xref: /openbmc/linux/kernel/trace/ring_buffer.c (revision ffcdf473)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>	/* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29 
30 #include <asm/local.h>
31 
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB		(0xf8ULL << 56)
38 #define ABS_TS_MASK	(~TS_MSB)
39 
40 static void update_pages_handler(struct work_struct *work);
41 
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47 	trace_seq_puts(s, "# compressed entry header\n");
48 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50 	trace_seq_puts(s, "\tarray       :   32 bits\n");
51 	trace_seq_putc(s, '\n');
52 	trace_seq_printf(s, "\tpadding     : type == %d\n",
53 			 RINGBUF_TYPE_PADDING);
54 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
55 			 RINGBUF_TYPE_TIME_EXTEND);
56 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57 			 RINGBUF_TYPE_TIME_STAMP);
58 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
59 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60 
61 	return !trace_seq_has_overflowed(s);
62 }
63 
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131 
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF		(1 << 20)
134 
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136 
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT		4U
139 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
141 
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT	0
144 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT	1
147 # define RB_ARCH_ALIGNMENT		8U
148 #endif
149 
150 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
151 
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154 
155 enum {
156 	RB_LEN_TIME_EXTEND = 8,
157 	RB_LEN_TIME_STAMP =  8,
158 };
159 
160 #define skip_time_extend(event) \
161 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162 
163 #define extended_time(event) \
164 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165 
166 static inline bool rb_null_event(struct ring_buffer_event *event)
167 {
168 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170 
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173 	/* padding has a NULL time_delta */
174 	event->type_len = RINGBUF_TYPE_PADDING;
175 	event->time_delta = 0;
176 }
177 
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181 	unsigned length;
182 
183 	if (event->type_len)
184 		length = event->type_len * RB_ALIGNMENT;
185 	else
186 		length = event->array[0];
187 	return length + RB_EVNT_HDR_SIZE;
188 }
189 
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198 	switch (event->type_len) {
199 	case RINGBUF_TYPE_PADDING:
200 		if (rb_null_event(event))
201 			/* undefined */
202 			return -1;
203 		return  event->array[0] + RB_EVNT_HDR_SIZE;
204 
205 	case RINGBUF_TYPE_TIME_EXTEND:
206 		return RB_LEN_TIME_EXTEND;
207 
208 	case RINGBUF_TYPE_TIME_STAMP:
209 		return RB_LEN_TIME_STAMP;
210 
211 	case RINGBUF_TYPE_DATA:
212 		return rb_event_data_length(event);
213 	default:
214 		WARN_ON_ONCE(1);
215 	}
216 	/* not hit */
217 	return 0;
218 }
219 
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227 	unsigned len = 0;
228 
229 	if (extended_time(event)) {
230 		/* time extends include the data event after it */
231 		len = RB_LEN_TIME_EXTEND;
232 		event = skip_time_extend(event);
233 	}
234 	return len + rb_event_length(event);
235 }
236 
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249 	unsigned length;
250 
251 	if (extended_time(event))
252 		event = skip_time_extend(event);
253 
254 	length = rb_event_length(event);
255 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256 		return length;
257 	length -= RB_EVNT_HDR_SIZE;
258 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260 	return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263 
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268 	if (extended_time(event))
269 		event = skip_time_extend(event);
270 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271 	/* If length is in len field, then array[0] has the data */
272 	if (event->type_len)
273 		return (void *)&event->array[0];
274 	/* Otherwise length is in array[0] and array[1] has the data */
275 	return (void *)&event->array[1];
276 }
277 
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284 	return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287 
288 #define for_each_buffer_cpu(buffer, cpu)		\
289 	for_each_cpu(cpu, buffer->cpumask)
290 
291 #define for_each_online_buffer_cpu(buffer, cpu)		\
292 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293 
294 #define TS_SHIFT	27
295 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST	(~TS_MASK)
297 
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300 	u64 ts;
301 
302 	ts = event->array[0];
303 	ts <<= TS_SHIFT;
304 	ts += event->time_delta;
305 
306 	return ts;
307 }
308 
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS	(1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED	(1 << 30)
313 
314 struct buffer_data_page {
315 	u64		 time_stamp;	/* page time stamp */
316 	local_t		 commit;	/* write committed index */
317 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
318 };
319 
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329 	struct list_head list;		/* list of buffer pages */
330 	local_t		 write;		/* index for next write */
331 	unsigned	 read;		/* index for next read */
332 	local_t		 entries;	/* entries on this page */
333 	unsigned long	 real_end;	/* real end of data */
334 	struct buffer_data_page *page;	/* Actual data page */
335 };
336 
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK		0xfffff
350 #define RB_WRITE_INTCNT		(1 << 20)
351 
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354 	local_set(&bpage->commit, 0);
355 }
356 
357 static void free_buffer_page(struct buffer_page *bpage)
358 {
359 	free_page((unsigned long)bpage->page);
360 	kfree(bpage);
361 }
362 
363 /*
364  * We need to fit the time_stamp delta into 27 bits.
365  */
366 static inline bool test_time_stamp(u64 delta)
367 {
368 	return !!(delta & TS_DELTA_TEST);
369 }
370 
371 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
372 
373 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
374 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
375 
376 int ring_buffer_print_page_header(struct trace_seq *s)
377 {
378 	struct buffer_data_page field;
379 
380 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
381 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
382 			 (unsigned int)sizeof(field.time_stamp),
383 			 (unsigned int)is_signed_type(u64));
384 
385 	trace_seq_printf(s, "\tfield: local_t commit;\t"
386 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
387 			 (unsigned int)offsetof(typeof(field), commit),
388 			 (unsigned int)sizeof(field.commit),
389 			 (unsigned int)is_signed_type(long));
390 
391 	trace_seq_printf(s, "\tfield: int overwrite;\t"
392 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
393 			 (unsigned int)offsetof(typeof(field), commit),
394 			 1,
395 			 (unsigned int)is_signed_type(long));
396 
397 	trace_seq_printf(s, "\tfield: char data;\t"
398 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
399 			 (unsigned int)offsetof(typeof(field), data),
400 			 (unsigned int)BUF_PAGE_SIZE,
401 			 (unsigned int)is_signed_type(char));
402 
403 	return !trace_seq_has_overflowed(s);
404 }
405 
406 struct rb_irq_work {
407 	struct irq_work			work;
408 	wait_queue_head_t		waiters;
409 	wait_queue_head_t		full_waiters;
410 	long				wait_index;
411 	bool				waiters_pending;
412 	bool				full_waiters_pending;
413 	bool				wakeup_full;
414 };
415 
416 /*
417  * Structure to hold event state and handle nested events.
418  */
419 struct rb_event_info {
420 	u64			ts;
421 	u64			delta;
422 	u64			before;
423 	u64			after;
424 	unsigned long		length;
425 	struct buffer_page	*tail_page;
426 	int			add_timestamp;
427 };
428 
429 /*
430  * Used for the add_timestamp
431  *  NONE
432  *  EXTEND - wants a time extend
433  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
434  *  FORCE - force a full time stamp.
435  */
436 enum {
437 	RB_ADD_STAMP_NONE		= 0,
438 	RB_ADD_STAMP_EXTEND		= BIT(1),
439 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
440 	RB_ADD_STAMP_FORCE		= BIT(3)
441 };
442 /*
443  * Used for which event context the event is in.
444  *  TRANSITION = 0
445  *  NMI     = 1
446  *  IRQ     = 2
447  *  SOFTIRQ = 3
448  *  NORMAL  = 4
449  *
450  * See trace_recursive_lock() comment below for more details.
451  */
452 enum {
453 	RB_CTX_TRANSITION,
454 	RB_CTX_NMI,
455 	RB_CTX_IRQ,
456 	RB_CTX_SOFTIRQ,
457 	RB_CTX_NORMAL,
458 	RB_CTX_MAX
459 };
460 
461 #if BITS_PER_LONG == 32
462 #define RB_TIME_32
463 #endif
464 
465 /* To test on 64 bit machines */
466 //#define RB_TIME_32
467 
468 #ifdef RB_TIME_32
469 
470 struct rb_time_struct {
471 	local_t		cnt;
472 	local_t		top;
473 	local_t		bottom;
474 	local_t		msb;
475 };
476 #else
477 #include <asm/local64.h>
478 struct rb_time_struct {
479 	local64_t	time;
480 };
481 #endif
482 typedef struct rb_time_struct rb_time_t;
483 
484 #define MAX_NEST	5
485 
486 /*
487  * head_page == tail_page && head == tail then buffer is empty.
488  */
489 struct ring_buffer_per_cpu {
490 	int				cpu;
491 	atomic_t			record_disabled;
492 	atomic_t			resize_disabled;
493 	struct trace_buffer	*buffer;
494 	raw_spinlock_t			reader_lock;	/* serialize readers */
495 	arch_spinlock_t			lock;
496 	struct lock_class_key		lock_key;
497 	struct buffer_data_page		*free_page;
498 	unsigned long			nr_pages;
499 	unsigned int			current_context;
500 	struct list_head		*pages;
501 	struct buffer_page		*head_page;	/* read from head */
502 	struct buffer_page		*tail_page;	/* write to tail */
503 	struct buffer_page		*commit_page;	/* committed pages */
504 	struct buffer_page		*reader_page;
505 	unsigned long			lost_events;
506 	unsigned long			last_overrun;
507 	unsigned long			nest;
508 	local_t				entries_bytes;
509 	local_t				entries;
510 	local_t				overrun;
511 	local_t				commit_overrun;
512 	local_t				dropped_events;
513 	local_t				committing;
514 	local_t				commits;
515 	local_t				pages_touched;
516 	local_t				pages_lost;
517 	local_t				pages_read;
518 	long				last_pages_touch;
519 	size_t				shortest_full;
520 	unsigned long			read;
521 	unsigned long			read_bytes;
522 	rb_time_t			write_stamp;
523 	rb_time_t			before_stamp;
524 	u64				event_stamp[MAX_NEST];
525 	u64				read_stamp;
526 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
527 	long				nr_pages_to_update;
528 	struct list_head		new_pages; /* new pages to add */
529 	struct work_struct		update_pages_work;
530 	struct completion		update_done;
531 
532 	struct rb_irq_work		irq_work;
533 };
534 
535 struct trace_buffer {
536 	unsigned			flags;
537 	int				cpus;
538 	atomic_t			record_disabled;
539 	cpumask_var_t			cpumask;
540 
541 	struct lock_class_key		*reader_lock_key;
542 
543 	struct mutex			mutex;
544 
545 	struct ring_buffer_per_cpu	**buffers;
546 
547 	struct hlist_node		node;
548 	u64				(*clock)(void);
549 
550 	struct rb_irq_work		irq_work;
551 	bool				time_stamp_abs;
552 };
553 
554 struct ring_buffer_iter {
555 	struct ring_buffer_per_cpu	*cpu_buffer;
556 	unsigned long			head;
557 	unsigned long			next_event;
558 	struct buffer_page		*head_page;
559 	struct buffer_page		*cache_reader_page;
560 	unsigned long			cache_read;
561 	u64				read_stamp;
562 	u64				page_stamp;
563 	struct ring_buffer_event	*event;
564 	int				missed_events;
565 };
566 
567 #ifdef RB_TIME_32
568 
569 /*
570  * On 32 bit machines, local64_t is very expensive. As the ring
571  * buffer doesn't need all the features of a true 64 bit atomic,
572  * on 32 bit, it uses these functions (64 still uses local64_t).
573  *
574  * For the ring buffer, 64 bit required operations for the time is
575  * the following:
576  *
577  *  - Reads may fail if it interrupted a modification of the time stamp.
578  *      It will succeed if it did not interrupt another write even if
579  *      the read itself is interrupted by a write.
580  *      It returns whether it was successful or not.
581  *
582  *  - Writes always succeed and will overwrite other writes and writes
583  *      that were done by events interrupting the current write.
584  *
585  *  - A write followed by a read of the same time stamp will always succeed,
586  *      but may not contain the same value.
587  *
588  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
589  *      Other than that, it acts like a normal cmpxchg.
590  *
591  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
592  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
593  *
594  * The two most significant bits of each half holds a 2 bit counter (0-3).
595  * Each update will increment this counter by one.
596  * When reading the top and bottom, if the two counter bits match then the
597  *  top and bottom together make a valid 60 bit number.
598  */
599 #define RB_TIME_SHIFT	30
600 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
601 #define RB_TIME_MSB_SHIFT	 60
602 
603 static inline int rb_time_cnt(unsigned long val)
604 {
605 	return (val >> RB_TIME_SHIFT) & 3;
606 }
607 
608 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
609 {
610 	u64 val;
611 
612 	val = top & RB_TIME_VAL_MASK;
613 	val <<= RB_TIME_SHIFT;
614 	val |= bottom & RB_TIME_VAL_MASK;
615 
616 	return val;
617 }
618 
619 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
620 {
621 	unsigned long top, bottom, msb;
622 	unsigned long c;
623 
624 	/*
625 	 * If the read is interrupted by a write, then the cnt will
626 	 * be different. Loop until both top and bottom have been read
627 	 * without interruption.
628 	 */
629 	do {
630 		c = local_read(&t->cnt);
631 		top = local_read(&t->top);
632 		bottom = local_read(&t->bottom);
633 		msb = local_read(&t->msb);
634 	} while (c != local_read(&t->cnt));
635 
636 	*cnt = rb_time_cnt(top);
637 
638 	/* If top and bottom counts don't match, this interrupted a write */
639 	if (*cnt != rb_time_cnt(bottom))
640 		return false;
641 
642 	/* The shift to msb will lose its cnt bits */
643 	*ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
644 	return true;
645 }
646 
647 static bool rb_time_read(rb_time_t *t, u64 *ret)
648 {
649 	unsigned long cnt;
650 
651 	return __rb_time_read(t, ret, &cnt);
652 }
653 
654 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
655 {
656 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
657 }
658 
659 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
660 				 unsigned long *msb)
661 {
662 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
663 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
664 	*msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
665 }
666 
667 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
668 {
669 	val = rb_time_val_cnt(val, cnt);
670 	local_set(t, val);
671 }
672 
673 static void rb_time_set(rb_time_t *t, u64 val)
674 {
675 	unsigned long cnt, top, bottom, msb;
676 
677 	rb_time_split(val, &top, &bottom, &msb);
678 
679 	/* Writes always succeed with a valid number even if it gets interrupted. */
680 	do {
681 		cnt = local_inc_return(&t->cnt);
682 		rb_time_val_set(&t->top, top, cnt);
683 		rb_time_val_set(&t->bottom, bottom, cnt);
684 		rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
685 	} while (cnt != local_read(&t->cnt));
686 }
687 
688 static inline bool
689 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
690 {
691 	unsigned long ret;
692 
693 	ret = local_cmpxchg(l, expect, set);
694 	return ret == expect;
695 }
696 
697 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
698 {
699 	unsigned long cnt, top, bottom, msb;
700 	unsigned long cnt2, top2, bottom2, msb2;
701 	u64 val;
702 
703 	/* The cmpxchg always fails if it interrupted an update */
704 	 if (!__rb_time_read(t, &val, &cnt2))
705 		 return false;
706 
707 	 if (val != expect)
708 		 return false;
709 
710 	 cnt = local_read(&t->cnt);
711 	 if ((cnt & 3) != cnt2)
712 		 return false;
713 
714 	 cnt2 = cnt + 1;
715 
716 	 rb_time_split(val, &top, &bottom, &msb);
717 	 top = rb_time_val_cnt(top, cnt);
718 	 bottom = rb_time_val_cnt(bottom, cnt);
719 
720 	 rb_time_split(set, &top2, &bottom2, &msb2);
721 	 top2 = rb_time_val_cnt(top2, cnt2);
722 	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
723 
724 	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
725 		return false;
726 	if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
727 		return false;
728 	if (!rb_time_read_cmpxchg(&t->top, top, top2))
729 		return false;
730 	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
731 		return false;
732 	return true;
733 }
734 
735 #else /* 64 bits */
736 
737 /* local64_t always succeeds */
738 
739 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
740 {
741 	*ret = local64_read(&t->time);
742 	return true;
743 }
744 static void rb_time_set(rb_time_t *t, u64 val)
745 {
746 	local64_set(&t->time, val);
747 }
748 
749 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
750 {
751 	u64 val;
752 	val = local64_cmpxchg(&t->time, expect, set);
753 	return val == expect;
754 }
755 #endif
756 
757 /*
758  * Enable this to make sure that the event passed to
759  * ring_buffer_event_time_stamp() is not committed and also
760  * is on the buffer that it passed in.
761  */
762 //#define RB_VERIFY_EVENT
763 #ifdef RB_VERIFY_EVENT
764 static struct list_head *rb_list_head(struct list_head *list);
765 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
766 			 void *event)
767 {
768 	struct buffer_page *page = cpu_buffer->commit_page;
769 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
770 	struct list_head *next;
771 	long commit, write;
772 	unsigned long addr = (unsigned long)event;
773 	bool done = false;
774 	int stop = 0;
775 
776 	/* Make sure the event exists and is not committed yet */
777 	do {
778 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
779 			done = true;
780 		commit = local_read(&page->page->commit);
781 		write = local_read(&page->write);
782 		if (addr >= (unsigned long)&page->page->data[commit] &&
783 		    addr < (unsigned long)&page->page->data[write])
784 			return;
785 
786 		next = rb_list_head(page->list.next);
787 		page = list_entry(next, struct buffer_page, list);
788 	} while (!done);
789 	WARN_ON_ONCE(1);
790 }
791 #else
792 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
793 			 void *event)
794 {
795 }
796 #endif
797 
798 /*
799  * The absolute time stamp drops the 5 MSBs and some clocks may
800  * require them. The rb_fix_abs_ts() will take a previous full
801  * time stamp, and add the 5 MSB of that time stamp on to the
802  * saved absolute time stamp. Then they are compared in case of
803  * the unlikely event that the latest time stamp incremented
804  * the 5 MSB.
805  */
806 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
807 {
808 	if (save_ts & TS_MSB) {
809 		abs |= save_ts & TS_MSB;
810 		/* Check for overflow */
811 		if (unlikely(abs < save_ts))
812 			abs += 1ULL << 59;
813 	}
814 	return abs;
815 }
816 
817 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
818 
819 /**
820  * ring_buffer_event_time_stamp - return the event's current time stamp
821  * @buffer: The buffer that the event is on
822  * @event: the event to get the time stamp of
823  *
824  * Note, this must be called after @event is reserved, and before it is
825  * committed to the ring buffer. And must be called from the same
826  * context where the event was reserved (normal, softirq, irq, etc).
827  *
828  * Returns the time stamp associated with the current event.
829  * If the event has an extended time stamp, then that is used as
830  * the time stamp to return.
831  * In the highly unlikely case that the event was nested more than
832  * the max nesting, then the write_stamp of the buffer is returned,
833  * otherwise  current time is returned, but that really neither of
834  * the last two cases should ever happen.
835  */
836 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
837 				 struct ring_buffer_event *event)
838 {
839 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
840 	unsigned int nest;
841 	u64 ts;
842 
843 	/* If the event includes an absolute time, then just use that */
844 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
845 		ts = rb_event_time_stamp(event);
846 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
847 	}
848 
849 	nest = local_read(&cpu_buffer->committing);
850 	verify_event(cpu_buffer, event);
851 	if (WARN_ON_ONCE(!nest))
852 		goto fail;
853 
854 	/* Read the current saved nesting level time stamp */
855 	if (likely(--nest < MAX_NEST))
856 		return cpu_buffer->event_stamp[nest];
857 
858 	/* Shouldn't happen, warn if it does */
859 	WARN_ONCE(1, "nest (%d) greater than max", nest);
860 
861  fail:
862 	/* Can only fail on 32 bit */
863 	if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
864 		/* Screw it, just read the current time */
865 		ts = rb_time_stamp(cpu_buffer->buffer);
866 
867 	return ts;
868 }
869 
870 /**
871  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
872  * @buffer: The ring_buffer to get the number of pages from
873  * @cpu: The cpu of the ring_buffer to get the number of pages from
874  *
875  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
876  */
877 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
878 {
879 	return buffer->buffers[cpu]->nr_pages;
880 }
881 
882 /**
883  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
884  * @buffer: The ring_buffer to get the number of pages from
885  * @cpu: The cpu of the ring_buffer to get the number of pages from
886  *
887  * Returns the number of pages that have content in the ring buffer.
888  */
889 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
890 {
891 	size_t read;
892 	size_t lost;
893 	size_t cnt;
894 
895 	read = local_read(&buffer->buffers[cpu]->pages_read);
896 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
897 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
898 
899 	if (WARN_ON_ONCE(cnt < lost))
900 		return 0;
901 
902 	cnt -= lost;
903 
904 	/* The reader can read an empty page, but not more than that */
905 	if (cnt < read) {
906 		WARN_ON_ONCE(read > cnt + 1);
907 		return 0;
908 	}
909 
910 	return cnt - read;
911 }
912 
913 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
914 {
915 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
916 	size_t nr_pages;
917 	size_t dirty;
918 
919 	nr_pages = cpu_buffer->nr_pages;
920 	if (!nr_pages || !full)
921 		return true;
922 
923 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
924 
925 	return (dirty * 100) > (full * nr_pages);
926 }
927 
928 /*
929  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
930  *
931  * Schedules a delayed work to wake up any task that is blocked on the
932  * ring buffer waiters queue.
933  */
934 static void rb_wake_up_waiters(struct irq_work *work)
935 {
936 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
937 
938 	wake_up_all(&rbwork->waiters);
939 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
940 		rbwork->wakeup_full = false;
941 		rbwork->full_waiters_pending = false;
942 		wake_up_all(&rbwork->full_waiters);
943 	}
944 }
945 
946 /**
947  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
948  * @buffer: The ring buffer to wake waiters on
949  *
950  * In the case of a file that represents a ring buffer is closing,
951  * it is prudent to wake up any waiters that are on this.
952  */
953 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
954 {
955 	struct ring_buffer_per_cpu *cpu_buffer;
956 	struct rb_irq_work *rbwork;
957 
958 	if (!buffer)
959 		return;
960 
961 	if (cpu == RING_BUFFER_ALL_CPUS) {
962 
963 		/* Wake up individual ones too. One level recursion */
964 		for_each_buffer_cpu(buffer, cpu)
965 			ring_buffer_wake_waiters(buffer, cpu);
966 
967 		rbwork = &buffer->irq_work;
968 	} else {
969 		if (WARN_ON_ONCE(!buffer->buffers))
970 			return;
971 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
972 			return;
973 
974 		cpu_buffer = buffer->buffers[cpu];
975 		/* The CPU buffer may not have been initialized yet */
976 		if (!cpu_buffer)
977 			return;
978 		rbwork = &cpu_buffer->irq_work;
979 	}
980 
981 	rbwork->wait_index++;
982 	/* make sure the waiters see the new index */
983 	smp_wmb();
984 
985 	rb_wake_up_waiters(&rbwork->work);
986 }
987 
988 /**
989  * ring_buffer_wait - wait for input to the ring buffer
990  * @buffer: buffer to wait on
991  * @cpu: the cpu buffer to wait on
992  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
993  *
994  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
995  * as data is added to any of the @buffer's cpu buffers. Otherwise
996  * it will wait for data to be added to a specific cpu buffer.
