter, err);
2201 			__free_filter(filter);
2202 			break;
2203 		}
2204 
2205 		/* Needed to dereference filter->prog */
2206 		mutex_lock(&event_mutex);
2207 		/*
2208 		 * The preemption disabling is not really needed for self
2209 		 * tests, but the rcu dereference will complain without it.
2210 		 */
2211 		preempt_disable();
2212 		if (*d->not_visited)
2213 			update_pred_fn(filter, d->not_visited);
2214 
2215 		test_pred_visited = 0;
2216 		err = filter_match_preds(filter, &d->rec);
2217 		preempt_enable();
2218 
2219 		mutex_unlock(&event_mutex);
2220 
2221 		__free_filter(filter);
2222 
2223 		if (test_pred_visited) {
2224 			printk(KERN_INFO
2225 			       "Failed, unwanted pred visited for filter %s\n",
2226 			       d->filter);
2227 			break;
2228 		}
2229 
2230 		if (err != d->match) {
2231 			printk(KERN_INFO
2232 			       "Failed to match filter '%s', expected %d\n",
2233 			       d->filter, d->match);
2234 			break;
2235 		}
2236 	}
2237 
2238 	if (i == DATA_CNT)
2239 		printk(KERN_CONT "OK\n");
2240 
2241 	return 0;
2242 }
2243 
2244 late_initcall(ftrace_test_event_filter);
2245 
2246 #endif /* CONFIG_FTRACE_STARTUP_TEST */
2247