xref: /openbmc/linux/kernel/trace/trace_clock.c (revision 0a71e4c6)
1 /*
2  * tracing clocks
3  *
4  *  Copyright (C) 2009 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  * Implements 3 trace clock variants, with differing scalability/precision
7  * tradeoffs:
8  *
9  *  -   local: CPU-local trace clock
10  *  -  medium: scalable global clock with some jitter
11  *  -  global: globally monotonic, serialized clock
12  *
13  * Tracer plugins will chose a default from these clocks.
14  */
15 #include <linux/spinlock.h>
16 #include <linux/irqflags.h>
17 #include <linux/hardirq.h>
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/sched.h>
21 #include <linux/ktime.h>
22 #include <linux/trace_clock.h>
23 
24 /*
25  * trace_clock_local(): the simplest and least coherent tracing clock.
26  *
27  * Useful for tracing that does not cross to other CPUs nor
28  * does it go through idle events.
29  */
30 u64 notrace trace_clock_local(void)
31 {
32 	u64 clock;
33 
34 	/*
35 	 * sched_clock() is an architecture implemented, fast, scalable,
36 	 * lockless clock. It is not guaranteed to be coherent across
37 	 * CPUs, nor across CPU idle events.
38 	 */
39 	preempt_disable_notrace();
40 	clock = sched_clock();
41 	preempt_enable_notrace();
42 
43 	return clock;
44 }
45 
46 /*
47  * trace_clock(): 'between' trace clock. Not completely serialized,
48  * but not completely incorrect when crossing CPUs either.
49  *
50  * This is based on cpu_clock(), which will allow at most ~1 jiffy of
51  * jitter between CPUs. So it's a pretty scalable clock, but there
52  * can be offsets in the trace data.
53  */
54 u64 notrace trace_clock(void)
55 {
56 	return local_clock();
57 }
58 
59 
60 /*
61  * trace_clock_global(): special globally coherent trace clock
62  *
63  * It has higher overhead than the other trace clocks but is still
64  * an order of magnitude faster than GTOD derived hardware clocks.
65  *
66  * Used by plugins that need globally coherent timestamps.
67  */
68 
69 /* keep prev_time and lock in the same cacheline. */
70 static struct {
71 	u64 prev_time;
72 	arch_spinlock_t lock;
73 } trace_clock_struct ____cacheline_aligned_in_smp =
74 	{
75 		.lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED,
76 	};
77 
78 u64 notrace trace_clock_global(void)
79 {
80 	unsigned long flags;
81 	int this_cpu;
82 	u64 now;
83 
84 	local_irq_save(flags);
85 
86 	this_cpu = raw_smp_processor_id();
87 	now = cpu_clock(this_cpu);
88 	/*
89 	 * If in an NMI context then dont risk lockups and return the
90 	 * cpu_clock() time:
91 	 */
92 	if (unlikely(in_nmi()))
93 		goto out;
94 
95 	arch_spin_lock(&trace_clock_struct.lock);
96 
97 	/*
98 	 * TODO: if this happens often then maybe we should reset
99 	 * my_scd->clock to prev_time+1, to make sure
100 	 * we start ticking with the local clock from now on?
101 	 */
102 	if ((s64)(now - trace_clock_struct.prev_time) < 0)
103 		now = trace_clock_struct.prev_time + 1;
104 
105 	trace_clock_struct.prev_time = now;
106 
107 	arch_spin_unlock(&trace_clock_struct.lock);
108 
109  out:
110 	local_irq_restore(flags);
111 
112 	return now;
113 }
114 
115 static atomic64_t trace_counter;
116 
117 /*
118  * trace_clock_counter(): simply an atomic counter.
119  * Use the trace_counter "counter" for cases where you do not care
120  * about timings, but are interested in strict ordering.
121  */
122 u64 notrace trace_clock_counter(void)
123 {
124 	return atomic64_add_return(1, &trace_counter);
125 }
126