997  */
998 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
999 {
1000 	struct ring_buffer_per_cpu *cpu_buffer;
1001 	DEFINE_WAIT(wait);
1002 	struct rb_irq_work *work;
1003 	long wait_index;
1004 	int ret = 0;
1005 
1006 	/*
1007 	 * Depending on what the caller is waiting for, either any
1008 	 * data in any cpu buffer, or a specific buffer, put the
1009 	 * caller on the appropriate wait queue.
1010 	 */
1011 	if (cpu == RING_BUFFER_ALL_CPUS) {
1012 		work = &buffer->irq_work;
1013 		/* Full only makes sense on per cpu reads */
1014 		full = 0;
1015 	} else {
1016 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1017 			return -ENODEV;
1018 		cpu_buffer = buffer->buffers[cpu];
1019 		work = &cpu_buffer->irq_work;
1020 	}
1021 
1022 	wait_index = READ_ONCE(work->wait_index);
1023 
1024 	while (true) {
1025 		if (full)
1026 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1027 		else
1028 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1029 
1030 		/*
1031 		 * The events can happen in critical sections where
1032 		 * checking a work queue can cause deadlocks.
1033 		 * After adding a task to the queue, this flag is set
1034 		 * only to notify events to try to wake up the queue
1035 		 * using irq_work.
1036 		 *
1037 		 * We don't clear it even if the buffer is no longer
1038 		 * empty. The flag only causes the next event to run
1039 		 * irq_work to do the work queue wake up. The worse
1040 		 * that can happen if we race with !trace_empty() is that
1041 		 * an event will cause an irq_work to try to wake up
1042 		 * an empty queue.
1043 		 *
1044 		 * There's no reason to protect this flag either, as
1045 		 * the work queue and irq_work logic will do the necessary
1046 		 * synchronization for the wake ups. The only thing
1047 		 * that is necessary is that the wake up happens after
1048 		 * a task has been queued. It's OK for spurious wake ups.
1049 		 */
1050 		if (full)
1051 			work->full_waiters_pending = true;
1052 		else
1053 			work->waiters_pending = true;
1054 
1055 		if (signal_pending(current)) {
1056 			ret = -EINTR;
1057 			break;
1058 		}
1059 
1060 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1061 			break;
1062 
1063 		if (cpu != RING_BUFFER_ALL_CPUS &&
1064 		    !ring_buffer_empty_cpu(buffer, cpu)) {
1065 			unsigned long flags;
1066 			bool pagebusy;
1067 			bool done;
1068 
1069 			if (!full)
1070 				break;
1071 
1072 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1073 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1074 			done = !pagebusy && full_hit(buffer, cpu, full);
1075 
1076 			if (!cpu_buffer->shortest_full ||
1077 			    cpu_buffer->shortest_full > full)
1078 				cpu_buffer->shortest_full = full;
1079 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1080 			if (done)
1081 				break;
1082 		}
1083 
1084 		schedule();
1085 
1086 		/* Make sure to see the new wait index */
1087 		smp_rmb();
1088 		if (wait_index != work->wait_index)
1089 			break;
1090 	}
1091 
1092 	if (full)
1093 		finish_wait(&work->full_waiters, &wait);
1094 	else
1095 		finish_wait(&work->waiters, &wait);
1096 
1097 	return ret;
1098 }
1099 
1100 /**
1101  * ring_buffer_poll_wait - poll on buffer input
1102  * @buffer: buffer to wait on
1103  * @cpu: the cpu buffer to wait on
1104  * @filp: the file descriptor
1105  * @poll_table: The poll descriptor
1106  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1107  *
1108  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1109  * as data is added to any of the @buffer's cpu buffers. Otherwise
1110  * it will wait for data to be added to a specific cpu buffer.
1111  *
1112  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1113  * zero otherwise.
1114  */
1115 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1116 			  struct file *filp, poll_table *poll_table, int full)
1117 {
1118 	struct ring_buffer_per_cpu *cpu_buffer;
1119 	struct rb_irq_work *work;
1120 
1121 	if (cpu == RING_BUFFER_ALL_CPUS) {
1122 		work = &buffer->irq_work;
1123 		full = 0;
1124 	} else {
1125 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1126 			return -EINVAL;
1127 
1128 		cpu_buffer = buffer->buffers[cpu];
1129 		work = &cpu_buffer->irq_work;
1130 	}
1131 
1132 	if (full) {
1133 		poll_wait(filp, &work->full_waiters, poll_table);
1134 		work->full_waiters_pending = true;
1135 	} else {
1136 		poll_wait(filp, &work->waiters, poll_table);
1137 		work->waiters_pending = true;
1138 	}
1139 
1140 	/*
1141 	 * There's a tight race between setting the waiters_pending and
1142 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1143 	 * is set, the next event will wake the task up, but we can get stuck
1144 	 * if there's only a single event in.
1145 	 *
1146 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1147 	 * but adding a memory barrier to all events will cause too much of a
1148 	 * performance hit in the fast path.  We only need a memory barrier when
1149 	 * the buffer goes from empty to having content.  But as this race is
1150 	 * extremely small, and it's not a problem if another event comes in, we
1151 	 * will fix it later.
1152 	 */
1153 	smp_mb();
1154 
1155 	if (full)
1156 		return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1157 
1158 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1159 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1160 		return EPOLLIN | EPOLLRDNORM;
1161 	return 0;
1162 }
1163 
1164 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1165 #define RB_WARN_ON(b, cond)						\
1166 	({								\
1167 		int _____ret = unlikely(cond);				\
1168 		if (_____ret) {						\
1169 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1170 				struct ring_buffer_per_cpu *__b =	\
1171 					(void *)b;			\
1172 				atomic_inc(&__b->buffer->record_disabled); \
1173 			} else						\
1174 				atomic_inc(&b->record_disabled);	\
1175 			WARN_ON(1);					\
1176 		}							\
1177 		_____ret;						\
1178 	})
1179 
1180 /* Up this if you want to test the TIME_EXTENTS and normalization */
1181 #define DEBUG_SHIFT 0
1182 
1183 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1184 {
1185 	u64 ts;
1186 
1187 	/* Skip retpolines :-( */
1188 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1189 		ts = trace_clock_local();
1190 	else
1191 		ts = buffer->clock();
1192 
1193 	/* shift to debug/test normalization and TIME_EXTENTS */
1194 	return ts << DEBUG_SHIFT;
1195 }
1196 
1197 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1198 {
1199 	u64 time;
1200 
1201 	preempt_disable_notrace();
1202 	time = rb_time_stamp(buffer);
1203 	preempt_enable_notrace();
1204 
1205 	return time;
1206 }
1207 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1208 
1209 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1210 				      int cpu, u64 *ts)
1211 {
1212 	/* Just stupid testing the normalize function and deltas */
1213 	*ts >>= DEBUG_SHIFT;
1214 }
1215 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1216 
1217 /*
1218  * Making the ring buffer lockless makes things tricky.
1219  * Although writes only happen on the CPU that they are on,
1220  * and they only need to worry about interrupts. Reads can
1221  * happen on any CPU.
1222  *
1223  * The reader page is always off the ring buffer, but when the
1224  * reader finishes with a page, it needs to swap its page with
1225  * a new one from the buffer. The reader needs to take from
1226  * the head (writes go to the tail). But if a writer is in overwrite
1227  * mode and wraps, it must push the head page forward.
1228  *
1229  * Here lies the problem.
1230  *
1231  * The reader must be careful to replace only the head page, and
1232  * not another one. As described at the top of the file in the
1233  * ASCII art, the reader sets its old page to point to the next
1234  * page after head. It then sets the page after head to point to
1235  * the old reader page. But if the writer moves the head page
1236  * during this operation, the reader could end up with the tail.
1237  *
1238  * We use cmpxchg to help prevent this race. We also do something
1239  * special with the page before head. We set the LSB to 1.
1240  *
1241  * When the writer must push the page forward, it will clear the
1242  * bit that points to the head page, move the head, and then set
1243  * the bit that points to the new head page.
1244  *
1245  * We also don't want an interrupt coming in and moving the head
1246  * page on another writer. Thus we use the second LSB to catch
1247  * that too. Thus:
1248  *
1249  * head->list->prev->next        bit 1          bit 0
1250  *                              -------        -------
1251  * Normal page                     0              0
1252  * Points to head page             0              1
1253  * New head page                   1              0
1254  *
1255  * Note we can not trust the prev pointer of the head page, because:
1256  *
1257  * +----+       +-----+        +-----+
1258  * |    |------>|  T  |---X--->|  N  |
1259  * |    |<------|     |        |     |
1260  * +----+       +-----+        +-----+
1261  *   ^                           ^ |
1262  *   |          +-----+          | |
1263  *   +----------|  R  |----------+ |
1264  *              |     |<-----------+
1265  *              +-----+
1266  *
1267  * Key:  ---X-->  HEAD flag set in pointer
1268  *         T      Tail page
1269  *         R      Reader page
1270  *         N      Next page
1271  *
1272  * (see __rb_reserve_next() to see where this happens)
1273  *
1274  *  What the above shows is that the reader just swapped out
1275  *  the reader page with a page in the buffer, but before it
1276  *  could make the new header point back to the new page added
1277  *  it was preempted by a writer. The writer moved forward onto
1278  *  the new page added by the reader and is about to move forward
1279  *  again.
1280  *
1281  *  You can see, it is legitimate for the previous pointer of
1282  *  the head (or any page) not to point back to itself. But only
1283  *  temporarily.
1284  */
1285 
1286 #define RB_PAGE_NORMAL		0UL
1287 #define RB_PAGE_HEAD		1UL
1288 #define RB_PAGE_UPDATE		2UL
1289 
1290 
1291 #define RB_FLAG_MASK		3UL
1292 
1293 /* PAGE_MOVED is not part of the mask */
1294 #define RB_PAGE_MOVED		4UL
1295 
1296 /*
1297  * rb_list_head - remove any bit
1298  */
1299 static struct list_head *rb_list_head(struct list_head *list)
1300 {
1301 	unsigned long val = (unsigned long)list;
1302 
1303 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1304 }
1305 
1306 /*
1307  * rb_is_head_page - test if the given page is the head page
1308  *
1309  * Because the reader may move the head_page pointer, we can
1310  * not trust what the head page is (it may be pointing to
1311  * the reader page). But if the next page is a header page,
1312  * its flags will be non zero.
1313  */
1314 static inline int
1315 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1316 {
1317 	unsigned long val;
1318 
1319 	val = (unsigned long)list->next;
1320 
1321 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1322 		return RB_PAGE_MOVED;
1323 
1324 	return val & RB_FLAG_MASK;
1325 }
1326 
1327 /*
1328  * rb_is_reader_page
1329  *
1330  * The unique thing about the reader page, is that, if the
1331  * writer is ever on it, the previous pointer never points
1332  * back to the reader page.
1333  */
1334 static bool rb_is_reader_page(struct buffer_page *page)
1335 {
1336 	struct list_head *list = page->list.prev;
1337 
1338 	return rb_list_head(list->next) != &page->list;
1339 }
1340 
1341 /*
1342  * rb_set_list_to_head - set a list_head to be pointing to head.
1343  */
1344 static void rb_set_list_to_head(struct list_head *list)
1345 {
1346 	unsigned long *ptr;
1347 
1348 	ptr = (unsigned long *)&list->next;
1349 	*ptr |= RB_PAGE_HEAD;
1350 	*ptr &= ~RB_PAGE_UPDATE;
1351 }
1352 
1353 /*
1354  * rb_head_page_activate - sets up head page
1355  */
1356 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1357 {
1358 	struct buffer_page *head;
1359 
1360 	head = cpu_buffer->head_page;
1361 	if (!head)
1362 		return;
1363 
1364 	/*
1365 	 * Set the previous list pointer to have the HEAD flag.
1366 	 */
1367 	rb_set_list_to_head(head->list.prev);
1368 }
1369 
1370 static void rb_list_head_clear(struct list_head *list)
1371 {
1372 	unsigned long *ptr = (unsigned long *)&list->next;
1373 
1374 	*ptr &= ~RB_FLAG_MASK;
1375 }
1376 
1377 /*
1378  * rb_head_page_deactivate - clears head page ptr (for free list)
1379  */
1380 static void
1381 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1382 {
1383 	struct list_head *hd;
1384 
1385 	/* Go through the whole list and clear any pointers found. */
1386 	rb_list_head_clear(cpu_buffer->pages);
1387 
1388 	list_for_each(hd, cpu_buffer->pages)
1389 		rb_list_head_clear(hd);
1390 }
1391 
1392 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1393 			    struct buffer_page *head,
1394 			    struct buffer_page *prev,
1395 			    int old_flag, int new_flag)
1396 {
1397 	struct list_head *list;
1398 	unsigned long val = (unsigned long)&head->list;
1399 	unsigned long ret;
1400 
1401 	list = &prev->list;
1402 
1403 	val &= ~RB_FLAG_MASK;
1404 
1405 	ret = cmpxchg((unsigned long *)&list->next,
1406 		      val | old_flag, val | new_flag);
1407 
1408 	/* check if the reader took the page */
1409 	if ((ret & ~RB_FLAG_MASK) != val)
1410 		return RB_PAGE_MOVED;
1411 
1412 	return ret & RB_FLAG_MASK;
1413 }
1414 
1415 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1416 				   struct buffer_page *head,
1417 				   struct buffer_page *prev,
1418 				   int old_flag)
1419 {
1420 	return rb_head_page_set(cpu_buffer, head, prev,
1421 				old_flag, RB_PAGE_UPDATE);
1422 }
1423 
1424 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1425 				 struct buffer_page *head,
1426 				 struct buffer_page *prev,
1427 				 int old_flag)
1428 {
1429 	return rb_head_page_set(cpu_buffer, head, prev,
1430 				old_flag, RB_PAGE_HEAD);
1431 }
1432 
1433 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1434 				   struct buffer_page *head,
1435 				   struct buffer_page *prev,
1436 				   int old_flag)
1437 {
1438 	return rb_head_page_set(cpu_buffer, head, prev,
1439 				old_flag, RB_PAGE_NORMAL);
1440 }
1441 
1442 static inline void rb_inc_page(struct buffer_page **bpage)
1443 {
1444 	struct list_head *p = rb_list_head((*bpage)->list.next);
1445 
1446 	*bpage = list_entry(p, struct buffer_page, list);
1447 }
1448 
1449 static struct buffer_page *
1450 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1451 {
1452 	struct buffer_page *head;
1453 	struct buffer_page *page;
1454 	struct list_head *list;
1455 	int i;
1456 
1457 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1458 		return NULL;
1459 
1460 	/* sanity check */
1461 	list = cpu_buffer->pages;
1462 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1463 		return NULL;
1464 
1465 	page = head = cpu_buffer->head_page;
1466 	/*
1467 	 * It is possible that the writer moves the header behind
1468 	 * where we started, and we miss in one loop.
1469 	 * A second loop should grab the header, but we'll do
1470 	 * three loops just because I'm paranoid.
1471 	 */
1472 	for (i = 0; i < 3; i++) {
1473 		do {
1474 			if (rb_is_head_page(page, page->list.prev)) {
1475 				cpu_buffer->head_page = page;
1476 				return page;
1477 			}
1478 			rb_inc_page(&page);
1479 		} while (page != head);
1480 	}
1481 
1482 	RB_WARN_ON(cpu_buffer, 1);
1483 
1484 	return NULL;
1485 }
1486 
1487 static bool rb_head_page_replace(struct buffer_page *old,
1488 				struct buffer_page *new)
1489 {
1490 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1491 	unsigned long val;
1492 	unsigned long ret;
1493 
1494 	val = *ptr & ~RB_FLAG_MASK;
1495 	val |= RB_PAGE_HEAD;
1496 
1497 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1498 
1499 	return ret == val;
1500 }
1501 
1502 /*
1503  * rb_tail_page_update - move the tail page forward
1504  */
1505 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1506 			       struct buffer_page *tail_page,
1507 			       struct buffer_page *next_page)
1508 {
1509 	unsigned long old_entries;
1510 	unsigned long old_write;
1511 
1512 	/*
1513 	 * The tail page now needs to be moved forward.
1514 	 *
1515 	 * We need to reset the tail page, but without messing
1516 	 * with possible erasing of data brought in by interrupts
1517 	 * that have moved the tail page and are currently on it.
1518 	 *
1519 	 * We add a counter to the write field to denote this.
1520 	 */
1521 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1522 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1523 
1524 	local_inc(&cpu_buffer->pages_touched);
1525 	/*
1526 	 * Just make sure we have seen our old_write and synchronize
1527 	 * with any interrupts that come in.
1528 	 */
1529 	barrier();
1530 
1531 	/*
1532 	 * If the tail page is still the same as what we think
1533 	 * it is, then it is up to us to update the tail
1534 	 * pointer.
1535 	 */
1536 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1537 		/* Zero the write counter */
1538 		unsigned long val = old_write & ~RB_WRITE_MASK;
1539 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1540 
1541 		/*
1542 		 * This will only succeed if an interrupt did
1543 		 * not come in and change it. In which case, we
1544 		 * do not want to modify it.
1545 		 *
1546 		 * We add (void) to let the compiler know that we do not care
1547 		 * about the return value of these functions. We use the
1548 		 * cmpxchg to only update if an interrupt did not already
1549 		 * do it for us. If the cmpxchg fails, we don't care.
1550 		 */
1551 		(void)local_cmpxchg(&next_page->write, old_write, val);
1552 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1553 
1554 		/*
1555 		 * No need to worry about races with clearing out the commit.
1556 		 * it only can increment when a commit takes place. But that
1557 		 * only happens in the outer most nested commit.
1558 		 */
1559 		local_set(&next_page->page->commit, 0);
1560 
1561 		/* Again, either we update tail_page or an interrupt does */
1562 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1563 	}
1564 }
1565 
1566 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1567 			  struct buffer_page *bpage)
1568 {
1569 	unsigned long val = (unsigned long)bpage;
1570 
1571 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1572 }
1573 
1574 /**
1575  * rb_check_pages - integrity check of buffer pages
1576  * @cpu_buffer: CPU buffer with pages to test
1577  *
1578  * As a safety measure we check to make sure the data pages have not
1579  * been corrupted.
1580  */
1581 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1582 {
1583 	struct list_head *head = rb_list_head(cpu_buffer->pages);
1584 	struct list_head *tmp;
1585 
1586 	if (RB_WARN_ON(cpu_buffer,
1587 			rb_list_head(rb_list_head(head->next)->prev) != head))
1588 		return;
1589 
1590 	if (RB_WARN_ON(cpu_buffer,
1591 			rb_list_head(rb_list_head(head->prev)->next) != head))
1592 		return;
1593 
1594 	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1595 		if (RB_WARN_ON(cpu_buffer,
1596 				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1597 			return;
1598 
1599 		if (RB_WARN_ON(cpu_buffer,
1600 				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1601 			return;
1602 	}
1603 }
1604 
1605 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1606 		long nr_pages, struct list_head *pages)
1607 {
1608 	struct buffer_page *bpage, *tmp;
1609 	bool user_thread = current->mm != NULL;
1610 	gfp_t mflags;
1611 	long i;
1612 
1613 	/*
1614 	 * Check if the available memory is there first.
1615 	 * Note, si_mem_available() only gives us a rough estimate of available
1616 	 * memory. It may not be accurate. But we don't care, we just want
1617 	 * to prevent doing any allocation when it is obvious that it is
1618 	 * not going to succeed.
1619 	 */
1620 	i = si_mem_available();
1621 	if (i < nr_pages)
1622 		return -ENOMEM;
1623 
1624 	/*
1625 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1626 	 * gracefully without invoking oom-killer and the system is not
1627 	 * destabilized.
1628 	 */
1629 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1630 
1631 	/*
1632 	 * If a user thread allocates too much, and si_mem_available()
1633 	 * reports there's enough memory, even though there is not.
1634 	 * Make sure the OOM killer kills this thread. This can happen
1635 	 * even with RETRY_MAYFAIL because another task may be doing
1636 	 * an allocation after this task has taken all memory.
1637 	 * This is the task the OOM killer needs to take out during this
1638 	 * loop, even if it was triggered by an allocation somewhere else.
1639 	 */
1640 	if (user_thread)
1641 		set_current_oom_origin();
1642 	for (i = 0; i < nr_pages; i++) {
1643 		struct page *page;
1644 
1645 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1646 				    mflags, cpu_to_node(cpu_buffer->cpu));
1647 		if (!bpage)
1648 			goto free_pages;
1649 
1650 		rb_check_bpage(cpu_buffer, bpage);
1651 
1652 		list_add(&bpage->list, pages);
1653 
1654 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1655 		if (!page)
1656 			goto free_pages;
1657 		bpage->page = page_address(page);
1658 		rb_init_page(bpage->page);
1659 
1660 		if (user_thread && fatal_signal_pending(current))
1661 			goto free_pages;
1662 	}
1663 	if (user_thread)
1664 		clear_current_oom_origin();
1665 
1666 	return 0;
1667 
1668 free_pages:
1669 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1670 		list_del_init(&bpage->list);
1671 		free_buffer_page(bpage);
1672 	}
1673 	if (user_thread)
1674 		clear_current_oom_origin();
1675 
1676 	return -ENOMEM;
1677 }
1678 
1679 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1680 			     unsigned long nr_pages)
1681 {
1682 	LIST_HEAD(pages);
1683 
1684 	WARN_ON(!nr_pages);
1685 
1686 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1687 		return -ENOMEM;
1688 
1689 	/*
1690 	 * The ring buffer page list is a circular list that does not
1691 	 * start and end with a list head. All page list items point to
1692 	 * other pages.
1693 	 */
1694 	cpu_buffer->pages = pages.next;
1695 	list_del(&pages);
1696 
1697 	cpu_buffer->nr_pages = nr_pages;
1698 
1699 	rb_check_pages(cpu_buffer);
1700 
1701 	return 0;
1702 }
1703 
1704 static struct ring_buffer_per_cpu *
1705 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1706 {
1707 	struct ring_buffer_per_cpu *cpu_buffer;
1708 	struct buffer_page *bpage;
1709 	struct page *page;
1710 	int ret;
1711 
1712 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1713 				  GFP_KERNEL, cpu_to_node(cpu));
1714 	if (!cpu_buffer)
1715 		return NULL;
1716 
1717 	cpu_buffer->cpu = cpu;
1718 	cpu_buffer->buffer = buffer;
1719 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1720 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1721 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1722 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1723 	init_completion(&cpu_buffer->update_done);
1724 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1725 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1726 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1727 
1728 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1729 			    GFP_KERNEL, cpu_to_node(cpu));
1730 	if (!bpage)
1731 		goto fail_free_buffer;
1732 
1733 	rb_check_bpage(cpu_buffer, bpage);
1734 
1735 	cpu_buffer->reader_page = bpage;
1736 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1737 	if (!page)
1738 		goto fail_free_reader;
1739 	bpage->page = page_address(page);
1740 	rb_init_page(bpage->page);
1741 
1742 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1743 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1744 
1745 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1746 	if (ret < 0)
1747 		goto fail_free_reader;
1748 
1749 	cpu_buffer->head_page
1750 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1751 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1752 
1753 	rb_head_page_activate(cpu_buffer);
1754 
1755 	return cpu_buffer;
1756 
1757  fail_free_reader:
1758 	free_buffer_page(cpu_buffer->reader_page);
1759 
1760  fail_free_buffer:
1761 	kfree(cpu_buffer);
1762 	return NULL;
1763 }
1764 
1765 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1766 {
1767 	struct list_head *head = cpu_buffer->pages;
1768 	struct buffer_page *bpage, *tmp;
1769 
1770 	irq_work_sync(&cpu_buffer->irq_work.work);
1771 
1772 	free_buffer_page(cpu_buffer->reader_page);
1773 
1774 	if (head) {
1775 		rb_head_page_deactivate(cpu_buffer);
1776 
1777 		list_for_each_entry_safe(bpage, tmp, head, list) {
1778 			list_del_init(&bpage->list);
1779 			free_buffer_page(bpage);
1780 		}
1781 		bpage = list_entry(head, struct buffer_page, list);
1782 		free_buffer_page(bpage);
1783 	}
1784 
1785 	kfree(cpu_buffer);
1786 }
1787 
1788 /**
1789  * __ring_buffer_alloc - allocate a new ring_buffer
1790  * @size: the size in bytes per cpu that is needed.
