xref: /openbmc/linux/kernel/trace/trace_clock.c (revision e36673ec)
1 /*
2  * tracing clocks
3  *
4  *  Copyright (C) 2009 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  * Implements 3 trace clock variants, with differing scalability/precision
7  * tradeoffs:
8  *
9  *  -   local: CPU-local trace clock
10  *  -  medium: scalable global clock with some jitter
11  *  -  global: globally monotonic, serialized clock
12  *
13  * Tracer plugins will chose a default from these clocks.
14  */
15 #include <linux/spinlock.h>
16 #include <linux/irqflags.h>
17 #include <linux/hardirq.h>
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/sched.h>
21 #include <linux/ktime.h>
22 #include <linux/trace_clock.h>
23 
24 #include "trace.h"
25 
26 /*
27  * trace_clock_local(): the simplest and least coherent tracing clock.
28  *
29  * Useful for tracing that does not cross to other CPUs nor
30  * does it go through idle events.
31  */
32 u64 notrace trace_clock_local(void)
33 {
34 	u64 clock;
35 	int resched;
36 
37 	/*
38 	 * sched_clock() is an architecture implemented, fast, scalable,
39 	 * lockless clock. It is not guaranteed to be coherent across
40 	 * CPUs, nor across CPU idle events.
41 	 */
42 	resched = ftrace_preempt_disable();
43 	clock = sched_clock();
44 	ftrace_preempt_enable(resched);
45 
46 	return clock;
47 }
48 
49 /*
50  * trace_clock(): 'inbetween' trace clock. Not completely serialized,
51  * but not completely incorrect when crossing CPUs either.
52  *
53  * This is based on cpu_clock(), which will allow at most ~1 jiffy of
54  * jitter between CPUs. So it's a pretty scalable clock, but there
55  * can be offsets in the trace data.
56  */
57 u64 notrace trace_clock(void)
58 {
59 	return cpu_clock(raw_smp_processor_id());
60 }
61 
62 
63 /*
64  * trace_clock_global(): special globally coherent trace clock
65  *
66  * It has higher overhead than the other trace clocks but is still
67  * an order of magnitude faster than GTOD derived hardware clocks.
68  *
69  * Used by plugins that need globally coherent timestamps.
70  */
71 
72 /* keep prev_time and lock in the same cacheline. */
73 static struct {
74 	u64 prev_time;
75 	arch_spinlock_t lock;
76 } trace_clock_struct ____cacheline_aligned_in_smp =
77 	{
78 		.lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED,
79 	};
80 
81 u64 notrace trace_clock_global(void)
82 {
83 	unsigned long flags;
84 	int this_cpu;
85 	u64 now;
86 
87 	local_irq_save(flags);
88 
89 	this_cpu = raw_smp_processor_id();
90 	now = cpu_clock(this_cpu);
91 	/*
92 	 * If in an NMI context then dont risk lockups and return the
93 	 * cpu_clock() time:
94 	 */
95 	if (unlikely(in_nmi()))
96 		goto out;
97 
98 	arch_spin_lock(&trace_clock_struct.lock);
99 
100 	/*
101 	 * TODO: if this happens often then maybe we should reset
102 	 * my_scd->clock to prev_time+1, to make sure
103 	 * we start ticking with the local clock from now on?
104 	 */
105 	if ((s64)(now - trace_clock_struct.prev_time) < 0)
106 		now = trace_clock_struct.prev_time + 1;
107 
108 	trace_clock_struct.prev_time = now;
109 
110 	arch_spin_unlock(&trace_clock_struct.lock);
111 
112  out:
113 	local_irq_restore(flags);
114 
115 	return now;
116 }
117