xref: /openbmc/linux/kernel/trace/trace_clock.c (revision d0b5e15f)
1 /*
2  * tracing clocks
3  *
4  *  Copyright (C) 2009 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  * Implements 3 trace clock variants, with differing scalability/precision
7  * tradeoffs:
8  *
9  *  -   local: CPU-local trace clock
10  *  -  medium: scalable global clock with some jitter
11  *  -  global: globally monotonic, serialized clock
12  *
13  * Tracer plugins will chose a default from these clocks.
14  */
15 #include <linux/spinlock.h>
16 #include <linux/irqflags.h>
17 #include <linux/hardirq.h>
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/sched.h>
21 #include <linux/ktime.h>
22 #include <linux/trace_clock.h>
23 
24 /*
25  * trace_clock_local(): the simplest and least coherent tracing clock.
26  *
27  * Useful for tracing that does not cross to other CPUs nor
28  * does it go through idle events.
29  */
30 u64 notrace trace_clock_local(void)
31 {
32 	u64 clock;
33 
34 	/*
35 	 * sched_clock() is an architecture implemented, fast, scalable,
36 	 * lockless clock. It is not guaranteed to be coherent across
37 	 * CPUs, nor across CPU idle events.
38 	 */
39 	preempt_disable_notrace();
40 	clock = sched_clock();
41 	preempt_enable_notrace();
42 
43 	return clock;
44 }
45 EXPORT_SYMBOL_GPL(trace_clock_local);
46 
47 /*
48  * trace_clock(): 'between' trace clock. Not completely serialized,
49  * but not completely incorrect when crossing CPUs either.
50  *
51  * This is based on cpu_clock(), which will allow at most ~1 jiffy of
52  * jitter between CPUs. So it's a pretty scalable clock, but there
53  * can be offsets in the trace data.
54  */
55 u64 notrace trace_clock(void)
56 {
57 	return local_clock();
58 }
59 
60 /*
61  * trace_jiffy_clock(): Simply use jiffies as a clock counter.
62  * Note that this use of jiffies_64 is not completely safe on
63  * 32-bit systems. But the window is tiny, and the effect if
64  * we are affected is that we will have an obviously bogus
65  * timestamp on a trace event - i.e. not life threatening.
66  */
67 u64 notrace trace_clock_jiffies(void)
68 {
69 	return jiffies_64_to_clock_t(jiffies_64 - INITIAL_JIFFIES);
70 }
71 
72 /*
73  * trace_clock_global(): special globally coherent trace clock
74  *
75  * It has higher overhead than the other trace clocks but is still
76  * an order of magnitude faster than GTOD derived hardware clocks.
77  *
78  * Used by plugins that need globally coherent timestamps.
79  */
80 
81 /* keep prev_time and lock in the same cacheline. */
82 static struct {
83 	u64 prev_time;
84 	arch_spinlock_t lock;
85 } trace_clock_struct ____cacheline_aligned_in_smp =
86 	{
87 		.lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED,
88 	};
89 
90 u64 notrace trace_clock_global(void)
91 {
92 	unsigned long flags;
93 	int this_cpu;
94 	u64 now;
95 
96 	local_irq_save(flags);
97 
98 	this_cpu = raw_smp_processor_id();
99 	now = sched_clock_cpu(this_cpu);
100 	/*
101 	 * If in an NMI context then dont risk lockups and return the
102 	 * cpu_clock() time:
103 	 */
104 	if (unlikely(in_nmi()))
105 		goto out;
106 
107 	arch_spin_lock(&trace_clock_struct.lock);
108 
109 	/*
110 	 * TODO: if this happens often then maybe we should reset
111 	 * my_scd->clock to prev_time+1, to make sure
112 	 * we start ticking with the local clock from now on?
113 	 */
114 	if ((s64)(now - trace_clock_struct.prev_time) < 0)
115 		now = trace_clock_struct.prev_time + 1;
116 
117 	trace_clock_struct.prev_time = now;
118 
119 	arch_spin_unlock(&trace_clock_struct.lock);
120 
121  out:
122 	local_irq_restore(flags);
123 
124 	return now;
125 }
126 
127 static atomic64_t trace_counter;
128 
129 /*
130  * trace_clock_counter(): simply an atomic counter.
131  * Use the trace_counter "counter" for cases where you do not care
132  * about timings, but are interested in strict ordering.
133  */
134 u64 notrace trace_clock_counter(void)
135 {
136 	return atomic64_add_return(1, &trace_counter);
137 }
138