1791  * @flags: attributes to set for the ring buffer.
1792  * @key: ring buffer reader_lock_key.
1793  *
1794  * Currently the only flag that is available is the RB_FL_OVERWRITE
1795  * flag. This flag means that the buffer will overwrite old data
1796  * when the buffer wraps. If this flag is not set, the buffer will
1797  * drop data when the tail hits the head.
1798  */
1799 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1800 					struct lock_class_key *key)
1801 {
1802 	struct trace_buffer *buffer;
1803 	long nr_pages;
1804 	int bsize;
1805 	int cpu;
1806 	int ret;
1807 
1808 	/* keep it in its own cache line */
1809 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1810 			 GFP_KERNEL);
1811 	if (!buffer)
1812 		return NULL;
1813 
1814 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1815 		goto fail_free_buffer;
1816 
1817 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1818 	buffer->flags = flags;
1819 	buffer->clock = trace_clock_local;
1820 	buffer->reader_lock_key = key;
1821 
1822 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1823 	init_waitqueue_head(&buffer->irq_work.waiters);
1824 
1825 	/* need at least two pages */
1826 	if (nr_pages < 2)
1827 		nr_pages = 2;
1828 
1829 	buffer->cpus = nr_cpu_ids;
1830 
1831 	bsize = sizeof(void *) * nr_cpu_ids;
1832 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1833 				  GFP_KERNEL);
1834 	if (!buffer->buffers)
1835 		goto fail_free_cpumask;
1836 
1837 	cpu = raw_smp_processor_id();
1838 	cpumask_set_cpu(cpu, buffer->cpumask);
1839 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1840 	if (!buffer->buffers[cpu])
1841 		goto fail_free_buffers;
1842 
1843 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1844 	if (ret < 0)
1845 		goto fail_free_buffers;
1846 
1847 	mutex_init(&buffer->mutex);
1848 
1849 	return buffer;
1850 
1851  fail_free_buffers:
1852 	for_each_buffer_cpu(buffer, cpu) {
1853 		if (buffer->buffers[cpu])
1854 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1855 	}
1856 	kfree(buffer->buffers);
1857 
1858  fail_free_cpumask:
1859 	free_cpumask_var(buffer->cpumask);
1860 
1861  fail_free_buffer:
1862 	kfree(buffer);
1863 	return NULL;
1864 }
1865 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1866 
1867 /**
1868  * ring_buffer_free - free a ring buffer.
1869  * @buffer: the buffer to free.
1870  */
1871 void
1872 ring_buffer_free(struct trace_buffer *buffer)
1873 {
1874 	int cpu;
1875 
1876 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1877 
1878 	irq_work_sync(&buffer->irq_work.work);
1879 
1880 	for_each_buffer_cpu(buffer, cpu)
1881 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1882 
1883 	kfree(buffer->buffers);
1884 	free_cpumask_var(buffer->cpumask);
1885 
1886 	kfree(buffer);
1887 }
1888 EXPORT_SYMBOL_GPL(ring_buffer_free);
1889 
1890 void ring_buffer_set_clock(struct trace_buffer *buffer,
1891 			   u64 (*clock)(void))
1892 {
1893 	buffer->clock = clock;
1894 }
1895 
1896 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1897 {
1898 	buffer->time_stamp_abs = abs;
1899 }
1900 
1901 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1902 {
1903 	return buffer->time_stamp_abs;
1904 }
1905 
1906 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1907 
1908 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1909 {
1910 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1911 }
1912 
1913 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1914 {
1915 	return local_read(&bpage->write) & RB_WRITE_MASK;
1916 }
1917 
1918 static bool
1919 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1920 {
1921 	struct list_head *tail_page, *to_remove, *next_page;
1922 	struct buffer_page *to_remove_page, *tmp_iter_page;
1923 	struct buffer_page *last_page, *first_page;
1924 	unsigned long nr_removed;
1925 	unsigned long head_bit;
1926 	int page_entries;
1927 
1928 	head_bit = 0;
1929 
1930 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1931 	atomic_inc(&cpu_buffer->record_disabled);
1932 	/*
1933 	 * We don't race with the readers since we have acquired the reader
1934 	 * lock. We also don't race with writers after disabling recording.
1935 	 * This makes it easy to figure out the first and the last page to be
1936 	 * removed from the list. We unlink all the pages in between including
1937 	 * the first and last pages. This is done in a busy loop so that we
1938 	 * lose the least number of traces.
1939 	 * The pages are freed after we restart recording and unlock readers.
1940 	 */
1941 	tail_page = &cpu_buffer->tail_page->list;
1942 
1943 	/*
1944 	 * tail page might be on reader page, we remove the next page
1945 	 * from the ring buffer
1946 	 */
1947 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1948 		tail_page = rb_list_head(tail_page->next);
1949 	to_remove = tail_page;
1950 
1951 	/* start of pages to remove */
1952 	first_page = list_entry(rb_list_head(to_remove->next),
1953 				struct buffer_page, list);
1954 
1955 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1956 		to_remove = rb_list_head(to_remove)->next;
1957 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1958 	}
1959 
1960 	next_page = rb_list_head(to_remove)->next;
1961 
1962 	/*
1963 	 * Now we remove all pages between tail_page and next_page.
1964 	 * Make sure that we have head_bit value preserved for the
1965 	 * next page
1966 	 */
1967 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1968 						head_bit);
1969 	next_page = rb_list_head(next_page);
1970 	next_page->prev = tail_page;
1971 
1972 	/* make sure pages points to a valid page in the ring buffer */
1973 	cpu_buffer->pages = next_page;
1974 
1975 	/* update head page */
1976 	if (head_bit)
1977 		cpu_buffer->head_page = list_entry(next_page,
1978 						struct buffer_page, list);
1979 
1980 	/*
1981 	 * change read pointer to make sure any read iterators reset
1982 	 * themselves
1983 	 */
1984 	cpu_buffer->read = 0;
1985 
1986 	/* pages are removed, resume tracing and then free the pages */
1987 	atomic_dec(&cpu_buffer->record_disabled);
1988 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1989 
1990 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1991 
1992 	/* last buffer page to remove */
1993 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1994 				list);
1995 	tmp_iter_page = first_page;
1996 
1997 	do {
1998 		cond_resched();
1999 
2000 		to_remove_page = tmp_iter_page;
2001 		rb_inc_page(&tmp_iter_page);
2002 
2003 		/* update the counters */
2004 		page_entries = rb_page_entries(to_remove_page);
2005 		if (page_entries) {
2006 			/*
2007 			 * If something was added to this page, it was full
2008 			 * since it is not the tail page. So we deduct the
2009 			 * bytes consumed in ring buffer from here.
2010 			 * Increment overrun to account for the lost events.
2011 			 */
2012 			local_add(page_entries, &cpu_buffer->overrun);
2013 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2014 			local_inc(&cpu_buffer->pages_lost);
2015 		}
2016 
2017 		/*
2018 		 * We have already removed references to this list item, just
2019 		 * free up the buffer_page and its page
2020 		 */
2021 		free_buffer_page(to_remove_page);
2022 		nr_removed--;
2023 
2024 	} while (to_remove_page != last_page);
2025 
2026 	RB_WARN_ON(cpu_buffer, nr_removed);
2027 
2028 	return nr_removed == 0;
2029 }
2030 
2031 static bool
2032 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2033 {
2034 	struct list_head *pages = &cpu_buffer->new_pages;
2035 	unsigned long flags;
2036 	bool success;
2037 	int retries;
2038 
2039 	/* Can be called at early boot up, where interrupts must not been enabled */
2040 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2041 	/*
2042 	 * We are holding the reader lock, so the reader page won't be swapped
2043 	 * in the ring buffer. Now we are racing with the writer trying to
2044 	 * move head page and the tail page.
2045 	 * We are going to adapt the reader page update process where:
2046 	 * 1. We first splice the start and end of list of new pages between
2047 	 *    the head page and its previous page.
2048 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2049 	 *    start of new pages list.
2050 	 * 3. Finally, we update the head->prev to the end of new list.
2051 	 *
2052 	 * We will try this process 10 times, to make sure that we don't keep
2053 	 * spinning.
2054 	 */
2055 	retries = 10;
2056 	success = false;
2057 	while (retries--) {
2058 		struct list_head *head_page, *prev_page, *r;
2059 		struct list_head *last_page, *first_page;
2060 		struct list_head *head_page_with_bit;
2061 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2062 
2063 		if (!hpage)
2064 			break;
2065 		head_page = &hpage->list;
2066 		prev_page = head_page->prev;
2067 
2068 		first_page = pages->next;
2069 		last_page  = pages->prev;
2070 
2071 		head_page_with_bit = (struct list_head *)
2072 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2073 
2074 		last_page->next = head_page_with_bit;
2075 		first_page->prev = prev_page;
2076 
2077 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2078 
2079 		if (r == head_page_with_bit) {
2080 			/*
2081 			 * yay, we replaced the page pointer to our new list,
2082 			 * now, we just have to update to head page's prev
2083 			 * pointer to point to end of list
2084 			 */
2085 			head_page->prev = last_page;
2086 			success = true;
2087 			break;
2088 		}
2089 	}
2090 
2091 	if (success)
2092 		INIT_LIST_HEAD(pages);
2093 	/*
2094 	 * If we weren't successful in adding in new pages, warn and stop
2095 	 * tracing
2096 	 */
2097 	RB_WARN_ON(cpu_buffer, !success);
2098 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2099 
2100 	/* free pages if they weren't inserted */
2101 	if (!success) {
2102 		struct buffer_page *bpage, *tmp;
2103 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2104 					 list) {
2105 			list_del_init(&bpage->list);
2106 			free_buffer_page(bpage);
2107 		}
2108 	}
2109 	return success;
2110 }
2111 
2112 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2113 {
2114 	bool success;
2115 
2116 	if (cpu_buffer->nr_pages_to_update > 0)
2117 		success = rb_insert_pages(cpu_buffer);
2118 	else
2119 		success = rb_remove_pages(cpu_buffer,
2120 					-cpu_buffer->nr_pages_to_update);
2121 
2122 	if (success)
2123 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2124 }
2125 
2126 static void update_pages_handler(struct work_struct *work)
2127 {
2128 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2129 			struct ring_buffer_per_cpu, update_pages_work);
2130 	rb_update_pages(cpu_buffer);
2131 	complete(&cpu_buffer->update_done);
2132 }
2133 
2134 /**
2135  * ring_buffer_resize - resize the ring buffer
2136  * @buffer: the buffer to resize.
2137  * @size: the new size.
2138  * @cpu_id: the cpu buffer to resize
2139  *
2140  * Minimum size is 2 * BUF_PAGE_SIZE.
2141  *
2142  * Returns 0 on success and < 0 on failure.
2143  */
2144 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2145 			int cpu_id)
2146 {
2147 	struct ring_buffer_per_cpu *cpu_buffer;
2148 	unsigned long nr_pages;
2149 	int cpu, err;
2150 
2151 	/*
2152 	 * Always succeed at resizing a non-existent buffer:
2153 	 */
2154 	if (!buffer)
2155 		return 0;
2156 
2157 	/* Make sure the requested buffer exists */
2158 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2159 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2160 		return 0;
2161 
2162 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2163 
2164 	/* we need a minimum of two pages */
2165 	if (nr_pages < 2)
2166 		nr_pages = 2;
2167 
2168 	/* prevent another thread from changing buffer sizes */
2169 	mutex_lock(&buffer->mutex);
2170 
2171 
2172 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2173 		/*
2174 		 * Don't succeed if resizing is disabled, as a reader might be
2175 		 * manipulating the ring buffer and is expecting a sane state while
2176 		 * this is true.
2177 		 */
2178 		for_each_buffer_cpu(buffer, cpu) {
2179 			cpu_buffer = buffer->buffers[cpu];
2180 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2181 				err = -EBUSY;
2182 				goto out_err_unlock;
2183 			}
2184 		}
2185 
2186 		/* calculate the pages to update */
2187 		for_each_buffer_cpu(buffer, cpu) {
2188 			cpu_buffer = buffer->buffers[cpu];
2189 
2190 			cpu_buffer->nr_pages_to_update = nr_pages -
2191 							cpu_buffer->nr_pages;
2192 			/*
2193 			 * nothing more to do for removing pages or no update
2194 			 */
2195 			if (cpu_buffer->nr_pages_to_update <= 0)
2196 				continue;
2197 			/*
2198 			 * to add pages, make sure all new pages can be
2199 			 * allocated without receiving ENOMEM
2200 			 */
2201 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2202 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2203 						&cpu_buffer->new_pages)) {
2204 				/* not enough memory for new pages */
2205 				err = -ENOMEM;
2206 				goto out_err;
2207 			}
2208 		}
2209 
2210 		cpus_read_lock();
2211 		/*
2212 		 * Fire off all the required work handlers
2213 		 * We can't schedule on offline CPUs, but it's not necessary
2214 		 * since we can change their buffer sizes without any race.
2215 		 */
2216 		for_each_buffer_cpu(buffer, cpu) {
2217 			cpu_buffer = buffer->buffers[cpu];
2218 			if (!cpu_buffer->nr_pages_to_update)
2219 				continue;
2220 
2221 			/* Can't run something on an offline CPU. */
2222 			if (!cpu_online(cpu)) {
2223 				rb_update_pages(cpu_buffer);
2224 				cpu_buffer->nr_pages_to_update = 0;
2225 			} else {
2226 				/* Run directly if possible. */
2227 				migrate_disable();
2228 				if (cpu != smp_processor_id()) {
2229 					migrate_enable();
2230 					schedule_work_on(cpu,
2231 							 &cpu_buffer->update_pages_work);
2232 				} else {
2233 					update_pages_handler(&cpu_buffer->update_pages_work);
2234 					migrate_enable();
2235 				}
2236 			}
2237 		}
2238 
2239 		/* wait for all the updates to complete */
2240 		for_each_buffer_cpu(buffer, cpu) {
2241 			cpu_buffer = buffer->buffers[cpu];
2242 			if (!cpu_buffer->nr_pages_to_update)
2243 				continue;
2244 
2245 			if (cpu_online(cpu))
2246 				wait_for_completion(&cpu_buffer->update_done);
2247 			cpu_buffer->nr_pages_to_update = 0;
2248 		}
2249 
2250 		cpus_read_unlock();
2251 	} else {
2252 		cpu_buffer = buffer->buffers[cpu_id];
2253 
2254 		if (nr_pages == cpu_buffer->nr_pages)
2255 			goto out;
2256 
2257 		/*
2258 		 * Don't succeed if resizing is disabled, as a reader might be
2259 		 * manipulating the ring buffer and is expecting a sane state while
2260 		 * this is true.
2261 		 */
2262 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2263 			err = -EBUSY;
2264 			goto out_err_unlock;
2265 		}
2266 
2267 		cpu_buffer->nr_pages_to_update = nr_pages -
2268 						cpu_buffer->nr_pages;
2269 
2270 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2271 		if (cpu_buffer->nr_pages_to_update > 0 &&
2272 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2273 					    &cpu_buffer->new_pages)) {
2274 			err = -ENOMEM;
2275 			goto out_err;
2276 		}
2277 
2278 		cpus_read_lock();
2279 
2280 		/* Can't run something on an offline CPU. */
2281 		if (!cpu_online(cpu_id))
2282 			rb_update_pages(cpu_buffer);
2283 		else {
2284 			/* Run directly if possible. */
2285 			migrate_disable();
2286 			if (cpu_id == smp_processor_id()) {
2287 				rb_update_pages(cpu_buffer);
2288 				migrate_enable();
2289 			} else {
2290 				migrate_enable();
2291 				schedule_work_on(cpu_id,
2292 						 &cpu_buffer->update_pages_work);
2293 				wait_for_completion(&cpu_buffer->update_done);
2294 			}
2295 		}
2296 
2297 		cpu_buffer->nr_pages_to_update = 0;
2298 		cpus_read_unlock();
2299 	}
2300 
2301  out:
2302 	/*
2303 	 * The ring buffer resize can happen with the ring buffer
2304 	 * enabled, so that the update disturbs the tracing as little
2305 	 * as possible. But if the buffer is disabled, we do not need
2306 	 * to worry about that, and we can take the time to verify
2307 	 * that the buffer is not corrupt.
2308 	 */
2309 	if (atomic_read(&buffer->record_disabled)) {
2310 		atomic_inc(&buffer->record_disabled);
2311 		/*
2312 		 * Even though the buffer was disabled, we must make sure
2313 		 * that it is truly disabled before calling rb_check_pages.
2314 		 * There could have been a race between checking
2315 		 * record_disable and incrementing it.
2316 		 */
2317 		synchronize_rcu();
2318 		for_each_buffer_cpu(buffer, cpu) {
2319 			cpu_buffer = buffer->buffers[cpu];
2320 			rb_check_pages(cpu_buffer);
2321 		}
2322 		atomic_dec(&buffer->record_disabled);
2323 	}
2324 
2325 	mutex_unlock(&buffer->mutex);
2326 	return 0;
2327 
2328  out_err:
2329 	for_each_buffer_cpu(buffer, cpu) {
2330 		struct buffer_page *bpage, *tmp;
2331 
2332 		cpu_buffer = buffer->buffers[cpu];
2333 		cpu_buffer->nr_pages_to_update = 0;
2334 
2335 		if (list_empty(&cpu_buffer->new_pages))
2336 			continue;
2337 
2338 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2339 					list) {
2340 			list_del_init(&bpage->list);
2341 			free_buffer_page(bpage);
2342 		}
2343 	}
2344  out_err_unlock:
2345 	mutex_unlock(&buffer->mutex);
2346 	return err;
2347 }
2348 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2349 
2350 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2351 {
2352 	mutex_lock(&buffer->mutex);
2353 	if (val)
2354 		buffer->flags |= RB_FL_OVERWRITE;
2355 	else
2356 		buffer->flags &= ~RB_FL_OVERWRITE;
2357 	mutex_unlock(&buffer->mutex);
2358 }
2359 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2360 
2361 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2362 {
2363 	return bpage->page->data + index;
2364 }
2365 
2366 static __always_inline struct ring_buffer_event *
2367 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2368 {
2369 	return __rb_page_index(cpu_buffer->reader_page,
2370 			       cpu_buffer->reader_page->read);
2371 }
2372 
2373 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2374 {
2375 	return local_read(&bpage->page->commit);
2376 }
2377 
2378 static struct ring_buffer_event *
2379 rb_iter_head_event(struct ring_buffer_iter *iter)
2380 {
2381 	struct ring_buffer_event *event;
2382 	struct buffer_page *iter_head_page = iter->head_page;
2383 	unsigned long commit;
2384 	unsigned length;
2385 
2386 	if (iter->head != iter->next_event)
2387 		return iter->event;
2388 
2389 	/*
2390 	 * When the writer goes across pages, it issues a cmpxchg which
2391 	 * is a mb(), which will synchronize with the rmb here.
2392 	 * (see rb_tail_page_update() and __rb_reserve_next())
2393 	 */
2394 	commit = rb_page_commit(iter_head_page);
2395 	smp_rmb();
2396 	event = __rb_page_index(iter_head_page, iter->head);
2397 	length = rb_event_length(event);
2398 
2399 	/*
2400 	 * READ_ONCE() doesn't work on functions and we don't want the
2401 	 * compiler doing any crazy optimizations with length.
2402 	 */
2403 	barrier();
2404 
2405 	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2406 		/* Writer corrupted the read? */
2407 		goto reset;
2408 
2409 	memcpy(iter->event, event, length);
2410 	/*
2411 	 * If the page stamp is still the same after this rmb() then the
2412 	 * event was safely copied without the writer entering the page.
2413 	 */
2414 	smp_rmb();
2415 
2416 	/* Make sure the page didn't change since we read this */
2417 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2418 	    commit > rb_page_commit(iter_head_page))
2419 		goto reset;
2420 
2421 	iter->next_event = iter->head + length;
2422 	return iter->event;
2423  reset:
2424 	/* Reset to the beginning */
2425 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2426 	iter->head = 0;
2427 	iter->next_event = 0;
2428 	iter->missed_events = 1;
2429 	return NULL;
2430 }
2431 
2432 /* Size is determined by what has been committed */
2433 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2434 {
2435 	return rb_page_commit(bpage);
2436 }
2437 
2438 static __always_inline unsigned
2439 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2440 {
2441 	return rb_page_commit(cpu_buffer->commit_page);
2442 }
2443 
2444 static __always_inline unsigned
2445 rb_event_index(struct ring_buffer_event *event)
2446 {
2447 	unsigned long addr = (unsigned long)event;
2448 
2449 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2450 }
2451 
2452 static void rb_inc_iter(struct ring_buffer_iter *iter)
2453 {
2454 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2455 
2456 	/*
2457 	 * The iterator could be on the reader page (it starts there).
2458 	 * But the head could have moved, since the reader was
2459 	 * found. Check for this case and assign the iterator
2460 	 * to the head page instead of next.
2461 	 */
2462 	if (iter->head_page == cpu_buffer->reader_page)
2463 		iter->head_page = rb_set_head_page(cpu_buffer);
2464 	else
2465 		rb_inc_page(&iter->head_page);
2466 
2467 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2468 	iter->head = 0;
2469 	iter->next_event = 0;
2470 }
2471 
2472 /*
2473  * rb_handle_head_page - writer hit the head page
2474  *
2475  * Returns: +1 to retry page
2476  *           0 to continue
2477  *          -1 on error
2478  */
2479 static int
2480 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2481 		    struct buffer_page *tail_page,
2482 		    struct buffer_page *next_page)
2483 {
2484 	struct buffer_page *new_head;
2485 	int entries;
2486 	int type;
2487 	int ret;
2488 
2489 	entries = rb_page_entries(next_page);
2490 
2491 	/*
2492 	 * The hard part is here. We need to move the head
2493 	 * forward, and protect against both readers on
2494 	 * other CPUs and writers coming in via interrupts.
2495 	 */
2496 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2497 				       RB_PAGE_HEAD);
2498 
2499 	/*
2500 	 * type can be one of four:
2501 	 *  NORMAL - an interrupt already moved it for us
2502 	 *  HEAD   - we are the first to get here.
2503 	 *  UPDATE - we are the interrupt interrupting
2504 	 *           a current move.
2505 	 *  MOVED  - a reader on another CPU moved the next
2506 	 *           pointer to its reader page. Give up
2507 	 *           and try again.
2508 	 */
2509 
2510 	switch (type) {
2511 	case RB_PAGE_HEAD:
2512 		/*
2513 		 * We changed the head to UPDATE, thus
2514 		 * it is our responsibility to update
2515 		 * the counters.
2516 		 */
2517 		local_add(entries, &cpu_buffer->overrun);
2518 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2519 		local_inc(&cpu_buffer->pages_lost);
2520 
2521 		/*
2522 		 * The entries will be zeroed out when we move the
2523 		 * tail page.
2524 		 */
2525 
2526 		/* still more to do */
2527 		break;
2528 
2529 	case RB_PAGE_UPDATE:
2530 		/*
2531 		 * This is an interrupt that interrupt the
2532 		 * previous update. Still more to do.
2533 		 */
2534 		break;
2535 	case RB_PAGE_NORMAL:
2536 		/*
2537 		 * An interrupt came in before the update
2538 		 * and processed this for us.
2539 		 * Nothing left to do.
2540 		 */
2541 		return 1;
2542 	case RB_PAGE_MOVED:
2543 		/*
2544 		 * The reader is on another CPU and just did
2545 		 * a swap with our next_page.
2546 		 * Try again.
2547 		 */
2548 		return 1;
2549 	default:
2550 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2551 		return -1;
2552 	}
2553 
2554 	/*
2555 	 * Now that we are here, the old head pointer is
2556 	 * set to UPDATE. This will keep the reader from
2557 	 * swapping the head page with the reader page.
2558 	 * The reader (on another CPU) will spin till
2559 	 * we are finished.
2560 	 *
2561 	 * We just need to protect against interrupts
2562 	 * doing the job. We will set the next pointer
2563 	 * to HEAD. After that, we set the old pointer
2564 	 * to NORMAL, but only if it was HEAD before.
2565 	 * otherwise we are an interrupt, and only
2566 	 * want the outer most commit to reset it.
2567 	 */
2568 	new_head = next_page;
2569 	rb_inc_page(&new_head);
2570 
2571 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2572 				    RB_PAGE_NORMAL);
2573 
2574 	/*
2575 	 * Valid returns are:
2576 	 *  HEAD   - an interrupt came in and already set it.
2577 	 *  NORMAL - One of two things:
2578 	 *            1) We really set it.
2579 	 *            2) A bunch of interrupts came in and moved
2580 	 *               the page forward again.
2581 	 */
2582 	switch (ret) {
2583 	case RB_PAGE_HEAD:
2584 	case RB_PAGE_NORMAL:
2585 		/* OK */
2586 		break;
2587 	default:
2588 		RB_WARN_ON(cpu_buffer, 1);
2589 		return -1;
2590 	}
2591 
2592 	/*
2593 	 * It is possible that an interrupt came in,
2594 	 * set the head up, then more interrupts came in
2595 	 * and moved it again. When we get back here,
2596 	 * the page would have been set to NORMAL but we
2597 	 * just set it back to HEAD.
2598 	 *
2599 	 * How do you detect this? Well, if that happened
2600 	 * the tail page would have moved.
2601 	 */
2602 	if (ret == RB_PAGE_NORMAL) {
2603 		struct buffer_page *buffer_tail_page;
2604 
2605 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2606 		/*
2607 		 * If the tail had moved passed next, then we need
2608 		 * to reset the pointer.
2609 		 */
2610 		if (buffer_tail_page != tail_page &&
2611 		    buffer_tail_page != next_page)
2612 			rb_head_page_set_normal(cpu_buffer, new_head,
2613 						next_page,
2614 						RB_PAGE_HEAD);
2615 	}
2616 
2617 	/*
2618 	 * If this was the outer most commit (the one that
2619 	 * changed the original pointer from HEAD to UPDATE),
2620 	 * then it is up to us to reset it to NORMAL.
2621 	 */
2622 	if (type == RB_PAGE_HEAD) {
2623 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2624 					      tail_page,
2625 					      RB_PAGE_UPDATE);
2626 		if (RB_WARN_ON(cpu_buffer,
2627 			       ret != RB_PAGE_UPDATE))
2628 			return -1;
2629 	}
2630 
2631 	return 0;
2632 }
2633 
2634 static inline void
2635 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2636 	      unsigned long tail, struct rb_event_info *info)
2637 {
2638 	struct buffer_page *tail_page = info->tail_page;
2639 	struct ring_buffer_event *event;
2640 	unsigned long length = info->length;
2641 
2642 	/*
2643 	 * Only the event that crossed the page boundary
2644 	 * must fill the old tail_page with padding.
2645 	 */
2646 	if (tail >= BUF_PAGE_SIZE) {
2647 		/*
2648 		 * If the page was filled, then we still need
2649 		 * to update the real_end. Reset it to zero
2650 		 * and the reader will ignore it.
2651 		 */
2652 		if (tail == BUF_PAGE_SIZE)
2653 			tail_page->real_end = 0;
2654 
2655 		local_sub(length, &tail_page->write);
2656 		return;
2657 	}
2658 
2659 	event = __rb_page_index(tail_page, tail);
2660 
2661 	/* account for padding bytes */
2662 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2663 
2664 	/*
2665 	 * Save the original length to the meta data.
2666 	 * This will be used by the reader to add lost event
2667 	 * counter.
2668 	 */
2669 	tail_page->real_end = tail;
2670 
2671 	/*
2672 	 * If this event is bigger than the minimum size, then
2673 	 * we need to be careful that we don't subtract the
2674 	 * write counter enough to allow another writer to slip
2675 	 * in on this page.
2676 	 * We put in a discarded commit instead, to make sure
2677 	 * that this space is not used again.
2678 	 *
2679 	 * If we are less than the minimum size, we don't need to
2680 	 * worry about it.
2681 	 */
2682 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2683 		/* No room for any events */
2684 
2685 		/* Mark the rest of the page with padding */
2686 		rb_event_set_padding(event);
2687 
2688 		/* Make sure the padding is visible before the write update */
2689 		smp_wmb();
2690 
2691 		/* Set the write back to the previous setting */
2692 		local_sub(length, &tail_page->write);
2693 		return;
2694 	}
2695 
2696 	/* Put in a discarded event */
2697 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2698 	event->type_len = RINGBUF_TYPE_PADDING;
2699 	/* time delta must be non zero */
2700 	event->time_delta = 1;
2701 
2702 	/* Make sure the padding is visible before the tail_page->write update */
2703 	smp_wmb();
2704 
2705 	/* Set write to end of buffer */
2706 	length = (tail + length) - BUF_PAGE_SIZE;
2707 	local_sub(length, &tail_page->write);
2708 }
2709 
2710 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2711 
2712 /*
2713  * This is the slow path, force gcc not to inline it.
2714  */
2715 static noinline struct ring_buffer_event *
2716 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2717 	     unsigned long tail, struct rb_event_info *info)
2718 {
2719 	struct buffer_page *tail_page = info->tail_page;
2720 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2721 	struct trace_buffer *buffer = cpu_buffer->buffer;
2722 	struct buffer_page *next_page;
2723 	int ret;
2724 
2725 	next_page = tail_page;
2726 
2727 	rb_inc_page(&next_page);
2728 
2729 	/*
2730 	 * If for some reason, we had an interrupt storm that made
2731 	 * it all the way around the buffer, bail, and warn
2732 	 * about it.
2733 	 */
2734 	if (unlikely(next_page == commit_page)) {
2735 		local_inc(&cpu_buffer->commit_overrun);
2736 		goto out_reset;
2737 	}
2738 
2739 	/*
2740 	 * This is where the fun begins!
2741 	 *
2742 	 * We are fighting against races between a reader that
2743 	 * could be on another CPU trying to swap its reader
2744 	 * page with the buffer head.
2745 	 *
2746 	 * We are also fighting against interrupts coming in and
2747 	 * moving the head or tail on us as well.
2748 	 *
2749 	 * If the next page is the head page then we have filled
2750 	 * the buffer, unless the commit page is still on the
2751 	 * reader page.
2752 	 */
2753 	if (rb_is_head_page(next_page, &tail_page->list)) {
2754 
2755 		/*
2756 		 * If the commit is not on the reader page, then
2757 		 * move the header page.
2758 		 */
2759 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2760 			/*
2761 			 * If we are not in overwrite mode,
2762 			 * this is easy, just stop here.
2763 			 */
2764 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2765 				local_inc(&cpu_buffer->dropped_events);
2766 				goto out_reset;
2767 			}
2768 
2769 			ret = rb_handle_head_page(cpu_buffer,
2770 						  tail_page,
2771 						  next_page);
2772 			if (ret < 0)
2773 				goto out_reset;
2774 			if (ret)
2775 				goto out_again;
2776 		} else {
2777 			/*
2778 			 * We need to be careful here too. The
2779 			 * commit page could still be on the reader
2780 			 * page. We could have a small buffer, and
2781 			 * have filled up the buffer with events
2782 			 * from interrupts and such, and wrapped.
2783 			 *
2784 			 * Note, if the tail page is also on the
2785 			 * reader_page, we let it move out.
2786 			 */
2787 			if (unlikely((cpu_buffer->commit_page !=
2788 				      cpu_buffer->tail_page) &&
2789 				     (cpu_buffer->commit_page ==
2790 				      cpu_buffer->reader_page))) {
2791 				local_inc(&cpu_buffer->commit_overrun);
2792 				goto out_reset;
2793 			}
2794 		}
2795 	}
2796 
2797 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2798 
2799  out_again:
2800 
2801 	rb_reset_tail(cpu_buffer, tail, info);
2802 
2803 	/* Commit what we have for now. */
2804 	rb_end_commit(cpu_buffer);
2805 	/* rb_end_commit() decs committing */
2806 	local_inc(&cpu_buffer->committing);
2807 
2808 	/* fail and let the caller try again */
2809 	return ERR_PTR(-EAGAIN);
2810 
2811  out_reset:
2812 	/* reset write */
2813 	rb_reset_tail(cpu_buffer, tail, info);
2814 
2815 	return NULL;
2816 }
2817 
2818 /* Slow path */
2819 static struct ring_buffer_event *
2820 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2821 {
2822 	if (abs)
2823 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2824 	else
2825 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2826 
2827 	/* Not the first event on the page, or not delta? */
2828 	if (abs || rb_event_index(event)) {
2829 		event->time_delta = delta & TS_MASK;
2830 		event->array[0] = delta >> TS_SHIFT;
2831 	} else {
2832 		/* nope, just zero it */
2833 		event->time_delta = 0;
2834 		event->array[0] = 0;
2835 	}
2836 
2837 	return skip_time_extend(event);
2838 }
2839 
2840 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2841 static inline bool sched_clock_stable(void)
2842 {
2843 	return true;
2844 }
2845 #endif
2846 
2847 static void
2848 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2849 		   struct rb_event_info *info)
2850 {
2851 	u64 write_stamp;
2852 
2853 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2854 		  (unsigned long long)info->delta,
2855 		  (unsigned long long)info->ts,
2856 		  (unsigned long long)info->before,
2857 		  (unsigned long long)info->after,
2858 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2859 		  sched_clock_stable() ? "" :
2860 		  "If you just came from a suspend/resume,\n"
2861 		  "please switch to the trace global clock:\n"
2862 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
2863 		  "or add trace_clock=global to the kernel command line\n");
2864 }
2865 
2866 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2867 				      struct ring_buffer_event **event,
2868 				      struct rb_event_info *info,
2869 				      u64 *delta,
2870 				      unsigned int *length)
2871 {
2872 	bool abs = info->add_timestamp &
2873 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2874 
2875 	if (unlikely(info->delta > (1ULL << 59))) {
2876 		/*
2877 		 * Some timers can use more than 59 bits, and when a timestamp
2878 		 * is added to the buffer, it will lose those bits.
2879 		 */
2880 		if (abs && (info->ts & TS_MSB)) {
2881 			info->delta &= ABS_TS_MASK;
2882 
2883 		/* did the clock go backwards */
2884 		} else if (info->before == info->after && info->before > info->ts) {
2885 			/* not interrupted */
2886 			static int once;
2887 
2888 			/*
2889 			 * This is possible with a recalibrating of the TSC.
2890 			 * Do not produce a call stack, but just report it.
2891 			 */
2892 			if (!once) {
2893 				once++;
2894 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2895 					info->before, info->ts);
2896 			}
2897 		} else
2898 			rb_check_timestamp(cpu_buffer, info);
2899 		if (!abs)
2900 			info->delta = 0;
2901 	}
2902 	*event = rb_add_time_stamp(*event, info->delta, abs);
2903 	*length -= RB_LEN_TIME_EXTEND;
2904 	*delta = 0;
2905 }
2906 
2907 /**
2908  * rb_update_event - update event type and data
2909  * @cpu_buffer: The per cpu buffer of the @event
2910  * @event: the event to update
2911  * @info: The info to update the @event with (contains length and delta)
2912  *
2913  * Update the type and data fields of the @event. The length
2914  * is the actual size that is written to the ring buffer,
2915  * and with this, we can determine what to place into the
2916  * data field.
2917  */
2918 static void
2919 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2920 		struct ring_buffer_event *event,
2921 		struct rb_event_info *info)
2922 {
2923 	unsigned length = info->length;
2924 	u64 delta = info->delta;
2925 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2926 
2927 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2928 		cpu_buffer->event_stamp[nest] = info->ts;
2929 
2930 	/*
2931 	 * If we need to add a timestamp, then we
2932 	 * add it to the start of the reserved space.
2933 	 */
2934 	if (unlikely(info->add_timestamp))
2935 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2936 
2937 	event->time_delta = delta;
2938 	length -= RB_EVNT_HDR_SIZE;
2939 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2940 		event->type_len = 0;
2941 		event->array[0] = length;
2942 	} else
2943 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2944 }
2945 
2946 static unsigned rb_calculate_event_length(unsigned length)
2947 {
2948 	struct ring_buffer_event event; /* Used only for sizeof array */
2949 
2950 	/* zero length can cause confusions */
2951 	if (!length)
2952 		length++;
2953 
2954 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2955 		length += sizeof(event.array[0]);
2956 
2957 	length += RB_EVNT_HDR_SIZE;
2958 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2959 
2960 	/*
2961 	 * In case the time delta is larger than the 27 bits for it
2962 	 * in the header, we need to add a timestamp. If another
2963 	 * event comes in when trying to discard this one to increase
2964 	 * the length, then the timestamp will be added in the allocated
2965 	 * space of this event. If length is bigger than the size needed
2966 	 * for the TIME_EXTEND, then padding has to be used. The events
2967 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2968 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2969 	 * As length is a multiple of 4, we only need to worry if it
2970 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2971 	 */
2972 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2973 		length += RB_ALIGNMENT;
2974 
2975 	return length;
2976 }
2977 
2978 static u64 rb_time_delta(struct ring_buffer_event *event)
2979 {
2980 	switch (event->type_len) {
2981 	case RINGBUF_TYPE_PADDING:
2982 		return 0;
2983 
2984 	case RINGBUF_TYPE_TIME_EXTEND:
2985 		return rb_event_time_stamp(event);
2986 
2987 	case RINGBUF_TYPE_TIME_STAMP:
2988 		return 0;
2989 
2990 	case RINGBUF_TYPE_DATA:
2991 		return event->time_delta;
2992 	default:
2993 		return 0;
2994 	}
2995 }
2996 
2997 static inline bool
2998 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2999 		  struct ring_buffer_event *event)
3000 {
3001 	unsigned long new_index, old_index;
3002 	struct buffer_page *bpage;
3003 	unsigned long index;
3004 	unsigned long addr;
3005 	u64 write_stamp;
3006 	u64 delta;
3007 
3008 	new_index = rb_event_index(event);
3009 	old_index = new_index + rb_event_ts_length(event);
3010 	addr = (unsigned long)event;
3011 	addr &= PAGE_MASK;
3012 
3013 	bpage = READ_ONCE(cpu_buffer->tail_page);
3014 
3015 	delta = rb_time_delta(event);
3016 
3017 	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3018 		return false;
3019 
3020 	/* Make sure the write stamp is read before testing the location */
3021 	barrier();
3022 
3023 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3024 		unsigned long write_mask =
3025 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3026 		unsigned long event_length = rb_event_length(event);
3027 
3028 		/* Something came in, can't discard */
3029 		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3030 				       write_stamp, write_stamp - delta))
3031 			return false;
3032 
3033 		/*
3034 		 * It's possible that the event time delta is zero
3035 		 * (has the same time stamp as the previous event)
3036 		 * in which case write_stamp and before_stamp could
3037 		 * be the same. In such a case, force before_stamp
3038 		 * to be different than write_stamp. It doesn't
3039 		 * matter what it is, as long as its different.
3040 		 */
3041 		if (!delta)
3042 			rb_time_set(&cpu_buffer->before_stamp, 0);
3043 
3044 		/*
3045 		 * If an event were to come in now, it would see that the
3046 		 * write_stamp and the before_stamp are different, and assume
3047 		 * that this event just added itself before updating
3048 		 * the write stamp. The interrupting event will fix the
3049 		 * write stamp for us, and use the before stamp as its delta.
3050 		 */
3051 
3052 		/*
3053 		 * This is on the tail page. It is possible that
3054 		 * a write could come in and move the tail page
3055 		 * and write to the next page. That is fine
3056 		 * because we just shorten what is on this page.
3057 		 */
3058 		old_index += write_mask;
3059 		new_index += write_mask;
3060 		index = local_cmpxchg(&bpage->write, old_index, new_index);
3061 		if (index == old_index) {
3062 			/* update counters */
3063 			local_sub(event_length, &cpu_buffer->entries_bytes);
3064 			return true;
3065 		}
3066 	}
3067 
3068 	/* could not discard */
3069 	return false;
3070 }
3071 
3072 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3073 {
3074 	local_inc(&cpu_buffer->committing);
3075 	local_inc(&cpu_buffer->commits);
3076 }
3077 
3078 static __always_inline void
3079 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3080 {
3081 	unsigned long max_count;
3082 
3083 	/*
3084 	 * We only race with interrupts and NMIs on this CPU.
3085 	 * If we own the commit event, then we can commit
3086 	 * all others that interrupted us, since the interruptions
3087 	 * are in stack format (they finish before they come
3088 	 * back to us). This allows us to do a simple loop to
3089 	 * assign the commit to the tail.
3090 	 */
3091  again:
3092 	max_count = cpu_buffer->nr_pages * 100;
3093 
3094 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3095 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3096 			return;
3097 		if (RB_WARN_ON(cpu_buffer,
3098 			       rb_is_reader_page(cpu_buffer->tail_page)))
3099 			return;
3100 		/*
3101 		 * No need for a memory barrier here, as the update
3102 		 * of the tail_page did it for this page.
3103 		 */
3104 		local_set(&cpu_buffer->commit_page->page->commit,
3105 			  rb_page_write(cpu_buffer->commit_page));
3106 		rb_inc_page(&cpu_buffer->commit_page);
3107 		/* add barrier to keep gcc from optimizing too much */
3108 		barrier();
3109 	}
3110 	while (rb_commit_index(cpu_buffer) !=
3111 	       rb_page_write(cpu_buffer->commit_page)) {
3112 
3113 		/* Make sure the readers see the content of what is committed. */
3114 		smp_wmb();
3115 		local_set(&cpu_buffer->commit_page->page->commit,
3116 			  rb_page_write(cpu_buffer->commit_page));
3117 		RB_WARN_ON(cpu_buffer,
3118 			   local_read(&cpu_buffer->commit_page->page->commit) &
3119 			   ~RB_WRITE_MASK);
3120 		barrier();
3121 	}
3122 
3123 	/* again, keep gcc from optimizing */
3124 	barrier();
3125 
3126 	/*
3127 	 * If an interrupt came in just after the first while loop
3128 	 * and pushed the tail page forward, we will be left with
3129 	 * a dangling commit that will never go forward.
3130 	 */
3131 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3132 		goto again;
3133 }
3134 
3135 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3136 {
3137 	unsigned long commits;
3138 
3139 	if (RB_WARN_ON(cpu_buffer,
3140 		       !local_read(&cpu_buffer->committing)))
3141 		return;
3142 
3143  again:
3144 	commits = local_read(&cpu_buffer->commits);
3145 	/* synchronize with interrupts */
3146 	barrier();
3147 	if (local_read(&cpu_buffer->committing) == 1)
3148 		rb_set_commit_to_write(cpu_buffer);
3149 
3150 	local_dec(&cpu_buffer->committing);
3151 
3152 	/* synchronize with interrupts */
3153 	barrier();
3154 
3155 	/*
3156 	 * Need to account for interrupts coming in between the
3157 	 * updating of the commit page and the clearing of the
3158 	 * committing counter.
3159 	 */
3160 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3161 	    !local_read(&cpu_buffer->committing)) {
3162 		local_inc(&cpu_buffer->committing);
3163 		goto again;
3164 	}
3165 }
3166 
3167 static inline void rb_event_discard(struct ring_buffer_event *event)
3168 {
3169 	if (extended_time(event))
3170 		event = skip_time_extend(event);
3171 
3172 	/* array[0] holds the actual length for the discarded event */
3173 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3174 	event->type_len = RINGBUF_TYPE_PADDING;
3175 	/* time delta must be non zero */
3176 	if (!event->time_delta)
3177 		event->time_delta = 1;
3178 }
3179 
3180 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3181 {
3182 	local_inc(&cpu_buffer->entries);
3183 	rb_end_commit(cpu_buffer);
3184 }
3185 
3186 static __always_inline void
3187 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3188 {
3189 	if (buffer->irq_work.waiters_pending) {
3190 		buffer->irq_work.waiters_pending = false;
3191 		/* irq_work_queue() supplies it's own memory barriers */
3192 		irq_work_queue(&buffer->irq_work.work);
3193 	}
3194 
3195 	if (cpu_buffer->irq_work.waiters_pending) {
3196 		cpu_buffer->irq_work.waiters_pending = false;
3197 		/* irq_work_queue() supplies it's own memory barriers */
3198 		irq_work_queue(&cpu_buffer->irq_work.work);
3199 	}
3200 
3201 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3202 		return;
3203 
3204 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3205 		return;
3206 
3207 	if (!cpu_buffer->irq_work.full_waiters_pending)
3208 		return;
3209 
3210 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3211 
3212 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3213 		return;
3214 
3215 	cpu_buffer->irq_work.wakeup_full = true;
3216 	cpu_buffer->irq_work.full_waiters_pending = false;
3217 	/* irq_work_queue() supplies it's own memory barriers */
3218 	irq_work_queue(&cpu_buffer->irq_work.work);
3219 }
3220 
3221 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3222 # define do_ring_buffer_record_recursion()	\
3223 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3224 #else
3225 # define do_ring_buffer_record_recursion() do { } while (0)
3226 #endif
3227 
3228 /*
3229  * The lock and unlock are done within a preempt disable section.
3230  * The current_context per_cpu variable can only be modified
3231  * by the current task between lock and unlock. But it can
3232  * be modified more than once via an interrupt. To pass this
3233  * information from the lock to the unlock without having to
3234  * access the 'in_interrupt()' functions again (which do show
3235  * a bit of overhead in something as critical as function tracing,
3236  * we use a bitmask trick.
3237  *
3238  *  bit 1 =  NMI context
3239  *  bit 2 =  IRQ context
3240  *  bit 3 =  SoftIRQ context
3241  *  bit 4 =  normal context.
3242  *
3243  * This works because this is the order of contexts that can
3244  * preempt other contexts. A SoftIRQ never preempts an IRQ
3245  * context.
3246  *
3247  * When the context is determined, the corresponding bit is
3248  * checked and set (if it was set, then a recursion of that context
3249  * happened).
3250  *
3251  * On unlock, we need to clear this bit. To do so, just subtract
3252  * 1 from the current_context and AND it to itself.
3253  *
3254  * (binary)
3255  *  101 - 1 = 100
3256  *  101 & 100 = 100 (clearing bit zero)
3257  *
3258  *  1010 - 1 = 1001
3259  *  1010 & 1001 = 1000 (clearing bit 1)
3260  *
3261  * The least significant bit can be cleared this way, and it
3262  * just so happens that it is the same bit corresponding to
3263  * the current context.
3264  *
3265  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3266  * is set when a recursion is detected at the current context, and if
3267  * the TRANSITION bit is already set, it will fail the recursion.
3268  * This is needed because there's a lag between the changing of
3269  * interrupt context and updating the preempt count. In this case,
3270  * a false positive will be found. To handle this, one extra recursion
3271  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3272  * bit is already set, then it is considered a recursion and the function
3273  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3274  *
3275  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3276  * to be cleared. Even if it wasn't the context that set it. That is,
3277  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3278  * is called before preempt_count() is updated, since the check will
3279  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3280  * NMI then comes in, it will set the NMI bit, but when the NMI code
3281  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3282  * and leave the NMI bit set. But this is fine, because the interrupt
3283  * code that set the TRANSITION bit will then clear the NMI bit when it
3284  * calls trace_recursive_unlock(). If another NMI comes in, it will
3285  * set the TRANSITION bit and continue.
3286  *
3287  * Note: The TRANSITION bit only handles a single transition between context.
3288  */
3289 
3290 static __always_inline bool
3291 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3292 {
3293 	unsigned int val = cpu_buffer->current_context;
3294 	int bit = interrupt_context_level();
3295 
3296 	bit = RB_CTX_NORMAL - bit;
3297 
3298 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3299 		/*
3300 		 * It is possible that this was called by transitioning
3301 		 * between interrupt context, and preempt_count() has not
3302 		 * been updated yet. In this case, use the TRANSITION bit.
3303 		 */
3304 		bit = RB_CTX_TRANSITION;
3305 		if (val & (1 << (bit + cpu_buffer->nest))) {
3306 			do_ring_buffer_record_recursion();
3307 			return true;
3308 		}
3309 	}
3310 
3311 	val |= (1 << (bit + cpu_buffer->nest));
3312 	cpu_buffer->current_context = val;
3313 
3314 	return false;
3315 }
3316 
3317 static __always_inline void
3318 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3319 {
3320 	cpu_buffer->current_context &=
3321 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3322 }
3323 
3324 /* The recursive locking above uses 5 bits */
3325 #define NESTED_BITS 5
3326 
3327 /**
3328  * ring_buffer_nest_start - Allow to trace while nested
3329  * @buffer: The ring buffer to modify
3330  *
3331  * The ring buffer has a safety mechanism to prevent recursion.
3332  * But there may be a case where a trace needs to be done while
3333  * tracing something else. In this case, calling this function
3334  * will allow this function to nest within a currently active
3335  * ring_buffer_lock_reserve().
3336  *
3337  * Call this function before calling another ring_buffer_lock_reserve() and
3338  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3339  */
3340 void ring_buffer_nest_start(struct trace_buffer *buffer)
3341 {
3342 	struct ring_buffer_per_cpu *cpu_buffer;
3343 	int cpu;
3344 
3345 	/* Enabled by ring_buffer_nest_end() */
3346 	preempt_disable_notrace();
3347 	cpu = raw_smp_processor_id();
3348 	cpu_buffer = buffer->buffers[cpu];
3349 	/* This is the shift value for the above recursive locking */
3350 	cpu_buffer->nest += NESTED_BITS;
3351 }
3352 
3353 /**
3354  * ring_buffer_nest_end - Allow to trace while nested
3355  * @buffer: The ring buffer to modify
3356  *
3357  * Must be called after ring_buffer_nest_start() and after the
3358  * ring_buffer_unlock_commit().
3359  */
3360 void ring_buffer_nest_end(struct trace_buffer *buffer)
3361 {
3362 	struct ring_buffer_per_cpu *cpu_buffer;
3363 	int cpu;
3364 
3365 	/* disabled by ring_buffer_nest_start() */
3366 	cpu = raw_smp_processor_id();
3367 	cpu_buffer = buffer->buffers[cpu];
3368 	/* This is the shift value for the above recursive locking */
3369 	cpu_buffer->nest -= NESTED_BITS;
3370 	preempt_enable_notrace();
3371 }
3372 
3373 /**
3374  * ring_buffer_unlock_commit - commit a reserved
3375  * @buffer: The buffer to commit to
3376  * @event: The event pointer to commit.
3377  *
3378  * This commits the data to the ring buffer, and releases any locks held.
3379  *
3380  * Must be paired with ring_buffer_lock_reserve.
3381  */
3382 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3383 {
3384 	struct ring_buffer_per_cpu *cpu_buffer;
3385 	int cpu = raw_smp_processor_id();
3386 
3387 	cpu_buffer = buffer->buffers[cpu];
3388 
3389 	rb_commit(cpu_buffer);
3390 
3391 	rb_wakeups(buffer, cpu_buffer);
3392 
3393 	trace_recursive_unlock(cpu_buffer);
3394 
3395 	preempt_enable_notrace();
3396 
3397 	return 0;
3398 }
3399 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3400 
3401 /* Special value to validate all deltas on a page. */
3402 #define CHECK_FULL_PAGE		1L
3403 
3404 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3405 static void dump_buffer_page(struct buffer_data_page *bpage,
3406 			     struct rb_event_info *info,
3407 			     unsigned long tail)
3408 {
3409 	struct ring_buffer_event *event;
3410 	u64 ts, delta;
3411 	int e;
3412 
3413 	ts = bpage->time_stamp;
3414 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3415 
3416 	for (e = 0; e < tail; e += rb_event_length(event)) {
3417 
3418 		event = (struct ring_buffer_event *)(bpage->data + e);
3419 
3420 		switch (event->type_len) {
3421 
3422 		case RINGBUF_TYPE_TIME_EXTEND:
3423 			delta = rb_event_time_stamp(event);
3424 			ts += delta;
3425 			pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3426 			break;
3427 
3428 		case RINGBUF_TYPE_TIME_STAMP:
3429 			delta = rb_event_time_stamp(event);
3430 			ts = rb_fix_abs_ts(delta, ts);
3431 			pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3432 			break;
3433 
3434 		case RINGBUF_TYPE_PADDING:
3435 			ts += event->time_delta;
3436 			pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3437 			break;
3438 
3439 		case RINGBUF_TYPE_DATA:
3440 			ts += event->time_delta;
3441 			pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3442 			break;
3443 
3444 		default:
3445 			break;
3446 		}
3447 	}
3448 }
3449 
3450 static DEFINE_PER_CPU(atomic_t, checking);
3451 static atomic_t ts_dump;
3452 
3453 /*
3454  * Check if the current event time stamp matches the deltas on
3455  * the buffer page.
3456  */
3457 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3458 			 struct rb_event_info *info,
3459 			 unsigned long tail)
3460 {
3461 	struct ring_buffer_event *event;
3462 	struct buffer_data_page *bpage;
3463 	u64 ts, delta;
3464 	bool full = false;
3465 	int e;
3466 
3467 	bpage = info->tail_page->page;
3468 
3469 	if (tail == CHECK_FULL_PAGE) {
3470 		full = true;
3471 		tail = local_read(&bpage->commit);
3472 	} else if (info->add_timestamp &
3473 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3474 		/* Ignore events with absolute time stamps */
3475 		return;
3476 	}
3477 
3478 	/*
3479 	 * Do not check the first event (skip possible extends too).
3480 	 * Also do not check if previous events have not been committed.
3481 	 */
3482 	if (tail <= 8 || tail > local_read(&bpage->commit))
3483 		return;
3484 
3485 	/*
3486 	 * If this interrupted another event,
3487 	 */
3488 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3489 		goto out;
3490 
3491 	ts = bpage->time_stamp;
3492 
3493 	for (e = 0; e < tail; e += rb_event_length(event)) {
3494 
3495 		event = (struct ring_buffer_event *)(bpage->data + e);
3496 
3497 		switch (event->type_len) {
3498 
3499 		case RINGBUF_TYPE_TIME_EXTEND:
3500 			delta = rb_event_time_stamp(event);
3501 			ts += delta;
3502 			break;
3503 
3504 		case RINGBUF_TYPE_TIME_STAMP:
3505 			delta = rb_event_time_stamp(event);
3506 			ts = rb_fix_abs_ts(delta, ts);
3507 			break;
3508 
3509 		case RINGBUF_TYPE_PADDING:
3510 			if (event->time_delta == 1)
3511 				break;
3512 			fallthrough;
3513 		case RINGBUF_TYPE_DATA:
3514 			ts += event->time_delta;
3515 			break;
3516 
3517 		default:
3518 			RB_WARN_ON(cpu_buffer, 1);
3519 		}
3520 	}
3521 	if ((full && ts > info->ts) ||
3522 	    (!full && ts + info->delta != info->ts)) {
3523 		/* If another report is happening, ignore this one */
3524 		if (atomic_inc_return(&ts_dump) != 1) {
3525 			atomic_dec(&ts_dump);
3526 			goto out;
3527 		}
3528 		atomic_inc(&cpu_buffer->record_disabled);
3529 		/* There's some cases in boot up that this can happen */
3530 		WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3531 		pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3532 			cpu_buffer->cpu,
3533 			ts + info->delta, info->ts, info->delta,
3534 			info->before, info->after,
3535 			full ? " (full)" : "");
3536 		dump_buffer_page(bpage, info, tail);
3537 		atomic_dec(&ts_dump);
3538 		/* Do not re-enable checking */
3539 		return;
3540 	}
3541 out:
3542 	atomic_dec(this_cpu_ptr(&checking));
3543 }
3544 #else
3545 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3546 			 struct rb_event_info *info,
3547 			 unsigned long tail)
3548 {
3549 }
3550 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3551 
3552 static struct ring_buffer_event *
3553 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3554 		  struct rb_event_info *info)
3555 {
3556 	struct ring_buffer_event *event;
3557 	struct buffer_page *tail_page;
3558 	unsigned long tail, write, w;
3559 	bool a_ok;
3560 	bool b_ok;
3561 
3562 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3563 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3564 
3565  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3566 	barrier();
3567 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3568 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3569 	barrier();
3570 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3571 
3572 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3573 		info->delta = info->ts;
3574 	} else {
3575 		/*
3576 		 * If interrupting an event time update, we may need an
3577 		 * absolute timestamp.
3578 		 * Don't bother if this is the start of a new page (w == 0).
3579 		 */
3580 		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3581 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3582 			info->length += RB_LEN_TIME_EXTEND;
3583 		} else {
3584 			info->delta = info->ts - info->after;
3585 			if (unlikely(test_time_stamp(info->delta))) {
3586 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3587 				info->length += RB_LEN_TIME_EXTEND;
3588 			}
3589 		}
3590 	}
3591 
3592  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3593 
3594  /*C*/	write = local_add_return(info->length, &tail_page->write);
3595 
3596 	/* set write to only the index of the write */
3597 	write &= RB_WRITE_MASK;
3598 
3599 	tail = write - info->length;
3600 
3601 	/* See if we shot pass the end of this buffer page */
3602 	if (unlikely(write > BUF_PAGE_SIZE)) {
3603 		/* before and after may now different, fix it up*/
3604 		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3605 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3606 		if (a_ok && b_ok && info->before != info->after)
3607 			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3608 					      info->before, info->after);
3609 		if (a_ok && b_ok)
3610 			check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3611 		return rb_move_tail(cpu_buffer, tail, info);
3612 	}
3613 
3614 	if (likely(tail == w)) {
3615 		u64 save_before;
3616 		bool s_ok;
3617 
3618 		/* Nothing interrupted us between A and C */
3619  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3620 		barrier();
3621  /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3622 		RB_WARN_ON(cpu_buffer, !s_ok);
3623 		if (likely(!(info->add_timestamp &
3624 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3625 			/* This did not interrupt any time update */
3626 			info->delta = info->ts - info->after;
3627 		else
3628 			/* Just use full timestamp for interrupting event */
3629 			info->delta = info->ts;
3630 		barrier();
3631 		check_buffer(cpu_buffer, info, tail);
3632 		if (unlikely(info->ts != save_before)) {
3633 			/* SLOW PATH - Interrupted between C and E */
3634 
3635 			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3636 			RB_WARN_ON(cpu_buffer, !a_ok);
3637 
3638 			/* Write stamp must only go forward */
3639 			if (save_before > info->after) {
3640 				/*
3641 				 * We do not care about the result, only that
3642 				 * it gets updated atomically.
3643 				 */
3644 				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3645 						      info->after, save_before);
3646 			}
3647 		}
3648 	} else {
3649 		u64 ts;
3650 		/* SLOW PATH - Interrupted between A and C */
3651 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3652 		/* Was interrupted before here, write_stamp must be valid */
3653 		RB_WARN_ON(cpu_buffer, !a_ok);
3654 		ts = rb_time_stamp(cpu_buffer->buffer);
3655 		barrier();
3656  /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3657 		    info->after < ts &&
3658 		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3659 				    info->after, ts)) {
3660 			/* Nothing came after this event between C and E */
3661 			info->delta = ts - info->after;
3662 		} else {
3663 			/*
3664 			 * Interrupted between C and E:
3665 			 * Lost the previous events time stamp. Just set the
3666 			 * delta to zero, and this will be the same time as
3667 			 * the event this event interrupted. And the events that
3668 			 * came after this will still be correct (as they would
3669 			 * have built their delta on the previous event.
3670 			 */
3671 			info->delta = 0;
3672 		}
3673 		info->ts = ts;
3674 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3675 	}
3676 
3677 	/*
3678 	 * If this is the first commit on the page, then it has the same
3679 	 * timestamp as the page itself.
3680 	 */
3681 	if (unlikely(!tail && !(info->add_timestamp &
3682 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3683 		info->delta = 0;
3684 
3685 	/* We reserved something on the buffer */
3686 
3687 	event = __rb_page_index(tail_page, tail);
3688 	rb_update_event(cpu_buffer, event, info);
3689 
3690 	local_inc(&tail_page->entries);
3691 
3692 	/*
3693 	 * If this is the first commit on the page, then update
3694 	 * its timestamp.
3695 	 */
3696 	if (unlikely(!tail))
3697 		tail_page->page->time_stamp = info->ts;
3698 
3699 	/* account for these added bytes */
3700 	local_add(info->length, &cpu_buffer->entries_bytes);
3701 
3702 	return event;
3703 }
3704 
3705 static __always_inline struct ring_buffer_event *
3706 rb_reserve_next_event(struct trace_buffer *buffer,
3707 		      struct ring_buffer_per_cpu *cpu_buffer,
3708 		      unsigned long length)
3709 {
3710 	struct ring_buffer_event *event;
3711 	struct rb_event_info info;
3712 	int nr_loops = 0;
3713 	int add_ts_default;
3714 
3715 	rb_start_commit(cpu_buffer);
3716 	/* The commit page can not change after this */
3717 
3718 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3719 	/*
3720 	 * Due to the ability to swap a cpu buffer from a buffer
3721 	 * it is possible it was swapped before we committed.
3722 	 * (committing stops a swap). We check for it here and
3723 	 * if it happened, we have to fail the write.
3724 	 */
3725 	barrier();
3726 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3727 		local_dec(&cpu_buffer->committing);
3728 		local_dec(&cpu_buffer->commits);
3729 		return NULL;
3730 	}
3731 #endif
3732 
3733 	info.length = rb_calculate_event_length(length);
3734 
3735 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3736 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3737 		info.length += RB_LEN_TIME_EXTEND;
3738 	} else {
3739 		add_ts_default = RB_ADD_STAMP_NONE;
3740 	}
3741 
3742  again:
3743 	info.add_timestamp = add_ts_default;
3744 	info.delta = 0;
3745 
3746 	/*
3747 	 * We allow for interrupts to reenter here and do a trace.
3748 	 * If one does, it will cause this original code to loop
3749 	 * back here. Even with heavy interrupts happening, this
3750 	 * should only happen a few times in a row. If this happens
3751 	 * 1000 times in a row, there must be either an interrupt
3752 	 * storm or we have something buggy.
3753 	 * Bail!
3754 	 */
3755 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3756 		goto out_fail;
3757 
3758 	event = __rb_reserve_next(cpu_buffer, &info);
3759 
3760 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3761 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3762 			info.length -= RB_LEN_TIME_EXTEND;
3763 		goto again;
3764 	}
3765 
3766 	if (likely(event))
3767 		return event;
3768  out_fail:
3769 	rb_end_commit(cpu_buffer);
3770 	return NULL;
3771 }
3772 
3773 /**
3774  * ring_buffer_lock_reserve - reserve a part of the buffer
3775  * @buffer: the ring buffer to reserve from
3776  * @length: the length of the data to reserve (excluding event header)
3777  *
3778  * Returns a reserved event on the ring buffer to copy directly to.
3779  * The user of this interface will need to get the body to write into
3780  * and can use the ring_buffer_event_data() interface.
3781  *
3782  * The length is the length of the data needed, not the event length
3783  * which also includes the event header.
3784  *
3785  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3786  * If NULL is returned, then nothing has been allocated or locked.
3787  */
3788 struct ring_buffer_event *
3789 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3790 {
3791 	struct ring_buffer_per_cpu *cpu_buffer;
3792 	struct ring_buffer_event *event;
3793 	int cpu;
3794 
3795 	/* If we are tracing schedule, we don't want to recurse */
3796 	preempt_disable_notrace();
3797 
3798 	if (unlikely(atomic_read(&buffer->record_disabled)))
3799 		goto out;
3800 
3801 	cpu = raw_smp_processor_id();
3802 
3803 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3804 		goto out;
3805 
3806 	cpu_buffer = buffer->buffers[cpu];
3807 
3808 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3809 		goto out;
3810 
3811 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3812 		goto out;
3813 
3814 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3815 		goto out;
3816 
3817 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3818 	if (!event)
3819 		goto out_unlock;
3820 
3821 	return event;
3822 
3823  out_unlock:
3824 	trace_recursive_unlock(cpu_buffer);
3825  out:
3826 	preempt_enable_notrace();
3827 	return NULL;
3828 }
3829 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3830 
3831 /*
3832  * Decrement the entries to the page that an event is on.
3833  * The event does not even need to exist, only the pointer
3834  * to the page it is on. This may only be called before the commit
3835  * takes place.
3836  */
3837 static inline void
3838 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3839 		   struct ring_buffer_event *event)
3840 {
3841 	unsigned long addr = (unsigned long)event;
3842 	struct buffer_page *bpage = cpu_buffer->commit_page;
3843 	struct buffer_page *start;
3844 
3845 	addr &= PAGE_MASK;
3846 
3847 	/* Do the likely case first */
3848 	if (likely(bpage->page == (void *)addr)) {
3849 		local_dec(&bpage->entries);
3850 		return;
3851 	}
3852 
3853 	/*
3854 	 * Because the commit page may be on the reader page we
3855 	 * start with the next page and check the end loop there.
3856 	 */
3857 	rb_inc_page(&bpage);
3858 	start = bpage;
3859 	do {
3860 		if (bpage->page == (void *)addr) {
3861 			local_dec(&bpage->entries);
3862 			return;
3863 		}
3864 		rb_inc_page(&bpage);
3865 	} while (bpage != start);
3866 
3867 	/* commit not part of this buffer?? */
3868 	RB_WARN_ON(cpu_buffer, 1);
3869 }
3870 
3871 /**
3872  * ring_buffer_discard_commit - discard an event that has not been committed
3873  * @buffer: the ring buffer
3874  * @event: non committed event to discard
3875  *
3876  * Sometimes an event that is in the ring buffer needs to be ignored.
3877  * This function lets the user discard an event in the ring buffer
3878  * and then that event will not be read later.
3879  *
3880  * This function only works if it is called before the item has been
3881  * committed. It will try to free the event from the ring buffer
3882  * if another event has not been added behind it.
3883  *
3884  * If another event has been added behind it, it will set the event
3885  * up as discarded, and perform the commit.
3886  *
3887  * If this function is called, do not call ring_buffer_unlock_commit on
3888  * the event.
3889  */
3890 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3891 				struct ring_buffer_event *event)
3892 {
3893 	struct ring_buffer_per_cpu *cpu_buffer;
3894 	int cpu;
3895 
3896 	/* The event is discarded regardless */
3897 	rb_event_discard(event);
3898 
3899 	cpu = smp_processor_id();
3900 	cpu_buffer = buffer->buffers[cpu];
3901 
3902 	/*
3903 	 * This must only be called if the event has not been
3904 	 * committed yet. Thus we can assume that preemption
3905 	 * is still disabled.
3906 	 */
3907 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3908 
3909 	rb_decrement_entry(cpu_buffer, event);
3910 	if (rb_try_to_discard(cpu_buffer, event))
3911 		goto out;
3912 
3913  out:
3914 	rb_end_commit(cpu_buffer);
3915 
3916 	trace_recursive_unlock(cpu_buffer);
3917 
3918 	preempt_enable_notrace();
3919 
3920 }
3921 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3922 
3923 /**
3924  * ring_buffer_write - write data to the buffer without reserving
3925  * @buffer: The ring buffer to write to.
3926  * @length: The length of the data being written (excluding the event header)
3927  * @data: The data to write to the buffer.
3928  *
3929  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3930  * one function. If you already have the data to write to the buffer, it
3931  * may be easier to simply call this function.
3932  *
3933  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3934  * and not the length of the event which would hold the header.
3935  */
3936 int ring_buffer_write(struct trace_buffer *buffer,
3937 		      unsigned long length,
3938 		      void *data)
3939 {
3940 	struct ring_buffer_per_cpu *cpu_buffer;
3941 	struct ring_buffer_event *event;
3942 	void *body;
3943 	int ret = -EBUSY;
3944 	int cpu;
3945 
3946 	preempt_disable_notrace();
3947 
3948 	if (atomic_read(&buffer->record_disabled))
3949 		goto out;
3950 
3951 	cpu = raw_smp_processor_id();
3952 
3953 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3954 		goto out;
3955 
3956 	cpu_buffer = buffer->buffers[cpu];
3957 
3958 	if (atomic_read(&cpu_buffer->record_disabled))
3959 		goto out;
3960 
3961 	if (length > BUF_MAX_DATA_SIZE)
3962 		goto out;
3963 
3964 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3965 		goto out;
3966 
3967 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3968 	if (!event)
3969 		goto out_unlock;
3970 
3971 	body = rb_event_data(event);
3972 
3973 	memcpy(body, data, length);
3974 
3975 	rb_commit(cpu_buffer);
3976 
3977 	rb_wakeups(buffer, cpu_buffer);
3978 
3979 	ret = 0;
3980 
3981  out_unlock:
3982 	trace_recursive_unlock(cpu_buffer);
3983 
3984  out:
3985 	preempt_enable_notrace();
3986 
3987 	return ret;
3988 }
3989 EXPORT_SYMBOL_GPL(ring_buffer_write);
3990 
3991 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3992 {
3993 	struct buffer_page *reader = cpu_buffer->reader_page;
3994 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3995 	struct buffer_page *commit = cpu_buffer->commit_page;
3996 
3997 	/* In case of error, head will be NULL */
3998 	if (unlikely(!head))
3999 		return true;
4000 
4001 	/* Reader should exhaust content in reader page */
4002 	if (reader->read != rb_page_commit(reader))
4003 		return false;
4004 
4005 	/*
4006 	 * If writers are committing on the reader page, knowing all
4007 	 * committed content has been read, the ring buffer is empty.
4008 	 */
4009 	if (commit == reader)
4010 		return true;
4011 
4012 	/*
4013 	 * If writers are committing on a page other than reader page
4014 	 * and head page, there should always be content to read.
4015 	 */
4016 	if (commit != head)
4017 		return false;
4018 
4019 	/*
4020 	 * Writers are committing on the head page, we just need
4021 	 * to care about there're committed data, and the reader will
4022 	 * swap reader page with head page when it is to read data.
4023 	 */
4024 	return rb_page_commit(commit) == 0;
4025 }
4026 
4027 /**
4028  * ring_buffer_record_disable - stop all writes into the buffer
4029  * @buffer: The ring buffer to stop writes to.
4030  *
4031  * This prevents all writes to the buffer. Any attempt to write
4032  * to the buffer after this will fail and return NULL.
4033  *
4034  * The caller should call synchronize_rcu() after this.
4035  */
4036 void ring_buffer_record_disable(struct trace_buffer *buffer)
4037 {
4038 	atomic_inc(&buffer->record_disabled);
4039 }
4040 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4041 
4042 /**
4043  * ring_buffer_record_enable - enable writes to the buffer
4044  * @buffer: The ring buffer to enable writes
4045  *
4046  * Note, multiple disables will need the same number of enables
4047  * to truly enable the writing (much like preempt_disable).
4048  */
4049 void ring_buffer_record_enable(struct trace_buffer *buffer)
4050 {
4051 	atomic_dec(&buffer->record_disabled);
4052 }
4053 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4054 
4055 /**
4056  * ring_buffer_record_off - stop all writes into the buffer
4057  * @buffer: The ring buffer to stop writes to.
4058  *
4059  * This prevents all writes to the buffer. Any attempt to write
4060  * to the buffer after this will fail and return NULL.
4061  *
4062  * This is different than ring_buffer_record_disable() as
4063  * it works like an on/off switch, where as the disable() version
4064  * must be paired with a enable().
4065  */
4066 void ring_buffer_record_off(struct trace_buffer *buffer)
4067 {
4068 	unsigned int rd;
4069 	unsigned int new_rd;
4070 
4071 	rd = atomic_read(&buffer->record_disabled);
4072 	do {
4073 		new_rd = rd | RB_BUFFER_OFF;
4074 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4075 }
4076 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4077 
4078 /**
4079  * ring_buffer_record_on - restart writes into the buffer
4080  * @buffer: The ring buffer to start writes to.
4081  *
4082  * This enables all writes to the buffer that was disabled by
4083  * ring_buffer_record_off().
4084  *
4085  * This is different than ring_buffer_record_enable() as
4086  * it works like an on/off switch, where as the enable() version
4087  * must be paired with a disable().
4088  */
4089 void ring_buffer_record_on(struct trace_buffer *buffer)
4090 {
4091 	unsigned int rd;
4092 	unsigned int new_rd;
4093 
4094 	rd = atomic_read(&buffer->record_disabled);
4095 	do {
4096 		new_rd = rd & ~RB_BUFFER_OFF;
4097 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4098 }
4099 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4100 
4101 /**
4102  * ring_buffer_record_is_on - return true if the ring buffer can write
4103  * @buffer: The ring buffer to see if write is enabled
4104  *
4105  * Returns true if the ring buffer is in a state that it accepts writes.
4106  */
4107 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4108 {
4109 	return !atomic_read(&buffer->record_disabled);
4110 }
4111 
4112 /**
4113  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4114  * @buffer: The ring buffer to see if write is set enabled
4115  *
4116  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4117  * Note that this does NOT mean it is in a writable state.
4118  *
4119  * It may return true when the ring buffer has been disabled by
4120  * ring_buffer_record_disable(), as that is a temporary disabling of
4121  * the ring buffer.
4122  */
4123 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4124 {
4125 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4126 }
4127 
4128 /**
4129  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4130  * @buffer: The ring buffer to stop writes to.
4131  * @cpu: The CPU buffer to stop
4132  *
4133  * This prevents all writes to the buffer. Any attempt to write
4134  * to the buffer after this will fail and return NULL.
4135  *
4136  * The caller should call synchronize_rcu() after this.
4137  */
4138 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4139 {
4140 	struct ring_buffer_per_cpu *cpu_buffer;
4141 
4142 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4143 		return;
4144 
4145 	cpu_buffer = buffer->buffers[cpu];
4146 	atomic_inc(&cpu_buffer->record_disabled);
4147 }
4148 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4149 
4150 /**
4151  * ring_buffer_record_enable_cpu - enable writes to the buffer
4152  * @buffer: The ring buffer to enable writes
4153  * @cpu: The CPU to enable.
4154  *
4155  * Note, multiple disables will need the same number of enables
4156  * to truly enable the writing (much like preempt_disable).
4157  */
4158 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4159 {
4160 	struct ring_buffer_per_cpu *cpu_buffer;
4161 
4162 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4163 		return;
4164 
4165 	cpu_buffer = buffer->buffers[cpu];
4166 	atomic_dec(&cpu_buffer->record_disabled);
4167 }
4168 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4169 
4170 /*
4171  * The total entries in the ring buffer is the running counter
4172  * of entries entered into the ring buffer, minus the sum of
4173  * the entries read from the ring buffer and the number of
4174  * entries that were overwritten.
4175  */
4176 static inline unsigned long
4177 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4178 {
4179 	return local_read(&cpu_buffer->entries) -
4180 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4181 }
4182 
4183 /**
4184  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4185  * @buffer: The ring buffer
4186  * @cpu: The per CPU buffer to read from.
4187  */
4188 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4189 {
4190 	unsigned long flags;
4191 	struct ring_buffer_per_cpu *cpu_buffer;
4192 	struct buffer_page *bpage;
4193 	u64 ret = 0;
4194 
4195 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4196 		return 0;
4197 
4198 	cpu_buffer = buffer->buffers[cpu];
4199 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4200 	/*
4201 	 * if the tail is on reader_page, oldest time stamp is on the reader
4202 	 * page
4203 	 */
4204 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4205 		bpage = cpu_buffer->reader_page;
4206 	else
4207 		bpage = rb_set_head_page(cpu_buffer);
4208 	if (bpage)
4209 		ret = bpage->page->time_stamp;
4210 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4211 
4212 	return ret;
4213 }
4214 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4215 
4216 /**
4217  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4218  * @buffer: The ring buffer
4219  * @cpu: The per CPU buffer to read from.
4220  */
4221 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4222 {
4223 	struct ring_buffer_per_cpu *cpu_buffer;
4224 	unsigned long ret;
4225 
4226 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4227 		return 0;
4228 
4229 	cpu_buffer = buffer->buffers[cpu];
4230 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4231 
4232 	return ret;
4233 }
4234 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4235 
4236 /**
4237  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4238  * @buffer: The ring buffer
4239  * @cpu: The per CPU buffer to get the entries from.
4240  */
4241 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4242 {
4243 	struct ring_buffer_per_cpu *cpu_buffer;
4244 
4245 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4246 		return 0;
4247 
4248 	cpu_buffer = buffer->buffers[cpu];
4249 
4250 	return rb_num_of_entries(cpu_buffer);
4251 }
4252 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4253 
4254 /**
4255  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4256  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4257  * @buffer: The ring buffer
4258  * @cpu: The per CPU buffer to get the number of overruns from
4259  */
4260 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4261 {
4262 	struct ring_buffer_per_cpu *cpu_buffer;
4263 	unsigned long ret;
4264 
4265 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4266 		return 0;
4267 
4268 	cpu_buffer = buffer->buffers[cpu];
4269 	ret = local_read(&cpu_buffer->overrun);
4270 
4271 	return ret;
4272 }
4273 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4274 
4275 /**
4276  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4277  * commits failing due to the buffer wrapping around while there are uncommitted
4278  * events, such as during an interrupt storm.
4279  * @buffer: The ring buffer
4280  * @cpu: The per CPU buffer to get the number of overruns from
4281  */
4282 unsigned long
4283 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4284 {
4285 	struct ring_buffer_per_cpu *cpu_buffer;
4286 	unsigned long ret;
4287 
4288 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4289 		return 0;
4290 
4291 	cpu_buffer = buffer->buffers[cpu];
4292 	ret = local_read(&cpu_buffer->commit_overrun);
4293 
4294 	return ret;
4295 }
4296 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4297 
4298 /**
4299  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4300  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4301  * @buffer: The ring buffer
4302  * @cpu: The per CPU buffer to get the number of overruns from
4303  */
4304 unsigned long
4305 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4306 {
4307 	struct ring_buffer_per_cpu *cpu_buffer;
4308 	unsigned long ret;
4309 
4310 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4311 		return 0;
4312 
4313 	cpu_buffer = buffer->buffers[cpu];
4314 	ret = local_read(&cpu_buffer->dropped_events);
4315 
4316 	return ret;
4317 }
4318 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4319 
4320 /**
4321  * ring_buffer_read_events_cpu - get the number of events successfully read
4322  * @buffer: The ring buffer
4323  * @cpu: The per CPU buffer to get the number of events read
4324  */
4325 unsigned long
4326 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4327 {
4328 	struct ring_buffer_per_cpu *cpu_buffer;
4329 
4330 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4331 		return 0;
4332 
4333 	cpu_buffer = buffer->buffers[cpu];
4334 	return cpu_buffer->read;
4335 }
4336 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4337 
4338 /**
4339  * ring_buffer_entries - get the number of entries in a buffer
4340  * @buffer: The ring buffer
4341  *
4342  * Returns the total number of entries in the ring buffer
4343  * (all CPU entries)
4344  */
4345 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4346 {
4347 	struct ring_buffer_per_cpu *cpu_buffer;
4348 	unsigned long entries = 0;
4349 	int cpu;
4350 
4351 	/* if you care about this being correct, lock the buffer */
4352 	for_each_buffer_cpu(buffer, cpu) {
4353 		cpu_buffer = buffer->buffers[cpu];
4354 		entries += rb_num_of_entries(cpu_buffer);
4355 	}
4356 
4357 	return entries;
4358 }
4359 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4360 
4361 /**
4362  * ring_buffer_overruns - get the number of overruns in buffer
4363  * @buffer: The ring buffer
4364  *
4365  * Returns the total number of overruns in the ring buffer
4366  * (all CPU entries)
4367  */
4368 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4369 {
4370 	struct ring_buffer_per_cpu *cpu_buffer;
4371 	unsigned long overruns = 0;
4372 	int cpu;
4373 
4374 	/* if you care about this being correct, lock the buffer */
4375 	for_each_buffer_cpu(buffer, cpu) {
4376 		cpu_buffer = buffer->buffers[cpu];
4377 		overruns += local_read(&cpu_buffer->overrun);
4378 	}
4379 
4380 	return overruns;
4381 }
4382 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4383 
4384 static void rb_iter_reset(struct ring_buffer_iter *iter)
4385 {
4386 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4387 
4388 	/* Iterator usage is expected to have record disabled */
4389 	iter->head_page = cpu_buffer->reader_page;
4390 	iter->head = cpu_buffer->reader_page->read;
4391 	iter->next_event = iter->head;
4392 
4393 	iter->cache_reader_page = iter->head_page;
4394 	iter->cache_read = cpu_buffer->read;
4395 
4396 	if (iter->head) {
4397 		iter->read_stamp = cpu_buffer->read_stamp;
4398 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4399 	} else {
4400 		iter->read_stamp = iter->head_page->page->time_stamp;
4401 		iter->page_stamp = iter->read_stamp;
4402 	}
4403 }
4404 
4405 /**
4406  * ring_buffer_iter_reset - reset an iterator
4407  * @iter: The iterator to reset
4408  *
4409  * Resets the iterator, so that it will start from the beginning
4410  * again.
4411  */
4412 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4413 {
4414 	struct ring_buffer_per_cpu *cpu_buffer;
4415 	unsigned long flags;
4416 
4417 	if (!iter)
4418 		return;
4419 
4420 	cpu_buffer = iter->cpu_buffer;
4421 
4422 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4423 	rb_iter_reset(iter);
4424 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4425 }
4426 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4427 
4428 /**
4429  * ring_buffer_iter_empty - check if an iterator has no more to read
4430  * @iter: The iterator to check
4431  */
4432 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4433 {
4434 	struct ring_buffer_per_cpu *cpu_buffer;
4435 	struct buffer_page *reader;
4436 	struct buffer_page *head_page;
4437 	struct buffer_page *commit_page;
4438 	struct buffer_page *curr_commit_page;
4439 	unsigned commit;
4440 	u64 curr_commit_ts;
4441 	u64 commit_ts;
4442 
4443 	cpu_buffer = iter->cpu_buffer;
4444 	reader = cpu_buffer->reader_page;
4445 	head_page = cpu_buffer->head_page;
4446 	commit_page = cpu_buffer->commit_page;
4447 	commit_ts = commit_page->page->time_stamp;
4448 
4449 	/*
4450 	 * When the writer goes across pages, it issues a cmpxchg which
4451 	 * is a mb(), which will synchronize with the rmb here.
4452 	 * (see rb_tail_page_update())
4453 	 */
4454 	smp_rmb();
4455 	commit = rb_page_commit(commit_page);
4456 	/* We want to make sure that the commit page doesn't change */
4457 	smp_rmb();
4458 
4459 	/* Make sure commit page didn't change */
4460 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4461 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4462 
4463 	/* If the commit page changed, then there's more data */
4464 	if (curr_commit_page != commit_page ||
4465 	    curr_commit_ts != commit_ts)
4466 		return 0;
4467 
4468 	/* Still racy, as it may return a false positive, but that's OK */
4469 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4470 		(iter->head_page == reader && commit_page == head_page &&
4471 		 head_page->read == commit &&
4472 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4473 }
4474 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4475 
4476 static void
4477 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4478 		     struct ring_buffer_event *event)
4479 {
4480 	u64 delta;
4481 
4482 	switch (event->type_len) {
4483 	case RINGBUF_TYPE_PADDING:
4484 		return;
4485 
4486 	case RINGBUF_TYPE_TIME_EXTEND:
4487 		delta = rb_event_time_stamp(event);
4488 		cpu_buffer->read_stamp += delta;
4489 		return;
4490 
4491 	case RINGBUF_TYPE_TIME_STAMP:
4492 		delta = rb_event_time_stamp(event);
4493 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4494 		cpu_buffer->read_stamp = delta;
4495 		return;
4496 
4497 	case RINGBUF_TYPE_DATA:
4498 		cpu_buffer->read_stamp += event->time_delta;
4499 		return;
4500 
4501 	default:
4502 		RB_WARN_ON(cpu_buffer, 1);
4503 	}
4504 }
4505 
4506 static void
4507 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4508 			  struct ring_buffer_event *event)
4509 {
4510 	u64 delta;
4511 
4512 	switch (event->type_len) {
4513 	case RINGBUF_TYPE_PADDING:
4514 		return;
4515 
4516 	case RINGBUF_TYPE_TIME_EXTEND:
4517 		delta = rb_event_time_stamp(event);
4518 		iter->read_stamp += delta;
4519 		return;
4520 
4521 	case RINGBUF_TYPE_TIME_STAMP:
4522 		delta = rb_event_time_stamp(event);
4523 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4524 		iter->read_stamp = delta;
4525 		return;
4526 
4527 	case RINGBUF_TYPE_DATA:
4528 		iter->read_stamp += event->time_delta;
4529 		return;
4530 
4531 	default:
4532 		RB_WARN_ON(iter->cpu_buffer, 1);
4533 	}
4534 }
4535 
4536 static struct buffer_page *
4537 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4538 {
4539 	struct buffer_page *reader = NULL;
4540 	unsigned long overwrite;
4541 	unsigned long flags;
4542 	int nr_loops = 0;
4543 	bool ret;
4544 
4545 	local_irq_save(flags);
4546 	arch_spin_lock(&cpu_buffer->lock);
4547 
4548  again:
4549 	/*
4550 	 * This should normally only loop twice. But because the
4551 	 * start of the reader inserts an empty page, it causes
4552 	 * a case where we will loop three times. There should be no
4553 	 * reason to loop four times (that I know of).
4554 	 */
4555 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4556 		reader = NULL;
4557 		goto out;
4558 	}
4559 
4560 	reader = cpu_buffer->reader_page;
4561 
4562 	/* If there's more to read, return this page */
4563 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4564 		goto out;
4565 
4566 	/* Never should we have an index greater than the size */
4567 	if (RB_WARN_ON(cpu_buffer,
4568 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4569 		goto out;
4570 
4571 	/* check if we caught up to the tail */
4572 	reader = NULL;
4573 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4574 		goto out;
4575 
4576 	/* Don't bother swapping if the ring buffer is empty */
4577 	if (rb_num_of_entries(cpu_buffer) == 0)
4578 		goto out;
4579 
4580 	/*
4581 	 * Reset the reader page to size zero.
4582 	 */
4583 	local_set(&cpu_buffer->reader_page->write, 0);
4584 	local_set(&cpu_buffer->reader_page->entries, 0);
4585 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4586 	cpu_buffer->reader_page->real_end = 0;
4587 
4588  spin:
4589 	/*
4590 	 * Splice the empty reader page into the list around the head.
4591 	 */
4592 	reader = rb_set_head_page(cpu_buffer);
4593 	if (!reader)
4594 		goto out;
4595 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4596 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4597 
4598 	/*
4599 	 * cpu_buffer->pages just needs to point to the buffer, it
4600 	 *  has no specific buffer page to point to. Lets move it out
4601 	 *  of our way so we don't accidentally swap it.
4602 	 */
4603 	cpu_buffer->pages = reader->list.prev;
4604 
4605 	/* The reader page will be pointing to the new head */
4606 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4607 
4608 	/*
4609 	 * We want to make sure we read the overruns after we set up our
4610 	 * pointers to the next object. The writer side does a
4611 	 * cmpxchg to cross pages which acts as the mb on the writer
4612 	 * side. Note, the reader will constantly fail the swap
4613 	 * while the writer is updating the pointers, so this
4614 	 * guarantees that the overwrite recorded here is the one we
4615 	 * want to compare with the last_overrun.
4616 	 */
4617 	smp_mb();
4618 	overwrite = local_read(&(cpu_buffer->overrun));
4619 
4620 	/*
4621 	 * Here's the tricky part.
4622 	 *
4623 	 * We need to move the pointer past the header page.
4624 	 * But we can only do that if a writer is not currently
4625 	 * moving it. The page before the header page has the
4626 	 * flag bit '1' set if it is pointing to the page we want.
4627 	 * but if the writer is in the process of moving it
4628 	 * than it will be '2' or already moved '0'.
4629 	 */
4630 
4631 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4632 
4633 	/*
4634 	 * If we did not convert it, then we must try again.
4635 	 */
4636 	if (!ret)
4637 		goto spin;
4638 
4639 	/*
4640 	 * Yay! We succeeded in replacing the page.
4641 	 *
4642 	 * Now make the new head point back to the reader page.
4643 	 */
4644 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4645 	rb_inc_page(&cpu_buffer->head_page);
4646 
4647 	local_inc(&cpu_buffer->pages_read);
4648 
4649 	/* Finally update the reader page to the new head */
4650 	cpu_buffer->reader_page = reader;
4651 	cpu_buffer->reader_page->read = 0;
4652 
4653 	if (overwrite != cpu_buffer->last_overrun) {
4654 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4655 		cpu_buffer->last_overrun = overwrite;
4656 	}
4657 
4658 	goto again;
4659 
4660  out:
4661 	/* Update the read_stamp on the first event */
4662 	if (reader && reader->read == 0)
4663 		cpu_buffer->read_stamp = reader->page->time_stamp;
4664 
4665 	arch_spin_unlock(&cpu_buffer->lock);
4666 	local_irq_restore(flags);
4667 
4668 	/*
4669 	 * The writer has preempt disable, wait for it. But not forever
4670 	 * Although, 1 second is pretty much "forever"
4671 	 */
4672 #define USECS_WAIT	1000000
4673         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4674 		/* If the write is past the end of page, a writer is still updating it */
4675 		if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4676 			break;
4677 
4678 		udelay(1);
4679 
4680 		/* Get the latest version of the reader write value */
4681 		smp_rmb();
4682 	}
4683 
4684 	/* The writer is not moving forward? Something is wrong */
4685 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4686 		reader = NULL;
4687 
4688 	/*
4689 	 * Make sure we see any padding after the write update
4690 	 * (see rb_reset_tail()).
4691 	 *
4692 	 * In addition, a writer may be writing on the reader page
4693 	 * if the page has not been fully filled, so the read barrier
4694 	 * is also needed to make sure we see the content of what is
4695 	 * committed by the writer (see rb_set_commit_to_write()).
4696 	 */
4697 	smp_rmb();
4698 
4699 
4700 	return reader;
4701 }
4702 
4703 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4704 {
4705 	struct ring_buffer_event *event;
4706 	struct buffer_page *reader;
4707 	unsigned length;
4708 
4709 	reader = rb_get_reader_page(cpu_buffer);
4710 
4711 	/* This function should not be called when buffer is empty */
4712 	if (RB_WARN_ON(cpu_buffer, !reader))
4713 		return;
4714 
4715 	event = rb_reader_event(cpu_buffer);
4716 
4717 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4718 		cpu_buffer->read++;
4719 
4720 	rb_update_read_stamp(cpu_buffer, event);
4721 
4722 	length = rb_event_length(event);
4723 	cpu_buffer->reader_page->read += length;
4724 }
4725 
4726 static void rb_advance_iter(struct ring_buffer_iter *iter)
4727 {
4728 	struct ring_buffer_per_cpu *cpu_buffer;
4729 
4730 	cpu_buffer = iter->cpu_buffer;
4731 
4732 	/* If head == next_event then we need to jump to the next event */
4733 	if (iter->head == iter->next_event) {
4734 		/* If the event gets overwritten again, there's nothing to do */
4735 		if (rb_iter_head_event(iter) == NULL)
4736 			return;
4737 	}
4738 
4739 	iter->head = iter->next_event;
4740 
4741 	/*
4742 	 * Check if we are at the end of the buffer.
4743 	 */
4744 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4745 		/* discarded commits can make the page empty */
4746 		if (iter->head_page == cpu_buffer->commit_page)
4747 			return;
4748 		rb_inc_iter(iter);
4749 		return;
4750 	}
4751 
4752 	rb_update_iter_read_stamp(iter, iter->event);
4753 }
4754 
4755 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4756 {
4757 	return cpu_buffer->lost_events;
4758 }
4759 
4760 static struct ring_buffer_event *
4761 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4762 	       unsigned long *lost_events)
4763 {
4764 	struct ring_buffer_event *event;
4765 	struct buffer_page *reader;
4766 	int nr_loops = 0;
4767 
4768 	if (ts)
4769 		*ts = 0;
4770  again:
4771 	/*
4772 	 * We repeat when a time extend is encountered.
4773 	 * Since the time extend is always attached to a data event,
4774 	 * we should never loop more than once.
4775 	 * (We never hit the following condition more than twice).
4776 	 */
4777 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4778 		return NULL;
4779 
4780 	reader = rb_get_reader_page(cpu_buffer);
4781 	if (!reader)
4782 		return NULL;
4783 
4784 	event = rb_reader_event(cpu_buffer);
4785 
4786 	switch (event->type_len) {
4787 	case RINGBUF_TYPE_PADDING:
4788 		if (rb_null_event(event))
4789 			RB_WARN_ON(cpu_buffer, 1);
4790 		/*
4791 		 * Because the writer could be discarding every
4792 		 * event it creates (which would probably be bad)
4793 		 * if we were to go back to "again" then we may never
4794 		 * catch up, and will trigger the warn on, or lock
4795 		 * the box. Return the padding, and we will release
4796 		 * the current locks, and try again.
4797 		 */
4798 		return event;
4799 
4800 	case RINGBUF_TYPE_TIME_EXTEND:
4801 		/* Internal data, OK to advance */
4802 		rb_advance_reader(cpu_buffer);
4803 		goto again;
4804 
4805 	case RINGBUF_TYPE_TIME_STAMP:
4806 		if (ts) {
4807 			*ts = rb_event_time_stamp(event);
4808 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4809 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4810 							 cpu_buffer->cpu, ts);
4811 		}
4812 		/* Internal data, OK to advance */
4813 		rb_advance_reader(cpu_buffer);
4814 		goto again;
4815 
4816 	case RINGBUF_TYPE_DATA:
4817 		if (ts && !(*ts)) {
4818 			*ts = cpu_buffer->read_stamp + event->time_delta;
4819 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4820 							 cpu_buffer->cpu, ts);
4821 		}
4822 		if (lost_events)
4823 			*lost_events = rb_lost_events(cpu_buffer);
4824 		return event;
4825 
4826 	default:
4827 		RB_WARN_ON(cpu_buffer, 1);
4828 	}
4829 
4830 	return NULL;
4831 }
4832 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4833 
4834 static struct ring_buffer_event *
4835 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4836 {
4837 	struct trace_buffer *buffer;
4838 	struct ring_buffer_per_cpu *cpu_buffer;
4839 	struct ring_buffer_event *event;
4840 	int nr_loops = 0;
4841 
4842 	if (ts)
4843 		*ts = 0;
4844 
4845 	cpu_buffer = iter->cpu_buffer;
4846 	buffer = cpu_buffer->buffer;
4847 
4848 	/*
4849 	 * Check if someone performed a consuming read to
4850 	 * the buffer. A consuming read invalidates the iterator
4851 	 * and we need to reset the iterator in this case.
4852 	 */
4853 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4854 		     iter->cache_reader_page != cpu_buffer->reader_page))
4855 		rb_iter_reset(iter);
4856 
4857  again:
4858 	if (ring_buffer_iter_empty(iter))
4859 		return NULL;
4860 
4861 	/*
4862 	 * As the writer can mess with what the iterator is trying
4863 	 * to read, just give up if we fail to get an event after
4864 	 * three tries. The iterator is not as reliable when reading
4865 	 * the ring buffer with an active write as the consumer is.
4866 	 * Do not warn if the three failures is reached.
4867 	 */
4868 	if (++nr_loops > 3)
4869 		return NULL;
4870 
4871 	if (rb_per_cpu_empty(cpu_buffer))
4872 		return NULL;
4873 
4874 	if (iter->head >= rb_page_size(iter->head_page)) {
4875 		rb_inc_iter(iter);
4876 		goto again;
4877 	}
4878 
4879 	event = rb_iter_head_event(iter);
4880 	if (!event)
4881 		goto again;
4882 
4883 	switch (event->type_len) {
4884 	case RINGBUF_TYPE_PADDING:
4885 		if (rb_null_event(event)) {
4886 			rb_inc_iter(iter);
4887 			goto again;
4888 		}
4889 		rb_advance_iter(iter);
4890 		return event;
4891 
4892 	case RINGBUF_TYPE_TIME_EXTEND:
4893 		/* Internal data, OK to advance */
4894 		rb_advance_iter(iter);
4895 		goto again;
4896 
4897 	case RINGBUF_TYPE_TIME_STAMP:
4898 		if (ts) {
4899 			*ts = rb_event_time_stamp(event);
4900 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4901 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4902 							 cpu_buffer->cpu, ts);
4903 		}
4904 		/* Internal data, OK to advance */
4905 		rb_advance_iter(iter);
4906 		goto again;
4907 
4908 	case RINGBUF_TYPE_DATA:
4909 		if (ts && !(*ts)) {
4910 			*ts = iter->read_stamp + event->time_delta;
4911 			ring_buffer_normalize_time_stamp(buffer,
4912 							 cpu_buffer->cpu, ts);
4913 		}
4914 		return event;
4915 
4916 	default:
4917 		RB_WARN_ON(cpu_buffer, 1);
4918 	}
4919 
4920 	return NULL;
4921 }
4922 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4923 
4924 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4925 {
4926 	if (likely(!in_nmi())) {
4927 		raw_spin_lock(&cpu_buffer->reader_lock);
4928 		return true;
4929 	}
4930 
4931 	/*
4932 	 * If an NMI die dumps out the content of the ring buffer
4933 	 * trylock must be used to prevent a deadlock if the NMI
4934 	 * preempted a task that holds the ring buffer locks. If
4935 	 * we get the lock then all is fine, if not, then continue
4936 	 * to do the read, but this can corrupt the ring buffer,
4937 	 * so it must be permanently disabled from future writes.
4938 	 * Reading from NMI is a oneshot deal.
4939 	 */
4940 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4941 		return true;
4942 
4943 	/* Continue without locking, but disable the ring buffer */
4944 	atomic_inc(&cpu_buffer->record_disabled);
4945 	return false;
4946 }
4947 
4948 static inline void
4949 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4950 {
4951 	if (likely(locked))
4952 		raw_spin_unlock(&cpu_buffer->reader_lock);
4953 }
4954 
4955 /**
4956  * ring_buffer_peek - peek at the next event to be read
4957  * @buffer: The ring buffer to read
4958  * @cpu: The cpu to peak at
4959  * @ts: The timestamp counter of this event.
4960  * @lost_events: a variable to store if events were lost (may be NULL)
4961  *
4962  * This will return the event that will be read next, but does
4963  * not consume the data.
4964  */
4965 struct ring_buffer_event *
4966 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4967 		 unsigned long *lost_events)
4968 {
4969 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4970 	struct ring_buffer_event *event;
4971 	unsigned long flags;
4972 	bool dolock;
4973 
4974 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4975 		return NULL;
4976 
4977  again:
4978 	local_irq_save(flags);
4979 	dolock = rb_reader_lock(cpu_buffer);
4980 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4981 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4982 		rb_advance_reader(cpu_buffer);
4983 	rb_reader_unlock(cpu_buffer, dolock);
4984 	local_irq_restore(flags);
4985 
4986 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4987 		goto again;
4988 
4989 	return event;
4990 }
4991 
4992 /** ring_buffer_iter_dropped - report if there are dropped events
4993  * @iter: The ring buffer iterator
4994  *
4995  * Returns true if there was dropped events since the last peek.
4996  */
4997 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4998 {
4999 	bool ret = iter->missed_events != 0;
5000 
5001 	iter->missed_events = 0;
5002 	return ret;
5003 }
5004 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5005 
5006 /**
5007  * ring_buffer_iter_peek - peek at the next event to be read
5008  * @iter: The ring buffer iterator
5009  * @ts: The timestamp counter of this event.
5010  *
5011  * This will return the event that will be read next, but does
5012  * not increment the iterator.
5013  */
5014 struct ring_buffer_event *
5015 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5016 {
5017 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5018 	struct ring_buffer_event *event;
5019 	unsigned long flags;
5020 
5021  again:
5022 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5023 	event = rb_iter_peek(iter, ts);
5024 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5025 
5026 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5027 		goto again;
5028 
5029 	return event;
5030 }
5031 
5032 /**
5033  * ring_buffer_consume - return an event and consume it
5034  * @buffer: The ring buffer to get the next event from
5035  * @cpu: the cpu to read the buffer from
5036  * @ts: a variable to store the timestamp (may be NULL)
5037  * @lost_events: a variable to store if events were lost (may be NULL)
5038  *
5039  * Returns the next event in the ring buffer, and that event is consumed.
5040  * Meaning, that sequential reads will keep returning a different event,
5041  * and eventually empty the ring buffer if the producer is slower.
5042  */
5043 struct ring_buffer_event *
5044 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5045 		    unsigned long *lost_events)
5046 {
5047 	struct ring_buffer_per_cpu *cpu_buffer;
5048 	struct ring_buffer_event *event = NULL;
5049 	unsigned long flags;
5050 	bool dolock;
5051 
5052  again:
5053 	/* might be called in atomic */
5054 	preempt_disable();
5055 
5056 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5057 		goto out;
5058 
5059 	cpu_buffer = buffer->buffers[cpu];
5060 	local_irq_save(flags);
5061 	dolock = rb_reader_lock(cpu_buffer);
5062 
5063 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5064 	if (event) {
5065 		cpu_buffer->lost_events = 0;
5066 		rb_advance_reader(cpu_buffer);
5067 	}
5068 
5069 	rb_reader_unlock(cpu_buffer, dolock);
5070 	local_irq_restore(flags);
5071 
5072  out:
5073 	preempt_enable();
5074 
5075 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5076 		goto again;
5077 
5078 	return event;
5079 }
5080 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5081 
5082 /**
5083  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5084  * @buffer: The ring buffer to read from
5085  * @cpu: The cpu buffer to iterate over
5086  * @flags: gfp flags to use for memory allocation
5087  *
5088  * This performs the initial preparations necessary to iterate
5089  * through the buffer.  Memory is allocated, buffer recording
5090  * is disabled, and the iterator pointer is returned to the caller.
5091  *
5092  * Disabling buffer recording prevents the reading from being
5093  * corrupted. This is not a consuming read, so a producer is not
5094  * expected.
5095  *
5096  * After a sequence of ring_buffer_read_prepare calls, the user is
5097  * expected to make at least one call to ring_buffer_read_prepare_sync.
5098  * Afterwards, ring_buffer_read_start is invoked to get things going
5099  * for real.
5100  *
5101  * This overall must be paired with ring_buffer_read_finish.
5102  */
5103 struct ring_buffer_iter *
5104 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5105 {
5106 	struct ring_buffer_per_cpu *cpu_buffer;
5107 	struct ring_buffer_iter *iter;
5108 
5109 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5110 		return NULL;
5111 
5112 	iter = kzalloc(sizeof(*iter), flags);
5113 	if (!iter)
5114 		return NULL;
5115 
5116 	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5117 	if (!iter->event) {
5118 		kfree(iter);
5119 		return NULL;
5120 	}
5121 
5122 	cpu_buffer = buffer->buffers[cpu];
5123 
5124 	iter->cpu_buffer = cpu_buffer;
5125 
5126 	atomic_inc(&cpu_buffer->resize_disabled);
5127 
5128 	return iter;
5129 }
5130 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5131 
5132 /**
5133  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5134  *
5135  * All previously invoked ring_buffer_read_prepare calls to prepare
5136  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5137  * calls on those iterators are allowed.
5138  */
5139 void
5140 ring_buffer_read_prepare_sync(void)
5141 {
5142 	synchronize_rcu();
5143 }
5144 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5145 
5146 /**
5147  * ring_buffer_read_start - start a non consuming read of the buffer
5148  * @iter: The iterator returned by ring_buffer_read_prepare
5149  *
5150  * This finalizes the startup of an iteration through the buffer.
5151  * The iterator comes from a call to ring_buffer_read_prepare and
5152  * an intervening ring_buffer_read_prepare_sync must have been
5153  * performed.
5154  *
5155  * Must be paired with ring_buffer_read_finish.
5156  */
5157 void
5158 ring_buffer_read_start(struct ring_buffer_iter *iter)
5159 {
5160 	struct ring_buffer_per_cpu *cpu_buffer;
5161 	unsigned long flags;
5162 
5163 	if (!iter)
5164 		return;
5165 
5166 	cpu_buffer = iter->cpu_buffer;
5167 
5168 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5169 	arch_spin_lock(&cpu_buffer->lock);
5170 	rb_iter_reset(iter);
5171 	arch_spin_unlock(&cpu_buffer->lock);
5172 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5173 }
5174 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5175 
5176 /**
5177  * ring_buffer_read_finish - finish reading the iterator of the buffer
5178  * @iter: The iterator retrieved by ring_buffer_start
5179  *
5180  * This re-enables the recording to the buffer, and frees the
5181  * iterator.
5182  */
5183 void
5184 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5185 {
5186 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5187 	unsigned long flags;
5188 
5189 	/*
5190 	 * Ring buffer is disabled from recording, here's a good place
5191 	 * to check the integrity of the ring buffer.
5192 	 * Must prevent readers from trying to read, as the check
5193 	 * clears the HEAD page and readers require it.
5194 	 */
5195 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5196 	rb_check_pages(cpu_buffer);
5197 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5198 
5199 	atomic_dec(&cpu_buffer->resize_disabled);
5200 	kfree(iter->event);
5201 	kfree(iter);
5202 }
5203 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5204 
5205 /**
5206  * ring_buffer_iter_advance - advance the iterator to the next location
5207  * @iter: The ring buffer iterator
5208  *
5209  * Move the location of the iterator such that the next read will
5210  * be the next location of the iterator.
5211  */
5212 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5213 {
5214 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5215 	unsigned long flags;
5216 
5217 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5218 
5219 	rb_advance_iter(iter);
5220 
5221 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5222 }
5223 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5224 
5225 /**
5226  * ring_buffer_size - return the size of the ring buffer (in bytes)
5227  * @buffer: The ring buffer.
5228  * @cpu: The CPU to get ring buffer size from.
5229  */
5230 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5231 {
5232 	/*
5233 	 * Earlier, this method returned
5234 	 *	BUF_PAGE_SIZE * buffer->nr_pages
5235 	 * Since the nr_pages field is now removed, we have converted this to
5236 	 * return the per cpu buffer value.
5237 	 */
5238 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5239 		return 0;
5240 
5241 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5242 }
5243 EXPORT_SYMBOL_GPL(ring_buffer_size);
5244 
5245 static void
5246 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5247 {
5248 	rb_head_page_deactivate(cpu_buffer);
5249 
5250 	cpu_buffer->head_page
5251 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5252 	local_set(&cpu_buffer->head_page->write, 0);
5253 	local_set(&cpu_buffer->head_page->entries, 0);
5254 	local_set(&cpu_buffer->head_page->page->commit, 0);
5255 
5256 	cpu_buffer->head_page->read = 0;
5257 
5258 	cpu_buffer->tail_page = cpu_buffer->head_page;
5259 	cpu_buffer->commit_page = cpu_buffer->head_page;
5260 
5261 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5262 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5263 	local_set(&cpu_buffer->reader_page->write, 0);
5264 	local_set(&cpu_buffer->reader_page->entries, 0);
5265 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5266 	cpu_buffer->reader_page->read = 0;
5267 
5268 	local_set(&cpu_buffer->entries_bytes, 0);
5269 	local_set(&cpu_buffer->overrun, 0);
5270 	local_set(&cpu_buffer->commit_overrun, 0);
5271 	local_set(&cpu_buffer->dropped_events, 0);
5272 	local_set(&cpu_buffer->entries, 0);
5273 	local_set(&cpu_buffer->committing, 0);
5274 	local_set(&cpu_buffer->commits, 0);
5275 	local_set(&cpu_buffer->pages_touched, 0);
5276 	local_set(&cpu_buffer->pages_lost, 0);
5277 	local_set(&cpu_buffer->pages_read, 0);
5278 	cpu_buffer->last_pages_touch = 0;
5279 	cpu_buffer->shortest_full = 0;
5280 	cpu_buffer->read = 0;
5281 	cpu_buffer->read_bytes = 0;
5282 
5283 	rb_time_set(&cpu_buffer->write_stamp, 0);
5284 	rb_time_set(&cpu_buffer->before_stamp, 0);
5285 
5286 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5287 
5288 	cpu_buffer->lost_events = 0;
5289 	cpu_buffer->last_overrun = 0;
5290 
5291 	rb_head_page_activate(cpu_buffer);
5292 }
5293 
5294 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5295 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5296 {
5297 	unsigned long flags;
5298 
5299 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5300 
5301 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5302 		goto out;
5303 
5304 	arch_spin_lock(&cpu_buffer->lock);
5305 
5306 	rb_reset_cpu(cpu_buffer);
5307 
5308 	arch_spin_unlock(&cpu_buffer->lock);
5309 
5310  out:
5311 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5312 }
5313 
5314 /**
5315  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5316  * @buffer: The ring buffer to reset a per cpu buffer of
5317  * @cpu: The CPU buffer to be reset
5318  */
5319 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5320 {
5321 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5322 
5323 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5324 		return;
5325 
5326 	/* prevent another thread from changing buffer sizes */
5327 	mutex_lock(&buffer->mutex);
5328 
5329 	atomic_inc(&cpu_buffer->resize_disabled);
5330 	atomic_inc(&cpu_buffer->record_disabled);
5331 
5332 	/* Make sure all commits have finished */
5333 	synchronize_rcu();
5334 
5335 	reset_disabled_cpu_buffer(cpu_buffer);
5336 
5337 	atomic_dec(&cpu_buffer->record_disabled);
5338 	atomic_dec(&cpu_buffer->resize_disabled);
5339 
5340 	mutex_unlock(&buffer->mutex);
5341 }
5342 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5343 
5344 /* Flag to ensure proper resetting of atomic variables */
5345 #define RESET_BIT	(1 << 30)
5346 
5347 /**
5348  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5349  * @buffer: The ring buffer to reset a per cpu buffer of
5350  * @cpu: The CPU buffer to be reset
5351  */
5352 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5353 {
5354 	struct ring_buffer_per_cpu *cpu_buffer;
5355 	int cpu;
5356 
5357 	/* prevent another thread from changing buffer sizes */
5358 	mutex_lock(&buffer->mutex);
5359 
5360 	for_each_online_buffer_cpu(buffer, cpu) {
5361 		cpu_buffer = buffer->buffers[cpu];
5362 
5363 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5364 		atomic_inc(&cpu_buffer->record_disabled);
5365 	}
5366 
5367 	/* Make sure all commits have finished */
5368 	synchronize_rcu();
5369 
5370 	for_each_buffer_cpu(buffer, cpu) {
5371 		cpu_buffer = buffer->buffers[cpu];
5372 
5373 		/*
5374 		 * If a CPU came online during the synchronize_rcu(), then
5375 		 * ignore it.
5376 		 */
5377 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5378 			continue;
5379 
5380 		reset_disabled_cpu_buffer(cpu_buffer);
5381 
5382 		atomic_dec(&cpu_buffer->record_disabled);
5383 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5384 	}
5385 
5386 	mutex_unlock(&buffer->mutex);
5387 }
5388 
5389 /**
5390  * ring_buffer_reset - reset a ring buffer
5391  * @buffer: The ring buffer to reset all cpu buffers
5392  */
5393 void ring_buffer_reset(struct trace_buffer *buffer)
5394 {
5395 	struct ring_buffer_per_cpu *cpu_buffer;
5396 	int cpu;
5397 
5398 	/* prevent another thread from changing buffer sizes */
5399 	mutex_lock(&buffer->mutex);
5400 
5401 	for_each_buffer_cpu(buffer, cpu) {
5402 		cpu_buffer = buffer->buffers[cpu];
5403 
5404 		atomic_inc(&cpu_buffer->resize_disabled);
5405 		atomic_inc(&cpu_buffer->record_disabled);
5406 	}
5407 
5408 	/* Make sure all commits have finished */
5409 	synchronize_rcu();
5410 
5411 	for_each_buffer_cpu(buffer, cpu) {
5412 		cpu_buffer = buffer->buffers[cpu];
5413 
5414 		reset_disabled_cpu_buffer(cpu_buffer);
5415 
5416 		atomic_dec(&cpu_buffer->record_disabled);
5417 		atomic_dec(&cpu_buffer->resize_disabled);
5418 	}
5419 
5420 	mutex_unlock(&buffer->mutex);
5421 }
5422 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5423 
5424 /**
5425  * ring_buffer_empty - is the ring buffer empty?
5426  * @buffer: The ring buffer to test
5427  */
5428 bool ring_buffer_empty(struct trace_buffer *buffer)
5429 {
5430 	struct ring_buffer_per_cpu *cpu_buffer;
5431 	unsigned long flags;
5432 	bool dolock;
5433 	bool ret;
5434 	int cpu;
5435 
5436 	/* yes this is racy, but if you don't like the race, lock the buffer */
5437 	for_each_buffer_cpu(buffer, cpu) {
5438 		cpu_buffer = buffer->buffers[cpu];
5439 		local_irq_save(flags);
5440 		dolock = rb_reader_lock(cpu_buffer);
5441 		ret = rb_per_cpu_empty(cpu_buffer);
5442 		rb_reader_unlock(cpu_buffer, dolock);
5443 		local_irq_restore(flags);
5444 
5445 		if (!ret)
5446 			return false;
5447 	}
5448 
5449 	return true;
5450 }
5451 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5452 
5453 /**
5454  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5455  * @buffer: The ring buffer
5456  * @cpu: The CPU buffer to test
5457  */
5458 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5459 {
5460 	struct ring_buffer_per_cpu *cpu_buffer;
5461 	unsigned long flags;
5462 	bool dolock;
5463 	bool ret;
5464 
5465 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5466 		return true;
5467 
5468 	cpu_buffer = buffer->buffers[cpu];
5469 	local_irq_save(flags);
5470 	dolock = rb_reader_lock(cpu_buffer);
5471 	ret = rb_per_cpu_empty(cpu_buffer);
5472 	rb_reader_unlock(cpu_buffer, dolock);
5473 	local_irq_restore(flags);
5474 
5475 	return ret;
5476 }
5477 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5478 
5479 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5480 /**
5481  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5482  * @buffer_a: One buffer to swap with
5483  * @buffer_b: The other buffer to swap with
5484  * @cpu: the CPU of the buffers to swap
5485  *
5486  * This function is useful for tracers that want to take a "snapshot"
5487  * of a CPU buffer and has another back up buffer lying around.
5488  * it is expected that the tracer handles the cpu buffer not being
5489  * used at the moment.
5490  */
5491 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5492 			 struct trace_buffer *buffer_b, int cpu)
5493 {
5494 	struct ring_buffer_per_cpu *cpu_buffer_a;
5495 	struct ring_buffer_per_cpu *cpu_buffer_b;
5496 	int ret = -EINVAL;
5497 
5498 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5499 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5500 		goto out;
5501 
5502 	cpu_buffer_a = buffer_a->buffers[cpu];
5503 	cpu_buffer_b = buffer_b->buffers[cpu];
5504 
5505 	/* At least make sure the two buffers are somewhat the same */
5506 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5507 		goto out;
5508 
5509 	ret = -EAGAIN;
5510 
5511 	if (atomic_read(&buffer_a->record_disabled))
5512 		goto out;
5513 
5514 	if (atomic_read(&buffer_b->record_disabled))
5515 		goto out;
5516 
5517 	if (atomic_read(&cpu_buffer_a->record_disabled))
5518 		goto out;
5519 
5520 	if (atomic_read(&cpu_buffer_b->record_disabled))
5521 		goto out;
5522 
5523 	/*
5524 	 * We can't do a synchronize_rcu here because this
5525 	 * function can be called in atomic context.
5526 	 * Normally this will be called from the same CPU as cpu.
5527 	 * If not it's up to the caller to protect this.
5528 	 */
5529 	atomic_inc(&cpu_buffer_a->record_disabled);
5530 	atomic_inc(&cpu_buffer_b->record_disabled);
5531 
5532 	ret = -EBUSY;
5533 	if (local_read(&cpu_buffer_a->committing))
5534 		goto out_dec;
5535 	if (local_read(&cpu_buffer_b->committing))
5536 		goto out_dec;
5537 
5538 	buffer_a->buffers[cpu] = cpu_buffer_b;
5539 	buffer_b->buffers[cpu] = cpu_buffer_a;
5540 
5541 	cpu_buffer_b->buffer = buffer_a;
5542 	cpu_buffer_a->buffer = buffer_b;
5543 
5544 	ret = 0;
5545 
5546 out_dec:
5547 	atomic_dec(&cpu_buffer_a->record_disabled);
5548 	atomic_dec(&cpu_buffer_b->record_disabled);
5549 out:
5550 	return ret;
5551 }
5552 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5553 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5554 
5555 /**
5556  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5557  * @buffer: the buffer to allocate for.
5558  * @cpu: the cpu buffer to allocate.
5559  *
5560  * This function is used in conjunction with ring_buffer_read_page.
5561  * When reading a full page from the ring buffer, these functions
5562  * can be used to speed up the process. The calling function should
5563  * allocate a few pages first with this function. Then when it
5564  * needs to get pages from the ring buffer, it passes the result
5565  * of this function into ring_buffer_read_page, which will swap
5566  * the page that was allocated, with the read page of the buffer.
5567  *
5568  * Returns:
5569  *  The page allocated, or ERR_PTR
5570  */
5571 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5572 {
5573 	struct ring_buffer_per_cpu *cpu_buffer;
5574 	struct buffer_data_page *bpage = NULL;
5575 	unsigned long flags;
5576 	struct page *page;
5577 
5578 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5579 		return ERR_PTR(-ENODEV);
5580 
5581 	cpu_buffer = buffer->buffers[cpu];
5582 	local_irq_save(flags);
5583 	arch_spin_lock(&cpu_buffer->lock);
5584 
5585 	if (cpu_buffer->free_page) {
5586 		bpage = cpu_buffer->free_page;
5587 		cpu_buffer->free_page = NULL;
5588 	}
5589 
5590 	arch_spin_unlock(&cpu_buffer->lock);
5591 	local_irq_restore(flags);
5592 
5593 	if (bpage)
5594 		goto out;
5595 
5596 	page = alloc_pages_node(cpu_to_node(cpu),
5597 				GFP_KERNEL | __GFP_NORETRY, 0);
5598 	if (!page)
5599 		return ERR_PTR(-ENOMEM);
5600 
5601 	bpage = page_address(page);
5602 
5603  out:
5604 	rb_init_page(bpage);
5605 
5606 	return bpage;
5607 }
5608 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5609 
5610 /**
5611  * ring_buffer_free_read_page - free an allocated read page
5612  * @buffer: the buffer the page was allocate for
5613  * @cpu: the cpu buffer the page came from
5614  * @data: the page to free
5615  *
5616  * Free a page allocated from ring_buffer_alloc_read_page.
5617  */
5618 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5619 {
5620 	struct ring_buffer_per_cpu *cpu_buffer;
5621 	struct buffer_data_page *bpage = data;
5622 	struct page *page = virt_to_page(bpage);
5623 	unsigned long flags;
5624 
5625 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5626 		return;
5627 
5628 	cpu_buffer = buffer->buffers[cpu];
5629 
5630 	/* If the page is still in use someplace else, we can't reuse it */
5631 	if (page_ref_count(page) > 1)
5632 		goto out;
5633 
5634 	local_irq_save(flags);
5635 	arch_spin_lock(&cpu_buffer->lock);
5636 
5637 	if (!cpu_buffer->free_page) {
5638 		cpu_buffer->free_page = bpage;
5639 		bpage = NULL;
5640 	}
5641 
5642 	arch_spin_unlock(&cpu_buffer->lock);
5643 	local_irq_restore(flags);
5644 
5645  out:
5646 	free_page((unsigned long)bpage);
5647 }
5648 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5649 
5650 /**
5651  * ring_buffer_read_page - extract a page from the ring buffer
5652  * @buffer: buffer to extract from
5653  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5654  * @len: amount to extract
5655  * @cpu: the cpu of the buffer to extract
5656  * @full: should the extraction only happen when the page is full.
5657  *
5658  * This function will pull out a page from the ring buffer and consume it.
5659  * @data_page must be the address of the variable that was returned
5660  * from ring_buffer_alloc_read_page. This is because the page might be used
5661  * to swap with a page in the ring buffer.
5662  *
5663  * for example:
5664  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5665  *	if (IS_ERR(rpage))
5666  *		return PTR_ERR(rpage);
5667  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5668  *	if (ret >= 0)
5669  *		process_page(rpage, ret);
5670  *
5671  * When @full is set, the function will not return true unless
5672  * the writer is off the reader page.
5673  *
5674  * Note: it is up to the calling functions to handle sleeps and wakeups.
5675  *  The ring buffer can be used anywhere in the kernel and can not
5676  *  blindly call wake_up. The layer that uses the ring buffer must be
5677  *  responsible for that.
5678  *
5679  * Returns:
5680  *  >=0 if data has been transferred, returns the offset of consumed data.
5681  *  <0 if no data has been transferred.
5682  */
5683 int ring_buffer_read_page(struct trace_buffer *buffer,
5684 			  void **data_page, size_t len, int cpu, int full)
5685 {
5686 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5687 	struct ring_buffer_event *event;
5688 	struct buffer_data_page *bpage;
5689 	struct buffer_page *reader;
5690 	unsigned long missed_events;
5691 	unsigned long flags;
5692 	unsigned int commit;
5693 	unsigned int read;
5694 	u64 save_timestamp;
5695 	int ret = -1;
5696 
5697 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5698 		goto out;
5699 
5700 	/*
5701 	 * If len is not big enough to hold the page header, then
5702 	 * we can not copy anything.
5703 	 */
5704 	if (len <= BUF_PAGE_HDR_SIZE)
5705 		goto out;
5706 
5707 	len -= BUF_PAGE_HDR_SIZE;
5708 
5709 	if (!data_page)
5710 		goto out;
5711 
5712 	bpage = *data_page;
5713 	if (!bpage)
5714 		goto out;
5715 
5716 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5717 
5718 	reader = rb_get_reader_page(cpu_buffer);
5719 	if (!reader)
5720 		goto out_unlock;
5721 
5722 	event = rb_reader_event(cpu_buffer);
5723 
5724 	read = reader->read;
5725 	commit = rb_page_commit(reader);
5726 
5727 	/* Check if any events were dropped */
5728 	missed_events = cpu_buffer->lost_events;
5729 
5730 	/*
5731 	 * If this page has been partially read or
5732 	 * if len is not big enough to read the rest of the page or
5733 	 * a writer is still on the page, then
5734 	 * we must copy the data from the page to the buffer.
5735 	 * Otherwise, we can simply swap the page with the one passed in.
5736 	 */
5737 	if (read || (len < (commit - read)) ||
5738 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5739 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5740 		unsigned int rpos = read;
5741 		unsigned int pos = 0;
5742 		unsigned int size;
5743 
5744 		/*
5745 		 * If a full page is expected, this can still be returned
5746 		 * if there's been a previous partial read and the
5747 		 * rest of the page can be read and the commit page is off
5748 		 * the reader page.
5749 		 */
5750 		if (full &&
5751 		    (!read || (len < (commit - read)) ||
5752 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5753 			goto out_unlock;
5754 
5755 		if (len > (commit - read))
5756 			len = (commit - read);
5757 
5758 		/* Always keep the time extend and data together */
5759 		size = rb_event_ts_length(event);
5760 
5761 		if (len < size)
5762 			goto out_unlock;
5763 
5764 		/* save the current timestamp, since the user will need it */
5765 		save_timestamp = cpu_buffer->read_stamp;
5766 
5767 		/* Need to copy one event at a time */
5768 		do {
5769 			/* We need the size of one event, because
5770 			 * rb_advance_reader only advances by one event,
5771 			 * whereas rb_event_ts_length may include the size of
5772 			 * one or two events.
5773 			 * We have already ensured there's enough space if this
5774 			 * is a time extend. */
5775 			size = rb_event_length(event);
5776 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5777 
5778 			len -= size;
5779 
5780 			rb_advance_reader(cpu_buffer);
5781 			rpos = reader->read;
5782 			pos += size;
5783 
5784 			if (rpos >= commit)
5785 				break;
5786 
5787 			event = rb_reader_event(cpu_buffer);
5788 			/* Always keep the time extend and data together */
5789 			size = rb_event_ts_length(event);
5790 		} while (len >= size);
5791 
5792 		/* update bpage */
5793 		local_set(&bpage->commit, pos);
5794 		bpage->time_stamp = save_timestamp;
5795 
5796 		/* we copied everything to the beginning */
5797 		read = 0;
5798 	} else {
5799 		/* update the entry counter */
5800 		cpu_buffer->read += rb_page_entries(reader);
5801 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5802 
5803 		/* swap the pages */
5804 		rb_init_page(bpage);
5805 		bpage = reader->page;
5806 		reader->page = *data_page;
5807 		local_set(&reader->write, 0);
5808 		local_set(&reader->entries, 0);
5809 		reader->read = 0;
5810 		*data_page = bpage;
5811 
5812 		/*
5813 		 * Use the real_end for the data size,
5814 		 * This gives us a chance to store the lost events
5815 		 * on the page.
5816 		 */
5817 		if (reader->real_end)
5818 			local_set(&bpage->commit, reader->real_end);
5819 	}
5820 	ret = read;
5821 
5822 	cpu_buffer->lost_events = 0;
5823 
5824 	commit = local_read(&bpage->commit);
5825 	/*
5826 	 * Set a flag in the commit field if we lost events
5827 	 */
5828 	if (missed_events) {
5829 		/* If there is room at the end of the page to save the
5830 		 * missed events, then record it there.
5831 		 */
5832 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5833 			memcpy(&bpage->data[commit], &missed_events,
5834 			       sizeof(missed_events));
5835 			local_add(RB_MISSED_STORED, &bpage->commit);
5836 			commit += sizeof(missed_events);
5837 		}
5838 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5839 	}
5840 
5841 	/*
5842 	 * This page may be off to user land. Zero it out here.
5843 	 */
5844 	if (commit < BUF_PAGE_SIZE)
5845 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5846 
5847  out_unlock:
5848 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5849 
5850  out:
5851 	return ret;
5852 }
5853 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5854 
5855 /*
5856  * We only allocate new buffers, never free them if the CPU goes down.
5857  * If we were to free the buffer, then the user would lose any trace that was in
5858  * the buffer.
5859  */
5860 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5861 {
5862 	struct trace_buffer *buffer;
5863 	long nr_pages_same;
5864 	int cpu_i;
5865 	unsigned long nr_pages;
5866 
5867 	buffer = container_of(node, struct trace_buffer, node);
5868 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5869 		return 0;
5870 
5871 	nr_pages = 0;
5872 	nr_pages_same = 1;
5873 	/* check if all cpu sizes are same */
5874 	for_each_buffer_cpu(buffer, cpu_i) {
5875 		/* fill in the size from first enabled cpu */
5876 		if (nr_pages == 0)
5877 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5878 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5879 			nr_pages_same = 0;
5880 			break;
5881 		}
5882 	}
5883 	/* allocate minimum pages, user can later expand it */
5884 	if (!nr_pages_same)
5885 		nr_pages = 2;
5886 	buffer->buffers[cpu] =
5887 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5888 	if (!buffer->buffers[cpu]) {
5889 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5890 		     cpu);
5891 		return -ENOMEM;
5892 	}
5893 	smp_wmb();
5894 	cpumask_set_cpu(cpu, buffer->cpumask);
5895 	return 0;
5896 }
5897 
5898 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5899 /*
5900  * This is a basic integrity check of the ring buffer.
5901  * Late in the boot cycle this test will run when configured in.
5902  * It will kick off a thread per CPU that will go into a loop
5903  * writing to the per cpu ring buffer various sizes of data.
5904  * Some of the data will be large items, some small.
5905  *
5906  * Another thread is created that goes into a spin, sending out
5907  * IPIs to the other CPUs to also write into the ring buffer.
5908  * this is to test the nesting ability of the buffer.
5909  *
5910  * Basic stats are recorded and reported. If something in the
5911  * ring buffer should happen that's not expected, a big warning
5912  * is displayed and all ring buffers are disabled.
5913  */
5914 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5915 
5916 struct rb_test_data {
5917 	struct trace_buffer *buffer;
5918 	unsigned long		events;
5919 	unsigned long		bytes_written;
5920 	unsigned long		bytes_alloc;
5921 	unsigned long		bytes_dropped;
5922 	unsigned long		events_nested;
5923 	unsigned long		bytes_written_nested;
5924 	unsigned long		bytes_alloc_nested;
5925 	unsigned long		bytes_dropped_nested;
5926 	int			min_size_nested;
5927 	int			max_size_nested;
5928 	int			max_size;
5929 	int			min_size;
5930 	int			cpu;
5931 	int			cnt;
5932 };
5933 
5934 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5935 
5936 /* 1 meg per cpu */
5937 #define RB_TEST_BUFFER_SIZE	1048576
5938 
5939 static char rb_string[] __initdata =
5940 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5941 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5942 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5943 
5944 static bool rb_test_started __initdata;
5945 
5946 struct rb_item {
5947 	int size;
5948 	char str[];
5949 };
5950 
5951 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5952 {
5953 	struct ring_buffer_event *event;
5954 	struct rb_item *item;
5955 	bool started;
5956 	int event_len;
5957 	int size;
5958 	int len;
5959 	int cnt;
5960 
5961 	/* Have nested writes different that what is written */
5962 	cnt = data->cnt + (nested ? 27 : 0);
5963 
5964 	/* Multiply cnt by ~e, to make some unique increment */
5965 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5966 
5967 	len = size + sizeof(struct rb_item);
5968 
5969 	started = rb_test_started;
5970 	/* read rb_test_started before checking buffer enabled */
5971 	smp_rmb();
5972 
5973 	event = ring_buffer_lock_reserve(data->buffer, len);
5974 	if (!event) {
5975 		/* Ignore dropped events before test starts. */
5976 		if (started) {
5977 			if (nested)
5978 				data->bytes_dropped += len;
5979 			else
5980 				data->bytes_dropped_nested += len;
5981 		}
5982 		return len;
5983 	}
5984 
5985 	event_len = ring_buffer_event_length(event);
5986 
5987 	if (RB_WARN_ON(data->buffer, event_len < len))
5988 		goto out;
5989 
5990 	item = ring_buffer_event_data(event);
5991 	item->size = size;
5992 	memcpy(item->str, rb_string, size);
5993 
5994 	if (nested) {
5995 		data->bytes_alloc_nested += event_len;
5996 		data->bytes_written_nested += len;
5997 		data->events_nested++;
5998 		if (!data->min_size_nested || len < data->min_size_nested)
5999 			data->min_size_nested = len;
6000 		if (len > data->max_size_nested)
6001 			data->max_size_nested = len;
6002 	} else {
6003 		data->bytes_alloc += event_len;
6004 		data->bytes_written += len;
6005 		data->events++;
6006 		if (!data->min_size || len < data->min_size)
6007 			data->max_size = len;
6008 		if (len > data->max_size)
6009 			data->max_size = len;
6010 	}
6011 
6012  out:
6013 	ring_buffer_unlock_commit(data->buffer);
6014 
6015 	return 0;
6016 }
6017 
6018 static __init int rb_test(void *arg)
6019 {
6020 	struct rb_test_data *data = arg;
6021 
6022 	while (!kthread_should_stop()) {
6023 		rb_write_something(data, false);
6024 		data->cnt++;
6025 
6026 		set_current_state(TASK_INTERRUPTIBLE);
6027 		/* Now sleep between a min of 100-300us and a max of 1ms */
6028 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6029 	}
6030 
6031 	return 0;
6032 }
6033 
6034 static __init void rb_ipi(void *ignore)
6035 {
6036 	struct rb_test_data *data;
6037 	int cpu = smp_processor_id();
6038 
6039 	data = &rb_data[cpu];
6040 	rb_write_something(data, true);
6041 }
6042 
6043 static __init int rb_hammer_test(void *arg)
6044 {
6045 	while (!kthread_should_stop()) {
6046 
6047 		/* Send an IPI to all cpus to write data! */
6048 		smp_call_function(rb_ipi, NULL, 1);
6049 		/* No sleep, but for non preempt, let others run */
6050 		schedule();
6051 	}
6052 
6053 	return 0;
6054 }
6055 
6056 static __init int test_ringbuffer(void)
6057 {
6058 	struct task_struct *rb_hammer;
6059 	struct trace_buffer *buffer;
6060 	int cpu;
6061 	int ret = 0;
6062 
6063 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6064 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6065 		return 0;
6066 	}
6067 
6068 	pr_info("Running ring buffer tests...\n");
6069 
6070 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6071 	if (WARN_ON(!buffer))
6072 		return 0;
6073 
6074 	/* Disable buffer so that threads can't write to it yet */
6075 	ring_buffer_record_off(buffer);
6076 
6077 	for_each_online_cpu(cpu) {
6078 		rb_data[cpu].buffer = buffer;
6079 		rb_data[cpu].cpu = cpu;
6080 		rb_data[cpu].cnt = cpu;
6081 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6082 						     cpu, "rbtester/%u");
6083 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6084 			pr_cont("FAILED\n");
6085 			ret = PTR_ERR(rb_threads[cpu]);
6086 			goto out_free;
6087 		}
6088 	}
6089 
6090 	/* Now create the rb hammer! */
6091 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6092 	if (WARN_ON(IS_ERR(rb_hammer))) {
6093 		pr_cont("FAILED\n");
6094 		ret = PTR_ERR(rb_hammer);
6095 		goto out_free;
6096 	}
6097 
6098 	ring_buffer_record_on(buffer);
6099 	/*
6100 	 * Show buffer is enabled before setting rb_test_started.
6101 	 * Yes there's a small race window where events could be
6102 	 * dropped and the thread wont catch it. But when a ring
6103 	 * buffer gets enabled, there will always be some kind of
6104 	 * delay before other CPUs see it. Thus, we don't care about
6105 	 * those dropped events. We care about events dropped after
6106 	 * the threads see that the buffer is active.
6107 	 */
6108 	smp_wmb();
6109 	rb_test_started = true;
6110 
6111 	set_current_state(TASK_INTERRUPTIBLE);
6112 	/* Just run for 10 seconds */;
6113 	schedule_timeout(10 * HZ);
6114 
6115 	kthread_stop(rb_hammer);
6116 
6117  out_free:
6118 	for_each_online_cpu(cpu) {
6119 		if (!rb_threads[cpu])
6120 			break;
6121 		kthread_stop(rb_threads[cpu]);
6122 	}
6123 	if (ret) {
6124 		ring_buffer_free(buffer);
6125 		return ret;
6126 	}
6127 
6128 	/* Report! */
6129 	pr_info("finished\n");
6130 	for_each_online_cpu(cpu) {
6131 		struct ring_buffer_event *event;
6132 		struct rb_test_data *data = &rb_data[cpu];
6133 		struct rb_item *item;
6134 		unsigned long total_events;
6135 		unsigned long total_dropped;
6136 		unsigned long total_written;
6137 		unsigned long total_alloc;
6138 		unsigned long total_read = 0;
6139 		unsigned long total_size = 0;
6140 		unsigned long total_len = 0;
6141 		unsigned long total_lost = 0;
6142 		unsigned long lost;
6143 		int big_event_size;
6144 		int small_event_size;
6145 
6146 		ret = -1;
6147 
6148 		total_events = data->events + data->events_nested;
6149 		total_written = data->bytes_written + data->bytes_written_nested;
6150 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6151 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6152 
6153 		big_event_size = data->max_size + data->max_size_nested;
6154 		small_event_size = data->min_size + data->min_size_nested;
6155 
6156 		pr_info("CPU %d:\n", cpu);
6157 		pr_info("              events:    %ld\n", total_events);
6158 		pr_info("       dropped bytes:    %ld\n", total_dropped);
6159 		pr_info("       alloced bytes:    %ld\n", total_alloc);
6160 		pr_info("       written bytes:    %ld\n", total_written);
6161 		pr_info("       biggest event:    %d\n", big_event_size);
6162 		pr_info("      smallest event:    %d\n", small_event_size);
6163 
6164 		if (RB_WARN_ON(buffer, total_dropped))
6165 			break;
6166 
6167 		ret = 0;
6168 
6169 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6170 			total_lost += lost;
6171 			item = ring_buffer_event_data(event);
6172 			total_len += ring_buffer_event_length(event);
6173 			total_size += item->size + sizeof(struct rb_item);
6174 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6175 				pr_info("FAILED!\n");
6176 				pr_info("buffer had: %.*s\n", item->size, item->str);
6177 				pr_info("expected:   %.*s\n", item->size, rb_string);
6178 				RB_WARN_ON(buffer, 1);
6179 				ret = -1;
6180 				break;
6181 			}
6182 			total_read++;
6183 		}
6184 		if (ret)
6185 			break;
6186 
6187 		ret = -1;
6188 
6189 		pr_info("         read events:   %ld\n", total_read);
6190 		pr_info("         lost events:   %ld\n", total_lost);
6191 		pr_info("        total events:   %ld\n", total_lost + total_read);
6192 		pr_info("  recorded len bytes:   %ld\n", total_len);
6193 		pr_info(" recorded size bytes:   %ld\n", total_size);
6194 		if (total_lost) {
6195 			pr_info(" With dropped events, record len and size may not match\n"
6196 				" alloced and written from above\n");
6197 		} else {
6198 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6199 				       total_size != total_written))
6200 				break;
6201 		}
6202 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6203 			break;
6204 
6205 		ret = 0;
6206 	}
6207 	if (!ret)
6208 		pr_info("Ring buffer PASSED!\n");
6209 
6210 	ring_buffer_free(buffer);
6211 	return 0;
6212 }
6213 
6214 late_initcall(test_ringbuffer);
6215 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6216